


Plasma curvature effects on microwave
reflectometry fluctuation measurements

Y. Lin∗, R. Nazikian†, J.H. Irby, E.S. Marmar

MIT, Plasma Science and Fusion Center, Cambridge, MA 02139, USA

†Princeton Plasma Physics Laboratory, Princeton, NJ 08543, USA

Abstract

Plasma poloidal curvature can significantly extend microwave reflectometry re-

sponses to high k⊥ poloidal fluctuations. Reflectometry responses can be several

orders of magnitude larger at high k⊥ than that predicted by analysis based on

two dimensional (2-D) slab geometry. As a result, the responses may approach the

1-D geometrical optics limit. This super resolution leads to a major modification

of the spectral resolution of reflectometry. The phenomenon is analyzed using a

phase screen model for the general cases and the results are supported by detailed

numerical 2-D realistic geometry full wave simulations for the specific case of the

Alcator C-Mod tokamak.
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Reflectometry is now a widely used tool for interpreting the behavior of plasma

profiles and as an indicator of the properties of plasma density fluctuations. A

number of simplified scattering models exist which reproduce important features

of reflectometer measurements, however there is still an incomplete description of

the scattering process incorporating real plasma geometry and antenna structures.

Such analysis using full wave simulation is needed in order to establish reflectometry

as a quantitative diagnostic for fluctuation measurements in fusion plasmas. In this

letter we show that the inclusion of the effect of plasma curvature into the full wave

analysis of the reflectometer response to poloidal fluctuations can lead to a major

modification of the spectral resolution compared to analysis based on slab geometry.

In previous studies, various two-dimensional (2-D) models have been developed

to interpret reflectometry responses to poloidal density fluctuations [1]-[7]. 2-D

analytical studies have also been performed on linear density profiles [8]. These

2-D models or analytical studies are either based on slab plasma profiles [2]-[8], or

do not isolate and clarify the effect of plasma curvature where it is included [1]. It is

well known that the reflectometry sensitivity to poloidal fluctuation wavenumber,

k⊥, is limited by receiver location and incident beam width (or spot size). For a

finite beam width it was shown that the geometric optics result in 1-D may apply for

k⊥w � π/
√

2, where w is 1/e radius of the incident beam intensity (reference [4]).

For larger wavenumbers, it was suggested that a tilted receiver arrangement is

necessary for measuring fluctuations with k⊥w � π/
√

2. The issue of resolution

has also been addressed using the distorted mirror model [5] [6], assuming that the

receiver and transmitter have similar aperture sizes. This analysis showed that the
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upper limit for the undistorted observation of the poloidal spectrum is k⊥w ≤ π/5.

It was suggested in reference [6] that a tightly focused beam is better for fluctuations

measurement in order to enhance the gain and improve the wavenumber response.

A 1/e2 sensitivity criterion of the reflectometry, k⊥w < 2, can be deduced from the

result of a rigorous analysis based on slab geometry and linear density profiles [8].

However, in experiments on Alcator C-Mod we have found the surprising re-

sult that the reflectometer system seems to be sensitive to poloidal wavelengths

much shorter than is suggested by the above studies. For instance, the reflec-

tometer (O-mode, 88 GHz, the wavenumber in vacuum k0 � 18.5 cm−1) in the

Alcator C-Mod tokamak is clearly sensitive to high k⊥ quasi-coherent fluctua-

tions (60 − 250 kHz in lab frame) in the Enhanced Dα (EDA) H-mode plasma

pedestal region [9]-[13]. The k⊥ of the quasi-coherent fluctuations are in the range

k⊥ � 4 − 8 cm−1 as determined by the phase contrast imaging (PCI) system.

