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Abstract—This paper presents an on-chip implementation
of a scalable reconfigurable bilateral filtering processor
for computational photography applications such as HDR
imaging, low light enhancement and glare reduction.
Careful pipelining and scheduling has minimized the local
storage requirement to tens of kB. The 40 nm CMOS test
chip operates from 98 MHz at 0.9 V to 25 MHz at 0.5 V.
The test chip processes 13 megapixels/s while consuming
17.8 mW at 98 MHz and 0.9 V, achieving significant energy
reduction compared to software implementations on recent
mobile processors.
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Range Imaging, Bilateral Filtering, Bilateral Grid, Low-
Power Electronics, Low-Voltage Operation, Voltage Scaling

I. INTRODUCTION

Computational photography is transforming digital pho-
tography by significantly enhancing and extending the
capabilities of a digital camera. The field encompasses
a wide range of techniques such as high dynamic
range (HDR) imaging [1], low-light enhancement [2,3],
panorama stitching [4], image deblurring [5] and light
field photography [6], which allow users to not just
capture a scene flawlessly, but also reveal details that
could otherwise not be seen.

Recent research has focused on specialized image sen-
sors to capture information that is not captured by a
regular CMOS image sensor. An image sensor with
multi-bucket pixels is proposed in [7] to enable time
multiplexed exposure that improves the image dynamic
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range and detects structured light illumination. A back-
illuminated stacked CMOS sensor is proposed in [8] that
uses spatially varying pixel exposures to support HDR
imaging. An approach to reduce the temporal readout
noise in an image sensor is proposed in [9] to improve
low-light-level imaging. However, computational pho-
tography applications using regular CMOS image sen-
sors that are currently used in the commercial cameras
have so far been software based. Such CPU/GPU based
implementations lead to high energy consumption and
typically do not support real-time processing.

Non-linear filtering techniques like bilateral filtering [10]
form a significant part of computational photography.
These techniques have a wide range of applications,
including HDR imaging, low-light enhancement, tone
management [11], video enhancement [12] and optical
flow estimation [13]. The high computational complexity
of such multimedia processing applications necessitates
fast hardware implementations [14,15] to enable real-
time processing. In addition, energy-efficient operation is
a critical concern for portable multimedia applications.
Voltage and frequency scaling is an important technique
for reducing power consumption while achieving high
peak computational performance [16]. The energy ef-
ficiency of digital circuits is maximized at low supply
voltages [17], which makes ability to operate at low
voltage (VDD ∼ 0.5 V) a key component of achieving
low power operation.

This work implements a reconfigurable multi-application
processor for computational photography by exploring
power reduction techniques at various design stages,
such as algorithms, architectures and circuits. The al-
gorithms are optimized to reduce the computational
complexity and memory requirement. A parallel and
pipelined architecture enables high throughput while
operating at low frequencies, which allows real-time
processing on HD images. Circuit design for low volt-
age operation ensures reliable performance down to
0.5 V.

The reconfigurable hardware implementation performs
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HDR imaging, Low-light enhanced imaging and glare
reduction, as shown in Fig. 1. The filtering engine can
also be accessed from off-chip and used with other
applications. The input images are pre-processed for the
specific functions. The core of the processing unit are
two bilateral filter engines that operate in parallel and
decompose an image into a low frequency base layer
and a high frequency detail layer. The bilateral filtering is
performed using a bilateral grid structure that converts an
input image into a three dimensional data structure and
filters it by convolving with a three dimensional Gaussian
kernel. Parallel processing allows enhanced throughput
while operating at low frequency and low voltage. The
bilateral filtered images are post processed to generate
the outputs for the specific functions.
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Fig. 1. System block diagram for the reconfigurable computational
photography processor

This paper describes bilateral filtering and its efficient
implementation using the bilateral grid [18]. A scalable
hardware architecture for the bilateral filter engine is
described. Implementation of HDR imaging, low-light
enhancement and glare reduction using bilateral filtering
is discussed in Section IV. The challenges of low voltage
operation and approaches to address process variation
are described in Section V. Section VI provides mea-
surement results for the testchip.

