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Excitation, Propagation, and Damping of Electron Bernstein Waves in Tokamaks

A. K. Ram* and S. D. Schultz†

Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, MA 02139
(June 26, 2000)

The conventional ordinary O-mode and the extraordinary X-mode in the electron cyclotron range of
frequencies are not suitable for core heating in high-β spherical tokamak plasmas, like the National
Spherical Torus Experiment [M. Ono, S. Kaye, M. Peng et al., in Proceedings of the 17th International
Atomic Energy Agency Fusion Energy Conference, (International Atomic Energy Agency, Vienna,
1999), Vol. 3, p. 1135], as they are weakly damped at high harmonics of the electron cyclotron
frequency. However, electron Bernstein waves (EBW) can be effective for heating and driving
currents in spherical tokamak plasmas. Power can be coupled to EBWs via mode conversion of
either the X-mode or the O-mode. The two mode conversions are optimized in different regions of
the parameter space spanned by the parallel wavelength and wave frequency. The conditions for
optimized mode conversion to EBWs are evaluated analytically and numerically using a cold plasma
model and an approximate kinetic model. From geometric optics ray tracing it is found that the
EBWs damp strongly near the Doppler-broadened resonance at harmonics of the electron cyclotron
frequency.

PACS numbers: 52.50.Gj, 52.35.Hr, 52.55.Hc, 52.40.Db

I. INTRODUCTION

There are distinct advantages to using radio-frequency
waves in the electron cyclotron range of frequencies
(ECRF) for heating fusion plasmas and for driving
plasma currents. These advantages include the ease in
coupling EC power into the plasma and the ability to
readily adjust the launch angles. The major drawback,
as far as conventional fusion tokamaks are concerned, is
the unavailability of cw sources at very high frequencies
(above the electron plasma frequency). The usually ac-
cepted procedure is to launch an extraordinary X-mode
or an ordinary O-mode from the outboard side of a toka-
mak at a frequency above the cutoff frequencies of ei-
ther mode inside the plasma. The X-mode or the O-
mode then damp on electrons near the location of the
electron cyclotron frequency fce, or its harmonics, in-
side the plasma. The modes are effectively damped near
the fundamental and second harmonic of fce. At higher
harmonics the damping is very weak so that neither of
the two modes is a viable option for heating the plasma.
This is especially true for spherical tokamaks (ST), like
the National Spherical Torus Experiment (NSTX)1 and
the Mega Amp Spherical Tokamak (MAST).2 While the
availability of high-frequency sources is not a major con-
cern, since the magnetic field in STs is significantly
smaller than that in conventional tokamaks, the ratio
of the electron plasma frequency fpe to fce is well above
one over most of the plasma cross-section. For instance,
in NSTX high-β scenarios fpe/fce ∼ 6 in the core of the
plasma. Thus, to access the core, the wave frequencies
have to be near six times the core fce for which the damp-
ing of the X-mode and the O-mode is extremely weak.
For low frequencies such that the fundamental or second
harmonic of fce are inside the plasma, the O-mode and
the X-mode are cutoff in the low-density outboard edge

region of the plasma and do not penetrate into the plasma
core. A possible mechanism for by-passing this problem
is to use the mode conversion of the slow X-mode to the
electron Bernstein wave (EBW) at the upper hybrid reso-
nance (UHR). The EBWs have no density cutoffs and, as
we will show in this paper, the EBWs damp on electrons
at the Doppler-broadened electron cyclotron resonance
or its harmonics.
There are two techniques for coupling power to EBWs.

The first technique involves the launching of an O-mode,
from the outboard side, at such an angle (relative to the
magnetic field) that the O-mode cutoff is spatially lo-
cated at the same point as the left-hand cutoff of the slow
X-mode.3 Then the O-mode power is directly coupled to
the slow X-mode, which in turn mode converts to EBWs
at the upper hybrid resonance. This technique, referred
to as the O-X-B mode conversion process, has been pre-
viously studied3–7 and used successfully on Wendelstein
7-AS.8 In the following we will show that effective O-X-
B mode conversion requires conditions in addition to the
coincidence of the O-mode and X-mode cutoffs. How-
ever, as shown in this experiment, if the launch angle of
the O-mode is not chosen properly then there is no elec-
tron heating. The second technique is to launch the fast
X-mode from the outboard side. The fast X-mode tun-
nels through the UHR and couples to the slow X-mode
which, in turn, mode converts to EBWs at the UHR.
This is referred to as the X-B mode conversion process.
This process involves the X-mode right-hand cutoff, lo-
cated towards the low-density side of the UHR, the UHR,
and the left-hand cutoff of the slow X-mode, located to-
wards the high-density side of the UHR. This triplet of
cutoff-resonance-cutoff is similar to that encountered in
the mode conversion of the fast Alfvén waves to the ion-
Bernstein waves at the ion-ion hybrid resonance in plas-
mas with at least two ion species of different charge-to-
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mass ratios.9,10 In this paper we make use of the theory
and the results obtained in Ref. 10 to study the X-B mode
conversion. We find that the X-B conversion is efficient
over a broad range of frequencies and launch angles. The
X-B conversion has been alluded to before11 and it has
been identified in experiments in a linear plasma device,12

but there has been no prior discussion of the details of
this process. Some results of our analysis and compu-
tations have already appeared in conference publications
.13–16 Here in addition to showing the conditions for com-
plete O-X-B mode conversion, we give the general theory
of the X-B mode conversion process and discuss its rele-
vance within the context of NSTX.
In this paper, we present analyses and computations on

the excitation of EBWs by mode conversion of either the
fast X-mode or the O-mode launched from the outboard
side of the plasma, and illustrate the propagation and
damping characteristics of EBWs in ST plasmas.

