
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/78059264?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Import Data from File (IDF) utilities

for programming data input to scienti�c codes

A. Yu. Pigarov and I. V. Saltanova

January 2000

Plasma Science and Fusion Center, Massachusetts Institute of Technology

167 Albany Street, Cambridge, MA 02139, U.S.A.

Abstract

IDF, Import Data from File, is a time-saving utilities for programming data

input from an external text �le into scienti�c codes written in C, C++, and FOR-

TRAN languages.

The IDF package o�ers a user access to various data sets stored in �le by their

symbolic names and a simple syntax for data representation in a �le. The data

can then be placed in a �le in arbitrary order, supported with comments, and

imported into the user program in an order speci�ed by a user. IDF is able to

transfer input data to the aggregate targets (such as a structure or common block).

IDF supports the pointer targets as well as the dynamic allocation of memory.

This manual presents the complete description of: the structure of the data

source �le required for IDF; the syntax for data representation in this �le; the set

of data types supported by IDF; the built-in calculator; the speci�cation of targets

in the user code to which the data should be imported from �le, as well as the

description of functions (utilities) to be called by a user in order to handle the

data import with IDF.

E-mails: apigarov@psfc.mit.edu, apigarov@pppl.gov, apigarov@rex.pfc.mit.edu

1

I. Introduction

As a rule, the large scienti�c computer programs require numerous input

data. It is a common approach to store the input data in a separate �le which

the user's program reads when it is running. This kind of input allows a user

to change the input data and re-run his program without re-compiling the

whole source code. The more sophisticated is the program input, the more

time consuming and even the more hardworking is the programming of �le

input in C or FORTRAN languages1. In addition, the input �le may contain

numerous data units looking alike, so that it is hard to �nd and correct the

selected unit amongst the other data units stored in this �le.

IDF, Import Data from File, is a time-saving utilities for programming

data input from an external text �le for scienti�c codes. The IDF data source

�le is an ordinary text �le which contains input data in a well understandable

form. Each item in the IDF data �le can be easily identi�ed, modi�ed or

corrected. The input data can be supplied with the user's comments to make

1In C language, the programming of data input from a text �le is based on the usage of

standard functions (for example, the fgetc and fscanf functions) from C run-time library.

When programming the data input in FORTRAN, a user manipulates with the special

statements which are built-in this language (for example, the READ statement). These

utilities (statements or functions) are the bricks from which a user can build a very sophis-

ticated input for his code. The complex input programming requires time as well as the

detailed knowledge of programming language (and, sometimes, the operational system).

The program author must take care to read and transfer data in the proper order, in an

order as the data stored in a �le. It is not possible for a user to change without modifying

the source code of user program the location of data set stored in a �le.

2

the input clear to other users. In comments you can give instructions about

the usage of input parameters in your program or any other important infor-

mation concerning your code instead of referring a user to the documentation

(if any) or to the source code of your program. To create2 and modify3 this

�le you can invoke your favorable editor.

The IDF package o�ers user an access to various data sets stored in a

�le by their symbolic names. The IDF data source �le is then a collection of

the named data sets. The data sets can be written in arbitrary order. The

location of data sets in a �le does not a�ect the result of data import. At

the same time, the data can be imported into the user's program in an order

speci�ed by a user.

Each data set must have the syntax described in this manual. The syntax

is very simple and resembles main features of C and FORTRAN languages.

The IDF package has its own built-in calculator that allows a user to repre-

sent the `arithmetic' type data stored in input �le in terms of mathematical

formula. IDF o�ers additional prede�ned set of mathematical and physical

constants which are widely used in scienti�c codes. If necessary, each data

unit (or any sequence of consecutive data units) can be implicitly repeated by

specifying the repetition number instead of consequently repeating this unit

many times in a �le.

IDF is able to transfer data to the sophisticated aggregate targets created

2The �le name can be represented by any combination of letters, digits, and underscore

symbols, but must always begin with a letter.
3You can use the text output from scienti�c codes and modify it following the IDF

syntax.

3

by a user, such as structures or common blocks. IDF supports the pointer

targets as well as the dynamic allocation of memory.

The IDF package provides a complete set of functions (utilities) necessary

to handle the data input from a text �le. In this sense, IDF is an alternative to

the direct programming of data input in C, C++, and FORTRAN languages.

The package includes functions: to open, read, parse, and close the input text

data �le; to search for and to reference by symbolic name the data set given

by a user in the input �le; to convert the text data stored in �le into binary

values of the speci�ed data type; to perform the mathematical calculations;

to manipulate with a set of prede�ned physical constants; and to assign

various targets (variables, arrays, structures, pointers, or common blocks)

declared elsewhere in the user program, their values taken from the input

�le. All these functions are written in C language following the ANSI C

standards that makes the IDF package portable across many computers and

operational systems4. You can use the IDF functions in your code almost in

the same way as the functions from C run-time library.

II. Structure of IDF data source �le

The IDF data source �le consists of one or more data sets. Each data set

has its own name (i.e the set is named). This symbolic name is used by IDF

to �nd the position of data in a �le.

4At the same time, the IDF utilities are compatible at the source level, i.e they must

be recompiled to run under new operational system or processor.

4

A data set is represented in a �le in the form of an abstract assignment

statement5. Consider the following three examples to illustrate the general

structure of a data set:

<keywords> data name <subscripts> = <repetition number < � > > data unit ;

<keywords> data name <subscripts> : <repetition number� > data block ;

<keywords> data name <subscripts> :

<repetition number< � >><data unit> <;> ...

<repetition number � > <data block> <;> ... ;

Any item in these statements can be optionally omitted, if it is shown within

the angled bracket delimiters, <>.

The data name constitutes the left hand side of these statements, the

name �eld. Optionally, the name can be preceded by the sequence of key-

words. The keywords and the name must be separated by, at least, a blank

space. The name can be followed by the subscripts.

The equals mark (=) and the colon mark (:) are used to separate the

name from the data assigned to it.

The data �eld constitutes the right hand side of these assignment state-

ments. The data �eld must end with the semicolon (;) symbol. This �eld

must contain at least one data unit or data block. The data block is a sequence

of data units enclosed within curly braces. Each data unit or block can be

implicity repeated by specifying its repetition number. If data �eld consists

of many data units or data blocks, each item should be properly separated

5although the name of data set does not represent directly the target, this form is

similar to the assignment statement typical for the most programming languages.

5

with a space or comma.

There is no other restrictions on how the elements of named data set can

be written in a �le, other than the correct syntax for this set. On the one

hand, each data set (as well as name �eld, data �eld, data block, and even

some data units) may ocupy one or more lines in a �le, and several named

data sets can be placed simulteneously in one line in the data �le, on the

other hand. However, the structure and content of data input to a scienti�c

code will be more clear to the users of this code in the case when each input

parameter is separated and supported with comments, as it is illustated by

the following example:

// IDF data �le "couette.dat"

/*

||||||||||||||||||||||-

This �le contains input data for the XXX code.

The XXX code simulates the 1D2V Couette
ow problem.

The input data are written in the IDF language.

||||||||||||||||||||||-

*/

/* Physical input parameters */

Lz = 1; // A �xed plate separation distance, in cm

Knu = 0:025;// Knudsen number

Tw = 0:1; // Constant plate temperature, eV

Uw = 0:01; // Constant relative plate velocity, U=V t

// Vt is the thermal velocity, sqrt(2RTw)

Pr = $1/3$, $2/3$, 1; // The set of Prandtl numbers

/* Computational algorithm input parameters */

Nz = 1000; // number of nodes in the uniform mesh in z direction

6

Nv = 31,31; // number of nodes in the 2D velocity space

rather than in the case:

Tw=0.1;Uw=0.01;

Nz=1000;

L

=

1;

Knu= 0.025;Pr=0.33333, 0.66667,1.0;

Nv=31,31;

where the same input parameters are given in a structureless manner or

chaotically in the data �le.

III. Name of data set

The name of data set in a �le may be represented by any combination of

letters (in upper and lower cases), digits, and underscore symbols. But, at

the same time, the name must begin with a letter.

Usually the data set name corresponds to the name of a variable de-

clared in the user's code, although an exact coinsidence of these names is not

necessary.

A data name itself must not be:

1) the IDF keyword (char, character, int, integer, long,
oat, double, void,

text, string, complex, static, extern, local),

2) the name of standard mathematical function used in the built-in calculator

(see the list of names given in APPENDIX III), or

7

3) the name from the IDF list of mathematical and physical constants (see

APPENDIX I and II, respectively).

The name assigned to a data set must not match these intrinsic names

reserved for special purposes. The IDF keywords can be written either in

the lower or in the upper case letters. The names of standard constants

must be given in the upper case letters. Any letter in the name of a built-in

mathematical function can be written in the lower as well as in the upper

cases.

Anonymous (`unnamed') data sets which appear without or to the left

of the assignment mark (i.e the data sets `aaa = 2; ; 123;' and `123 = aaa;'

are illegal) as well as the `empty' names which do not followed by the data

(i.e the following data sets `aaa =;' and `aaa = = � aaa is a name � =;' are

incorrect), will cause a fatal parse error.

IV. Scope and type of named data

The IDF language includes two special keywords: static and extern, in

order to specify the scope (and storage) class for a named data set. One of

these keywords can be optionally added to the data name at the left hand

side.

The IDF considers all data names related to the static class as an inter-

nal IDF variables and allocates memory for these variables according to the

speci�ed data type (or, by the default, according to the type of a data unit).

The whole �le is the scope for these variables. The static variable exists for a

time the source �le is open. The static names cannot be referenced directly

8

from the users code. At the same time, these names can be used inside the

�le to create speci�c data units. (see a description for the formula data unit

given further in this manual).

The data name supported with the extern keyword indicates that cor-

respondent data set should be imported into the user's code on the user

request. Such a name implicitly associates particular data set with a target

de�ned outside the IDF. In other words, the name classi�ed as extern refers

data to one or more objects declared in the user's code. Using this name as

an argument for the special function of IDF package, a user has an access to

the data set stored in �le.

The default class for data set names is extern, a user can always omit this

keyword in writing data names in the source �le.

The IDF generates a fatal error message in the case: when the static and

extern keywords appear together in the name �eld, or when there are two or

more data sets with the same name in �le, but these names have di�erent

scope class.

Along with keywords specifying the data scope, the name �eld can also

contain keywords which specify the type of data stored in the given data

set. The type speci�er keywords are: char, string, text, int, long,
oat,

double, void, and complex. The following combinations of keywords are al-

lowed: complex
oat and complex double, because they have a certain speci�c

meaning.

For any internal variable (i.e for a variable associated with the data set of

static class), the type speci�er keyword is considered as the declaration for

9

this variable. The memory allocation, the initialization, and (optionally) the

data type conversion occur for an internal variable according to the speci�ed

type. The default data type is void. The void variables receive the type of

the corresponding data unit (see the section "data units" of this manual).

The keyword void can be omitted for convenience.

For data sets speci�ed as extern, the non-con
icting type speci�er key-

words are simply ignored.

V. Subscripts for data name

The data name in a �le can be expanded by using subsripts. These

subscripts are required to specify optionally either the array dimensions, or

the particular element in an array.

The array subsripts can be prescribed to the name of data set in two

ways.

First, you can specify the array dimensions in the same way as they are

speci�ed in C language. In the C-style case, the dataname is followed with a

list of non-negative integer numbers and each number is enclosed within the

pair of square brackets, i.e within [and].

Consider the following example of named data sets:

static double array1D[3] = 7,77,777;

static int array2D[2][3] : 1,2,3,4,5,6;

Here, the �rst data set named `array1D' is declared as the double pre-

cision,
oating point, one dimensional array of three elements. In parsing

10

the �le, the corresponding static target will be initialized by �lling the array

elements consequently with 7,77, and 777. The name `array2D' introduces

the data set as the multi-dimensional array, declared as an "array of ar-

rays". This array consists from six integer-number elements. The elements

are stored in memory in the row-major order, i.e the last dimension index

varies faster than the previest dimension index. That is, the �rst element

will receive the value of the �rst data unit, array2D[0][0] = 1, the second

element will get the value of the second data unit array2D[0][1] = 2, and

array2D[0][2] = 3, and array2D[1][0] = 4, and etc.

