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Abstract--We present the formulation of the moment method 
applied to the determination of phase profiles of microwave 
beams from known amplitudes.  While traditional approaches to 
this problem employ an iterative error-reduction algorithm, the 
irradiance moment technique calculates a two-dimensional 
polynomial phasefront based on the moments of weighted 
intensity measurements. This novel formulation has the very 
important advantage of quantifying measurement error, thus 
allowing for its possible reduction.  The validity of the irradiance 
moment approach is tested and confirmed by examining a simple 
case of an ideal Gaussian beam with and without measurement 
errors.  The effectiveness of this approach is further 
demonstrated by applying intensity measurements from cold-test 
gyrotron data to produce a phasefront solution calculated via the 
irradiance moment technique.  The accuracy of these results is 
shown to be comparable with that obtained from the previously 
developed iteration method.  

I. INTRODUCTION 

ICROWAVES generated from a gyrotron in high order 
waveguide modes must be transformed into a low order 

symmetrical mode for transmission and application.  Either a 
Vlasov launcher [1] or its modification, a rippled-wall 
Denisov launcher [2], radiates the microwave energy extracted 
from bunched electrons.  The microwave beam is then shaped 
and directed using a series of internal mode converter 
reflectors comprised of phase correctors and simple focusing 
mirrors.  The configuration shown in Fig. 1, which represents 
the layout of a   1 MW, 110 GHz gyrotron [3], uses a system 
of two doubly-curved reflectors (M1 and M2) and two phase-
correcting reflectors (M3 and M4) [4].  After the resultant 
beam propagates through the output window, the beam 
typically undergoes additional phase correction and/or 
focusing to further convert it to a Gaussian beam.  Gaussian 
beams are advantageous since they may be focused and 
redirected using simple optical components. Additionally, the 
beam profile of a Gaussian beam matches well with the 
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fundamental HE11 mode profile in a corrugated waveguide. 
A common approach to design the phase correctors is to use 

either analytical or numerical techniques to approximate the 
radiation pattern emitted from the launcher.  Attempts have 
been made, for example, to model the radiated fields generated 
from the rippled-wall launcher [5].  However, experimental 
results have shown that the measured field profile does not 
agree with predicted beam behavior at the gyrotron window 
[3].  The discrepancies between theory and experiment may 
occur from problems with launcher alignment or from 
problems with the launcher theory itself. 
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Fig. 1.  The gyrotron internal mode converter schematic. 

 
To fully account for the field radiated from the internal 

mode converter, cold-test intensity measurements are taken 
initially, without the presence of an electron beam in vacuum, 
using a high order mode generator.  The low power quasi-
optical microwave beam radiated from the launcher can be 
used to design the correcting mirrors.  These mirror designs, 
however, require knowledge of the free-space propagation 
behavior of the beam, characterized by both the amplitude and 
phase.  While the amplitude profile can be directly measured 
at low power using a spatial scanner with a receiving horn and 
detector, the phasefront (at frequencies above 100 GHz) 
cannot be so easily determined.  Therefore, numerical methods 
are ordinarily employed to retrieve the phase based on a series 
of measured intensity data taken at several planes located past 
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the launch point.  Fig. 2 shows a schematic of a cold-test 
gyrotron experimental setup which may be used to design 
appropriate external phase correcting mirrors.  A series of 
measurement planes, shown as dotted lines, lie immediately 
before and after the window location where the beam is the 
narrowest (the beam waist) [6].  In the actual cold-test, the 
window is omitted from the set-up.  Examples of discretely-
sampled measured data on a series of planes are presented in 
Section V below.  Alternatively, in hot-test, in which high 
power microwaves are generated from an electron beam, data 
can be taken on a series of planes beyond the window plane 
with an infrared camera viewing a microwave absorbing 
screen. 
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Fig. 2.  Cold -test measurement plane schematic near the 

location of the gyrotron window. 
 
Several methods have been developed to retrieve the 

microwave output phase based on intensity measurements.  
The more traditional approach, based on the Gerchberg-
Saxton formulation [7], uses an iterative algorithm.  This 
method attempts an initial approximation of the phase at the 
first measurement plane and then propagates this paraxial 
beam forward to the next measurement plane using a Fourier 
transform inter-plane wave propagation routine [8].  Using the 
assumed phase of the resultant beam with the measured 
intensity at this plane, the beam is then propagated back to the 
initial plane.  The initial phase approximation is then modified 
to compensate for the error between the measured and 
reconstructed amplitudes [9,10].  Through numerous 
repetitions the phase solution generally converges until the 
amplitude error is minimized [10,11].  This error-reduction 
approach, known as the iteration method (or “phase-retrieval 
method”), although numerically intensive, has proven to be 
successful in designing accurate internal phase correcting 
mirrors [6,12] and external mirrors [12,13,14]. 

