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Abstract

We compare the stability of electrostatic drift waves in a closed field line configuration in
collisionality regimes ranging from collisional to collisionless. The maximum sustainable
pressure gradient is found to be dependent on the ratio of the temperature and density
gradients (n = din T/dln n). The eigenmodes are seen to be flute-like. The stability
boundary was found to be similar when both ions and electrons are collisional, when they
are collisionless, and for collisional electrons and collisionless ions. The largest stable
pressure gradients are obtained for n > 2/3. As the collisionality is reduced we observe

some reduction of the region of stability.



1 Introduction

Closed field line systems, such as a levitated dipole, provide a promising new approach
for the magnetic confinement of plasmas for controlled fusion [1, 2]. The plasma in a
closed field line system can be stabilized in so-called “bad curvature” regions by plasma
compressibility. In magnetohydrodynamic (MHD) theory stability of interchange modes
limits the pressure gradient to a value d = din p/din U < v with U = § d{/B and ~ the
ratio of specific heats (y = 5/3 in three-dimensional systems).

Recent studies which imposed a long mean free path collisional ordering (defined by
wpj > v > W, Wsy, wy with w the wave frequency, wy; the bounce frequency, v; the
collision frequency, w.; the diamagnetic drift frequency, wy; the curvature drift frequency)
as compared with the short mean free path collisional MHD ordering, (v; > wy; >
W, Wij, wyi) to both electrons and ions [3, 4, 5] have shown that near marginal stability
for MHD modes (d ~ 5/3) the MHD mode will couple to a potentially unstable drift
frequency mode known as the “entropy mode”. The entropy mode is flute like and stability
depends on d and on the ratio n = din T'/dln n, with the most stable value being n = 2/3.
Furthermore it has been shown that ion collisional relaxation (described as gyro-relaxation
in Ref. [6, 7]) can destabilize the entropy mode and produce a weak instability in some
otherwise stable regions of d — n space [5].

In a short mean free path collisional plasma (as characterized by MHD) the plasma
compressibility derives from the local relationship of pressure to changing flux tube vol-
ume. The plasma is constrained to move with the field lines but in the case of closed
field lines the field does not form flux surfaces and each closed field line must satisfy
the equation of state. This imposes a periodicity on the perturbation that results in an
important stabilizing term, the plasma compressibility. For open field lines the plasma is

free to flow along field lines. This eliminates plasma compressibility .



For a collisionless plasma and considering low frequency perturbations that conserve
the adiabatic invariants y and J, particles that are magnetically trapped (all the particles
for closed field lines) change energy as the field lines compress. This effect has been shown
to correspond exactly to the MHD plasma compressibility. For Passing particles however
the passing particles sample the entire flux surface and the path integral of perturbed
potential will average to zero [8].

The description of drift ballooning modes in tokamaks, has been studied extensively
[9, 10, 11]. The study of Ref. [11] indicates the importance of the parameter 5 in expanding
the region of instability in a tokamak. However the results in this reference apply to a
tokamak equilibrium and in particular they do not apply to the case of zero safety factor
and shear (i.e. ¢ = s =0).

In the collisionless regime, w, wsy;, wg > vj, drift modes were shown to be stable when
the MHD stability condition is met and n ~ 2/3 [12] and stability was seen to improve
as kj p; increases, with k; the wave number perpendicular to the magnetic field direction
and p; the ion gyro radius. For n > 2/3 a drift frequency mode was observed and it
became more unstable when &, p; increased.

Electromagnetic effects on these modes have been studied. Wong et al. have shown
that finite beta effects are stabilizing at low beta [13]. They also consider the electro-
magnetic effects at very high beta, and they have shown that there can be new regions of
instability when 8 > 1 [13].

A levitated dipole experiment known as LDX is presently under construction [2]. The
most relevant parameter regime for LDX would have collisional but long mean free path
electrons (wpe > 1. > w, wye) and collisionless ions. We will, therefore, consider the
stability of low beta electrostatic modes with this intermediate collisional ordering and

compare our results with those obtained with collisional and collisionless orderings.



