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Abstract

Cross-field particle transport increases sharply with distance into the scrape-off layer and

plays a dominant role in the ‘main-chamber recycling’ regime in Alcator C-Mod, a regime where

most of the plasma particle efflux recycles on the main-chamber walls rather than flows into the

divertor volume. This observation has potentially important implications for a reactor: Contrary to

the ideal picture of divertor operation, a tightly baffled divertor may not offer control of the neutral

density in the main chamber such that charge-exchange heat losses and sputtering of the main

chamber walls can be reduced.

The conditions that give rise to the ‘main-chamber recycling’ regime can be understood by

considering plasma/neutral particle balance: When the flux-surface averaged neutral density

exceeds a critical value, flows to the divertor can no longer compete with the ionization source and

particle fluxes must increase with distance into the SOL. This critical neutral density condition can

be recast into a critical cross-field plasma flux condition: particle fluxes must increase with distance

into the SOL when the plasma flux crossing a given flux surface exceeds a critical value. Thus, the

existence of the ‘main-chamber recycling’ regime is intrinsically tied to the level of anomalous

cross-field particle transport.

Direct measurement of the effective cross-field particle diffusivities (Deff) in a number of

ohmic L-mode discharges indicates that Deff near the separatrix strongly increases as plasma

collisionality increases. Convected heat fluxes correspondingly increase, implying that there exists a

critical plasma density (~ collisionality) beyond which no steady-state plasma can be maintained,

even in the absence of radiation.
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1. Introduction

Magnetic divertors were originally conceived as a means for minimizing plasma-wall contact

in the main chamber by redirecting the wall interaction to a chamber that is remote from the core

plasma (fig. 1a). In this ideal picture, all particle and heat fluxes which cross the magnetic separatrix

result in flows along open field lines to the divertor chamber. Volumetric heat dissipation in the

divertor (radiation, charge exchange, recombination) reduces heat fluxes to target plates, impurities

become trapped by entrainment in the plasma flow, and fuel gas plus helium ash is available at high

neutral pressures for efficient pumping. It is often assumed that with sufficiently tight divertor

baffling, neutral densities in the main chamber can be kept low such that charge-exchange heat

losses from the core and sputtering of the main chamber walls can be controlled.

Experiments in Alcator C-Mod clearly demonstrate that this ideal picture of divertor

operation does not universally apply [1]. Although the C-Mod divertor does receive most of the

conducted and convected energy fluxes from the scrape-off layer (SOL) and does entrain/compress

impurity and fuel gases, the divertor volume receives only part of the total particle efflux from the

main chamber. Recycling in the main chamber scrape-off layer (MCSOL) is predominately onto

surfaces in the main chamber and is large compared to the particle flow between the main chamber

and divertor volumes (fig. 1b).

This ‘main-chamber recycling’ regime appears to be caused by two factors, the second of

which may be fundamentally important for a reactor design: (1) The divertor structure in C-Mod is

designed to be a tightly baffled one, optimized for high heat flux handling, not particle handling. It

accommodates approximately one power e-folding distance over its vertical face. (2) Cross-field

particle transport in the main chamber scrape-off layer increases markedly with distance from the

separatrix, transporting plasma toward wall surfaces in the main chamber. In response, the radial

density profile becomes nearly flat in the far scrape-off layer. This fundamental characteristic of the

MCSOL transport is troublesome: There may be no practical way to design an 'ideal’ divertor for

C-Mod that would accommodate the width of the particle flux profile in the MCSOL. Similar to
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Alcator C-Mod, fusion reactors will employ a tightly baffled, heat-flux optimized divertor geometry

and operate with wall surfaces that are fully saturated (i.e., with a unity particle recycling

coefficient). Thus, the physics behind this regime of ‘main chamber recycling’ needs to be

understood in a way that can be extrapolated to reactor conditions.

Evidence for increased cross-field particle transport in the far SOL and significant main-

chamber recycling has been seen before in a number of other experiments. Similar to Alcator C-

Mod [2], a ‘shoulder’ or a ‘second e-folding length’ in the cross-field density and temperature

profiles have been seen in ASDEX [3] and JT-60U  [4]. This feature is found to persist regardless

of changes in the divertor geometry (ASDEX or ASDEX-U [5] and open or W-shaped divertor in

JT-60U  [6]). In ASDEX-U, the profiles in the shoulder region could be reproduced in simulations

by assuming a large outward drift of 70 m s-1 or an effective particle diffusion coefficient much

larger than Bohm of Deff ~ 30 m2 s-1 [3]. Also similar to results obtained on Alcator C-Mod [2, 7,

8], neutral pressures in the main chamber of ASDEX-U were unaffected in changing to a more

closed divertor geometry (Div-I → Div-II) [9]. This result was anticipated from modeling the

behavior of the Div-II divertor [10], owing the assumption that rapid transport in the far SOL would

be independent of divertor geometry.

Main chamber recycling phenomena do not appear to be present to the same extent in all

tokamaks. For example, DIII-D [11],  JET [12], and JT-60U [4] report a reduction in main chamber

ionization sources and neutral pressures, respectively, when the divertor was changed to a more

closed geometry (adding outer baffle in the RDP-OB in DIII-D, going from Mk-I → Mk-IIA →

Mk-IIAP in JET, and going from open to W-shaped divertor in JT-60U). This suggests that either

a large level of main-chamber recycling is not occurring or it is sufficiently localized (at the divertor

baffle, for instance) so that it does not set the midplane neutral pressures in these tokamaks.

In this paper, we investigate the physics of the ‘main-chamber recycling’ phenomenon in

Alcator C-Mod, making use of an extensive array of particle balance measurements combined with
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simple analytic modeling and detailed UEDGE simulations. Section 2 outlines the experimental

arrangement and the operation of key diagnostics. Langmuir probes, Lyα and Dα imaging systems,

and neutral pressure measurement systems are described in some detail as they provided most of

the results discussed in this paper.

Section 3 presents observations of global particle balance which clearly identify the regime

of main-chamber recycling in Alcator C-Mod. Two principal characteristics emerge which are

interrelated: (1) cross-field particle fluxes dominate over parallel fluxes in balancing the ionization

in a given flux tube, and (2) effective cross-field particle diffusivities (Deff) increase with distance

from the separatrix. A simple particle balance model suggests that the regime arises when the flux-

surface averaged neutral density near the separatrix exceeds a critical value. Equivalently, the regime

will occur if the flux-surface averaged cross-field particle flux density exceeds a critical level. Thus,

the existence of the main-chamber recycling regime appears to be connected more to the level of

turbulent particle transport than to the details of the divertor geometry. To elucidate these and other

ideas with a more complete physics model, results from 2-D edge plasma transport modeling  [13]

using the UEDGE code [14] are reviewed.

Section 4 describes results from local particle transport experiments. Effective cross-field

particle diffusivity profiles (Deff) are inferred directly from measurements using a local particle

balance model. It is found that Deff increases strongly with distance from the separatrix, nearly

identical to the results obtained from 2-D UEDGE simulations. The scaling of Deff with local

parameters is examined, identifying collisionality as a potentially important parameter. Although

these measurements were performed in low to moderate density plasmas, they suggest that there

exists a plasma density (~collisionality) beyond which cross-field heat convection and charge

exchange losses become too large for a steady-state plasma to exist. Finally, section 5 summarizes

the key findings of this work.
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2. Experimental Arrangement

All results reported in this paper were obtained in deuterium discharges with a diverted,

lower single-null magnetic equilibrium, similar to that of fig. 2. In some discharges, a secondary

separatrix can sometimes be present in the upper chamber. However, when this happens, the upper

X-point occurs on field lines that map onto limiter surfaces in the main chamber. Results presented

here are not sensitive to the upper X-point location in this regime. All discharges had plasma current

(Ip) parallel to toroidal magnetic field (BT) and had the Bx B ion drift directed towards the lower

X-point. The geometry of the divertor and the arrangement of diagnostics for the present studies is

also shown in fig. 2. Detailed information on Alcator C-Mod's design, diagnostics, and operational

characteristics can be found elsewhere [15].

