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Abstract. Coupled theoretical and computational work is presented aimed at understanding and modeling
stimulated Raman backscattering (SRBS) relevant to laser-plasma interactions (LPIs) in large-scale, nearly
homogeneous plasmas. We address the following five observed, nonlinear phenomena associated with SRBS:
coupling of SRBS to Langmuir decay interactions (LDIs); cascading of LDI; SRS cascades; and stimulated
electron acoustic wave scattering (SEAS).

1. Introduction

In the past few years, experiments on the TRIDENT facility at the Los Alamos National
Laboratory (LANL) have undertaken to study LPIs in (independently) preformed plasmas
with a diffraction limited laser beam, thus approximately simulating LPIs in a single hot
spot (SHS) [1], relevant to indirect drive inertial confinement fusion. We present results
from recent analytical and computational studies [2,3] of LPIs with particular reference to
SRBS in SHS [3]–[5].
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Figure 1: (a) kλDe = 0.32 (ne/ncr = 0.04); (b) kλDe = 0.28 (ne/ncr = 0.05).

2. Coupled Mode Model Equations (CMME) for SRBS–LDI and Cascades

We considered the following model LPI in their simplest description of nonlinearly
coupled modes [6]: (a) SRBS; (b) SRBS coupled to LDI; (c) SRBS + LDI coupled to
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LDI-cascade (LDIc); and (d) SRBS coupled to SRS-cascade (SRSc). In the most complex
case considered, (c), this entailed solving the following seven nonlinearly coupled mode
equations:

LASER : L1a1 = −K1a2a3 (1)
BEMW(EPW) : L2a2 = K1a1a3 (2)
EPW(BEMW) : L3a3 = K1a1a2 −K2a4a5 (3)

BEPW(FEMW) : L4a4 = K2a3a5 −K3a6a7 (4)
IAW(EPWc) : L5a5 = K2a3a4 (5)

CEPW : L6a6 = K3a4a7 (6)
CIAW : L7a7 = K3a4a6 (7)

In these equations Lj = (∂/∂t) + vgj(∂/∂x) + νj is the linear wavepacket operator on the
slowly-varying action density amplitudes in space and time (see first reference in [6]). The
above equations can be reduced to apply to (d) by labeling (2) as EPW, (3) as BEMW,
(4) as FEMW, (5) as EPWc [as shown in parentheses along (2)–(5)], and setting K3, a6,
and a7 to zero.
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Figure 2: (a) SRBS reflectivity with and without coupling to LDI; (b) SRBS reflectivity with and
without the SRS cascade.

2.1 Bounded Length Interaction Computations From CMME Studies

We modeled the SHS-LPI as occuring in a bounded homogeneous plasma of length L,
with an incident laser field at x = 0. Parameters chosen to represent typical SHS-LPI
experiments [1,5] were: L = 250 µm; a Maxwellian plasma with 70% hydrogen and 30%
carbon ions; Te ≈ 700 eV ; Ti ≈ 100–500 eV (depending on electron density ne where the
interaction was made to occur); λo = 527 nm; and a laser intensity Po ≈ 1015 Watts/cm2;
(ne/ncr) was varied, as in the experiments to obtain LPIs as a function of the EPW kλDe.
The results shown in the following figures are presented in terms of normalized quantities
used in the computations: action densities normalized to laser a0, and distances normalized
to vg3/(|KLDI |a0). Thus for the given laser and plasma parameters, the interactions length
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of 250 µm is 900 normalized x-units, and the SRBS energy flow reflectivity is

SRBSr ≡ |vg2|w2

|vg1|w1

∣
∣
∣
∣
∣
x=0

≈ ω2

ω1
|a2(x = 0, t)|2 . (8)

(Note, x = 0 is shown as −450 normalized x units.) The following is a summary of results.
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Figure 3: (a) Electron distribution at 51.7 (ω−1
pe ); (b) Its deviation from the initial Maxwellian.