2 Solution of Drift Kinetic Equation

We will compare the MHD prediction with the predictions of the more general plasma
drift kinetic equation in the electrostatic limit. To compare the MHD result with kinetic

theory we define

Wip = 0 (1)

and

~mhd
d

2¢c Rk, T ¢dl k/RB? 2)
e l+7(8)/2 ¢$dl/B

with R the cylindrical radial co-ordinate, x the field line curvature, kg the azimuthal part
of the perpendicular wave number (k1 = k7 + k%) and kg R = m > 1. One can show that
d defined above is equal to d = &., /&7 and therefore the MHD stability requirement,

d < ~, can be written as

Wip < Yo, (3)

We will consider the solution of the drift kinetic equation in the high collision frequency
limit for electrons and low collision frequency for ions. We therefore apply the ordering
for electrons [14]:

Qee > Whe > Ve > Wi ~ Wie ~ W (4)

and for ions

Qci > Why > Wy YW ™~ W > U, (5)

with €2.; the appropriate cyclotron frequency.

To derive the stability criterion for electrostatic modes we consider a fluctuating po-
tential (¢) and ignore any equilibrium electrostatic potential. From Faraday’s law it is
possible for a perturbation to leave the magnetic field undisturbed if £ = —V¢ (which is

consistent with 8 < 1).



The gyro kinetic equation was derived under the assumption that the wave frequency
w is less than the cyclotron frequency €2, and the perpendicular wavelength A = 27 /& is
short compared to a parallel wavelength, 27 /k. The appropriate equation for the gyro

averaged distribution function f is then [8, 15, 16]

f=qoFo.+ Jo(Z)h (6)

and the non-adiabatic response h satisfies
(w—wi+ivyh- V') h = —(w — w.)qdLocdo(Z) +iC(h). (7)

In Eq. (7) C(h) is the collision operator, Jo(Z) is the Bessel function of the first kind,

Fo(e, 1) is the equilibrium distribution function, i.e.
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We have defined € = mv?/2, u = mv} /2B and A = ¢/p. The prime on spacial gradients



indicates that € and p are held fixed in the differentiation. The magnetic flux function is
¢» and 6 is the azimuthal angle. Assuming k2 p? < 1
(kipi)® ABg €

Jo(Z) 1 — P

5 BT (10)

with the gyro radius p;, defined as p? = T;/m;QZ,, By the magnetic field at the field
minimum at the location R = Ry and {2y the associated cyclotron frequency.

We consider perturbations whose growth time is long compared to a particle bounce
time for all species and expand Eq. (7) in powers of § = w/wy, with w, the bounce
frequency, i.e. h = hg+ & hy + 6% hy +.... Notice § ~ w./wy, ~ kgp; and corrections to the

perturbed density will enter as 6% o< k3p?. To zeroth order in § we obtain from Eq. (7):
vy b V'ho & 0 (11)

i.e. ho = ho(€, i, 1) a constant along a field line. We determine the constant hg by taking

the bounce average of the first order form of Eq. (7) to annihilate sy to obtain:
(w—4) ho = — (w — w.) ¢dJoFoe +1C(ho). (12)

Since we will not pursue the w/w, expansion to higher orders, we will suppress the sub-

script 0 in the following analysis of Eq. (12). The overbar indicates a bounce time

¢= n;/% \/qf(l—)cilB (13)

with the bounce time, 7, defined as 7, = \/m/2¢ § dl/+/1 — AB.

The electron collision operator conserves particles and energy. With the chosen or-

average:

dering and these conservation properties the exact form of the electron collision operator



does not enter the results.

Consider first collisional electrons following Ref. [3]. We analyze Eq. (12) in the high
collisionality limit (v./w > 1) and expand h. in a subsidiary ordering, h. = ho+hy +. . ..
To lowest order we find that hg is proportional to a Maxwellian distribution function, Fy,
multiplied by a perturbed density, 6V, and having a perturbed temperature 7'+ 67" [14].

Expanding to first order we obtain

3/2
m ON 6T /e 3
hoe = ON | —— ) e=/THT) o |22 —(———) Fo. 14
° (QW(T—I-éT)) ‘ w T T AT 2/ (14)

To next order the drift kinetic equation becomes:
(w—4) ho = — (w — wi) gdJoFoe +1C(hy). (15)

We can obtain the perturbed density and temperature for the electron species by annihi-

lating C'(h1) with the two operators:

dt 1 22 o (PN s Ay
§ [ _ (—) dae [~ ac ~ Y 6
B mv? /2 m 0 32 ] Jo 1 —AB
Since the collision operator conserves particles and energy these operators will annihilate
it, 1.e.

