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Abstract

A direct method for calculation of hydrogenic spectral line pro�les in the
external magnetic �eld is developed. The corresponding code BELINE can
calculate any line pro�le for emitting hydrogen or deuterium plasmas in a
wide range of tokamak divertor conditions. The code is based on the solution
of the quantum-mechanical problem associated with emitting hydrogen atom
placed in crossing external magnetic and quasi-static (ion) electric �elds. In
the �elds a �n�n hydrogenic line splits into n2�n2 components, for each compo-
nent the interaction with free electrons and atom motion (Doppler e�ect) are
taken into account and the result is averaged over electrical �eld distribution
function. One case of temperature and density takes approximately several
minutes running. The results for 3-2 and 8-2 Balmer lines of deuterium
plasma are presented in dependency on electron density.
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x1. Introduction

Previously in report [1], when solving a radiative transfer problem, we used
simplest spectral line shapes without considering inuence of external mag-
netic �eld on the line pro�le. However, the value of magnetic �eld in the
edge plasma is strong enough (about 6-12 T) and has a signi�cant action on
spectral line shapes and hence on radiative transfer as a whole.

A special code named as BELINE was constructed to calculate spectral
line shapes in the presence of external magnetic �eld including averaging over
internal plasma electric micro�eld. To produce this result we solve quantum-
mechanical problem associated with a radiating atom in crossing electric and
magnetic �elds taking into account Doppler e�ect and averaging over electric
�eld distribution function. The fact that the spectral line shape depends on
the direction of observation adds complexity and increases the computing
time. A special procedure using matrix representation was developed to
reduce the computing time. The calculations for deuterium Balmer spectral
lines 3-2 and 8-2 were carried out. Particular emphasis has been made on the
8-2 line, playing important role in the divertor plasma diagnostics. For the
8-2 line we present the pro�les calculated without and with magnetic �eld for
di�erent directions of observation. The electron density dependencies of the
line width obtained using di�erent approximations of electron broadening are
given also.

x2. Hydrogenic spectral line pro�les

The strong external magnetic �eld and internal electric plasma micro�eld
generated by uctuations of ions and electrons, give rise to a considerable
inuence on the shape of spectral lines. Usually ion micro�eld can be con-
sidered in the quasi-static approximation while electron micro�eld { in the
impact approximation [2]. When a hydrogenic atom is subjected to both
electric and magnetic �elds, degeneration is taken away and each line splits
into n2�n2 components where n and �n are the principal quantum numbers
of the lower and upper transition states respectively. We consider the case
when the �elds are strong enough and the spin-orbit interaction can be disre-
garded. The splitting structure is more complex than structute under action
by one of the �elds. The shift and intensity of a component depend on the
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values of magnetic �eld B and quasi-static electric �eld E and the angle be-
tween vectors B and E. Besides, the intensity (but not the shift) depends on
the angles between radiative direction K and vectors B and E (unit vector
K is de�ned by K = k=jkj where k is the wave vector). The pro�le of each
component is determined by the Doppler e�ect and electron collisions.

1. Splitting structure

We can present the total pro�le of the spectral line for a �n! n transition as
a sum of di�erent component pro�les taking into account the averaging over
the value and direction of the quasi-static ion micro�eld

��nn(!) =
1

4�

Z
dOE

1Z
0

P (E)
X
���

G��
� � ���

�(!)dE (1)

where P (E) is the quasi-static electric micro�eld distribution function, ���
�(!)

and G��
� are the pro�le and intensity of the �� ! � component respectively.

Here �� and � denote complete sets of the quantum numbers determining
initial and �nal atomic states in the �xed magnetic B and electric E �elds.

We calculate the pro�le of a component ���
�(!) taking into account the

Doppler e�ect and electron collisions as a convolution of corresponding pro-
�les

���
�(!) =

1p
�D���

Z
 ��
� (! � !��� � s)e�(s=D���)2 ds (2)

where !��� is the center of the ��� component, D��� = (!���=c)(2Ta=M)1=2 is
the Doppler broadening parameter, c is the velocity of light, Ta is the atomic
temperature and M is the atom mass. For the electron pro�le  ��

� we use
di�erent approximations considered in following subsection.

