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Abstract: The simultaneous pre-and post-turbulence compensation of multiple orbital-angular-momentum 

(OAM) modes propagating through turbulent channel is experimentally demonstrated in a bidirectional free-

space optical (FSO) link by using a single adaptive-optics system. ©2013 Optical Society of America 
OCIS codes: (050.4865) Optical vortices; 060.2330 Fiber optics communications; (060.4230) Multiplexing. 

1. Introduction 

Orbital angular momentum (OAM) has gained much interest recently due to its potential for efficiently multiplexing many 

independent data streams in a space-division-multiplexing (SDM) communication system [1, 2]. Light beams carrying OAM 

can be described in the spatial phase form of exp(ilφ) (l=0, ±1, ±2,..), in which φ refers to the azimuth angle and l determined 

the OAM value [1, 3]. One key characteristic of beams carrying OAM is that they have a helical phase-front and “doughnut” 

intensity shape when l≠0, and they lie within by an unbounded mode space (i.e., l can take any integer value) with each of 

them orthogonal to all of the others [2, 3]. The orthogonality enables the efficient multiplexing and demultiplexing of the 

spatially overlapping multiple OAM beams in SDM-based free space optical (FSO) links. 

       Experimental reports have demonstrated 2.56-Tbit/s on a single wavelength with 32 modes [2] and 100-Tbit/s on 42 

wavelengths each with 24 modes [4]. However, a key challenge in OAM multiplexed FSO links is the ability to compensate for 

atmospheric turbulence, given that the turbulence distortions will significantly degrade OAM beams and cause crosstalk among 

adjacent channels [5-7]. Recently, it has been experimentally shown that turbulence compensation of multiple OAM beams can 

be achieved in an unidirectional link by using a new adaptive optics (AO) compensation scheme at the receiver [8]. Meanwhile, 

the reciprocity of the atmospheric turbulence [9] implied that this AO system could potentially be employed to pre-distort the 

outgoing beams emitted from the receiver simultaneously, significantly simplifying the system complexity [10, 11].      

 In this paper, we demonstrate that by using a single AO system, the pre-and post-turbulence compensation of multiple 

OAM beams could be achieved simultaneously in a bidirectional FSO link, in which the AO system is located at only one end 

of the system such that one direction experiences pre-compensation and the other direction experiences post-compensation. 

Rotatable phase screen plate with phase distribution obeying Kolmogorov spectrum statistics [12] is used to emulate 

atmospheric turbulence. The experimental results suggests the link with post-compensation will achieve better performance 

than the pre-compensated link by about >1 dB depending on the mode-spacing ∆ of the transmitted modes (>7 dB when ∆ =2). 

2. Concept and Experimental Setup 

      The concept of simultaneous pre-and post-compensation of the OAM-based bidirectional FSO link is illustrated in Fig. 1. 

Two groups of multiplexed data-carrying OAM beams (at TX-1 and TX-2)  propagate through the atmospheric turbulence with 

opposite directions. A recently-proposed AO system for OAM beams [8] is placed at one end of the system (TX-2), which is 

used to compensate the received OAM beams from TX-1 and pre-distort the outgoing beams from TX-2 simultaneously.  

      The experimental setup is presented in Fig. 2.Two groups of three OAM-multiplexed beams each carrying 100-Gbit/s 

QPSK signal are created by using two spatial light modulators (SLM 1-2, the surface of each SLM is divided into two different 

regions, one region generates one OAM beam, the other region generates two OAM beams by loading a specially-designed 

spiral phase pattern). A Gaussian beam, which acts as a probe beam for wavefront sensing in the AO system, is expanded by 

using a 4-f lens system to become as wide as the widest OAM beam along the propagation path and propagates collinearly with 

OAM beams from TX-1. The multiplexed beams transmitted from TX-1 and TX-2 propagate with opposite directions through 

the turbulence emulator, which consists of a rotatable stage and a phase screen plate. The phase screen plate with Fried’s 

 
Fig. 1. Concept diagram of the bidirectional link. The multiplexed beams from TX-1 and TX-2 experience post- and pre compensation respectively. 