II. DISPERSION CHARACTERISTICS OF
ELECTRON CYCLOTRON WAVES

We consider a slab geometry model for propagation
along the equatorial plane of a toroidal plasma. As-
suming a cold inhomogeneous plasma in a magnetic field

pointing in the z-direction, the electric field ~E ∼ e−iωt

inside the plasma is given by

∇×
(
∇× ~E

)
=
ω2

c2
K · ~E (1)

where ω is the angular frequency, c is the speed of light,

K is the plasma permittivity tensor:

K =


 K⊥ −iKX 0
−iKX K⊥ 0
0 0 K‖


 (2)

with

K⊥ = 1−
ω2pe

ω2 − ω2ce
(3)

KX = −
ωce

ω

ω2pe
ω2 − ω2ce

(4)

K‖ = 1−
ω2pe

ω2
(5)

ωpe and ωce are functions of space and are the angu-
lar electron plasma and electron cyclotron frequencies,
respectively. For waves in the electron cyclotron range
of frequencies we can ignore the ion contribution to the
plasma permittivity tensor. If we assume that there are
no variations in the y-direction, the local dispersion rela-
tion is obtained by assuming that the electric field varies
as e(ik⊥x+ik‖z) where k⊥ and k‖ are the components of
the wave vector perpendicular and parallel to the mag-
netic field, respectively. Then from (1) we get:

K⊥n
4
⊥ +

[(
K⊥ +K‖

) (
n2‖ −K⊥

)
+K2X

]
n2⊥

+

{(
n2‖ −K⊥

)2
−K2X

}
K‖ = 0 (6)

where n‖ = ck‖/ω and n⊥ = ck⊥/ω. There are three
cutoffs (n⊥ = 0) that arise from (6) and are given by:

ω = ωO ≡ ωpe (7)

ω = ωL ≡
1

2



(
ω2ce +

4ω2pe
1− n2‖

)1/2
+ ωce


 (8)

ω = ωR ≡
1

2



(
ω2ce +

4ω2pe
1− n2‖

)1/2
− ωce


 (9)

which are the O-mode, the left-hand X-mode, and the
right-hand X-mode cutoffs, respectively. The UHR is
given by (n⊥ =∞, K⊥ = 0):

ω = ωUHR ≡
√
ω2pe + ω

2
ce (10)

If we assume that the plasma inhomogeneity is along the
x-direction, then for a given frequency and n‖ = 0, i.e.,
propagation across the magnetic field, the roots of (6)
are plotted in Fig. 1. The locations of the O-mode cutoff
(xO), right-hand X-mode cutoff (xR), left-hand X-mode
cutoff (xL), and the UHR (xU ) are identified explicitly.
FX and SX identify the fast and the slow branches of
the X-mode. The SX mode couples to the EBW near the
upper hybrid resonance. This can be identified from solu-
tions of the hot plasma dispersion relation where kinetic
effects are included in the dielectric tensor.

    

Real(k⊥)

x
L

x
O

x
U

x
R

SX

O

FX

FIG. 1. The dispersion relation for ECRF modes. The
cutoffs of the fast X-mode (FX), slow X-mode (SX), and
the O-mode (O) are located at xR (right-hand cutoff), xL
(left-hand cutoff), and xO, respectively. xU is the location of
the upper hybrid resonance.

From Fig. 1 we note that the fast X-mode encounters
a the right-hand cutoff (R) followed by the UHR. The
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right-hand cutoff in close proximity to the UHR forms
the classical Budden-type of mode conversion scenario.17

This leads to a partial transmission of power to the slow
X-mode and to partial absorption; the latter being equiv-
alent to the fraction of incident power that is mode con-
verted to the EBW. However, if the slow X-mode en-
counters the left-hand cutoff (L), the triplet of R–UHR–L
forms a mode conversion resonator (i.e., a resonator con-
taining mode conversion to EBW as an effective dissipa-
tion). This triplet of cutoff-resonance-cutoff is similar to
that encountered in the mode conversion of fast Alfvén
waves to ion-Bernstein waves at the ion-ion hybrid reso-
nance .9,10 In such a triplet resonator, one can, in prin-
ciple, obtain complete mode conversion of the incident
power to EBW. The local dispersion relation (6) is not
valid for describing the propagation of waves through the
cutoffs and resonances. For this we need to revert back
to the differential equation (1).