PCI measures line-integrated density fluctuations along 12 vertical chords passing

through the plasma at the same toroidal location but different radial positions such

that it is sensitive to kθ for mode localized to the plasma edge [13]. The reflectome-

ter views along the plasma mid-plane so that for edge localized measurements we

have kθ = k⊥. On the other hand the reflectometer antenna spot size at the cutoff

is estimated to be w ∼ 1 − 2 cm, with receiver distance d � 20 cm, horn antenna

angles ±50 relative to the mid-plane. The observed system response appears to

be much broader in k⊥ than predicted from 2-D slab geometry analysis for these

plasmas [13].

In this letter, we show that super-resolution of high k⊥ fluctuations can indeed
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be achieved due to a magnification caused by plasma poloidal curvature and the

curved wave-front of the incident waves. The phenomenon of super resolution is

analyzed using a phase screen model for general cases and the results are supported

by detailed numerical 2-D full wave simulations for the specific case of the Alcator

C-Mod tokamak. Implications for experiments on other devices are discussed,

as well as criteria for the validity of 1-D geometric optics for determining the

sensitivity of reflectometry to poloidal fluctuations.

To give a general insight into the curvature effect, we use a phase screen model

including plasma curvature and wave-front curvature (figure 1). All plasma ef-

fects are reduced to the phase modulation induced by the phase screen. The

phase of the electric field at the screen is calculated by 1-D geometrical optics:

φ0 = 2k0

∫ zc

0
ε1/2 dz, where ε is plasma permittivity, zc is the critical layer, z = 0

at the plasma edge, and k0 is the incident microwave vacuum wavenumber. The

phase screen is located at zs =
∫ zc

0
ε−1/2 dz, i.e., at the effective optical distance

from the plasma edge. A poloidal plasma density fluctuation is modeled as a phase

modulation with wavenumber k⊥. The modulation magnitude, σφ = 〈(φ−φ0)
2〉1/2,

can also be calculated from 1-D geometric optics given the details of the density

profile. Assuming a radius of curvature ρc of the cutoff layer and ρw of the inci-

dent wave-front at the cutoff layer, the complex electric field at the phase screen is

approximately:

Es(ξ) =
1√
2πw

exp

(
− ξ2

2w2

)
× exp

(
ik0ξ

2

ρ

)
× exp

[
i
√

2σφ cos(k⊥ξ + θ)
]

(1)

where ξ is the coordinate on the phase screen, θ is the phase offset of the modulation

at ξ = 0, ρ = 2ρcρw/(ρc +2ρw) is the effective radius of curvature, and w is the 1/e
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radius of the Gaussian incident waves intensity (∝ |Es|2) distributed on the phase

screen. The second term comes from the curvature effect assuming w � ρ/2. The

third term denotes phase modulation by density fluctuations.

The electric field in all space, in principle, can be calculated using the Fresnel-

Huygens formula:

E(y, z) =
1

2π

∫ ∞

−∞
g(u) exp

[
i(z − zs)

√
k2

0 − u2

]
exp(iuy) du (2)

g(u) =

∫ ∞

−∞
Es(ξ) exp(−iuξ) dξ

Only two dimensions of the formula is incorporated. In the regime where σφ � 1,

k⊥ � k0, we estimate the rms level of the electric field over −π < θ < π on the

axis y = 0. By integrating equation 2, we find:

Erms(0, z) =
〈|E − 〈E〉|2〉1/2

|〈E〉| � σφ exp

[
−k2

⊥w2

C1

(
1 − 1

2
C2

)]
(3)

C1 = 1 +
4k2

0w
4

ρ2

C2 =
1− 4d/ρ

(1 − 2d/ρ)2 + d2/k2
0w

4

where d = z−zs is the distance to the phase screen. The curvature effect is strongly

embedded in parameter C1 while C2 is usually close to 1. In the case of k⊥ → 0

or w → 0, Erms approaches σφ, which is the 1-D geometrical optics limit. In the

regime of weak curvature where ρ � 2k0w
2, the curvature effect is negligible. Using

C2 � 1, we get:

Erms(0, z) � σφ exp
(−k2

⊥w2/2
)
, ρ/2 � k0w

2 (4)

The dependence on exp (−k2
⊥w2/2) is identical to that deduced from the result in
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reference [8]. In contrast, in the regime of strong curvature where w � ρ/2 � k0w
2,

Erms(0, z) � σφ exp

[
−

(
ρ

2k0w2

)2
k2
⊥w2

2

]
, w � ρ/2 � k0w

2 (5)

Equation 5 shows that, with strong curvature, the electric field fluctuations due to

a density fluctuation with wavenumber k⊥ is as strong as for density fluctuation of

much smaller wavenumber,

k′
⊥ �

(
ρ

2k0w2

)
k⊥, w � ρ/2 � k0w

2 (6)

found in equation 4, which is the analytical result using slab plasma geometry and

plane wave-front with finite beam size. As a result, the reflectometry response to

poloidal fluctuations can be significantly broader in k⊥ than the result without

consideration of plasma curvature.

Figure 2 shows Erms/σφ calculated using equation 3 for different curvature radii.

Figure 2-(a) is the case of ρw = 10 cm while ρw = 25 cm is shown in figure 2-(b).

Results of plasma curvature ρc = ∞, 25 and 15 cm are plotted. Other parameters

used are realistic parameters for the Alcator C-Mod 88 GHz reflectometer channel,

k0 � 18.5 cm−1, w � 1.6 cm, d � 20 cm. All curves converge to the 1-D geometric

optics limit, Erms/σφ = 1, for k⊥ → 0. For large k⊥, there can be orders of

magnitude difference in Erms for different ρc. Erms/σφ in figure 2-(a) is also larger

than those in figure 2-(b) with the same ρc because of a smaller ρw.

A more realistic plasma curvature effect for O-mode reflectometry has been

estimated using a 2-D full wave simulation based on the experimental density profile

and reflectometer geometry in the Alcator C-Mod tokamak. The 2-D full wave

code we use is an upgrade of the previous Maxwell code [1], which solves Maxwell’s
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equations for O-mode wave propagation under the assumption of a cold plasma.

The new code uses the Huygens sources technique (reference [14]) to generate a

Gaussian beam to simulate the launched microwave and also separates the reflected

waves from the total field. Using a perfectly matched layer (reference [15]) as

the boundary for the full wave simulation, the code has sufficient accuracy to

simulate reflectometer fluctuation measurements with realistic density profiles and

geometry [13]. The plasma density profile is modelled with an EDA H-mode profile

with pedestal width of 0.6 cm at z < 0:

ne0(z)/nc = 0.8

[
1 − 0.025z − tanh

(
z + 3.5

0.6

)]
(7)

where lengths are in cm, and nc = 0.96 × 1014 cm−3 is the cutoff density for 88

GHz microwave (O-mode). The fluctuations are assumed to be localized in z but

poloidally modulated:

ñe(z)/ne0 = 0.04 × exp

[
−

(
z + 3.3

0.35

)2
]
cos(k⊥y + θ) (8)

Such fluctuations give a 1-D phase modulation level σφ � 0.5 rad. The total density

is ne = ne0 + ñe.

The electric field of the incident Gaussian beam in the vacuum region propa-

gating in −�ez direction is described as (a time factor e−iωt is ignored):

Eb(y, z) �
√

2P

πw2
b

exp

[
−i arctan

(
z − z0

k0w
2
0

)
− y2

(
1

2w2
b

+
ik0

2ρb

)]
exp [−ik0(z − z0)]

(9)

where z0 is the position of the beam waist and w0 is the beam waist radius; the

beam’s 1/e intensity radius wb = w0 [1 + (z − z0)
2/k2

0w
4
0]

1/2
; the radius of wave-

front curvature ρb = |z − z0| [1 + k2
0w

4
0/(z − z0)

2]; P is the total incident power.
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We assume a Gaussian beam waist radius w0 � 0.75 cm at the launching horn

aperture position (z0 � 15 cm), which has an optical distance d � 20 cm to the

cutoff layer based on the model density profile. We estimate ρb � 25 cm and

wb � 1.6 cm at the phase screen based on the propagation in vacuum.