An added advantage of using intensity measurements is the 
valuable information gained from computing the normalized 
weighted moments, or expectation values.  The moments are 
useful to improve the reliability of the data and for phase 
retrieval, especially when the data set is taken using an 
infrared camera in hot-tests, since phase retrieval methods are 
typically sensitive to misalignment.  Since measurements at 
different planes require moving the camera and target, 

alignment errors are not uncommon.  Moreover, the work 
space is typically limited, which forces frequent re-positioning 
of the system.  In [15], the moments of infrared images of 
gyrotron radiation were calculated to determine the accuracy 
of the spatial alignment of the images.  The iterative phase 
retrieval procedure and internal mirror synthesis [6] were 
employed using only the well-aligned images. 

A phase retrieval algorithm based solely on these moments 
may prove to yield even more accurate results while being 
computationally more efficient [16].  This “irradiance 
moment” approach assumes an initial two-dimensional 
polynomial phasefront, which is predominately parabolic but 
with additional higher-order phase aberrations.  The 
coefficients of the polynomial are calculated from the 
weighted moments based on intensity distributions over 
several measurement planes.  Although employed in optics for 
applications such as characterizing the beam quality of high-
power multimode lasers [17], this numerical method, to our 
knowledge, has never before been applied to the phase 
retrieval of a microwave beam.  The microwave problem is 
recognized as more difficult than optical applications because 
of diffraction. 

In the following sections the theory behind the irradiance 
moment technique will be briefly presented, along with the 
generalized approach for retrieving the phase.  The success of 
this scheme is then demonstrated numerically using both a 
simple Gaussian beam and previously generated gyrotron 
cold-test data.  The final section will discuss future 
developments for the irradiance moment technique. 

II. PHASE RETRIEVAL BASED ON MOMENT TECHNIQUES 

The basic idea behind any phase retrieval method is to 
determine the initial phase from intensity measurements near 
the beam waist.  While commonly used Gerchberg-Saxton 
iteration methods rely on repeatedly improving an initial phase 
approximation to reduce amplitude error [9], the irradiance 
moment technique attempts to solve the initial phase 
polynomial coefficients from the weighted moments.  Both 
approaches make use of Fresnel diffraction theory to 
propagate the beam, assuming the beam is linearly polarized 
and propagates paraxially.  However, the iteration method 
advances the amplitude and phase of the beam, whereas the 
irradiance moment technique propagates the moments of the 
beam.  Using the moment approach, we present the 
relationship between the phase at a fixed plane and irradiance 
moments propagating orthogonally from this plane.  Although 
this relationship is generally nonlinear, we may form a set of 
solvable relations from the linear terms of the moments.  After 
calculating the moments and predicting how they propagate, 
we then apply these linear relations to determine the phase. 

To be consistent with the geometry shown in Fig. 1 and Fig. 
2, we will assume the paraxial beam propagates along the y 
direction.  The z-axis is reserved as the axis of the gyrotron.  
The behavior of the wave at a particular axial location, y, 
which includes amplitude yA  and phase yΦ , can be 
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described by its wavefunction, or complex amplitude, ψ , 

where 
),(

),(),,(
zxi

y
yezxAzyx

Φ
=ψ . 

The moments of the wavefunction are based on the 
normalized weighted intensity integrated over the finite 
measurement plane at an axial location, y.  They are defined 
as: 

 

 ∫∫== dxdzzxAzxzxyM y
qp

y

qp
pq ),()( 2  (1) 

 
where the integration is performed over all x and z. 

It is important to note that a numerical approximation of the 
irradiance moment technique (and, indeed, of any phase 
retrieval method relying on intensity measurements) must be 
made from the fact that the measurement planes are finite.  
Theoretically, the moments are calculated by integrating over 
an infinite plane.  For the integrals in the irradiance moment 
technique to be completely accurate, the amplitude at the 
plane edges must be zero.  In practice, beam information 
outside of the plane limits is lost.  This truncation introduces 
an error into the calculation of the moments, particularly 
higher order moments.  For example, if a Gaussian beam is 
truncated to 20 dB below the peak value, then the error in the 
fourth order moments is over 10%.  If the measurements are 
truncated to 28 dB, this error decreases to 2%.  Of course, if 
the measurement plane is chosen very large, such that the 
truncation is at 35 dB, then the fourth order moment error is a 
very small number, around 0.5%. 

