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ABSTRACT

A C0 2 -laser imaging system employing the Zernike phase-contrast technique was de-
signed, built, installed, and operated on the DIII-D tokamak. This system measures
the line integrals of plasma density fluctuations along 16 vertical chords at the outer
edge of the tokamak (0.85 < r/a < 1.15), with radial resolution adjustable from 0.5 to
0.04 cm, sensitivity 109 cm-3, and bandwidth 20 MHz. The measurement is primarily
sensitive to radial wave vectors, as confirmed by extensive analytical and numerical
modeling, and is essentially immune to Doppler shifts from plasma rotation; thus,
frequency spectra are measured in the plasma frame. Radial-wave-number spectra
in the range 1-16 cm' are calculated from spatial correlation analysis. Mechanical
vibrations are damped by a novel dual-axis focal-spot feedback stabilization system.
The theoretical treatment of scattering and imaging techniques was extended to finite-
frequency fluctuations in the Rytov approximation. An extensive comparative anal-
ysis of the properties of phase-contrast imaging (PCI) and of other imaging and
scintillation techniques was also carried out.
Studies of edge turbulence were performed. The radial-wave-number spectrum peaks
at finite wave numbers, both positive and negative. This first observation of radial
modes is in agreement with recent predictions from theoretical and numerical work.
The dependence of the correlation length and peak wave number on plasma parame-
ters and on the frequency was studied in detail. Frequency spectra typically obey an
inverse square law, consistent with a Lorentzian distribution.
At the transitira from L to H mode the amplitude and correlation length of the tur-
bulence decrease, while the decorrelation time remains approximately constant. The
Biglari-Diamond-Terry shear-decorrelation criterion was verified quantitatively; the-
oretical scaling laws for the correlation parameters were also tested. The turbulence
amplitude follows a mixing-length scaling in L mode only: the lower level seen in
H mode may indicate a weaker turbulence regime. The fluctuation content of Edge
Localized Modes (ELMs) was thoroughly characterized, and systematic differences
between type-I and type-III ELMs were discovered.
Future applications of PCI, including crossed-beam localization and heterodyne radio.-
frequency-wave detection, are also discussed.
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1 Introduction

The physics of thermonuclear plasmas remains largely an empirical and heuristic
science in spite of considerable recent progress in theoretical understanding. In the
quest for a scientifically successful and economically viable fusion reactor, accurate
measurements of the plasma parameters in existing experiments play an essential
role. Nowhere is this more evident than in the DIII-D magnetic fusion experiment
at General Atomics in San Diego (California), which is one of the leading research
enterprises of its kind in the world and one whose experimental results have had
and continue to have a profound impact on the ongoing design of the demonstration
reactor ITER (International Thermonuclear Experimental Reactor). Accordingly,
DIII-D is equipped with an extensive array of state-of-the-art measuring instruments,
or diagnostics.

This thesis describes a new phase-contrast imaging (PCI) diagnostic installed on
DIII-D for measuring electron density fluctuations. This introductory chapter illus-
trates the motivation for this experimental effort and summarizes the work contained
in the thesis. The motivation has two distinct origins. Firstly, the plasma physics
topics that can be explored with this diagnostic are specifically relevant to the DIII-
D research program and to fusion: this is discussed in §1.1, which also provides a
brief introduction to the DIII-D device and magnetic fusion in general. Secondly,
the diagnostic technique is of general interest, reaching outside the realm of plasma
physics: this motivated not only the experimental development of the diagnostic but
also a thorough theoretical characterization of its properties, as described in §1.2.

A synopsis of the physics results, which constitute the most important outcome
of the work described in this thesis, is found in §1.3. A general summary of the
thesis is contained in §1.4, where particular care is taken to identify the sections that
describe original research, as opposed to those in which previously published material
is reviewed. Finally, a brief comment on physical units is offered in §1.5.
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Fig. 1.1 (a) Toroidal magnetic field BT and poloidal magnetic field Bp generated by toroidal
current Ip. The current is generated inductively by a variable vertical magnetic field BOHM; (b)
combination of BT and Bp results in helical field lines.

1.1 Motivation: Physics Aspects

The short-range nature of the strong nuclear force responsible for fusion reactions is
the source of a fundamental difficulty in the utilization of fusion energy: the potential
barrier of the weaker, but longer-range electrostatic force between two nuclei must be
overcome before fusion can occur. In thermonuclear fusion, the necessary energy is
supplied to a plasma of ions and electrons in the form of heat. As the temperature of
the plasma is increased, the reaction rate, and consequently the energy release rate,
increases also, up to a maximum point. The reaction rate increases also with density,
as can be expected intuitively.'

Since the operating temperatures in thermonuclear fusion are on the order of
several keV, the plasma would instantaneously lose its energy if it came in contact
with material walls. Thus, non-contact containment techniques are a necessity. In
magnetic fusion, the plasma is confined by means of magnetic forces. The most
successful configuration in magnetic fusion is the tokamak,2 a toroidal device with
a toroidally circulating current and a toroidal magnetic field. The toroidal current
is essentially self-confining, as it generates a poloidal magnetic field that exerts an
inward force on the plasma. The larger, externally applied toroidal magnetic field
(see Fig. 1.1) is necessary for stability considerations.

In a tokamak, the initial current is driven by the toroidal electric field generated
inductively by a variable vertical magnetic field, as shown in Fig. 1.1; thus, in the
absence of other sources of current, a tokamak discharge is always limited in time by
the maximum magnetic flux achievable. The desirability of steady-state operations
has therefore prompted the exploration of noninductive current-drive schemes, based
on the injection of neutral beams, rf waves, or microwaves. 3 These methods are widely
used also for heating the plasma, complementing the Ohmic heating effect that results
from the plasma's finite resistivity.

An equal mixture of deuterium (D) and tritium (T) is generally envisioned as
the optimal fuel for the first demonstration reactor, owing to the relatively large cross
section of the D-T reaction. However, a majority of experiments are still conducted
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with deuterium and hydrogen, owing to their greater availability and tractability
in comparison with tritium. Many plasma physics issues either are independent of
the atomic number or have a known dependence on it, allowing ready extrapolation
between isotopes.

The edge of a magnetically confined plasma can be defined by a material limiter
or by a magnetic divertor. In the latter case the magnetic field lines are designed
to exhaust the diffusing plasma into a separate chamber, thus reducing the direct
plasma-wall interaction and the consequent influx of impurities. Impurities of high
atomic number are undesirable since bremsstrahlung radiation losses are proportional
to Z 2.

The DIII--D tokamak 4 will be described in some detail in §3.1. The main focus of
the DIII-D experimental program5 is the investigation of advanced divertor configu-
rations and advanced tokamak modes of operation by means of noninductive current
drive.

(a) Plasma Turbulence

In a reactor, the fusion power must exceed the power supplied to the plasma,
which, in steady-state conditions, must balance the power lost through radiation and
energy transport. Consequently, one of the basic goals of tokamak research has been
the containment of such losses to their minimum irreducible values. The inescapable
rate of energy transport caused by Coulomb collisions is known in toroidal geometry
as neoclassical transport.6 A universal result of tokamak experiments is that while the
rate of ion thermal transport is similar to the neoclassical prediction, electron thermal
transport is substantially higher.7' 8 In addition, plasmas with auxiliary (non-Ohmic)
heating exhibit even higher transport rates than their Ohmic counterparts. The poor
confinement of auxiliary-heated discharges is known as the low mode (L mode) of
confinement.

This anomalous transport has long been believed to be caused by micro-
instabilities. 9'- These can be broadly defined as instabilities that cannot be pre-
dicted by a fluid, or magnetohydrodynamic (MHD), description of a plasma, but
require a kinetic analysis instead. A multitude of microinstabilities can be invoked
as the cause of anomalous transport. The energy for driving these unstable modes
can originate either from the non-Maxwellian nature of the distribution function in
velocity space or from the spatial gradients of the density or temperature of a locally
Maxwellian distribution. The fluctuations in the electric and magnetic fields caused
by microinstabilities lead in turn to fluctuations in the velocities and positions of the
plasma particles, and thus to transport.

The connection between instabilities and transport has been a strong motivation
for the development of diagnostics to measure fluctuations in tokamaks. The earliest
measurements were carried out with magnetic coils located outside the tokamak,
which provided information on low-frequency oscillations of the poloidal magnetic
field.12 Soft-x-ray detectors were also employed early on to investigate fluctuations in
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the plasma emission, which depends on temperature, density, and effective charge."
Although these types of measurements have been applied more recently to the study of
microturbulence, they were initially used mostly to determine the structure of global
MHD instabilities, i.e., unstable modes that can be described by a fluid treatment of
the plasma. External coil arrays and soft-x-ray detectors remain standard diagnostics
in a majority of tokamaks today.

The first measurements of microturbulence were carried out in the mid-1970's in
the ST' 4 and ATC15 tokamaks, using the technique of microwave scattering, which
is sensitive to fluctuations in the electron density. Soon afterwards, a scattering diag-
nostic employing a CO 2 laser1 6 was added in ATC. The results of these early investi-
gations displayed many of the features that were to be later observed in many other
tokamaks. The fluctuations were broadband both in frequency and in wave number;
in addition, the frequency spectrum at a single wave number was also broadband. 15 ,16

This type of behavior is indicative of strong nonlinear coupling between individual
modes, resulting in a strongly turbulent plasma.

Measurements of density fluctuations by microwave scattering continued in
TFR,'7 PLT,18 PDX,' 9 and TFTR 20 while C0 2-laser scattering at the 10.6-11m
wavelength was employed in Alcator A, 2 ' TFR 22 PDX,' 9 Alcator C,2 3 and other
devices. Scattering systems using far-infrared wavelengths were developed initially
at UCLA for the Microtor tokamak;2 4 similar diagnostics were then installed on the
WT-1 and WT-2 tokamaks25 at Kyoto University, followed by TEXT,26 DIII-D,2 7

and ASDEX, 2 8 and others.
Scattering measurements provide a representation of the fluctuations in wave-

number space; in most cases data at only one wave number are collected in a given
plasma discharge. The main limitation of scattering is the lack of spatial resolution,
especially at long wavelengths. In addition, the practical need to separate the scat-
tered beam from the incident beam effectively sets an upper limit to the wavelengths
that can be resolved; such limit, especially in the C0 2 -laser case, is often smaller
than the fundamental physical limit given by the width of the beam.2 9

The need to overcome the limitations of scattering has motivated the recent
development of imaging techniques, which provide a direct representation of the fluc-
tuations in real space. To this family belong the scintillation interferometer of LT-430

and the phase-contrast imaging system of TCA31 . The phase-contrast imaging tech-
nique was chosen for the work described in this thesis.

Another alternative to scattering is offered by various types of material probes,32

which present the advantage of providing a localized measurement. Magnetic probes
are used to measure magnetic field fluctuations. Langmuir probes can measure fluc-
tuations both in density and in electric field and potential; in addition, they can
measure the average values of these quantities and of the electron temperature. Es-
timates of crosscorrelations between the fluctuating components of these different
physical quantities can provide direct information on transport. The primary disad-
vantage of probes is that they cannot withstand the heat loads to which they would
be subjected in the core of a discharge and thus are limited to the cooler edge re-
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gion. Another potential problem of Langmuir probes is the perturbative nature of
the measurement; indeed, an understanding of the perturbative effects of the probe
is an integral part of the data interpretation technique. However, tests have been
performed in several experiments 33 to prove that the probe did not significantly affect
the general properties of the turbulence. Given the local nature of the measurement,
an array of probes is necessary to reconstruct the wave-number spectrum and to infer
the correlation properies of the turbulence.

A minimal history of probes in tokamaks must mention the magnetic fluctuation
measurements performed in T-4, 4 PLT,35 and ISX-B,3 6 and the Langmuir probes
installed on Macrotor, 37 the Caltech Research Tokamak, 38 and TEXT.3 9 The density
fluctuations in the Caltech Research Tokamak were also found to be highly correlated
with fluctuations in visible-light emission in the Ha line.33

A more recent diagnostic development has been the application of reflectometry
to the study of density fluctuations. This technique is based on the reflection of a
microwave beam from a location of given plasma density and magnetic field, corre-
sponding to an index of refraction of zero. When applied to the study of fluctuations,
reflectometry permits to localize the measurement to a narrow region near the re-
flecting layer. 40 Combined with an independent knowledge of the density profile, the
measurement has the potential for affording good spatial resolution without being re-
stricted to the edge and without perturbing the plasma, as in the case of probes. The
reflectometry technique has been employed in several tokamaks, including TFR,4 1

DIII-D, and TFTR.4 3 As in the case of probes, no information can be gained on
the wave-number spectrum unless multiple reflectometers are used. The method of
correlation reflectometry4 4 uses two microwave sources at slightly different frequen-
cies to infer the correlation properties of the turbulence. This technique, which has
been applied to JET,4 5 DIII-D, and TFTR,4 is not immune to problems and is
currently an object of study and debate." In the case of large fluctuation amplitudes,
a reliable measurement of the correlation lengths may be possible only with the aid
of an imaging configuration. 4 9

The latest addition to the family of fluctuation diagnostics is beam emission
spectroscopy (BES). 50 This technique measures fluctuations in the fluorescence of
excited atoms in a neutral beam traversing the plasma; from this measurement the
plasma density fluctuations can then be inferred. Spatial localization is ensured by
geometric means, since the light is collected only from the region of intersection
between the beam and the line of sight. Measurements with multiple arrays allow
reconstruction of the wave-number spectrum. The BES technique has been applied
successfully to core fluctuation measurements in TFTR," where the existing heating
neutral beams were used as the source. A similar system has recently been installed
on the DIII-D tokamak.12 Although these high-power beams present the advantage of
good penetration, thus permitting access to the core, spectroscopy techniques based
on them suffer from poor rejection of background light, resulting in the need for
long averaging times (up to 0.5 s), which severely limit the temporal resolution of
the measurement. The alternative solution of using a dedicated nonhydrogenic beam
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allows the observation of fast transients in the plasma edge. Such systems have been
implemented in DIII-D5 3 with a lithium beam, and in Phaedrus-T 54 and TEXT-
U55 with helium beams. The possibility of achieving two-dimensional fluctuation
imaging and thus a simultaneous two-dimensional wave-number spectrum is also being
explored."6 ," One important difficulty of BES is the beam-power modulation that is
caused by large density fluctuations at the plasma edge; this results in an apparenm
fluctuation signal that is not of local origin but can be a large fraction of the total
signal. Techniques have been developed to correct for this effect.5 1

One final density fluctuation diagnostic deserves a mention the heavy-ion beam
probe (HIBP), operating on the TEXT tokamak.57 In this system, singly charged
thallium or caesium ions injected into the plasma become doubly ionized through
collisions with electrons. A detector array receives these secondary ions, whose tra-
jectories can be reconstructed precisely, thereby providing a local measurement of
the electron density. Beam modulation from edge fluctuations has to be taken into
account as in the case of the BES diagnostic.

Temperature fluctuation measurements are considerably more difficult to per-
form. Some progress has been made recently in this direction by applying correlation
techniques to measurements of electron cyclotron emission.58

In spite of the increasing sophistication of fluctuation diagnostics over the years,
many issues remain unresolved. In particular, a thorough characterization of the
relation between microturbulence and anomalous transport is still missing. Also,
relatively little knowledge has been acquired on the physical nature of the turbulence
and of the underlying microinstabilities; such information is necessary for testing
several proposed theories.

Several features of microturbulence in tokamaks are nearly universal.' 0 ' The
fluctuation spectrum is broadband and lies mostly at frequencies below 1 MHz in the
plasma frame, although in the presence of an electric field the actual measured spec-
trum in many cases is Doppler-shifted considerably by the E x B drift velocity. The
wave-number spectrum is also broadband, with the fluctuation amplitude generally
decreasing for increasing wave number. There is in fact considerable evidence that
the bulk of the fluctuation power lies in the region of the spectrum corresponding to
wavelengths much longer than the ion gyroradius. That region is also the least acces-
sible to traditional scattering measurements; this has been a strong motivating factor
in the development of alternative methods in the last decade. The spatial dependence
of the relative density fluctuation amplitude (u/n) is similar in many tokamaks: the
amplitude generally increases with the minor radius and is largest at the plasma
edge. The edge is an important region to explore for several reasons, particularly
because it plays a leading role in determining the overall plasma confinement, as will
be discussed shortly.

In addition to the broadband turbulence spectra, coherent or semicoherent modes
are occasionally observed. These modes are characterized by peaks in the frequency
spectrum and are identified as MHD instabilities. While measurements with external
magnetic coil arrays have provided extensive information on the global structure of
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these modes, relatively little is known about their internal characteristics, especially
their density component.

Studies of turbulence and transport have received an added boost in recent years
from the growing diffusion and universality of a regime of enhanced confinement
known as high-confinement mode, or H mode. 59 In this regime the confinement is
approximately a factor of 2 better than in L mode. The good confinement and the
good overall properties of the H mode render it a strong contender as an opera-
tional regime for a reactor. The H mode was first discovered in ASDEX, a divertor
tokamak,6 0 and has since been observed in all tokamaks with diverted plasmas and
in several with limiter plasmas; in addition, the H mode has also been obtained in
several non-tokamak devices. 6 1 This seemingly universal character is also reflected in
the wide variety of heating sources used to obtain the H mode: these include rf and
microwave heating, neutral-beam injection, and Ohmic heating.

The H mode generally begins with an abrupt transition from the L-mode regime
(see Fig. 1.2). The transition is accompanied by the formation of a transport barrier
at the plasma edge, with a corresponding steepening of the pressure profile in the same
region; at the same time, the fluctuation amplitude in the edge region is suddenly
reduced. In addition, the radial electric field develops a steep gradient, also localized
in the plasma edge. 6 ' In fact, the H mode has also been produced by actively biasing
the plasma.6 2

There is now general agreement on the basic physical mechanism responsible for
the H mode, although many of the details are still unresolved. This mechanism is
the stabilization of turbulence by a sheared E x B flow.6 1 In the simplest terms, the
sheared flow tears and separates the turbulent eddies in the plasma, reducing their
radial correlation and extent and, thus, limiting the transport of energy across the
field lines. This scenario, not being dependent on the specific nature of the turbulent
modes in the plasma, has the universality required to explain the occurrence of H
mode in such a disparate set of experiments and conditions.

The clear correlation between the suppression of turbulence and the formation
of the transport barrier at the edge offers compelling evidence in support of the
postulated causal relation between microturbulence and anomalous transport. This
has stimulated new diagnostic investigations of tokamak plasma fluctuations, and
particularly of their changes at the L- to H-mode transition. Further impetus was
provided more recently by the discovery, first in DIII-D" and later in JET65 , of a
regime of confinement enhanced by up to a factor of 2 over H mode. In this regime,
called very-high-confinement mode or VH mode, the transport barrier extends further
into the core of the discharge; a spatial extension of the shear-stabilization effect
appears to offer the best explanation of the improved confinement to date.66 The VH
mode is generally terminated abruptly by the occurrence of a global MHD "event",
or instability, that returns the plasma to normal H-mode confinement.