II. BILATERAL FILTERING

Bilateral filtering is a non-linear filtering technique that
takes into account the difference in the pixel intensities
as well as the pixel locations while assigning weights,
as opposed to linear Gaussian filtering that assigns filter
weights based solely on the pixel locations. For an image
I at pixel position p, the bilateral filtered output, IB , is

defined by eq. (1).

IB(p) =

N∑
n=−N

GS(n) ·GI(I(p) − I(p− n)) · I(p− n)

(1)
The output value at each pixel in the image is a weighted
average of the values in a neighborhood, where the
weight is the product of a Gaussian on the spatial
distance (GS) with standard deviation σs and a Gaus-
sian on the pixel intensity/range difference (GI ) with
standard deviation σr. In linear Gaussian filtering, on
the other hand, the weights are determined solely by
the spatial term. In bilateral filtering, the range term
GI(I(p) − I(p− n)) ensures that only those pixels in
the vicinity that have similar intensities contribute sig-
nificantly towards filtering. This avoids blurring across
edges and results in an output that effectively reduces
the noise while preserving the scene details. Fig. 2 com-
pares Gaussian filtering and bilateral filtering in reducing
image noise and preserving details. However, non-linear

Output Input 

Output Input 

Linear Gaussian Filtering

Non-Linear Bilateral Filtering

Fig. 2. Comparison of Gaussian filtering and bilateral filtering.
Bilateral filtering effectively reduces noise while preserving scene
details.

filtering is inefficient and slow to implement because the
filter kernel is spatially variant. A direct implementation
of bilateral filtering can take on the order of several
minutes to process HD images. Faster approaches for
bilateral filtering have been proposed that reduce the
processing time by filtering subsampled versions of the
image with discrete intensity kernels and reconstructing
the filtered results using linear interpolation [1,19]. A
fast approach to bilateral filtering based on a box spatial
kernel, which can be iterated to yield smooth spatial
falloff is proposed in [20]. However real-time processing
of HD images requires further speed-up.
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A. Bilateral Grid

A software-based bilateral grid structure is described in
[18], which enables fast bilateral filtering but requires
a large amount of storage (65 MB for a 10 megapixel
image) for processing. In this work, we implement bilat-
eral filtering using a reconfigurable grid, which reduces
the storage requirement to 21.5 kB by scheduling the
filtering engine so that only two grid rows need to be
stored at a time. The implementation is flexible to allow
varying grid sizes for energy/resolution scalable image
processing.

The bilateral grid structure used by this chip is con-
structed as follows. The input image is partitioned into
blocks of size σs×σs and a histogram of pixel intensity
values is generated for each block. Each histogram has
256/σr bins. This results in a 3D representation of the
2D image, as shown in Fig. 3, referred to as the bilateral
grid. Each grid cell (i, j, r) stores the number of pixels
in a block corresponding to that intensity bin (W ij

r )
and their summed intensity (Iijr ). The processor supports
block sizes ranging from 16×16 to 128×128 pixels with
4 to 16 intensity bins in the histogram.

The bilateral grid has two key advantages:

• Aggressive Down-sampling: The size of the blocks
(σs × σs) used while creating the grid and the
number of intensity bins (256/σr) determine the
amount by which the image is down-sampled. The
grid merges blocks of 16×16 to 128×128 pixels
into 4 to 16 grid cells. This significantly reduces the
number of computations required for processing as
well as the amount of on-chip storage required.

• Built-in Edge Awareness: Two pixels that are spa-
tially adjacent but have very different intensities
end up far apart in the grid in the intensity dimen-
sion. Filtering the grid level-by-level using a linear
Gaussian kernel, only the intensity levels that are
near each other influence the filtering and the levels
that are far apart do not contribute in each others
filtering. This is equivalent to performing bilateral
filtering on the 2D image.