The Kirchhoff-Huygens diffraction integral in its Fresnel 
approximation describes a paraxial beam at any distance in 
terms of the initial wavefunction [18]: 
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where λ is the wavelength and k = 2π/λ is the wavenumber.  
By applying the definition of moments (Equation 1) to the 
diffraction integral, we can show how the moments change as 
the beam propagates [19,20]: 
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where ),(
0

0),(),0,( zxiezxAzx Φ=ψ , is the analytic complex 

amplitude at the initial (y = 0) plane and ),0,(* zxψ  is its 

complex conjugate.  This formula yields an expression for the 
propagation behavior of the moments.  Furthermore, it relates 

the moments at any given axial location to the initial phase.  
Explicit expressions are listed in the Appendix for the first and 
second order moments. 

From Equation 3, the moment )(yM pq  is in general a one-

dimensional polynomial along the direction of propagation, y, 

with order p+q and coefficients, )(m
pqC . 
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The moment polynomial coefficients, )(m
pqC , are determined 

by a combination of the initial amplitude and phase and their 
derivatives integrated over the measurement plane.  In 
practice, the data set is analyzed by finding a series of pqM  

values at several planes along y.  The calculated pqM  values 

are then applied to a one-dimensional polynomial fit in y to 

obtain the moment polynomial coefficients, )(m
pqC , up to 

qpm += , the polynomial order.  This technique is illustrated 

in Section IV. 
From Equations 3 and 4, we can show that the linear 

coefficient of any moment order pqM , which measures the 

slope of the moment at the retrieval plane, may be expressed 
as a product of the initial intensity and weighted initial phase 
derivative integrated over the xz-plane: 
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A set of linear equations may be created from the linear 

moment coefficients by assuming an appropriate form for the 
phasefront.  For a spatially directed microwave beam, the 
phasefront can be expanded as a two-dimensional polynomial 
at the reference transverse (xz-) plane with coefficients ijφ : 
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The series in Equation 6 converges for beams decaying 

exponentially in the transverse direction.  One way to show 
this is by applying the uniform stationary phase method [21]. 

The linear moment coefficients, )1(
pqC , are linear functions 

of the phase expansion coefficients and the initial amplitude 

moments, represented here as the intercept coefficients, )0(
pqC , 

where )0()0(
pqpq MC = .  This linear dependence is shown in 

the example provided in the Appendix.  Linearized equations 
are formed because, from Equation 5 and the selection of a 
suitable polynomial phasefront expansion, the slope of each 
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moment propagating in y  is linear with respect to the phase 
expansion coefficients in the transverse (xz-) plane 

The phasefront expansion of 0Φ  must be truncated to form 

a set of solvable linear equations from the expressions relating 
the linear moment coefficients to the phase coefficients.  This  
approximation is valid due to the fact that the gyrotron beam is 
directed and paraxial.  For well-behaved paraxial beams, the 
phasefront described by Equation 6 is primarily parabolic and 
nearly symmetrical.  Therefore, the φ02 and φ20 coefficients are 
the dominant terms in the polynomial phasefront expansion.  
Higher order aberrations are included to provide an accurate 
phasefront solution.  Generally, the solution is more accurate 
if many phase expansion terms are included.  As mentioned 
earlier, however, the series in Equation 6 will converge for 
directed beams.  Only the first few higher order phase 
expansion terms are necessary to provide an accurate solution. 

The set of equations is closed and solvable by requiring that 
the maximum moment order of the calculated linear pqC  

coefficients, or )1(
pqC , be equal to the order of the truncated 

two-dimensional transverse plane phase expansion in 0Φ , 

which is defined as N.  In other words, 
( ) ( ) Njiqp =+=+ maxmax .  The number of equations which 

are formed is simply the summation of the number of 
unknown phase expansion coefficients.  Since each (i+j)th 
expansion in 0Φ  has 1++ ji  coefficients: 
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The phase is calculated by first truncating the phasefront at 

the initial plane, 0Φ , to order N , which specifies the number 

of phase expansion coefficients, ijφ .  The moments )(yM pq  

are directly calculated from intensity measurements at several 
planes, y, for every p and q, up to Nqp =+ .  Each of these 

moments is then fitted over y to a one-dimensional polynomial 

of order p+q to determine the moment coefficients, )(m
pqC , up 

to qpm += .  Only the linear coefficients, )1(
pqC , and the 

coefficients of zero rank, )0(
pqC , which represent the slope and 

moment intercept, respectively, are required to form a series of 
linear equations which ultimately determine the phase 
expansion coefficients.  