A phenomenon that is currently the object of renewed interest on the part of
fluctuation diagnosticians is the edge localized mode (ELM). ELMs are semiperiodic
edge instabilities that occur in the H-mode regime and that quickly destroy the trans-
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Fig. 1.2 Typical time evolution of fluctuation and rotation signals at an L-H transition: (a) the Da

emission, which is a measure of edge transport, drops at the transition; (b) integrated fluctuation

power in the 75-400 kHz band, measured by a reflectometer a few cm inside the last closed flux

surface; (c), (d) and (e) show the poloidal rotation velocity, the radial electric field, and the ion
temperature measured by charge-exchange recombination spectroscopy ~'1 cm inside the last closed

flux surface [reproduced with permission from E.J. Doyle, et al., Phys. Fluids B 3, 2300 (1991).]

port barrier, which is then rapidly restored; during this transient phase, turbulence is
enhanced and confinement is degraded. An ELMing H mode generally exhibits trans-
port rates 15%-20% higher than an ELM-free H mode; however, ELMs are beneficial
for their ability to clamp the plasma density and prevent impurity buildup, which
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can otherwise raise the radiated power to deleterious levels.5 1 It is generally believed
that a reactor, such as the proposed prototype ITER,67 will operate in an ELMing
H-mode regime. A better understanding of ELMs is a prerequisite of reactor design,
particularly in consideration of the large heat loads that ELM events deposit on the
divertor.

ELMs are generally interpreted as MHD instabilities, and theoretical efforts have
been made to incorporate ELM dynamics in a general theory of the H mode." How-
ever, considerable more work is clearly necessary in both theory and experiment,
particularly in the study of the fluctuations that accompany the occurrence of an
ELM. The existence of at least three distinct categories of ELMs6 9 is an added com-
plication.

The foregoing discussion clearly underscores the importance of continued tur-
bulence measurements, particularly at the edge of the plasma. The work described
in this thesis was largely motivated by the desire to achieve a better understanding
of microturbulence. This project consisted of designing, building, and operating a
C0 2-laser phase-contrast imaging (PCI) diagnostic to measure density fluctuations
at the outer edge of the DIII-D tokamak.70

A uniquely diverse set of fluctuation diagnostics exists on the DIII-D device,
including a far-infrared (FIR) scattering system, 2 7 a fast reciprocating Langmuir
probe, 7 ' a. multi-frequency reflectometry system, 4 2 a correlation reflectometer, 46 and
a lithium-beam emission spectroscopy apparatus.5 3 A deuterium BES diagnostic has
recently been installed. 52 Because of the different spatial regions and parameter ranges
accessed by different fluctuation diagnostics and because of their various limitations,
complementarity has been a key criterion in the planning and in the design of the
DIII-D diagnostic array, although some overlap was also sought for comparison and
verification purposes. The PCI and reflectometer systems are mostly sensitive to
fluctuations with radial wave vectors, whereas the probe and the FIR scattering diag-
nostic are sensitive to poloidal wave vectors. The probe scans the region outside the
last closed flux surface (the "scrape-off layer", or SOL) and the region immediately
inside; the PCI system has access to part of the SOL but penetrates further inside the
plasma; the lithium-beam diagnostic overlaps with PCI but reaches further inside;
and the reflectometer and FIR scattering systems have access to a substantial portion
of the plasma core.

The principal advantages of the PCI diagnostic are an excellent spatial resolu-
tion in the radial direction (e 0.5 cm), a very high sensitivity (mnin ~ 109 cm- 3 ),
and access to long wavelengths (up to 7.6 cm), in addition to a very wide frequency
bandwidth (100 MHz). The main limitation is the lack of spatial resolution in the
vertical direction: the measured fluctuations are line-averaged. Absolute calibration
of the system is possible, permitting a determination of the absolute fluctuation am-
plitude, albeit line-integrated. The properties of PCI made it possible to conduct
unprecedented studies of the radial dependence of microturbulence at the edge, de-
termining its spectral characteristics both in the wave-number and in the frequency
domain. The frequency measurement in particular is made possible by the absence of
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Fig. 1.3 Temporal evolution of the autopower spectrum of a PCI signal on a chord located 0.3
cm inside the separatrix (last closed flux surface). The L-mode phase, the VH-mode phase (with a
coherent MHD mode at 18 kHz), and the ELMing H-mode phase are visible.

substantial Doppler shifts, which is due in turn to the perpendicularity of the radial
wave vectors to the direction of the E x B rotation.

These studies were carried out in the context of the L- to H-mode transition and
of ELMs, and comprise the bulk of the results presented in this thesis. The location
of the diagnostic is ideal for investigating those phenomena, as the observable events
are strongly localized in a narrow region comprising the edge of the plasma and the
SOL. Whenever possible, efforts were made to carry out comparisons with data from
the other diagnostics. An illustrative example of the type of data generated by the
PCI diagnostic is shown in Fig. 1.3.

(b) Radio-Frequency Waves

In a tokamak discharge, the plasma is initially heated resistively by the toroidal
current flowing through it. However, since the resistivity of a plasma decreases as
the temperature increases, Ohmic heating becomes inefficient at the many-keV tem-
peratures that are necessary in a reactor. Several alternative heating methods have
therefore been developed over the years. Among them are techniques based on the
resonant absorption by the plasma of externally launched, high-power electromagnetic
waves. 2 Resonances ranging from the ion cyclotron frequency (in the radio-frequency
spectrum) to the electron cyclotron frequency (in the microwave spectrum) have been
utilized for heating purposes. In addition, by using waves incident unidirectionally
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on the plasma, noninductive currents can be generated.3 This line of research, which
holds the best promise for steady-state operations, is also viewed as critical for the
design of a successful reactor.

In the ion cyclotron range of frequencies (ICRF), three different types of waves
have been employed for heating or current drive. Shear Alfv6n waves propagate only
at frequencies below the ion cyclotron frequency, and their phase-velocity component
in the direction parallel to the magnetic field is typically equal to the local Alfv6n
velocity. These waves have been employed for heating in several tokamaks, the largest
being the TCA device in Lausanne, Switzerland.72 A second type of wave, the fast
magnetosonic or compressional Alfv6n wave, propagates primarily in the radial direc-
tion across the magnetic field and can be absorbed near the ion cyclotron harmonic
resonances or by electrons whose parallel velocity equals the wave's parallel phase
velocity. 73 Fast waves are widely used for plasma heating4, and the first fast-wave
current-drive experiment is being currently carried out in DIII-D with good initial
success. 75 The third and final member of the ICRF family of modes is a hot-plasma
wave known as ion Bernstein wave (IBW). Plasma heating schemes using IBWs have
been implemented in several tokamaks. 76

While the effect of rf waves on plasmas, whether in the form of energy or current,
can be routinely monitored through established diagnostic techniques, relatively few
direct measurements of the wave characteristics have been carried out. The dynamics
of rf wave propagation in plasmas are rather complicated and are usually estimated
numerically by computer, with necessary simplifications. When only macroscopic
measurements are performed, it is difficult to understand the detailed physical mech-
anisms responsible for the discrepancies between prediction and experiment. A thor-
ough characterization of the spatial structure of the waves would thus be an invaluable
aid to experimenters.

Some of the techniques reviewed in part (a) of this section have been sporadically
applied to the study of externally launched ICRF waves. C0 2-laser scattering was
employed in Alcator C to study the propagation and absorption of IBWs.77 Phase-
contrast imaging (PCI) was applied to the study of shear Alfv6n waves in TCA.7 8

Recently, initial results on fast waves have been obtained with a reflectometer system
in DIII-D. 79 Of these diagnostics, all of which are sensitive to the density component
of the wave, only an imaging technique such as PCI is capable of providing a direct
spatial measurement of the phase and amplitude of the wave over an extended range
and, in principle, for arbitrary wavelengths (limited in practice by the width of the
beam). When the direction of propagation of the laser beam is perpendicular to
the main direction of propagation of the rf wave, the line-averaging effect is a lesser
limitation than in the case of turbulence. The integration length can be estimated
with good accuracy from analytical and numerical computations. The TCA results
have shown7 8 that a very detailed reconstruction of the wave can be obtained.

These considerations provided added motivation to the development of the vCI
diagnostic for DIII-D concomitantly with the start of the fast-wave current-drive
program. Fast-wave measurements are one of the main goals of a possible future

25



upgrade of the PCI system; this system would utilize the existing apparatus except
for a reorientation of the beam, which would traverse the plasma in the core region
rather than at the edge. The present configuration does not allow the detection of
fast waves, as their wave number at the edge of the plasma is lower than the minimum
wave number detectable by PCI. This was confirmed by direct measurements.

When ICRF waves are launched into a plasma, secondary oscillations may arise in
the rf range, either from mode conversion between the different waves described earlier
or from nonlinear wave-wave coupling. The process of nonlinear mode generation
known as parametric decay instability (PDI)8 0 has been observed in DIII-D during
both fast-wave and IBW launching. 81 The potential of the PCI system for measuring
the internal structure of these decay modes has motivated some additional exploratory
work during the course of this project, including the development of a large computer
code to calculate and plot the PDI dispersion relation under a variety of conditions.

1.2 Motivation: Instrumental Aspects

Fluctuation imaging is a relative newcomer to experimental plasma physics but is
rapidly gaining acceptance and constantly finding new applications. Just as flow vi-
sualization is revolutionizing the field of experimental fluid dynamics, so are imaging
techniques responding to the need for increased sophistication in the study of ther-
monuclear plasmas. Applications are not limited to the light-transmission diagnostics
discussed in this thesis: the benefits of combining the techniques of beam-emission
spectroscopy5 6 ,53 and reflectometry 9 with imaging configurations have also recently
been recognized.

The conditions encountered in modern-day tokamaks are especially conducive to
the utilization of imaging diagnostics. The gradient scale lengths of the macroscopic
plasma parameters in a tokamak, particularly at the edge, are often of the same order
as the fluctuation wavelengths, effectively blurring the distinction between average
and fluctuating quantities. A similar situation is encountered to some extent in the
time domain, with very fast large-scale transients, such as the L-H transition and
ELMs, occurring in time scales comparable to the period of the fluctuations. A
direct spatial mapping with good temporal resolution is clearly the most natural
representation of such a plasma.

The choice of an imaging configuration for this project was motivated also by the
desire to access the long-wavelength region of the spectrum of both turbulence and
rf waves. Using the same laser source, the traditional scattering method is limited
in practice to shorter wavelengths than its imaging counterpart.2 3 The excellent sen-
sitivity attainable by the use of liquid-nitrogen-cooled detectors provided additional
incentive.

In a reactor such as ITER,5' laser imaging at optical or infrared wavelengths may
prove especially advantageous, since it is not limited by cutoff or absorption, as are
methods employing microwaves or neutral beams. The most sensitive components,
such as the laser source and the detectors, can be placed at a safe distance from
the reactor. The proof of principle provided by our project is particularly significant
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for such a future application, in view of its greatest foreseeable problem: that of
mechanical vibrations. Vibrations of the optics can be very disruptive for an imaging
technique such as phase contrast. The ITER device can be expected to provide
a rather hostile environment in this respect; however, our configuration in DIII-
D was also very unfavorable, owing to the late addition of the diagnostic to the
machine and to the severe space limitations that dictated an overlong optical design
with support structures particularly prone to vibrations. These conditions should
adequately simulate the vibration scenario of a larger device such as ITER, if a
careful optical design is included in the early planning stages. The vibration problem
in DIII-D was eliminated by active feedback control of the laser beam orientation.
This constituted a significant portion of the development of this project and required
innovative solutions employing state-of-the-art equipment.7 0 82

The principal limitation of transmission techniques is the inherent lack of spatial
resolution along the direction of propagation of the probing electromagnetic beam.
This problem can be partially or totally circumvented by orienting the beam to
be tangential to the magnetic field lines, or by utilizing crossed-beam correlation
techniques. 8 3 In the case of the DIII-D PCI system. the edge location and the rela-
tive shortness of the integration path limit the impact of the longitudinal averaging
effect: a simple qualitative analysis can be used to impose significant constraints on
the measured spectra.84 The importance attached to this issue, however, was deemed
sufficient to motivate an extensive quantitative analysis, involving analytical and nu-
merical modeling.82 The results of this study confirmed the qualitative analysis and
complemented it quantitatively under a variety of realistic plasma conditions.

The theoretical foundation of all transmission techniques lies in the physics of
light-plasma interaction. Historically, different theoretical approaches and approxi-
mation schemes have been applied to different types of transmission techniq' s. How-
ever, the underlying principles are the same. One assumption that all these mthods
have in common is that the frequency of the plasma fluctuations can be neglected in
the analysis. During the course of this project, it was realized that this assumption
had to be relaxed somewhat for rf applications, when the propagation time of the laser
beam through the plasma becomes comparable to the period of the fluctuations. I'he
inclusion of a finite fluctuation frequency was found to engender some new conse-
quences, which may be important in certain experimental applications. This analysis
generated additional interest in achieving a better understanding of these physical
processes and in providing a unifying view of the various analytical schemes found in
the literature. Accordingly, their equivalence was clarified, and the finite-frequency
analysis was extended well beyond the needs of the DIII D PCI diagnostic, embrac-
ing both near-field and far-field techniques, including conventional scattering. This
theory occupies a significant fraction of this thesis.

Additional work was devoted to a specific characterization of the response prop-
erties of transmission imaging techniques. Since these techniques, particularly phase
contrast, are relatively novel in a plasma-physics setting, a thorough comparative
study of their properties had not previously been performed. This study, carried out
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for the specific case of a Gaussian beam, produced some new results that should prove
useful to existing and planned experiments. The analysis was further expanded for
the phase-contrast case, particularly in the DIII-D geometry, for which diffraction
effects were also carefully evaluated.

1.3 Synopsis of Experimental Results

Owing to geometrical constraints, the DIII-D PCI system is primarily sensitive to
radial wave vectors, with poloidal wave number close to zero. The wave-number
spectra measured by PCI invariably peak at finite values of the radial wave number
kr, both positive and negative. This phenomenology is in agreement with predic-
tions generated by recent theoretical and numerical work, and represents the first
documented observation of finite-k, radial modes. These modes are believed to be
generated nonlinearly by stronger, poloidally propagating instabilities (such as ion-
temperature-gradient modes), which are capable of causing radial transport through
turbulent E x B drifts; this transport in turn is strongly regulated by the radial modes
through a second nonlinear mechanism. Radial modes have been thoroughly docu-
mented with PCI, whereas only a limited set of cases was explored by the numerical
work; it is thus expected that this experimental work will motivate further numerical
analysis for a more complete comparison.

Structures consistent with convective cells have been measured by PCI in high-
current L-mode plasmas. These structures straddle the plasma boundary and are
capable of causing rapid outward transport; they are observed to disappear or move
away from the boundary at the onset of the H mode, in agreement with theoretical
predictions.

In some cases, the spatial correlation pattern in the SOL in H mode is found to
be consistent with strongly reduced turbulent electric fields, even though the density
fluctuation level is high; the correspondingly lower E x B drift may then explain the
reduced transport that characterizes the H mode.

Since PCI is sensitive to radial wave vectors and plasma drifts are perpendicular
to the radial direction, no significant Doppler shifts are expected: that is, the fre-
quency spectrum is measured essentially in the frame of reference of the plasma. This
important and novel feature is confirmed by experimental results, as the turbulent
spectra are found to be monotonically decreasing with frequency, and components
with frequency larger than 200 kHz give a negligible contribution to the autopower
spectrum. The spectra in Ohmic and L-mode plasmas are also found to obey an
approximate inverse power law, with an exponent in the range 1-3 and most com-
monly near 2; this power law is consistent with a Lorentzian spectrum, which would
arise from an exponentially decaying mode, provided the decay rate lies below the
instrumental cutoff point of 8 kHz.

In H mode, the spectrum becomes broader and more irregular, with several
individual peaks indicating the existence of stabler (long-lived) modes. The time-
delayed correlation function becomes correspondingly broader at large delays and
narrower at small delays as the plasma goes from L to H mode. The overall result is
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generally a small increase in the decorrelation time. As a function of the radial wave
number, the decorrelation time is found to be monotonically decreasing; its indefinite
increase as the wave number tends to zero ("infrared divergence") is in contrast with
the peaking of the spectrum s(k,) at finite wave number.

The wave-number spectrum also decreases for high k,: most of the turbulent,
energy is concentrated at values of a fraction of an inverse ion gyroradius. The
radial correlation length typically lies between 10 and 40 gyroradii. and is reduced
suddenly in the transition from L to H mode. As a function of plasma parameters.
the correlation length depends more strongly on global parameters than on local
ones; in particular, it increases with input power and plasma density and decreases
with plasma current. The correlation length is also decidedly shorter when the VB
points away from the dominant X-point, in indirect agreement with some theoretical
predictions.

The radial spectra are often balanced, but in many cases also display predominant.
inward or outward propagation. The variation of the propagation coefficient with
plasma parameters has been studied in detail and is offered for future theoretical
work, as no predictions exist at present. The characteristic spectral lengths (average
wavelength and correlation length) have also been examined as functions of frequency:
both generally increase with frequency; in particular, the dispersion relation (average
wave number vs. frequency) is offset-linear, with group velocities of the order of 1.5-4
km/s in Ohmic and L-mode plasmas, and up to 20 km/s in H mode. These velocities
are subsonic and are probably determined by toroidal or nonlinear coupling of drift
waves.

Although the PCI system is absolutely calibrated, the calibration factors are
subject to considerable uncertainties, of the order of 30-40%. Nevertheless, some
studies of the spatial and parametric variation of the turbulence amplitude have
been carried out. The relative fluctuation amplitude fi/n is a decreasing function
of input power, density, temperature, and density-gradient scale length. The spatial
distribution of the line-integrated fluctuations displays a peak just inside the plasma
boundary and is fairly flat in the region from 6 cm inside to 1 cm outside the boundary;
further out in the SOL, the fluctuation level drops rapidly. These measurements
are consistent with a peaking of the local turbulence level just inside the boundary,
although the measurement itself is nonlocal.

A test of the mixing-length criterion in a number of discharges has shown that
the amplitude follows an approximate mixing-length scaling in Ohmic and L-mode
plasmas, whereas it is significantly below the mixing-length level in H mode, just
after the L-H transition. This may indicate that the H mode is characterized by a
weaker type of turbulence. However, the H-mode amplitude obeys the mixing-length
scaling when the latter is obtained by using the L-mode density profile; thus, it is
possible that the initial H-mode phase is also a strong-turbulence regime in which
the turbulence has not had enough time to recover under the effect of the increased
gradients.