Figure 3 and figure 4 show the 2-D electric field distribution of ρc = ∞, 25,

and 15 cm for a single-antenna system (figure 3) and a two-antenna (transmitter

XMTR and receiver RCVR) system with angles of ±50 relative to y = 0 (figure 4).

In the simulation, we construct a Huygens surface at z = 2π/k0 � 0.34 cm, and

generate Gaussian beams propagating towards the plasma at z < 0. The Huygens

surface separates the reflected waves from the total field. As a result, the field

in the region of z > 0.34 cm consists of only the reflected waves while the total

electric field of the incident Gaussian beam and the reflected waves are shown in

the region of z < 0.34 cm in both figure 3 and 4. The contour level is E = 1
2
E0,

where E0 is the maximal electric field amplitude at the Gaussian beam waist. The

plasma density profile at y = 0 is also shown. The fluctuation wavenumber is

k⊥ = 6 cm−1 and the phase modulation level σφ � 0.5 rad. With smaller ρc, the

reflected waves are more poloidally expanded, which results in less absolute power

received by RCVR.

The plasma density fluctuations perturb the electric field distribution and re-

flectometry derives the density fluctuations from the electric field perturbation.

The electric field perturbation caused by the plasma density fluctuation is larger

for smaller ρc. Figure 5 shows an enlarged view of the region near the antenna of

figure 3. The contours of �(Ẽ)/|E| are plotted, where Ẽ is the difference of the
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electric fields with density fluctuations (σφ = 0.5 rad) and without density fluctu-

ations (σφ = 0), and |E| is the amplitude of the complex electric field. �(Ẽ)/|E|
is poloidally modulated due to the poloidal density fluctuation. The perturbation

level on the electric field is σE = 〈|Ẽ|2/|E|2〉1/2, where average 〈 〉 is defined in

the region shown in the figure. The perturbation level increases for smaller ρc.

σE � 0.13, 0.23 and 0.28 is obtained for ρc = ∞, 25 and 15 cm respectively. This

response is many orders of magnitude larger than expected from 2-D slab geom-

etry analysis (equation 4), but much closer to the 1-D geometrical optics limit,

σE � σφ � 0.5. The larger σE shown in the case of curved plasma than that in the

cases of ρc = ∞ means higher sensitivity to density fluctuations.

Including the finite size of the receiving horn antenna, the rms level of reflec-

tometer response over a fluctuation period, Erms is slightly less than σE . Figure 6

shows Erms/σφ versus the poloidal wavenumber k⊥. The results of the single-

antenna system and two-antenna systems are similar. For a typical quasi-coherent

fluctuations in the EDA H-mode, k⊥ � 6 cm−1, the simulation result shows that

the reflectometer response with ρc = 15 cm (which is close to the EFIT recon-

structed magnetic flux curvature radius) is over 10 times higher than that of a

slab profile plasma with ρc = ∞. The simulation results are close to those in fig-

ure 2-(a), which are calculated from equation 3 using ρw = 10 cm. In contrast,

the results in figure 2-(b), which is obtained using ρw = ρb = 25 cm, where ρb

is the estimated Gaussian beam curvature radius at the phase screen based on

propagation in vacuum, are much smaller than the simulation results. It indicates

that the plasma effect on the wave-front curvature is not negligible when using the

9



phase screen model (equation 3) to estimate the reflectometry sensitivity. It also

indicates that plasma curvature plays an important role in determining the wave

number resolution of the measurement.