Blue: TX/RX-1 link for post-comp.
Red: TX/RX-2 link for pre-comp.
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parameter r0= 1mm is used to emulate a 1 km turbulence channel. A closed-loop Shack-Hartmann-based AO system is placed 

at TX-2 side to compensate the turbulence-distorted OAM from TX-1 and pre-distort the outgoing beam from TX-2 by using 

the same correction pattern obtained from the Gaussian probe beam. Both the multiplexed beams from TX-1 and TX-2 are then 

down-converted back into Gaussian beams respectively, which is then coupled into single mode fibers and sent for coherent 

detections and off-line digital signal processing after passing through both the phase screen plate and the wavefront corrector.  

3.  Experiment Results and Discussion 

Fig. 3 shows the intensity profile and interference pattern of the OAM beams with/without pre- and post-compensation 

respectively. From the far-field images, one can see that the distorted OAM beams (b1-2, c1-2) are efficiently compensated 

(b5-6, c5-6) for both TX/RX-1 and TX/RX-2 links. The interference patterns shown in (b7-8, c7-8), in comparison with (b3-4, 

c3-4) verify that the OAM wavefronts has also been corrected significantly. Note that the post-compensation for TX/RX-1 link 

get better compensation performance than the pre-compensation experienced by TX/RX-2 link. The received power 

fluctuations when transmitting OAM l=5 for both links with/without compensation is depicted in Fig. 4(a), indicating that the 

received power after compensation could remain fairly stable. Fig. 4(b) further illustrates the distribution of power coupled into 

the fiber over neighboring OAM modes when transmitting OAM l=5 with/without pre- and post-compensation for a specific 

turbulence realization. One can see that  after compensation, the power of transmitted mode l=5 dominates in the power 

spectrum. The BER performance for channel l=5 with/without compensation under turbulence realization #10 when 

transmitting 3 multiplexed channels is presented in Fig. 5 (a). The corresponding recovered constellations of 100-Gbit/s QPSK 

signal are also shown in Fig. 5(b1-8), respectively. Considering that crosstalk is dependent on the separation of the transmitted 

OAM modes, the performance under different OAM mode-spacings (∆ =2, 4) is also investigated. It is observed that the BERs 

in the cases without compensation are extremely high (not shown in Fig. 5(a)), and the TX/RX-1 link with post-compensation 

could achieve better performance than the pre-compensated TX/RX-2 link by > 1 dB depending on the mode-spacing. 

   
Fig. 3: The far-field intensity and interference images of the 

OAM beams (l = 3, 5) before (upper, b1-b4, c1-c4) and 
after (lower, b5-b8, c5-c8) post-and pre-compensation, 

respectively. The RMS (root mean square), PV (peak-to-

valley) and Strehl ratio of wavefront for the probe beam 
before/after compensation are also given. 

Fig. 4 (a) the power (coupled into fiber) of 

OAM l=5 under different turbulence 
realizations, and (b) Power distribution  over 

neighboring OAM modes when transmitting 

OAM l=5 under a specific turbulence state, 
with/without pre-and post-compensation. 

Fig. 5 (a) BER for OAM channel l=5 when 

transmitting 3 multiplexed channels with different 
mode spacing (l=3, 5, 7 or l=1, 5, 9), under turbulence 

realization #10, and (b1-b8) The corresponding 

QPSK constellations recovered for channel l=5, 
with/without pre-and post-compensation. 
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Fig. 2. Experimental setup. AO: adaptive optics, BS: beam-splitter, Col.: Collimator, HWP: half wave plate, OC: optical coupler, PC: polarization 

controller; SLM: spatial light modulator, WFS: wavefront sensor ( HASO from Imagine optic Inc.).  
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