III. BILATERAL FILTER ENGINE

The bilateral filter engine using the bilateral grid is
implemented as shown in Fig. 4. It consists of three com-
ponents – the grid assignment engine, the grid filtering
engine and the grid interpolation engine.

The image is scanned pixel by pixel in a block-wise
manner. The size of the block is scalable from 16×16

pixels to 128×128 pixels. Depending on the intensity of
the input pixel, it is assigned to one of the intensity bins.
The number of intensity bins is also scalable from 4 to
16.

A. Grid Assignment

The pixels are assigned to the appropriate grid cells by
the grid assignment engines. The hardware has 16 grid
assignment (GA) engines that can operate in parallel to
process 16 intensity levels in the grid. But 4 or 8 grid
assignment engines could be activated if the grid uses
fewer intensity levels. Fig. 5 shows the architecture of
the grid assignment engine. For each pixel from each
block, its intensity is compared with the boundaries of
the intensity bins using digital comparators. If the pixel
intensity is within the bin boundaries, it is assigned to
that intensity bin. Intensities of all the pixels assigned to
a bin are summed by an accumulator. A weight counter
maintains the count of number of pixels assigned to the
bin. Both the summed intensity and weight are stored
for each bin in on-chip memory.
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Fig. 5. Architecture of the grid assignment engine.

B. Grid Filtering

The convolution (Conv) engine, shown in Fig. 6, con-
volves the grid intensities and weights with a 3 × 3 × 3
Gaussian kernel, which is equivalent to bilateral filtering
in the image domain, and returns the normalized inten-
sity. The convolution is performed by multiplying the 27
coefficients of the filter kernel with the 27 grid cells and
adding them using a 3-stage adder tree. The intensity
and weight are convolved in parallel and the convolved
intensity is normalized with the convolved weight by
using a fixed point divider to make sure that there is no
intensity scaling during filtering. The hardware has 16
convolution engines that can operate in parallel to filter
a grid with 16 intensity levels. But 4 or 8 of them can
be activated if fewer intensity levels are used.
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Fig. 3. Construction of a 3D bilateral grid from a 2D image
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Fig. 6. Architecture of the convolution engine for grid filtering.

C. Grid Interpolation

The interpolation engine, shown in Fig. 7, reconstructs
the filtered 2D image from the filtered grid. The filtered
intensity value at pixel (x, y) is obtained by trilinear
interpolation of 2×2×2 filtered grid values surrounding
the location (x/σs, y/σs, Ixy/σr). Trilinear interpolation
is equivalent to performing linear interpolations inde-
pendently across each of the three dimensions of the

grid. To meet throughput requirements, the interpolation
engine is implemented as three pipelined stages of linear
interpolations. The output value IBF (x, y) is calcu-
lated from filtered grid values F r

ij using four parallel
linear interpolations along the i dimension, given by
eq. (2):

F r
j = F r

i,j × wi
1 + F r

i+1,j × wi
2

F r
j+1 = F r

i,j+1 × wi
1 + F r

i+1,j+1 × wi
2

F r+1
j = F r+1

i,j × wi
1 + F r+1

i+1,j × wi
2

F r+1
j+1 = F r+1

i,j+1 × wi
1 + F r+1

i+1,j+1 × wi
2 (2)

followed by two parallel linear interpolations along the
j dimension, given by eq. (3):

F r = F r
j × wj

1 + F r
j+1 × wj

2

F r+1 = F r+1
j × wj

1 + F r+1
j+1 × wj

2 (3)

followed by an interpolation along the r dimension,
given by eq. (4):

IBF (x, y) = F r × wr
1 + F r+1 × wr

2 (4)

The interpolation weights, given by eq. (5), are computed
based on the output pixel location (x, y), the intensity
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of the original pixel in the input image Ixy at location
(x, y), and the grid cell index (i, j, r).

wi
1 =

x

σs
− i; wi

2 = i+ 1 − x

σs

wj
1 =

y

σs
− j; wj

2 = j + 1 − y

σs

wr
1 =

Ixy
σr

− r; wr
2 = r + 1 − Ixy

σr
(5)

The pixel location (x, y) and the grid cell index (i, j, r)
are maintained in internal counters. The original pixel
intensity Ixy is read from the DRAM in chunks of
32 pixels per read request to fully utilize the memory
bandwidth.
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Fig. 7. Architecture of the interpolation engine. Trilinear interpola-
tion is implemented as three pipelined stages of linear interpolations.