The plasma-facing surfaces in Alcator C-mod consist principally of molybdenum tiles with

stainless steel or inconel support structures. Since January 1996, boronization of internal surfaces

is performed at regular intervals. A mixture of 90% helium and 10% diborane is substituted for the

fill gas in the electron-cyclotron discharge cleaning (ECDC) plasmas. In preparation for a day of

running tokamak discharges, the wall is typically conditioned with ECDC deuterium or helium

plasmas. However, the present conditioning techniques are found to have a small lasting influence

on the inventory of active hydrogen isotopes in the wall: Following ~3 tokamak discharges, the gas-

fueling behavior appears to return to the unconditioned-wall response. Thus, for almost all

discharges, the first-wall in Alcator C-Mod can be considered to be ‘fully saturated’, i.e., having a

global recycling coefficient near unity, with the specific value of the coefficient being determined by

conditions in the few shots prior and the details of the present discharge (e.g., attempt at lower or

higher density, RF heating, transitions to H/L mode).

The divertor structure is a baffled, ‘vertical plate’ design which is optimized to spread the

power e-folding distance (1-4 mm, mapped to outer midplane) over the vertical portions of the

divertor plates. A novel bypass valve system [7, 8] allows the neutral leakage from the divertor
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volume to the main chamber to be controlled dynamically during a discharge. Primary limiter

structures in the main chamber consist of a toroidally continuous inner-wall limiter, and principally

two discrete outboard limiters spanning ~6 degrees toroidally and separated by ~180 degrees

toroidally. The mid-section (~60 mm vertical section) of one of these limiters is toroidally displaced

by ~40 degrees to accommodate diagnostic access. Secondary limiter structures exist ~5 mm

(mapped to midplane) beyond the shadow of primary limiters at a number of toroidal locations.

These are used to minimize plasma density at the surface of ICRF antennas which are in turn

displaced another ~5 mm further into the SOL. The distance in major radius between the leading

edges of the primary limiters and the outer wall is ~0.1 m at the midplane. This results in a

relatively large poloidal conductance pathway for neutrals which recycle from outboard limiter

surfaces. Typical values of the separatrix-to-limiter gaps for the data reported here were 15 to 18

mm (mapped to midplane), with inner and outer gaps similar. Scrape-off layer flux surfaces within

this 15-18 mm band terminate either on the ‘vertical’ or ‘horizontal’ portions of the divertor

structures.

Neutral pressures near the outer midplane are measured with two magnetically shielded

gauges connected to the same pressure inlet (M, in fig. 2): (a) Bayard-Alpert ionization gauge (10-9

– 10 -3 torr) and (b) an absolutely calibrated baratron gauge (10-4 – 10-1 torr). The overlapping

pressure ranges of the two gauges allows the ionization gauge sensitivity to be checked. The inlet is

positioned 10 cm toroidally from an outboard limiter. Consequently, it is possible that local

recycling results in pressure readings that are larger than the toroidal average. Neutral pressures in

the upper chamber (U, in fig. 2) and in the divertor are also measured with magnetically shielded,

absolutely calibrated baratron gauges (upper chamber: 10-4 – 10-1 torr, divertor: 10-3 – 1 torr). Gas

conductance pathways to the latter two gauges limit their time response to ~ 50 ms.

Dα light emission along radial chords passing through a point at the outer midplane and

intercepting different vertical locations on the inner wall limiter is monitored by a photodiode array,
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filtered to detect emission in a 10 nm band centered at 657.6 nm. For the present studies, the chords

are located 30 cm toroidally from an outboard limiter and therefore may pickup a level of Dα

emission that is somewhat higher than the toroidal average. However, Dα monitored at two other

toroidal locations during previous run campaigns has yielded comparable signals (within a factor of

2) under the same discharge conditions. This indicates that either toroidal asymmetry contributions

are small or that the dominant contribution to the Dα signal comes from recycling at the inner-wall

limiter surface. Absolutely calibrated brightnesses from radial chords which span a vertical extent of

0.1 m about the vertical plasma center are of particular interest for the present studies.

Profiles of Lyα emission across the outer scrape-off layer are detected along 20 chords

which view tangentially to magnetic flux surfaces (see fig. 2). An array of extended spectral

response VUV diodes, mounted in vacuum behind a narrow bandpass filter, receives light in a 7.6

nm band centered at 121.5 nm. Using a simple Abel inversion algorithm, the absolutely-calibrated

chordal brightnesses yield a cross-field Lyα emissivity profile with 2 mm spatial resolution [16].

The chords become tangent to magnetic flux surfaces at a location that is separated 30 cm toroidally

from an outboard limiter, corresponding to the location of the Dα chords described above. Since

chord-integrated atomic deuterium densities are small (nL < 1017 m-2) corrections due to Lyα

absorption and scattering are presently neglected [17].

High resolution profiles of electron temperature and density across the separatrix are

obtained from an edge Thomson scattering system [18]. The laser scattering volumes are located in

the upper chamber region (fig. 2). In the discharges presented here, this system provided 8 to 10

data points over a profile from 8 mm inside to 3 mm outside the separatrix, mapped to the midplane.

Electron density and temperature profiles in main-chamber scrape-off layer up to the

separatrix are measured with two scanning probe systems (fig. 2): a vertical-scanning probe that

samples plasma at a position 'upstream' from the entrance to the outer divertor, and a horizontal-

scanning probe that records plasma conditions 10 cm above the midplane. Both probes employ a
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molybdenum head with four tungsten Langmuir probe elements. The probe elements have

directional sensitivity (along and across B), maintain a field line grazing angle of about 20 degrees,

and project a current-collecting area with dimension transverse to flux surfaces of ~0.5 mm mapped

to the midplane. Densities and temperatures along the probe's trajectory are obtained every 0.25

msec (corresponding to ~0.25 mm of probe travel) by fitting positive and negative-going I-V

characteristics generated by a 2 kHz voltage sweep. Two of the probe elements in each scanning

probe system can be used to form a ‘Mach probe’ in which the plasma flow parallel to the local

magnetic field can be estimated from the ratio of ion saturation currents [19]. Cross-field profiles of

both parallel and ExB flows can be inferred with the scanning Mach probes. By integrating the

poloidal projection of these flows along the trajectory of the vertical scanning probe, the particle

flux directed towards the outer divertor throat and baffle structure can be obtained.

Langmuir probes are mounted on both the inner and outer divertor plates at 16 poloidal

locations. The probes consist of tungsten elements, extending 0.5 mm beyond the surface and

having a 10 degree angle with respect to the divertor surface. Plasma density, temperature, and ion

flux profiles across the divertor surface are deduced at roughly 10 msec intervals by fitting current-

voltage characteristics using standard magnetized probe theory.