Some tests of the theory of self-organized criticality (SOC) have been performed.
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Although some possible similarities were found, namely, discontinuities in the slope of
the frequency spectrum and double-peaked time-delayed correlation functions, many
details differ, and the results must be regarded as preliminary and inconclusive. The
probability distribution function (PDF) of the turbulence was also studied and was
found to be Gaussian in all regimes over time intervals of 40 ms or less: however, over
longer intervals the PDF is increasingly non-Gaussian, with an asymptotic kurtosis of
5.3-5.6. This is consistent with long-time-scale intermittency - a critical prediction
of SOC - but it is not a definite proof of it.

The random walk diffusivity (the square of the correlation length divided by the
decorrelation time)in L mode is found to be of the order of the ion diffusivity at the
edge: both increase with input power.

The L-H transition has been investigated in detail. PCI has provided the first,
time-resolved measurements of the changes in the correlation quantities: as men-
tioned before, the correlation length decreases at the transition, whereas the decor-
relation time remains approximately constant. The amplitude of the fluctuations
also decreases, as shown previously by several other diagnostics. The random-walk
diffusivity is found to decrease by a factor of 2.5 to 10 at the L-H transition; the
experimental diffusivity is also reduced.

The leading theoretical explanation of the transition attributes the reduction in
turbulence and transport to a decorrelation effect engendered by a sudden increase
in the E x B flow shear. This theory also provides a quantitative criterion for the
shear-decorrelation effect, which can be tested by PCI with the assistance of other
diagnostics. The criterion has been shown to be valid. In addition, two different the-
ories have supplied quantitative expressions for the changes in the correlation length
and in the decorrelation time at the transition. Tests of these theories, performed
for the first time with PCI, have yielded mixed results: each of the two theories is
successful in predicting only one of the two quantities.

A special class of "slow" L-H transitions, obtained by keeping the input power
only slightly above the transition threshold, has displayed a novel phenomenology in
the transition phase: after a rapid suppression, the turbulence amplitude increases
again in the region just outside the plasma boundary, reaching levels larger than those
of L mode; this renewed activity then subsides again slowly as the L-H transition is
completed. We hypothesize that this SOL turbulence is related to the appearance of a
parallel-ion-velocity-gradient instability or possibly of a Kelvin-Helmholtz instability.

Edge Localized Modes (ELMs) are also phenomena of considerable interest, in
particular for future reactor operation. ELMs are always accompanied by bursts of
turbulent activity. A first systematic study of ELMs with PCI has been performed
in this thesis. Since ELMs are short-lived events, averages have been taken over
multiple ELMs in order to determine the statistical properties of turbulence during
ELMs. The turbulent spectra and dispersion relations are generally similar to those
of L mode, but the absolute amplitude of the turbulence is considerably larger in the
case of ELMs. Two major systematic differences between type-I and type-III ELMs
have been identified: firstly, the peak in the fluctuation amplitude occurs at the time
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of maximum diffusivity for a type-I ELM, whereas it occurs 0.4-0.6 ms earlier for a
type-III ELM; this could be related to ideal and resistive MHD times, respectively.
Secondly, type-III ELMs are accompanied also by a coherent, outward-propagating
mode at approximately 100 kHz, which may be related to a resistive MHD instability.

Coherent and semicoherent modes, presumably of the MHD type, are often ob-
served by PCI, primarily during H mode. These fluctuations are generally well cor-
related with signals from soft-x-ray diodes and external magnetic coils. A detailed
study of these phenomena has not yet been performed with PCI.

1.4 Thesis Outline

The remainder of this thesis is configured as follows.
Chapter 2 is devoted to the theoretical foundation of the diagnostic technique.

The fundamentals of the physics of light-plasma interaction are reviewed and the
equations for wave propagation are derived. The mathematical techniques and the
approximation schemes used in solving the wave equation are also reviewed and dis-
cussed. To emphasize the equivalence of the different techniques, the scattering equa-
tion is derived in the framework of a plasma dielectric model; this novel approach,
whose mathematical details can be found in Appendix A, is shown to yield the same
result as the customary derivation from the radiation equations.

The problem of diffraction from an aperture is investigated analytically and
numerically; in particular, the effects of diffraction in the specific geometry of our
measurement are studied in Appendix B. A general theory of scattering and imaging
measurements, valid for a Gaussian beam in an arbitrary detection geometry, is then
presented; the relevant calculations are contained in Appendix C. This theory includes
for the first time the effects of a finite fluctuation frequency. In the zero-frequency
limit, previous results are recovered; a detailed discussion of various known results is
thus carried out in a common perspective.

The limiting case of this theory that is relevant to our measurements is equivalent
to the geometrical-optics limit. A detailed proof of this equivalence necessitates also
a novel approach to geometrical optics that incorporates finite-frequency effects. The
proof is given in Appendix D, with an expansion of the geometrical-optics equations
to include the time dependence of the eikonal and amplitude functions.

The response properties of phase-contrast imaging are derived for the first time,
for a truncated Gaussian beam and for both the one-dimensional and the two-
dimensional case. This is followed by a discussion of the signal-to-noise ratio that can
be obtained with photon detectors. Then, a comparative analysis of various imaging
techniques is carried out for the case of a Gaussian beam; the mathematical details
are in Appendix F. As previous comparisons either were not quantitative or used at)
idealized plane-wave model, some of the results obtained here have significant conse-
quences for existing systems, as discussed in the text. The chapter is concluded by a
description of the calibration methods available for phase contrast.

The phase-contrast imaging apparatus designed and installed on DIII-D is the
subject of Chapter 3. A brief introduction to the DIII-D tokamak is followed by a
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description of the specific geometry of the PCI measurement. The appropriate limit,
of the theory developed in Chapter 2 is identified by verifying that all the necessary
approximations are satisfied. The various components of the hardware are described
next, along with the main design criteria. Details are provided on the optimization of
the optical design (with related software development), on the elimination of initial
electronic noise problems, and on the testing procedures used. Special emphasis is
placed on the novel solutions adopted in the development of the feedback vibration-
control system.

Testing and calibration results are discussed, with a comparison between the
experimental determination of the response characteristics and the corresponding
theoretical predictions. Finally, the data-analysis techniques employed in the course
of this work are presented. Some software was developed specifically for this applica-
tion, especially to calculate time-domain correlation functions, as it was not readily
available otherwise.

Chapter 4 presents the modeling of the measurement that was carried out to aid
in the interpretation of the results. A basic model for plasma fluctuations is intro-
duced; from it, the pointwise correlation function is derived analytically. This is then
used with some approximations to infer the qualitative properties of the measured
PCI correlation function. The development of a computer code to effect a more rig-
orous and quantitative analysis is described next; this is followed by a discussion of
the results in a number of realistic DIII-D conditions. This chapter is concluded by
some comments on the applicability of inversion techniques to derive local quantities
from PCI measurements.

The physics results obtained with the PCI diagnostic are presented in Chapter 5.
Most of the chapter is devoted to measurements of microturbulence. The character
of edge turbulence in L mode is discussed at length, with details on the spatial
distribution, on the frequency dependence, and on the wave-number spectrum derived
through correlation analysis. Differences between the region inside the last closed flux
surface and the scrape-off layer are examined, and the dependence of turbulence on
the macroscopic plasma parameters is discussed. The results are also compared with
data from different diagnostics in DIII-D and with the existing body of knowledge on
tokamak turbulence. A similar analysis for H-mode conditions follows, with emphasis
on the changes occurring at the L-H transition. A particularly important case is that
of low-power H modes, which display a peculiar phenomenology in the early phase
immediately following the transition.

Results on ELMs are then presented, with an illustration of the systematic differ-
ences discovered between different sub-types, particularly giant and type-III ELMs.
The analysis, again, is organized as a systematic exploration of turbulence in real
space, in frequency space, and in wave-number space.

While the results summarized thus far were obtained in the course of system-
atic studies, much phenomenological information was also gathered during various
experiments not specifically devised for turbulence studies. Nevertheless these re-
sults are of some consequence and are therefore briefly discussed in the remainder
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of Chapter 5. Some of these data have been analyzed only in an incomplete fashion
and some simply point the way to future lines of investigation. Results on VH-mode
and ohmic turbulence, and on coherent or semicoherent MHD activity are included
in this group. Finally, some comments are offered on the difficulties associated with
rf measurements in the present geometry and on the expected null results obtained
during fast-wave launching.

Chapter 6 is devoted to the interpretation of the results and to comparisons with
existing theories of plasma turbulence, of the L-H transition, and of ELMs. The main
conclusions of this research were summarized in §1.3.

Chapter 7 briefly examines possible applications and configurations of the PCI
technique that were not employed in our project. These ideas have been considered
by other authors but are analyzed here in greater detail. First, the properties of
a heterodyne version of PCI are presented, and advantages and disadvantages are
discussed. Methods for improving the spatial localization are considered next: these
include the crossed-beam correlation technique and, for the specific case of turbulence
in a tokamak. toroidal launching. Data-analysis methods to study the nonlinear
interaction of turbulent modes are briefly mentioned, especially in connection with
the crossed-beam technique. The chapter is concluded by a description of a possible
future upgrade of the DIII-D PCI system.

Finally, general conclusions are offered in Chapter 8, with some additional sug-
gestions for future work and future applications.

1.5 Units and Dimensions

Equations in this thesis are written in the Gaussian cgs system of units. A few
formulas are given in practical units; this is always stated explicitly. In the text,
practical tokamak units are often used, including amperes for electrical current, volts
for potential, tesla for magnetic induction, and eV for temperature.
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2 Experimental Technique

The interaction of an externally launched electromagnetic wave with a plasma, giving
rise to such diverse and complementary phenomena as reflection, refraction, scatter-
ing, and diffraction, provides the experimenter with a wealth of powerful diagnostic
tools. 32 The nonperturbative nature of this class of techniques in all practical situ-
ations, combined with its sound underlying theoretical foundation, is the principal
reason for the attractiveness of this family of diagnostics in the study of laboratory
plasmas. The wide availability of coherent sources in a broad region of the electro-
magnetic spectrum has greatly contributed to the current widespread usage of these
techniques. In particular, Thomson scattering diagnostics have been employed since
the dawn of the magnetic fusion program and had a pivotal role in the 1960's85 in
proving the superiority of the tokamak concept and in providing the basis for the
tokamak's subsequent predominance in worldwide magnetic fusion research.

The following are some of the most common techniques employed today: inco-
herent Thomson scattering at visible and near-infrared wavelengths, to determine the
local electron density and temperature;6,18 7 far-infrared" and microwave 89 transmis-
sion interferometry, to measure the line-integrated electron density; coherent scat-
tering and imaging at infrared 2 9 and microwavel 5 wavelengths, to investigate fluc-
tuations in density; and microwave reflectometry, to study density profiles90 and
fluctuations. 40

The technique that is the subject of the present work belongs to the class of
density fluctuation imaging diagnostics. In this chapter the theoretical foundation of
the method is established in the context of a broad comparative analysis of various
techniques in this class. The starting point is a review of the physics of light-plasma
interaction in the limit of interest for the present study. The equations for wave
propagation are introduced in §2.1. Several mathematical approaches to their solution
are reviewed in §§2.2-2.4, with emphasis on their equivalence and on their respective
limits of applicability. Part of the mathematical derivation can be found in Appendix
A. The effect of diffraction from a circular aperture is studied both analytically and
numerically in §2.5 and Appendix B.

General solutions to the wave equation, applicable to a variety of experimental
conditions, are obtained both in the Rytov approximation and in the geometrical-
optics approximation for the specific case of a Gaussian beam. The problem is intro-
duced in §2.6. The case of far-field detection is considered in §2.7 and that of near-
and intermediate-field detection is presented in §2.8. These results unify the work of
previous authors and extend it by relaxing certain key assumptions: in particular, the
temporal dependence of the density fluctuations is included explicitly and is shown
to generate new consequences in some situations of experimental interest. The math-
ematical derivations related to these sections are carried out in detail in Appendixes
C and D. It should be noted that this treatment, although specifically presented for
the case of a plasma, applies to any dielectric medium with low susceptibility.
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A historical and technical overview of a number of closely related small-angle
scattering techniques, which follows naturally from the foregoing analysis, is pre-
sented in §2.9. The phase-contrast method is described in some detail in §2.10. In
§2.11 the response characteristics of the phase-contrast technique are derived explic-
itly for the first time for cases ranging from a simple plane wave to a truncated
Gaussian beam. Considerations of signal-to-noise ratio are reserved for §2.12. The
formalism developed in the previous sections is then applied in §2.13 to a broad
class of techniques, including scintillation, dark ground, Mach-Zehuder interferon)-
etry, and a family of spatial filtering configurations that incorporates the phase-
contrast and schlieren methods as special cases. Novel analytical results are obtained
for the responsitivies and signal-to-noise ratios of these techniques in the case of a
Gaussian beam; some of the mathematical derivations are contained in Appendix F.
This comparative study comprises as limiting cases some of the results reported in
the literature. Finally, §2.14 is devoted to the calibration methods available for the
phase-contrast imaging diagnostic.

A majority of the original work in this chapter is contained in §§2.5, 2.6, 2.7,
2.11, and 2.13, and in the related appendixes.

2.1 The Physics of Light-Plasma Interaction

In this section we briefly review the theory of the interaction between visible or
infrared electromagnetic waves and a magnetized fusion-grade plasma. The analysis
is greatly simplified by two crucial assumptions: both the electron plasma frequency
and the electron cyclotron frequency are taken to be much smaller than the angular
frequency wo of the electromagnetic waves under consideration, i.e.,

WO > Wpe (2.1)

and
WO > Wce, (2.2)

where wu, = (4wrnee 2 /me)1/ 2 and ue w = eB/(mec), n, being the electron plasma
density, B the magnetic field, e the electronic charge, and m, the mass of the electron.
Equations (2.1) and (2.2) are generally well satisfied, as exemplified by the following
representative set of parameters: ne = 1014 cm 3 and B = 10 T yield ope = 5.6 x
1011 rad/s and we = 1.8 x 1012 rad/s, whereas the frequency of a far-infrared light
wave of 100-Mm wavelength is wo = 1.9 x 1013 rad/s. Under the conditions of the
experiments described in the present work, the margins are in fact much larger.

The significance of Eq. (2.2) is that the magnetic field is negligible; thus, the
plasma is effectively isotropic. If we make the further assumption, subject to eventual
verification, that vte < vp, where vte is the electron thermal velocity and vo is the
phase velocity of the wave, thermal effects can be ignored and the plasma can be
treated as a cold medium.9 ' The word "fluid" has been deliberately avoided thus far,
because the discrete nature of the charged particles that are the constituents of a
plasma plays an important role, which we shall now discuss.
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We are considering a macroscopically neutral plasma composed of electrons and
ions. The motion of the ions caused by the wave's electric field is ignored in view of
their large inertia (mi/me > 1836.2). Thus, we need only to determine the motion
of the electrons and the fields generated by them, viz., the scattered fields. Clearly,
some knowledge of the relative positions of the electrons is necessary to make such a
determination. If the plasma could be treated as an ideal gas, a completely random
distribution could be assumed; this in turn would cause the phases of the scattered
fields to be randomly distributed as well. In that case the fields from the individual
electrons would add up incoherently, that is, the intensities. rather than the ampli-
tudes, would be additive. The behavior of a plasma, however, departs from that of
an ideal gas owing to the Coulomb forces between the charges, which generate some
degree of correlation or collective behavior. To lowest order, this degree of correlation
is expressed quantitatively by the two-particle, electron-electron correlation function,
which for a plasma in thermodynamic equilibrium is9'

1 ( g exp(- x1 - X21/AD)
87r lxI - X2j/AD

This expression introduces two important parameters. The Debye length AD is defined
as AD = (nT/87rnee2 )1/ 2 , where . is Boltzmann's constant and T is the plasma
temperature; the plasma parameter g is defined as g = 1/(neA3). It is clear from
Eq. (2.3) that the plasma parameter is a measure of the overall level of correlation
in the plasma. If g > 1, collective effects cannot be neglected, and in fact correlation
functions of higher degree may also come into play. The condition g < 1, which is
generally termed plasma approximation, ensures that a first-order expansion based
on Eq. (2.3) is adequate. This condition is generally well satisfied in thermonuclear
plasmas, as shown by the following example, in which the parameters are deliberately
chosen to be unrealistically unfavorable: since g cx n 2 T 3/2, we take a temperature
of 10 eV (appropriate for the edge region explored in this study) and a density of
10"4 cm-', to be found at the center of the discharge, obtaining g = 7.7 x 10-4. The
plasma approximation will be assumed implicitly henceforth.

The Debye length takes the role of an effective correlation distance. This can be
explained physically as follows: each particle repels like charges and attracts unlike
charges, causing the formation of an equilibrium "cloud" whose total charge is equal
and opposite to the charge of the test particle under consideration. The characteristic
dimension of the cloud is AD. The Coulomb force between two electrons separated
by distances larger than AD is effectively shielded by their respective clouds, and
the electrons do not interact. It should be noted that Eq. (2.3) breaks down when
P 12 is of order unity or greater, i.e., for distances smaller than gAD. However, since
gAD/(n 1 3 ) - g2/ 3 < 1, it follows that the distance for which Eq. (2.3) is not
applicable is much smaller than the average distance between electrons.

To explore the relevance of plasma correlations to the problem of wave-plasma
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interaction, it is uieful to calculate the spatial Fourier transform of P12 :

1 1
P12(k) =,(2.4)

2ne 1+1/a2'

where a = 1/(kAD). Thus, correlations in wave-number space are significant for
a > 1 (wavelengths much longer than AD) and vanish in the short-wavelength limit.
i.e., when a < 1. To corroborate the significance of the parameter a, one can calcu-
late the fluctuations in the equilibrium density induced by two-particle correlations:
the Fourier spectrum of the fluctuations is found" to be proportional to a 2 . To
interpret this result physically, consider the following. The two-particle correlation
function [Eq. (2.3)] is small in absolute value owing to the smallness of g; hence the
positions of any two electrons, even if they are close, are essentally uncorrelated. II
the short-wavelength regime, the phase undergoes large changes over a Debye vol-
ume, causing these small correlation effects to average out. Conversely, when the
wavelength becomes of order AD, a large number of particles contribute in phase:
although the correlation strength is of order 1/(neA'), there are - neA3 electrons
contributing, and the total effect is of order unity. Increasing the wavelength beyond
a few Debye lengths does not alter this picture, since the particles located outside the
Debye sphere do not contribute at all.