Because each of the moments is fitted over y to polynomials 
of order p+q, the number of planes (y data) required by the 
irradiance moment technique must be at least p+q+1 .  Since 
( ) ( ) Njiqp =+=+ maxmax , then the minimum number of 

planes is N+1 for an Nth order 2-D polynomial phasefront 
solution.  More data planes may be used to insure a better 
moment fit and thus a more accurate solution.  If fewer planes 
are used, however, the solution is indeterminate and an 
erroneous solution may occur.  Since there will not be enough 

data in this instance to fit to the moment polynomials, the 
solution will not be unique. 

After the phasefront has been determined at the initial 
plane, external reflectors may be designed to correct for the 
phase and amplitude of the gyrotron output, and to effectively 
couple power to the fundamental HE11 mode of a corrugated 
waveguide for guided transmission.  In the procedure of 
reflector synthesis, we can take advantage of the irradiance 
moment method approach’s phasefront solution, which is in 
analytical form.  Therefore, the numerical procedure of phase 
unwrapping, required for reflector synthesis using the iteration 
method [6], is not needed using irradiance moments.  This 
improves the mirror shaping because phase unwrapping is 
ambiguous. 

III. OUTLINE OF THE IRRADIANCE MOMENT APPROACH 

The procedure for finding a unique phasefront solution 
using the irradiance moment technique is fairly 
straightforward. The general outline for finding an Nth order 
unique phase solution is as follows: 

 
1) Normalize all the measured intensity planes such that 

1)(00 =yM  at each y location. 

2) Calculate the moment )(yM pq numerically at each 

plane, including the initial plane (y = 0), by applying a 
discrete integration routine to the weighted amplitude 
data. 

3) Generate a one-dimensional polynomial fit in y of 
order p+q for the pqM  moment 

4) Repeat steps 2 and 3 for each moment pqM  up to 

Nqp =+ . 

5) Propagate the moments analytically by applying 
Fresnel diffraction theory.  Specifically, the linear 

moment coefficients, )1(
pqC , must be expressed in terms of 

the initial phase (Equation 5.) 
6) Expand and truncate the initial phasefront, 0Φ , as an 

Nth order two-dimensional polynomial in the xz-plane. 
7) Find a linear analytical expression for each of the 

linear moment coefficients, )1(
pqC , from step 5, in terms  of 

the phase expansion coefficients, ijφ , from step 6, and the 

moments at the initial plane, )0(pqM , represented by 

)0(
pqC . 

8) Solve the set of linear equations for the phase 
expansion coefficients ijφ  using the moment coefficients 

from the polynomial moment fits in y. 
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IV.  IRRADIANCE MOMENT TECHNIQUE RESULTS:  GAUSSIAN 
BEAM 

A. Ideal Gaussian Beam 

The advantages and limitations of the irradiance moment 
approach are demonstrated by testing the algorithm with both 
an ideal Gaussian beam and a series of existing measured 
gyrotron intensity data.  The results obtained from the iteration 
method are also presented for comparison. 

For the ideal Gaussian case, a beam is chosen with λ = 
0.273 cm and a waist, 0w , of 2.0 cm at y = 0.  Five planes 

containing discretized ideal Gaussian amplitude data are 
generated for the phase retrieval calculations:  at y = 20, 30, 
40, 50 and 60 cm.  After the phase is retrieved at the initial 
plane, y = 20 cm, the amplitude and computed phase are 
propagated to an observation plane, y = -30 cm.  A 
propagation routine based on the two-dimensional discretized 
Fast Fourier Transform calculates the beam wavefunction at 
any axial location given the initial amplitude and phasefront 
solution.  The reconstructed complex amplitude at the 
observation plane may then be compared with the theoretical 
Gaussian amplitude and phase. 

Since five amplitude planes are used in the irradiance 
moment technique phase retrieval algorithm, it is possible to 
assume a fourth order phasefront 2-D polynomial at the initial     
y = 20 cm plane.  However, this expansion is not necessary 
since the phasefront of an ideal Gaussian beam is parabolic 
and will not contain higher order aberrations.  A second order 
phasefront polynomial (N  = 2) is more appropriate for the 
calculations.  A set of five linear equations (see Equation 7) 
based on the five first and second order moments are required 
to solve the unknown phase coefficients: 10φ , 01φ , 20φ , 11φ , 

and 02φ .  These equations are derived explicitly in the 

Appendix.  Note that this algorithm in principle requires only 
three data planes, since N = 2.  Five planes are included to 
provide more data with which to accurately fit the moments, 
and to be consistent with the other example in this section. 