Cross-field profile data from all diagnostics are mapped onto magnetic flux surfaces

reconstructed from magnetic measurements [20] and the EFIT plasma equilibrium code [21]. Flux

surfaces in the scrape-off layer are labeled by the coordinate , which is defined as the distance in

major radius outside the last-closed flux surface at the outboard mid-plane. The electron stagnation

pressure profiles measured by the divertor probes, the scanning probes and the edge Thomson

scattering system can be made to overlay by adjusting their relative flux surface mappings in . The

technique is employed in this paper, to ‘align’ the data from these diagnostics. Flux-surface

mapping corrections ( ) range from  0 to 8 mm,  which can exceed the expected accuracy of the

EFIT reconstruction and the positioning accuracy of the diagnostics. Possible sources for errors are
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being presently being explored. Fortunately, the principal results presented in this paper (e.g., main-

chamber recycling fluxes, Deff profiles) are not sensitive to mapping corrections. For example, Deff

profiles (section 4) are deduced from horizontal scanning probe and tangential Lyα data, with

known major radii. Consequently, these estimates of Deff are insensitive to uncertainties in

determining which flux surface should be labeled as the separatrix surface.

3. Main-Chamber Recycling Regime in C-Mod

Wall-recycling clearly dominates the fueling of the main-chamber scrape-off layer in Alcator C-

Mod. Although recycling on the divertor baffle plate is large, recycling on the limiter/wall structures

surrounding the core plasma is even larger, comparable to the recycling inside the divertor volume.

Even a crude analysis of global particle balance using neutral pressure measurements and Dα light

emission clearly reveals the phenomenon. All plasmas studied to date appear to exhibit this

behavior.

3.1. Global Particle Balance

Fig. 3 shows neutral pressures at the divertor, upper chamber, and midplane locations as a

function of line-averaged electron density (n òe) in otherwise identical discharges (Ip  = 0.8 MA, BT

= 5.3 tesla, ohmic L-mode, 1.0x1020 m-3 < nòe < 2.3x1020 m-3). These discharges span the parallel

heat transport regimes of the outer divertor leg, documented previously [2]: low recycling or sheath-

limited heat transport regime (nòe < 1.4 x 1020 m-3), high recycling divertor regime  (1.4x1020 m-3 <

nòe < 2.1x1020 m-3) and detached regime (nòe > 2.1x1020 m-3). Typical plasma densities at the

divertor plate span the range 1020 m-3< n < 1021 m-3with  electron temperatures in the range of 3 <

Te < 40 eV. Detailed information on the divertor plasma conditions for these discharges can be

found in [2]. Note that while the neutral pressures in the main chamber are a factor of 100 or more
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lower than in the divertor, they can be quite high (0.03 – 2 mtorr). Also, note that the upper chamber

pressure is always a factor ~ 3 or more higher than the midplane pressure. If main-chamber

recycling were absent or if main-chamber recycling was restricted to the top of the divertor baffle,

one would expect the neutral pressure in the upper chamber to be much lower than the midplane, yet

the opposite is true. The higher pressure in the upper chamber may in part be explained by the

existence of an upper secondary X-point in the far scrape-off layer which could result in some

compression of neutrals. In any case, it appears that high neutral pressures surround the core

plasma in the main chamber.

Data points in fig. 3 with open symbols correspond to discharges in which the divertor

bypass flaps [7, 8] were open. Under these conditions, the leakage conductance pathway from the

divertor volume to the main chamber is approximately doubled. Fig. 3 shows that the divertor

neutral pressure correspondingly drops by a factor of ~2 for nòe > 1.3 x 1020 m-3. Yet, the midplane

and upper chamber pressures are not affected at all.

One can crudely estimate the flux of atomic neutrals attacking the main-chamber plasma

from these pressure measurements. In steady-state, the flux of neutrals entering and exiting along

the pipes connected to the pressure gauge volumes must balance. If we assume that the exiting flux

is a free molecular flow of deuterium at the wall temperature, then the local molecular flux density

heading back towards the plasma is readily computed. Once the molecules encounter the SOL

plasma, they rapidly undergo Franck-Condon dissociation where approximately half of the

resulting atomic deuterium proceeds further into the plasma. Assuming that this flux density is

uniform over the area of the main chamber plasma (~ 7 m2), one arrives at an estimate for the

atomic flux from the wall, Γw, based on the neutral pressure at the wall, Pw,

Γw  (s-1)  ≈ 8x1022 Pw (mtorr). (1)
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From this estimate we see that poloidally averaged neutral pressures in the range 0.03 – 2 mtorr

imply main-chamber fueling rates that are quite large, of order 1021 – 1023 s -1. (Note: at high

neutral pressures, neutral-neutral collisions render eq. (1) less reliable. Section 4 examines the

validity of eq. (1), using experimental data. Also note that eq. (1) is only appropriate for estimating

the neutral fluxes at the midplane. Neutral fluxes and pressures in the divertor are related in a more

complicated way, involving momentum transfer between  the plasma/neutral species.)

Fig. 4 shows estimates of ionization source in the main chamber (Sion), ion flux arriving on

the divertor plates (Γdiv), and ion flux heading towards the divertor (Γthroat), as a function of atomic

flux from the wall, (Γw), for the same set of discharges as shown in fig. 3. The fluxes (in units of

s-1) were estimated as follows:

− Γw is evaluated from eq. (1) using the midplane neutral pressures in fig. 3.

− Sion is obtained from Dα brightness (B ) from a midplane chord (see fig. 2) assuming 45

ionizations per Dα photon [22] and assuming poloidally uniform emissivity over a narrow

shell at the separatrix,  Sion (s-1) ≈ 6x1021 B  (W m-2 ster-1).

− Γdiv is obtained by integrating the ion flux density profiles over the surface of the inner

and outer divertor structure, including the divertor baffles. In cases where the complete

profile across the inner divertor is not measured (bad data), the inner divertor flux is scaled

relative to that of the outer divertor from discharges of similar density.

− Γthroat is an estimate of the plasma flux heading toward the throat of the divertor and the

divertor baffle structure from the MCSOL. It is evaluated as twice the integral of the

poloidal flux density directed towards the divertor structures at the vertical scanning probe

location arising from the vector sum of ExB and parallel flows. The integral is performed

over an area defined by the trajectory of the probe (see fig. 2), revolved around the torus

centerline. For these discharges, ExB flows in the outer leg are directed towards the outer
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divertor. On the inner leg, the ExB component of the flow is likely to be away from the

divertor. Thus this may be considered as an upper bound estimate of the flux.

Even allowing for possible factors of ~2 errors in the estimated fluxes, Fig. 4 clearly

illustrates that main-chamber recycling dominates the MCSOL particle balance in Alcator C-Mod

over a density range that includes sheath-limited, high-recycling, and detached divertor regimes.

Flux toward the divertor structures is always less than 1/4 of the ionization source in the main

chamber as inferred by Dα measurements. Moreover, the recycling in the main chamber is

comparable (based on Γw estimate) or even greatly exceeds (based on Sion estimate) the recycling

on the divertor surfaces! Thus, while a strong level of recycling occurs in both the divertor and main

chamber volumes there appears to be a relatively weak flux of particles communicating between

them.

The fact that Sion and Γw in fig. 4 have a dramatically different slope and only agree at high

plasma density (or wall flux) is also interesting. It is possible that B  includes contributions from

reflected light from the inner wall or recombination radiation leading to an overestimate of Sion.

However, preliminary measurements of Lyα emissivity profiles on the small major radius side of

the plasma support a more likely explanation:[23] recycling on the inside of the torus (i.e., inner

limiter) is more intense than on the outside. Thus, the poloidal distribution of neutral pressure may

in fact be minimum at the outer midplane. An implication of figs. 3 and 4 is that as the plasma

density is increased, the neutral pressure surrounding the plasma becomes more uniform.

