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ABSTRACT

A stability analysis is made of an electron beam, propagating along and gyrating

about a uniform magnetic �eld, for the case of a spatiotemporal equilibrium distribution

in the phase angle of the transverse electron momentum component. The axial momentum

component and the magnitude of the transverse momentum component are assumed to

have de�nite values in the equilibrium distribution. The analysis is carried out by applying

Lorentz transformations to previous results for nongyrotropic equilibrium distributions.

The dispersion matrix, its eigenmodes (which relate �eld amplitudes), and the dispersion

relation are obtained. Numerical results show that varying the spatiotemporal properties

of a nongyrotropic equilibrium distribution has only a small e�ect on maximum growth

rates of radiation, but has a strong e�ect on the frequencies and wave numbers at which

instability occurs. A novel mechanism is found by which electrons emit stimulated radiation

at frequencies that, in principle, can be greater than the usual Doppler-shifted electron

cyclotron frequency by orders of magnitude.
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I. Introduction

Stimulated emission of radiation by electrons gyrating in magnetic �elds has been

an important subject of theoretical, computational, and experimental investigations in

plasma physics, astrophysics, and vacuum electronics for several decades.1�6 It is well

known that the frequencies of such stimulated radiation correspond to the Doppler-shifted

electron cyclotron frequency and its harmonics. For moderately and highly relativistic

electrons, the fundamental frequency is approximately 2
2
z
!c, where 
z is the relativistic

mass factor associated with the axial motion of the electrons and !c is the relativistic

cyclotron frequency.

A number of papers have dealt with stability properties of a relativistic electron beam

in the presence of a uniform magnetic �eld B0 = B0ez for the case of a nonisotropic

equilibrium distribution in the phase angle � of the momentum component p
?
perpen-

dicular to the �eld.7�14 In particular, it has been suggested that such distributions may

be employed to enhance the growth rates of desired radiation modes in devices employing

the cyclotron resonance maser instability. More recently, there has been some interest in

harmonic conversion processes in spatiotemporal equilibrium distributions in �.15�17

In order to gain a greater understanding of systems with spatiotemporal distributions

in �, we analyze the stability properties of such systems in this paper. Preliminary results

are given in an earlier report.18 The analysis is limited to equilibrium distributions in

which the axial momentum component pz and the magnitude of the transverse momentum

component p
?
have the de�nite values pz0 and p

?0, respectively. Moreover, the systems

are constrained to vary spatially only in the direction of the applied magnetic �eld (z-

direction).

In Ref. 7, we analyzed the stability properties of such electron beam systems for

two types of nonisotropic equilibrium distributions in the phase �. These were the time-

dependent distribution, which is a function of the equilibrium constant of the motion ��

!ct, and the axial-dependent distribution, which is a function of the equilibrium constant

of the motion �� !cz=vz0.

It is shown in this paper that all relevant spatiotemporal distributions are obtained
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from the above distributions by Lorentz transformations. By making use of a Lorentz

transformation of the results obtained in Ref. 7, we derive the amplitude equations and

dispersion relations for small-amplitude wave perturbations on spatiotemporally gyrating

relativistic electron beams. A detailed analysis is made of stability properties of such

electron beams.

In the present stability analysis, we �nd a novel mechanism by which electrons emit

stimulated radiation at frequencies that are greater than the usual Doppler-shifted electron

cyclotron frequency by orders of magnitude. Two key requirements for this mechanism to

occur are that the gyrophases of the electrons in the magnetic �eld have spatiotemporal

correlations, and that the electrons have an inverted population in the transverse momen-

tum space. In contrast to most previous studies of the stimulated radiation by gyrating

electrons with a random or spatial-dependent gyrophase distribution and inverted pop-

ulation in the transverse momentum space, the present analysis assumes the gyrophase

distribution to form a wave pattern in the direction of the magnetic �eld. When the

phase velocity of the wave pattern is close to the average axial velocity of the electrons,

the electrons emit right-hand, circularly polarized stimulated radiation at the relatively

high frequency ! = 2j�p � �z0j
�1
!c, where �pc and �z0c are the phase and electron axial

velocities, respectively, and c is the speed of light in vacuum.

It should be pointed out that the wave pattern in a spatiotemporally gyrating rela-

tivistic electron beam depends on how the beam is formed. One of the schemes to form

a spatiotemporally gyrating electron beam is through the cyclotron laser (microwave)

acceleration.19�21 In this case, the phase velocity of the wave pattern in the beam is given

by �pc = !0(!0 � !c)
�1
�z0c, where !0 is the laser (microwave) frequency. In the limit

!0 � !c and �z0 ! 1, the stimulated radiation occurs at ! ' 2!0.

The organization of this paper is as follows. In Sec. II, the spatiotemporal distribution

is described, and the equilibrium distribution is de�ned in (4). The phase velocity �p of

a surface of constant distribution in phase is de�ned and evaluated in (9). The primary

result of this paper is the dispersion relation for spatiotemporal equilibria with de�nite

values of pz and p
?
. This result is stated in (13) of Sec. III. The derivation of our results

from the results of Ref. 7 is given in the Appendix. Moreover, equations (A19)-(A21) of
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the Appendix give the dispersion matrix for the electron beam systems considered in this

paper. Another important result is the expression for the eigenmodes of the amplitude

equation given in (19) of Sec. III. This result gives the wave numbers and frequencies

of coupled right-hand circularly polarized radiative waves, left-hand circularly polarized

radiative waves, and longitudinal electrostatic waves. Numerical examples are presented

in Sec. IV. In these examples, the choice of spatiotemporal distribution [namely, the choice

of the phase velocity (�p) of the phase pattern in the equilibrium distribution] is seen to

have little e�ect on maximum growth rates of electromagnetic waves, but to have a strong

e�ect on the range of unstable frequencies and wave numbers and upon the wave numbers

and frequencies of coupled waves. These maximum growth rates of electromagnetic waves

in the spatiotemporally gyrating relativistic electron beams are greater than those in the

corresponding gyrotropic relativistic electron beams. We discuss and summarize our results

in Sec. V.
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II. Spatiotemporally Gyrating Equilibrium

We consider a beam consisting of electrons moving along and gyrating about a uniform

magnetic �eld B0 = B0êz. Properties of the system are assumed to vary in the z-direction

only. All electrons in the equilibrium beam are assumed to have the same axial momentum

(pz = pz0) and the same magnitude of transverse momentum (p
?
= p

?0). As shown in

Fig. 1, the phase angle of p
?
is � = tan�1(py=px), whereas �0 = tan�1(p

?
=pz) is the pitch

angle. The equilibrium distribution in phase is spatiotemporal; that is, at some z = z0, we

impose the condition

� (z0; t) = !0t+ �0; (1)

where !0 and �0 are constants and t is the time. This geometry is shown in Fig. 2(a).