To understand how the irradiance moment approach works 
in this simple Gaussian case, we must examine the behavior of 
the moments.  The first order moments, 10M  and 01M , are 

measures of the expectation values, or <x> and <z>, 
respectively.  They indicate where the center of the beam is 
located.  For the ideal Gaussian case, they are at zero for all 
planes since the beam does not drift.  The values of the linear 
polynomial coefficients are zero everywhere, i.e. the slopes 

are zero ( 0)1(
01

)1(
10 == CC ) and the intercepts are zero 

( 0)0(
01

)0(
10 == CC ). 

The second order moments, 20M , 11M , and 02M , are not 

as simple to understand.  Physically, these moments represent 
the size of the beam in x and z.  For a symmetric beam, 

011 =M  everywhere since there is no coupling between x and 

z.  The coefficients for this moment polynomial ( )0(
11C , )1(

11C , 

and )2(
11C ) are zero.  The other second order moments, 20M  

and 02M , follow a quadratic, describing the beam growth 

over distance.  The calculated 20M  moments at each of the 

five planes are shown in Fig. 3.  Note the predicted 20M  

moment value at y = 0 cm is 1.0 cm, which accurately reflects 
the beam waist ( cmw 0.20 = ). 

As seen in the example in Fig. 3, the polynomial 
coefficients of each moment at the phase retrieval plane (y = 

20 cm) are easily determined.  Recall only )0(
pqC  and )1(

pqC  are 

needed to calculate the phasefront. 
The irradiance moment 2-D phasefront solution which uses 

the fitted moment coefficients in the set of five linear 
equations is 00110 == φφ , 0914.00220 == φφ cm-2, and 

011 =φ .  The calculated phasefront at y = 20 cm has the form: 

 

 ( ) ( ) 2222
0 0914.00914.0),( zcmxcmzx −− +=Φ  (8) 

 
From the radius of curvature formula based on the theory of 

Gaussian optics, the phasefront should have the following 
solution: 

 

 
( )222

0220

4

2

okwy

ky

+
== φφ  (9) 

 
Evaluating this expression at y = 20 cm using the given 

beam parameters yields 0914.00220 == φφ cm-2.  Therefore, 

by testing the moment method with artificial Gaussian beam 
data, we have verified the irradiance moment technique 
produces an accurate solution for this simple example. 
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Fig. 3.  The second order 20M  moments are fitted to a 

quadratic in y.  The coefficients of the fit originated at the 
retrieval plane (y  = 20 cm) are listed in the plot. 

 
The intensity at the observation plane (y = -30 cm) was 

reconstructed using the phasefront computed by the irradiance 
moment approach as described above.  In addition, we 
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obtained a phasefront solution by applying the iteration 
method algorithm to the artificial Gaussian data.  The 
reconstructed intensity based on this converged solution was 
also calculated at the observation plane.  The results of both 
methods are compared in Fig. 4.  Both algorithms accurately 
reconstruct the amplitude, although the irradiance moment 
approach produces a more accurate beam below -40 dB.  This 
is not surprising since the iteration method attempts to reduce 
the error below an acceptable tolerance level, whereas the 
moment method provides a more exact one-step numerical 
solution. 
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Fig. 4.  The mid-plane ideal Gaussian intensity profile at the 
observation plane (y = -30 cm) is compared with the 

reconstructed amplitudes using the iteration method and 
irradiance moment technique near the edge of the beam. 

 

B. Gaussian Beam with Uncorrected Offset Measurement 
Error 

While the ideal Gaussian case confirms the validity of the 
irradiance moment approach, it is a trivial exercise.  More 
insight may be gained from manufacturing a simple case 
where measurement error has occurred.  Errors in the form of 
shifted or offset data are common when using laboratory 
devices such as an infrared camera to measure intensity.  It is 
important, therefore, to examine how such an error affects the 
phase retrieval process. 

To examine offset error, the same five planes containing 
ideal Gaussian amplitude data are used as in the previous 
example.  Error is introduced at the y = 40 cm plane, where the 
beam is shifted in the x-direction by +0.7 cm, a distance 
greater than two wavelengths.  Such a shift is not physical 
since the beam must travel in a straight line, yet the error 
could occur in an experiment if an infrared camera and 
viewing screen were misaligned.  As before, a second order 
polynomial phasefront form is solved at the initial y = 20 cm 
plane. 