III. THEORETICAL MODELLING OF X-B MODE
CONVERSION

Assuming plasma inhomogeneity in the x-direction,
uniformity in the y-direction, and the z-variation varia-
tion of the electric fields to be of the form e(ik‖z), the wave
equation (1) gives two coupled second-order ordinary dif-
ferential equations in x for the field components Ey and
Ez . If we consider the case of propagation transverse to
the magnetic field (k‖ = 0) then the two equations de-
couple with one equation describing the propagation of
the X-mode and the other describing the propagation of
the O-mode. The X-mode propagation is given by:

d2Ey

dξ2
+Φ(ξ)Ey = 0 (11)

where

Φ(ξ) ≡
KRKL

K⊥
=
K2⊥ −K

2
X

K⊥
(12)

is the “scattering” potential, ξ = (ω/c)x, and

KR = K⊥ +KX (13)

KL = K⊥ −KX (14)

Equation (12) has two cutoffs ξR and ξL corresponding
to the location of the zeros of KR and KL, respectively,
and a resonance at ξU where K⊥ = 0. By modelling the
potential Φ(ξ) as is done in Ref. 10, a differential equation
is obtained that is identical in form to that found, and
solved, for the conversion of fast Alfvén waves to ion-
Bernstein waves near the ion-ion hybrid resonance.9,10

Carrying over our results from Ref. 10, we find the power
mode conversion coefficient is

C = 4e−πη(1− e−πη) cos2
(
φ

2
+ θ

)
(15)

where θ = phase of Γ(−iη/2), φ is the phase differ-
ence between the slow X-mode propagating toward the
L-cutoff and the reflected component propagating toward
the UHR, and η is the Budden parameter. As in Ref. 10,
η is obtained by expanding the potential Φ around the
resonance, here the UHR, to find the location of ξR. This
procedure leads to

η =
ωceLn

c

α√
α2 + 2

Ln

LB



√
1 + α2 − 1

α2 +
Ln

LB

√
1 + α2



1/2

(16)

where

α =

[
ωpe

ωce

]
UHR

(17)

the density scalelength Ln, and the magnetic field scale-
length LB are evaluated at the UHR. In the limit LB �
Ln

η ≈
ωceLn

cα

[√
1 + α2 − 1

]1/2
(18)

For α ∼ 1:

η ≈
1

2

[
ωceLn

c

]
≈ 293.5 |BLn|UHR (19)

where B is the local magnetic field in Tesla, and Ln is
the scalelength in meters.
From (15) it is clear that the maximum possible power

mode conversion, C = 1, is obtained if, simultaneously,
(φ/2+θ) is any integer multiple of π and exp(−πη) = 0.5,
i.e., η ≈ 0.22. For this value of η we find, from (19) that

|BLn|UHR ≈ 5.8× 10
−4 Tm (20)

This formula shows the advantage of the X-B mode con-
version in spherical tokamaks which have lower magnetic
fields compared to the conventional tokamaks; it also
shows that a steep density gradient is required.
In order to illustrate our results we have chosen param-

eters that are NSTX-type for a high-β equilibrium.18 The
magnetic field, density, and temperature profiles along
the equatorial plane (as a function of x) are given in Ap-
pendix A. For these NSTX-type parameters Cmax as a
function of the frequency f = ω/(2π) is plotted in Fig.
2. Here

Cmax = 4e
−πη

(
1− e−πη

)
(21)

is the phase independent part ofC from (15). Thus, Cmax
forms the envelope of the mode conversion coefficient C.

Note that complete mode conversion is possible for
wave frequencies f around 16 GHz. In the range
13 GHz <∼ f <∼ 18 GHz, Cmax ≥ 0.5. This corre-
sponds to η in the range 0.05 <∼ η

<
∼ 0.6, or, equiva-

lently, 1.3×10−4 T m <∼ |BLn|UHR <∼ 1.6×10
−3 T m.

For frequencies less than about 13 GHz the UHR is no
longer inside the plasma and the X-B mode conversion is
not possible.
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FIG. 2. Power mode conversion coefficient Cmax, from Eq.
(21), as a function of frequency for NSTX-type equilibrium
profiles given in Appendix A.

IV. MODE CONVERSION (RESONANCE
ABSORPTION) IN INHOMOGENEOUS,

SHEARED MAGNETIC FIELD

The equilibria of high-β ST plasmas have poloidal mag-
netic fields that can be comparable to the toroidal mag-
netic fields in the outer part of the plasma. The shear in
the magnetic field becomes important and has to be prop-
erly accounted for in the region where mode conversion
takes place. We generalize our cold plasma, slab model
to include both the poloidal magnetic field and shear.
The inhomogeneity is assumed to be along x with arbi-
trary such variations for both the (toroidal) z-directed
and the (poloidal) y-directed magnetic fields. The lin-
earized field analysis is summarized in Appendix B. We
find, from a local analysis, that the dispersion relation
exhibits the same type of cutoff-resonance-cutoff triplet
discussed earlier. Below, we give results from the numer-
ical integration of the full complement of wave equations,
Eqs. (B12) and (B13), describing the propagation of the
O-mode and the X-mode in the mode conversion region.
Figure 3 shows the power mode conversion (resonance