The assigned and filtered grid cells are stored in the on-
chip memory. Last three assigned blocks are stored in a
temporary buffer and two previous rows of grid blocks
are stored in the SRAM. Last two filtered blocks are
stored in the temporary buffer and one filtered grid row
is stored in the SRAM.

D. Memory Management

The grid processing tasks are scheduled to minimize
local storage requirements and memory traffic. Fig. 8
shows the memory management scheme by task schedul-
ing. Grid processing is performed cell-by-cell in a row-
wise manner. The last three blocks are stored in the
temporary buffer and the last two rows are stored in
the SRAM. Once a 3×3×3 block is available, the
convolution engine begins filtering the grid. When block
A, shown in Fig. 8, is being assigned, the convolution
engine is filtering block F . As filtering proceeds to the
next block in the row, the first assigned block, stored

in the SRAM, becomes redundant and is replaced by
the first assigned block in the temporary buffer. Last
two filtered blocks are stored in the temporary buffer
and the previous row of filtered blocks are stored in the
SRAM. As 2×2×2 filtered blocks become available, the
interpolation engine begins reconstructing the output 2D
image. When block F , shown in Fig. 8, is being filtered,
the interpolation engine is reconstructing the output 2D
image from block I . As interpolation proceeds to the
next block in the row, the first filtered block, stored
in the SRAM, becomes redundant and is replaced by
the first filtered block in the temporary buffer. Boundary
rows and columns are replicated for processing boundary
cells. This scheduling scheme allows processing without
storing the entire grid. Only two assigned grid rows and
one filtered grid row need to be stored locally at a time.
Memory management reduces the memory requirement
to 21.5 kB for processing a 10 megapixel image and
allows processing grids of arbitrary height using the
same amount of on-chip memory.
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Fig. 8. Memory management by task scheduling.

E. Scalable Grid

The size of the grid is determined by the image size and
the downsampling factors. For an image of size IW ×IH
pixels with the spatial and intensity/range downsampling
factors σs and σr respectively, the grid width (GW ) and
height (GH ) are given by eq. (6) and the number of grid
cells (NG) is given by eq. (7).

GW =
IW
σs

; GH =
IH
σs

(6)

NG = GW ×GH ×
(

256

σr

)
(7)

The number of computations as well as storage depends
directly on the size of the grid. Selecting the down-
sampling factors the same as the standard deviations of
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the spatial and intensity/range Gaussians in the bilateral
filter (eq. (1)) provides a good trade-off between the
output quality and processing complexity. The choice of
downsampling factors is guided by the image content
and the application. Most applications work well with a
coarse grid resolution on the order of 32 pixels with
8 to 12 intensity bins. If the image has high spatial
details, a smaller σs would result in better preservation
of those details in the output. Similarly, a smaller σr
would help preserve fine intensity details. The grid size
is configurable by adjusting σs from 16 to 128, which
scales the block size from 16×16 to 128×128 pixels, and
σr from 16 to 64, which scales the number of intensity
levels from 16 to 4. For a 10 megapixel (4096 × 2592)
image, the number of grid cells scales from 663552
(σs = 16, σr = 16) to 2592 (σs = 128, σr = 64).
The architecture achieves energy scalability by activating
only the required number of hardware units for a given
grid resolution.

The 21.5 kB of on-chip SRAM used to store two rows
of created grid cells and one row of filtered grid cells.
The SRAM is implemented as 8 banks supporting a
maximum of 256 cells in each row of the grid with
16 intensity levels, corresponding to the worst case of
σs = 16, σr = 16. Each bank is clock & input gated to
save energy when a lower resolution grid is used. Only
one bank is used when σs = 128 and all 8 banks are
used when σs = 16. The bilateral filter engine achieves
scalability by activating only the required number of
processing engines and SRAM banks for the desired grid
resolution.