Because the beam is shifted, ( )yM10  is zero for all y  except 

at y = 40 cm, where ( ) cmcmM 7.04010 = .  The best linear fit 

of the first order 10M , or <x>, moment is also shifted to 

reflect the increased average value over all five 10M  

moments.  Therefore, while the )1(
10C  coefficient, or slope, 

does not change, the )0(
10C  value is raised slightly to the 

averaged value of the 10M  moments, 0.14 cm.  Since there is 

no shift in the z direction, ( )yM 01  is still zero everywhere. 

Since the introduction of an offset error does not change the 
size of the beam, the second order moments are exactly the 
same as before.  The 20M  moments, for example, follow a 

smooth quadratic with or without an offset in the data (Fig. 3).  

The )0(
20C  and )1(

20C  coefficients which are determined from 

this fit do not change. 
The phasefront solution computed from the set of equations 

using the artificial data with offset becomes: 
 

( ) ( ) ( ) 22221
0 0914.00929.0026.0),( zcmxcmxcmzx −−− ++−=Φ  

 (10) 
 
Note that in Equation 10, there is a term linear in x which 

arises from the offset error and is missing in the ideal case of 
Equation 8.  The phase solution now has a slight tilt and 
asymmetry. 

The theoretical Gaussian intensity at the observation plane 
is again compared with the reconstructed amplitude obtained 
from the irradiance moment technique (Fig. 5).  A phasefront 
solution and reconstructed intensity were also obtained by 
applying the iteration method algorithm to the same data.  The 
iteration method intensity profile is shown for comparison. 

Although the beam which is reconstructed using the 
irradiance moment algorithm has little width distortion, it does 
shift in the positive x-direction, albeit by a small amount.  To 
understand the reason this shifting occurs in the irradiance 
moment phasefront solution, each moment must be examined.  
As mentioned earlier, the second order moments do not 
change with the addition of an offset error.  The first order 
moment polynomial fits, on the other hand, are altered when 
an offset error occurs at one or more planes.  In this case, the 

( )cmM 4010  moment increases to 0.7 cm due to the x-

direction shift in the beam centroid at that plane. 
 



    
 

7 

-2 -1 0 1 2
x (cm)

-3

-2

-1

0
In

te
ns

ity
 (d

B
)

Gaussian
Moment Tech.
Iteration Meth.

 
 
Fig. 5.  The intensity profiles near x = 0 at the observation 

plane reconstructed from the irradiance moment technique and 
the iteration method for the case where offset measurement 

error has occurred at the y = 40 cm plane. 
 
The reconstructed profile from the iteration method in Fig. 

5 is shifted more noticeably in the +x-direction and the width 
more distorted than the irradiance moment reconstructed 
profile.  The shift arises from a tilt introduced in the 
phasefront solution at the initial plane as part of the iteration 
algorithm’s attempt to compensate for the offset plane.  The 
width distortion arises from the ellipticity of the beam seen by 
viewing the superposition of non-concentric circles.  In 
addition, more noise is present due to the fact that the 
algorithm has difficulty converging to a unique solution for 
this case.  In fact, for offset measurement errors greater than 
three wavelengths, the iteration algorithm does not converge at 
all. 

C. Gaussian Beam with Corrected Offset Measurement 
Error 

Although the results of the previous case including offset 
measurement error are not dramatically different from the 
ideal case, it is possible to correct for these errors by 
examining the moments.  This error-correcting feature of the 
irradiance moment technique is its main advantage over other 
phase-retrieval methods.  For example, the 10M  moment at y 

= 40, is easily identified as measurement error since it is not 
physically possible for the beam centroid to travel in a path 
other than a straight line.  The intensity at this plane may be 
shifted in the -x direction such that the ( )cmM 4010  moment is 

aligned with the other four moments.  The phase retrieved by 
the irradiance moment approach in this corrected case reverts 
back to the original solution obtained using the ideal Gaussian 
beam (Equation 8). 

It is also possible to improve the irradiance moment phase 
solution by selective data omission.  If the y = 40 cm plane is 
not included in the data set, only four planes are used to 
retrieve the phase.  These four planes, however, will still be 
able to produce the ideal Gaussian second order polynomial 

phasefront solution since the data set will now lack 
measurement error. 

