
PSFC/JA-02-18

SYMMETRIES IN DISSIPATION-FREE
LINEAR MODE CONVERSION

A. Bers and A. K. Ram

October 2002

Plasma Science & Fusion Center
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139, U.S.A.

This work is supported by U.S. Department of Energy Contracts DE-
FG02-91ER-54109 and DE-FG02-99ER-54521. Reproduction, trans-
lation, publication, use and disposal, in whole or part, by or for the
United States Government is permitted.

To appear in Proceedings of the 29th Conference on Plasma Physics
and Controlled Fusion, Montreux, Switzerland, June 17–21, 2002.

i

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/78059353?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


ii



Symmetries in Dissipation-Free Linear Mode Conversion

A. Bers and A. K. Ram
Plasma Science & Fusion Center, M.I.T, Cambridge, MA 02139, U.S.A.

ABSTRACT

Linear mode conversions (MC) in loss-free (LF) regions of an inhomogeneous, Vlasov
plasma in a magnetic field are shown to obey certain symmetries [1]. These are illustrated
and interpreted for situations relevant to plasma heating and/or current drive.

INTRODUCTION

Consider a one-dimensional (in x) generic propagation and MC situation in an inhomo-
geneous plasma, with unperturbed (equilibrium) parameters (e.g., density, temperature,
and magnetic field) that vary in x, as shown schematically in Figure 1. For homogeneity
along �B0 = ẑB0(x), Landau and/or Doppler shifted cyclotron resonance absorption for any
kz is assumed to occur outside the LF-MCR.
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Figure 1:

PROOF OF SYMMETRIES

In the WKB regions to the right and left of the LF-MCR, let the complex field ampli-
tudes of (e.g., forward) waves with energy flow into and out of the LF-MCR be, respectively,

ap ∼ exp(ikpxx − iωt) and bp ∼ exp(−ikpxx − iωt) , (1)

normalized so that: |ap|2 = wave energy flow density into the LF-MCR; |bp|2 = wave
energy flow density out of the LF-MCR. [For backward waves, retaining the energy flow
normalizations, the signs of the kpx’s in (1) will change.] In Figure 1, such modes on the left
of the LF-MCR have p = m (there can be any number of such modes: m1, m2, . . .), and on
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the right of the LF-MCR, similarly, p = n designating any number of modes (n1, n2, . . .).
For a weakly dissipative mode, the total wave energy flow density (electromagnetic plus
kinetic) is given, in general, by [2]

〈sx〉p =
[
1
2
Re ( �E × �H ∗)x − ε0

4
ω

∂χH
αβ

∂kx

EαE∗
β

]
p

, (2)

where χH
αβ is the Hermitian part of the susceptibility tensor χαβ(�k, ω) with �k and ω real

and the star superscript denotes the complex conjugate. Since the full-wave equations
describing the LF-MCR are linear (in general, linear integro-partial-differential equations)
with appropriate boundary conditions, the complex field amplitudes ap and bp are related
by a unique scattering matrix S

�b = S · �a (3)

where �b and �a are column vectors containing complex amplitudes of all bp and all ap,
respectively.

From energy flow conservation applied to the LF-MCR, we have
∑

p(|ap|2 − |bp|2) = 0,

where the sum is over all m’s and n’s. Using (3), we can express this as �a † ·(I−S
† ·S)·�a = 0,

where the dagger superscript on S denotes the complex-conjugate-transpose of S. Since
this must hold true for arbitrary �a, it follows that

S
†
= S

−1
. (4)

Next, consider wave energy flow under time reversibility. For the time reversed system,
the direction of time-averaged energy flow density changes sign. In other words, the reversal
of time changes time-averaged energy flow into the mode conversion region to time-averaged
energy flow out of the mode conversion region, and vice versa. From (2), energy flow
reversal is obtained by setting �E → �E ∗, �H → − �H ∗, �k → −�k and, by (1), time reversal
gives ap → b∗

p and bp → a∗
p, where the star superscript denotes the complex conjugate.

Referring to Figure 1, the effect of time reversal is to change a to b∗ and b to a∗, with
arrows pointing in the same direction as indicated in the figure. Thus �a ∗ = S ·�b ∗ or, taking
the complex conjugate, �a = S

∗ ·�b. But from (3) �a = S
−1 ·�b; hence

S
∗
= S

−1
. (5)

Combining (4) and (5), we finally obtain:

S
†
= S

∗
or equivalently S

T
= S (6)
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where the T superscript on S denotes the transpose of S. Hence, the LF-MCR scattering
matrix is symmetric. The symmetry of the LF-MC scattering matrix, Sij = Sji, entails
important relationships for various power coefficients of the mode conversion process:

|Sij|2 =
∣∣∣∣∣ bi

aj

∣∣∣∣∣
2

=
∣∣∣∣∣bj

ai

∣∣∣∣∣
2

= |Sji|2 . (7)

For MCs near the upper-hybrid resonance involving ordinary, extraordinary and electron
Bernstein waves, the symmetries have been described in [3,4]. Here we illustrate the sym-
metries in two scenarios of MC near the ion-ion hybrid resonance (IIHR).

MODE CONVERSIONS AT THE IIHR

We assume conditions such that the individual ion-cyclotron resonances are outside the
MCR containing the IIHR. MC is between fast Alfvén waves (FAW) and ion Bernstein
waves (IBW).

1. Cutoff on High-Field Side Following IIHR is Within MCR

The local dispersion relation in the LF-MCR for given (ω, kz), and the WKB modes
outside its boundaries, are illustrated in Figure 2. The associated scattering matrix is given
by: 

 bB

bF


 =


 SB SFB

SBF SF





 aB

aF


 . (8)

From (7): |SFB|2 = |SBF |2 gives the symmetry in excitations by MCs between FAW and
IBW. In addition, (5) gives a reflectivity symmetry |SB|2 = |SF |2.
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2. No Cutoff on High-Field Side Following IIHR in MCR

The local dispersion relation in the LF-MCR for given (ω, kz), and the boundaries of
the LF-MCR with WKB mode fields outside of its boundaries are shown in Figure 3. The
associated scattering matrix is given by:


bB

bH

bL


 =




SB SBH SBL

SHB SH SHL

SLB SLH SL







aB

aH

aL


 . (9)

From (7): |SBH |2 = |SHB|2 and |SBL|2 = |SLB|2 give symmetries, respectively, in excitations
by MCs between high-field side FAW and IBW, and low-field side FAW and IBW; |SHL|2 =
|SLH |2 gives the symmetry in transmissions of FAWs.
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Figure 4:

GENERALIZATION

For 3-D propagation and mode conversion, the LF-MCR is identified by the breakdown
of the eikonal description of modes. Outside the LF-MCR, where WKB eikonal descriptions
are assumed to apply, and weakly dissipative modes are found to approach the LF-MCR
by ray tracing, wave energy flow density is given by [2]

〈�sp〉 =
[
1
2
Re

(
�E × �H ∗) − ε0

4
ω

∂χH
αβ

∂�k

]
p

= �vgp〈wp〉 (10)

where �vgp and 〈wp〉 are, respectively, the group velocity and wave energy density of mode
p. Defining the mode amplitudes (ap, bp) along �vgp (see Figure 4), the symmetry of their
scattering matrix S is proven along lines identical to (3)–(6).
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