IV. APPLICATIONS

The testchip has two bilateral filter engines, each pro-
cessing 4 pixels/cycle. The processor performs HDR
imaging, low-light enhanced imaging and glare reduction
using the bilateral filter engines.

A. High Dynamic Range Imaging

High dynamic range (HDR) imaging is a technique for
capturing a greater dynamic range between the brightest
and darkest regions of an image than a traditional digital
camera. It is done by capturing multiple images of the
same scene with varying exposure levels, such that the
low exposure images capture the bright regions of the
scene well without loss of detail and the high exposure
images capture the dark regions of the scene. These
differently exposed images are then combined together

into a high dynamic range image, which more faithfully
represents the brightness values in the scene.

The first step in HDR imaging is to create a composite
HDR image from multiple differently exposed images
which represents the true scene radiance value at each
pixel of the image [21]. The true scene radiance value
at each pixel is recovered from the recorded intensity I
and the exposure time ∆t as follows. The exposure E is
defined as the product of sensor irradiance R (which
is the amount of light hitting the camera sensor and
is proportional to the scene radiance) and the exposure
time ∆t. The intensity I is a nonlinear function of the
exposure E, given by eq. 8.

I = f(R× ∆t) (8)

We can then obtain the sensor irradiance as given by
eq. 9.

log(R) = g(I) − log(∆t) (9)

where, g = log f−1.

The mapping g is knows as the camera curve [21]. Fig. 9
shows the camera curves for the RGB color channels of
a typical camera sensor.
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Fig. 9. Camera curves that map the pixel intensity values on to the
incident exposure.

The HDR creation module, shown in Fig. 10 takes values
of a pixel from three different exposures (IE1, IE2, IE3)
and generates an output pixel which represents the true
scene radiance value (IHDR) at that location. Since
we are working with a finite range of discrete pixel
values (8 bits per color), the camera curves are stored
as combinational look-up tables to enable fast access.
The true (log) exposure values are obtained from the
pixel intensities using the camera curves, followed by
exposure time correction to obtain (log) scene radiance.
The three resulting (log) radiance values obtained from
the three images represent the radiance values of the
same location in the scene. A weighted average of
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these three values is taken to obtain the final (log)
radiance value. The weighting function gives a higher
weight to the exposures in which pixel value is closer to
the middle of the response function (thus avoiding the
high contributions from images where the pixel value is
saturated). In the end an exponentiation is performed to
get the final radiance value (16 bits per pixel per color).
Processing in log domain simplifies the computations to
additions and subtractions instead of multiplications and
divisions.
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Displaying HDR images on LDR media (8b/pixel) re-
quires tone mapping that compresses image dynamic
range by non-linear filtering [1]. The 16b/pixel HDR
image is split into intensity and color channels. A low-
frequency base layer and a high-frequency detail layer
are created by bilateral filtering the HDR intensity in
log domain. The dynamic range of the base layer is
compressed by a scaling factor in the log domain. The
detail layer is untouched to preserve the details and
the colors are scaled linearly to 8b/pixel. Merging the
compressed base layer, the detail layer and the color
channels results in a tone-mapped HDR image (ITM ).
In HDR mode, both bilateral grids are configured to
perform filtering in an interleaved manner, where each
grid processes alternate blocks in parallel.

Fig. 11 shows a set of input low-dynamic range expo-
sures and the tonemapped HDR output image.

B. Glare Reduction

Glare reduction is similar to performing single image
HDR tone-mapping. The input image is split into in-
tensity and color channels. A low-frequency base layer
and a high-frequency detail layer are created by bilateral
filtering the intensity. The contrast of the base layer is
enhanced using the contrast adjustment module, shown

in Fig. 12, which is also used in HDR tone-mapping. The
contrast can be increased or decreased depending on the
adjustment factor. The scaled color data is merged with
the contrast enhanced base layer and the detail layer to
obtain a glare reduced output image.
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Fig. 13 shows an input image with glare and the glare
reduced output image. Glare reduction recovers details
that are white-washed in the original image and enhances
the image colors and contrast.