absorption) coefficient as a function of frequency, for
NSTX-type equilibrium profiles, for ny = cky/ω = 0 and
nz = ckz/ω = 0 and 0.1. Superimposed is the curve ob-
tained from Eq. (21) showing the theoretical maximum
for the power mode converted to EBWs. The numerical
results essentially follow the curve for Cmax for frequen-
cies below about 18 GHz. The difference between the the-
oretical maximum and the numerically evaluated results
shows the effect of the phase factor in Eq. (15). Again,
we note that mode conversion efficiencies > 50% are ob-
tained for a broad range of frequencies. The power mode
converted for nz = 0.1 does not differ much from the re-
sult for nz = 0. Furthermore, we find that a change in

the edge density of around 5% shifts the peak by about 1
GHz, but does not change its peak value or shape. Thus,
mode conversion of the X-mode to EBWs in NSTX is
both efficient and robust.
Figure 4 shows the X-B power mode conversion co-

efficient, for a source frequency of f = 15 GHz, as a
function of nz for ny = 0. There is a broad range of low
nz’s for which the mode conversion coefficient is greater
than 50%.

13 15 17 19 21
0

0.25

0.5

0.75

1

C

f (GHz)

FIG. 3. Power mode conversion coefficient as a function of
frequency for the resonance absorption model. The solid and
dashed lines are for nz = 0 and nz = 0.1, respectively. The
dot-dashed line is Cmax of Fig. 2. The NSTX-type plasma
and magnetic field equilibrium profiles are the same as for
Fig. 2.

V. KINETIC DESCRIPTION OF MODE
CONVERSION

The inclusion of kinetic effects due to finite tempera-
ture of the plasma resolves the singularity at the upper
hybrid resonance. The resonance absorption is replaced
by the kinetic EBW which propagates the energy away
from the mode conversion region. A description of such
a kinetic mode is much more complex and is not given by
(B2) and (B3). Instead, one has to use the full comple-
ment of the Vlasov-Maxwell system of equations to deter-
mine the self-consistent evolution of the fields. For an in-
homogeneous plasma this leads to an integral-differential
equations whose solutions, even numerically, are difficult
to obtain. Consequently, we seek an approximate de-
scription of the mode conversion process that includes
the coupling of the kinetic EBW and the cold plasma
modes. The derivation of such an approximate formula-
tion, is given in Appendix C. Basically, we modify the
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FIG. 4. Power mode conversion coefficient as a function of
nz for f = 15 GHz and ny = 0. The NSTX-type plasma and
magnetic field equilibrium profiles are the same as for Fig. 2.

cold plasma formulation to include the kinetic permittiv-
ity that is characteristic of the electrostatic EBW while
retaining the general cold plasma description of Section
IV and Appendix B. This process results in a set of six
coupled first-order differential equations that include the
coupling and propagation of the kinetic EBW and the
cold plasma electromagnetic modes. The equation for the
electromagnetic field components is given by Eqs. (C9)
and (C10) Appendix B. These equations conserve the
total (electromagnetic and kinetic) energy flow as given
by (C11).
For NSTX-type parameters, Fig. 5 shows the power

mode conversion coefficient, given by the ratio of the ki-
netic power flow in the EBW to the power input on the
vacuum launched fast X-mode, as a function of frequency.
This mode conversion coefficient is compared with the re-
sults from the cold plasma resonance absorption model.
It is clear that the two results are in good agreement
illustrating the validity of the cold plasma resonance ab-
sorption model as a representation of the power mode
converted to EBWs. The results from the two models
differ in the vicinity of the frequency (≈ 16.5 GHz) where
the UHR passes from below 2fce to above – a transition
that is immaterial in the cold-plasma resonance absorp-
tion model.

VI. MODE CONVERSION OF THE O-MODE TO
THE EBW

There have been a number of theoretical studies on the
mode conversion of a vacuum launched O-mode to the
EBW.3–7 The primary requirement for this mode conver-
sion process to take place is that the O-mode cutoff be

13 15 17 19 21
0

0.25

0.5

0.75

1

C

f (GHz)

FIG. 5. Power mode conversion coefficient as a function
of frequency. The solid line is the result from the kinetic
description of the EBW while the dashed line is from the
cold plasma resonance absorption model (solid line in Fig. 2).
Both results are for ny = nz = 0. The NSTX-type plasma
and magnetic field equilibrium profiles are the same as for
Fig. 2.

near, or coincident with, the left-hand cutoff of the slow
X-mode. This requires that the O-mode be launched at
an oblique angle to the total magnetic field. The op-
timum k‖ is that for which the two cutoffs are located
at the same position. For oblique propagation, the left
hand cutoff is given by Eq. (8) The optimum n‖,opt is
when ωL = ωpe ≡ ωO, the O-mode cutoff in Eq. (7).
This gives:

n‖,opt =
1

(1 + ωpe/ωce)
1/2

(22)

The modes obtained from the cold plasma dispersion re-
lation for this optimum n‖,opt are illustrated in Fig. 6.
From this dispersion relation plot it is intuitively clear

that power launched on the O-mode will directly couple
to the slow X-mode at the left-hand cutoff. The slow
X-mode then propagates towards the UHR where there
is some resonance absorption, or, equivalently, mode
conversion to EBW. However, from Fig. 6 it is clear
that some of the power on the slow X-mode can tun-
nel through to the fast X-mode and propagate out to the
edge of the plasma. The power transmission coefficient
of the slow X-mode to the fast X-mode is given by:

TX = e
−πη (23)

where η is as given in Eq. (16). Thus, in order to min-
imize the power transmitted we need η > 1. Conse-
quently, for mode conversion of the O-mode to the EBW,
we not only require an optimum angle of propagation,
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FIG. 6. The dispersion relation for ECRF modes for
oblique propagation such that xL ≈ xO

i.e., an optimum k‖, but also η > 1. These two con-
ditions are different from those for efficient mode con-
version of the X-mode to EBW. This mode conversion
process requires that k‖ be small and that η < 1. For the
same magnetic field, from Eq. (19) we find that the X-B
mode conversion occurs closer to the edge of the plasma
where the density scalelength is short, while the O-X-B
mode conversion favors a longer density scalelength and,
consequently, occurs deeper into the plasma.
The power mode conversion coefficient for the O-X-B

process as a function of n‖ is plotted for three different
values of the wave frequency in Fig. 7. These results are
obtained from the numerical solution of the cold plasma
wave equations discussed in Appendix B.
For the frequency of 28 GHz, n‖,opt ≈ 0.48 and C ≈

1, while for 21 GHz, n‖,opt ≈ 0.52 and C ≈ 0.9. The
difference in the mode conversion coefficients is due to
the power that is transmitted out on the X-mode. For
the case of 28 GHz, C >∼ 0.5 for 0.4

<
∼ n‖

<
∼ 0.6.

VII. DIRECT COUPLING TO EBW

For optimum X-B mode conversion it is evident from
Eq. (20) that we need a short density scalelength that oc-
curs, essentially, near the edge of the plasma. For NSTX-
type parameters, the X-B mode conversion is optimized
when the UHR resonance is within a few millimeters of
the plasma-vacuum edge (see Fig. 12 in Appendix A).
This distance is shorter than the free-space wavelength
of the X-mode leading to the suggestion that effective di-
rect coupling to EBW should be possible from an external
slow wave structure that can be placed just inside of the
confluence point of the EBW with the slow X-mode. The
polarization of EBW, when near its confluence with the
slow X-mode, is mainly |Ex| so that external power ap-

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

C

n
z

FIG. 7. Power mode conversion coefficient in as a function
of nz for ny = 0. The solid, dashed, and dot-dashed lines are
for source frequencies of 28, 14, and 21 GHz, respectively. The
NSTX-type plasma and magnetic field equilibrium profiles are
the same as for Fig. 2.

plied to a slow wave structure in close proximity to the
plasma edge would excite the appropriate charge den-
sity perturbations that drive the EBW. The slow wave
structure can also establish the desired k‖-spectrum of
the excited EBW which would lead to its heating and/or
driving currents at desired locations to which it subse-
quently propagates in the plasma. In order to avoid any
coupling to the slow X-mode it would be more effective
to place the structure beyond the left-hand X-mode cut-
off. For NSTX-type parameters this is near the UHR
and is located inside the plasma near the plasma edge at
a distance that is also short compared to the free-space
wavelength. The coupling analysis, which is similar to
the coupling analysis for lower hybrid and ion-Bernstein
waves, will be presented elsewhere.

VIII. PROPAGATION AND DAMPING OF EBWS

The propagation characteristics of EBWs are stud-
ied using the code GORAY which follows ray trajecto-
ries in a hot Maxwellian plasma using the geometric op-
tics approximation. This code has been previously used
to study the propagation and damping of ion-Bernstein
waves.19 The ray trajectories of EBWs are determined
starting at a location beyond the mode conversion region
near the UHR where the geometric optics approximation
is valid. Within the mode conversion region we have to
use the differential equation formalism discussed above.
Furthermore, while the spatially narrow mode conversion
region can be treated within the slab geometry approx-
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imation, the propagation studies of EBWs require a full
representation of the toroidal plasma. Toroidal effects
play a significant role in the propagation of EBWs. For
NSTX-type parameters discussed in Appendix A, Fig. 8
shows the trajectories of two EBW rays over the minor
cross-section of the plasma. The two rays are distin-
guished by the starting spatial location of the rays. The
first ray is started on the equatorial plane while the sec-
ond ray is started slightly above this plane. The rays
are followed until they are completely damped. Figure
9 shows the normalized energy density as a function of
x along the two rays. The energy density is normalized
to be 1 at the starting location of the two rays. We find
that the rays damp on electrons due to cyclotron damp-
ing at the Doppler-broadened second harmonic electron
cyclotron resonance. There is no damping of EBWs prior
to reaching this Doppler-broadened resonance.

−0.5 −0.25 0 0.25 0.5
−0.5

−0.25

0

0.25

0.5

y (meters)

x (meters)

FIG. 8. Poloidal projection of two EBW ray trajectories for
NSTX-type parameters. The outboard edge of the plasma is
at x = 0.44 m and the center is at x = 0. The first ray (solid
line) is started on the equatorial plane θ = 0, where θ is the
poloidal angle, while the second ray (dashed line) is started
slightly above the equatorial plane at θ = 0.1π.