1. Coupling of SRBS to LDI — Dramatic changes in space-time occur as the ELD of the
EPWs is changed. For strong ELD (kλDe

>∼ 0.4), although SRBS may be present,
LDI is not excited anywhere in the SHS plasma. For intermediate ELD (kλDe ∼ 0.32),
LDI is excited but spatially localized near the boundary where the laser enters the
SHS plasma; the EPW is saturated just above the LDI threshold [see Figure 1(a)].
Notably, for weak ELD (kλDe

<∼ 0.28), LDI is intense in the plasma region near the
laser entrance boundary, and exhibits incoherent space-time fluctuations [Fig. 1(b)]
akin to spatiotemporal chaos (STC) [7]; the consequence is an appreciable reduction
in SRBS reflectivity due to the ensuing dephasing. However, the low reflectivities
observed in the SHS-LPI experiments are not predicted by SRBS coupling to LDI
[Figure 2(a)].

2. Cascading of LDI — The SHS-LPI experiments [3] have shown the existence of LDI
cascades associated with SRBS. From our coupled mode simulations of (1)–(7), that
include the first LDI cascade, we find that its effect is to slightly increase the SRBS
reflectivity. This can be understood from the fact that the cascade drains energy
from the LDI, thus enhancing SRBS which was reduced by LDI in the absence of the
cascade. We thus explain the observation of cascades and their effect on the SRBS
reflectivity, but we find that these cascades do not contribute significantly to predict
the observed saturated values of reflectivity in the particular SHS-LPI.
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3. SRS Cascades — We find that an SRS cascade gives a more significant decrease
in the SRBS reflectivity than LDI [Fig. 2(b)]. This is readily understood from the
Manley-Rowe relations. SHS-LPI experiments have so far not looked for this type of
cascade.

Our results, although different in some respects, are complementary to [8,9].

3. Fluid Vlasov-Maxwell Simulations and Models for SRBS–SEAS

We have studied and modeled SEAS, analytically and numerically, with a model that
differs from the one proposed in [4], considering that SRBS evolves its EPW to amplitudes
that trap electrons. With a nonlinear, one-dimensional, Eulerian, Vlasov-Maxwell code
[10], we launched a laser propagating field on a trapped electron distribution function due
to an independently generated EPW in a plasma with parameters of the recent SEAS
experiment [3,4], thus simulating a saturated state of SRBS. The evolution of this setup
shows indeed that SRBS is essentially saturated, and in addition exhibits the generation
of low-density, thermally spread beamlets below the phase velocity of the EPW (Figure
3) [11]. Estimating from Fig. 3(b) the presence of a beamlet (vb ≈ 0.045 c, Tb ≈ 40 eV ,
nb ≈ 0.02 ne), the linear natural modes of the plasma with beamlet show a relatively weakly
damped EAW [see Figure 4(a)]. Parametric growth rates for this system, driven by the
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Figure 4: (a) EPW and EAW modes; (b) Nonlinear electrostatic modes [13].

laser, are given by the kinetic dispersion relation (see e.g., [12]):

(1 + χe)D+D− = (kv0/2)2 χe(D+ +D−) (9)

where χe = [−Z ′(ζp)/2k2λDp − Z ′(ζb)/2k2λDb], with ζp = (ω/|k|√2vTp), and ζb = (ω −
kvb/|k|

√
2vTb); D± = c2(k±k0)2 +ωpe − (ω±ω0)2, and v0 = (e|E0|/meω0). For laser inten-

sities of 1016 Watts/cm2, calculations from (9) show that for a range of beamlet parameters
(from Tb

∼
< 50 eV for nb

∼
> 0.02 ne, and Tb

∼
< 20 eV for nb

∼
> 0.01 ne), consistent with Fig.
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3(b), one obtains a (quasimode) parametric growth rate ≈ 1.6 × 10−4 ωo in a narrow fre-
quency range at ωr ≈ 0.45 ωpe (kλDe ≈ 0.285), similar to the observed SEAS, and an SRBS
growth rate of ≈ 9.4 × 10−3 ωo (essentially unaffected by the above beamlet parameters)
in a narrow range at ωr ≈ 1.15 ωpe (kλDe ≈ 0.267), as expected. Preliminary results from
the (k, ω) spectra of the Vlasov code simulations confirm the results of this model. Finally,
we find that a fully nonlinear, steady state solution of the one-dimensional Vlasov equation
in an electrostatic wave electric field [13] exhibits nonlinear EAW-type modes below the
plasma frequency [see Fig. 4(b), EN = eEo/(meωp

√
2vTe)]; their excitation in SRBS also

remains to be studied.
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