?fdz/B/d%U(h) - jfdz/B/d%(% - S)U(h) — 0. (17)

We will define w,. by

. Tk x b-Vng
=7 0 1
i n;ms) (18)
and write
we =wi (1 +n(e/T —3/2)) Fy (19)

with n = din T /dln n. Notice that ©., = ©.(14n). Taking the flux tube and velocity space

7



integral of Eq. (15) we obtain the following expression for the non-adiabatic perturbed

density § [V, for electrons from Eq. (14):

©aeno(6Te/Te) 4 ge(w — @nc)(9) /Tt

ON, = 2
W — (jjde ( 0)
with the flux tube average defined as
[odl/B
= — 21
(0 = L (21)
and wy;, the flux tube averaged drift, defined as:
. cT;(Rkg) dl

with U = §dl/B. For low 3, k = V| B/B and &, becomes equal to the MHD definition
given in Eq. (2).
To obtain (67./T.) we take the flux tube average and integrate over velocity space for

(¢/T —3/2)x Eq. (15) which again annihilates the collision operator to obtain:

5T6 _ %(57@6/716)&)5[6 - QSne(b*e<¢>/T (23)

7 A~
T. W — 3Wge

Equation (20) and (23) determine  N./n and using Eq. 6 we construct the total electron

density perturbation én./n = dN./n — q.0/T.,

5n6 — _qeqb T q@<¢> wz _ w(g(‘bde + (jj*e) + C&de@*e(g - 776)
no T T DD+ 505,

= (=0 (OAL(w, e, D4e))

€

NS

If we assume both collisional electrons and ions so that the zero gyroradius ion response

(24)



becomes similar to Eq. 24 (with ©ge, @we — @, Wi) We can apply quasi-neutrality to

obtain the marginal stability condition when

d= ; [ﬂ] (25)

2.1 Collisional Electrons, Collisionless ions

In Refs [3, 4, 5] the ion response was assumed to be collisional. Here we assume a

collisionless ion response and ignore terms of order k2 p? to obtain:

on; . z 3 W — W*z 1 + UZ(G/T 3/2))_
n; /d w— g€, N) ¢Fo (26)

(=6 + A (w wmwdz))

5|@

The pitch angle dependence of the normalized bounce average drift oy (e, \)T;/(ewy;) is
shown in Fig. (1) for the motion of a particle in the field of a point dipole. The pitch angle
parameter A varies in the range (0 < A < 1/Bg) with By the minimum magnetic field
on the outer midplane. We observe that @y, T;/cwy; is relatively constant as a function of
pitch angle in a dipole field (it varies from 0.6 to 0.75) and to obtain the correct MHD

response to order (wy; /w) when w > w.,wy we will choose

2
Dai(e, \) ~ S (27)

3
T;
This approximation is discussed further in the Appendix. To obtain a dispersion relation
we apply quasi-neutrality. Taking T; = T, and applying quasi neutrality to Eqs. (24) and
(26) yields:

20 = Ai + (d)AS (28)
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Taking the flux tube average of Eq. (28) yields a dispersion relation that does not depend

on the spacial dependence of the eigenfunction ¢(/)

2= Fi(w) 4 A° (29)
where
— wi(1+mile/T; = 3/2
Fi(w):/d?’v py Sl /T = 3/2)) (30)
w = 57

It has been shown for the collisional ordering that the solution is flute [5] and we will
show below that, in the collisionless case the solution is also flute to order k3% p?. In the
present intermediate collisionality case, comparison of Eqs. (28) and (29) shows that a

flute eigenmode is also present. Equation (29) can be written in the form

3d 3d 10 10 7d
(2L ) n@)+ 0 (14— 22y (a2 )] (31
2 2 3 3 2
13 5 10d  5d
+Q (—3(1+77)+d+5d77+ (—§(1+77)+T—T77) [1(9))
10 7d 3dn —5d  5dn
—(1 - = L(Q) =
LR e S (3+2)1()0

with Q = w/@se, d = (1 + n)wie/@ge and

2
0 p2e " dx

4
I = —/ _ 32
which can be expressed in terms of error functions. Equation 31 takes the form
d
D(Q) = T+ [F1(2) + nF2(Q)] — F5(€) = 0. (33)

It can be shown analytically that there is no marginally stable mode with < 0. For

modes with € > 0 there are no drift-resonant ions and, at marginal stability, there must

10



be coincident real rots for 2 so that dD/0Q =0, i.e.

d

TI;UHQ%HﬁHQHZPKQ) (34)

Substituting Eq. 34 into Eq. 33 yields

One can show that (FyFs — FiFy) = —(3/2)(F{F5 — FiFy) and substituting into 35 yields
the result

u—;mﬂg—ﬁywzu (36)

At marginal stability Eq. 36 yields a real frequency, independent of 7,
Q. = 0.3218. (37)

Substituting 2 = . into Eq. 33 yields the equation for the stability boundary:

147

d=0. —_—
063568 1 —-0.51214

(38)

For —1 < n < 2/3 the stability boundary, Eq. 38, is close to, and below, the collisional
boundary given by Eq. (25). At marginal stability the mode has a real frequency given
by Eq. 37 and it propagates in the electron diamagnetic direction.