V. IRRADIANCE MOMENT TECHNIQUE RESULTS:  COLD-TEST 
GYROTRON DATA 

The irradiance moment approach is further explored by 
testing the algorithm with measured gyrotron intensity data.  
Namely, the input is taken from the cold test results of a 1 
MW, 110 GHz gyrotron built by Communications and Power 
Industries (CPI).  The discretely sampled data form a set of 
eight intensity measurements at various locations from the 
window:    y  = -10, -5, 0, 5, 10, 20, 40, 60 cm (Fig. 6).  The 
paraxial beam radiated by the internal mode converter (see 
Fig. 1), is centered at (x, z) = (0 cm, 37.4 cm), which is on axis 
with the window center. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 6.  The contour intensities of the eight measurement 
planes are shown from the CPI gyrotron in cold test.  The 
window center is at z = 37.4 cm, x  = 0 cm.  Contours of 

constant intensity are at 3 dB intervals from peak.  All axial 
distances, y, are referenced from the window plane. 

 
In principle, a seventh order polynomial phase expansion 

may be applied to the algorithm since eight planes are 
available.  However, the phasefront is only expanded to fourth 
order (N = 4) to simplify the system to a set of 14 equations 
(see Equation 7).  In addition, the accuracy of a seventh order 
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polynomial moment fit, which would be required for a seventh 
order 2-D phasefront solution, would be limited using only 
eight data planes. 

To find the solution to a unique fourth order 2-D phase 
expansion with the irradiance moment approach requires at 
least N+1, or five, planes.  To obtain accurate polynomial fits 
of the various moments, the first seven planes are used in the 
calculations.  The phase is retrieved at the initial (y = -10 cm) 
plane by fitting each moment to an appropriate polynomial in 
y using the seven planes.  It is convenient here to reserve the 
final y = 60 cm plane as the observation or check plane. 

After the initial phase is constructed, the approximated 
wavefunction may then be propagated from the y = -10 cm 
plane using the measured initial intensity and the two-
dimensional phasefront expansion computed from the 
irradiance moment technique.  To test the accuracy of the 
solution computed by the fourth order irradiance moment 
scheme, the beam is advanced to the observation plane, y = 60 
cm.  A normalized error, E , is then calculated between the 

method’s computed amplitude, ),()( zxA c
y , and the measured 

amplitude, ),()( zxA m
y , at this plane: 

 

 

∫∫∫∫

∫∫
−=

2)(2)(

2
)()(

),(),(

),(),(
1

zxAdxdzzxAdxdz

zxAzxdxdzA
E

m
y

c
y

m
y

c
y

 (11) 

 
Applying the error equation to the beam which was 

reconstructed from the irradiance moment technique, we find     
E = 0.019 at y = 60 cm.  Using the same data in the iteration 
method algorithm, the error, E, is 0.015.  Both methods yield a 
very small error at the observation plane, with the iteration 
method error somewhat smaller than the error from the 
irradiance moment approach.  While this result is not 
immediately obvious in a comparison of the reconstructed 
intensity contour plots at     y = 60 cm (Fig. 7), the intensity 
profiles along the x transverse direction shown in Fig. 8 
demonstrate that the irradiance moment phasefront solution 
predicts a slightly narrower beam at the observation plane than 
measured. 
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(b) 
 

Fig. 7.  The measured intensity contour plot at the observation 
plane, y = 60 cm, is shown in (a).  The left half of (b) is the 

reconstructed intensity using the irradiance moment approach; 
the right half is the reconstructed intensity using the iteration 

method. 
 

-6 -4 -2 0 2 4 6
x (cm)

-30

-25

-20

-15

-10

-5

0

In
te

ns
ity

 (d
B

)

Measured
Moment Tech.
Iteration Meth.

 
 

Fig. 8.  The y = 60 cm profile at mid-plane is shown along x 
for the measured and reconstructed intensities. 

 
The reason the reconstructed beam has a narrower waist 

than expected (Fig. 8) may be explained by the second order 
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moments, which indicate the beam size.  The quadratic fit of 

20M , for example, if extended to the observation plane, 

predicts a lower moment value than the moment value of the 
measured intensity pattern.  The reason for this discrepancy is 
small measurement errors. 

It is evident from the first and second order moments in x, 

10M  and 20M , shown in Fig. 9, that at least some 

measurement error has occurred, since the seven first order 
moments do not precisely follow a linear fit and the seven 
second order moments do not follow a perfect quadratic fit.  
This error is reflected by experimental inaccuracies in both the 
beam drift and size at several (or all) planes. These 
measurement errors limit the overall accuracy of the moment 
method phasefront solution. 
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(b) 
 
Fig. 9. The beam centroid, <x>, is plotted vs. propagation 

distance, y, in (a), and the beam size, <x2>, is plotted vs. y in 
(b).  These points must lie on a straight line and quadratic, 

respectively, with the deviation indicating experimental error. 
 