The value of !0 depends on how the electron beam is formed. For example, !0 = 0 if the

electron beam is formed by passing through a tapered static wiggler magnetic �eld. If the

electron beam is generated in a cyclotron resonance accelerator, then !0 corresponds to

the rf frequency of the accelerator which is a shifted cyclotron frequency. The phase of an

unperturbed electron at (z; t) is

� (z; t) = !0

�
t�

z � z0

vz0

�
+ �0 + !c

z � z0

vz0
: (2)

In the above equation, the relativistic cyclotron frequency is denoted by !c = 
c=
0, where


c = eB0=mc is the nonrelativistic cyclotron frequency, �e and m are respectively the

electronic charge and mass, c is the speed of light, 
0mc
2 is the unperturbed relativistic

electron energy, and vz0 = pz0=
0m. A spatiotemporally gyrating beam equilibrium is

shown schematically in Fig. 2(b). In an experiment, z0 would correspond to the point

where the electron enters the region of interaction with B0. However, boundary conditions

are not dealt with in this paper, and the system is considered to extend over the full range

(i.e., �1 < z <1) of z.

A distribution of values of � at each (z; t) will result if distributions of values of �0

and/or z0 exist. From (2), such distributions will produce a distribution in the values of

the equilibrium constant of the motion � de�ned by

� = � (z; t)� !0t+ (!0 � !c)
z

vz0
: (3)
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Consequently, a suitable equilibrium distribution for the system is

f0 (p?; pz; �) = n0
Æ (p

?
� p

?0)

p
?

Æ (pz � pz0) � (�) ; (4)

where � (�) is a periodic function of period 2� and n0 is a constant particle density. We

normalize the integral of f0 (p?; pz; �) over momentum space to n0. Consequently,Z 2�

0

� (�) d� =

Z 2�

0

� (�) d� = 1: (5)

Two additional constants of the unperturbed motion are

� = �� !ct = ��

c


0
t; (6)

and

� = �� !c
z

vz0
= ��

m
c

pz0
z: (7)

Using (3), we express � as the following linear combination of � and �:

� =
!0

!c
� +

�
1�

!0

!c

�
�: (8)

If !0 = !c in (8), then � = � = � � !ct. In this case, the equilibrium distribution

[f0 (p?; pz; �) = f0 (p?; pz; �)] in (4) does not depend on z, and we refer to it as the time-

dependent equilibrium distribution. If !0 = 0 in (8), then � = � = � � !cz=vz0. In this

case, the equilibrium distribution [f0 (p?; pz; �) = f0 (p?; pz; �)] in (4) does not depend on

t, and we refer to it as the axial-dependent equilibrium distribution.

At each instant of time, there is a z-dependent distribution of phase angles given by

(3) and (4). Each point on a surface of constant z will contain the same distribution

of values of �. As time progresses, a surface with a given distribution will move with a

normalized phase velocity �p = dz=cdt obtained by di�erentiating (3) with respect to t at

constant �. This phase velocity is

�p =
!0�z0

!0 � !c
; (9)

where �z0 = vz0=c. Making use of (9), we can also express � as � = ��!c(�z0��p)
�1(z=c�

�pt), which is a single-particle constant of motion. We see that �p is in�nite for the time-

dependent equilibrium distribution (!0 = !c), and that �p = 0 for the axial-dependent

equilibrium distribution (!0 = 0).
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III. Dispersion Relation

A stability analysis of systems with the time-dependent and axial-dependent equi-

librium distribution functions has been carried out in Ref. 7. In that analysis, Fourier

transforms are taken of the Vlasov and Maxwell's equations in order to derive relations

obeyed by the Fourier transforms of the perturbed electric �eld components. For the case

of de�nite values of pz = pz0 and p
?
= p

?0, these are algebraic equations of the form

D (ck; !)E (ck; !) = 0; (10)

where D is a three-by-three dispersion matrix and E is a three-component vector. The

components of E are the Fourier transforms of the perturbed electric �eld components

E1� = E1x � iE1y, E1+ = E1x + iE1y, and E1z. Respectively, these represent the right-

hand circularly polarized (RHP) radiative �eld, the left-hand circular polarized (LHP)

radiative �eld and the longitudinal electric �eld. The dispersion relation for the system

perturbations is given by

detD (ck; !) = 0: (11)

It is shown in Appendix A that any spatiotemporal equilibrium distribution with

j�pj < 1 can be obtained from a Lorentz transformation of the axial-dependent equilibrium

distribution, and that any spatiotemporal equilibrium distribution with j�pj > 1 can be

obtained from a Lorentz transformation of the time-dependent equilibrium distribution.

Consequently, a stability analysis of systems with spatiotemporal equilibrium distributions

is obtained from Lorentz transformations of (10) and (11). Results for j�pj < 1 and j�pj > 1

have the same analytic form and are assumed to extend to the case of j�pj = 1.

The primary result of this paper (derived in Appendix B) is the dispersion relation

for systems having de�nite values of p
?
= p

?0 and pz = pz0. In terms of the dimensionless

wavenumber k̂ and the dimensionless frequency !̂ de�ned by

k̂ =
ck

!c
;

!̂ =
!