3.2. Conditions for Main Chamber Recycling Regime

3.2.1. A critical flux-surface averaged neutral density

The above observations indicate that ionization sources in the MCSOL are balanced

primarily by cross-field particle fluxes extending all the way onto the far SOL and arriving ‘locally’

on main-chamber wall surfaces. Although parallel flows in the MCSOL are undoubtedly present,
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they appear to be of secondary importance. The essential physics in this regime can be most readily

understood by analyzing particle balance in a highly simplified SOL. Conservation of plasma and

neutral species requires

∇⋅Γ = n0 nk ion (2)

∇⋅ Γ + Γ 0( ) = 0 (3)

where Γ  and Γ 0  are the plasma and atomic neutral fluxes, n  and n0  are the corresponding

densities and k ion  is the ionization rate coefficient. Here, we assume that contributions from

molecular species and volume recombination can be neglected in the region of interest. The SOL

plasma can be decomposed into a series of adjacent flux tubes, each with length 2L , extending

from one axisymmetric divertor surface to the other. For the purpose of illustration and the desire

of simplicity, we consider the case when electron temperatures and densities are nearly constant

along the flux tubes and the divertor surfaces are locally perpendicular to poloidal flux surfaces.

Given that the main-chamber recycling condition is seen to persist in both sheath-limited and high

recycling divertor regimes, the former restriction apparently does not exclude the essential physics.

As a consequence of the orthogonal flux surface/wall geometry, the divertor plate becomes a flat,

horizontal surface with no baffle structure. We may consider it as approximating a ‘virtual divertor

surface’ formed by the divertor throat plus the baffle structure in the actual geometry of C-Mod.

Averaging (<...>) eqs. (2)  and (3) over a flux surface bounded by the wall, one obtains

x⊥
Γ⊥ = n n0 kion − Cs

2 L

 

 
 

 

 
 (4)

x⊥
Γ⊥ +

x⊥
Γ0⊥ = 0 (5)

where the sheath density is approximated as 1/2 the nominal density in the flux tube, n , the parallel

flow to the surface is at the sound speed, Cs , and the cross-field (i.e., across flux surface) metric,
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x⊥ , is approximated to be independent of the parallel coordinate. Equation (5) makes use of unity

recycling on the divertor surface, i.e., the parallel flux of ions projected onto the surface-normal of

the divertor balances the flux of neutrals leaving that surface. Stated another way, eq. (5) says that

the average plasma flux density crossing any closed magnetic flux surface or magnetic flux surface

terminating on an axisymmetric wall perpendicular toB  must be balanced (to within a constant

offset) by an oppositely directed average neutral flux density. Conservation of mass in the closed

volume requires this constant offset to be zero so that,

Γ⊥ = − Γ0 ⊥ . (6)

Now consider what happens to the average flux density of plasma passing through a given

magnetic flux surface. Equation (4) shows that this flux will decrease with distance into the SOL if

the flux-tube averaged ionization source does not exceed the losses from parallel flow towards the

divertor surface. However, if the flux-tube averaged neutral density, n0 , exceeds some critical

density, n0 crit
, then Γ⊥  increases with distance into the SOL. Note that if Γ⊥  increases with

distance into the SOL then one would expect n0  to also increase with distance into the SOL,

since in this case the overall recycling level is increasing with distance into the SOL. Thus, if

n0 crit
 is exceeded at some location in the SOL then it will most likely be exceeded at all

locations farther into the SOL up to the point where Cs / L  increases sufficiently, e.g., at the

location of a limiter surface. Therefore, this model suggests the following picture: When the flux-

surface averaged neutral density near the last-closed flux surface is on the order of n0 crit
, the

ionization source in the entire SOL becomes balanced primarily by cross-field fluxes, the cross-

field flux increases all the way out to the nearest main chamber surface (limiter, antenna,…), and we

have a MCSOL that exhibits main-chamber recycling dominated behavior.
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Note that the physical separation between the last-closed flux surface and the main chamber

limiter/wall does not appear in this analysis. Even if the walls where infinitely far away, this analysis

would still lead to main-chamber recycling behavior for n0  > n0 crit
 near the separatrix.  In this

case, the poloidal distribution of ion fluxes on the main-chamber walls would no doubt change,

favoring the highest plasma and neutral fluxes near the divertor baffle structure. Still, Γ⊥  and

n0  would increase with distance into the SOL. At some location in the far SOL, volume

recombination would occur, effectively playing the role of a wall surface.

3.2.2. A critical cross-field particle flux density

In this simple SOL, we can relate the critical neutral density, n0 crit
, to a critical cross-field

plasma flux density, Γ⊥ crit
, by making use of eq. (6). The maximum neutral flux density that can

arise from a specified local neutral density is the ‘free-streaming’ value: Γ0 ⊥ ≤ n0 v0⊥  where v0⊥

is the average velocity of neutrals heading in the direction of Γ0 ⊥ . If we assume that via charge

exchange, the neutral distribution is approximately maxwellian with a temperature that is roughly

equal to or lower than the local ion temperature (Ti ), then we can compute a minimum neutral

density required to support the local neutral flux density,

n0 ≥ Γ0⊥
2 mD

kTi

. (7)

Now, from eq. (6), we find that there exists a critical cross-field plasma flux density, above which

n0  must exceed n0 crit
,

Γ⊥ crit
= Cs

2 Lk ion

kTi

2 mD

. (8)
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With Ti ≈ Te ,  k ion~ 2x10-14 m3 s-1, and relating the connection length to safety factor (q) and

major radius (R), L ≈ qR , eq. (8) becomes,

Γ⊥ crit
≈ 2x1020 T(eV)

q R (m)
(m−2 s−1 ) . (9)

Thus, the regime of main-chamber dominated recycling is intrinsically dependent on the level of

anomalous cross-field plasma transport in the MCSOL.

We must keep in mind that the model outlined here is grossly over-simplified. Large

density gradients and pressure gradients (e.g., detachment) routinely exist along open field lines

with Ti ≠ Te . Recombination can contribute or dominate the particle balance in the divertor.

Divertor plates are typically inclined with respect to flux surfaces. Molecules contribute to the

particle balance and the neutral energy distributions are far from a Maxwellian evaluated at the local

ion temperature. Nevertheless, the plasma and neutral species still must satisfy mass balance. Thus,

the essential result from the above model must still hold: For any flux surface in the SOL, there

must exist some critical value of Γ⊥  (or equivalently n0 ) such that at locations further out into

the SOL the cross-field plasma fluxes dominate the flux-tube particle balance. In the case when the

critical Γ⊥  is achieved near the last-closed flux surface, then the entire SOL can have radially-

dominated transport resulting in the regime of main-chamber recycling. Whether and where critical

Γ⊥  values are achieved in a given discharge depends heavily on the details of the cross-field

plasma transport.

Although the above model is clearly a qualitative one, it is entertaining to compare the order

of magnitude estimate of Γ⊥ crit
 from eq. (9) with the fluxes shown in fig. 4. For values of T ~ 50

eV, q ~ 4, and R ~ .67 m, Γ⊥ crit
 times the area of the last-closed flux surface is ~ 3x1022 s-1. It is



17
_________________________________________________________________________________

"Cross-field plasma transport and main chamber recycling… ", B. LaBombard et al.

interesting that the fueling rates of the MCSOL inferred from Dα approach or exceed this value for

all the discharges shown in fig. 4.