(a)! (b)!

Before!
Filtering!

After!
Filtering!

Fig. 13. Input images: (a) image with glare. Output image: (b) image
with reduced glare.

C. Low-Light Enhanced Imaging

Low-light enhanced imaging is performed by merging
two images captured in quick succession, one taken
without flash (INF ) and one with flash (IF ) [2,3]. The
bilateral grid is used to decompose both images into
base and detail layers. The scene ambience is captured
in the base layer of the non-flash image and details are
captured in the detail layer of the flash image. In this
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(a)! (b)! (c)! (d)!

-1 EV! 0 EV! +1 EV! Tonemapped HDR!

Fig. 11. Input low-dynamic range images: (a) under exposed image, (b) normally exposed image, (c) over exposed image. Output image:
(d) tonemapped HDR image.

mode, one grid is configured to perform bilateral filtering
on the flash image and the other to perform cross-
bilateral filtering, given by eq. (10), on the non-flash
image using the flash image. The location of the grid
cell is determined by the flash image and the intensity
value is determined by the non-flash image.

ICB(p) =

N∑
n=−N

[
GS(n) ·GI(IF (p) − IF (p− n))

· INF (p− n)
]

(10)

The image taken with flash contains shadows that are
not present in the non-flash image. A shadow correction
module is implemented which merges the details from
the flash image with base layer of the cross-bilateral
filtered non-flash image and corrects for the flash shad-
ows to avoid artifacts in the output image. A mask
representing regions with high details in the filtered non-
flash image is created, as shown in Fig. 14. Gradients
are computed at each pixel for blocks of 4×4 pixels.
If the gradient at a pixel is higher than the average
gradient for that block, the pixel is assigned as an edge
pixel. This results in a binary mask that highlights all
the strong edges in the scene but no false edges due
to the flash shadows. The details from the flash image
are added to the filtered non-flash image, as shown in
Fig. 15, only in the regions represented by the mask. A
linear filter is used to smooth the mask to ensure that
that the resulting image does not have discontinuities.
This implementation of the shadow correction module
handles shadows effectively to produce LLE images
without artifacts.

Fig. 16 shows a set of input flash and non-flash images
and the low-light enhanced output image. The enhanced
output effectively reduces noise while preserving de-
tails.

Another set of images is shown in Fig. 17. The flash
image has shadows that are not present in the non-flash

Mask!

×! ÷!
>> 4! ×!

+!

-!
! 

INF
filt

IF
filt

IF

! 

INF
filt

IF
filt

IF

! 

INF
filt

IF
filt

IF

! 

I
LLE

!
Flash!

Details 
with 

shadow 
artifacts!!

Shadow corrected 
details!

Non-flash 
base layer!

Fig. 15. Merging flash and non-flash images with shadow correction.

image. The bilateral filtered non-flash image reduces the
noise but lacks details. The enhanced output, created
by adding the details from the flash image, effectively
reduces noise while preserving details and corrects for
flash shadows without creating artifacts.

V. LOW-VOLTAGE OPERATION

The energy consumed by a digital circuit can be mini-
mized by operating at the optimal VDD, which requires
the ability to operate at low voltage. Random Dopant
Fluctuation (RDF) is a dominant source of local variation
at low voltage, causing random, local threshold voltage
shifts [22]. To maintain sufficient reliability and perfor-
mance at low voltage, significant attention needs to be
given to the effects of local variation.

Performance of logic circuits is highly sensitive to varia-
tion in VT in this region of operation, and can also result
in functional failures at the extremes of VT variation.
To quantify the functionality of a combinational cell at
low voltage, we use the standard cell characterization
approach described in [23]. A subset of standard cells
from the 40 nm CMOS logic library are analyzed to
ensure functionality and quantify the performance at
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Fig. 14. Generating a mask representing regions with high scene details.