!c
; (12)
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the dispersion relation can be expressed as
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which is a tenth-degree polynomial equation in either k̂ or !̂. In equation (13),

M
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2
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��
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�2
�
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�
k̂; !̂

�
=
�
!̂ � k̂�z0 � 1

�2
�

!
2
p

!2
c

�
1� �

2
z0

�
: (14)

Moreover, !2
p
= 4�n0e

2
=
0m, �

?0 = p
?0=
0mc,

k̂0 = ck0=!c = (�p � �z0)
�1
; (15)

and

sn =

Z 2�

0

d�� (�) exp (�in�) : (16)

Notice that �pk̂0 = !0=!c � 1, where !0 is de�ned in (1).

The dispersion relation in (13) is invariant under the transformation

k̂ �! �k̂
� + 2k̂0;

!̂ �! �!̂
� + 2�pk̂0: (17)
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Under the transformation in (17), the <(k̂)-, <(!̂)-plane is inverted through the point

(k̂0; �pk̂0), and =(k̂) and =(!̂) are unchanged. Consequently, a plot of =(!̂) as a function

of real k̂ is unchanged by re
ection through the vertical line k̂ = k̂0.

It follows from (A15) of Appendix B that the eigenmodes of the dispersion matrix for

the case of a spatiotemporal equilibrium distribution are given in terms of the electric �eld

by

E(z; t) = e
i(kz�!t)[2�1=2E1�(k; !)ê+ + 2�1=2E1+(k � 2k0; ! � 2!0)ê�e

�2i(k0z�!0t)

+E1z(k � k0; ! � !0)êze
�i(k0z�!0t)]; (18)

where

E
�
k̂; !̂

�
=

0
BBB@

E1�

�
k̂; !̂

�
E1+

�
k̂ � 2k̂0; !̂ � 2�pk̂0

�
E1z

�
k̂ � k̂0; !̂ � �pk̂0

�
1
CCCA : (19)

For positive <(k̂), E1�

�
k̂; !̂

�
and E1+

�
k̂; !̂

�
are Fourier transforms of the right hand

circularly polarized (RHP) and the left hand circularly polarized (LHP) radiation �elds,

respectively. [These polarization assignments are reversed for negative <(k̂).] The trans-

form E1z

�
k̂; !̂

�
is that of the longitudinal electric �eld.
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IV. Numerical Examples

In all of the following numerical examples, the value chosen for �(�) in (4) is

� (�) = lim
�!0

Æ (�� �) ; 0 � � � 2�: (20)

Consequently, all equilibrium electrons with the same z and t have the same phase �.

For these distributions, a system is stable for suÆciently large magnitudes of real k̂. The

corresponding Fourier components in (16) are s1 = s2 = 1. In all examples, !2
p=!

2
c = 0:05

and �0 = 0:4, where �0 = tan�1(p
?0=pz0) is the equilibrium pitch angle.

Figure 3 shows growth-rate curves [=(!̂) = =(!)=!c vs. k̂ = ck=!c with k real] for a

system with 
0 = 2:0 (and the corresponding normalized axial velocity �z0 = 0:7977). The

resonance condition for the cyclotron maser instability is satis�ed at k̂ = (1��z0)
�1 = 4:94.

Plots are shown for several values of the normalized phase velocity �p. Figures 3(a) and

3(d) refer respectively to the axial-dependent (�p = 0, or !0 = 0) and time-dependent

(�p =1, or !0 = !c) distributions. The corresponding values of k̂0 = (�p��z0)
�1 in (15)

are -1.254 and zero, respectively. Figure 3(c) pertains to �p = 2:0 (or !0 = 1:663!c) with

k̂0 = 0:8317, whereas Fig. 3(b) pertains to �p = 0:85 (or !0 = 16:24!c) with k̂0 = 19:11.

It is interesting to point out that the maximum growth rate for each of the nonisotropic

phase distributions in Figs. 3(a)-3(d) is greater than the maximum growth rate for the

corresponding gyrotropic relativistic electron beam, which is =(!̂) ' 0:054. (See Fig. 4 of

Ref. 7.)

Reference to Fig. 3 shows that maximum growth rates and growth rates at the reso-

nance value k̂ = 4:94 are not very sensitive to the value of the phase velocity �p. On the

other hand, the range of values of k̂ for which instability exists may be very sensitive to

values of �p. (A corresponding sensitivity of the range of unstable frequencies is present

because, for unstable modes, <(!̂) ' �z0k̂ when k̂ � 1.) In particular, instability of an

RHP radiative component will occur at large values of k̂ [and of <(!̂)] if k̂0 = (�p��z0)
�1

is large in magnitude. This e�ect is illustrated in Fig. 3(b) where k̂0 = 19:11. The e�ect

is explained by �rst noting that instability is expected for values of k̂ near the resonance k̂

and second recalling (from the discussion at the end of Sec. III) that plots of =(!) vs. real
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k̂ are symmetric under re
ection through k̂0. It is also a consequence of the fact [evident

from (19)] that frequencies and wavenumbers of coupled waves in an eigenmode become

greatly divergent for large k̂0.

In Fig. 3 and in the following Figs. 4-9, both wide and narrow solid curves are em-

ployed. Detailed numerical calculations of roots of the dispersion relation in (13) show that

the wide curves refer to modes whose instability, in the low wavenumber region (k̂ < k̂0),

is due to coupling of the cyclotron mode with the electromagnetic modes with !� ck = 0.

In the high wavenumber region (k̂ > k̂0), the instability is due to coupling of the cyclotron

mode with the electromagnetic modes with !� 2�z0ck0� c(k� 2k0) = 0. The wide curves

are characterized by !��z0ck�!c ' 0 over the entire k̂-interval of instability. The narrow

solid curves refer to modes whose instability is due to coupling of the electrostatic modes.

They are characterized by !��z0ck�!c+
!p

!c

�
1� �

2
z0

�1=2
' 0 over intervals of instability

with k̂ < k̂0 and ! � �z0ck � !c �
!p

!c

�
1� �

2
z0

�1=2
' 0 over intervals of instability with

k̂ > k̂0.