Second, you can prescribe dimensions to the data set name using the

FORTRAN style declaration. In the FORTRAN style case, the data name

is followed with a list of integer numbers enclosed in parentheses, i.e within

`(' and `)'. within the parentheses, non-negative numbers representing the

dimensions must be separated from each other by commas.

Consider the same two data sets as discussed above in the case, when the

FORTRAN slyle declaration is used for name subscripts: declaration:

static double array1D(3) = 7,77,777;

static int array2D(2,3) : 1,2,3,4,5,6;

In this case, three data units consequently initialize all three elements of

the one dimensional array `array1D', i.e array1D(0) = 7, array1D(1) = 77,

array1D(2) = 777. The multi-dimensional array `array2D' contains six

integer number elements. The elements are stored in memory in the colomn-

major order, i.e the last dimension index varies slower than the previest

dimension index. That is, the �rst element will receive the value of the

11

�rst data unit, array2D(0; 0) = 1, the second element will get the value

of the second data unit array2D(1; 0) = 2, and array2D(0; 1) = 3, and

array2D(1; 1) = 4, and etc.

It is not allowed to prescribe array dimensions to data names using both C

and FORTRAN style declarations (for example, the following data set: `Garr

2[1] = 1; 2; 3; 4;' is illegal). The negative or
oating-point numbers in

the dimension list will cause a fatal parse error.

Note, that in the case6 when the data set corresponds to the internal

(i.e static) array target, subscripts denote the dimensionality of this array.

The empty pair of square bracket or empty parentheses are allowed. In this

case, the correspondent default dimension is set to unity. For example, the

data set `static complex abra[2][][5] = (2,3);' is equivalent to `static complex

abra[2][1][5] = (2,3);'.

The maximal number of array dimensions which can be assigned to the

data set name in a �le is equal to 3. This number is introduced by means of

macro-de�nition7 IDF FRMT DIM MAX.

In the case when data set has the extern class and corresponds to an

array declared in the user's code, the subscripts attached to the name in

6In earlier version of IDF, the assignment of array dimensions to the static class names

is not allowed and will result in a fatal error. There are also some restrictions on the type

of data units for static variables: the data can be represented only by data units of an

`arithmetic' type, i.e by the integer,
oating-point, complex, and formula units, and not

by the character, string, or text data units.
7Here and further in the text we will use the words: macro-de�nition or macros, to

denote the standard C preprocessor directive: #de�ne.

12

a �le denote the element in this array starting with which the stored data

must be imported. In other words, non-negative numbers given in data name

subscripts determine the o�set from the beginning of array. If no subscripts

are speci�ed, the data will be transferred to an array target assuming the

zero o�set.

Assume that upper case letters K, M , N denote three dimensions of an

array target in the user's program and that lower case letters k, m, n denote

three subscripts assigned to the data set name in a �le. In the case when

the target is declared as the C-style three dimensional array `[K][M][N]', the

FORTRAN-style subscripts `(k;m; n)' to the data set name de�ne the o�set

equal to N � (M � n+m) + k, whereas the C-style subscripts `[k][m][n]' give

the o�set N � (M � k + m) + n. In the case when the target is declared

as the FORTRAN-style array `(K;M;N)', the C-style subscripts `[k][m][n]'

de�ne the o�set equal to K � (M � k+m) +n, whereas the FORTRAN-style

subscripts `(k;m; n)' result in the o�set K � (M � n +m) + k.

If the integer number is omitted inside the pair of square brackets or

parentheses, it is assumed to be zero. If the number of subscripts assigned

to data name in a �le is less than the number of dimensions prescribed to

the target, the lacking name subscripts are assumed to be equal to zero.

VI. Comments

A piece of data source �le boardered by the character pairs /* and */ is

considered as the C-style comment. A comment can contain any combination

of characters including: white space, tabulation, line-feed, carriage-return,

13

form-feed, horizontal and vertical tabulation, and new-line characters. As in

C language, C-style comments in IDF can not be nested.

Comments can be placed in data �le anywhere a white space is allowed.

When parsing the data �le, IDF replaces a comment by a single white space

(in some cases this additional space symbol may a�ect the data import or

may generate a fatal error, for example, you can not break the data name or

the integer-number data unit with a comment).

IDF also recognizes the C++ style comment: a text beginning with two

consequtive forward slashes, //, and ending with a new-line symbol. The

C++ style comment can be a part of the C style comment.

VII. Representation of data in IDF data �le

In the data source �le, the numerous data are represented by means of ele-

mentary data units. Such data units express a decimal, octal, or hexadecimal

integer number, a character, a character string, a
oating-point number, or a

complex number in the literal form, i.e as a sequence of characters Hereafter

this representation of data unit will be referred to as S-value. The legal data

unit has its binary value, the R-value. The R-value can be related to one

or more variables, the type of which is speci�ed in C, C++, or FORTRAN

languages. Each data unit is evaluated, converted and imported (i.e assigned

to targets speci�ed in the user's program) by the IDF utility.

14

Data units

There are seven types of data units: character, string, text, integer,

oating-point, complex, and formula. This section explains how to de�ne

these data units.

Character data unit

Usually, the character data unit is represented by any printable ASCII

symbol (except the backslash and single quotation mark symbols) that is

enclosed in apostrophes. Between the apostrophes, a printable ASCII symbol

can be accompanied by white spaces (for example: two units, 'a' and ' a ',

express the same character a). The `empty' character unit (given by the two

consecutive apostrophes only) is not allowed.

Character data unit can be also expressed by some non-printable and non-

ASCII symbols or by an escape sequence, if they are apostrophes delimited.

Character unit based on the ANSI escape sequence is one of:

'na', 'nb', 'nf ', 'nn', 'nr', 'nt', 'nv', 'n' ', 'n" ', 'nn', 'n?', 'n0',

introducing respectively the ASCII characters for alert, backspace, form-

feed, new-line, carriage-return, horizontal and vertical tabulation, single and

double quotation mark, backslash, literal question mark, and end-of-string

(NULL) symbol. In other cases, when character unit body consists from the

backslash followed by any single symbol other than a digit or a, b, f , n, r, t,

v, x, ', ", n, ?, $, the backslash is ignored (for example, the sequence 'nc'

produces the ordinary character 'c').

15

IDF recognizes character units based on the octal and hexadecimal escape

sequences. The octal escape sequence starts with a backslash symbol followed

by one to three octal digits8. In the case when less than three digits form

the octal escape sequence, the escape sequence is automatically expanded

by adding zeroes from the left hand side (for example, the unit 'n41' is

equivalent to the octal escape sequence 'n041' and introduces the exclamation

mark symbol). The hexadecimal escape sequence starts with the backslash

followed by x or X, and thereafter, by one to three hexadecimal symbols9.

The R-value correspondent to the octal or hex escape sequences must not

exceed the eight bits of memory.

String data unit

The string data unit must be delimited in data �le by a double quotation

mark. This unit can contain any combination of printable ASCII characters

and those escape sequences which represent an ASCII characters. In order

to place the double quotation mark inside a string unit, the correspondent

ANSI escape sequence (i.e n") has to be used.

The string unit can occupy more than one line in a data �le using the

same string concatenation rule as that adopted in C language. The backslash

is considered as a string continuation mark, if newline symbol immediately

follows the backslash. In this case the backslash is ignored and the string

continues with the �rst character of the next line in data �le.

8The octal digit is one of: 0,1,2,3,4,5,6,7 .

9The hexadecimal symbol is one of: 0,1,2,3,4,5,6,7,8,9, a,b,c,d,e,f, A,B,C,D,E,F .

16

Text data unit

The text data unit is a series of characters enclosed in the pound sign

symbols (#).

Within a text unit, the IDF recognizes the so-called trigraph sequences.

As in C language, the trigraph sequence consists of three characters. The

sequence starts with two consecutive question marks followed by an ASCII

symbol which will be converted into the punctuation character. The following

nine trigraphs:

??= , ?? (, ??/ , ??) , ?? ' , ?? < , ?? ! , ?? > , and ?? �

will be replaced by the correspondent single ASCII characters:

, [, n ,] , ^ , f , j , g , and � .

So, in order to deposit the pound sign character in the text, the correspondent

trigraph sequence `??=' must be used instead of the pound sign symbol `#'.

Integer data unit

Integer data units can be represented as a decimal, octal, or hexadecimal

number. IDF follows a simple rule to distinguish between these three types

of numbers. By default, the integer unit is assumed decimal unless it starts

with 0. If the integer unit begins with 0x or 0X, it is assumed hexadecimal,

and it is octal, otherwise.

No delimiters required to introduce this unit in a data source �le, although

white space, comma, and some other symbols should be used in order to

separate data units in a �le.

17

Floating-point data unit

In general form, the
oating-point unit has a sign, integral and fractional

parts separated by decimal point, and optionally, an exponent. The integral

or fractional part can be omitted, but the rest part must contain at least one

digit. The exponent is expressed with a letter symbol (one of: e,E,d,D,g,G)

followed by a sign symbol (optional) and at least one digit.

For example, the following data units:

777, 777:, +777:0e + 0, 7:77d + 2, 77:7D + 01, :777g + 3, 77700G � 2,

introduce the same
oating-point value which is equal to 777.

No delimiters required for a single
oating-point unit in the data source

�le, but blank space and comma should be used in order to separate data

units in a �le.

Complex number data unit

The complex number is an ordered pair of
oating-point values. The com-

plex data unit is represented by two
oating-point units which express re-

spectively the real and imaginary parts: re and im, separated with a comma

symbol. The complex unit must be enclosed in parentheses, i.e (re; im), and

re and im must contain at least one digit. White space, tabulation, and

new-line symbols are allowed inside the parentheses.

Formular data unit

The formula data unit can be represented by: (i) any executable math-

ematical expression (a formula), (ii) the name of mathematical or physical

18

constant from the standard IDF list, and (iii) the name of any static data

set declared in the same data source �le.

The content of a formula data unit must be enclosed within the dollar

signs (by analogy with the TEX mathematics mode). Formular units cannot

be nested, but subjected to concatenation in the case when two or more units

are not properly separated.

VIII. Concatenation of delimited data units

In general case, if you are placing several data units on a line in the

data source �le, you must separate these units with blank space or comma

symbols. At the same time, if two or more consequtive data units have

di�erent type of delimiters, it is not necessarily to separate these units with

space or comma.

Concatenation rule is applied to data units delimited with ", ', #, and

$ symbols in the case when the identical type units are not separated with

white space, comma, or new-line symbols, or with a comment. For example,

the translation of string type union: "The"" Bea""tle""s", is equivalent to

the single string unit "The Beatles". The series of character units 'n ' 'x'

'26' is equivalent to the hexadecimal escape sequence 'nx26' which in turn

represents the single ampersand symbol. The concatenation of two formula

units $ sqrt(2) $$ ** 2 $ will result in the
oating-point constant equal to 2.

19

IX. Implicit repetition of data units

A union of data units enclosed within curly braces (i.e f and g) is called

data block. Data units in a block can have di�erent types and must be

properly separated by spaces or commas from each other. A block must

contain at least one data unit, the 'empty' block is not allowed. Data blocks

can be nested, i.e any block may appear within other blocks.

Consider the following example:

abc = f /* this data set introduces an alphabet. */

f 'a', 'b',"cdef"g, f"ghij","klmn", "oprq"g "rst",

'u'f"vw" "xyz"g

g;

Here the name `abc' is assigned to a data superblock. Superblock includes

a C-style comment and consists of three data blocks and a single string-type

data unit "rst". Each block contains three data units.

Data blocks in a series of blocks can be separated by a space or comma

separators, although it is not necessarily. Use comments inside and outside a

block where a space is lexically allowed. The appearence of: (i) consecutive

commas inside or outside the block, (ii) the semicolon inside the data block,

(iii) the openning brace followed by the comma, and (iv) the comma followed

by either the semicolon or by the closing brace, causes a fatal error (even in

the case when there are multiple spaces, comments, and tabulators between

these pairs of symbols).