The short-wavelength limit, a < 1, coincides with the ideal-gas approximation
and produces incoherent scattering, which is used for diagnostic purposes to measure
density and temperature. The long-wavelength limit, a > 1, gives rise to coherent,
or collective, scattering. In the latter limit the amplitudes of the fields generated
by the electrons add up coherently. The experiments described in the present work
were carried out in the coherent regime: typical values were AD - 10-60 pm and
A ~ 0.5-7.6 cm, resulting in a > 13. Hereafter this limit will be assumed implicitly
throughout.

We can now examine the effect of an externally launched electromagnetic wave
on the plasma. The plasma current due to the wave's electric field is carried almost
entirely by the electrons because of their small inertia:

J = -eneve, (2.5)

where ve is the electron fluid velocity and e is the positive electronic charge. In a
perturbative approach, we ignore the effect of the wave's magnetic field in calculating
the electron velocity, since the Lorentz force (e/c)(v, x B) is of second order. The
equation of motion of a single cold electron in the presence of a monochromatic wave
E(x)e-iwot is

e V
Ve = -Z E + - x Bo. (2.6)

mewo ' c

If we ignore for the moment the static magnetic field B 0 , we can solve Eq. (2.6) and
obtain the relation e

VeE. (2.7)
meWo
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Using this expression in the right-hand side of Eq. (2.6), and recalling Eq. (2.2),
we immediately conclude that the magnetic-field term that we have ignored is indeed
negligible. Inserting Eq. (2.7) into Eq. (2.5) yields

e=i Pe E, (2.8)
4rwo

which defines an effective conductivity

i 2  . (2.9)
47rwo

A general comment on the temporal dependence of a is in order at this point.
Here, C could be time-dependent through the electron density n,. Nevertheless, the
characteristic frequency w of the density is generally much smaller than wO; accord-
ingly, multiplicative quantities of order w/wo are ignored. The temporal dependence of
ne can be potentially significant, however, when it appears in exponents and phases;
if an exponent or phase is of order unity, it must be retained even if exponents or
phases of order wo/w are concurrently present.

The effect of the plasma on the electromagnetic wave can now be examined from
two equivalent perspectives: the wave can be thought of as propagating in vacuum in
the presence of a charge distribution p and of a current distribution J; alternatively,
the plasma can be seen as a dielectric, characterized by a dielectric function f, in which
no charges are present. The two pictures are easily unified by the Maxwell-Ampere
equation,

V x H = J - i"E = -ZWOE + - E. (2.10)
C C c at

The linear superposition of the fields generated by the individual particles is ensured
by the conditions for coherent scattering. If we ignore the ac/at term, this expression,
by virtue of Eq. (2.8), implies

4wo w+ a= 1 _ J2e (2.11)

Clearly, since OE/at is of order w e/w, and since w/wo < 1 and wp,/wo < 1 [Eq.
(2.1)], it was legitimate to neglect the Oc/at term in Eq. (2.10). We note in passing
that, having neglected the Lorentz force from the wave's magnetic field, we find no
magnetization effects; hence, the permeability yI is unity.

The plasma-wave interaction can now be described simply by the wave equation
in a dielectric, which, neglecting terms of order w/wo, is 92

V 2 - 2E + V(E-V Inc) = 0, (2.12)
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with e given by Eq. (2.11). The last term in the left-hand side of Eq. (2.12) can be
written in a different fashion by making use of Coulomb's law

V - (EE) = 0, (2.13)

which yields
V(E-V InE) = -V(V . E) = -47rVp, (2.14)

where p is the polarization charge density. The polarization term is often neglected
in small-angle scattering calculations; although such an approximation, as we shall
see, is appropriate in the context of far-forward scattering, it is important to retain
it in a more general treatment.

Note that Eq. (2.1), combined with Eq. (2.11), ensures that c - 1. Thus, in the
simple case of a homogeneous plasma, the polarization term in Eq. (2.12) vanishes,
and we are left with the equation of a plane electromagnetic wave with phase velocity

Iv,| c. This proves that the cold-plasma approximation is adequate if the plasma is
nonrelativistic. This condition is well satisfied in present thermonuclear experiments.
As an example, an electron temperature T, = 5 keV corresponds to a thermal velocity
Vie ~ 0.10 X c.

2.2 Integration of the Wave Equation

In the previous section we derived a differential equation for the wave field in the
plasma. To obtain an analytical expression for E, whether by solving Eq. (2.12)
or by starting from first principles, it is necessary to adopt certain approximations.
Several such approximation schemes are reviewed in this section and in the ones that
follow. These various methods differ somewhat in the physical scenarios to which
they are applicable; it will be shown, however, that in reality these schemes portray
different aspects of the same problem. The aim of §§2.2-2.8 is to provide a unifying
view of the problem and to set the stage for a comparative analysis of a broad class
of scattering and imaging diagnostics.

The wave equation (2.12) can be rewritten as a classical inhomogeneous vectorial
wave equation, which, if terms of order w/wo are neglected, takes the form

V 2  c2  2 E(x, t) = -4irf(x, t), (2.15)

where

f(xt) = - E + -V(E-V In E), (2.16)
C2 47r 47r

or, by virtue of Eq. (2.11),

1
f(x, t) = -renE + -V(E-V In c), (2.17)

47r
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where re = e2/(mec 2 ) is the classical radius of the electron. Note that the three scalar
equations (2.15) are vectorially coupled through the last term in Eq. (2.17).

Each component of Eq. (2.15) can formally be solved by means of Green function
techniques. However, the resulting integral expressions will still contain the unknown
functions E,. In effect, we are simply transforming differential equations into integral
equations; but, as we shall see, the integral formulation is naturally conducive to a
perturbative approach. The time-dependent, retarded Green function is 9 3

G(x, t; x', t') = G(R, r) = - (T - -, (2.18)

where R = Ix - x'I and r = t - t'. We consider here the case of an externally launched
monochromatic wave whose field EO satisfies the homogeneous equation at the time
t -+ -oc. The appropriate solution is then

E(x, t) = Eo(x)e-"O' + JJ G(x, t; x', t')f(x', t')d3 x'dt'. (2.19)

Using Eq. (2.18), this becomes

E(x, t) = Eo(x)e Wo± + J IfWxt)Iret d3, (2.20)

where [ ]ret indicates that the expression is to be evaluated at the retarded time
t' = t - R/c. We can now substitute the explicit expression for f from Eq. (2.17) in
Eq. (2.20), obtaining finally

E(x, t) = Eo(x)e-ot + f I [-re'E' + 1 V'(E'-V' Ine') d X' (2.21)/1R 47r I et

where the prime indicates quantities to be evaluated at (x', t').
We now make the very weak assumption koR > 1 (where ko = wo/c), which is

satisfied, even for far-infrared waves, whenever R is larger than a few cm. By virtue
of this approximation and of the relation 11 - cl < 1, Eq. (2.21) can be recast in the
following form:

i~~ot x (ii x E ') 3
E(x, t) = Eo(x)e~t + Te J[j[n'e R I r dax', (2.22)

n being a unit vector in the direction of x - x'. The derivation of Eq. (2.22) is carried
out in detail in Appendix A.

Equation (2.22) has a very immediate physical interpretation. The electrons in
the plasma are accelerated by the electric field:

C
=e =-E. (2.23)

rLe
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Accelerated electrons generate a radiation field, which in the nonrelativistic limit is
given by93

-ead f x (lx e)1 Te x xEEra = --- = re .i x x(2.24)c2  R ret I R Iret

The sum of the radiation fields produced by the individual electrons, in the coherent-
scattering limit, can be replaced by the integral f nedx'. Thus, Eq. (2.22) states
simply that the total scattered field is the sum of the field of the incident wave and
of the radiation field generated by the plasma electrons. Here we are ignoring the
velocity fields because of their 1/R 2 dependence; this is the same key assumption used
in Appendix A to derive Eq. (2.22). In fact, the radiation argument is universally
used to obtain Eq. (2.22) in the context of scattering. 6 ,2 9 Our aim here has been to
show that the wave-equation approach is entirely equivalent to the radiation approach,
provided that the polarization term is retained.

We now turn our attention to the conditions under which it is permissible to
ignore the pclarization term. We shall later see that the condition II - El < 1 ensures
that the scattered field is small in comparison with the field of the incident wave. For
the moment we can therefore replace the field E in the polarization term [Eq. (2.14)]
with the incident field, which is taken to be a plane wave, Eoeiko X. For the sake of
definiteness we also take a harmonic density perturbation of the form i, = fteetkx
Then, using Eq. (2.11), we can write

2

V(E - V In E) ~ -i V (k -Eoe i(ko+k).x)

= (Eo - k)(ko + k)e(ko+k)-x. (2.25)
Wo

The conditions under which this term can be neglected can be easily assessed by
imposing that the polarization term be negligible in the right-hand side of Eq. (2.17).
That requirement is

Wpe 1 + - )Eol1 < 47rreielEOl, (2.26)
C2 ko ko

which implies
k < .(2.27)

ko

This equation states that the wavelength of the diffracting perturbation must be much
longer than that of the incident wave. We shall show shortly that, in the case of the
monochromatic density perturbation considered here, the scattered power is peaked
about the scattering angles OB given by the Bragg relation

k
B = -. (2.28)

ko'
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Thus, Eq. (2.27) expresses the condition for small-angle scattering. This condition
will be assumed in the remainder of this work, and the polarization term in Eqs.
(2.17) and (2.21) will accordingly be neglected. In addition, it is clear from the
form of Eq. (2.17) that the small-angle scattering condition allows us also to ignore
the coupling between the vectorial components of E, so that the equations become
effectively scalar. Under these conditions, Eq. (2.21) reduces to

E(x, t) = Eo(x)e~W t + f [-ren'E')] d3 x'. (2.29)

In order to obtain an explicit solution to Eq. (2.29), some approximations are
necessary. Perturbation techniques, of either an additive (Born approximation) or a
multiplicative (Rytov approximation) nature, are commonly employed to that end. In
general, the key assumption is 11 - El < 1, although the detailed requirements vary
depending on the particular technique under exam. The analysis that occupies the
next six sections concerns the specific case of a plasma, but is equally applicable to a
generic dielectric medium for which the condition 11 - cl < 1 holds. The transition
to the general case can be made at each step by using Eq. (2.11).

2.3 The Born Approximation

In the Born approximation the wave field is written as a series

E = EO+E + E2+... (2.30)

and only terms up to first order are retained. The condition for the exclusion of
the polarization term, expressed by Eq. (2.27), implies that that term is of second
order in the Born sense. The function f, defined by Eq. (2.16), does not contribute
any zeroth-order terms to the wave equation (2.15); thus, the zeroth-order solution
is simply the incident wave Eo(x)e-"O'. The first-order solution E1 is obtained by
replacing E' with E' inside the integral in Eq. (2.29). Hence,

El(x, t) = -ree- wotJ iwOR/c R neret E' d3x'. (2.31)

For this approximation to be consistent, the second-order terms in Eq. (2.16) must
be small. Since the ordering parameter is 11 - el, we must require that 1E1 /IEOI ~

0(11-El) inside the plasma. To interpret this requirement, we can examine the simple
case in which E is constant across a plasma column: the wave is then dispersionless
and simply propagates with a phase velocity c/vfi, whereas the unperturbed wave
would propagate with velocity c. If the wave is propagating along the z direction (see
Fig. 2.1), one can then write

El(z, t) = Eo(z, t) [eiko(VI-1)z - 1 . (2.32)
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Fig. 2.1 (a) Interaction of an electromagnetic wave with a plasma; (b) selection rules for scattering

vectors and scattered waves.

For lE1|/Eol to be of the same order as 11 - cl, we must impose il1 - clkoL2 ~

0(11 - F-), or

AoreLzne < 1. (2.33)

Here, Ao = 27r/ko, and L, is the length of the plasma column. Thus, the Born approx-
imation in the present context translates into three separate conditions: W1f/wO < 1,
AoreLzlne < 1, and k/ko < 1.

We can now apply the Born approximation to the scattering equation (2.29).
We adopt the following additional approximation: in the phase of the field, koR ~
ko(Ro - n - x'), where n = Ro/RO, and RO is a vector joining an average location
in the plasma to the observation point. This is a first-order Taylor expansion of the
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phase, which requires that the second-order term be much smaller than 1 radian, i.e.,

ko2
Ro > kL (2.34)

8

where L± indicates a characteristic dimension of the interaction region in the plane
perpendicular to the direction of propagation of the incident wave [see Fig. 2.1(a)].
Here we have used the fact, which will be verified at the end of the derivation, that
the direction of fa deviates little from that of the unperturbed wave vector ko. The
dimension L1 is defined by the intersection of the cross section of the plasma and the
region of space occupied by the incident wave. Under these conditions we can also
replace 1/R with 1/Ro.

We now adopt a simplified scenario in order to illustrate the physical mechanism
behind the Bragg condition, Eq. (2.28). In this scenario we take the incident wave
to be a plane wave and we isolate a sinusoidal component of the electron density,
ne(X, t) = ii cos(k -x - wt). The perturbed field takes the form

E 1-(x, t) f - nEo e-i(cko~w)(t-Ro/c) eifko~k-(kiw/c)"Vx'd 3X'. (2.35)

Upon integration, we are left with the sum of two delta functions, which yield the
following selection rules:

Sko t kn± = k k W/c (2.36)

Imposing the condition ni-fi = 1, we then find the relations k2 ±2kko cos 0 = ±2kow/c+
w2 /c2 , where 0 is the angle between ko and k; since most plasma perturbations are
characterized by phase velocities much smaller than the speed of light, the last term
can be ignored and we find

cos ± ~ -_ - k (2.37)
ck2ko

from which we conclude that Icos 0± < 1, i.e., that the density wave must propagate
nearly at right angles with the probing electromagnetic wave (see Fig. 2.1). Making
use of Eqs. (2.36) and (2.37), we can now calculate the scattering angles 4DB:

cos 4B. = n± * -- =I - k(2.38)
o 2ko2 (1 Wi WO)

Neglecting w/wo, one can write

< B= 2 arcsin ( ). (2.39)
2ko

For small-angle scattering (k < ko) this equation is equivalent to the Bragg condition
[Eq. (2.28)].
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Fig. 2.2 Indetermination cones of scattering vectors: (a) overlapping (Raman-Nath regime), (b)

not overlapping (Bragg regime).

The meaning of this condition is clarified by the transition from Eq. (2.31) to Eq.
(2.35). Each electron radiates in all directions; if we concentrate on the wave radiated
by an electron in one particular direction and follow it as it propagates through the
plasma, we will see it change as other electrons contribute to it. Each contribution,
however, has a different phase, equal to the sum (or difference) of the phase of the
density wave and of the phase of the accelerating electric field at the delayed time the
radiated wave reaches that particular point. The resulting radiated field, therefore,
is generally zero, except in the two directions that allow all electrons to contribute in
phase, i.e., the Bragg directions.

Two important observations must be made at this point. The first is that the
selection rules that we have derived impose constraints both on the scattering direc-
tions and on the direction of propagation of the scattering perturbation. No scattering
occurs at angles other than the Bragg angles, and no scattering occurs if the density
wave is not nearly perpendicular to the electromagnetic wave. The second observa-
tion is that the two Bragg angles ±k/ko correspond to two different density waves,
propagating in the different, albeit very close, directions specified by Eq. (2.37) and
shown in Fig. 2.1(b). Thus, under the conditions of our derivation, a single sinu-
soidal density perturbation generates at most one scattered wave. These conditions
are, however, simplified and idealized. In reality the integration volume in Eq. (2.35)
is not infinite; as a result, the delta functions are replaced by functions of finite width,
bkz e 7r/L, and the selection rules for the density waves are relaxed to a finite angu-
lar spread, 66 e 6kz/k. If there is substantial overlap between the 0+ and 0- cones,
as shown in Fig. 2.2(a), both scattered waves exist simultaneously. This condition
can be written as Icos 6+ - cos 0- 1 < 6k,/k, i.e.,

L, ,< rk2 .(2.40)

The regime in which this condition is satisfied is known as the Raman-Nath regime.
The opposite limit, in which only one scattering angle is allowed, is called the Bragg
regime [Fig. 2.2(b)].

These regimes were given their names in the context of diffraction from ultrasonic
waves in fluids, a branch of optics with a long history both in experiment and in
theory. It must be stressed that the distinction between scattering and diffraction
is entirely of a historical nature. Both terms describe departures from geometrical
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optics caused by the finite wavelengths of the waves. Diffraction, however, is generally
associated with the interaction of waves with obstacles or apertures whose dimensions
are large compared with a wavelength. In particular, a spatially periodic arrangement
of obstacles or apertures is called a diffraction grating. It was recognized as early as
in 192194 that a fluid traversed by a compression wave would behave as a diffraction
grating, giving rise to the same Bragg condition [Eq. (2.28)] that we have derived
through a scattering treatment. In the diffraction picture, additional scattering angles
at integral multiples (known as diffraction orders) of the Bragg angle appear naturally.
These higher diffraction orders correspond to higher orders of expansion in the Born
approximation, which include the effects of multiple scattering. Raman and Nath
were the first to obtain approximate expressions for the intensities of the different
scattering orders, 95 adopting the approximation expressed by Eq. (2.40). Their result
for the amplitude of the l-th order, adapted for the case of a plasma 6 traversed by a
sinusoidal density wave ne = fik cos(k - x - wt), is

|EI :-~ EOI|Jj(AOre.Lzhk)j. (2.41)

This expression shows that the intensities of the positive and negative orders are
identical in the Raman-Nath regime. Also, the argument of the Bessel function is the
expansion parameter of the Born approximation, as indicated by Eq. (2.33). Thus,
for small arguments Eq. (2.41) can be approximated by97

|E| ~ EOI (1AoreLzik) .ll (2.42)

Each diffraction order is thus associated with the corresponding order of expansion
in the Born approximation.

As a corollary, it is easy to see now that the physical meaning of the Born
approximation is to ignore multiple scattering, which arises from radiation emitted
by electrons accelerated by the scattered field itself.
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2.4 The Rytov Approximation

We now turn our attention to a different type of approximation, which is due to
Rytov 98 . The wave's field is written in exponential form E = eoeO, where e0 is a unit
polarization vector. The complex phase 0 is expanded in a Taylor series

S= 00+1 +02+ ... , (2.43)

in which terms up to first order are retained. If the polarization term is neglected,
the wave equation (2.15), combined with Eq. (2.16), can be written

V 2 + V'. VO - - = (1- E)k . (2.44)
C2  C

The unperturbed solution 4o satisfies the equation

V2o + Vo - V 4o -O - = 0. (2.45)
C2  C2

Although this is a nonlinear equation, a comparison with Eq. (2.15) shows that e01
must be identical with the zeroth-order (viz., free-space) Born solution.