Figures 4(a) and 4(b) are, respectively, plots of <(!̂) vs. k̂ and of =(!̂) vs. k̂ over

the interval of the upper-k̂ growth-rate peak in Fig. 3(b). Coupled radiative components

of the �eld amplitude eigenvector in (19) are E1�

�
k̂; !̂

�
and E1+

�
k̂ � 2k̂0; !̂ � 2�pk̂0

�
=

E1+

�
k̂ � 38:21; !̂ � 32:48

�
. Consequently, E1�

�
k̂; !̂

�
represents high-frequency, forward-

traveling, RHP radiation, whereas E1+

�
k̂ � 38:21; !̂ � 32:48

�
represents low-frequency

radiation in the k̂-interval in Fig. 4. It is evident from Fig. 4(a) that the high-frequency

radiation is slow-wave radiation (i. e., its wave phase velocity c!̂=k̂ is less than the speed

of light).

It is of interest to determine the relative contributions of the high- and low- frequency

components to the total Poynting 
ux. As a measure of the relative contribution of the

high-frequency component to the total Poynting 
ux, we employ the Poynting 
ux ratio

S
R
de�ned by

S
R
=

���� hS
�z (ck; !)i

hS
�z (ck; !) + S+z (ck � 2ck0; ! � 2�pck0)i

���� : (21)

In the above equation, hS
�z (ck; !)i and hS+z (ck � 2ck0; ! � 2�pck0)i are the time-

averaged z-components of the Poynting 
uxes produced by the high-frequency and low-
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frequency electromagnetic components, respectively. [Because the low-frequency 
ux may

be backward traveling for some intervals of k̂, the ratio S
R
may exceed one and will ap-

proach in�nity when high- and low-frequency 
uxes cancel.] An expression for S
R

as a

function of k̂ and !̂ is presented in (A31) of Appendix C.

A plot of log10 SR vs. k̂ for the system of Figs. 3(b) and 4 is presented in Fig. 5. We

regard the high-frequency component as dominant if S
R
> 1=2 [i.e., if log10 SR > �0:3010].

Figure 5 shows that this condition is valid over the interval 37 < k̂ < 40, which corresponds

to 30!c < <(!) < 33!c in Fig. 4(a). It is to be emphasized that these wavenumbers

and frequencies greatly exceed the resonance frequency and wavenumber for the cyclotron

maser instability (!̂ = k̂ = 4:94). The frequency !0 (equal to 16:24!c in this example) is

exceeded by approximately a factor of two.

The rapid variations in the value of S
R
in the interval 37 < k̂ < 40 are explained as

follows. Reference to (A29) shows that S+z (ck � 2ck0; ! � 2�pck0) vanishes when ck =

2ck0 (k̂ = 38:21) and when <(!) = 2�pck [<(!̂) = 32:48 and k̂ = 39:6 for the unstable

branch associated with the highest maximum of the growth-rate peak in Fig. 4(b)]. At

these values of k̂, log10 SR = 0. For values of k̂ between these zeros of the low-frequency


ux, S+z (ck � 2ck0; ! � 2�pck0) becomes negative, allowing log10 SR to approach in�nity

when the high-frequency and low-frequency 
uxes cancel.

Next we consider mildly relativistic systems with 
0 = 1:2 and the corresponding

�z0 = 0:50914. Resonance for the cyclotron maser instability occurs at !̂ = k̂ = 2:037.

Figures 6(a) and 6(b) show growth-rate [=(!̂) vs. k̂] curves for the cases of �p = 0 (k̂0 =

�1:9644 and !0 = 0) and �p = 0:67580 (k̂0 = 6 and !0=!c = 4:0548). From (19), coupled

radiative modes for the case of �p = 0 [Fig. 6(a)] are E1�(k̂; !̂) and E1+(k̂ + 3:9288; !̂).

Figure 7 is a plot of <(!) vs. k̂ for unstable modes in this case. It is evident from this

plot that the highest frequency of unstable modes is approximately 2:1!c.

In Figs. 8(a) and 8(b), we present, respectively, plots of <(!) vs. k̂ and =(!) vs. k̂

of unstable modes when �p = 0:67580 for the k̂ interval of the large-k̂ growth peak in

Fig. 6(b). Coupled radiative components, obtained from (19), in this case are E1�(k̂; !̂)

and E1+(k̂ � 12; !̂ � 8:1096). From Fig. 8(a), it is evident that growing electromagnetic

waves with frequencies of approximately 7!c are present in this system.
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Figure 9 is a plot of the logarithm of the Poynting ratio in (21) as a function of k̂

over the interval of k̂ in Fig. 8. It is evident that the high-frequency RHP 
ux dominates

the low frequency 
ux (i.e. log10 SR > �0:3010) over a very narrow interval in this case.

Numerical results show this interval to be 11:987 � k̂ � 12:036 with 7:079 � <(!̂) � 7:103.

These values are much greater than the resonance values of !̂ = k̂ = 2:037 given above for

the cyclotron resonance maser instability. Moreover, the values 7:079 � <(!̂) � 7:103 are

slightly less than twice the value !0=!c = 4:0548.

The above and other numerical examples indicate that the width of the interval of

relatively large high-frequency 
ux decreases with increasing frequency (increasing k̂0) and

with decreasing 
0.
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V. Conclusions

In Ref. 7, stability properties of an electron beam, propagating in a uniform magnetic

�eld B0 = B0êz, were analyzed under the constraint that all quantities depend spatially

only on z. The equilibrium distribution in the phase angle � of p
?
was assumed to be

nonrandom, and two distributions were considered. These were the time-dependent dis-

tribution in which the distribution depends on � through the constant of the unperturbed

motion � = ��!ct and the axial-dependent distribution in which the distribution depends

on � through the constant of the unperturbed motion � = �� !cz=vz0. In this paper the

analysis has been extended to spatiotemporal distributions, which depend on the constant

of the unperturbed motion � = �� !0t+ (!0 � !c)z=vz0, de�ned in (3). This analysis is

limited to equilibrium distributions [equation (4)] for which pz and p? have de�nite values.