3.2.3. Why doesn't the MCSOL density profile in C-Mod have negative curvature?

Reviewing published results on many tokamaks, it appears that cross-field density profiles

in the main-chamber scrape-off layer always fall off more or less exponentially with distance from

the last-closed flux surface, i.e., the second derivative (curvature) of the cross-field density profiles

is always positive. This observation also holds true for all discharges studied to date in Alcator C-

Mod, even though the plasmas exhibit large main-chamber recycling, as shown in fig. 4. Note that if

one looks at the cross-field density profile alone, one can be mislead to conclude that main-chamber

recycling is not occurring and that the divertor is receiving almost all of the particle efflux. For a

number of years, this was the naïve interpretation of the particle balance situation in Alcator C-Mod.

Equation (4) allows us to examine the root cause of this misinterpretation.

Consider the definition of an effective particle diffusion coefficient, Deff, such that the

cross-field particle flux satisfies

Γ⊥ = −Deff ∇⊥n , (10)

and eq. (4) becomes

Deff

2 n
x⊥

2 +
Deff

x⊥

n
x⊥

= −n n0 kion − Cs

2 L

 

 
 

 

 
 . (11)

If one assumes  that Deff is approximately constant in space, then one expects the density profile to

have positive curvature (i.e., 2n / x⊥
2 > 0) when divertor flows dominate and negative curvature

( 2n / x⊥
2 < 0) when main-chamber recycling dominates. Density profiles with negative curvature

are typically present just inside the last closed flux surface where, by definition, flow to the divertor

is zero. Thus, in seeing density profiles with positive curvature, one could erroneously conclude that

all the plasma efflux is going to the divertor (or at least the divertor plus baffle plate structure), i.e.,
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the divertor is operating as an ideal divertor. Clearly, the problem is in assuming that Deff is

constant. In fact, we now know that Deff varies so strongly with distance into the C-Mod SOL that

the second term in eq. (11) is the most important one in setting the curvature of the density profile

in the far SOL.

Fig. 5 shows results from UEDGE modeling of two ohmic L-mode discharges [13] with

conditions otherwise similar to those shown in fig. 4. (Ip  = 0.8 MA, BT = 5.3 tesla): a high

midplane neutral pressure case with nòe = 2.4 x 1020 m-3, Pmid = 0.3 mtorr, and a low midplane

pressure case with  nòe = 1.2 x 1020 m-3, Pmid = 0.025 mtorr. Density profile data points are

obtained from the vertical scanning probe and they show the persistent positive curvature in the

SOL. In order to match both the density profile shape and the neutral pressures measured in the

main chamber, it is necessary to have Deff increasing rapidly with distance from the separatrix, as

shown. Owen [24, 25] has independently modeled the scrape-off layer plasma and neutral transport

in Alcator C-Mod using B2.5 coupled with DEGAS. The conclusions are the same: cross-field

fluxes must remain high or increase with distance from the separatrix. Since the density profile

becomes flatter with distance from the separatrix, this necessitates postulating an outward radial

velocity that increases with distance into the SOL.

Recently, experiments aimed at characterizing the cross-field transport behavior of helium in

the scrape-off layer have been performed in Alcator C-Mod [26]. The ratio of singly- to doubly-

charged 3He ions arriving at the wall was measured directly with an ion mass spectrometer. It is

found that in order to account for the relatively small proportion of doubly-charge ions arriving at

the wall, the cross-field diffusive and/or convective transport of helium must increase with distance

from the separatrix. Far in the SOL, the magnitude of the effective particle diffusion coefficients

exceed the Bohm level by more than two orders of magnitude, implying that an outward convection

model is a more appropriate description.
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It should be noted that evidence for effective cross-field heat diffusivity ( eff) increasing

with distance into the SOL has been seen before in ‘onion-skin’ modeling of JT-60 [27], JET [28,

29], and C-Mod [30]. A question naturally arises as to whether cross-field heat convection can

become the dominant player in the SOL power balance. As discussed in the next section, when

main-chamber recycling is large, both cross-field convection and charge exchange energy losses

can dominate the local power balance, making extraction of the heat conduction component of eff

impractical.

3.3. UEDGE Simulation of Main Chamber Recycling in C-Mod

Further insight into main-chamber recycling physics can be gained by examining the output

from UEDGE simulations [13] of two ohmic L-mode discharges in more detail. The computational

domain, employing a locally orthogonal mesh and a wall surface that approximates that of Alcator

C-Mod, is shown in fig. 6. The orthogonal mesh is seen to adequately describe the region of

interest here which is the scrape-off layer outside the divertor volume. The specific details of

transport and recycling within the C-Mod divertor volume is not addressed in this model. The

cross-field profile of Deff was adjusted in each case so as to yield a match with the measured

density profile (fig. 5). A spatially constant value of  (= i = e ) with range 0.1 <  < 0.5 m2

s-1 was chosen to provide a match with the electron temperature profiles. However,  owing to the

role of heat convection and charge exchange energy losses (discussed in more detail in section

3.3.2) the modeled profiles are not sensitive to the specific value of .The recycling coefficient on

all wall surfaces was set to unity, requiring the boundary condition that the local plasma flux density

to the wall balances the local neutral flux density from the wall. The midplane pressures were

matched to within 25% of experiment.
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3.3.1. Particle Balance

It is convenient to divide the plasma into four regions, as shown in fig. 6: Core Plasma,

Main SOL, X-pt SOL, and Divertor. In this arrangement, the Langmuir/Mach probe flow

measurements are located near the interface between the X-pt and Main SOL regions. The

communication of plasma and neutral fluxes between these regions is shown in fig. 7. The width of

the arrows within each case are proportional to the fluxes. The numerical values indicate the

magnitude in units of 1021 s-1.

Fig. 7 clearly illustrates the ‘main-chamber recycling’ behavior of the C-Mod MCSOL and

its persistence despite an order of magnitude change in Pmid and a corresponding factor of 30

change in the plasma fluxes on the MCSOL wall:

- The plasma flux from the Main SOL to the Wall always exceeds the plasma flux from the

Core Plasma to the Main SOL. In case (b), the cross-field plasma flux amplification is

greater than a factor of 2.

- Plasma flow from the Main SOL to the X-pt SOL is always less than the flux from the

Main SOL to the Wall. For the low Pmid case it is 1/2 of the wall flux while in the high

Pmid case it is 1/4 of the wall flux.

- The relative contribution to core fueling of Main and X-pt SOL neutrals remains remarkably

constant over the factor of 10 change in Pmid. The Main SOL contributes 38%  and 40% of

the core fueling for the low and high Pmid  cases, respectively.

- The relative level of wall-recycling around the X-pt region changes strongly in going from

the low to high Pmid case. Apparently, at high Pmid the flow towards the divertor is low

enough and the cross-field transport is high enough to cause even the X-pt region to recycle

as much on the wall as it does with the divertor volume.
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The fluxes from the UEDGE simulations can be compared to the fluxes estimated directly

from experimental data (fig. 4) in similar discharges. The open diamonds in fig. 4 show the total

ionization in the main chamber from the UEDGE simulation (X-pt + Main SOL + Core

contribution) while the open star symbols indicate the plasma flux from X-pt → Divertor regions,

simulating the Mach probe measurement. As in the experimental data, the horizontal axis for these

points is evaluated from the midplane neutral pressure via eq. (1). The UEDGE simulations are

seen to match the key experimental findings: The trend with Pmid is clearly reproduced and the

flow directed towards the divertor is always much lower that the main chamber ionization flux. The

discrepancy with the Dα-inferred main chamber ionization at low Pmid is perhaps explained by a

persistent level of recycling on the inner limiter surface which is not included in the UEDGE

simulation.