The two rays damp at very different spatial locations
because of the evolution of n‖ along the rays. Figure 10
shows the n‖ evolution of both rays which were initially
started with n‖ = 0.1. For the ray started on the equato-
rial plane, the change in n‖ is relatively small compared
to the ray started above the equatorial plane. The large
change in n‖ coupled with a nearly flat magnetic field
profile (see Appendix A) lead to the damping of the sec-
ond ray well away from the actual spatial location of the
second harmonic electron cyclotron resonance. This res-
onance is located near x = 0 in close proximity to the
location where the first ray damps on electrons. From
Ref. 19 we know that the change in n‖ along the ray has
the following dependencies:

0 0.1 0.2 0.3 0.4 0.5
0

0.25

0.5

0.75

1

U

x (meters)

FIG. 9. Normalized energy density along the two rays of
Fig. 8. The energy density is normalized to be one at the
initial starting location of the rays on the right-hand side.
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FIG. 10. The parallel wave numbers n‖ along the two rays
of Fig. 8. The two rays are started off initially with n‖ = 0.1
at the right-hand side near x = 0.44 m.
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∆n‖ ∝ sin (θ)

∣∣∣∣BpB
∣∣∣∣ sign (n⊥) (24)

where θ is the poloidal angle measured from the center
of the plasma with θ = 0 being the outboard side of
the equatorial plane, Bp is the poloidal magnetic field, B
is the total magnetic field, and n⊥ is the perpendicular
wave number of the EBW. From (24) it is clear that the
change in n‖ should be small for rays near the equatorial
plane (θ ≈ 0). Since towards the outer half of the plasma
|Bp| ≈ |B|/2 (see Appendix A), the change in n‖ for rays
away from the equatorial plane can be significant. Figure
10 shows that this is indeed the case for the ray which
is launched off the equatorial plane. Since EBWs are
backward waves sign(n⊥) < 0 and, subsequently, ∆n‖ <
0 in the upper-half section of the plasma. ∆n‖ > 0 in
the lower-half section of the plasma.
From the results shown in Figs. 8 and 9 it is evident

that EBWs damp locally and strongly near the Doppler-
shifted harmonic of the electron cyclotron resonance fre-
quency. Furthermore, we find that the waves damp on
electrons. These properties make EBWs an attractive
candidate for localized electron heating in spherical toka-
maks.

IX. CONCLUSIONS

A detailed theoretical and computational analysis of
mode conversion to electron Bernstein waves in NSTX-
type spherical tokamaks show that the two mode conver-
sion processes, X-B and O-X-B, are optimized in different
regions of the parameter space spanned by the parallel
(to the magnetic field) wavenumbers n‖ and the wave
frequency. The X-B mode conversion is optimized for
low n‖’s and frequencies such that the upper hybrid res-
onance is located closer the edge of the plasma where the
density scalelengths are short. The O-X-B mode conver-
sion is optimized for n‖ ∼ 0.5 and for frequencies such
that the upper hybrid resonance is located farther into
the plasma where the density scalelenghts are long and
the coupling to the fast X-mode is weak. Thus, the X-B
mode conversion process operates more efficiently at fre-
quencies lower than that for the O-X-B mode conversion.
In the low frequency regime of the X-B mode conver-

sion, the upper hybrid resonance is located at a distance
from the edge of the plasma that is short compared to
the free-space wavelength of the X-mode. It may be pos-
sible to couple directly to EBWs at the edge using a slow
wave structure. Further studies on this coupling process
are in progress.
A geometrical optics ray trajectory analysis shows that

the EBWs damp effectively on electrons in spatially lo-
calized regions near the Doppler-shifted harmonic of the
electron cyclotron frequency. However, the spatial loca-
tion of the damping can change depending on the poloidal
launch angle of the EBWs. For rays near the equatorial
plane the damping is closer to the spatial location of the

harmonic of the electron cyclotron frequency. For rays
that are launched away from the equatorial plane the
large changes in n‖ can lead to significant deviations in
the location of the damping region. Since the change
in n‖ is determined by whether the EBWs are launched
above or below the equatorial plane, the velocity-space
interaction of the EBWs with the electron distribution
function can be controlled by an appropriate choice of
the launch position.
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APPENDIX A: CUTOFF AND RESONANCE
FREQUENCIES FOR NSTX-TYPE

PARAMETERS

The NSTX-type high-β equilibrium that we have used
in our calculations is as follows.18 The Shafranov-shifted
major radius is R = 1.05 m, the minor radius is a = 0.44
m, the peak electron density is n0 = 3 × 1019 m−3, the
peak electron temperature is T0 = 3 keV, the density
profile is ne = nE + (n0 − nE)(1 − x2/a2)1/2, and the
temperature profile is Te = TE + (T0 − TE)(1− x2/a2)2,
where nE and TE are the edge density and temperature,
respectively, with nE/n0 = 0.02 and T0/TE = 0.02. The
magnetic field profile is taken to be that shown below in
Fig. 11
In Fig. 12 we plot the frequencies of the various cutoffs

and resonances along equatorial plane of the NSTX-type
plasma mentioned in the text.
For the equilibrium used in the ray tracing calcula-

tions we have assumed that the density and tempera-
ture profiles are (1− r2/a2)1/2 and (1− r2/a2)2, respec-
tively, where r is the radial coordinate. The poloidal and
toroidal magnetic fields are, respectively, modelled as:

Bθ =
Bθ0(r)

1 + (r/R) cos θ
(A1)

Bφ =
Bφ0

1 + (r/R) cos θ
(A2)

where θ is the poloidal angle, Bφ0 = 0.26 Tesla, and
Bθ0(r) has the profile of By in Fig. 11.
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FIG. 11. The magnitudes of the poloidal component By
(dot-dashed), the toroidal component Bz (dashed), and the
total magnetic field B (solid line) in Tesla as a function of the
minor radius. x = 0 is the center of the plasma and x = 0.44
m is the outside edge of the plasma.
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the fundamental and second harmonic of fce as a function of
distance along the plasma cross-section

APPENDIX B: FIELD EQUATIONS IN A COLD,
INHOMOGENEOUS PLASMA

We consider a stationary, neutral, electron-ion plasma
equilibrium in an inhomogeneous, sheared magnetic field:

~B0(x) = ŷB0(x) sinΨ(x) + ẑB0(x) cosΨ(x) (B1)

where Ψ is the angle between ~B0 and the z-axis in a
cartesian (x, y, z) coordinate system, and x, y, and z are
the radial, poloidal, and toroidal components, respec-
tively. The equilibrium plasma density is assumed to
vary with x: n0 = n0(x). For the high frequencies in the
range of electron cyclotron frequencies we can neglect the
dynamics of the ions. Ignoring collisions, the linearized
cold-plasma dynamics of the electrons is described by the
continuity equation

∂n1

∂t
+∇ · (n0~v1) = 0 (B2)

and the non-relativistic momentum equation

me
∂~v1

∂t
= −e( ~E1 + ~v1 × ~B0) (B3)

where me is the electron mass, and n1, v1, and E1 are
the first-order perturbations in the electron density, the
electron fluid velocity, and the electric field, respectively.
Assuming a time dependence of the form e−iωt for all the
perturbation parameters, the perturbed current density
~J1 = −en0~v1 is given as a function of ~E1 by solving
(B3) for ~v1. The result can be expressed in terms of the

susceptibility tensor
↔
χ (x, ω) defined by

~J1 = −iωε0
↔
χ ·E1 (B4)

where ε0 is the dielectric constant of free space. We find
that

↔
χ=

−α2

(1− β2)


 1 −iβc iβs
iβc 1− β2s −βsβc
−iβs −βsβc 1− β2c


 (B5)

where α2 = ω2pe(x)/ω
2, β = ωce(x)/ω, βc = β cosΨ(x),

and βs = β sinΨ(x). Substituting for the current density
into Maxwell’s equation for the first-order fields, we get

∇× ~E1 = iω ~B1 (B6)

∇× ~B1 = −i
ω

c2
↔
K · ~E1 (B7)

where the permitivity tensor
↔
K (x, ω) is

↔
K =

↔
I +

↔
χ=


 Kxx χ

xy
χ
xz

−χxy Kyy χyz
−χxz χyz Kzz


 (B8)

9



and
↔
I is the second-rank identity tensor. Equations (B6)

and (B7) can be used to derive a set of first-order dif-
ferential equations for the self-consistent electromagnetic

fields. We choose the field (column) vector ~Fc such that
its transpose (row) vector is

~F Tc = [Ey Ez (−cBy) cBz] (B9)

Then the time-averaged electromagnetic energy flow den-
sity is given by

〈~sem〉 =
1

4

√
ε0

µ0
~F †c ·

↔
M · ~Fc x̂ (B10)

where the dagger superscript denotes the complex-
conjugate transpose and

↔
M =



0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0


 . (B11)

We assume that the plasma equilibrium is uniform in y
and z so that the fields vary as eikyy+ikzz. Then Eqs.
(B6) and (B7) can be written as

d~Fc

dξ
= i

↔
Ac · ~Fc (B12)

where ξ = ωx/c,

↔
Ac=

1

Kxx




−nyχxy −nyχxz −nynz Kxx − n2y

−nzχxy −nzχxz Kxx − n2z −nynz

a1 a2 nzχxz nyχxz

a3 a1 nzχxy nyχxy




(B13)

a1 = Kxx(χyz + nynz) + χxyχxz, a3 = Kxx(Kzz − n2y) +
χ2
xz, a3 = Kxx(Kyy − n

2
z) + χ

2
xy, ny = (cky/ω), and

nz = (ckz/ω). It can be easily seen that
↔
M ·

↔
A is Her-

mitian so that the time-averaged energy flow density in
x is conserved, i.e.,

d

dξ
(~F †c ·

↔
M · ~Fc) = 0 . (B14)

APPENDIX C: KINETIC FIELD EQUATIONS

Here we formulate the mode conversion equations that
include the kinetic electron Bernstein wave and the cold-
plasma modes in the inhomogeneous equilibrium de-
scribed in Appendix B.
In a homogeneous plasma, the electrostatic EBW is as-

sociated with the Kxx component of the kinetic (Vlasov)

permittivity tensor. For a weakly damped electrostatic
wave, the dominant component of the kinetic energy flow
density is given by Ref. 20