By carrying out Lorentz transformations of the results of Ref. 7, we have obtained the

dispersion relation in (13) for the spatiotemporal equilibrium distribution. The dispersion

matrix is given in (A19)-(A21), and its eigenmodes (which describe the coupling of the

RHP radiative, LHP radiative, and electrostatic waves) are given in (19). The parameters

which de�ne this spatiotemporal system are pz0, p?0, !
2
p=!

2
c , �p, s1, and s2. The parameter

�p is the phase velocity of surfaces (normal to the z-axis) upon which the equilibrium

distribution in � has a �xed form. The Fourier components s1 and s2 are given by (16).

Once �(�) (and consequently s1 and s2) are �xed, the spatiotemporal distribution can

still be changed by varying �p, where 0 � j�pj � 1.

Numerical computations indicate that the above variation in �p has little e�ect on

maximum growth rates or on the growth rate at the resonance frequency for the cyclotron-

resonance maser instability. However, it has a strong e�ect on the range of real ! and real k

of RHP radiation over which the system is unstable, and has a strong e�ect on the relative

wave numbers and frequencies of coupled RHP radiative, LHP radiative, and electrostatic

waves. In particular, the distribution in (20) has been shown to result in unstable modes in

which the RHP radiative component dominates over a relatively narrow frequency range at

much higher frequencies than the resonance frequency for the cyclotron-maser instability.

These high frequencies occur when the phase velocity �p is close to the beam velocity �z0.

14



In such cases, these frequencies exceed !0 by approximately a factor of two.

It is well known that the cyclotron maser instability in a gyrotropic beam is very

sensitive to axial velocity spread if the instability occurs at a highly Doppler upshifted

cyclotron frequency.23 The parameter regime of interest here is �p ' �z0 < 1. In this case,

the dispersion relations for the system are a set of coupled integral equations if there is

an axial momentum spread. (The integral equations are obtained by applying the Lorentz

transformation to the integral equations in Eqs. (41)-(43) of Ref. 7.) We have begun an

analysis of the properties of these integral equations in order to the determine the degree

to which thermal spread a�ects the instability reported in this paper.
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Appendix: Derivation of Dispersion Relations and the Poynting Flux Ratio

A. Lorentz Transformations of Spatiotemporal Equilibrium Distributions

Consider a Lorentz transformation from an initial frame of reference S to a frame

S
0 which moves with the normalized velocity �u in the positive z-direction relative to S.

Under this transformation,

z
0 = 
u (z � �uct) ;

ct
0 = 
u (ct� �uz) ;

p
0

z0 = 
u (pz0 � �u
0mc) ;



0

0mc = 
u (
0mc� �upz0) ;

ck
0 = 
u (ck � �u!) ;

!
0 = 
u (! � �uck) ;

(A1)

where 
u = (1 � �
2
u
)�1=2. The quantities �0 = � and p

0

?0 = p
?0 are invariant under this

transformation. The distribution function in (4) is also invariant.22 Expressed in terms of

primed quantities, it is

f
0

0 (p
0

?
; p
0

z
; �) = f0 (p?; pz (p

0

?
; p
0

z
) ; �) =

n
0

0

Æ (p0
?

� p
0

?0)

p
0

?

Æ (p0
z
� p

0

z0)� (�) ; (A2)

where n00 = n0

0

0=
0.

Using (3) and the Lorentz transformations in (A1), we obtain the following expression

for � in terms of primed quantities:

� =
1

�0
z0 + �u

�
!
0

0

!0
c

�
0

z0 + �u

�
�
0 +

�
0

z0

�0
z0 + �u

�
1�

!
0

0

!0
c

�
�
0

;

�
0 = �� !

0

c
t
0

; (A3)

�
0 = �� !

0

c

z
0

v
0

z0

:

Quantities appearing in (A3) are !0c = eB0=

0

0mc and !
0

0 = !0=
u. The phase velocity �
0

p

of surfaces of constant � (or constant distribution in �) relative to the reference frame S0

is determined by di�erentiating (A3) with respect to t0 at constant �. The result, written

in terms of both primed and unprimed quantities is

�
0

p
=

!
0

0�
0

z0 + !
0

c�u

!
0

0 � !0c

=
!0 (�z0 � �u) + !c�u

!0 (1� �u�z0)� !c
: (A4)

The transformation velocity �u from a general reference frame S to a frame S0 relative

to which the distribution is time-dependent is obtained by setting the coeÆcient of � 0 in
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(A3) equal to zero and solving for �u. Expressing the result in terms of unprimed quantities

and employing (9), we obtain

�u =
1

�p
: (A5)

Consequently, the transformation is possible if (relative to S) j�pj > 1. Conversely, if a

distribution is time-dependent relative to S0, then j�pj > 1 relative to any other reference

frame S.

Similarly, the transformation velocity �u from a general reference frame S to a frame

S
0 relative to which the distribution is axial-dependent is obtained by setting the coeÆcient

of �0 in (A3) equal to zero and solving for �u. The result is

�u = �p: (A6)

Consequently, the transformation is possible if (relative to S) j�pj < 1. Conversely, if a

distribution is axial-dependent relative to S0, then j�pj < 1 relative to any other reference

frame S.

B. Derivation of the Dispersion Matrix and Eigenmodes

In the stability analysis of Ref. 7 for the time-dependent and axial-dependent equilib-

rium distributions, the Fourier transforms of the �eld components E0 (ck0; !0) were found

to be related by matrix equations of the form

D0 (ck0; !0)E0 (ck0; !0) = 0; (A7)

where D0 is a three by three dispersion matrix and E0 is a three-component column matrix

whose components are Fourier transforms of E01� = E
0

1x � iE
0

1y, E
0

1+ = E
0

1x + iE
0

1y, and

E1z
0. The primes appear in these equations because the frame of reference in which the

distribution is either time-dependent or axial-dependent is de�ned as the primed frame

(S0) in this treatment.

i. Derivation for the case of j�pj > 1

The time-dependent equilibrium distribution function is given by (A2) with � = �
0.