It should be mentioned that the results obtained by the 

irradiance moment algorithm may also be improved if the 2-D 
phasefront solution is expanded to fifth or sixth order.  While 

the measurement errors would not be reduced, the addition of 
higher order aberrations could compensate for these 
inaccuracies.  Such approaches, however, would require 
increasingly large and cumbersome sets of equations.  The 
effectiveness of adding higher order terms to the phasefront 
expansion is questionable. 

VI. CONCLUSION 

The theory and general method for retrieving the phase of 
gyrotron beams based on weighted amplitude moments has 
been presented.  In addition, the success of this moment 
method has been demonstrated by testing the algorithm with 
an ideal Gaussian beam, a Gaussian beam with one offset 
plane, and with measured data.  Furthermore, the irradiance 
moment approach has been benchmarked against the 
previously developed iteration method.  The amplitude errors 
produced from the irradiance moment approach were 
comparable with those from the iteration method in each case, 
even without error correction. 

The main advantage of the phase-retrieving irradiance 
moment technique is its ability to locate and compensate for 
significant measurement errors.  In addition, the irradiance 
moment approach produces an analytical solution and 
eliminates the need for computationally-intensive iterative 
calculations to produce accurate results. 

As discussed in this paper, the irradiance moment technique 
is a powerful tool for determining the accuracy of the images 
used in a phase retrieval analysis.  In the present paper, the 
example of a gyrotron cold test beam was found to have 
relatively small errors.  In that case, the retrieved phase is 
quite accurate.  There is very little improvement in accuracy, 
if any, to be gained by attempting to reject data planes that are 
slightly misaligned.  In previous work on external phase 
correcting mirrors for a gyrotron in use at the LHD stellarator 
in Japan, we found that a large improvement was possible if 
planes that were out of alignment were rejected.  That work is 
described in [15]. 

While initial results indicate the effectiveness of the 
irradiance moment approach, modifications may be made to 
enhance the algorithm and improve its performance.  A 
nonlinear approach to solving the phase coefficients may 
increase the accuracy of the solution.  This nonlinear 
irradiance moment technique would require the moment 
coefficients of higher rank discarded in the linear version.  
Finally, an “iterative irradiance moment method” may be 
developed which incorporates ideas from both phase retrieval 
algorithms.  These topics could be the subject of future 
research. 

The present examples show that the irradiance moment 
technique, previously limited to phase-retrieval problems in 
the optical regime, can be successfully applied to retrieving 
the phase of microwave beams.  It is a promising new 
approach to an old problem.  This method may become a 
novel and powerful numerical method to predicting gyrotron 
beam behavior and shaping phase correcting mirrors.  
However, further research is needed to estimate the accuracy 
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of the technique, including research on random noise, more 
complex measurement errors and beams with more complex 
amplitude forms. 

APPENDIX:  FIRST AND SECOND ORDER MOMENTS 

In the appendix, we will present an example of the 
irradiance moment technique using the first and second order 
moments.  After the moments are expanded in terms of the 
initial phase, the initial phasefront is expanded and substituted 
into the expressions.  Finally, the linear set of equations is 
obtained after the phasefront is properly truncated. 

Deriving explicit expressions for the moments is 
straightforward.  The first and second order moments, 
( ) 2≤+ qp , are listed below (from Equation 2): 
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Note that by definition 1)0(00 =M .  By generalizing and 

renaming the coefficients )(m
pqC  (see Equation 4), thes e five 

moments are restated as: 
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The moment coefficients required for the irradiance moment 

algorithm, )0(
pqC  and )1(

pqC , are determined from the data by 

fitting each moment to its appropriate polynomial. 

Continuing our example, the following are expressions for 
the linear (m = 1) moment coefficients of the moments pqM , 

where ( ) 2≤+ qp  (also derivable from Equation 5): 
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By substituting the two-dimensional polynomial expansion 

for the phase (Equation 6), the linear moment coefficients in 
our example become: 
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Recognizing that the integrations in the equations relating 

)1(
pqC  to the initial phase are the moments at the initial plane, 

the coefficients can be restated as the following: 
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A further simplification may be made by substituting in the 

coefficients of zero rank in place of the moments at the initial 

plane, since, from Equation 4, )0()0(
pqpq MC = .  Finally, the 

phasefront is truncated to the appropriate order, in this case 
( ) ( ) 2maxmax ==+=+ Njiqp .  The set of equations then 

becomes: 
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This set of equations is linear and solvable.  After the moment 

coefficients, )0(
pqC  and )1(

pqC , are computed from the data, the 

phase coefficients, 10φ , 01φ , 20φ , 11φ , and 02φ , which 

describe the initial parabolic phasefront are then easily 
obtainable. 
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