Important feature of data block is that each block can be implicitly re-

20

peated. To repeat the block, you should use an expression in which data

block is multiplied at the left hand side by the repetition number. So, the

expression of the form:

XXX � data block ;

will be translated by IDF as "repeat XXX times the data block". The

repetition number XXX must be represented here by any positive integer

number (in decimal, octal, or hexadecimal notation). Multiple repetitions of

a block (for example: 1 � 2 � 3 � 4 � data block) are not allowed. Instead, you

can use the nested superblocks. For example, in the following expression:

1 � f2 � f3 � f4 � data blockggg, the data block will be repeated 24 times. If

no repetition number followed by asterisk is given, the block appears only

once, unless this block is a part of the super-block subjected to be repeated.

The zero repetition number makes the IDF utility to ignore the content

of correspondent data block (i.e in treating the data �eld, the zero times

repeated block will be simply skipped).

In the same way you can implicitly repeat any single data unit in a �le.

In order to demonstrate the implicit repetition of data unit and block,

consider respectively the following examples:

complexseven times seven : 7*(7; 0); // complex unit repeated 7 times

onetwo times three = 3*f1,2g; //repetition number is 3 for a block

Here, the data set named complexseven times seven contains seven identical

complex numbers. In the data set onetwo times twelve, the sequence f1; 2g

is repeated 3 times, i.e the resulting data input is as follows: 1,2,1,2,1,2.

21

X. Built-in mathematical and physical constants

IDF reserves special names for symbolic representation of widely-used

mathematical and physical constants. These names must be written with

the upper case letters. All built-in names start with a sequence 'IDF ' in

order to avoid their coincidence with data names given by a user. The list

of mathematical constants is given in APPENDIX I. The physical constants

are listed in APPENDIX II.

Being enclosed within dollar sign symbols, any special name constitutes a

data unit of the formula type. For example, the formula data unit $ IDF PI

$ based on built-in name IDF PI is equivalent to the
oating-point data unit

expressing the � number with a computer accuracy.

The special name can appear without delimiters inside the formula unit as

a member of mathematical expression. In this case, the special name replaces

the correspondent mathematical or physical constant in an expression.

XI. Built-in calculator

In general case the formula data unit is given by the mathematical ex-

pression including:

1) constants that represent the integer and
oating-point number by their

S-values;

2) algebraic operators;

3) references by name to the standard mathematical and physical con-

stants speci�ed in IDF, i.e the constants given by their R-value;

22

4) references by name to the R-values of static data sets de�ned by a user

elsewhere in the given data source �le;

5) names of built-in mathematical functions;

6) parentheses that delimit the list of function arguments, change the

precedence of enclosed operators, or delimit the S-value constants;

7) commas that separate the function arguments from each other.

The expression in formula unit does not contain an assignment operator.

The expression must be executable, its calculation must yield a single numeric

value.

In order to introduce the complex number constants by their S-value in

a formula, you must use the built-in functions: complex, cmplx, and polar

(see APPENDIX III). For example, the resultant R-value of the following

formula unit: $complex (1,2)$, is the complex number (1; 2), whereas the

formula expression $(1,2)$ is illegal.

The following operators are used in algebraic expressions: '+' for addition,

'�' for subtraction, '�' for multiplication, '=' for division, and '^' or '��' for

exponentiation. All employed operators are binary operators, i.e they operate

on the pair of operands. Except the exponentiation, all other operators

associate from left to right. The computation of a binary expression results

in the R-value.

Two algebraic operators must nowhere appear together in a formula.

Most frequently, operators tend to appear together in the case when the

algebraic operator is followed by a negative valued constant expression. To

avoid fatal error, use parentheses to separate the negative constant in this

23

case. Unlike to C or FORTRAN, each S-value constant or a reference by

name can be enclosed in the single or multiple parentheses, for example: $

(0)+((10))�(2) $, $ (�2)^((�1)) $, $ (IDF PI)��(3) $, and $ (1+(sqrt((2))))

$, . Nonessential parentheses do not a�ect the result and will be simply ig-

nored by the calculator.

In evaluation of mathematical expression, algebraic operators range in

their precedence. Plus and minus operators have the lowest precedence. If

the expression contains operators other than '+' or '�', the addition and

subtraction will be performed the last. Multiplication and division operators

have the higher precedence than '+' and '�' operators. The precedence of

the exponentiation operator is the highest. If a series of operators have an

equal precedence, they are evaluated according to their associativity. The

parenthesis may change the order of precedence for any operator.

All S-value constants entering the expression are converted either to the

long integer or to the double precision
oating-point (type double) constant.

All mathematical computations are performed in double precision.

The type conversion of operands may occur even if both operands in a

binary expression have the same data type. For example, to compute the

function argument in the following expression: $sqrt(1 + 5000000000)$,

the addition of integers will be replaced by the addition of
oating-point

numbers by conversion of each integer to the double precision
oating-point

value. In this case, the direct addition of integer numbers will cause an

over
ow in the resulting integer value.

If operands entering the binary expression have di�erent data types, the

24

type conversion occurs before this expression will be evaluated. In the case

when one of operands is a complex number, the other operand will be con-

verted to the complex number (the converted complex number consists of the

real number and the zero imaginary part). The execution of complex binary

expression results in the complex number value. If integer and
oating-point

numbers constitute the binary expression, the integer number will be con-

verted to the
oating-point number. This binary expression results in the

double precision
oating-point number.

The built-in functions enter the expression in the same way as in C or

FORTRAN languages. The name of function is followed by the parenthesized

list of expressions correspondent to actual arguments of a function. A comma

is used to separate the adjacent argument expressions of a function. The

actual argument can be represented by any executable expression including

those expressions which use the called function again.

Functions can be nested, i.e any function may serve as an argument of

another function (for example: $ real(sqrt(exp(complex(1:0 + pow(2; 3);

IDF PI)) $). The call of a function without arguments or with a variable

list of arguments is not allowed.

The full list and the description of built-in mathematical functions is

given in APPENDIX III.

On using the function in mathematical expression, the type conversions

may occur when: (i) the built-in function is directly responsible for the type

conversion, such as int, long, double, complex, and cmplx functions; (ii) the

unlike type value is passed as an argument to a function; and (iii) the value

25

returning by any other built-in function is subjected to further conversion

according to the expression syntax.

In computing complicated expressions, the type of the resultant R-value is

given by the last executable binary expression (for example, the result of $ 1+

int(cmplx(1)) $ is an integer number, whereas the result of $ 1+cmplx(1) $ is

a complex number), or by the last function call (for example, the last function

that will be called in the expression: $ real(sqrt(complex(1;IDF PI))) $,

is real() and hence the resulting value has a storage type double).

The IDF calculator analyses the expression given in data �le in the order,

from left to right, searching for tokens (operands, constants, opening and

closing parentheses, commas, and functions). Tokens are coded and stored

until the accumulated expression can be completely executed or simpli�ed

by an execution of any its part. The maximal number of thus accumulated

tokens is set to 100 by the macro-de�nition IDF FORM ELM MAX.

Performing algebraic calculations, the IDF takes precautions against the

over
ow of
oating-point number, the improper values of function arguments,

and etc. IDF generates the correspondent error message before these errors

occur.

XII. Parse of IDF data �le

As soon as a user calls the special IDF function to open the data source

�le, IDF runs through this �le searching for the data sets.

26

Insodoing, the IDF utility:

1) scans characters in the name �eld up to the �rst appearance of the as-

signment mark ('=' or ':');

2) skips comments and insigni�cant characters which may appear in the

name �eld (such as the newline or carriage-return symbols, the nonessential

consequent blank spaces and tabulators which may surround a name, etc);

3) splits the name �eld into three parts: the keywords, the data name, and

the subscripts;

4) determines the scope class (static or extern) for a current data set;

5) determines the type of data set and its dimensionality;

6) stores (in the catalog) the name and some other information about the

current data set;

7) if data set has extern class, skips the data �eld corresponding to the

current data name up to the �rst appearance of semicolon (;) symbol;

8) if data set is static, parses the data �eld, evaluates, and stores the values

of each data unit in the �eld;

9) continues with the next data set until the end of �le will be reached.

As a result, the IDF utility creates two catalogs for the given input �le.

The �rst catalog contains names and data R-values for all data sets spec-

i�ed in �le as static10. The second catalog contains information about all

data sets speci�ed as extern. This information includes the data set name,

the o�set prescribed by data name subscripts, and the starting position of

10The total number of static variables given in �le must not exceed 50, as speci�ed by

the macro-de�nition IDF NAME LISTL N.

27

corresponding data �eld in the �le11.

On the user request, IDF imports data from the named data set. A user

calls the special IDF function using the data set name as an argument of this

function. The IDF function, �rst of all, searches this name in the catalog.

If the name is found in the catalog, this utility positions the input �le at

the beginning of data �eld associated with a given name. After that, the

function parsing the data �eld iteratively, from data unit to unit.

When parsing the data �eld assigned to the data name, the IDF utility:

1) scans characters in the data �le starting with assignment mark ('=' or

':') until the end-of-�eld mark (i.e semicolon, ';');

2) searches for data units returning at the beginning of the data unit

block, if the end of the block (i.e. right brace, 'g') is reached and data units

should be repeated;

3) removes comments and insigni�cant characters which may appear in

the data �eld;

4) performs concatenation of data units, if it is required by a syntax;

5) if data unit is found, determines the type of data unit;

6) analyses the content of data unit, removes delimiters and any insigni�-

cant characters (for example: string continuation marks, newline or carriage-

return symbols, consequent blank spaces and tabulators which may surround

a number, and etc). In treating integer,
oating-point, complex, and formula

11The total number of external data sets given in �le must not exceed 50, as speci-

�ed by the macro-de�nition IDF NAME LIST N. In the excess, IDF stops execution and

generates the error message.

28

units, IDF removes any kind of comment and replaces the comment with

a single blank space. At the same time, IDF does not recognize comments

placed inside the character, string, and text data units, i.e in between the

', ", and # delimiters (for example, in treating a character type data unit:

'n t/*this is an improper place for comment*/', IDF will generate an error

instead of importing the single tabulation symbol);

7) stores in memory signi�cant characters of data unit (except for the

formula unit) for a time of further analysis and conversion;

8) converts the sequence of signi�cant characters into a character, another

character sequence, or a binary value according to the type of data unit;

9) performs mathematical calculations, if the data unit has a formula

type, hence, converting the formula into the single binary value;

10) stores the obtained temporary R-value in the appropriate type vari-

ables (that provide the nominal accuracy for data representation) until this

R-value will be transferred to the user's target.

In parsing the character unit, IDF searches for the signi�cant character

(white spaces are ignored in the case when the character unit contains any

other ASCII symbol) or for the escape sequence. Escape sequence is replaced

by its character or numerical equivalent. The result is temporary stored as

an unsigned int variable.

In treating the string type unit, all escape sequences are replaced by their

ASCII character equivalents. If the input string explicitly contains horizontal

tabulation, this symbol is replaced by the equivalent number of blank spaces.

The string unit input terminates at the �rst appearance of NULL character

29

(i.e n0). If the input string does not contain the NULL character, it will

be automatically added to the end of the resulting string. The maximal

length of the resulting string is limited to 328 (a number given by the macro-

de�nition IDF DBUF LENGTH), and IDF will generate an error message

for more lengthy string unit input from a �le.

Except the trigraph case, the IDF re-writes the content of a text unit "as

is", i.e without any kind of conversion. The length of any text unit is also

limited to IDF DBUF LENGTH bytes.

The search algorithm for integer and
oating-point units in the data �le

is more complicated than the search algorithm for a delimited data units.

In skipping the leading spaces and tabs, the integer (or
oating-point) unit

can start either with a digit, or with the plus '+', minus '�', and decimal

point ':' symbols. These units end properly with the �rst appearance of:

(i) the semicolon (i.e ';') symbol which signals the end of data �eld, (ii)

any space symbol (including the new-line and carriage-return), (iii) any kind

of comment, (iv) the comma, (v) the curved braces, and (iv) optionally, the

delimiter symbol which starts another data unit. If data unit does not contain

the decimal point, the exponent part, and its value by modulus is less than

the maximal long int number, the data unit content will be converted into

an integer constant and stored temporary as long int variable. In any other

cases, the unit will be converted into double precision
oating-point constant

and stored in a double variable.