From the discussion in Sec. A of this appendix, it is clear that properties of a system
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with a spatiotemporal equilibrium distribution and j�pj > 1 can be derived from Lorentz

transformations of a system with a time-dependent equilibrium distribution. It is shown

in Ref. 7 that for the time-dependent equilibrium distribution the eigenmode E0(k0; !0) is

of the form

E0 (ck0; !0) =

0
@ E1� (ck

0

; !
0)

E1+ (ck0; !0 � 2!0
c
)

E1z (ck
0

; !
0

� !
0

c
)

1
A ; (A8)

where !
0

c
= eB0=


0

0mc. The dispersion matrix for the time-dependent case is readily

derived from (59) of Ref. 7. In order to determine stability properties of systems with

spatiotemporal equilibrium distributions with phase velocities j�pj > 1, it is necessary to

apply the Lorentz transformation to the quantities appearing in (A7). Under the Lorentz

transformation from S
0 to S (which travels with velocity ��u relative to S0), the electro-

magnetic �elds (and their Fourier transforms) transform as

E1z = E
0

1z

E1x = 
u

�
E
0

1x + �uB
0

1y

�
E1y = 
u

�
E
0

1y � �uB
0

1x

�
B1z = B

0

1z

B1x = 
u

�
B
0

1x � �uE
0

1y

�
B1y = 
u

�
B
0

1y + �uE
0

1x

� : (A9)

From (19) and the Maxwell equation

@

@z0
E
0

1� (z
0

; t
0) = �

@

@t0
B
0

1� (z
0

; t
0) ; (A10)

where B01�(z
0

; t
0) = B

0

1x(z
0

; t
0)�iB01y(z

0

; t
0), we �nd that under the Lorentz transformation,

E1� (ck; !) = 
u

�
1 +

�uck
0

!0

�
E
0

1� (ck
0

; !
0) : (A11)

It follows from (A9) and (A11) that the transformation rule for the eigenvector E(ck0; !0)

in (A7) and (A8) is

E (ck; !) = L (ck0; !0)E0 (ck0; !0) ; (A12)

where

L (ck0; !0) =

0
B@

u

�
1 + �uck

0

!0

�
0 0

0 
u

�
1 + �uck

0

!0
�2!0

c

�
0

0 0 1

1
CA ; (A13)
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and

E (ck; !) =

0
@ E1� (ck; !)

E1+ (ck � 2�u
u!
0

c
; ! � 2
u!

0

c
)

E1z (ck � �u
u!
0

c
; ! � 
u!

0

c
)

1
A : (A14)

Using (A5) and the Lorentz transformations in (A1), we can rewrite the arguments in the

above expression entirely in terms of quantities pertaining to S to obtain

E (ck; !) =

0
@ E1� (ck; !)

E1+ (ck � 2ck0; ! � 2�pck0)

E1z (ck � ck0; ! � �pck0)

1
A ; (A15)

where

ck0 =
!c

�p � �z0
: (A16)

By comparing (A7) and (A12), it is seen that the dispersion matrix in the unprimed

(spatiotemporal) system is given by

D (ck; !) = L (ck0; !0)D0 (ck0; !0)L�1 (ck0; !0) : (A17)

An expression, obtained from (A1) and (A13), that is useful in the evaluation of (A17) is

L�1 (ck0; !0) =

0
B@

u

�
1� �uck

!

�
0 0

0 
u

h
1� �u

ck�2�u
u!
0

c

!�2
u!0

c

i
0

0 0 1

1
CA : (A18)

The dispersion matrix for spatiotemporal equilibrium distributions is determined using

(59) from Ref. 7, (A13), (A17), and (A18). When �u is eliminated from the result by using

(A5), we obtain

D (ck; !) =0
@D

��
(ck; !) ��

�+ ��
�z

��+� D++ (ck � 2ck0; ! � 2�pck0) ��+z

��z� ��z+ Dzz (ck � ck0; ! � �pck0)

1
A :(A19)

The diagonal terms in the above equation are:

D
��

(ck; !) = !
2
� c

2
k
2
�

!
2
p

2

"
2

�
! �

kpz0


0m

��
! �

kpz0


0m
� !c

�
�1

�

p
2
?0



2
0m

2c2

�
!
2
� c

2
k
2
��

! �
kpz0


0m
� !c

�
�2
#
;
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D++ (ck � 2ck0; ! � 2�pck0) = (! � 2�pck0)
2
� (ck � 2ck0)

2

�

!
2
p

2

"
2

�
! �

kpz0


0m
� 2!c

��
! �

kpz0


0m
� !c

�
�1

�

p
2
?0


20m
2c2

h
(! � 2�pck0)

2
� (ck � 2ck0)

2
i�

! �
kpz0


0m
� !c

�
�2
#
;

Dzz (ck � ck0; ! � �pck0) = 1� !
2
p

�
1�

p
2
z0


20m
2c2

��
! �

kpz0


0m
� !c

�
�2

: (A20)

The terms D
��

(ck; !), D++ (ck; !), and Dzz (ck; !) are respectively the dispersion func-

tions for the RHP radiative �eld, the LHP radiative �eld, and the longitudinal electric

�eld.

The o�-diagonal elements of the dispersion matrix in (A19) are

�
�+ = �

!
2
p

2
s2

p
2
?0


20m
2c2

!

! � 2�pck0

� [! (! � 2�pck0)� ck (ck � 2ck0)]

�
! �

kpz0


0m
� !c

�
�2

;

�
�z = �!

2
p!s1

p
?0


0mc

�
pz0


0mc
! � ck

��
! �

kpz0


0m
� !c

�
�2

;

�+� = �
!
2
p

2
s
�2

p
2
?0



2
0m

2c2

! � 2�pck0

!

