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Abstract. The high 3 operating regime of spherical tokamaks (ST), such as in NSTX and
MAST, make them attractive fusion devices. To attain the high 3’s, there is a need to heat and
to drive currents in ST plasmas. While ST plasmas are overdense to conventional electron
cyclotron (EC) waves, electron Bernstein waves (EBW) offer an attractive possibility both
for heating and for driving plasma currents. We consider techniques for the excitation of
EBWs on NSTX and MAST-type plasmas. Emission of EBWs from inside the plasma and
its conversion to the conventional EC modes at the plasma edge are also considered.

1. Introduction

In STs like NSTX and MAST, fe/ fee >> 1 over most of the plasma cross section ( fpe
and f.. are the electron plasma and cyclotron frequencies, respectively). Consequently,
in the frequency regime for which the ordinary O-mode and the extraordinary X-mode
damping is appreciable inside a plasma, these modes are cutoff at the plasma edge.
However, EBWs, which have no density limits, can propagate into the plasma core
for frequencies above f.., and damp effectively on electrons near the Doppler-shifted
electron cyclotron resonance or its harmonics [1]. The localized, strong absorption of
EBWs also makes their emission from the electron cyclotron resonance, or its harmonics,
a possible means for diagnosing the electron temperature profile [2]. Since EBWs are not
vacuum modes, the coupling of power to EBWs is indirectly through mode conversion of
the slow X-mode (SX) to an EBW at the upper hybrid resonance (UHR). The coupling
to the SX-mode is either through the fast X-mode or the O-mode, which can be directly
excited from outside the plasma. The former is referred to as the X-B mode conversion
process and the latter as the O-X-B mode conversion process. Results from theoretical
and computational studies on mode conversion coupling to EBWs, and the emission of
X- and O-modes via EBWs, are summarized below.



2. Theoretical Modelling of Mode Conversion

From an analytical treatment of wave propagation in an inhomogeneous, cold plasma
[1], we find that the mode conversion efficiency is dependent on an effective tunneling
parameter 7 given by:

0 ~ wceLn [m_ 1} 1/2 (1)
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where all the quantities on the right-hand side are evaluated at the location of the UHR,
Wee = 27 fee, Ly, is the density scalelength, o = f./ fee, and c is the speed of light. For
a~1:

=5

where B is the local magnetic field in Tesla and L,, is in meters.

For maximum X-B mode conversion, the X-mode should be propagating essentially
across the magnetic field (i.e., nj < 1 where n| is the wave index parallel to the magnetic
field). Then, for a given plasma configuration, the maximum power mode conversion
efficiency (at n) ~ 0) is:

1 CGLTL
[“’ } ~ 2935 |BLo|yp 2)
C

Crax = 4e7™(1 — ™ ™) (3)

For Cpax < 0.5, we require that 0.05 S 7 .S 0.6; for n &~ 0.22, Cyhax = 1 giving complete
mode conversion.

The O-X-B mode conversion is most efficient when the O-mode cutoff coincides
with SX-mode cutoff. This occurs at a critical n [3]: ()it = 1/v/1+ o. However,
in addition, one requires > 1 in order to avoid coupling appreciable power to the
outgoing fast X-mode [4]. From these conditions, we find that the X-B and the O-X-B
mode conversion processes optimize in different regions of frequency and n) space.
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Figure 1: (a) fUHR < 2fce, (b) fUHR > 2fce-

For NSTX-type plasmas the wave frequency has to be such that the UHR frequency
fuar = 2f. for optimum X-B mode conversion. For optimum O-X-B mode conversion
furr = 4f.. The dispersion characteristics of the EBW change significantly as the
fumg is changed from below 2f.. to above. This is illustrated in Figures 1(a) and 1(b)



for NSTX-type parameters [1] where the fully kinetic dispersion characteristics of the
various electron cyclotron modes are plotted as a function of the radial distance along
the equatorial plane; z = 44 cm is the outside edge of the plasma (z = 0 is the magnetic
axis). The UHR is located at x ~ 43.96 cm in the first case and at x ~ 43.82 cm in the
second case. In the second case, the SX mode propagates through the UHR and then
near the edge of the plasma it turns into an EBW with a much shorter wavelength than
in the first case.

The results of Eq. (2) can also be used to determine the required density scalelengths
for optimum mode conversion for a fixed frequency. Such would be the case, for instance,
for MAST where sources and couplers at 60 GHz are already installed on the machine.
For MAST-type parameters with an edge magnetic field of 0.377 and an edge density
of 4 x 10 m~3, complete mode conversion (for n| = 0) is possible if L, ~ 1.7 x 103 m
at the UHR. This corresponds to a density profile of the form (1 — r?/a?)°?. For
optimizing the O-X-B mode conversion, a scale length of L, ~ 6 x 1072 m and a critical
(n”)cm ~ 0.4 are required. These conditions also ensure that n > 1.

3. Mode Conversion and Emission

We have developed a numerical code that solves for mode conversion in an inhomo-
geneous slab plasma with a sheared magnetic field [1]. The code uses an approximate
kinetic (Maxwellian) plasma model in which the EBW can be clearly identified. This is
a sixth order ordinary differential equation and the mode conversion coefficient is deter-
mined from the actual power flowing in EBW. This code can also be used to determine
the emission of EBWs from the electron cyclotron resonance. The emitted EBWs would
mode convert to the X-mode and/or O-mode radiation at the UHR and be detected in
the vacuum region of a plasma device.

Figures 2(a) and 2(b) show the results obtained from this numerical code for the
cases of mode conversion heating and emission, respectively, for NSTX-type parameters
[1] for a frequency of 14 GHz. In Fig. 2(a) we assume that the power is coupled into
the plasma through the X-mode. Then C' is the fraction of this power that appears
in EBW, and Ry and Rp are the fractional powers being reflected back out on the X
and O modes, respectively. These fractional powers are plotted as a function of the
normalized toroidal mode numbers. (The poloidal mode number is set to zero.) In
Fig. 2(b) we assume that the EBW is emitted inside the plasma and propagates out
towards the edge. Near the UHR the EBW can couple to the X- and O-modes and can
also be reflected. C'x and Cyp are the fractions of the input EBW power that are mode
converted to X and O modes, respectively. Rp is the fraction of the input power that
is reflected back into the plasma along the EBW.

4. RF Current Drive With Bootstrap Current

Steady state operations of tokamaks will require non-inductive current generation.
RF current drive in combination with the bootstrap current may achieve this goal; RF
driven current also offers a means to control the current profile. We have initiated a
study on the self-consistent interaction of RF current drive with bootstrap current in a
toroidal plasma. The RF quasilinear diffusion coefficient is included in the relativistic
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Figure 2: (a) X-B mode conversion heating, (b) emission from EBW

neoclassical drift-kinetic equation for plasma transport. The formulation is limited
to the thin banana regime of electrons. A numerical code FASTFP-NC [5] in two-
dimensional momentum space for solving the drift kinetic equation has been developed.
We find that synergistic effects increase the total current beyond the linear combination
of RF generated current and bootstrap current. Bootstrap current in the presence
of lower hybrid current drive or electron cyclotron current drive has been calculated
numerically and with analytical approximations. The scaling of the synergistic effects
with plasma parameters and with the bootstrap current are obtained from the analytical
formulation and are in reasonable agreement with the numerical results. The effect of
EBW current drive on bootstrap current will be incorporated in the near future.
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