Relative intensities of the �� ! � components are estimated in the dipole
approximation

G��
� =

je�h�jrj��ij2P
���
je�h�jrj��ij2

(3)

where e� is the unit polarization vector. For nonpolarized radiation (in
atomic units)
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G��
� =

!n�n
n2fn�n

X
�=1;2

je�h�jrj��ij2 (4)

where fn�n is the total oscillator strength of the �n{n transition.
Let us assume that the �elds are su�ciently strong, so that the spin-orbit

interaction can be disregarded: E � �2

6n4
' 5 � 104

n4
V/cm, B � �

2n3
' 6

n3
T

where � = 1=137 is the �ne structure constant. On the other hand, the �elds
must be lower than atomic ones for radiating states, so the typical value of
the line splitting is small with respect to the line spacing and we can regard
the line �n � n as isolated. It has been shown in the framework of the old
Bohr theory [3] that simultaneous e�ect of magnetic and electric �elds on the
n` electron orbit can be described in the �rst approximation as an uniform
and independent precession of vectors 3

2
nL�ra (L is the angular momentum

and ra is the radius-vector of the electron averaged over the orbital motion)
with angular velocities


1;2 =
�

2
B� 3

2
nE:

Correction to the electron energy has been obtained in the same approx-
imation [3]. Quantum-mechanical consideration gives the same result in the
�rst order of the perturbation theory [4]. We can write the Hamiltonian as
a sum

H = H0 +H1

of the unperturbed Hamiltonian

H0 = �1

2
�� 1

r

and perturbation

H1 =
�

2
BL+Er:

The last can be presented in the form

H1 =
�

2
BL� 3

2
nEA = 
1I1 +
2I2

where I1;2 =
1
2
(L�A), A is the Runge{Lenz vector for which in this case

we have A = 2r=(3n) [4].
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Operators I1;2 are commutative with H0 and satisfy the usual relations
of the ordinary angular momentum operators. So, I21 = I22 = j(j + 1),
where j is determined by whole number of states (2j + 1)2 = n2 and hence
j = (n � 1)=2. Projection n0 of I1 to the direction 
1 and projection n00 of
I2 to the direction 
2 may be any of 2j + 1 integer or half-integer values
�j; �j + 1; : : : ; j � 1; j.

In �rst order of the perturbation theory

"nn0n00ms
= � 1

2n2
+ 
1n

0 + 
2n
00 + �Bms (5)

where ms = �1
2
is the spin projection on the magnetic �eld direction.

We can write eigenstate  n0n00 as a linear combination of the Stark eigen-
states corresponding to separation of variables in parabolic coordinates with
z axis along the electric �eld E

 n0n00 =
jX

i1=�j

jX
i2=�j

djn0i1
(�1)d

j
n00i2

(�2) i1i2 (6)

where djkk0(�) = Dj
kk0(0; �; 0) is the Wigner function [5] corresponding to the

turn about the z axis of an angle � and  i1i2 �  nn1n2m is the wave function
in parabolic coordinates. In our case it is convenient to mark this function
with the quantum numbers i1 and i2 which are the projections of I1 and I2
to the z axis respectively and their relations with ordinary parabolic n1, n2
and magnetic m quantum numbers are

m = i1 + i2;

n1 =
1

2
(n� jmj � 1 + i2 � i1);

n2 =
1

2
(n� jmj � 1 + i1 � i2):

Angles �1 and �2 are those between E and vectors
1 and
2 respectively,
i.e.

cos�1;2 =
�
2
B cos #� 3

2
nF


1;2
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where # is the angle between B and E.
The shift of a �� ! � component (� � nn0n00) follows from (5) disregarding

the spin-orbit interaction

!��� � !n�n = �
1�n
0 + �
2�n

00 � 
1n
0 � 
2n

00

where !n�n is the shift of the unperturbed line �n� n.
Dipole matrix elements in (3) and (4) between states (6) can be presented

in the form of linear combination of the matrix elements between states  i1i2 .
Let us e�x; e�y; e�z are the Cartesian coordinates of the unit polarization
vector e� in the coordinate system with z axis along E and x axis lying in
the plane de�ned by the vectors B and E. Then

e�h��jrj�i =
X

a=x;y;z

e�ah��jaj�i;

h��jaj�i � h�n�n0�n00 jajnn0n00i

=
jX

i1=�j

jX
i2=�j

�jX
�i1=��j

�jX
�i2=��j

djn0i1
(�1) d

j
n00i2

(�2)d
�j
�n0�i1

(��1) d
�j
�n00�i2

(��2)h�n�n1�n2 �mjajnn1n2mi
(7)

where matrix elements h�n�n1�n2 �mjajnn1n2mi are calculated from the Gordon
formulas [6].