� [! (! � 2�pck0)� ck (ck � 2ck0)]

�
! �

kpz0


0m
� !c

�
�2

;

�+z = �!
2
p
(! � 2�pck0) s�1

p
?0


0mc

�

�
pz0


0mc
(! � 2�pck0)� (ck � 2ck0)

��
! �

kpz0


0m
� !c

�
�2

;

�z� = �
!
2
p

2
!
�1
s
�1

p
?0


0mc

�
pz0


0mc
! � ck

��
! �

kpz0


0m
� !c

�
�2

;

�z+ = �
!
2
p

2
(! � 2�pck0)

�1
s1

p
?0


0mc

�

�
pz0


0mc
(! � 2�pck0)� (ck � 2ck0)

��
! �

kpz0


0m
� !c

�
�2

: (A21)

In the above equation, !2
p = 4�n0e

2
=
0m is the relativistic plasma frequency squared. This

quantity is invariant under Lorentz transformations. The quantities sn are the Fourier
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series coeÆcients of �(�) de�ned by

sn =

Z 2�

0

d�� (�) exp (�in�) : (A22)

ii. Derivation for the Case of j�pj < 1

Properties of systems having a spatiotemporal equilibrium distribution with phase

velocity j�pj less than one are determined by carrying out Lorentz transformations of

results for the axial-dependent equilibrium distribution. The axial-dependent equilibrium

distribution (for de�nite values of p0
?0 and p

0

z0) is attained by setting � = �
0 in (A2). In

this case, the dispersion matrix D0 in (A7) is readily obtained from (90) of Ref. 7. The

eigenmode E0 in (A7), given by (91) of Ref. 7, is

E0 (ck0; !0) =

0
BB@

E
0

1� (ck
0

; !
0)

E
0

1+

�
ck
0 + 2

!
0

c

�0

z0

; !
0

�
E
0

1z

�
ck
0 +

!
0

c

�0

z0

; !
0

�
1
CCA : (A23)

Equation (A12) governs the Lorentz transformation of the eigenvector from S
0 (frame of the

axial-dependent equilibrium distribution) to S (the frame of the spatiotemporal equilibrium

distribution). From (A1), (A9), and (A11), it is seen that now the transformation matrix

L is given by

L (ck0; !0) =

0
B@

u

�
1 + �uck

0

!0

�
0 0

0 
u

�
1 + �u

ck
0+2!0

c
=�

0

z0

!0

�
0

0 0 1

1
CA : (A24)

The transformed eigenvector is obtained from (A12). When written in terms of �u, the

expression for this eigenvector di�ers from that in (A14). However, once (A6) is employed

to set �u = �p, the expression for E(ck; !) is the same as (A15). Consequently, (A15) gives

the eigenmodes E(ck; !) for spatiotemporal equilibrium distributions both for j�pj > 1 and

for j�pj < 1.

Equation (A17) together with (A24) is used to obtain D(ck; !), the dispersion matrix

for the case of the spatiotemporal equilibrium distribution with j�pj < 1. After (A6) is

used to eliminate reference to �u and unprimed quantities are eliminated, the result is the
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same as that given by (A19)-(A21) for the case of j�pj > 1. Consequently, (A19)-(A21)

gives the dispersion matrix for the spatiotemporal equilibrium distribution for both the

cases of j�pj > 1 and of j�pj < 1.

iii. The case of �p = 1

Equations (A15) for the eigenmodes and (A19)-(A21) are well behaved in the limit

of j�pj = 1. Consequently, we consider them to be valid when j�pj = 1. The fact that

j�pj = 1 corresponds to j�uj = 1 causes no diÆculty, because such quantities as 
0, p?0,

and pz0 are held �xed while the limit is taken.

To summarize, for all �1 < �p <1, the dispersion matrix for the case of spatiotem-

poral equilibrium distributions is given by (A19)-(A21) and the eigenmodes are of the form

given by (A15). The dispersion relation in (13) is obtained by setting the determinant of

the matrix in (A19) equal to zero. [It can also be obtained by substituting Lorentz trans-

formed quantities into the dispersion relations in (69) and (100) of Ref. 7 and replacing

the transformation velocity with the appropriate function of �p.]

C. Derivation of the Poynting Flux Ratio

In the analysis of the numerical results in Sec. IV, we employed the Poynting 
ux

ratio S
R

in (21), which is the magnitude of the ratio of the z-component of the average

Poynting 
ux of the RHP radiation �eld to the z-component of the average total Poynting


ux. For a single eigenmode (A15) of the dispersion matrix in (A19), the Poynting 
ux

vector is

S =
c

4�
<(E)�<(B); (A25)

where

E (z; t) =

ê+2
�1=2

E1� (ck; !) exp (ikz � i!t)+

ê
�
2�1=2E1+ (ck � 2ck0; ! � 2�pck0) exp [i (k � 2k0) z � i (! � 2�pck0) t] +

êzE1z (ck � ck0; ! � �pck0) exp [i (k � k0) z � i (! � �pck0) t] ; (A26)
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with

ê
�
= 2�1=2 (êx � iêy) : (A27)

Application of the Maxwell equation in (A10) yields

B (x; t) =

ê+2
�1=2

B1� (ck; !) exp (ikz � i!t)+

ê
�
2�1=2B1+ (ck � 2ck0; ! � 2�pck0) exp [i (k � 2k0) z � i (! � 2�pck0) t] ;

where

B1� (ck; !) = �i
ck

!
E1� (ck; !) ;

B1+ (ck � 2ck0; ! � 2�pck0) = i
(ck � 2ck0)

(! � 2�pck0)
E1+ (ck � 2ck0; ! � 2�pck0) : (A28)

Substituting (A27) and (A28) into the z-component of (A25), averaging the result

over the time interval T = �=(<(!)� �pck0), and assuming that

j2�=(!)j � j<(!)� �pck0j ; (A29)

we obtain the time averaged z-component of the Poynting vector hSzi. The result is

hSzi =
c

8�
exp (2=(!)t)

"
ck
<(!)

j!j2

1

2
E1� (ck; !)E

�

1� (ck; !)