3.3.2. Cross-field heat transport

The high level of cross-field plasma convection in these plasmas has important

consequences for heat transport through the separatrix and across the SOL. As shown in fig. 8, the

cross-field heat flux profiles from the two UEDGE simulations can be decomposed into the

following 4 principal contributions:

(a) Anomalous Plasma Heat Conduction ( a = i  = e )

q
⊥

cond = −n a∇⊥ Ti + Te( )

(b) Electron Convection

q
e ⊥

conv = 5
2

Te nV⊥

(c) Charge Exchange

q
⊥

cx = −n cx∇⊥Ti
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(d) Ion plus Neutral Convection

qi+n⊥

conv = 5
2

nTiV⊥ + 5
2

n0 T0V0⊥ .

Here nV⊥  and n0 V0⊥  are cross-field plasma and neutral fluxes, respectively. Since these

fluxes nearly balance locally and T0 ~ Ti  , the net heat flux contribution from (d) is small. In

computing (c), we have used a diffusion approximation which breaks down (i.e., leads to an over-

estimate) when the charge exchange mean-free path becomes comparable to the temperature

gradient scale length. However, simulations with a flux-limiting factor yield similar results [13].

Fig. 8 shows the cross-field heat flux profiles arising from the above 4 processes, integrated

over the local flux surface area and plotted versus radial distance from the separatrix at the outer

midplane ( ). The impact of main-chamber recycling on the heat transport channels is clear: Charge

exchange and electron heat convection can play a significant role. Only in the low Pmid case does

anomalous plasma heat conduction set the magnitude of the transport level in the SOL, and only

within a few millimeters of the separatrix! Charge exchange always appears to be a player,

particularly in the far SOL. At high Pmid, electron convection becomes the key component over the

entire SOL.

These observations underscore the complexity of cross-field heat transport processes in the

SOL and the ambiguity that arises in assigning a single transport parameter, e.g. eff, to the

transport behavior. One might expect that in the moderate to low Pmid cases, eff in the far SOL

would be more of an indication of cx, while in high Pmid cases, eff would be set by Deff and the

ratio of the temperature to density gradient scale lengths. It is interesting to note that  using scrape-

off layer profile data from Alcator C-Mod and JET, Connor et al. [31, 32] identified charge

exchange as being a leading-candidate theoretical model for explaining the scrape-off layer width
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scalings. Perhaps a different conclusion would be obtained using C-Mod data in a restricted data

set where a dominates the transport (e.g., for locations near separatrix at moderate to low Pmid).

Finally, note that in contrast to the particle balance picture, fig. 8 indicates that most of the

energy entering into the SOL flows towards the divertor. Only, about 1/5 to 1/4 of the power in the

SOL leaves through the wall boundary. Thus while the divertor is non-ideal with regard to the

particle efflux, it is close to ideal with regard to receiving all of the power efflux (minus radiation)

from the core plasma.

4. Local Particle Transport Measurements in MCSOL

In contrast to the cross-field heat transport picture, cross-field particle transport analysis is

actually made easier by the main-chamber recycling phenomenon. In the case when the divergence

of the parallel flows are of secondary importance, the local cross-field flux densities can be

estimated by simply integrating the local cross-field ionization source profile. Here we employ this

procedure, making use of the measurements of Lyα emissivity, plasma density and electron

temperature profiles across the separatrix and into the SOL. Profiles of cross-field particle flux

density and Deff are thereby obtained and the scaling of local Deff is examined. The sensitivity of

the results to the magnitude of parallel flows is parameterized and quantified by UEDGE modeling

results (discussed above) and measurements of fluxes towards the divertor from the Mach probe. In

addition, plasma fluxes onto the outboard limiter are inferred from probe measurements. The latter

measurements are used to verify that the particle flux arriving at the main-chamber limiter/wall

surface approximately balance the local ionization source deduced from Lyα emissivity

measurements.



24
_________________________________________________________________________________

"Cross-field plasma transport and main chamber recycling… ", B. LaBombard et al.

4.1. Local Particle Balance

4.1.1. Model

The local cross-field plasma flux density, Γ⊥ ( ) , must satisfy eq. (2) integrated from

some point inside the separatrix, = min , where Γ⊥ ≅ 0 ,

Γ⊥ ( ) = Sion − ∇|| ⋅ Γ||[ ]
min

∫ ′ , (12)

where Sion  is the local ionization source profile. We will be evaluating terms in eq. (12) across the

profile where Lyα emissivity measurements are made (see fig. 2). Here, we expect ∇|| ⋅ Γ||  to be

negative inside the separatrix, giving rise to a higher value of Γ⊥ at the separatrix than that deduced

from local ionization sources alone. This is the mechanism by which neutrals ionized near the X-pt

appear as cross-field fluxes in the Main SOL (see fig. 7). To explore the influence of this effect, we

specify a local profile of ∇|| ⋅Γ ||  such that ∇|| ⋅Γ || = −c1 Sion inside the separatrix with c1 being

an adjustable constant. This term leads to an additional local ion flux density through the separatrix

that can be attributed to non-local ionization,

Γ⊥NL
sep = c1 Sion

min

0

∫ ′ . (13)

Since Sion is measured, this equation determines the value of c1 for a specified value of Γ⊥NL
sep

.  

Outside the separatrix we expect ∇|| ⋅ Γ||  to be positive. Its magnitude must be consistent

with the observed flows to the divertor surfaces (e.g., fig. 7) and must balance Γ⊥NL
sep

. To include

this effect, we specify a local profile of ∇|| ⋅Γ ||  outside the separatrix such that ∇|| ⋅Γ || = c2 nCs

where c2  is another constant. The density (n ) and sound speed (Cs ) are evaluated locally using

measurements from the horizontal scanning probe. In order to conserve particles, c1  and c2  must

satisfy
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c2 nC s ′ 
0

wall∫ = c1 Sion ′ 
min

0

∫ . (14)

Note that the flux density arriving at the main chamber wall boundary is presumed to be a

consequence of local ionization only,

Γ⊥
wall = Sion

min

wall∫ ′ . (15)

We now introduce a parameter, , which is defined as the ratio of flux density through the

separatrix due to non-local ionization divided by the flux density to the wall,

= Γ⊥NL
sep / Γ⊥

wall
. (16)

Looking at the plasma flows from the Main to the X-pt SOL regions in fig. 7, one can see that the

expected range of  in the Main SOL is 0.23 < < 0.53.

Finally, we arrive at a parameterized model which allows the cross-field plasma flux profile

to be inferred as

Γ⊥ ( ) = Sion(1+ c1 ) ′ 
min

0

∫ + Sion − c2 nCs[ ] ′ 
0∫ , (17)

for ≥ 0  where c1  and c2  are determined from eqs. (13)-(16) and the value of , We now turn

our attention to the measurements that will allow us to both evaluate eq. (17) and to assess the

validity of the model.

4.1.2. Ionization Source Profile Measurements

Fig. 9 shows representative measurements of electron temperature, density, and Lyα

emissivity profiles for an ohmic L-mode discharge. The ionization source (Sion ) is computed from

the Lyα emissivity profile using the Johnson-Hinnov rate coefficients [22] and the measured

plasma parameters. The derived values for Sion  are seen to be robust; they are insensitive to the

inputted values of local density and temperature. Fig. 9 shows that a simultaneous factor of 4

increase in density and temperature yields at most a factor of ~2 increase in the local value of Sion .
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4.1.3. Wall Flux Measurements

As outlined in section 3.1, we expect the midplane neutral pressure to be related to the flux

of ions (neutrals) arriving on (leaving from) the main chamber limiter/wall surface. In the case of

free molecular flow, this relationship is linear, eq. (1). Also, in a main-chamber recycling dominated

regime, we expect local ionization sources to approximately balance ion fluxes on the limiter/wall.