The first-order equation can be written

+200 1 - 1 = (1 - E)ko, (2.46)

where we have ignored the second-order terms Vo 1 -Vo 1 and t2/c 2 . Multiplying Eq.
(2.45) by 4' and adding the result to Eq. (2.46), we obtain

e-~0 V2 (0 o) - L_ ('ePo) = (1 - E)ko, (2.47)

which has the formal structure of a wave equation and can be solved with the Green
function techniques introduced in the solution of Eq. (2.15). The analogy, it must be
stressed, is merely of a formal nature. In particular, the appropriate homogeneous
solution for t -+ -oo in this case is zero, since 01 is a perturbation caused by the
plasma-wave interaction. Hence, by analogy with Eq. (2.20), we find the solution

4'1 (x, t) = -e~o(xt) r, n'e d3X', (2.48)
RI ret

where again the prime indicates quantities to be evaluated at (x',t'). A comparison
with Eq. (2.31) yields the following remarkable corollary:

S41(x, t) = E 1 (x, t)/Eo(x, t), (2.49)
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where EO and El are the complex scalar Born fields. Hence, the first-order complex
Rytov phase is equal to the ratio of the first- and zeroth-order Born fields. This
nontrivial result does not imply that the two approximations are equivalent. In fact,
in the Born approximation we write the field as EBorn = eo(Eo + E1 ), whereas in the
Rytov approximation, expanding the exponential and making use of Eq. (2.49), we
can write ERytOV = eo[Eo+E 1+Ef/(2Eo)+...J. The additional terms not included in
the Born scheme can be interpreted as contributions from multiple-scattering events:
in this sense the Rytov approximation is superior to the Born approximation.

The clearest advantage of the Rytov approximation can be gleaned by determin-
ing the conditions for its validity. The requirement is that the second-order terms
in Eq. (2.44) be negligible with respect to the first-order terms. Repeating the ar-
guments that followed Eq. (2.31), we assume c for the moment to be constant and
uniform and write 7P 1(z) = iko(Vfc - 1)z. The second-order term here is V't - Vol,
and the appropriate inequality is

|V1 - Vb 1 | < 11 - elko, (2.50)

which translates into
11 - E| < 4. (2.51)

So the condition 16 - 11 < 1 is sufficient for the Rytov approximation, without ad-
ditional constraints on the length of the plasma column as in the Born case [Eq.
(2.33)].

From these arguments the Rytov approximation would appear to be preferable to
the Born scheme. At this point, however, a caveat is in order. The Born fields E1 , E 2 ,
etc., all obey a wave equation of the form of Eq. (2.15) and therefore automatically
follow the laws of free-space propagation once the wave exits the plasma (e -+ 1); this
is a consequence of the linearity of the expansion in the field variables. The same
cannot be said about the Rytov fields, even to first order, since the approximation
entails the elimination of a term of the type VV1 - Vai, which appears in the left
side of Eq. (2.44). In particular, if 01 is calculated by means of Eq. (2.48) at some
point beyond the plasma, it will contain information on the density fluctuations in the
plasma and thus, in general, its gradient will be finite. In this case the inequality of
Eq. (2.50) clearly breaks down, since its right-hand side is zero. Hence, if Eq. (2.48) is
used to calculate the Rytov field well beyond the end of the plasma column, significant
errors may arise. To prevent these errors, a better procedure is to break the problem
in two parts: first, Eq. (2.48) is used to derive V)1 in the near field, i.e., in a plane
perpendicular to ko situated at the end of the plasma column; then, the homogeneous
(free-space) wave equation is used to propagate the full Rytov field exp(4o + 0i) from
the plasma to the detection plane. This procedure is inconsistent, since the Rytov
field, strictly speaking, does not satisfy the wave equation. Nevertheless, it is in
general a good approximation as it avoids compounding the error through propagation
in free space.

This difficulty notwithstanding, the Rytov method remains advantageous as it
encompasses both the Born approximation and geometrical optics as special cases
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and is the natural framework for measurement techniques, such as dark ground and
shadowgraphy9 9 , that are sensitive to the second-order term in the Taylor expansion
of eq". We shall therefore use it in §§2.6-2.8 to derive general expressions that
are relevant to the measurement of density fluctuations in plasmas. Ultimately it
will generally be assumed that JV1 < 1, and a first-order Taylor expansion of the
exponential e'l -- I + 0 1 will bring us back to the Born approximation. However,
this is a special case of a result that applies to arbitrarily long plasma columns.

It should be remarked in closing that much theoretical and experimental work
has been devoted to the subject of the relative merits of the Born and Rytov schemes,
mostly in the context of scattering from ultrasonic waves in the atmosphere. 10 0 -1 0 2

2.5 Diffraction from an Aperture

Before we can explore the consequences of Eq. (2.48) in detail, we must obtain an
expression for the unperturbed wave field Eoe0. The unperturbed wave obeys the
laws of free-space propagation, embodied in the homogeneous wave equation, viz.,
Eq. (2.15) with f = 0. For a monochromatic wave Eoe-iwot, this reduces to the
Helmholtz equation

(V 2 + k2) Eo(x) = 0, (2.52)

where ko = wo/c.
In the analysis carried out thus far, we have approached the problem of wave

propagation either by solving the differential wave equation directly or by means of
a Green function technique, in which the solution was expressed in the form of a
volume integral. The present problem is best approached by a third route, involving
surface integrals. It can be shown93 that if the Helmholtz equation (2.52) is satisfied
in a region of space, knowledge of either the fields or their derivatives on a surface
enclosing that region is sufficient to determine the fields everywhere in the region.
This statement can be extended to the circumstance in which the surface is an infinite
plane screen and the region under consideration is all the space on one side of it. We
shall prove it for the case in which the known boundary quantity is the field.

In examining such a situation, we now take the screen S to be the plane z = 0. If
the incident wave is propagating in the positive z direction, as shown in Fig. 2.1(a),
we can decompose the field into its two-dimensional Fourier components with respect
to the perpendicular-plane coordinates x1 = (x, y):

Eo(x_, z) = ( ) Ao(k±; z)CikL x-d 2 k±. (2.53)
(27r) 2 J

Equation (2.52) then becomes a simple differential equation in the variable z, admit-
ting the elementary solution103

Ao(k±; z) = Ao(k; )eizVI. (2.54)
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Fig. 2.3 Gaussian function.

This expression conveys the intuitive notion that each Fourier component is simply
a plane wave, whose absolute wave number must therefore be equal to wo/c. Substi-
tuting for AO from Eq. (2.54) in Eq. (2.53), we are able to conclude our proof by
deriving the field distribution in any plane z from the knowledge of its distribution
in the screen plane z = 0:

Eo(x±, z) 2 d2 k-eik. -e'zVoJl Eo(x', 0)e-ikrx'i d 2 x'. (2.55)

If the incident wave is a plane wave, EO does not depend on x1 and Eq. (2.55)
yields the trivial result

Eo(z) = eikoz Eo(0). (2.56)

With more complicated distributions, the integral over the wave numbers is custom-
arily simplified by adopting the Fresnel approximation (also known as parabolic, or
paraxial, approximation) for the exponential propagator:

exp iz k - k2) exp ikoz - i . (2.57)

This approximation is justified if the lowest-order phase term that is not included
is negligible, that is, if zkI/(8k') < 1. In the paraxial approximation, Eq. (2.54)
becomes

Ao(kj; z) = Ao(k±; 0) exp ikoz - i z . (2.58)

In Eq. (2.55), the integral over the wave numbers can now be computed, and we
obtain the result

Eo(x_, z) = eskoz Eo(x',0) exp ixi - x'd| x'. (2.59)

In experiments involving laser beams, the Gaussian field distribution (see Fig.
2.3) is a particularly common one. By taking the beam to have a planar wave front
in the plane z = 0 (called the beam waist), and defining wo as the e- 1 radius of the
amplitude profile, one can write104
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Fig. 2.4 Gaussian laser beam.

Eo(x1, 0) = P(rc )1/2 (2) / 1
-e- exp
r WO

where P is the total beam power. The Fourier transform of this field is also Gaussian,

A k 0 1/2AO(kL; 0) = 47r -
c

wo exp -w2ki) e o ,
(- 4 )

so that the condition for the paraxial approximation zkI/(8k3) < 1 can be rewritten
as

2z
k3o 

. (2.62)

Applying the propagation formula, Eq. (2.59), to Eq. (2.60), we find, for a Gaussian
beam,

Eo (XZ) =(87r 1/2 (2) 1/2 1
C 7r WO(j + Z2/z2)1/2

x exp -. 1 exp ikoz - i arctan ( )]eo,rW + iZ/ZR) I ZR
(2.63)

where zR = kowo/2 is the Rayleigh range: this is the distance the beam travels from
the waist before its diameter increases by v12 and is thus a measure of the beam

collimation (see Fig. 2.4).
The Gaussian distribution will be used for all our subsequent calculations, with

the additional assumption
kowo > 1. (2.64)
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Fig. 2.5 Gaussian beam diffracted by a circular aperture of radius a.

In real experimental situations, however, one rarely deals with ideal Gaussian beams.
The laser beam generally must pass through one or more apertures, which cause
diffraction effects unless they are much larger than the beam diameter. In many
cases, the aperture width defines how large a region of plasma can be accessed and
studied. Selecting a beam diameter substantially smaller than the aperture width
is therefore disadvantageous, as it further reduces access. The opposite limit, on
the other hand, may produce unacceptable diffraction. The usual compromise is to
choose a beam diameter comparable to the aperture width (see Fig. 2.5).

In approaching the diffraction problem, we observe that Eq. (2.59) is still valid.
However, the field in the z = 0 plane is itself affected by the presence of the aper-
ture and cannot generally be known exactly. Thus, if Eq. (2.59) is to be useful,
approximate expressions must be obtained for the field on the screen. The theory of
diffraction is based on the simple assumption that the field is zero everywhere on the
screen except in the aperture, where it takes the value it would have in the absence
of the screen. The validity of this ansatz rests on the requirement that the aperture
be much larger than a wavelength. Equation (2.59) then takes the form

Eo(xL, z) = I k e oz Eo(x' , 0) exp ikx 1  - xi12 dx', (2.65)
27r zz JE \2z )

where the integral is calculated over the aperture surface E (see Fig. 2.5).
From a practical standpoint, the task of calculating the Rytov phase [Eq. (2.48)]

with the Fresnel diffracted field given by Eq. (2.65) as the unperturbed field presents
a formidable challenge. Fortunately, in many experimentally relevant situations one
can use the undiffracted gaussian field (Eq. (2.63)] with little error. Let us examine
the case of a circular aperture of radius a. Noting that no depolarization effects
are observed in the framework of our approximation and thus that the diffraction
equations derived above are effectively scalar, we introduce the diffraction ratio

(xi, z; a, z) (xz;a,z) (2.66)
zEo(x±,z;oo)(
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where the origin of the z axis has now been taken to be at the beam waist, and zyc
is the position of the diffracting screen (see Fig. 2.5); the notation Eo(x±, z; a, zr,)
denotes the diffracted field, whereas Eo(x.L, z; oo) is the field diffracted by an aperture
of infinite radius, i.e. the undiffracted field (which is of course independent of zrj).
The quantity V is expressed as a function of x_ = JxiI as required by the cylindrical
symmetry of the problem.

An integral expression for the diffraction ratio is derived in Appendix B and has
been computed numerically for different values of the parameters. The discussion in
the appendix shows that if a/wE >_ 1 and Z/ZR < 0.007, V deviates by less than 10%
from 1 over 95% of the aperture radius [here, wr, = wo(1 + z2/z2)1/ 2 is the half-

width measured in the aperture plane]. No dependence on the value of zE/zR can
be detected over the range from 0 to 0.5, which is quite large for most experimental
situations.

In addition, as discussed in the appendix, in many experimental configurations,
including the one used in the present work, spatial averaging due to the finite area of
the detector elements effectively suppresses the residual effects of diffraction.

On the basis of these findings, we shall derive all subsequent expressions using
the undiffracted gaussian profile [Eq. (2.63)].

2.6 Scattering of a Gaussian Beam

We now proceed to utilize Eq. (2.48) to derive useful relations between the scattered
fields and the quantity ne that is the ultimate object of the measurements. The
mathematical details of several of the calculations in this section and the following
two have been left for Appendix C.

The first step is to recast Eq. (2.48) in a form that explicitly displays the
frequency and wave-number spectrum of the electron density. We work again in the
framework of the paraxial approximation. The result is [Eq. (C.11)]

1 (x, t) = - ( j f dweiwt dz'exp w- (Z - Z')
(27r)2 kf I I o W+W I

x fd2k_ exp (iki xi - ki z-z'
wo + w 2

x ne(ki, w; z') Eo(x., z.) (2.67)
Eo(x)

where nie(ki, w; z) is the Fourier transform of ne with respect to x 1 and t. Here, we
have introduced the unperturbed coordinates zu = (woz + wz')/(wo + w) and xu-± =
x_ -k±(z - s')/ko. These are the coordinates of the unperturbed ray emanating from
the point in the plasma that is the source of the scattered ray observed at (xi, z) (see
Fig. 2.6). In the limit w -+ 0, zu becomes equal to z and xu -+ x 1 - (z - z')k±/ko,
and Eq. (2.67) reduces to the result derived by Howard and Sharp' 05 .
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Fig. 2.6 Unperturbed coordinates.

Physically, Eq. (2.67) can be interpreted as follows: the contribution of each
scattered wave to the overall Born scattered field E0ob 1 is simply equal to the cor-
responding spectral component of the index of refraction, multiplied by the Fresnel
propagator exp[i(ko - k2/2ko)(z - z') and by the unperturbed field calculated at the
unperturbed coordinates.

We now specialize our remarks to the case of a Gaussian beam. The Rytov phase
for this case is given by Eq. (C.14):

V) 1(x,t) - r, e-i'wtd dz'-7 exp i'-(z - z')
(27r)2 k J7J I c

x exp -Y dk exp 2lk N

ry' k2
x exp [i- (ZU - z') fie(k., w; z'), (2.68)

[_-y 2koI

where we have used the normalized coordinates ( = Z/ZR, Z' = z/ZR, and (u
= Zu/ZR, and we have introduced the collimation parameters' 05 -y = 1 + i(, y=
1 + i(', and -,, = 1 + i(u. The origin of the z axis is taken to be at the beam waist.

This expression can be seen as a compendium of the information about the
plasma density that can be extracted from a transmitted Gaussian beam under the
small-angle-scattering and Rytov approximations. In practice, different parts of this
information are available experimentally, depending on the detection technique and
on the detector location. In addition, it should be remembered that Eq. (2.68) is
valid beyond the near field only in the Born approximation.

In experimental situations, detection is effected with square-law detectors, viz.,
devices that respond to the power flux. Common detection schemes involve either
using a local oscillator derived from the unperturbed beam with a controllable phase
shift, or detecting the transmitted beam without any local oscillator. The first case is
usually referred to as heterodyne detection, while the second one is called homodyne
detection. In the absence of a local oscillator, the detected signal is proportional to
Uhom = (Eo -E;) exp(O1 + tbl): the measurement is sensitive to amplitude variations
but does not detect phase changes; therefore only the real part of the Rytov phase
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comes into play. With heterodyne detection, the signal is proportional to105

Uhet = (Eo -E3) [p2 + e2  + 2pe ' cos(W1 + QLOt - PLO)] , (2.69)

where p is the ratio of the amplitudes of the local-oscillator (LO) beam and of the
probing beam, and C1 and W, are the real and imaginary parts, respectively, of the
Rytov phase V)1. The LO phase shift has been assumed to have a linear dependence
on time, -QLOt + <OLO, which is obtained by shifting the frequency of the LO beam
with an acousto-optical modulator or a similar device. A frequency shift is useful
in practice to distinguish the interference term from the dc LO power and from the
homodyne term through spectral-analysis techniques. It should be remarked that in
the literature the term heterodyne is often restricted to the case QLO 0.

In many cases the intensity fluctuations (1 can be assumed to be small, i.e.,
exp(C1) ~ 1 + C1. Under this assumption, we can write

Upet = 2 (EO -E3) (V1 + p(l + 1) cos(Wp + QLOt - PLO)], (2.70)

where the suffix p indicates that only the terms affected by the plasma, i.e., the
perturbed terms, have been kept. A further level of approximation can be attained if
the phase (p1 is also small. This is the Born approximation. However, in the Rytov
scheme very useful results can be obtained by relaxing this condition and applying
it only to a fluctuating component #1 that is the object of the measurement. There
must be an experimental method for separating this component from the remaining
part of the phase, ((Pi) = W1 - #1: this method could rely, for instance, on a different
frequency spectrum or a different spatial dependence perpendicularly to the beam.
(In some cases, PLO is adjusted in real time to compensate for changes in (<p)). If
this is possible, we can impose the condition I@ I < 1 while ((p1) can be large. It
should be noted that for measurements performed in the far field the considerations
at the end of §2.4 apply: that is, the average phase (<P1) cannot be calculated with
the Rytov method by means of Eq. (2.48); rather Eq. (2.48) must be used in the
near field and then the full field Eo exp(Vk1) must be propagated in free space to the
far field.

We can now rewrite Eq. (2.70), to first order,

Up,het = 2 (Eo - E*) {(i[1 + pcos((<p1) + QLOt - (PLO)]

- pi sin((<p1) + QLOt - PLO)}- (2.71)

When these approximations are applicable, the complex quantity u(x±, t)
= (Eo - E;) i, contains all the relevant information regarding the detected signal.
In the next two sections this quantity will be called the signal for simplicity, although
it is understood that the actual detector signal is not equal to it, rather a function
of it. Also, the real part of u will be referred to as the homodyne signal; by analogy,
the fluctuating imaginary part will be loosely called the heterodyne signal, although
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Fig. 2.7 Far-field detection in the focal plane of a lens.

in general both the real and the imaginary component contribute in the heterodyne
case, as indicated by Eq. (2.71).

In the next two sections we shall explore several detection schemes that have
been used in laboratory experiments, with the aim of providing a unifying view and
a comparative analysis of their relative merits.

2.7 Far-Field Detection

In this section we explore a class of measurement techniques characterized by extreme
far-field detection. This is accomplished experimentally by either satisfying the con-
dition expressed by Eq. (2.34), with L1 now replaced by 2wo, or by placing the
detector in the front focal plane of a focusing optic106 (see Fig. 2.7). We shall explore
this second scenario in detail and then briefly examine the first one by analogy. For
simplicity we revert to the Born scheme by assuming 10, 1< 1.