+ (ck � 2ck0)
(<(!)� 2�pck0)

j! � 2�pck0j2

�

1

2
E1+ (ck � 2ck0; ! � 2�pck0)E

�

1+ (ck � 2ck0; ! � 2�pck0)

#
: (A30)

It follows from (A30) that the value of the Poynting 
ux ratio S
R
in (21) is

S
R
=

���� hS
�z (ck; !)i

hS
�z (ck; !) + S+z (ck � 2ck0; ! � 2�pck0)i

���� =�����ck<(!) j! � 2�pck0j
2

�
j!j

2
(ck � 2ck0) (<(!)� 2�pck0)RR

� + ck<(!) j! � 2�pck0j
2

�
�1
����� =�����k̂<(!̂)

���!̂ � 2�pk̂0

���2 �j!̂j2 �k̂ � 2k̂0

��
<(!̂)� 2�pk̂0

�
RR

� + k̂<(!̂)
���!̂ � 2�pk̂0

���2��1
�����;(A31)
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where

R =
E1+ (ck � 2ck0; ! � 2�pck0)

E1� (ck; !)
: (A32)

The amplitude ratio in (A32) is obtained from the amplitude (eigenvector) equation in

(12). The 
ux ratio in (A31) can exceed one and may approach in�nity at particular

values of k.
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Figure Captions

Fig. 1. The phase angle � and pitch angle �0 of a single-particle momentum p.

Fig. 2. (a) The generation of a spatiotemporally gyrating relativistic electron beam equilib-

rium with electrons arriving at z = z0 with a gyrophase of �(z0; t) = !0t+ �0). (b) A

spatiotemporally gyrating relativistic electron beam equilibrium.

Fig. 3. Plots of =(!̂) = =(!)=!c vs. k̂ = ck=!c (real) for equilibrium parameters 
0 = 2,

!
2
p
=!

2
c
= 0:05, �0 = 0:4, and s1 = s2 = 1. The corresponding value of �z0 = 0:79766.

Values of the normalized phase velocity �p and k̂0 are: (a) �p = 0 (!0 = 0) and

k̂0 = �1:2537, (b) �p = 0:85 (!0 = 16:24!c) and k̂0 = 19:11, (c) �p = 2 (!0 = 1:663!c)

and k̂0 = 0:8317, and (d) �p = 1 (!0 = !c) and k̂0 = 0. Wide lines indicate that

instability is due to coupling of a cyclotron mode. Narrow lines indicate that instability

is due to coupling of an electrostatic mode.

Fig. 4. Dispersion relations in the region of the higher-k̂ growth peak for the system of Fig. 3b,

with equilibrium parameters 
0 = 2, !2
p=!

2
c = 0:05, �0 = 0:4, s1 = s2 = 1, and

�p = 0:85 (!0 = 16:24!c). The corresponding values of �z0 and k̂0 are 0:7977

and 19:11,respectively. Plots are (a) <(!̂) = <(!)=!c vs. k̂ = ck=!c (real) for

unstable modes, and (b) =(!̂) vs. k̂ (real). Frequencies and wavenumbers refer to

the component E
�
(ck; !). The second radiative component of the eigenvector is

E+(ck � 38:21!c; ! � 32:48!c). Wide lines indicate that instability is due to cou-

pling of a cyclotron mode. Narrow lines indicate that instability is due to coupling of

an electrostatic mode.

Fig. 5. Plots of the Poynting ratio S
R

in (A31) vs. k̂ = ck=!c for unstable modes in the

region of the higher-k̂ growth peak for the system of Fig. 3(b), 4(a), and 4(b). Wide

lines indicate that instability is due to coupling of a cyclotron mode. Narrow lines

indicate that instability is due to coupling of an electrostatic mode.

Fig. 6. Growth rate curves [=(!̂) = =(!)=!c vs k̂ = ck=!c (real)] for the equilibrium param-

eters 
0 = 1:2, !2
p
=!

2
c
= 0:05, �0 = 0:4, s1 = s2 = 1, and the corresponding value

�z0 = 0:5091. In plot (a), �p = 0 (!0 = 0) and k̂0 = �1:964; whereas in plot (b),

�p = 0:67580 (!0 = 4:055!c) and k̂0 = 6. Frequencies and wavenumbers refer to the
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component E
�
(ck; !). The second radiative component of the eigenvector in (19) is

E+(ck � k̂0!c; ! � �pk̂0!c). Wide lines indicate that instability is due to coupling

of a cyclotron mode. Narrow lines indicate that instability is due to coupling of an

electrostatic mode.

Fig. 7. Plot of <(!̂) vs. k̂ (real) for unstable modes of the system of Fig. 6(a). Frequencies

and wavenumbers refer to the component E
�
(ck; !). The second radiative component

of the eigenvector in (19) is E+(ck + 3:929!c; !). Wide lines indicate that instability

is due to coupling of a cyclotron mode. Narrow lines indicate that instability is due

to coupling of an electrostatic mode.

Fig. 8. Dispersion relations in the region of the higher-k̂ growth peak for the system of

Fig. 6(b), with equilibrium parameters 
0 = 1:2, !2
p
=!

2
c
= 0:05, �0 = 0:4, s1 = s2 = 1,

and �p = 0:6758 (!0 = 4:055!c). The corresponding values of �z0 and k̂0 are 0:50914

and 6, respectively. Plots are (a) <(!̂) = <(!)=!c vs. k̂ = ck=!c (real) for unsta-

ble modes, and (b) =(!̂) vs. k̂ (real). Frequencies and wavenumbers refer to the

component E
�
(ck; !). The second radiative component of the eigenvector in (19) is

E+(ck � 12!c; ! � 8:110!c). Wide lines indicate that instability is due to coupling

of a cyclotron mode. Narrow lines indicate that instability is due to coupling of an

electrostatic mode.

Fig. 9. Plots of the Poynting ratio S
R

in (A31) vs. k̂ = ck=!c for unstable modes in the

region of the higher-k̂ growth peak for the system of Fig. 6(b). Wide lines indicate

that instability is due to coupling of a cyclotron mode. Narrow lines indicate that

instability is due to coupling of an electrostatic mode.
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