In the case of nonpolarized radiation we put e1 being normal to the plane
of the vectors K and B, while e2 lying in this plane and normal to K. For
averaging over E directions in (1), we introduce the spherical coordinate
system with z axis along B. Denote by e# the angle between B and K and
by ' the angle between projections of K and E into the plane normal to B.
Then

e1x = cos# sin'; e1y = cos'; e1z = sin# sin';

e2x = � cos e# cos# cos'� sin e# sin#; e2y = cos e# sin';
e2z = � cos e# sin# cos'+ sin e# cos#:

Following calculations depend on the approximation using for the electron
broadening evaluation. If the pro�les of ��{� components do not depend on
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the angle ' , we can make integration over ' in (1) in analytical manner and
get

��nn(!) =
!n�n

4n2fn�n

1Z
0

dEP (E)
X
���

�Z
0

d# sin#����(!)

�
n
2 sin2 e#(x��� sin#� z��� cos#)

2 + (1 + cos2 e#) h(x��� cos# + z��� sin#)
2 + (y���)

2
io

where matrix elements a��� � h�jaj��i (a = x; y; z) are de�ned by equation (7).
The Wigner function djkk0(�) in (6) and (7) can be expressed in the terms

of the Jacobi polynomials [5]:

djkk0(�) = �kk0

"
s!(s+ �+ �)!

(s+ �)!(s+ �)!

#1=2 �
sin

�

2

�� �
cos

�

2

��
P (�;�)
s (cos �)

where � = jk � k0j, � = jk + k0j, s = j � 1
2
(� + �), �kk0 = 1 if k0 � k and

�kk0 = (�1)k0
�k if k0 < k. It is convenient to calculate the Jacobi polynomials

by means of the recurrence relations [7].

2. Electron broadening

For the calculation of the ��{� component pro�les due to electron collisions,
we use three di�erent approximations corresponding to di�erent accuracy
related with spectrum details.

1) First, we consider the simplest approximation which gives the same
pro�le for all the ��{� components for a given �n{n line. According to the
impact approximation, the electron pro�le is assumed as the Lorentz one

 �(u) =
=2�

u2 + 2=4
(8)

where � denotes the component �� ! � (�n�n0�n00 ! nn0n00) in the spectral line
�n ! n and u = ! � !��� is the distance from the component center. The
width  is estimated by the equation [8, 9]

 =
32

3

ne
ve

�
ln
Rm

Rw
+ 0:215

��
n4 + n04

�
(9)
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where ve is the mean velocity of the electrons, RW is the Weisskopf radius
and Rm is the upper limit for the impact parameter. For simplicity, we
substitute the Debye radius for Rm, although in this case in the far line wings
the condition of applicability of the impact approximation will be violated.

Equation (9) gives a mean value over all component widths, although
more correct approximation shows considerable di�erence between these widths.
However, the use of this equation is justi�ed by the fact that the line broaden-
ing is determined also by ion and Doppler ones. Only for central components
the electron broadening can be more important, while for outlying compo-
nents the ion broadening should apparently be dominant.

2) For more accurate calculations we use the same pro�le (8), while the
width is evaluated as

 = (e)n + 
(e)
�n + 

(u)
n�n :

Here

(e)n =
1

n2
X

`mn0`0m0


(e)
n`m;n0`0m0 ; 

(u)
n�n =

1

n2�n2
X

`m`0m0


(u)
n`m;�n`0m0 (10)

where 
(e)
n`m;n0`0m0 is the probability of electron transition in unit time from

state n`m to state n0`0m0 due to interaction with free electrons, which is
possible to be written as [10, 11]:


(e)
n`m;n0`0m0 = 2�

ZZ
n(") [1� n("0)] d"d"0�("n`m � "n0`0m0 + "� "0)�

� X
�̀�m�̀0 �m0

�����
ZZ

 �n`m(r) 
�

"�̀�m(r
0)