In Appendix C the unperturbed field Eof and the Rytov phase 1bf (the subscript
f denotes focal-plane quantities) are calculated under very general conditions. The
general expression for the phase [Eq. (C.21)] is too complicated for our present
purposes. In practice, one simple observation and some relatively weak assumptions
can be used to greatly simplify the results. The observation is that the Born field at
the focal plane, Eofpbf, is found to have a Gaussian dependence oc exp[-(k2W2/4F 2 )
jx± - Fk±/ko 12], which essentially defines the region of observation as Ix± -. F,/ko|
< 2F/(kowo). The assumptions are as follows. We introduce a fictitious ordering
parameter r < 1, which for the purposes of this discussion can be identified with
(w/wO)1/ 2, and we ignore all exponents or phases of order r, with I > 0. We then
assume that kIws ~2 Q(,r), with I > -1, for the entire spectrum under exam. Since
in practice w/wo is usually a very small quantity, this is clearly a rather conservative
upper limit on k±, but it permits us to ignore terms of order kiw (w/wo). Similarly,
we also require that the quantities Z'/ZR and (z'/zR)kiw2 be of order larger than
or equal to -1, for all values of z'. These three conditions are independent and
must all be satisfied. Physically, they imply a weak lower limit on the wavelengths
under study and a modest degree of beam collimation. Finally, the conditions for
the validity of the Fresnel approximation [Eqs. (2.62) and (C.6)] can be stated as
21zu|/(k w ) ~ O(r1), 21z'l/(k3W1) ~ 0(r'), and Iz, - z'IkI/8kg ~ O(r'), with I > 1
(z, is the distance from the beam waist to the focusing optic).

Since fie is a real quantity, the spectrum f, must be Hermitian, that is,
fte(k±, w; z) = ft (-k±, -w; z). The real and imaginary parts of uf, respectively
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up. and ufi, are then given by Eq. (C.29):

f,0 0 re [0 f2~
Uf 7(xL, 0) = -,; do k, exp

(2r) o jIC 8

x I dz'Ifte(k,, w; z') exp 2 F2 (kFk 2 1

L 2F2 2k0 ,I
x sin wt' - z' kj xj __W

T xp-2F2 +2kok

x Cs P'- (k±xi + k ,)]} (2.72)

where we have defined the retarded time t' = t - (z, + F)/c + (zi - F)X2 /(2cF 2).

Also, F is the focal length, 3 = -(i/2) ln(fte/i*) is the phase of the spectrum, and
Ef,oo = 2(P/c)1/2 kowo/F is the amplitude of the unperturbed Gaussian field at x1
=0.

If the spectrum is monochromatic and the fluctuations are localized, i.e.,

jfe(kj,w;z) cc 6(z'-z,)ZE±6(kj w K)5(w{ F) and QL/c-+ 0, Eq. (2.72) reduces
to the result derived by Evans et al.' 0 6

Let us now explore the physical significance of Eq. (2.72) for the homodyne

signal up. = (Eoi - Es, . The exponential in the first line reflects the profile

of the unperturbed Gaussian field and weights the signal for k_ < 2v'2/wo; thus,
only wavelengths longer than the beam diameter produce a significant signal. The
term in curly braces is the difference of two functions, which peak at the positions
xi = TFk_/(2ko), respectively, and oscillate with frequency w. The first function
transforms into the second one upon translation by Ax1 = -Fk_/ko. Owing to the
antisymmetric nature of this term, the functions' width must be smaller than their
separation for the signal to be significant, as shown in Fig. 2.8. That requirement
is k± > 1/(2v'2wo), i.e., the wavelength must not exceed a value of ~ 10 times the
beam diameter. For the case z' = 0 (plasma located at the beam waist) this term
can be shown'0 6 to peak in the vicinity of k1 - 1/wo, as these qualitative arguments
would suggest.

Under these conditions, if the spectrum is monochromatic [Iife(ki, w; z)
= (1/2)ho(z) E± 6(k- T K)b(w T Q)], the two peaks can be studied separately. Car-
rying out the line integration along the plasma column, one obtains two signals that
oscillate at the frequency Q; their amplitudes are simply the longitudinal Fourier
components of 5io at the wave numbers

K -x1  K 2  0
k = t . (2.73)

F 2ko c
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(a)

Fig. 2.8 Sum (solid line) of the antisymmetric components (dashed lines) of the envelope of the

homodyne far-field signal [Eq. (2.72)]: (a) separation larger than the width, (b) separation smaller

than the width.

Through arguments similar to those following Eq. (2.37), these selection rules are
relaxed in practice to a finite range Sk, z 7r/L, around those values. There is
therefore a one-to-one correspondence, on each Gaussian curve, between the focal-
plane coordinate and the k, value: both peaks correspond to the same value ko =
-Q/c, and the e 2 half-width is R. = 2K/(kowo). Theoretically one could then
measure the k, spectrum, to within a Sk_ uncertainty, by scanning the focal plane,
and then reconstruct the fto(z') distribution. For this procedure to be meaningful,
two conditions must be satisfied. The first one is that the value kzo = -Q/c must lie
within the longitudinal-wave-number spectrum of the plasma; this is generally true for
low-frequency turbulence, whose Q/c values are in the 10- cm- region, but may be
marginal for perpendicularly launched rf waves. The second condition is R, > 6kg,
i.e., 2KL,/(rkowo) > 1; since 1/wo is of order K, an equivalent requirement is
L2 > rko/(2K2 ). Recalling Eq. (2.40) and the discussion following it, we identify
this condition as the defining inequality of the Bragg regime (within a factor of two).

We have thus reached the conclusion that the longitudinal distribution can be
measured by homodyne, extreme-far-field detection in the Bragg regime only. It must
be stressed that this conclusion is valid in the single-wave case: if the density fluctua-
tions in the plasma have a finite k1 spectrum, the Gaussian functions are broadened
and it is not possible in general to determine the k± spectrum and the longitudinal
distribution indipendently. On the cther hand, in the Raman-Nath regime (R. ,< 6kg)
very little information can be extracted at all. Although it is theoretically possible
to gain some information on the kj spectrum, the resolution is limited by the Gaus-
sian widths to 6k1 ~ 2V2"/wo; the Gaussian weighting function exp(-k2w/8) then
causes the signal to vanish in the region of interest.

In a heterodyne scheme, similar considerations apply to the imaginary signal uf ,
with one fundamental difference: the two Gaussians now add in phase, and the signal
is large for arbitrarily small K values.

One can eliminate the homodyne part by choosing QLO = 0, p > 1, and
- WLO = w/2: Eq. (2.71) then shows that the signal is proportional to ufi.

Alternatively, the contribution from uf, can be eliminated by integrating the sig-
nal over a wide-area detector: the translational symmetry of the two antisymmetric
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components ensures that the integral is exactly zero. To calculate the integral of the
imaginary part, we shall assume that the dependence of the retarded time on x_ can
be neglected; this requires the following ordering postulates: (z, - F)/ZR - 0(7-')

and wQkI(zi - F)/ZR - O(r-1) (it is understood here that the specified order in-
dicates only a lower limit); that is, a modest amount of collimation must exist at
the front focal plane of the lens. In this case t' = t - (zi + F)/c. Assuming also
QL/c < 1 and integrating Eq. (2.72) over the focal plane, we obtain

fufp(xI,t)d x± = - -E 00gF / dw J d2 k, dz' cos(wt" - 3)7T 0

| 1h,(k, w; z') Iexp - (I + -- , (2.74)
8 zR

where we have defined a new retarded time t" = t - (z, + F - z')/c relative to the
propagation from z' to zi ± F. If it is assumed that the variables can be separated in
the function fe, i.e., iie = fio(z)G(kw, w), and if the plasma column is all contained
within a Rayleigh length of the beam waist, Eq. (2.74) becomes

J f iu(x1 , t)d 2x± =-E ,0 0 rF 2 d J d2kIG(ki,7r 0W2J

x e-~L 0/8 cos(wt - 3) io(z')dz', (2.75)

i.e., the signal is proportional to the line integral of the density and the measurement
acts as a low-pass filter105"10 7 for k1 ,< 2/wo.

In the short-wavelength limit, k± ,> 1/(2v/2wo), homodyne and heterodyne de-
tection are essentially equivalent, if one localizes the measurement to only one of
the two Gaussians. The difficulty in using either measurement to gain information
on the k1 spectrum, as mentioned before, lies in the Gaussian weighting function
exp(-k2w2/8). This limitation can be overcome by adopting a modified heterodyne
configuration in which the local-oscillator beam is reoriented so that it reaches the
focusing optic at a small angle 0. Let us define a vector KLO lying in the plane of
the original and deflected LO beams, perpendicular to z, and whose magnitude is
KLO = Oko: it can be easily shown that to first order in 0 the field pattern in the
focal plane is simply shifted by Ax 1 = FKLO/ko. The equivalent of Eq. (2.71) for
this situation is

U,,het (xi) = 2p Re (Eof (xi) Egg (xi - FKLO/ko))

x V#1(xL)ei(V1X_)QOt-~LO) , (2.76)

where we have assumed p > 1. This heterodyne signal is calculated in Appendix C,
with the result [Eq. (C.32)]

Up,het (XI, t) = 2 2 pE 2 , d d2 k
(27r f ~0 0 J J
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[_ &k ( F KLO + k-)2x {Iie(k±, kz+, w)IexP -2F 2 (2iF LOk)2

x exp - (KLO - k,) sin[(QLO ~ w)t + OH+]

f|e(k, k -,w)Iexp F ~ FKLO k )2]

x exp - (KLO + k)2] sin[(QLO +(2)t+OH- 2.77)

where fe(k±, kz, w) is the complete temporal and spatial Fourier transform of fi,
with phase IP(k, w) = -(i/2) ln(fe/*), and kzi = w/c - k- - (xi/F -T kI/2ko).
Also, the phases OH±(x±) are given by Eq. (C.33) but their explicit functional form
is unimportant for our purposes. This expression shows that the signal is strongly
weighted for wave numbers in the vicinity of -KLO and KLO; it acts in fact as a spatial
bandpass filter around those values, with a half-width of k = 2V'2/wo. For both signs
of k±, the spatial peak occurs at x1 = FKLO/ko. If QLO / 0, and in particular if
QLO is larger than the largest characteristic frequency of the density fluctuations,
one can also distinguish between the two directions of propagation through frequency
discrimination. By repeating this measurement and reorienting the LO beam each
time, the complete k1 spectrum can be measured in principle with a resolution of
Sk 1 ~ 2y'2/wo.

If the Rytov field is expanded to second order in the phase, Eq. (2.69) can be
written, in the homodyne case, Uhom = (Eo -E*) [1 + 2 1 + 2 1]. This expansion is
only valid, however, in the near field, for the reasons put forward in the discussion
following Eq. (2.51). In the far field one can expand the field as follows: Ea, =
EOr + E'a + Efr = EO + E01 + E'l', where the second-order quantity E'' can be
obtained by applying Eqs. (2.59) and (C.16) to propagate the field Eo0b /2 from the
near field, through the lens, to the focal plane. The second-order homodyne signal
can then be expressed as Uj, = (Eo -EO)|i 2 + Re(E -E

Evans et al.' 06 derived an exact expression for the Rytov field, exp(VPo+0i), in the
extreme far field in the Raman-Nath regime, assuming a sinusoidal (monochromatic)
density dependence and, implicitly, wL/c < 1. The second-order homodyne signal
is comprised of a time-independent term and of a term oscillating with frequency 2Q.
The time-independent term consists of two symmetrical Gaussian functions centered
at xj = ±Fk±/ko with half-width V2 F/(kowo). The time-dependent term is iden-
tified with the shadowgraph effect, 99'108 which is based on the focusing properties
of a medium whose refractive index has a nonzero second derivative in the direction
perpendicular to the direction of propagation of the wave.

All the foregoing considerations apply equally well to extreme-far-field detec-
tion without the use of a lens. The extreme far field in this case is defined by the
Fraunhofer condition Ro >> kowo/2, where RO is the distance from the plasma to
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the detection plane. This condition can be recast as z > ZR. Once the correspon-
dence x1 -+ FROL/Ro, based on Fourier optics 03 , is made between the focal-plane
coordinates and the far-field coordinates, Eq. (2.72) becomes equivalent to the result
derived by Slusher and Surko29 for homodyne detection in the context of Thom-
son scattering (again in the limit wL./c < 1). The time-averaged scattered power,
expressed as the square of the modulus of the Born field EOV 1, coincides with the
second-order time-independent term in the focal-plane analysis. Finally, the "mod-
ified" heterodyne configuration described earlier is the standard one in Thomson
scattering experiments,29 in which the LO beam is oriented to be colinear with the
scattered component ko + k1 under exam. The exponentials involving x1 in Eq.
(2.77) now impose the condition R0o±/Ro ~ KLO/ko, i.e., the direction of the LO
beam must coincide with the spatial vector joining the interaction region to the de-
tector. The interaction region is thus defined as the intersection of the Gaussian
cross sections of the beam that traverses the plasma and of the LO beam (although
the latter may not in fact propagate through the plasma, its geometrical extension
from the detector, ignoring all beam-combining optics, does). This region has the
shape of an elongated romboid of approximate length Lz ~ 4kowo/KLo (see Fig.
2.9). This spatial-selection capability can be obtained also with the focal-plane con-
figuration, of course, provided that the collecting optic has an aperture not larger
than the width of the LO beam and is centered on it. It should be noted that the
requirement k± > Jk = 2V//wo implies that (k2/7rko)L > 8v'F/7r; thus, this
type of measurement is always restricted to the Bragg regime. This means that for
a given perpendicular wave number the two scattering directions correspond to op-
posite longitudinal wave numbers [see Fig. 2.1(b)], that is (assuming wL,/c < 1),
k,* = ±kI/2ko. Also, for each scattering direction the direction of propagation of
the density waves can be determined only if QLO o 0.
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Fig. 2.9 Geometry of Bragg scattering measurement.

2.8 Near- and Intermediate-Field Detection

We shall now examine the near- and intermediate-field detection scenarios. The
starting point is, again, the Rytov phase, expressed by Eq. (2.68), combined with the
unperturbed Gaussian field, expressed by Eq. (2.63). In the intermediate-field case,
i.e., when the beam propagates some distance away from the plasma column, the Born
approximation is also implicitly assumed. We introduce again a fictitious ordering
parameter r < 1 and we make the following assumptions. The beam is assumed to
be collimated between the interaction and the detection region: thus 1( - ('I is taken
to be of order r; the absolute values of C and C' are arbitrary at this point. The
frequency ratio w/wo is assumed to be of first order or smaller. Also, a weak upper
limit is imposed on the value of k± by requiring that kwo(1 + ( 2 )1/ 2  ,r-1)
(the order indicated represents only a lower limit): thus k1 could still be much
larger than 1/wo(1 + ( 2)1/ 2 (the inverse width of the beam in the detection plane),
but terms of order (( - (') 2 k wo(1 + (2)1/2 must be small. We also note that in
the Born field Eoekb' the sum of the real parts of the exponentials gives, to leading
order, a Gaussian dependence oc exp{-[1/w0(1 +( 2 )][x w (C' - ()k±/2 2 }, which
imposes a limit lxiL < wo(1 + 2)1/2 + k w21(' - (1/2. We can therefore state that
X2/Ws(1+C 2) (ro). Finally, the Fresnel conditions [Eqs. (2.62) and (C.6)] imply
the following additional requirements: I(/(koWo) 2  0(,r2 ), J('l/(kowo) 2  0(,r2 ),
and jz - z'lkI/(8k') ~ 0(72 ).

In this approximation, the Rytov phase is calculated in Appendix C to first order
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Fig. 2.10 Illustration of low-divergence condition (scattered waves stay within the Gaussian cross

section in the plasma) and more stringent Gaussian near-field condition (scattered waves stay within

the Gaussian cross section at the detector).

in r. The resulting expression, Eq. (C.36), is quite formidable and of limited interest.
Considerable simplification is attained at the next level of approximation, in which
we retain only terms of zeroth-order and larger, and we introduce the additional low-
divergence approximation L, < kowo/k±, specifically Lzk±/(kowo) ~ 0(r). This
inequality requires that the scattered beamlets, after propagating through the entire
length of the plasma column, not stray outside the width of the Gaussian beam
(measured at the waist), as shown in Fig. 2.10. The temporal and spatial Fourier
transform of the signal, defined as

fi(K, 0; z) = JJ (Eo -EO) Vb1 (x±, z, t)e-i(Kx -lt)d 2 Xdt, (2.78)

is calculated in Appendix C with the following result [Eq. (C.46)]:

f H (K, Q; z) = E e -ii/4 d2k_ exp ( )2 w8k
a 4 ko f+( 8

2j(1 + (2) 2
x exp WO K - k 1 I + (2)

82 1_+(2

x exp -(( - ( _) k dz' ne(k, Q; z')eiQ(z-z')/ciw/4
IWO 4 IfJ

xCs 4 ( (,) 4(ki- -K)I , (2.79)

where fIH and fia denote the Hermitian and anti-Hermitian components, respectively,
of fI; here, E00 = 4(P/cwo)1/ 2 , z, is an average plasma coordinate (measured from
the beam waist), and (p = zp/zR. Although this expression is still quite complicated,
two important features emerge in a rather simple way. Firstly, the first exponential is
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consistent with our assumption that the quantity wok±(1 +(2)1/2(( - () is of order
unity or smaller. This term acts as a low-pass spatial filter: a larger distance between
the plasma and the detector results in a smaller passband. The second observation
is that the Fourier component of the signal at a given K is affected by the density
spectrum only in the vicinity of that wave number, with a spread approximately equal
to ±2V_/wo(1 + C2 )1/2, defined by the second exponential in Eq. (2.79). This can
be understood intuitively as the result of the uncertainty principle, which states that
the wave number in the plasma can be known only to within the inverse dimensions
of the probing beam.

The dependence of the measured signal, whether homodyne (Hermitian) or het-
erodyne (anti-Hermitian), on the longitudinal distribution ho(z') remains quite con-
voluted at this level of approximation. That dependence is simplified considerably
by assuming that both the plasma and the detector lie in the Gaussian near field,'"5

defined by the inequality ( - ('Iwok± < 1. The scattered beamlets now must remain
within the Gaussian cross section (measured at the waist) when they reach the detector
plane (see Fig. 2.10). In terms of expansion orders, we assume 1( - ('Iwoki ~ 0(r).
Using also the fact that IK - k-LI < 2V'/wo(1 +(2)1/2, we can rewrite Eq. (2.79) as

4 r0 -i2 /422(1 + ( 2) Kk1 2

U H (K, Q; z) = E 0 w e d 2k exp 8 8 ] J dz'

x ft,(k_, 0; z') e iQ(z-z')/c ir/4 X sin [k(Z Z) 1(2.80)

The significance of the Gaussian-near-field approximation can best be understood by
writing the frequency spectrum of the Rytov phase, which in this approximation is
given by [Eq. (C.48)]

H (x; Q) -f 2kiki'x* Jdz'eiNzz')/c
a 2-7r ko

x fie(ki, w; z') x si [ L(z - z) , (2.81)

where, again, the subscripts H and a denote respectively the Hermitian and anti-
Hermitian components. As noted in Appendix C, the Rytov phase in this approxi-
mation is the same as that obtained when the incident field is a plane wave. It is
important to note that under these conditions it is impossible to determine the three-
dimensional distribution (or, equivalently, the wave-number spectrum) of the density
fluctuations, since Eq. (2.81) associates to each value of k1 a single value of k,. This
is, of course, the selection rule expressed by the Bragg condition [Eq. (2.37)].