We have solved Eq. (29) numerically using a zero-finding routine to obtain the eigen
frequency and we have utilized a Nyquist analysis to establish that we have found all
possible unstable modes.

Figure 2 shows the stability diagram in d —n space in the semi-collisional regime given

by Eq. 38. The thick line at d = 5/3 is the MHD stability boundary. This appears when
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kip; # 0 and the region d > 5/3 is unstable. Notice that at the point where the pressure
gradient vanishes, n = —1 and d = 0, and this is a marginally stable point. The topology
of the stability region is similar to that shown in Ref. [5] for the entropy mode.

We can add FLR terms in the limit &y p; > kgp; (This limit does not require higher
order terms in the bounce expansion). For sufficiently small FLR corrections an MHD-
like mode appears when d > 5/3. For the collisional case it was found that increasing
FLR terms will raise the stability boundary in the vicinity of n = 2/3 and reduce it
elsewhere [3]. In the semi-collisional case discussed here we find that FLR corrections
lead to a degradation of the stability boundary when n > 2/3. For example for n = 2,
(kip:)* = 0.001 the stability boundary degrades by 5% (from d = 5/3). For n < 2/3 no

significant degradation of the stability boundary is observed.

2.2 Collisionless Mode

Rosenbluth [8] considered a collisionless isothermal plasma (i.e. 7=0) in a closed field
line system. He showed that when T. = T; an instability is always present, with zero real
frequency at marginality, when d exceeds a critical value provided that some particles
bounce in bad curvature. We now extend this result to arbitrary values of 1, and obtain
an analytic expression for the stability boundary in a point dipole (to be compared with
Eqgs. 25 and 38).

To obtain a dispersion relationship for collisionless electrostatic modes we assume a
collisionless electron response and apply quasi-neutrality. For k% p? < 1 we obtain the

dispersion relation:

26 = /d3 Zeell F g gy /d?’vw te Lt =25y (39)

2 e 2¢en
3dee w+3dee
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Thus:
Bd)

VvV1—AB

where we have separated the energy and the pitch angle integrations. Taking the flux

2= LA+ Ao [ 3 (10)

tube average (setting T, = T;, n. = n;) yields the dispersion relation:
2=A.+ Ay (41)

which may be substituted into Eq. (40) to obtain

1 Bdx -

3] AEY T

0 (42)

Multiplying Eq. (42) by ¢ and taking the flux tube average yields:

dr Bd a2 5 (T2 _
§5 | =50 -9)=[n @ -@)=0. (43)

Since ¢? — 52 > 0 we can conclude that the mode is flute like, i.e. ¢ = ¢ to order k2 p?.

Introducing finite k3 p? < 1 the general dispersion relation takes the form:
=20+ Ai + A(¢) + k1p} Aui(0) =0 (44)

where Ay; does depend on the arc length along the field line (£). Defining ¢ = ki p? < 1,

we can expand ¢ = ¢g+ 1P+ ... and w =wp+ 1t w; +.... Then

260 + Ai(o) + A (o) = 0 (45)

13



which we have shown requires the flute solution ¢g = (¢o). In first order

OAi(do) A, B

—2¢1 + Ni(1) + A1) + A4, (o)) +

Integrating § df/B annihilates the ¢; terms and determines w; from
a

This gives the shift in w away from wy, caused by k% p? £ 0. Similar perturbation analysis
in the collisional and semi-collisional cases show that the low frequency electrostatic mode
is flute-like, &g = (), in leading order of a ki p? < 1 expansion, in all collisionality
regimes.

Returning to the leading order dispersion relation Eq. 41 and following Ref. [8] we
seek a solution with Re[w]=Im[w]=0. Inserting this into Eq. (41) the velocity space

integrals can be evaluated analytically to determine the stability boundary in the form:

e} .