When processing the complex number unit, IDF consequently search for

two
oating point numbers that are separated by comma. In success, IDF

30

stores the result of conversion in an array of two elements of the type double.

In treating the formula unit, the IDF utility substitutes the constants

referenced to by their symbolic names and evaluates the mathematical ex-

pression using the built-in calculator. The resultant value is case dependent,

it can be represented by either integer,
oating-point, or complex R-value.

On the parse phase, the data unit gets its raw S-value and then converted

into the temporary R-value. The further conversion and assignment of R-

value to the user's target depend on the type of a target as will be discussed

later.

The IDF utility stops executing when a fatal error occurs. It may be any

parse, mathematical, �le reading, or type conversion error. IDF generates

an error message which usually consists of more than one line. Normally,

the error message provides enough information to determine the cause of an

error. In some cases, it contain the character which was inconsistent with

the data representation rule, or the S-value of an improper data unit. The

message also includes the data set name and its location in a �le, the starting

position of the data �eld, and the position current data unit. The position

in �le is given by three numbers: (1) the o�set in bytes from the beginning

of data �le; (2) the line number, and (3) the column number. If an error

appears in formula, IDF displays the list of accumulated tokens. The user

can then invoke a text editor to correct (in the data source �le) the text

which caused an error.

31

XIII. Targets

Target is the �nal destination for the data stored in �le. The target

can be a single variable, a pointer, or an array, anywhere declared in the

users code. Declared targets have di�erent types representing the character,

integer, or
oating-point objects. A more complicated targets can be given by

a sequence of unlike type objects with a known rule for positioning of objects

in the common memory segment. Such a targets may be the structures12 in

C and C++ languages, or the common blocks in FORTRAN.

In order to import the named data set from a �le, a user must specify the

correspondent target in symbolic form by means of the Target String. Each

Target String in IDF must have the syntax described in this manual.

The Target String is represented by ASCII character string and consists

of the following characters:

1) target type symbols: 'c', 's', 't', 'i', 'l', 'f', 'd', 'z', and 'w' (these symbols

can be also written in capital letters);

2) special symbols: %, #, &, and @;

3) digits representing any positive integer number written in decimal form;

4) parentheses, commas, or square brackets ([and]) that are used in order

to specify the array subscripts;

5) curved brackets (f and g) and asterisks (*) that are used to express the

12some dialects of FORTRAN language also include structures, for example: the VAX

FORTRAN in VMS Version 5.0 or higher and the FORTRAN-90, Microsoft Fortran Power

Station. The structures declared in FORTRAN program can also serve as a target for the

IDF package.

32

implicit repetition of target unit in a string;

6) blank spaces and tabulators;

7) commas which separate the target units;

8) semicolon (;) and NULL (`n0') characters, with which the target string

ends.

All other characters must not appear in the string. The blank spaces and

tabulators are non-essential and will be ignored by the Target String parser.

The letters (c,s,t,i,l,f,d,z,w) are used as a keywords in the Target String.

The stand-alone letter from this list denotes the single object of speci�c type.

The same letter may represent an array or a pointer of the similar type, if

it is used with subscripts or in the combination with special symbols. For

structured targets, the Target String may contain a sequence of keywords.

Single object target

At present, IDF recognizes nine types of objects represented in the Target

String by the following letters: 'c', 's', 't', 'i', 'l', 'f', 'd', 'z', and 'w'. Each

type from this list corresponds to the particular data type speci�ed in C

and FORTRAN languages. An important characteristic of each type is the

amount of bytes required to represent the corresponding object in memory.

Type c:

This type characterized the single character object which is a one byte vari-

able. It corresponds to an object X declared as `char X;' in C language, as

`character*1 X' in FORTRAN-77, and as `character(1) X' in FORTRAN-90.

33

Type s:

This type corresponds to an object which is a string variable. It is declared

as an array of characters. The total number N of characters in the string

(including the end-of-string symbol) must be speci�ed. This type object X

occupies N bytes of contiguous memory and is declared as `char X[N];' in C

language, as `character*1 X(N)' (or, `character*N X') in FORTRAN-77, and

as `character(N) X' in FORTRAN-90.

Type t:

This type characterizes the object declared as an array of characters. The

total numberN of characters must be speci�ed. This type objectX occupies

N bytes of memory and is declared as `char X[N];' in C language, as `char-

acter*1 X(N)' (or, `character*N X') in FORTRAN-77, and as `character(N)

X' in FORTRAN-90.

Type i:

This type represents the integer number, default declaration of which requires

4 bytes of memory. The correspondent object X is declared as `int X;'

in C language, as `integer*4 X' in FORTRAN-77, and as `integer(4) X' in

FORTRAN-90.

Type l:

This type represents the long integer number which normally requires 4

bytes of memory13. The correspondent object X is declared as `long int

X;' in C language, as `integer*4 X' in FORTRAN-77, and as `integer(4) X'

13Depending on the computer and C compiler, an integer variable declared in C as long

int may require the 8 bytes of memory

34

in FORTRAN-90.

Type f:

This type represents the single precision,
oating-point number which occu-

pies 4 bytes of memory. The correspondent object X is declared as `
oat X;'

in C, as `real*4 X' in FORTRAN-77, and as `real(4) X' in FORTRAN-90.

Type d:

This type represents the double precision,
oating-point number which re-

quires 8 bytes of memory. The correspondent object X is declared as `double

X;' in C, as `real*8 X' in FORTRAN-77, and as `real(8) X' in FORTRAN-90.

Type z:

This type represents the complex number given by two single precision,

oating-point numbers. The correspondent object X occupies 8 bytes of

contiguous memory and is declared as `
oat X[2];' in C language, as `com-

plex*8 X' in FORTRAN-77, and as `complex(4) X' in FORTRAN-90.

Type w:

This type represents a complex number given by the pair of double precision,

oating-point numbers. The correspondent object X requires 16 bytes of

contiguous memory. This object can be declared as `double X[2];' in C, as

`complex*16 X' in FORTRAN-77, and as `complex(8) X' in FORTRAN-90.

The stand-alone keyword: c,i,l,f,d,z, or, w, in the Target String repre-

sents directly a single object of given type.

35

Array target

Array, as the IDF target, is de�ned as a group of like type variables.

The elements of an array are stored in memory contiguously in an increasing

order, from the �rst element to the last. Array can be composed from single

targets of the following type: s, t, i, l, f, d, z, and w. Note, that `single'

targets of type s and t are the arrays by de�nition.

One-dimensional array, as a target, can be speci�ed in the following form:

% number of elements target type symbol

where target type symbol is the keyword (one of: s, t, i, l, f, d, z, w, written

in upper and lower cases), number of elements is the positive number writ-

ten in the decimal form, and the percent sign (%) is used in this expression as

the left-hand separator (optionally, % can be omitted). For example, Target

Strings: "%100t" and "%6f", characterize respectively the text string of 100

characters, and the one dimensional, single precision array consisted of six

elements.

You can also use either C, or FORTRAN syntax to prescribe dimensions

to the target array (in the same manner as it has been discussed in the section

"Subscripts for data name").

In the C-style case, the name is followed with a list of non-negative integer

numbers, and each number is enclosed within the pair of square brackets, i.e

within [and]. For example, Target Strings: "w[2][3]" and "s[100]", de�ne

respectively the two dimensional array consisted of six elements which are

the double precision,
oating-point, complex numbers; and the literal string

36

of 100 characters.

In the FORTRAN style case, the name is followed with a list of integer

numbers enclosed in parentheses, i.e within (and). Inside the parentheses,

the non-negative numbers representing the dimensions must be separated

from each other by commas. For example, Target Strings: "i(2000)" and

"d(2,3,4)", describe respectively the one dimensional array of integer numbers

and the three dimensional array of double precision
oating-point numbers.

You can de�ne array targets in the generalized form:

% number of elements target type symbol subscripts

In this case, the number of elements will be interpreted as an additional

array dimension. For example, the real dimensionality of arrays in Target

Strings: "%10i[2]", "%30s[20][10]", and "%4z(2,3)", correspond to "i[10][2]",

"s[30][20][10]", and "z(2,3,4)", respectively.

Pointer target

Pointer is a variable which stores the address of an object to which the

variable points. Normally, the pointer itself requires 4 bytes of memory14.

The special symbols: ampersand (&) and at sign (@), are used in order

to declare a pointer target in the Target String.

Consider the following examples in order to illustrate the speci�cation of

pointer targets.

14The size of memory required to represent a pointer may depend on the compiler, and

the pointers to di�erent type objects are not necessarily have the same size.

37

case 1:

< % > & target type symbol

case 2:

< % > & < number of elements > target type symbol < subscripts >

case 3:

< % > @ target type symbol

case 4:

< % > @ < number of elements > target type symbol < subscripts >

In all four cases considered here, the angled brackets are used to show that

the enclosed item can be optionally omitted.

In the �rst and second cases, the ampersand (&) symbol is considered as

an address-of operator which takes the address of an object which followed

this operator. (in analogy to the similar operator in C language). The target

(case 1) is a pointer variable which stores the address of single object of

the given type target type symbol = c,i,l,f,d,z,w. The target (case 2) is

a pointer variable which points to an array of the target type symbol type

objects. In these two cases, the object must exist, i.e the user must allocate

the correspondent amount of memory and assign the address to the pointer

variable.

In cases 3 and 4, the at sign (@) quali�es the target as a pointer. In

these cases the object must not exist. The @ sign tells the IDF utility to

allocate the correspondent amount of memory and to assign the address to

the pointer variable.

IDF does not support the targets which are de�ned as the nested pointers,

38

i.e Target Strings: "&&i", "@&z[100]", "@@w", "%&&&&10d", are illegal.

XIV. Speci�cation of multi-object target

The multi-object target consists of one or more target units. Each target

unit can be written in the Target String in the following generalized form:

<%> <#> <@ or &> <integral number> object type symbol <subsripts>

which represents the variety of targets which have been discussed in the

previous section.

Comma is a valid separator for target units in the Target String. At

the same time, two or more consequent commas appeared in a String cause

the fatal error. Any number of consequent blank spaces or tabulators will be

simply ignored. The usage of commas is illustrated by the following example:

"100s, 100d(10,2), 5i[3][2]".

Fictitious target unit

The pound sign (#) is an additional symbol which may appear in the

multi-object Target Srting. This symbol quali�es the target as a '�ctitious'

target. Fictitious target means that the target is declared in the user's pro-

gram, but at the same time, the corresponding named data set contains no

data units associated with this target. When parsing the Target String, IDF

ignores the �ctitious target unit only in the sence that IDF associates no data

units with this target, but IDF takes into account the presence of a �ctitious

target unit for calculating the address of other target units in the common

39

memory. You can use the �ctious target units in order to assign values to

the selected members of multi-object target.

Repetition of target unit in the Target String

In the case when the target unit starts with the special quali�er symbol

(%,@,#, or &), the positive decimal integer number preceding this unit is

considered as the repetition number for the whole target unit.

The repetition rule can be illustated by the following examples. Ac-

cording to this rule, the Target String "3%@100s[20]is equivalent to the

String: "%@100s[20]%@100s[20]%@100s[20]%d", where the �rst target unit

`%@100s[20]' is repeated three times. The following Target Strings: "5&d",

"10%i", "3%5z[10]", are written in the much shorter form than the corre-

spondent Target Strings: "&d &d &d &d &d", "iiiiiiiiii", "%5z[10], %5z[10],

%5z[10]".

It is important to note, that because of alignment rules (see the next sec-

tion), the Target String "3%c%d" is not necessarily equivalent to "c[3]%d", as

well as the String "100%i,#d,3%i#d" is not the same as "i[100],#d,i[3],#d"

or "i[103]".

Block of target units

The block of target units is de�ned as one or more target units enclosed

within the curly braces (f and g).

40

The content of a block can be repeated in the Target String in the fol-

lowing way:

XXX f target unit <;> target unit <;> ::: g

where XXX denotes any positive integer number written in decimal form.

The target blocks can be nested, i.e one block may be a member of another

target block, for example: "s[100]f6%d[4], 10f&s[100]@i[3]f#&z,dgg&wg".