For illustration purposes, let us now assume that the sy qctral variables can be
separated from z in n, i.e., n, = ho(z)G(k±,w), and let us take a sample Gaussian
density function fio(z) = ftoo exp[- (z - zP) 2/2L2] (the plasma "extremes", z = zt
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L,/2, are the half-standard-deviation points); by direct substitution in Eq. (2.81) we
find

H (x; )- 1 fiLzooe d f d2 k±G(k 1 , e)ek±'* - +

X ( Sn Q Xcoh(Q) iCS~ Xsinh(QD) (2.82)cosh(QD) cosh(QD)
~Fsin Qd x sinh(QD) -icsQ ohQ), (.2

where Q = LkI/(2ko) is the Klein-Cook parameter;96 we have also introduced the
transit phase D = L,,/c, and, by analogy, the parameters Qd = (z - z,) xk2/2ko
and Dd = (z - Zp)f/C.

If we assume for the moment D < 1, the factor exp(-Q 2 /2) indicates that
the signal is nonvanishing only in the Raman-Nath regime, Q < 1. This is simply a
consequence of the Gaussian spatial distribution we have chosen, which corresponds
to a Gaussian k, spectrum oc exp(-k2L2/2): in the Bragg regime (Q > 1) the
conditions for wave-number matching require a kz value that lies in the tail of this
spectrum. If we allow a finite D, we see that the condition becomes D ~ ±Q, which
is the condition for scattering from near-perpendicular waves, as stated by Eq. (2.37).

In the Raman-Nath regime we can rewrite Eq. (2.81) as

- 1 e Id 2k ikjL xj e sinh Qd
V) H (X; Q) = - -2 k -xLeax ihQ

a 2-i ko e e coshQd

x f (kL, Q; z') exp [i Q(z' - z,) dz'. (2.83)

Thus, in the Raman-Nath regime, the signal is proportional to the line integral of
the density, multiplied by exp[-if2(z' - zp)/c]. The appearance of this term is due
to the fact that the probing incident wave travels along the plasma column at the
finite velocity c; during the time it takes to go from point z' to point z', the phase
of the density wave changes by Q(z' - z')/c. If D > 1, this dephasing effect can
cause the line integral to vanish: this is the meaning of the exp(-D 2/2) term in the
case of the gaussian distribution. When, on the other hand, the longitudinal wave
number k, = Q/c lies within the spectral bandwidth of the fluctuations, the line
integration selectively chooses that component. This is yet another example of the
Bragg selection rule.

Within the Raman-Nath approximation, the distance that the wave is allowed
to propagate before being detected essentially determines the wave-number transfer
function of the system, through the parameter Qd. The homodyne signal, propor-
tional to the Hermitian component of 1, peaks at all wave numbers that satisfy the
relation Qd = ir(m + 1)/2 and is equal to zero for Qd = m7r, where m is any integer.
This translates into the condition k± = [(m + 1)7rko/(z - z,)]1 /2 for the peaks and
k- = [2mirko/(z - z,)]'/ 2 for the zeros. The opposite is true for the heterodyne

(anti-Hermitian) signal.
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Fig. 2.11 Near- and intermediate-field detection.

The advantage of intermediate-field detection (Fig. 2.11) is that the homodyne
signal - that is, the amplitude variation - is nonzero and thus a measurement can be
made without employing a local oscillator. The occurrence of an amplitude variation
can be understood by realizing that the two scattered waves that correspond to the
two signs of k± propagate in the two different directions given by Eq. (2.36); the
interference of the two waves at the detection plane produces an amplitude modulation
(see Fig. 2.12). This phenomenon is generally called scintillation. The inherent
disadvantage of the technique is the oscillatory character of its wave-number transfer
function: the zeros represent loss of information. In particular, since the first zero is
at kI = 0, there is a low-k 1 cutoff (defined as the point with 50% of peak response)
at kimin = [7rko/3(z - zp)] 1/2 . The colimation condition, on which these results are
predicated, imposes ki,min > 2/wo. Hence, only wavelengths considerably shorter
than the beam diameter are accessible with this technique.

When a local oscillator is used (scintillation interferometry), the heterodyne
transfer function is also oscillatory but peaks at k1 = 0. Thus, ignoring the higher-
kI_ oscillations, this system can be viewed as a low-pass filter, with the 50% cutoff
point at k±,mn = [27rko/3(z - z,)]I/2

In the near-field limit (Qd -+ 0), the homodyne signal vanishes and the hetero-
dyne signal becomes independent of k1 . Calculating the inverse Fourier transform of
Eq. (2.83) we find

1 (xi, z, t) = -iAore] t,[x, z', t - (z - z')/c] dz'. (2.84)

Assuming also D < 1, we can write

V)1(x, z, t) = -iAore ie[x, z', t - (z - z,)/c] dz'. (2.85)

This remarkably simple expression states that the effect of the plasma is to
impress on the incident wave a phase shift proportional to the line integral of the
density. It should be remembered that in the near-field limit it is legitimate to
abandon the Born approximation; thus, Eqs. (2.85) and (2.87) are valid in the Rytov
sense, and 01 is not constrained to be small in absolute terms. In particular, assuming
a monochromatic density perturbation h, = ii cos(k± -x_ -wt), the near-field Rytov
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Fig. 2.12 The scintillation effect: the interference of the positive and negative orders causes an

amplitude modulation.

field can be written

exp(bo + V1) = EO exp [AoreLnfik cos(ki - wt)]
+00

= Z iJ1(AoreLztk) exp(ik.L -x), (2.86)
1=--0,

which coincides with the Raman-Nath result95 '9 6 expressed by Eq. (2.41).
By defining the index of refraction K = Vf~ 1 - 27rrene/k2, Eq. (2.85) can be

recast as

7P,(xi, z, t) = iko I [x-L, Z', t - (z - z,)/c]dz'. (2.87)

This form of the Rytov phase suggests a natural correspondence with geometrical
optics. In geometrical optics one expresses the wave's electric field in the form

E(x, t) = e(x, t)e-wOteikoS(x~t), (2.88)

where S(x, t) is a real function, called the eikonal or optical-path function. Substitut-
ing for E from Eq. (2.88) in the wave equation (2.12), one obtains terms proportional
to k2, k, and ko. The geometrical-optics approximation is the limit AO -+ 0, in which
only the k' terms are kept. When this approximation is combined with a first-order
expansion in 1-el, or, equivalently, K, Eq. (2.85) is obtained. This derivation, which
extends the standard treatment of geometrical optics to include the time dependence
of S and e, is carried out in detail in Appendix D.

The result expressed by Eq. (2.85) can thus be reached by two rather disparate
routes, leading to the important conclusion that the region of validity of geometrical
optics coincides with the Raman-Nath regime combined with near-field detection. The
appeal of such a simple relation makes near-field heterodyne detection one of the most
desirable techniques available in the Raman-Nath regime. Near-field conditions are
generally ensured in practice by the use of imaging optics with sufficient aperture to
collect all the scattered radiation. The choice of the LO source can vary substantially;
a comparison of several suitable techniques is the subject of the next section.
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One important comment needs to be made about the Q < I and D < 1 conditions
upon which all our subsequent considerations will be based. A common phenomenon
encountered in plasma-density fluctuation studies is random turbulence. In that
case the correlation function of the fluctuations is often more meaningful than the
instantaneous measurement itself.

We assume here for simplicity that the correlation properties of the plasma are
translationally invariant in the perpendicular direction, but we allow for slow vari-
ations in the z direction; we also postulate a Gaussian correlation function in the
variable z. We can then use a quasi-homogeneous approximation" 9 for z and a
random-phase approximation for the perpendicular plane, expressed by the ansatz

(ft(kii, f2; zi)ii*(k1 2 , S12; z2 )) = JG(k 1 i, p 1)12 Ki Zi + z2  e-Z- Z2)/rZ

x 6(k-1 - k2)( - Q2), (2.89)

where L, is an effective longitudinal correlation length, and the angular brackets
<> denote the operation of ensemble averaging. Here we have implicitly assumed
that the characteristic gradient length Id (In (fii(z))) /dzI-1 is much longer than 4,
(these concepts will be discussed in depth in Chapter 4). Also, the quasi-homogeneous
approximation hinges on the separability of the correlation function from the average-
intensity function: if the correlation length, e.g., is itself a function of z, the approx-
imation breaks down.

We can now calculate the crosscorrelation function of the Rytov phase. Let us
suppose that we have carried out a measurement of the real (homodyne) or of the
imaginary (heterodyne) component of the signal, or of both. We shall examine the
correlation functions ((1(x±, t)61(x' , t')) and ( 1(x±, t)01(x', t')). The calculation
is carried out in Appendix C and yields the result [Eq. (C.50)]

S(x-, Z, t) ' (x'L , z, t') de2 e-iW'0-t/ d 2ki- IG(k-L, U)) 2
\ W 9 / 2(27r)4ko I I

x e (*~')dz's/r e c(z')) e- C/4Q2 Qc_ _L__

x {e-/4 cosh (QcD) T cos k(Z - z)

(2.90)

where Qc = k2./(2ko) and D, = wL4/c.
Several important features of this expression must be noted. The parameter D,

takes the same role here as D does in the instantaneous signal. Since generally L, <
LZ. the condition D, < 1 is much more easily satisfied than D < 1. Also, the first
term in the curly braces is independent of the detector position. This term represents
the sum of the autocorrelations of the two k, components (k,± = w/c } k'/2ko).
Since the dependence of j on the detector position is due to the dephasing between
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these two components, "selecting" only one of the two effectively eliminates that
dependence, and the effect of propagation in free space only manifests itself in the
crosscorrelation term (the second term in the curly braces). Note that the effective
Klein-Cook parameter for the first term is now Q:. Again, this term is often negligible.

Let us now study the autocorrelation function, which is obtained from Eq. (2.90)
for x 1 = x', and t = t'. Assuming D, < 1 and Q, < 1, and noting the Fourier rela-
tion ff jGj 2d2 kidw = (27r) 6 [which can be proven by calculating the autocorrelation
function of fii and making use of Eq. (2.89)], we can write

12 1 (,O,2 I (2(I\\) /7cdz-I1 (Aor) 2  (i2'1)
()oreJ(ne(z)vSrz' ] (5i(z')) 2/W2rdz'

xJ d2kI dwjG(k,, w)12 cos [ (z -z') . (2.91)

In the Raman-Nath, near-field regime the second term is identical with the first one,
canceling it in the homodyne case and doubling it in the heterodyne case, as could be
expected from Eq. (2.85). The new features of Eq. (2.91) can best be understood by
resorting again to a sample Gaussian distribution (ii2(z)) = Q 0 exp[-(z - zP)2/L 2].

Using this expression in Eq. (2.91) and taking the square root we obtain

2 )1/2 = /
2 - A7-,Aoreoo (7rL,.) 1 /2

x T IIG(k , q) 2 e_ cos(2Qd) d2kw] . (2.92)

The remarkable result is that in going from the Raman-Nath regime (Q < 1) to the
Bragg regime (Q > 1) the average near-field heterodyne signal is simply reduced by
a factor of two. In addition, in the Bragg regime the remaining signal is the same
for heterodyne and homodyne detection and is independent of the detector position
(provided the collimation conditions are satisfied). In intermediate cases (Q ~ 1) the
near-field heterodyne signal exhibits a k1 -dependent response, which varies only by
a factor of two.

We can also obtain the autopower spectral functions in perpendicular-wave-
number and frequency space by calculating the three-dimensional Fourier transform
of Eq. (2.90) with respect to (x± - x'L) and (t - t'). Assuming again D, < 1 and
Q, < 1, we find

44l (k±, w; z) e)2 G(ki,w) 2 J
x {1Tcos _(z - z') . (2.93)
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The form of this equation suggests that the form factor can be eliminated if sepa-
rate measurements of the Hermitian and anti-Hermitian signals are available from a
heterodyne experiment. Specifically, one can then calculate the quantity

i4H) - 1 f ((z')) cos [1] (z - z')] dz'
( I l= - . - ek (2 94 )

Q~Hi1J) + (iaia) f (j(z')) dz'

at different values of k 1 and thus reconstruct the normalized Fourier transform of
the function ( ii(z)). This procedure, which was proposed in slightly different form
by Nazikian,"' is feasible if the plasma turbulence spectrum extends well into the
Bragg region, i.e., if k,,m,= k=k2 /k > 27r/L,. Also, it should be recalled that
this result is contingent on the validity of the quasi-homogeneous approximation.

2.9 Overview of Collective Small-Angle Scattering Techniques

Collective scattering from plasma density fluctuations occurs when the wave number
k of the fluctuations obeys the relation kAD < 1. Small-angle scattering occurs when
k < ko, where ko is the wave number of the probing electromagnetic wave. These two
conditions are frequently satisfied in laboratory plasmas when the diagnostic beam
belongs to the infrared or microwave regions of the spectrum.

Collective, or coherent, far-field scattering techniques were applied early on to
the study of ionospheric plasmas."' In these pioneering experiments the backscat-
tering of radio waves was used to measure the fluctuations caused in an otherwise
uniform plasma by the discreteness of the constituent particles. Early theoretical
investigations of this effect" 2 proved that the detected signals depended strongly on
the ion temperature and could thus be used to measure that quantity.

In denser laboratory plasmas shorter wavelengths must be used, both for con-
siderations of practical access and to ensure that the wave frequency remains larger
than the plasma frequency. The condition for collective scattering, then, often im-
plies small scattering angles. However, the need to separate the incident beam from
the scattered radiation imposes a practical lower limit on the scattering angle. As
a result, visible radiation is generally useful in the context of ion-temperature mea-
surements only in rather dense plasmas (ne ; 1016 cm-3 ). On the other hand, in
the history of these techniques, 87 the ready availability of coherent microwave and
infrared sources gave an early boost to collective-scattering diagnostics in a variety
of laboratory plasma experiments," 3 ranging from arc plasmas"' to high-density
plasma-focus devices.1 15

In the mid-1960's, while these ion-temperature diagnostic techniques were be-
ing explored, scattering methods began to be applied also to the detection of ion
acoustic and plasma electron waves, 1 6 electron Bernstein waves,1 1 7 plasma-density
inhomogeneities, 1 8 and broadband microturbulence." 9 By the time the tokamak
configuration conquered a leading position in worldwide fusion research, collective
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scattering had become an established experimental technique. The earliest applica-
tions to tokamaks, employing microwave sources, were developed for the ST device
to measure ion acoustic turbulence," and for the ATC and TFR17 tokamaks for
the study of drift-wave instabilities. Infrared scattering experiments using CO2 lasers
soon followed on ATC,' 6 Alcator A, 2' TFR, 2 2 TOSCA,120 Alcator C, 23 and other de-
vices. The intermediate range, i.e., the far-infrared region of the spectrum, was chosen
for turbulence studies on Microtor, 24 TEXT, 26 DIII-D, 27 and ASDEX, 28 among oth-
ers.

The use of near- and intermediate-field techniques in the study of plasma den-
sity fluctuations has been decidedly more sparse. Heterodyne far-forward detection
methods employing classical interferometric configurations have been applied for the
most part to the measurement of the macroscopic plasma density.88 ,89 Spatial reso-
lution, when required, was often obtained by using multiple beams,121 in which case
the distance between the plasma and the detectors was not critical; alternatively,
imaging techniques were used to establish near-field conditions and attain some de-
gree of spatial resolution within the cross section of a single beam.1 2 2 , 2 3 The latter
approach was adopted for investigating fluctuations on the LT-4 tokamak3 0 , where
a CO 2 laser was employed in a Mach-Zehnder interferometer configuration. The au-
thors called their technique scintillation interferometry (this terminology has been
used in the literature to describe a broader class of configurations, not necessarily
limited to near-field detection). The multiple-beam approach is embodied instead in
the scanning interferometer proposed by Howard.124

The difficulties encountered by heterodyne configurations in the presence of me-
chanical vibrations have led researchers to resort to homodyne techniques, as in the
intermediate-field scintillation method.125" 26 Alternatively and in very few instances,
internal-reference heterodyne systems, based on spatial-filtering methods, have been
employed. To this category belong the schlieren techniques that were employed in
early studies of high-density plasmas,12 7 and the phase-contrast method,1 2 8,3 1 which
will be discussed in detail in the following section.

Within the confines of collective small-angle scattering, techniques differ only
in the way that they process the information contained in the radiation transmitted
by the plasma. Far-field detection, whether in the Fraunhofer limit or in the focal
plane of a collecting optic, lends itself naturally to a representation in wave-number
space. In particular, the generalized heterodyne technique discussed in §2.7 selects
for each direction of the local-oscillator beam a specific wave number k±, with a
resolution ±|6k±l ~ ±2v//wo, where wo is the half-width of the Gaussian probing
beam (defined, as in §2.5, as the 1/e point of the amplitude). It is important to
note that a constraint is placed also on the longitudinal wave number: its value is
k2/2ko and is different from zero within the intrinsic uncertainty of the measurement,
which is ±16ki1 | ~ ±2rkw/(8kowo). This last statement reaffirms that this particular
scattering technique is restricted to the Bragg regime. The spatial resolution of the
measurement is defined by the dimensions of the interaction volume, which is an
approximate romboid of maximum width - 2wo and length L, ~ 4kowo/k 1 (see Fig.
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2.9).
This technique is rather attractive at relatively short wavelengths, A < 2wo,

where the relative resolution 6k±/k_ is good and the length of the interaction region
can be much smaller than the length of the plasma column, providing some degree
of localization. However, as the wavelengths become of the same order as the beam
width, both the wave-number resolution and the spatial resolution become poor.
These limitations, on the other hand, are inherent in the physics of the interaction
process and are not specific of this measurement technique. If one measures directly
the spatial distribution of the plasma fluctuations and then derives the wave-number
spectrum through a spatial Fourier transform, the uncertainty principle will still
impose 16k,11 irkj/(8kowo).

This is a manifestation of a broader reciprocity principle, which states that the
information obtained in real space is entirely equivalent to that obtained in the recip-
rocal wave-number space, provided that all the information is collected simultaneously.
Thus, if one could measure the amplitude ant phase of all the spectral components
at once, the information would be equivalent to a direct spatial mapping of the fluc-
tuation distribution. However, the need for a different direction of the LO beam for
each spectral component implies that scattering experiments in practice select only
one wave number at a time. Even if the scattering vector can be changed during a
series of repeatable experiments, the phase information is certainly lost.