For nn = 0, this recovers the stability result of Ref. [8]; i.e. instability for d > 1/3. Figure
3 displays the stability diagram for the collisional, the collisional electron/collisionless ion
and collisionless electron modes. When d > 5/3 a vigorous MHD mode becomes unstable.
For n < 2/3 an electron drift mode is responsible for a reduction of the stability limit (i.e.
reduced d), whereas for n > 2/3 the stability boundary matches the MHD boundary, i.e.

d=~5/3.
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3 Conclusions

Two modes are seen to be present; a drift frequency mode with  ~ O(1) and an MHD
mode with © ~ (ki p;)™" > 1. These modes are driven unstable by a combination of
curvature and profile effects, characterized by the parameters d and 1. We have analyzed
the stability boundaries for these modes in the d — n parameter space for varying values of
plasma collisionality. We find a somewhat smaller stable region in this parameter space
when collisionality is reduced. In the collisional regime the drift mode has been called the
entropy mode [5]. In the collisionless regime the mode may be identified as an unfavorable
curvature driven mode (for d > 0) [8] or a temperature gradient driven mode (for d < 0
and 1 > Nepir)-

In the LDX experiment we expect the parameters to be such that electrons are colli-
sional but ions are collisionless (n, ~ 5 x 10 — 10" em ™3, T, ~ T; ~ 100 — 200 eV ). We
find that as the ions become collisionless the stability boundary is somewhat degraded
from the boundary determined by the entropy mode, without the destabilizing corrections
that derive from collisional relaxation. In the collisionless case, which is relevant to the
fusion reactor regime, we observe a further degradation of the stability boundary observed
for n < 2/3.

In a dipole configuration, as described in Ref. [1, 2], VT < 0, Vn, < 0 and therefore
n > 0 in the region between the pressure peak and the wall. In this region we expect
the pressure gradient to adjust so as to be just below the MHD limit, which for n > 2/3
indicates d < 5/3 and from Fig. 3 we expect to be in a drift stable regime. At the pressure
peak d = 0 and = —1, which is a marginally stable point. On the contrary, in the region
between the pressure peak and the internal coil d < 0, and 1 can be positive or negative
depending on the sign of Vn, (since VI' > 0) in this region. In this region close to the

ring, weak, temperature gradient instabilities are possible, but Figs. 2 and 3 show that

15



stable operation is possible for —1 < 1 < 9.4, with 7.+ of the order 1 — 3.

Appendix

Consider the collisionless case. From Fig. 1 we observe that a more accurate representa-

tion of the curvature drift term would be:

2
Daile, \) ~ g%% (14 6(ABuin — 0.4)) (49)

K3

and § ~ 0.17. Therefore, in the w = 0 limit

ong _ q¢ 3 d / o[l + n;(e/T; — 3/2)]
(

- e/ TH[L + 6(ABpin — 0,4)]@F07/Ti- (50)

For § <« 1 we obtain

oni _ qi¢  3rdl—n Bd\

~o

+
n; TZ 2 1‘|‘77 \/1—)\B

¢ 0/ T:(1 — §(ABynin — 0.4)) (51)

with a similar expression with ¢; — ¢. for electrons. Consider quasi-neutrality with
d=¢o+60(l)+---and d =dy+ & dy + --- with ¢y the flute solution. To lowest order
the Re[w]=Im[w]=0 mode defines a line dy = do(n) (Eq. 48) as before. The first order

equation becomes:

L4n | 3do [ BdNGi(0)  3dido | Bdh  3dody [ BANAByin —0.4)

— — = 0.
¢11—n 2 ) V1I- B 2 V1— B 2 V1— B
(52)
Multiplying by ¢ and taking the flux tube average to annihilate ¢, we obtain:
dy 2 Bin $ dl] B?
—=|-—-——-04
dy (3 $dl/B 0 (53)
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The flux tube integrals can be evaluated to give d; /dy ~ 0.06. Thus:

11
d=101 -~ 1 (54)

31—n
We conclude that the variation of @, with pitch angle drives ballooning structure, ¢, (),
in the eigen function but has a weak effect on the boundary in (d,n) space. For the
weak variation in wy(A) in the point dipole, § ~ 0.17, the stability boundary is modified

approximately 1%.
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Figure Captions

1. Bounce averaged curvature drift frequency @y normalized to ewy /T (Eq. 22) in a
dipole field vs. BoA (= Bo/Brounce )-

2. Stability of semicollisional (collisional electron-collisionless ion) mode in (d,n) space.
Stable region is shaded.

3. Stability of the collisional entropy mode (dashed), the semicollisional mode (solid) and

the collisionless mode (dotted) with k% p? = 0. The MHD boundary is also shown.
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