(a)! (b)! (c)!

Fig. 16. Input images: (a) image with flash, (b) image without flash. Output image: (c) low-light enhanced image.

0.5 V. Standard cells that fail the functionality or do not
satisfy the performance requirement are not used in the
design. The functionality and setup/hold performance of
flip-flops are also verified using the cell characterization
approach.

At nominal voltage, local variations in VT may result in
5%–10% variation in the logic timing. However, at low
voltage, these variations can result in timing path delays
with standard deviation comparable to the global corner
delay, and must be accounted for during timing closure
in order to ensure a robust, manufacturable design. The
Probability Density Function (PDF) of delay at 0.5 V
for a representative path from the design is shown in
Fig. 18. The global corner delay for this path is 21.9 ns,

but after accounting for the local variations the 3σ delay
becomes 36.1 ns.

At nominal voltage, paths that fail the setup/hold require-
ment are determined using the corner-based analysis
and timing closure is achieved by performing setup/hold
fix on these paths. However, at low voltage, it is not
possible to consider only the paths that fail the setup/hold
requirement in the corner analysis and determine their 3σ
setup/hold performance, since a path with larger corner
delay need not have a larger stochastic variation. We use
the nonlinear operating point analysis (OPA) approach
[23] to perform timing analysis at VDD = 0.5 V. The
potentially critical paths in the design, in presence of
variations, are determined by the approach described in
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(a)! (b)! (c)! (d)!

Fig. 17. Input images: (a) image with flash, (b) image without flash. Output images: (c) filtered no-flash image, (d) low-light enhanced
image.
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Fig. 18. Delay PDF of a representative timing path from the design
at 0.5 V. The global corner delay is 21.9 ns and the 3σ delay, after
accounting for local variations, is 36.1 ns.

[23] and 3σ setup and hold performance is computed at
VDD = 0.5 V using OPA. The three step approach is
summarized below.

1) All paths are analyzed with traditional static timing
analysis (STA). +/− 3σ delay (corner delay plus
the stochastic +/−3σ delay) is used for each cell
in the path. This is a pessimistic analysis, so those
paths that pass the setup/hold requirement can be
removed from further consideration.

2) Paths that fail the first step are re-analyzed. OPA
based analysis is applied to the clock paths to
determine their 3σ performance. Data paths are
analyzed with STA as in the first step with +/−3σ
delays applied to all the cells in the data path. This
is also a pessimistic estimate. The paths that pass
the setup/hold requirement can be removed from
further consideration.

3) The remaining paths are analyzed with OPA based

timing analysis applied to both the data paths and
clock paths to determine their true 3σ setup/hold
performance.

The paths that fail the 3σ setup or hold performance test
are optimized to fix the setup/hold violations. Table I
shows statistics on the number of paths analyzed for both
setup and hold analysis of the chip. Setup/hold fixing
using OPA ensures that cells that are very sensitive to
VT variations are not used in the critical paths. This
helps improve the 3σ performance at 0.5 V by 32%,
from 17 MHz to 25 MHz.

The functionality and timing characterization for stan-
dard cells and the OPA analysis for timing paths ensure
reliable functionality, despite statistical variations, with
3σ confidence at 0.5 V.

VI. MEASUREMENT RESULTS

The testchip, shown in Fig. 19, is implemented in 40 nm
CMOS technology and verified to be operational from
25 MHz at 0.5 V to 98 MHz at 0.9 V.