To test these assumptions, ion fluxes to the outboard limiter were measured for a series of

discharges over a wide parameter range.

Fig. 10a shows the experimental arrangement: The trajectory of the horizontal scanning

probe passes between two limiter structures which are separated by 0.8 meters along magnetic field

lines. Owing to the short connection length, ionization can be neglected in the limiter-shadow

particle balance for atomic neutral densities below ~3x1018 m-3. (Using formalism in eq. (1), this

corresponds to Pmid ~ 1mtorr.) Thus, by integrating the ion saturation current profile across the

shadow, the cross-field flux density entering the limiter-shadow (Γ⊥ ) can be obtained.

Fig. 10b shows a comparison of Γ⊥  and ΓW , deduced from eq. (1), for a number of

discharges spanning a wide range of parameters and core confinement regimes. For midplane

pressures below ~ 0.3 mtorr (ΓW  ~ 3.4x1021 m-2 s-1), the estimates agree within a factor of ~2.

Above ~ 0.3 mtorr there is a marked deviation, perhaps caused by the influence of neutral-neutral

collisions. In any case, fig. 10(b) can be used to ‘calibrate’ the Pmid measurement as a ‘wall-flux

meter’; Γ⊥  can be inferred within a factor of ~2 from Pmid using the solid black line shown in the

figure.

Armed with the information from fig. 10, we can now compare the ion flux density at the

radius of the outboard limiter to the ionization source computed from Lyα emissivity measurements

(see fig. 11). The vertical axis of fig. 11 is Γ⊥ ( W )  evaluated from eq. (17). The horizontal axis is
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the same quantity inferred from Pmid and the calibration curve in fig. 10. Data are shown from the

same set of ohmic L-mode discharges is in fig. 3 with the addition of data from some ohmic H-

modes (1.05 < Ip  < 1.35 MA, 4 < BT < 5.3 tesla, 2.2x1020 m-3 < nòe  < 4.2x1020 m-3). The data

support the assumption of local ionization balancing local wall fluxes; The estimates are tightly

correlated and agree (to a factor of ~2), over the full range of plasma conditions. The data also lend

confidence to the absolute level of the local ionization source strength inferred from Lyα

measurements over the full range of plasma conditions.

4.1.4. Poloidal Flux  Measurements

Finally, we are in a position to compare the measurements of particle fluxes onto the local

wall surface with particle fluxes directed towards the divertor.  Fig. 12 shows particle flux directed

towards the divertor (including divertor baffle) versus particle flux onto to the main chamber walls.

The particle flux towards the divertor is estimated from the vertical-scanning Langmuir/Mach probe

accounting for both ExB and parallel flows (see discussion of data in fig. 3 above). The particle flux

onto the limiter/walls is estimated by multiplying the limiter ion flux density, as obtained in fig. 11,

by the surface area of the main chamber plasma, ~ 7 m-2.

Similar to the modeling results from UEDGE, these measurements indicate that the flux to

the limiter/wall is larger that the flux to the divertor by a factor of ~2, implying that  is on the

order of ~ 0.5. (Note that if recycling on the inner limiter is indeed higher than on the outer

limiter as Dα measurements and recent Lyα measurements suggest (see discussion in section 3.1),

then ~ 0.5 would represent an upper bound estimate.)

4.2. Deff Profiles

We now estimate cross-field particle flux density profiles directly from measurements for a

number of discharges using eq. (17). Fig. 13 shows a typical cross-field ionization density profile
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(Sion ) and resultant flux (Γ⊥ ) for an ohmic L-mode discharge (Ip  = 0.8 MA, BT = 5.3 tesla, nòe =

1.8x1020 m-3). The parameterized ∇|| ⋅ Γ||  profiles correspond to the three values of = 0, 0.5, and

1.0. Note that the value of Γ⊥  at the separatrix correspondingly increases as  is increased.

However, the value of Γ⊥ at the wall is unaffected by the choice of , since it is fixed by the

measurement. The effective particle diffusion coefficient shown in fig. 13, Deff, is computed from

the local value of Γ⊥  divided by the local density gradient measured by the horizontal scanning

probe. It should be emphasized that the use of Deff is not meant to imply that the transport fluxes

are ‘diffusive’. Rather, it is simply the diffusion coefficient that would be required to yield the

observed fluxes.

Deff at the separatrix varies by a factor of 2 in going from = 0.5 to 1. However, regardless

of this variation in , Deff is see to increase by an order of magnitude in a ~10 mm distance from

the separatrix. This variation is similar to that inferred by the UEDGE modeling (see fig. 5) yet the

analysis technique and inputted data sets are quite different.

Applying the same analysis to 75  profiles yields the plot shown in fig. 14. Here,  is set to

the value of 0.5 for all profiles. In all cases, Deff clearly increases by an order of magnitude or more

within a ~10 mm distance from the separatrix. The discharges span conditions of ohmic L-mode

discharges (Ip  = 0.8 MA, BT = 5.3 tesla, 1.0x1020 m-3 < nòe < 2.3x1020 m-3) and EDA or Elm-free

H-mode discharges (1.0 <  Ip  < 1.4 MA, 4.0 < BT < 5.6 tesla, 2.2 < nòe  < 4x1020 m-3).

H-mode discharges have the lowest Deff at the separatrix, causing the strongest variation in

Deff across the SOL. The values of Deff in the far SOL appear to be roughly similar in the L- and

H-mode regimes.
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Perhaps the most interesting observation that can be gleaned from fig. 14 is the following:

Even allowing for the sensitivity to the model assumptions, a factor of ~10 variation in the value of

Deff at a fixed spatial location should be well outside the error bars. This suggests that most of the

discharge-to-discharge variation in the inferred Deff profiles is caused by a change in the transport

level. Note that the UEDGE modeling of two discharges (fig. 5) required a substantial increase in

Deff across the whole profile in going from the low- to high-Pmid discharge. Now using this direct

experimental technique, Deff profiles can be studied in many discharges, allowing trends in the

scaling of Deff with local or global conditions to be inferred.

4.3. Deff Scalings

At the present time, the Deff profiles shown in fig. 14 represent the full extent of our data.

Focussing on the ohmic L-mode portion of the data set, the first step is to look for correlations

between the local value of Deff and the local value of electron temperature (Te) and density (n ). It

should be noted that since these measurements are at fixed plasma current and toroidal field,

correlations with Ip  and BT (or dimensionless equivalents) can not yet be performed.

Fig. 15 shows the result of a regression analysis between Deff and the local values of Te

and n at the  = 2 mm location.  The order-of-magnitude variation of Deff seen in fig. 14 at this

flux surface location does indeed collapse into a reasonable correlation with the local values of Te

(eV) and n (m-3),

Deff ~ 0.069 (Te/50)-3.5 (n/1020)1.7 (m2 s-1). (18)

For comparison, the values of Deff at  =2 mm from the two UEDGE simulations described above

(fig. 5) are also plotted in fig. 15 (square symbols). These two ‘data points’ were not used in the

regression. The horizontal axis for the UEDGE points is evaluated using the measured local values
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of Te  and n  at the  = 2 mm. The UEDGE and local particle balance-derived Deff values scale very

similarly. The agreement of the absolute levels of Deff is also reasonable. In the UEDGE case, Deff

represents the flux-surface averaged value while the local particle balance model does not account

for magnetic flux surface compression, using the local density gradient at the midplane.