1

jr� r 0j n0`0m0(r) "0 �̀0 �m0(r 0)drdr 0
�����
2 : (11)

Here  n`m(r) = 1
r
Rn`(r)Y`m(#; ') and  "`m(r) = 1

r
R"`(r)Y`m(#; ') are the

wave functions of bound and free electrons, n(") is the free electron distribu-
tion function. The universal broadening [10, 11]


(u)
n`m;n0`0m0 = 2�

ZZ
n(") [1� n("0)] d"d"0�("� "0)�

� X
�̀�m�̀0 �m0

�����
ZZ h

j n0`0m0(r)j2 � j n`m(r)j2
i  "�̀�m(r 0) "0 �̀0 �m0(r 0)

jr� r 0j drdr 0
�����
2

:
(12)

After integrating over angles in (11) and (12), we obtain the following
expressions

(e)n =
1

n2
X
`n0`0

1X
s=0

C
(s)
``0

2s+ 1

(s)
n`;n0`0 ;
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(u)
n;�n =

1

n2�n2
X
``0

24~(0)n`;�n`0 +
1X
s=2

1

(2s+ 1)2

0@ C
(s)
`0`0

2`0 + 1

(s)
�n`0;�n`0 +

C
(s)
``

2`+ 1

(s)
n`;n`

1A35
where

C
(s)
``0 = (2`0 + 1)

�
` `0 s
0 0 0

�2

;


(s)
n`;n0`0 = 4�

X
�̀;�̀0

(2�̀+ 1)C
(s)
�̀�̀0

Z
n(") [1� n(")]

h
R

(s)

n0 ell0n0`0;"�̀"�̀0
R

(s)

n`n`;"�̀"�̀0

i
d";

(13)

~
(0)
n`;n0`0 = 4�

X
�̀

(2�̀+ 1)
Z
n(") [1� n(")]

h
R

(0)

n0`0n0`0;"�̀"�̀
� R

(0)

n`n`;"�̀"�̀

i2
d"; (14)

R
(s)

n`n0`0;"�̀"0 �̀0 =
Z Z

Rn`(r1)R"�̀(r2)
rs<
rs+1>

Rn0`0(r1)R"0 �̀0(r2)dr1dr2: (15)

Here r< and r> are respectively smaller and larger of r1 and r2. When
calculating integrals R

(s)

n`n0`0;"�̀"0 �̀0 the semiclassical approximation is used for
functions of continuum.

3) For more detailed consideration we use the approximation similar to
that presented by Seaton [12] for the case of Stark e�ect. It is based on
the Bethe-Born approximation for the interaction between radiating atom
and perturbing electrons, cut-o� angular momentum and use of a simple
analytical pro�le. The electron pro�le is approximated by

 �(u) =
�(u)=2�

u2 + g2� (u)=4
: (16)

Pro�le (16) is symmetrical, so we put u > 0. Functions �(u); g�(u) are
de�ned by [12]

�(u) =
q
2�=TeneQ�w(u); (17)

g�(u) =
q
2�=TeneQ�u

1Z
u

w(u0)

u02
du0: (18)

Here Te is the electron temperature, w(u) depends only on the principal
quantum numbers and it is the same for all components, while a factor Q�
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does not depend on u, but is de�ned by all the quantum numbers of initial
and �nal states. In the case under consideration we can take the function
w(u) from [12] without any alteration, while the factorQ� should be modi�ed.

Diagonal matrix  approximates the electron interaction matrix � in such
a manner that

D+D = D+�D

whereD is the columnmatrix of transition probability amplitudesD�, jD�j2 =
G��
�. Therefore we can present the factor Q� as a product

Q� = bG��

where G�� is the diagonal matrix element of matrix G related with � by
equation similar to (17) and

b =

P
��0

D�

�G��0D�0P
�
jD�j2G��

: (19)

Seaton [12] gives the corresponding matrixGL in the spherical coordinate
n`m presentation and shows a way how to transform it to the Stark presen-
tation (nn1n2m). In our case we should make the transformation into the
nn0n00 presentation for accounting Stark and Zeeman e�ects (Stark{Zeeman
presentation). This transformation is made by means of the matrix Y:

G=YGLY
+

where
Y�s = hn`mjnn0n00ih�n�̀�mj�n�n0�n00i:

Here, by analogy with � denoting the transition �n�n0�n00 ! nn0n00 between
Stark{Zeeman states, s denotes the transition �n�̀�m! n`m.