In conclusion, plasma curvature is found to significantly extend the microwave

reflectometry response to high k⊥ fluctuations when the effective radius of curvature

ρ � 2k0w
2. The reflectometry responses to high k⊥ poloidal fluctuations may be

several orders of magnitude larger than the slab geometry result. Thus, the 1-D

model may work better than 2-D slab geometry models for high k⊥ fluctuations due

to the curvature effect. At low k⊥, however, the 1-D model and 2-D slab geometry

models agree well, and plasma curvature does not affect the response.
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Control. Fusion 40, 1869-1886 (1998).

[5] G.D. Conway, Plasma Phys. Control. Fusion 41, 65-92 (1999).

[6] G.D. Conway, Plasma Phys. Control. Fusion 39, 1261-1265 (1997).

[7] V. Zhuravlev. J. Sanchez and E. de la Luna, Plasma Phys. Control. Fusion

38, 2231-2242 (1996).

[8] E.Z. Gusakov, M.A. Tyntarev, Fusion Engineering and Design 34-35, 501-505

(1997).

[9] P.C. Stek, PhD dissertation, Reflectometry Measurements on Alcator C-Mod,

Massachusetts Institute of Technology, March, 1997.

[10] Y. Lin, J. Irby, P. Stek, I. Hutchinson, J. Snipes, R. Nazikian, M. McCarthy,

Rev. Sci. Instrum. 70 (1), 1078-1081 (1999).

[11] M. Greenwald, et al, Phys. Plasmas 6 (5), 1943-1949 (1999).

11



[12] M. Greenwald, et al, Plasma Phys. Control. Fusion 42, A263-A269 (2000).

[13] Y. Lin, J. Irby, R. Nazikian, E.S. Marmar, A. Mazurenko, Rev. Sci. Instrum.,

December (2000). To be published.

[14] R. Holland and J.W. Williams, IEEE Transactions on Nuclear Science, Vol.

NS-30, No. 6, 4583-4588, December, 1983.

[15] J. Berenger, J. of Computational Physics 114, 185-200 (1994).

12



Captions:

Fig 1. The phase screen model with plasma curvature and curved wave-front.

Fig 2. Erms/σφ evaluated from equation 3 for different radii of plasma curvature:

ρc = ∞, 25 and 15 cm. k0 � 18.5 cm−1, w � 1.6 cm, d � 20 cm. Figure (a) shows

the result of ρw = 10 cm and figure (b) shows the result of ρw = 25 cm.

Fig 3. The distribution of the electric field for a single-antenna system. (a) slab

geometry ρc = ∞, (b) curved plasma with ρc = 25 cm; (c) curved plasma with

ρc = 15 cm. The cutoff layer and the antenna (XMTR/RCVR) are also drawn.

The density profile at y = 0 is drawn in (d). The fluctuation k⊥ = 6 cm and

σφ = 0.5 rad.

Fig 4. The distribution of the electric field for a two-antenna system. (a) slab

geometry ρc = ∞; (b) curved plasma with ρc = 25 cm; (c) curved plasma with

ρc = 15 cm. The cutoff layer and the antennas (transmitter XMTR and receiver

RCVR) are also drawn. Antenna angles are ±50 relative to y = 0 axis. The density

profile at y = 0 is drawn in (d). The fluctuation k⊥ = 6 cm and σφ = 0.5 rad.

Fig 5. �(Ẽ)/|E| in an enlarged region near the antenna for the single-antenna

system in figure 3. (a) slab geometry ρc = ∞, (b) curved plasma with ρc = 25 cm.

(c) curved plasma with ρc = 15 cm.

Fig 6. Erms/σφ for different radii of curvature of plasma from the 2-D full wave

simulation. ρc = ∞, 25, 15 cm. Figure (a) is for the single-antenna system (figure 3)

and figure (b) is for the two-antenna system (figure 4).

13



Figures:
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Figure 3: (Y. Lin)
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Figure 4: (Y. Lin)
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Figure 5: (Y. Lin)
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Figure 6: (Y. Lin)
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