The scaling relationship implied by fig. 15 is an interesting one that suggests a rather simple

correlation between Deff near the separatrix and the collisionality of the plasma: Deff ~ ei-1.7,

where ei is the electron-ion mean-free path. Performing similar regression analyses on Deff at

different spatial locations in the SOL (see table I) leads to similar trends in a ~5 mm region near the

separatrix. Further out in the SOL, the scaling relationship changes, favoring a weaker correlation, if

any, of Deff with local Te .

In addition to the fitted parameters, table I shows the results of performing partial F-test

evaluation of the regressors, Te  and n  (columns labeled ‘Te  F-test’ and ‘n  F-test’, respectively).

The square of the multiple correlation coefficient (R2) for each fit is also shown [33]. When the

partial F-test value is greater than 12.0 (for the ~60 data points), then there is less than a 0.1%

chance of obtaining the same degree of correlation with random values substituted for that

regressor. Thus for F-test values less than ~12.0, we may conservatively consider that the regressor

may be either ‘uncorrelated’ with Deff or ‘redundant’ with another regressor or that the data is

‘too noisy’ to extract a meaningful correlation. With the possible exception of the data at  = 14

mm, reasonable correlations of Deff with the local values of Te  and/or n  are clearly detected.

One should be aware that in addition to ‘noise’ there may be systematic trends built into the

computation of Deff which have not been taken into account at this time. For example the

parameter, , used to evaluate eq. (17) is likely to be a function of plasma conditions. Looking at

the UEDGE results, we see that there is a trend for  to get smaller (.53 → .23) as the plasma
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density (or Pmid) gets larger. However, the good agreement between the UEDGE and local particle

balance derived values of Deff seen in fig. 15 lends some confidence that corrections of this type are

minor.

4.4. Cross-field Heat Convection  Density Limit?

From the scalings of Deff derived above, one expects that cross-field heat convection near

the separatrix should play an increasing role in the SOL power balance as the collisionality

increases. Fig. 16 shows Deff inferred at  = 1 mm and the corresponding fraction of the SOL

power convected by electrons and ions at this location,

fconv = 5Te Γ⊥ Asep / Psol , (19)

where Psol  is the power crossing the separatrix, Asep  is the area of the separatrix, and it is assumed

that Ti ≈ Te . The data are plotted versus ei / L  which is the electron-ion mean free path

normalized to 1/2 the parallel magnetic connection length. These data are from the same set of

discharges shown in fig. 14.

As the regression analysis suggested, fig. 16 shows that the discharge-to-discharge variation

in Deff is well correlated with the variation in local collisionality, ei / L . Although there is not

enough data from H-mode discharges to investigate a correlation of Deff with local collisionality, it

is clear from fig. 16 that Deff near the separatrix is greatly reduced in H-mode discharges with the

same local collisionality. The range of core densities in these discharges was 0.1 < n / nG  < 0.35,

where nG  is the Greenwald density [34]. The collisionality of the SOL is found to increase

monotonically with increasing n / nG . Correspondingly, the convected power into the SOL

increases, rising to a maximum level in these discharges of fconv ~ 0.2.
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Although the behavior of the SOL particle transport has not yet been studied with this

technique for core densities approaching the Greenwald density limit, these initial results are very

interesting. The UEDGE modeling in section 3.3.2 clearly showed that electron heat convection and

charge exchange losses through the separatrix become more important as the particle flux through

the SOL is increases. The empirical scaling identified above of cross-field particle transport near the

separatrix increasing with collisionality naturally leads to a situation at high plasma densities where

cross-field convection and charge exchange carry most of the power across the separatrix. In this

case, there would exist a critical plasma density (~ collisionality) beyond which no steady-state

plasma could be maintained. In contrast to a density limit set by radiative collapse, this density limit

would be fundamentally set by the physics of anomalous transport processes since it would exist

even in the absence of radiation.

5. Summary

Contrary to the ideal picture of divertor operation, the divertor in Alcator C-Mod receives

only part of the total particle efflux from the main-chamber plasma. The reason for this discrepancy

is not caused by the tight divertor baffling but rather the existence of cross-field particle transport in

the main-chamber scrape-off layer (MCSOL) that is large and increases with distance into the SOL,

carrying plasma to main-chamber limiter/wall surfaces.

This ‘main-chamber recycling’ regime, where ionization in the SOL is primarily balanced

by cross-field particle fluxes, can be understood with the aid of a simplified plasma/neutral particle

balance model: When the flux-surface averaged neutral density exceeds a critical value, flows to the

divertor can no longer compete with the ionization source and particle fluxes must increase with

distance into the SOL. This critical neutral density condition can be recast into a critical cross-field

plasma flux condition: particle fluxes must increase with distance into the SOL when the plasma
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flux crossing a given flux surface exceeds a critical value. Thus, the existence of the ‘main-chamber

recycling’ regime is intrinsically tied to the level of anomalous cross-field particle transport.

Density profiles in the SOL are always seen to decay ~exponentially with distance from the

separatrix. In the past, this observation lead to the naïve interpretation that plasma flow to the

divertor (or baffle plate) was dominating the SOL particle balance and that the effective particle

diffusion coefficient (Deff) was ~constant in space. This interpretation was clearly wrong. Within

this context of a diffusive plasma transport model, one must conclude that Deff increases rapidly

with distance from the separatrix in order to account for the ‘exponential’ density profiles in the

absence of strong parallel flows to the divertor/baffle structures.

As a consequence of large cross-field particle transport, cross-field heat convection and

charge exchange play a significant role the power balance of the C-Mod SOL, particularly in the far

SOL. Except near the separatrix in low density discharges, heat flux arising from anomalous cross-

field heat diffusivity ( ) is a minor contributor, making extraction of this parameter from profile

data difficult.

Using Langmuir/Mach probes and VUV diodes, the fluxes to main-chamber wall surfaces,

fluxes into the divertor, and ionization profiles across the main-chamber scrape-off layer have been

directly monitored. These measurements have allowed Deff profiles to be inferred systematically in

a number of discharges. Regression analysis of a small set of ohmic L-mode data indicates that

Deff near the separatrix is strongly correlated with the local values of density and temperature

suggesting a direct correlation with plasma collisionality: Deff ~ ei-1.7, where ei is the

electron-ion mean-free path.

Although this relationship between particle transport and collisionality (or ~equivalently,

discharge density) needs to be born out with more data, is an interesting one. It is pointed out that
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this relationship would naturally lead to a plasma density beyond which no steady-state plasma

could be maintained, even in the absence of radiation.
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Table I –Regression analysis: Correlation of Deff measured at various spatial

locations with local Te and n during an ohmic L-mode density scan

Location

 ρ (mm)

Deff*

(m2 s-1)
α β

Te
F-test

n
F-test

R2

1 0.07 -3.7 2.2 97.3 126.9 0.74

2 0.07 -3.5 1.7 121.5 112.1 0.73

3 0.07 -3.2 1.2 90.8 56.0 0.64

4.5 0.09 -3.1 1.2 76.5 64.0 0.63

6.5 0.31 -2.1 1.4 40.4 139.4 0.72

10 1.03 -0.6 1.0 2.8 78.5 0.71

14 0.64 -0.7 0.5 5.1 18.0 0.30

Deff = Deff* (Te/50 eV)α (n/1020 m-3)β 



ions
neutrals Divertor

Core
Plasma

Fig. 1. In ideal divertor operation (a), all plasma crossing the separatrix
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Fig. 6. Particle balance in the UEDGE simulations can be tracked via ion/neutral
exchange between 4 plasma regions: Core Plasma, Main SOL, X-pt SOL, and
Divertor. Ion flow between Main SOL and X-pt SOL regions simulates fluxes
measured by the vertical-scanning Langmuir/Mach probe.
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