Taking into account equation (6) and results by Hughes [13], we can write

hn`mjnn0n00i =
jX

i1=�j

(�1)j�i2djn0i1
(�1) d

j
n00i2

(�2)C(j; j; `; i1; i2; m)

where i2 = m� i1 and C(a; b; c;�; �; ) is the Clebsh{Gordan coe�cient.
The numerator in (19) can be calculated in any presentation, in particular,

in the n`m presentation, while the denominator should be calculated in the
nn0n00 presentation. In this case the dependence of the factor b on the angles
# and ' makes analytical integration over ' in (1) impossible.
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x3. Results

We have performed calculations for typical conditions in the divertor toka-
mak plasma and present here preliminary results for some Balmer spectral
lines of deuterium. For electron broadening estimation we consider the ap-
proximation 3 as a basic one. However, it requires a substantial amount of
computation and therefore other approximations (such as 1 and 2 ) may be
helpful. All results presented in this report are obtained for plasma temper-
ature Te = Ta = 1 eV.

In Fig. 1 we show the pro�le of the �rst Balmer line D� calculated with
using our approximation 3. The calculation is made for electron density
2:51 � 1015 cm�3 (Fig. 1a) and 1:58 � 1015 cm�3 (Fig. 1b), magnetic �eld
B = 6:2 T and angle between directions of the magnetic �eld and observa-
tion e# = 45o. This line splits into 36 Stark{Zeeman components which form
three groups showing three peaks in the line pro�le with explicit asymmetry.
The asymmetry appears only in the case of the use of the approximation
3 and can be explained by the di�erent electron broadening of symmetri-
cal components. Although the splitting structure is symmetrical, electron
broadening of symmetrical components are di�erent and, moreover, depends
on the angle e#.

Figures 2 and 3 present the electron density dependence of the line width
for the 6th deuterium Balmer member �n = 8 to n = 2. The width is de�ned
in a usual manner as the distance between two points on the line pro�le,
intensity of which is half of the maximal one. In Fig. 2 we compare the
approximations 1, 2 and 3 without magnetic �eld (B = 0). We show here
also the �tting curve (WG) from [14]

��(Angstroms) = 2:5 � 10�13(0:229N2=3
e + 7:644 � 10�7Ne): (20)

Our approximations show similar behavior with (20) but lie lower than
(20).

In Fig. 3 we compare our calculations obtained with the approximation
3 for three cases: a) B = 0, b) B = 6 T and direction of observation is
normal to the magnetic �eld and c) B = 6 T and observation is along the
magnetic �eld. Magnetic �eld gives rise to some increase of the width for
electron densities Ne < 2�1015 1/cm3. If Ne > 2�1015 1/cm3 we have di�erent
dependencies for b) and c) cases. In b) case the width remains greater than
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that in a) case while the width in c) case becomes less than the width without
magnetic �eld.

In Figs. 4{12 we present the pro�les for the 8{2 Balmer line for di�erent
electron densities without (Figs. 4{6) and with (Figs. 7{12) magnetic �eld
B = 6 T. Pro�les in Figs. 7{9 correspond to perpendicular directions of
magnetic �eld and observation, while in Figs. 10{12 these directions are
parallel. The pro�les are normalized to

R
I�d� = 1, so the intensity is in

inverse Angstroms. In Figs. 4, 7, 10 the pro�les are presented for electron
densities 1014, 1:58 � 1014 and 2:51 � 1014 cm�3; in Figs. 5, 8, 11 { 3:98 � 1014,
6:31 � 1014 and 1015 cm�3; in Figs. 6, 9, 12 { 1:58 � 1015, 2:51 � 1015 and
3:98 � 1015 cm�3. Pro�les without magnetic �eld have central dips usual for
even members of the Balmer series. However strong magnetic �eld gives rise
to appearance of central peaks because of complete change of the splitting
structure. If one shall take into account ion-dynamical e�ects, these dips and
peaks could partially be smoothed.

It should be noted that the 8{2 line can be considered as isolated for elec-
tron densities lower than 1016 cm�3. For higher densities the line overlapping
will be important.
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