〈~sK〉 = −
1

4
ε0ω
∂KKαβ

∂~k
EαE

∗
β (C1)

where
↔
K
K

is the Hermitian part of the kinetic permit-
tivity tensor. Since we are interested in a full wave char-
acterization of the EBW between the fundamental and
second electron cyclotron harmonics, where the Doppler-
shifted cyclotron damping is negligible, it is sufficient
to expand the kinetic susceptibility χKxx to second order

in (k⊥vTe/ωce) where vTe =
√
(κTe/me) is the electron

thermal velocity. For a Maxwellian electron distribution
function:21

χK
xx ≈ χxx + χ̃n

2
x (C2)

where χxx is the cold-plasma susceptibility (see Appendix
B), nx = (ckx/ω), and

χ̃ =
−3ω2peω

2

(ω2 − ω2ce)(ω
2 − 4ω2ce)

(vTe
c

)2
. (C3)

For χKxx as a slowly varying function of x, the conser-
vation of the kinetic energy flow density in x,

d

dξ

(
∂KKxx
∂nx

|Ex|
2

)
= 0 (C4)

requires that the inhomogeneous representation of the
kinetic EBW mode be related to its homogeneous, local
representation KKxxEx as follows:

22

KKxxEx → KxxEx −
d

dξ

(
χ̃dEx

dξ

)
(C5)

So the prescription for formulating the coupling be-
tween the cold plasma electromagnetic modes and the
kinetic EBW is to:

(a) introduce the modification to KxxEx in Maxwell’s
equation (B7) according to (C5); and

(b) choose a field vector ~FK for the new, self-consistent,
electromagnetic fields described by Eqs. (B6) and

(B7), with the appropriately modified
↔
K, to obtain

a set of first-order differential equations in x.

The field vector ~FK is chosen such that its transpose
(row) is

~F TK = [Ex Ey Ez (iχ̃E
′
x) cBz (−cBy)] (C6)

where E′x = (dEx/dξ) The total (electromagnetic and
kinetic) time-averaged energy flow density is given by:

〈~s〉 =
1

4

√
ε0

µ0
~F †K ·

↔
R · ~FK x̂ (C7)
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where

↔
R=




| 1 0 0
0 | 0 1 0

| 0 0 1
− − − − − − −
1 0 0 |
0 1 0 | 0
0 0 1 |



. (C8)

Following the procedure in Appendix B, the evolution of
the fields is given by:

d~FK

dξ
= i

↔
AK · ~FK (C9)

where

↔
AK =




0 0 0 −χ̃
−1
0 0

ny 0 0 0 1 0

nz 0 0 0 0 1

Kxx χ
xy

χ
xz 0 ny nz

−χxy Kyy − n2z χ
yz + nynz 0 0 0

−χxz χyz + nynz Kzz − n2y 0 0 0




(C10)

It can be readily verified that
↔
R ·

↔
AK is Hermitian so

that the total time-averaged energy flow density in x is
conserved, i.e.,

d

dξ
(~F †K ·

↔
R · ~FK) = 0 . (C11)

For χ̃ = 0 (the cold plasma limit), Eq. (C10) has a
singular term in its first row. However, the cold plasma
limit is readily obtained from Eqs. (C9, C10). Using Eq.
(C6) it is clear that the first equation in (C9, C10) is
trivial and independent of χ̃. The fourth equation with
χ̃ = 0 allows us to solve for Ex in terms of Ey, Ez , cBz,
and cBy. Substituting this for Ex in the remaining four
equations gives exactly the results in Eqs. (B12, B13).
There is also an alternative formulation in which, if we
restrict ourselves to just the (transposed) electric field

vector ~E T1 = (Ex Ey Ez), the elimination of
~B1 between

(B6) and (B7) results in:

↔
Dop · ~E1 = 0 (C12)

where

↔
Dop=


n2y + n
2
z −Kxx iny

d

dξ
− χxy inz

d

dξ
+ χxz

+
d

dξ
χ̃ d

dξ

iny
d

dξ
+ χxy −

d2

dξ2
+ n2z −Kyy −nynz − χyz

inz
d

dξ
− χxz −nynz − χyz −

d2

dξ2
+ n2y −Kzz




(C13)

In the limit χ̃ → 0, (C12) with (C13) are non-singular
and equivalent to the cold plasma formulation in (B12)
with (B13). The clear disadvantage of this formulation is
that the coupled ordinary differential equations include
derivatives of the susceptibility tensor elements. This
makes the numerical procedures more cumbersome.
Finally, we remark that the above approximate rep-

resentation of EBWs for ωUHR in the vicinity of 2ωce
can be extended to include the case when ωUHR is in
the vicinity of 3ωce. This entails expanding the kinetic
susceptibility to fourth order in k⊥vTe/ωce, giving

χK
xx ≈ χxx + χ̃n

2
x +
˜̃χn4x (C14)

where

˜̃χ = −
15ω2peω

4

(ω2 − ω2ce) (ω
2 − 4ω2ce) (ω

2 − 9ω2ce)

(vTe
c

)4
(C15)

This leads to an eighth order differential equation for the
fields.
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