You can enclose any target unit within the nested braces. The following

Target String: "2f3f4f5dggg", which contains the multiple repetitions of

the d-type target unit, is equivalent to String "120d".

XV. Alignment rules for multi-object target

The multi-object target characterizes the aggregate, the group of vari-

ables, pointers, or arrays stored together in memory. The members of the

group may be of di�erent types (i.e c,s,t,i,l,f,d,z,w). Such a target can be a

structure or a common block declared in the user's program. The members

of an aggregate are represented in memory consequently in an order as their

names are given in the declaration list. The �rst member of the group has

the lowest address and the last member has the highest address in group

memory. The starting position for each member in group memory depends

on the speci�c alignment rule used by a compiler to handle this group. In

general, the alignment rule may depend on the type of members consisting

the group. In the case when the group consists of unlike type members, the

group memorymay contain an unnamed spaces, the holes. At the same time,

41

if the group contains the array member, the elements in an array immedeately

follow each other in group memory.

The alignment rule can be chosen by a compiler, according:

1) to the default compiler settings taking into account the processor percu-

liarities;

2) to the command-line option of a compiler, for example: /Zp option for

the Microsoft C/C++; -member alignment and /Zp options for DEC C

compilers; -dalign option for SUN FORTRAN compiler; or -align option

for DEC UNIX FORTAN compilers;

3) to the `packing' directives de�ned in C or FORTRAN languages, which

control the aligmnment of members of an aggregate object.

The alignment rule introduces the alignment boundary (or, in general

case, the boundaries for each particular type of group members). Most fre-

quently, the members (of structure or common block) are aligned in memory

on the boundary which is the smaller of their own size or the speci�ed packing

size.

Some programming languages include the compiler directives which con-

trol the position of structure members in the computer memory. In C and

C++ langauges such a directive is that given by the macros: `# pragma

pack (Npack)'. In FORTRAN-90 the correspondent directive is the `$

PACK: [Npack]' directive. These directives tell a compiler to use one of

simple packing rules15. The `pack' type directives specify the packing size

15The directives given within the source code of a user program override the settings

established by the command-line option. At the same time, the compiler's manuals give

42

in terms of integer value Npack that is a power of two. The integer value

Npack is passed as the macros argument to the compiler and characterizes

the number of bytes to pad in order to align the data. The smaller Npack,

the more compact the members of structure are packed in computer memory.

At the same time, the performance may get worser for small Npack values

(in particular, the time for accessing the members increases). The smallest

Npack is zero, this value tells compiler to align the data on the byte bound-

ary, i.e without any holes in memory between the members of structure or

common block. The biggest Npack = 9 o�ers compiler the alignment on the

page boundary, i.e the alignment of 29 = 512 bytes.

To specify the boundary for data alignment, you can also use the follow-

ing terminology. The value Npack = 0 corresponds to the byte boundary.

The word, longword, quadrword, octaword, hexword, and page boundaries

correspond, respectively, to the Npack = 1; 2; 3; 4; 5; 9 values.

Since the alignment rule may depend on the particular multi-object tar-

get, the processor, and the compiler, this part of IDF is the most intricated.

The user must use IDF in this case with a caution. The data import breaks

down with a fatal error, if the alignment rule chosen by the user for a tar-

get is incorrect. The IDF function responsible for the alignment control is

written as the well isolated function which can be easily modi�ed taking into

acccount the additional perculiarities of your processor and compiler.

The variety of alignment rules the IDF utility handles by means of input

parameter align mode. In order to import the data stored in a �le, a user

no warranty that the compiler will follow the `pack' directive rule.

43

must specify the value of align mode parameter along with the Target String

for each particular multi-object target. The integral values of align mode

correspond to the alignment rules considered below.

align mode=0:

In this case, the target members are aligned on the byte boundary, i.e without

any holes in memory between the members of structure or common block.

align mode=1,2,3,4,5,6:

In these cases, the members (of structure or common block) are aligned in

memory on the boundary which is the smaller of their own size or the speci�ed

alignment boundary. The speci�ed boundary is the word (align mode = 1

), longword (align mode = 2), quadword (align mode = 3), octaword (

align mode = 4), hexword (align mode = 5), or page (align mode = 6)

alignment boundary.

align mode=7:

The target members are aligned on their natural boundaries, that is, on

the next free boundary appropriate to the type of member. The character

type members (c,s,t) are alingned on the byte boundary. The integer type

members (i,l) are normally aligned on the longword boundary as well as the

oating-point type members (f,z). The quadword boundary corresponds to

the double precision type members (d,w).

align mode=8,9,10,11,12,13:

The target members are aligned according to prescribed packing size, Npack.

The prescribed alignment boundary is the word (align mode = 8), longword

44

(align mode = 9), quadword (align mode = 10), octaword (align mode =

11), hexword (align mode = 12), or page (align mode = 13) boundary.

XVI. Import of named data set

IDF utility reads an input text �le and imports the named data sets,

name by name, in an order speci�ed by a user.

In the simplest case when target is a single object, IDF reads the �rst data

unit located imedeately after the data set name in �le. The correspondent

R-value is converted according to the target type and then assigned to the

target. The rules for R-value to target type conversion are as follows: (i)

the character R-value is equivalent to the type c target; (ii) the R-values

of string and text data units corresponds to both s- and t-type targets ;

(iii) the usual conversions of types (integer to
oating point,
oating-point

to integer, single to double precision) may occur when R-values of integer,

oating-point, complex, and formula data units are assigned to `arithmetic'

type target (i,l,f,d,z,w). Any attempt to assign the character R-value to

`arithmetic' type target or the 'arithmetic' type R-value to character type

target (c,s,t), will cause the fatal error.

When string or text R-values are delivered to the s and t targets, the

import of characters �nishes if either the data unit content is exhausted or

the last element of this target unit is imported.

If the set of R-values is assigned to an array target, the �rst R-value in

the set is assigned to the �rst element of array, the second R-value is assigned

to the second element of array, and so on, until either the set of data units

45

is exhausted or the end of array is reached. If the set does not use all the

values given in data �le, the remainder data units are ignored.

When subscripts are added to the data name in a �le, they specify the

element in an array target starting with which R-values should be imported

from a given data set. In this case, IDF calculates the o�set from the be-

ginning of array (for the multi-dimensional arrays, a user must specify the

Target String in order to introduce the dimensions of an array) and the cor-

respondent number of elements will be left in the target before parsing the

data set.

The IDF utility transfers data to the multi-object targets consequently,

on the one-to-one basis, that is the value of each data unit will be assigned

to the correspondent target unit in an order as the data units followed the

data name in a �le and as the target units are speci�ed in the Target String.

The R-value of each data unit will be converted (according to the target type

given in the Target String) and assigned to the current target (the position

of target in memory is calculated according to the speci�ed alignment rule,

i.e align mode). The import of data �nishes if either the list of target units

or the sequence of data units in �le get exhausted, whichever happens �rst

(but, at least one value must be imported).

XVII. IDF functions to be used in the C program

The names of all IDF functions to be called in a user's C program start

with the sequence of four characters `idf '. The prototypes of these functions

are given in the header �le "idfusr.h".

46

The IDF functions must be called in the proper order. The function

idf init is called the �rst, in order to activate the IDF package. The idf open

function should be called the next to open the IDF data source �le for input16.

In success, you can use a variety of IDF functions to transfer the data stored

in the current �le to di�erent targets declared in your program. Any attempt

to import data from the unopened �le will result in a fatal error. The function

idf close closes the current data �le. The last function to be called is the

idf �nish17.

At an error, the IDF functions idf init, idf �nish, idf open, and idf close

automatically generate the error message, if the macros IDF MISTAKE is set

non-zero. If IDF MISTAKE is de�ned as zero, you should call the idf err prn

function to obtain the correspondent error message. If any kind of error

occurs, all other functions responsible for data transfer from �le to targets

display the error message automatically.

idf init

This function initializes some global IDF variables and allocates memory

used by other functions of IDF package. Synopsis:

int idf init();

The idf init function receives no arguments. It returns zero in success and

the positive integer number in the case of an error.

16Only one IDF source �le can be opened at once. If you want to import data from

another �le, you should close the previously onepened �le and continue the IDF input

with the idf open function for the next input �le.
17If it is necessary to continue the IDF input after the idf �nish was called, you must

start IDF again by calling the idf init function.

47

idf �nish

The idf �nish function sets to zero all global IDF variables and de-allocates

the memory which has been previously reserved for IDF with the help of

idf init function. Synopsis:

void idf �nish();

This function receives no arguments and returns no value.

idf open

This function openes the speci�ed IDF data source �le for input. It also

parsing the �le and creates two catalogs (for static and external scope data)

of data names given in this �le. Synopsis:

int idf open(char *Fname);

This function has one argument, Fname, which is a string containing the

name of the input data �le to be opened. It returns zero in success and the

positive integer number at an error.

idf close

This function closes the IDF data source �le (if any �le has been opened with

idf open function). Synopsis:

void idf close();

This function receives no arguments and returns no value.

idf err prn

This function prints the error message for any error associated with the

memory allocation, with the opening, reading, and parsing the IDF data

source �le, and with the creation of catalogs for data names. Synopsis:

48

void idf err prn();

This function receives no arguments and returns no value.

idf c, idf uc, idf u

These functions import the named data set from a �le for the single char-

acter target declared in the user's program as char, unsigned char, and

unsigned int, respectively. Synopsis:

int idf c(char *name, char *Pobj);

int idf uc(char *name, unsigned char *Pobj);

int idf c(char *name, unsigned int *Pobj);

The �rst argument of the function, name, is the string containing the name

of data set to be imported. The second argument, Pobj, is the address of

an object. Each function returns zero in success. At an error, the function

returns a positive integer number (the error code). It also displays an error

message in the case of error.

idf i , idf l , idf f , idf d , idf z , idf w

These functions import the named data set from a �le for the single object

target corresponding to the type i,l,f,d,z, and w, respectively. Synopsis:

int idf i(char *name , int *Pobj);

int idf l(char *name , long *Pobj);

int idf f(char *name ,
oat *Pobj);

int idf d(char *name , double *Pobj);

int idf z(char *name ,
oat *Pobj);

int idf w(char *name , double *Pobj);

49

The �rst argument of a function, name, is the string containing the name

of data set to be imported. The second argument, Pobj, is the address of

an object of the given type for i,l,f,d targets and the address of the �rst

element of an array for the z- and w-type targets. Each function returns

zero in success. In the case of error, the fuction returns a positive integer

number and displays the corresponding error message.

idf s , idf t

These functions import the named data set from a �le for the character string

(s) and text (t) type targets, respectively. Synopsis:

int idf s(char *name , char *Str , int nelem);

int idf t(char *name , char *Str , int nelem);

The arguments of these functions are: name is the string containing the

name of data set to be imported; Str is the address of the �rst element in the

character string; nelem is the maximal number of characters in the string.

Each function returns zero in success and the positive integer number in the

case of error. At an error the function displays the error message.

idf iarr , idf larr , idf farr , idf darr , idf zarr , idf warr

These functions import a named data set from the current data �le for the

one-dimensional array target corresponding to the type i,l,f,d,z, and w, re-

spectively. Synopsis:

int idf iarr(char *name , int *Arr , int nelem);

int idf larr(char *name , long *Arr , int nelem);

int idf farr(char *name ,
oat *Arr , int nelem);

int idf darr(char *name , double *Arr , int nelem);

50

int idf zarr(char *name ,
oat *Arr , int nelem);

int idf warr(char *name , double *Arr , int nelem);

Each function from this list receives three arguments: name is the string con-

taining the name of data set to be imported; Arr is the address of the �rst

element of an array; nelem is the maximal number of elements in an array (for

complex number targets, z and w, each element in an array consists of two

numbers). The function returns the number of imported elements in success.