This chip is designed to function as an accelerator
core as part of a larger microprocessor system, utilizing
the system’s existing DRAM resources. For standalone
testing of this chip, a 32 bit wide 266 MHz DDR2
memory controller was implemented using a Xilinx
XC5VLX50 FPGA. The performance vs. energy trade-
off of the testchip for a range of VDD is shown in
Fig. 20. The processor is able to operate from 25 MHz
at 0.5 V with 2.3 mW power consumption to 98 MHz at
0.9 V with 17.8 mW power consumption. The run-time
scales linearly with the image size with 13 megapixel/s
throughput.
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TABLE I
SETUP/HOLD TIMING ANALYSIS AT 0.5 V

Phase Data Path Clock Path Paths Analyzed Worst Slack (ns) % Fail

Setup Analysis @ 25MHz

1 STA (+3σ) STA (−3σ) 95k -10.7 3.6%

2 STA (+3σ) OPA 3.4k -2.9 1.5%

3 OPA OPA 52 -0.05 13.4%

Paths requiring fixing (before timing closure) 7

Hold Analysis

1 STA (−3σ) STA (+3σ) 95k -8.2 2.8%

2 STA (−3σ) OPA 2.7k -1.8 2.4%

3 OPA OPA 65 -0.13 13.8%

Paths requiring fixing (before timing closure) 9

TABLE II
PERFORMANCE COMPARISON WITH MOBILE PROCESSOR IMPLEMENTATIONS

Processor Technology
(nm)

Frequency
(MHz)

Power
(mW)

Runtime∗
(s)

Energy∗

(mJ)

Intel Atom [24] 32 1800 870 4.96 4315

Qualcomm Snapdragon [25] 28 1500 760 5.19 3944

Samsung Exynos [26] 32 1700 1180 4.05 4779

TI OMAP [27] 45 1000 770 6.47 4981

This Work 40 98 17.8 0.771 13.7

∗Image size: 10 megapixel

Technology! 40nm CMOS!

Core Area! 1.1mm×1.1mm!

Transistor 
Count! 1.94 million!

SRAM! 21.5kB!

Supply 
Voltage! 0.5V to 0.9V!

I/O Supply 
Voltage! 1.8V to 2.5V!

Frequency ! 25 – 98 MHz!

Core Power! 17.8mW (0.9V)!
2.3mW (0.5V)!

Chip Features!2 mm!

2 
m

m
!

Bilateral Filter!
Engine 2!

Bilateral Filter!
Engine 1!

CR! HDR!

SC!

Fig. 19. Die photo of the testchip. Highlighted boxes indicate
SRAMs. HDR, CR and SC refer to HDR create, contrast reduction
and shadow correction modules respectively.

Table II shows a comparison of the processor perfor-
mance with implementations on other mobile proces-

sors. Software that replicates the functionality of the
testchip and maintains identical image quality is im-
plemented on the mobile processors. The implementa-
tions are optimized for multi-threading and multi-core
processing. Processing runtime and power consumption
during software execution are measured. The processor
achieves more than 5.2× faster performance than the
fastest software implementation and consumes less than
40× power compared to the most power efficient one,
resulting in an energy reduction of more than 280× com-
pared to software implementations on some of the recent
mobile processors while maintaining the same output
image quality. Flexible bit width computations, along
with high amount of parallelism and pipelining, enable
an optimized processor implementation that achieves
higher performance at a lower frequency and significant
improvement in energy efficiency compared to software
implementations.

The processor is integrated, as shown in Fig. 21, with
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Fig. 22. Demo board and setup integrated with camera and display.
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a camera and a display through a host PC using the
USB interface. A software application, running on the
host PC, is developed for processor configuration, image
capture, activating processing and result display. The
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Fig. 21. Processor integration with external memory, camera and
display.

system, shown in Fig. 22, provides a portable platform
for live computational photography.

VII. CONCLUSIONS

We have described the development and implementa-
tion of a reconfigurable processor for computational
photography using 40 nm CMOS technology. The pro-
cessor performs HDR imaging, low-light enhancement
and glare reduction using a reconfigurable bilateral grid.
Highly parallel architecture enables real-time processing
of HD images while operating at less than 100 MHz.
The ability to operate at low supply voltages is important
for maximizing energy efficiency. Circuit design for low
voltage operation ensures reliable performance down
to 0.5 V. The processor achieves 280× energy reduc-
tion compared to software implementations on recent
mobile processors. The energy scalable implementation
proposed in this work enables efficient integration into
portable multimedia devices for real time computational
photography.
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