It returns the negative number at an error and displays the correspondent

error message.

idf get array

This function imports a named data set from the current �le for the multi-

dimensional array target. Synopsis:

int idf get array(char *name, char *TS, void *Ptarget);

The arguments are as follows: name is the string containing the name of

data set to be imported; TS is the Target String; Ptarget is the address of

to the array target. The dimensionality of an array must be speci�ed using

subscripts to the target type speci�er in the Target String. The subscripts

can be also added (within a �le) to the name of corresponding data set. In

this case, the data set name subscripts denote the o�set from the beginning

of an array target (i.e the particular element in an array target starting

with which the stored data should be imported). The function returns the

number of imported elements in success. At an error, the function returns

the negative number and displays the correspondent error message.

51

idf get

This function imports a named data set from the current �le and transfers

data to the arbitrary target. Synopsis:

int idf get(name , TS , align mode , Ptarget);

char *name, char *TS, int align mode, void *Ptarget;

The function arguments have the following meanings: name is the string

containing the name of data set to be imported; TS is the Taget String;

align mode is the parameter de�ning the alignment rule; Ptarget is the ad-

dress of the target. In success, the function returns the number of imported

elements. In the case of error, it returns the negative number and displays

the correspondent error message.

Examples of IDF usage in the C program

The following sample program written in C language demonstrates the

data import from external �le with the IDF package. In this program, all

targets are the single variables and arrays. For each target, IDF imports the

corresponding data set according to its symbolic name.

#include <stdio.h>

#include "idfuser.h"

int main()

/* The �rst sample program in C */

f

/*initialization of input IDF data �le String*/

static char Fname[] = "couette.dat";

/* declaration of input parameters */

52

double Lz,Pr[3];

oat Knu,Uw,Tw;

int Nz,Nv[2];

int ier;

/* start the IDF package */

ier=idf init(); if(ier) goto er;

/* open the data �le */

ier=idf open(Fname); if(ier) goto err;

/* reading the data from �le */

ier=idf d("Lz", &Lz); if(ier) goto err;

ier=idf f("Knu", &Knu); if(ier) goto err;

ier=idf f("Uw", &Uw); if(ier) goto err;

ier=idf f("Tw", &Tw); if(ier) goto err;

ier=idf darr("Pr", Pr , 3); if(ier!=3) goto err; ier=0;

ier=idf i("Nz", &Nz); if(ier) goto err;

ier=idf iarr("Nv", Nv , 2); if(ier!=2) goto err; ier=0;

/* print the imported data sets*/

printf("Lz=%12.3e Knu=%12.3enn",Lz,Knu);

printf("Uw=%12.3e Tw=%12.3enn",Uw,Tw);

printf("Pr=%12.3e, %12.3e, %12.3enn",Pr[0],Pr[1],Pr[2]);

printf("Nz=%5d Nv=%5d, %5dnn",Nz,Nv[0],Nv[1]);

/* close the data �le */

err: idf close();

/* �nish the IDF */

er: idf �nish();

return ier;

g

The above program imports data from �le "couette.dat". Assume that

53

this �le contains the scienti�c data18 and these data are stored in �le in the

same form as they have been given in Section II. Then, the following four

strings will be displayed as a result of execution of this program:

Lz= 1.000e+00 Knu= 2.500e-02

Uw= 1.000e-02 Tw= 1.000e-01

Pr= 3.333e-01, 6.667e-01, 1.000e+00

Nz= 1000 Nv= 31, 31

Consider the next sample program to illustrate the data input from a

�le for the aggregate target with the IDF package. In this case, the input

parameters are incorporated within a structure and are initialized all together

using the symbolic name of the structure.

The C source �le for the second sample program consists of:

the header �le references

#include <stdio.h>

#include "idfuser.h"

the COUETTE structure type de�nition

#typedef struct f

double Lz;

oat Knu,Uw,Tw;

double Pr[3];

int Nz,Nv[2];

g COUETTE;

18As an example, we consider a data related to the so-called Couette problem, the

classical problem of rare�ed gas dynamics.

54

the C function Couette input

int Couette input(Cinp)

COUETTE *Cinp;

/*this function returns zero in success*/

f

/*initialization of input IDF data �le String*/

char Fname[] = "couetteS.dat";

/* initialization of structure data name */

char StructName[] = "COUETTE";

/*initialization of alignment mode */

int amode = 7; /*assume the `natural boundary' rule*/

/*initialization of Target String */

char Target String[] = "d�fd[3]ii[2]";

int ier;

/* start the IDF package */

ier=idf init(); if(ier) goto er;

/* open the data �le */

ier=idf open(Fname); if(ier) goto err;

/* reading the data from �le to the Cinp structure*/

ier = idf get(StructName, Target String, amode, Cinp);

if(ier>0) ier=0;

/* close the data �le */

err: idf close();

/* �nish the IDF */

er: idf �nish();

return ier;

g

and the program main

55

int main()

/* The second sample program in C */

f

/* declaration of input structure */

COUETTE Cinput;

int ier=0;

/* import data from �le */

ier=Couette input(&Cinput); if(ier) goto err;

/* print the imported data sets*/

printf("Lz=%12.3e Knu=%12.3enn",Cinput.Lz,Cinput.Knu);

printf("Uw=%12.3e Tw=%12.3enn",Cinput.Uw,Cinput.Tw);

printf("Pr=%12.3e, %12.3e, %12.3enn",

Cinput.Pr[0],Cinput.Pr[1],Cinput.Pr[2]);

printf("Nz=%5d Nv=%5d, %5dnn",

Cinput.Nz,Cinput.Nv[0],Cinput.Nv[1]);

err: return ier;

g

In this program, the input parameters, namely: Lz, Knu, Uw, Tw, Pr,

Nz, and Nv, are the members of a structure, the type of which is declared as

COUETTE. All IDF functions required to import data from "couetteS.dat"

�le are well isolated within the user's function Couette input. The function

Couette input initializes in whole the input structure, Cinput, declared as

COUETTE type in the main program. The program then prints the values of

imported parameters. For this program, the correspondent IDF data source

�le "couetteS.dat" can be written as follows:

// IDF data �le "couetteS.dat"

/* COUETTE, this structure contains input parameters for Couette problem */

56

COUETTE = f

/* Physical input parameters */

1:0 //Lz, A �xed plate separation distance, in cm

0:025 // Knu, Knudsen number

0:1 // Tw, Constant plate temperature, eV

0:01 // Uw, Constant relative plate velocity, U=V t

// Vt is the thermal velocity, sqrt(2RTw)

$1/3$, $2/3$, 1 // Pr, The set of Prandtl numbers

/* Computational algorithm input parameters */

1000 //Nz, number of nodes in the uniform mesh in z direction

31; 31 //Nv, number of nodes in the 2D velocity space

g;

The execution of this program results in displaying the same four strings

as the output strings from the �rst sample program.

Usage of IDF functions in C++

For object-oriented programming the C++ language introduces an ag-

gregate data type class which is the extension of structure data type in the

C language. In this section we will consider an example of C++ program19

which handles the data input with IDF package using the class mechanism.

The C++ source �le for the sample program consists of:

the header �le references

#include <stream.h>

19We re-write the second sample program considered in the preceeding section from C

to C++ language using the class COUET instead of structure COUETTE.

57

#de�ne IDF CPP 1

#de�ne IDF CPP STYLE 1

#include "idfuser.h"

the COUET class de�nition

class COUET f

int ierror;

public:

double Lz;

oat Knu,Uw,Tw;

double Pr[3];

int Nz,Nv[2];

COUET(char*,char*);

void COUETprn();

int COUETerr();

g;

the class constructor

COUET :: COUET(char *Fname, char *Sname)

f

int amode = 7; // assume the `natural boundary' rule

char Target String[] = "d�fd[3]ii[2]"; //initialization of Target String

ierror=idf init(); if(ierror) goto er; // start the IDF package

ierror=idf open(Fname); if(ierror) goto err; // open the data �le

// reading the data from �le to the Cinp structure

ierror = idf get(Sname, Target String, amode, &Lz);

if(ierror>0) ierror=0;

err: idf close(); // close the data �le

er: idf �nish(); // �nish the IDF

58

g

two class member functions, COUETerr and COUETprn,

int COUET :: COUETerr()

f

return ierror; // transfer the error
ag

g

void COUET :: COUETprn()

f

/* function prints the imported data sets*/

f

cout << form("Lz=%12.3e Knu=%12.3enn",Lz,Knu);

cout << form("Uw=%12.3e Tw=%12.3enn",Uw,Tw);

("Pr=%12.3e, %12.3e, %12.3enn", Pr[0],Pr[1],Pr[2]);

cout << form("Nz=%5d Nv=%5d, %5dnn", Nz,Nv[0],Nv[1]);

g

and the program main

int main()

f

char File Name[] = "couetteS.dat"; //initialization of input IDF data �le String

char Class Name[] = "COUETTE"; // initialization of structure data name

int ier;

// create the class object with the IDF based constructor

COUET Cinp(File Name , Class Name);

ier = Cinp.COUETerr();

if(!ier) Cinp.COUETprn(); // if no errors print input data

return ier;

g

59

In this C++ program, the constructor creates the object Cinp of the

COUET class. The scienti�c parameters are the data members of this class.

The constructor receives the IDF input �le name "couetteS.dat" and the data

set name "COUETTE" as the arguments. It uses then the IDF functions to

initialize the data members of COUET class.

XVIII. IDF functions for the FORTRAN program

id�nit

This function initializes some global IDF variables and allocates memory

used by other functions of IDF package. Usage in FORTRAN:

ierr = id�nit(0)

The function receives an integer type argument which has no meaning. It

returns zero in success and the positive integer number ierr in the case of

error.

id�nish

The id�nish subroutine sets to zero all global IDF variables and de-allocates

the memory which has been previously reserved for IDF with the help of

id�nit function. Usage in FORTRAN:

call id�nish

This subroutine is called without arguments.

idfopen

This function openes the speci�ed IDF data source �le for input. It also

parsing the �le and creates two catalogs (for static and external scope data)

60

of data names given in this �le. Example of usage in FORTRAN:

character*(*) Fname

integer*4 nlen, ierr

parameter (len = 10 , Fname = '�le name')

ierr = idfopen(Fname, len)

This function receives two arguments. The �rst argument, Fname, is the

character string containing the name of the �le to be opened. The second

argument, len, is the number of characters in the �le name. In success, the

function returns zero, and the positive integer number ierr in the case of an

error.

idfclose

The idfclose subroutine closes the IDF data source �le (if any �le has been

opened with idfopen function). Usage in FORTRAN:

call idfclose

This subroutine is called without arguments.

idferprn

This subroutine prints the error message for any error associated with the

memory allocation, with the opening, reading, and parsing the IDF data

source �le, and with the creation of catalogs for data names.

Usage in FORTRAN:

call idferrprn

This subroutine is called without arguments.

61

idfc

This function imports the named data set from a �le for the single character

target declared in the user-written program as character. Example of usage

in FORTRAN:

character*(*) name; character*1 Char

integer*4 nlen, ierr

parameter (nlen = 10 , name = 'data name')

ierr = idfc(name , nlen , Char)

The �rst argument of the function, name is the string containing the name

of data set to be imported. The second argument, nlen, is the number of

characters in the data set name. The third argument, Char, is the name of

character variable declared in the user's code. The function returns zero in

success and the positive integer number (i.e the error code ierr) in the case

of error. If any error occurs, the function displays the error message.

id� , id� , idfd , idfz , idfw

These functions import the named data set from a �le for the single object

target corresponding to the `arithmetic' type i,f,d,z, and w, respectively.

Example of usage in FORTRAN:

character*(*) name

integer*4 nlen, ierr

parameter (nlen = 10 , name = 'data name')

integer*4 ObjI; real*4 ObjF; real*8 ObjD; complex*8 ObjZ; complex*16 ObjW

ierr = id�(name , nlen , ObjI)

ierr = id�(name , nlen , ObjF)

62

ierr = idfd(name , nlen , ObjD)

ierr = idfz(name , nlen , ObjZ)

ierr = idfw(name , nlen , ObjW)

The �rst argument of a function, name, is the string containing the name

of data set to be imported. The second argument, nlen, is the number of

characters in the data set name. The third argument, Obj , is the symbolic

name of a target given in the user's code. Each function returns zero in

success and the positive integer number ierr in the case of error. At an

error, the function displays the corresponding error message.

idfs , idft

These functions import a named data set from the current �le for the char-

acter string (s) and text (t) type targets, respectively. Example of usage in

FORTRAN:

character*(*) name

integer*4 nlen, ierr

parameter (nlen = 10 , name = 'data name')

character*100 Str; integer*4 nelem=100;

ierr = idfs(name , nlen , Str , nelem)

ierr = idft(name , nlen , Str , nelem)

The arguments of these functions are as follows: name is the string contain-

ing the name of data set to be imported; nlen is the number of characters

in the data set name; Str is the symbolic name of a target declared as a

character string in the user-written program; nelem is the maximal number

of characters in the character string target Str. Each function returns zero in

63

success. In the case of error, the function returns a positive integer number

ierr and displays the error message.

id�arr , id�arr , idfdarr , idfzarr , idfwarr

These functions import the named data set from a �le for the one dimen-

sional array target corresponding to the type i,f,d,z, and w, respectively.

Example of usage in FORTRAN:

character*(*) name

integer*4 nlen, ierr

parameter (nlen = 12 , name = 'array1D name')

integer*4 ArrI(3); real*4 ArrF(4); real*8 ArrD(2,3)

complex*8 ArrZ(5); complex*16 ArrW(7)

ierr = id�arr(name , nlen , ArrI , 3)

ierr = id�arr(name , nlen , ArrF , 4)

ierr = idfdarr(name , nlen , ArrD , 6)

ierr = idfzarr(name , nlen , ArrZ , 5)

ierr = idfwarr(name , nlen , ArrW , 7)

Each function receives four arguments, namely: name is the string containing

the name of data set to be imported; nlen is the number of characters in the

data set name; Arr is the symbolic name of an array in the user-written pro-

gram. The last argument is the smaller of the maximal number of elements in

array or the number of array elements to be imported. The function returns

the number ierr of imported elements in success. At an error, the function

returns a negative number and displays the correspondent error message.

64

idfarray

This function imports a named data set from the current �le for the multi-

dimensional array target. Example of usage in FORTRAN:

character*(*) name, TS

integer*4 nlen, nts, ierr

parameter (nlen = 10 , name = 'array name')

parameter (nts = 8 , TS = 'd(3,4,5)')

real*8 Arr(3,4,5)

ierr = idfarray(name, nlen , TS, nts , Arr)

The arguments are as follows: name is the string containing the name of data

set to be imported; nlen is the number of characters in the data set name; TS

is the Target String; nts is the number of characters in the Target String; Arr

is the symbolic name of an array declared in the user-written program. The

dimensionality of array must be speci�ed using the target subscripts in the

Target String. The subscripts can be also added (within a �le) to the name of

corresponding data set. In this case, the data set name subscripts denote the

o�set from the beginning of an array target (i.e the particular element in an

array target starting with which the stored data should be imported). The

function returns the number of imported elements in success. At an error, the

function returns the negative number and displays the correspondent error

message.

65

idfget

This function imports a named data set from the current �le and transfer

data to the arbitrary target. Example of usage in FORTRAN:

character*(*) name, TS

integer*4 nlen, nts, align mode

parameter (nlen=12 , name = 'dataset name')

parameter (nts=18 , TS = 'd(3,4,5)i(2)z(6,7)' , align mode=0)

common/input/ Arr,Iarr,Carr

integer*4 ierr, Iarr(2)

real*8 Arr(3,4,5); complex*8 Carr(6,7)

ierr = idfget(name, nlen , TS, nts , align mode, Atarget)

The function arguments have the following meanings: name is the string con-

taining the name of data set to be imported; nlen is the number of characters

in the data set name; TS is the Taget String; nts is the number of characters

in the Target String; align mode is the integer parameter (or variable) spec-

ifying the alignment rule; Atarget is either the symbolic name of the target

(if target is the single variable or array), or the name of the �rst member

in an aggregate target declared in the user-written program. In success the

function returns the number of imported elements. In the case of error, it

returns the negative number and displays the correspondent error message.

Example of IDF usage in FORTRAN program

This section illustrates the usage of IDF package for programming data

input in FORTRAN language. Two simple sample programs written in

66

FORTRAN-77 are considered below.

The �rst program couette imports data from the �le "couette.dat". This

program is the FORTRAN-77 analog to the �rst C sample program consid-

ered in the previous section.

program couette

c The �rst sample program in FORTRAN

c initialization of input IDF data �le String

character*(*) Fname

integer*4 Flen, ier

parameter (Flen = 11 , Fname = 'couette.dat')

c declaration of input parameters

real*8 Lz,Pr(3)

real*4 Knu,Uw,Tw

integer*4 Nz,Nv(2)

c start the IDF package

ier=id�nit(0)

if(ier.ne.0) go to 1

c open the data �le

ier=idfopen(Fname,Flen)

if(ier.ne.0) go to 2

c reading the data from �le

ier=idfd('Lz', 2, Lz)

if(ier.ne.0) go to 2

ier=id�('Knu', 3, Knu)

if(ier.ne.0) go to 2

ier=id�('Uw', 2, Uw)

if(ier.ne.0) go to 2

ier=id�('Tw', 2, Tw)

67

if(ier.ne.0) go to 2

ier=idfdarr('Pr', 2, Pr, 3)

if(ier.ne.3) go to 2

ier=id�('Nz', 2, Nz)

if(ier.ne.0) go to 2

ier=id�arr('Nv', 2, Nv, 2)

if(ier.ne.2) go to 2

c print the imported data sets

print 10,Lz,Knu

10 format('Lz='E12.3 'Knu='E12.3)

print 20,Uw,Tw

20 format('Uw='E12.3 ' Tw='E12.3)

print 30,Pr(1),Pr(2),Pr(3)

30 format ('Pr='E12.3 ',' E12.3 ',' E12.3)

print 40,Nz,Nv(1),Nv(2)

40 format('Nz='I5 'Nv='I5',' I5)

c close the data �le

2 call idfclose

c �nish the IDF

1 call id�nish

stop

end

The second FORTRAN program couettes transferes data from the �le

"couetteS.dat" to common block COUETTE, and all input parameters are

the members of this block. The IDF input is performed within the user's

function couetinp.

program couettes

c The second sample program in FORTRAN

68

c initialization of input IDF data �le String

character*(*) Fname

integer*4 Flen, ier, couetinp

parameter (Flen = 12 , Fname='couetteS.dat')

c declaration of input parameters within a common block

common/COUETTE/Lz,Knu,Uw,Tw,Pr,Nz,Nv

real*8 Lz,Pr(3)

real*4 Knu,Uw,Tw

integer*4 Nz,Nv(2)

c import data with IDF package

ier = couetinp(Fname,Flen)

if(ier.eq.0) then

c print the imported data sets

print 10,Lz,Knu

10 format('Lz='E12.3 'Knu='E12.3)

print 20,Uw,Tw

20 format('Uw='E12.3 ' Tw='E12.3)

print 30,Pr(1),Pr(2),Pr(3)

30 format ('Pr='E12.3 ',' E12.3 ',' E12.3)

print 40,Nz,Nv(1),Nv(2)

40 format('Nz='I5 'Nv='I5',' I5)

end if

stop

end

integer function couetinp(namef,lenf)

character*(*) namef

integer*4 lenf

c function returns zero in success

common/COUETTE/Lz,Knu,Uw,Tw,Pr,Nz,Nv

69

real*8 Lz,Pr(3)

real*4 Knu,Uw,Tw

integer*4 Nz,Nv(2)

integer*4 id�nit,idfopen,idfget

integer*4 amode, lSN, lTS

c initialization of Align Mode for F77 option '-align dcommon'

parameter (amode=7)

c initialization of Target String and Data Set Name

parameter (lSN=7 , lTS=13)

character*13 TS /'d�fd[3]ii[2]'/

character*7 SN /'COUETTE'/

c start the IDF package

couetinp=id�nit(0)

if(couetinp.ne.0) go to 1

c open the data �le

couetinp=idfopen(namef,lenf)

if(couetinp.ne.0) go to 2

c transfer the data from �le to common block

couetinp = idfget(SN, lSN, TS, lTS, amode, Lz)

if(couetinp) 2,3,3

3 couetinp=0

c close the data �le

2 call idfclose

c �nish the IDF

1 call id�nish

return

end

The couettes program imports the single named data set 'COUETTE'

from the "couetteS.dat" �le (see the previous section) and prints the values

70

of input parameters.

XIX. Installing the IDF package

To install the IDF package on your computer you need, �rst of all, to

create the object module �le for each C source �le of IDF package by invoking

a C compiler. These modules should then be stored in an object module

library. This library can then be linked to the user's code.

For UNIX platform, you may use the make �le idf.make. This make�le

contains additional comments which will help you to adjust commands to

your operational system.

IDF package includes four header �les, namely: "id
ib.h", "idf.i", "idf.h",

and "idfusr.h" 20. In some cases, it is necessary to change macro-de�nition

settings in "id
ib.h", "idf.i" header �les in order to adjust the IDF package

to your computer, compiler, and program.

The IDF header �le "id
ib.h" contains a list of standard C header �les21

used in IDF. The id
ib.h �le also de�nes the macro IDF CPP STYLE which

controls the declaration of C function prototypes22. The macro IDF IEEE

must be de�ned as unity, if your software implements the IEEE standard for

binary
oating-point arithmeic. You should also specify the proper type of

20The header �le "idfuser.h" is created in running idf.make. This header �le is a copy

of "idfusr.h" �le.
21In the case when the standard header �les from this list does not exists (for example,

"
oat.h" header �le), follow instructions given in "id
ib.h" in order to de�ne standard

macros required for IDF.

22Set IDF CPP STYLE to zero if you want to use Pre-Standard C declarations.

71

naming convention for C functions to be called from FORTRAN in terms of

macro IDF FORTRAN.

The IDF header �le "idf.i" contains several macros important for IDF

package performance. If you want to change the settings of these macros,

follow comments given in this �le.

72

APPENDIX I:

The List of IDF mathematical constants

Here is the list of names used by IDF for symbolic representation of several

mathematical constants.

Name Value

IDF RAD 1 radian in degrees

IDF DEG 1 degrees in radians

IDF EU Eu, Euler number

IDF PI � number

IDF 2PI 2 � �

IDF PIPI �2

IDF PIOVER2 �=2

IDF PIOVER3 �=3

IDF PIOVER4 �=4

IDF 1 PI 1=�

IDF 2 PI 2=�

IDF EXP exp(1)

IDF EXP2 exp(2)

IDF EXPI exp(�)

IDF EXPU exp(Eu)

IDF EXPE exp(exp(1))

73

IDF SEXP sqrt(exp(1))

IDF SQRT2 sqrt(2)

IDF SQRT3 sqrt(3)

IDF SQRT5 sqrt(5)

IDF SPI sqrt(�)

IDF S2PI sqrt(2 � �)

IDF LN2 ln(2)

IDF LN3 ln(3)

IDF LN10 ln(10)

IDF LNPI ln(�)

IDF LNU ln(Eu)

74

APPENDIX II

The List of IDF physical constants

The following Table contains the list of names used by IDF for symbolic

representation of several physical constants. The values of constants are

given in Centimeter-Gram-Second (CGS) units system.

Name Symbol Meaning Value

IDF C c Speed of light in vacuum 2.99792458e10 cm=sec

IDF H h Planck constant 6.6260196e-27 erg sec

IDF HB �h = h=2� Planck constant 1.054592e-27 erg sec

IDF K k Boltzmann constant 1.380658e-16 erg=K

IDF K EV k Boltzmann constant in eV 8.617385e-5 k=e eV=K

IDF E e Elementary charge 4.806532e-10 statcoul

IDF ME me Electron mass 9.1093897e-28 g

IDF MP mp Proton mass 1.6726231e-24 g

IDF MPME mp=me 1836.152755

IDF MEMP me=mp 5.446169971e-4

IDF G g Gravitational constant 6.6732e-8 dyne cm2=g2

IDF RY Ry Rydberg constant 109737.31534 cm�1

IDF RY EV Ry Rydberg constant in eV 13.6056981 eV

IDF RB rB Bohr radius 0.529177249e-8 cm

IDF CS �r2
B

Atomic cross section 0.8797356696e-16 cm2

75

IDF RE rE Classical electron radius 2.8179e-13 cm

IDF ALP � Fine-structure constant 7.297351e-3

IDF IALP 1=� Inverse Fine-structure constant 137.0360

IDF MUB �B Bohr magneton 5.78838263e-5 eV/Tesla

IDF FA F = eNA Faraday constant 2.892599e14 statcoul=mol

IDF CW �h=mec Compton electron wavelength 3.861592e-11 cm

IDF CR1 8�hc First radiation constant 4.992579e-15 erg cm

IDF CR2 hc=k Second radiation constant 1.438833 cm K

IDF S � Stefan-Boltzmann constant 5.66961e-5 erg=cm2=sec=K4

IDF NA NA Avogadro number 6.022169e23 mol�1

IDF R R = kNA Gas constant 8.31434e7 erg=deg=mol

IDF TO To Standard temperature 273.15 K

IDF PO Po = LokTo Atmospheric pressure 1.0133e6 dyne=cm2

IDF LO Lo Loschmidt's number 2.6868e19 cm�3

IDF VO Vo = RTo=Po Normal volume perfect gas 2.24136e4 cm3=mol

76

APPENDIX III

Mathematical functions of IDF calculator

The following mathematical functions are used in the IDF built-in

calculator23. The names of these functions are the generic names, that is a

user refers by common name to the number of functions. For each particular

function call, the IDF calculator dynamically selects the function, the type

of dummy arguments of which matches the type of actual arguments. In this

case, not only the returning value but also the data type returning by the

function depends on the type of an actual arguments passed to this function.

cmplx(re)

This function creates a complex number a, whose real part is equal to re and

whose imaginary part is set to zero, i.e a = (re; 0). The function argument

is a real number, whereas the returning value is aways a complex number.

complex(re,im)

The function creates a complex number a speci�ed by its real, re, and imagi-

nary, im, parts. The numbers, re and im can be associated with coordinates

of a point at complex plane. That is why, the following form of complex

23The names of some functions listed in this APPENDIX match the names of standard

functions speci�ed in C and FORTRAN languages. At this point, the IDF mathematical

functions are not the same functions as in C or FORTRAN, although their execution

require standard mathematical functions from the C run-time library, namely: sqrt, exp,

log, pow, cos, sin, tan, acos, asin, and atan.

77

number representation: a = re + i im = (re; im) , where i is the imag-

inary unit (i2 = �1), is frequently referred to as the Cartesian form. The

function returns the complex number composed from real numbers, re and

im.

real(a)

If the argument a is the real number, the function returns the value of ar-

gument (converting an integer to the
oating-point number, if necessary). If

the argument a is the complex number, a = x+ iy, the function returns the

real part, i.e real(a) = x.

double(a)

If the argument a is the real number, the function returns the value of ar-

gument converting an integer to the
oating-point number (type double), if

necessary. If the argument a is the complex number, a = x+ iy, the function

returns the real part, i.e double(a) = x.

imag(a)

If the argument a is the real number, the function returns zero. If the argu-

ment a = x+ iy is the complex number, the function returns the imaginary

part, i.e imag(a) = y.

conj(a)

If the argument a is the real number, the function returns the value of its

argument, but with opposite sign, i.e (�a). If the argument a is the com-

plex number, a = x + iy, the function returns the complex conjugate, i.e

complex(x;�y).

78

abs(a)

If the argument a is the real number, the function calculates the absolute

value of a. In the case when the argument is the complex number a = x+ iy,

the function computes the modulus or radius of a complex number, i.e � =

sqrt(x2 + y2). The function returns then the value of � which is always the

real number.

arg(a)

The argument of this function must be the complex number represented in

Cartesian form: a = x + iy. Any complex number can be re-written in

the polar form: a = � � [cos(�) + i sin(�)], where � is the radius and �

is the angle or argument of complex number at the complex plane. Since

the trigonometric functions are periodic functions, only the principle value

arg of an argument �, 0 � arg < 2�, is usually used. In the special case

when a = (0; 0), arg(a) = 0, otherwise the principle value is calculated as:

arg(a) = acos(x=�) if y � 0, and arg(a) = �acos(x=�) if y < 0. The arg

function returns the principle argument correspondent to complex number

a. The returning value is always the real number.

polar(�,Arg)

The function creates the complex number a speci�ed by its modulus � and

principle argumentArg, i.e a = ��cos(Arg) + i ��sin(Arg)], The arguments

of this function are real numbers, whereas the returning value is always a

complex number.

79

int(re)

This function convert the argument to the integer number by truncation

the
oating-point number towards zero. The argument must have integer or

oating-point type, whereas the returning value is always the integer number.

The complex argument is not allowed in this function.

sqrt(a)

For any real argument a, the sqrt function returns the square root of a. The

complex square root of complex argument a = x+ iy is de�ned as follows:

p
a = sqrt(abs(a)) � [cos(arg(a)=2) + i sin(arg(a)=2)]:

For the branching point, i.e when a = (0; 0), the function returns complex

zero. In all other complex cases, the function returns the complex number:

p
a = complex(g;

y

2g
);

where � = abs(a) = sqrt(x2 + y2) is the modulus of a and the parameter is

calculated in the following way: g = sqrt[(�+ x)=2] if only x � 0, otherwise

g = sqrt[(�� x)=2] for y � 0 and g = �sqrt[(�� x)=2] for y < 0.

sqrt1pz2(a)

This function evaluates the expression sqrt(1 + a2) for any real argument a.

When applied to complex numbers a = x + iy, this expression results in:

sqrt(complex(1 + x2 � y2 ; 2xy)).

80

sqrt1mz2(a)

This function evaluates the expression sqrt(1 � a2) for the real argument

a � 1. When applied to complex numbers a = x+ iy, this expression results

in: sqrt(complex(1 � x2 + y2 ; �2xy)).

max(a,b)

This function returns the maximum of two real numbers a and b. If only one

of the arguments is the complex number, the other argument will be con-

verted to the complex number with the zero imaginary part. In comparison

of complex numbers a and b, the function chooses the number amongst them,

whose modulus is the biggest. If abs(a) = abs(b), the function returns the

number whose principle argument is the biggest.

min(x,y)

This function returns the minimumof two real numbers a and b. If only one of

the arguments is the complex number, the other argument will be converted

to the complex number with the zero imaginary part. In comparison of

complex numbers a and b, the function chooses the number with the smallest

modulus. If abs(a) = abs(b), the function returns the number whose principle

argument has the smallest value.

pow(a,b)

This is the generalized power function. For real arguments, the function

raises a to the b power. According to C language standards, the pow function

returns: the zero value, if a = 0 and b is a positive number; the unity value,

if a = b = 0; the unity value, if a is positive and b = 0; the ab value for

arbitrary b, only if a is positive; the ab value, if a is the negative number and

81

b is the integer number. It is not allowed to exponentiate the negative base

a to the non-integer power, or the zero base to the negative power. When

applied to the complex numbers, the function returns the complex number

which is de�ned and computed as:

pow(a; b) = exp(b � log(a)):

exp(a)

This is the natural exponential function which for real numbers raises e to

the a power. In the case when function argument is the complex number

a = x+ iy, the function returns the complex number de�ned as:

exp(a) = exp(x) � [cos(y) + i sin(y)]:

pow10(a)

This function raises the base 10 to the a power for any real or complex

argument. The function calculates 10a as follows: 10a = exp(a � log(10)),

using the natural exponential function exp(a) and the constant value log(10).

log(a)

This is the natural logarithm function. For a real argument, it returns the

natural logarithm of a. The complex natural logarithm of the complex argu-

ment a = x+ iy is evaluated as follows:

log(a) = log[abs(a)] + i arg(a):

82

log10(a)

This is the common logarithm function. The function calculates logarithm

to the base 10 of its argument a as: log10(a) = log(a)=log(10), using the

natural logarithm function log(a) and the constant value log(10).

cos(a)

For real numbers, this is the standard trigonometric function. The function

calculates the cosine of its argument. The real number argument is expressed

in radians. When applied to complex numbers, the cosine function is de�ned

as follows:

cos(a) = [exp(ia) + exp(�ia)]=2:

The complex cosine is calculated for a = x+ iy as:

complex(cos(x) � cosh(y) ; �sin(x) � sinh(y)):

sin(a)

For real numbers, this is the standard trigonometric function. The function

calculates the sine of angle a speci�ed in radians. The complex sine function

is introduced as:

sin(a) = i [exp(�ia) � exp(ia)]=2:

For a = x+ iy, the complex sine is calculated as follows:

complex(sin(x) � cosh(y) ; cos(x) � sinh(y)):

83

tan(a)

For real numbers, this is the standard trigonometric function. It calculates

the tangent of angle a speci�ed in radians. The complex tangent function is

de�ned as follows:

tan(a) = i [exp(�i2a)� 1] = [exp(�i2a) + 1]:

For the argument given in Cartesian form, a = x+ iy, the complex tangent

is calculated as follows:

complex(sin(2x)=g; sinh(2y)=g);

where g = cos(2x) + cosh(2y).

acos(a)

When the argument is real, the acos function returns the angle, expressed in

radians, whose cosine is equal to a, �1 � a � 1. When applied to complex

numbers, the arc cosine function is introduced as:

acos(a) = �i log[a + i sqrt(1� a
2)]:

asin(a)

The asin function calculates the inverse sine of argument a. For real argu-

ment �1 � a � 1, the arc sine function returns the correspondent angle in

radians. The complex arc sine function is de�ned as:

asin(a) = �i log[ia + sqrt(1� a
2)]:

84

atan(a)

The atan function calculates the inverse tangent of argument a. For any

real argument, the arc tangent function returns the correspondent angle in

radians. The complex inverse tangent function is de�ned as:

atan(a) = �0:5 i log(1 + ia

1 � ia
):

For a = x+iy, the expression under logarithm results in the complex number:

complex([1� x
2 � y

2]=g ; 2x=g) ;

where g = x2 + (1 + y)2.

cosh(a)

This is the hyperbolic cosine function:

cosh(a) = [exp(a) + exp(�a)]=2;

and for real argument a, the function returns the value given by this expres-

sion. The complex hyperbolic cosine of argument a = x+ iy is calculated as

follows:

complex(cosh(x) � cos(y) ; sinh(x) � sin(y)):

sinh(a)

The hyperbolic sine function sinh is de�ned as:

sinh(a) = [exp(a) � exp(�a)]=2:

This expression is used to evaluate sinh for real argument a. When applied

to complex numbers a = x+ iy, the complex hyperbolic sine is calculated as:

complex(sinh(x) � cos(y) ; cosh(x) � sin(y)):

85

tanh(a)

This is the hyperbolic tangent function. For any real argument a:

tanh(a) = �1� exp(�2jaj)
1 + exp(�2jaj);

where jaj is the absolute value of argument, and � is the sign of a. For

complex numbers, the hyperbolic tangent is de�ned as:

tanh(a) = �i tan(ia):

For any a = x+ iy, the tanh function can be evaluated as follows:

complex(sinh(2x)=g; sin(2y)=g);

where g = cos(2y) + cosh(2x).

acosh(a)

This function is the inverse hyperbolic cosine of real argument a > 1. The

inverse hyperbolic cosine of complex number a = x + iy is given by the

following expression:

acosh(a) = log[a + sqrt(a2 � 1)]:

asinh(a)

This function is the inverse hyperbolic sine of any real argument a. The

complex inverse hyperbolic sine of a = x+ iy is de�ned by the expression:

asinh(a) = log[a + sqrt(a2 + 1)]:

86

atanh(a)

The function calculates the inverse hyperbolic tangent of real argument�1 <

a < 1. The complex inverse hyperbolic tangent is de�ned as:

atanh(a) = 0:5 log(
1 + a

1 � a
):

For a = x+iy, the expression under logarithm results in the complex number:

complex([1� x
2 � y

2]=g ; 2y=g) ;

where g = (x� 1)2 + y2.

hypot(x,y)

The hypot function is de�ned only for real numbers. It calculates and re-

turns the following value: sqrt(x2 + y2), which is, historically, the length

of hypotenuse in rectangular triangle. The arguments, x and y, as well as

returning value are always real numbers.

87