These specific aspects of the generalized heterodyne Fraunhofer detection tech-
nique engender three significant difficulties. At long wavelengths (A > 1 cm) the very
concept of wave number may be of dubious value: often, especially near the edge of
a tokamak plasma, the gradient scale lengths of the macroscopic plasma parameters
are on the order of a few centimeters, and the distinction between fluctuations and
average parameters is blurred; in such inhomogeneous conditions, a direct spatial
mapping is clearly a more natural representation of the structure of the fluctuations.
It should also be noted that in Fraunhofer scattering the long path lengths that- are
necessary to separate the incident beam from the scattered radiation often lead to
severe vibration problems at the longer wavelengths;2 9 as a result, the upper limit
on the wavelengths that can be resolved is generally smaller than the fundamental
physical limit given by the width of the beam.

In addition, the interaction volume changes shape and position when the scatter-
ing angle is changed. Again, this adds a degree of complication to the interpretation
of the measurements when the plasma is not homogeneous.

Finally, as was observed earlier, the measurement selects a specific longitudinal
wave number, which is different for each scattering angle. Measurements that are
carried out in the Raman-Nath regime, such as the near-field measurements that
will be discussed later, also select a particular parallel wave number, but one that
is always equal to zero within the limits of the uncertainty principle. This situation
is especially advantageous in view of the generally anisotropic character of tokamak
turbulence.

In the homodyne case, far-field detection has more severe limitations, as we ob-
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served in §2.7. The wave-number resolution is essentially the same as in the hetero-
dyne case. However, there is now also a strong weighting factor exp(-k2w/8) that
imposes an upper limit on the wave number. In addition, there is also a lower limit,
approximately equal to the wave-number resolution. Evans et al.' 20 proposed this
technique mainly as a tool to determine the longitudinal distribution of the plasma
fluctuations. However, such a determination is limited to a resolution I3L, I ~ 2ko/ki.
It is difficult to satisfy the Bragg condition L > I6L, I concurrently with the require-
ment of a small scattering angle, which is necessary to ensure the validity of the
equations and is also dictated by the practical need to collect all the scattered radi-
ation. More importantly, this specific technique is only applicable to the case of a
single perpendicular wave number, i.e., of a very narrow fluctuation spectrum. This
assumption is in sharp contrast with the broadband nature of the turbulent spectra
seen in a wide variety of laboratory plasma experiments.

In the realm of near-field techniques, the heterodyne imaging configuration (Fig.
2.13) represents the ultimate ideal. In the Raman-Nath regime, which is the one
most frequently encountered in tokamak experiments, the near-field phase fluctuation
is given by Eq. (2.84). At each point in the detection plane the measured phase
is proportional to the longitudinal line integral of the density perturbation at the
corresponding transversal coordinate in the plasma. Employing a detector array, one
can perform a measurement with nearly arbitrary spatial resolution in the transversal
plane. The main limitation is a lack of longitudinal resolution, which is inherent
in the Raman-Nath regime regardless of the detection method. The wave-number
spectrum can be reconstructed from the measured spatial distribution by means of
Fourier transform techniques. Of course, the indetermination principle still generates
an uncertainty Jki I ~ 2V/2/wo.

Since this type of measurement is sensitive to absolute changes in the index of
refraction of the plasma, extracting the fluctuating component from the measured
phase can be a difficult and noise-prone process. For this reason, the scintillation
interferometer of Nazikian and Sharp 3o included a feedback mechanism that adjusted
the LO path length on a slow time scale to hold the phase difference between the
plasma and the reference arms at 7r/2, where the sensitivity to refractive-index fluc-
tuations is maximum [the derivative of the signal is proportional to the sine of the
phase, as can be gleaned from Eq. (2.71)]. In the general form of the signal expressed
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by Eq. (2.71), this corresponds to QLO = 0 and (p1) - (PLO = 7r/2. Under these con-
ditions, the response to a small perturbation ( bl < 1 rad) is approximately linear.
This experimental approach relies on the large difference in amplitude between the
lowest-frequency ( < I kHz) components of the density (the "bulk" density) and the
fluctuation spectrum, which can extend to tens or hundreds of kHz.

The main disadvantage of a heterodyne system relying on an external reference
signal is its sensitivity to mechanical vibrations. Relative movements of the optics
along the LO and plasma paths result in phase shifts that are erroneously interpreted
as density fluctuations. This will generally define the ultimate sensitivity of the
measurement, i.e., the smallest phase change that can be detected. Nazikian and
Sharp 30 were able to attain an excellent sensitivity by painstakingly reducing the
amplitude of the vibrations through careful isolation of the components. On large
tokamaks, however, the vibrations induced by the large currents flowing in the coils
and in the plasma would likely impose significantly higher limits on the measurable
phase.

A heterodyne system without imaging optics, in which detection is effected in
the intermediate field, 129 is decidedly inferior to its near-field counterpart, as the
former shares the latter's vibrational problems but does not exhibit the same linear
response.13 0 The response is now k±-dependent, and in particular, if the distance d
between the plasma and the detector plane is not too large, there is an upper cutoff
at k1 - (27rko/3d)1/ 2 , as was discussed in §2.8.

The difficulties associated with mechanical vibrations in a heterodyne system
have provided impetus to the development of homodyne detection systems. In the
Raman-Nath regime, the frequency spectrum of the Rytov phase ( 1) is given by
Eq. (2.83). With homodyne detection, one measures the Hermitian component of
'1 (which corresponds to the real part of the phase). Since the homodyne signal is
proportional to sin Qd = sin(k2 d/2ko), where d is the distance between the plasma
and the detection plane, the measurement must be performed at some distance from
the plasma (or from its image plane, if focusing optics are used). As was pointed out
in §2.8, the usefulness of this scintillation technique is hampered by its oscillatory
transfer function in k, space. This has two major consequences. Firstly, the accessible
spectral range in k1 space is reduced; in particular, there is a low cutoff value. Since
the distance d must be well within the Rayleigh range for Eq. (2.83) to be valid, that
cutoff value must be much larger than 2/wo. This can be a very significant limitation
in practice. Secondly, since different k1 components contribute to the signal with
different weights, the resulting spatial distribution will be a complicated function of
the spatial distribution of the density in the plasma. This result should be contrasted
with the direct one-to-one mapping provided by a heterodyne imaging interferometer.

A compromise between homodyne and heterodyne detection is provided by a class
of techniques that can be called internal-reference interferometry 1 These techniques
rely on optical filtering to extract a component of the transmitted beam, which is then
used as a local oscillator to measure the phase of the remaining components. Thus,
the vibrational problems associated with an external reference arm are circumvented;
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yet, the measurement is sensitive to the phase, so that detection can be effected in
the image plane and the problems of intermediate-field techniques are avoided. The
sacrifice to be made for this is that some of the information is, by necessity, lost. The
amount and the character of the lost information are different for different filtering
techniques.

These techniques have been in existence for the better part of this century but
have only recently been applied to the study of plasma density fluctuations. The
phase-contrast method will be described in detail in the next two sections. The
dark-ground and schlieren methods and several types of filtering techniques will be
described in §2.13, in the context of a general comparative analysis.

2.10 The Phase-Contrast Technique

(a) A Brief History

Some of the greatest and most exciting advances in the field of optics in our
century have occurred in the area of spatial-filtering processes. The earliest appear-
ance of these processes dates from the 19th century, when the central dark ground
technique and the schlieren (German for "streak") technique were introduced (the
latter by August Topler in 1864132) as procedures for examining defects in lenses.

The most significant advancement was the application of spatial filtering to imag-
ing systems. In particular, much of the progress in this area was generated by one of
the two main lines of research whose aim was the improvement of optical microscopes.
While one line pursued improvements in the instrument itself, a second line sought
to diversify its capabilities by taking into account the properties of the specimens. 133

The conventional microscope is an extension of the human eye, in the sense that it
forms an image in terms of brightness and color, which the eye is able to detect. Thus
many specimens, such as bacteria and algae, that do not appreciably absorb or reflect
light are not visible in this fashion. These specimens do, however, have a refractive
index that generally differs from that of their surroundings, and they accordingly al-
ter the path length of the light as it traverses them, producing a phase change. These
transparent objects are called phase objects to differentiate them from the visible
amplitude objects. The eventual development of the phase-contrast method stemmed
largely from attempts to render phase objects "visible".

The earliest recorded efforts in this field were the classical experiments of Ernst
Abbe, who, sometime before 1892, introduced glass wedges into the rear focal plane
of the microscope objective, thereby changing the phase relationships between the
diffraction lines generated by a grating, which he used as a specimen.134 This line of
investigation was continued by Conrady13 5 and Rheinberg136 in the early twentieth
century. It was not until some twenty-seven years later, however, that the Dutch
physicist Fritz Zernike, of the University of Groningen, invented the method of phase
contrast and showed1 37 ,138 that it held substantial advantages over the schlieren and
dark-ground techniques. Although the earliest applications were again in the inves-
tigation of defects in optical components,' 3 9 patent rights granted to the Carl Zeiss
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optical firm show that Zernike recognized the full potential of a phase-contrast micro-
scope as early as in 1932, two years before his first published work on the subject.' 3 3

Results from the first experiments with the phase-contrast method in microscopy,
carried out at the Zeiss firm, were finally published in 1941,140 followed a year later
by the first photomicrographs with an absorbing material in the phase-contrast filter,
taken by Zernike himself. 14 '

The importance and usefulness of the phase-contrast microscope can hardly be
exaggerated. A few years after the first prototype had been made by Zeiss, the new
instrument had found extensive applications in the fields of biology and medicine,
soon becoming an indispensable aid in the study of bacteria, fungi, algae, and animal
cells and tissues. In 1953 Fritz Zernike was awarded the physics Nobel prize for his
invention.

Applications outside the field of microscopy have been less frequent. Phase-
contrast techniques have been used to image aerodynamic flows. The first known
application to the study of plasmas was the work of Presby and Finkelstein of Yeshiva
University,128 who called their technique "plasma phasography". These authors em-
ployed a pulsed ruby laser to image gas jets and high-density (n, ~ 1017 cm 3 ) plasma
shock waves in air and argon. They also carried out a direct comparison with the
schlieren method, showing that the phase-contrast technique produced superior re-
sults. As Weisen pointed out,142 these authors failed to study the transfer properties
of their system and their results remained qualitative.

Henri Weisen, of the Ecole Polytechnique F6d6rale of Lausanne, Switzerland, was
the first to employ phase-contrast imaging to study fluctuations in a thermonuclear
plasma.31,131,1 4 2 He employed a 23-cm-wide CO 2 laser beam to image turbulence143

and driven Alfven waves in the TCA tokamak. The latter measurement was used to
determine the safety-factor profile,78 by virtue of its known effect on the position of
the Alfven-wave resonance.

Following the development of our apparatus on the DIII-D tokamak,7 0 ,82 phase-
contrast imaging systems have recently been developed or planned for other fusion
experiments, including the Heliotron-E device at Kyoto University in Japan, 4 4" 4 5 the
TEXT-U tokamak of the University of Texas at Austin,146 and the CDX-U tokamak
at Princeton University.147

(b) Physical Principles

For an elementary description of the principles of phase contrast, our starting
assumption, upon which all our subsequent analysis will be based, is that the effect
of the plasma on the incident electromagnetic wave can be described entirely by
Eq. (2.84). This equation states that the amplitude of the wave is unchanged upon
propagation through the plasma, while its phase is shifted by an amount proportional
to the line integral of the density at each point within the cross section of the beam.
In addition, we assume that the phase shift caused by the fluctuating component of
the density is much smaller than 1 radian.
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Fig. 2.14 Complex-plane phasors of undiffracted, diffracted, and total fields.

Since the perturbation induced by the plasma fluctuations is small, the value of
any component of the transmitted wave does not differ much from the value it would
take if the plasma fluctuations were absent. We can formally write

E,(x±, t) = E,(x±, t) +Ed (x±, t), (2.95)

where E. denotes the total ("scattered") field, E, is the field in the absence of fluctua-
tions, and Ed is defined by Eq. (2.95) and will be called diffracted field. In accordance
with the discussion following Eq. (2.70), the field E, is not in general the unperturbed
field (in the Born sense) EO; rather it is the total field generated by the interaction of
the incident field with the plasma, minus the fluctuating component, but including,
in general, the potentially large phase shifts caused by the bulk plasma density. The
subscript p has been used to emphasize that this component, which will be called
"undiffracted", is indeed affected by the plasma.

The difference between "bulk density" and "fluctuating density" is to some extent
arbitrary and has not been defined in any rigorous way thus far. A precise definition
is not necessary in general, but it is important to be able to distinguish between
the two experimentally. Typically, changes involving the plasma on a large scale are
slower than small-scale fluctuations. Therefore, if highpass filtering with a - 1 kHz
cutoff is applied to the data, the result generally contains information only on the
fluctuating components of the density. The exception to this statement is the case
in which the phase shift from the bulk density is large (of the order of 1 radian or
larger) and undergoes significant spatial variations across the width of the beam. As
will become clear at the end of this section, such conditions cause severe difficulties
to a phase-contrast fluctuation measurement.

The fact that the wave experiences no amplitude change implies that

E,.E* =E E*, (2.96)

and the fact that the only change that the wave does experience, i.e., its phase shift,
is small, implies in turn

Ed - Ed* < E, -E* (2.97)

It is easy to conclude from these two equations alone that the diffracted field is - 900
out of phase with respect to the undiffracted fielic. This is illustrated geometrically
by Fig. 2.14, which shows the phasors of the fields in the complex plane (not to
be confused with vectors in real space). The difference between two phasors with
identical magnitude and nearly identical direction is a phasor that is approximately
perpendicular to both.
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From a mathematical point of view, the same conclusion can be reached from
the expression

E,(x, t) = E,(x, t) e* d ~ E,(1 + i@), (2.98)

where t is the fluctuating imaginary part of the Rytov phase; this expression, com-
bined with Eq. (2.95), yields in turn

Ed ~ i@E,, (2.99)

where the i factor provides precisely the 90* phase shift discussed above.
If the diffracted and undiffracted components of the scattered wave could some-

how be separated, and a ±90* phase shift could be applied to the undiffracted com-
ponent alone, the resulting field could be written

E' = E(+i + i ). (2.100)

Now to first order in ( the intensity can be written

IE'12 = 1E,1 2 (1 ± 2o). (2.101)

This operation therefore results in an intensity with a fluctuating component that
is directly proportional to the phase of the original beam. Thus on the image plane
a detector, or a human eye in the case of the microscope, would register a signal
proportional to the line integral of the density. Note that this would be true even if
the phase shift were not exactly 90*, although the proportionality factor is maximum
in that case.

The process just described presents remarkable similarities with the heterodyne
detection techniques described in §§2.6-2.8. Indeed, one can look upon this process
as a heterodyne method for the detection of the diffracted radiation, where the role
of the local oscillator is played by the undiffracted radiation. This is an example
of an internal-reference interferometer. The lack of an external reference renders
the overall phase shift from the bulk plasma density, regardless of its magnitude,
essentially irrelevant to the measurement, since it is carried by both the diffracted
and the undiffracted radiation, and therefore it does not affect the interference term.

It should be noted that this procedure produces an intensity variation regardless
of the magnitude of o. In general, the dependence is nonlinear, and the calcula-
tion cannot be carried out analytically as it involves the Fourier transform of the
exponential of a function.

It remains to be seen how the separation of the undiffracted from the diffracted
component can be achieved. Let us assume for simplicity that the incident wave
is a plane wave: E, = EpoeikoX. The undiffracted component travels in the same
direction as the incident wave; in diffraction terms, this is the zeroth-order component.
The diffracted components, on the other hand, propagate at the Bragg angle k±/ko
with respect to the incident wave. This can be seen directly from Eq. (2.99): if the
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perturbed phase is taken to have the form b(x_,t) = ocos(K -x 1 - Qt), Eq. (2.99)
can be rewritten

Ed ~ i9oEPOI (ei(ko+K)-x-i(wo+)t + ei(ko-K)-x-i(wo-n)t (2.102)
2

which is the sum of two waves propagating at the two angles specified by the Bragg
condition [Eq. (2.28)].

The different directions of propagation of the undiffracted and diffracted com-
ponents permit them to be easily separated in the focal plane of a collecting optic
(see Fig. 2.15). According to the laws of geometrical optics, a ray impinging on a
lens of focal length F at a small angle 0 to the optical axis reaches the focal plane
at a distance y = FO from the optical axis. This implies that the undiffracted rays
are focused at the center of the focal plane, while the diffracted rays intercept the
same plane at varying distances from the center, depending on the wave number of
the perturbation that generated them.

Having thus separated the two components, the necessary phase shift can be
introduced by means of a thin refractive strip [for a one-dimensional (1D) bundle] or
dot [ii, the two-dimensional (2D) case] located at the center of the focal plane and
designed to increase the path length by a quarter of a wavelength. This region is
called the conjugate area, whereas the remainder of the focal plane is known as the
complementary area.
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In the case of the phase-contrast microscope, the incident bundle is generally
obtained in practice by passing light generated by a broad source through an annular
diaphragm and a substage condenser; the resulting bundle therefore lies on the surface
of a cone, viz., the zeroth-order diffraction component is inclined by a given angle with
respect to the optical axis. The conjugate area then takes the form of an annulus. In
macroscopic experiments involving plasmas, a reflective, rather than refractive, phase
plate is normally used for reasons of practicality and expense. In this case a mirror
is placed in the focal plane, with a thin groove (1D) or circular depression (2D) of
depth AO/8 in the center (Fig. 2.15). The undiffracted component undergoes a 7r/2
phase shift upon reflection.

Upon re-examining Eq. (2.101), it can be noted that the component of interest in
the signal is overshadowed by the much larger unperturbed component. The two can
generally be distinguished on the basis of their different frequency spectra. However,
the finite dynamic range of all instruments renders a strong and unneeded dc signal a
hindrance to the achievement of high sensitivity. This difficulty can be overcome by
requiring that the conjugate area of the phase plate transmit (if refractive), or reflect
(if reflective), only a fraction p < 1 of the incident power. In this case Eq. (2.100)
clearly must be modified as follows:

E' = E(±i ,F + ii). (2.103)

Similarly, Eq. (2.101) is replaced by

lE'12 = 1EP12 (p ± 2/ r). (2.104)

Thus the dc signal level is reduced by a factor p and the strength of the ac signal
relative to the dc signal (the "contrast") is improved by a -actor 1 /p. This reduction
is generally achieved by using absorbent materials in a refractive conjugate area, and
antireflective coatings or materials in a reflective one.

The need for attenuation of the undiffracted wave is particularly pressing in the
case of the microscope, owing to the relatively limited dynamic range of the eye, and
when the light is detected by a photographic film. Working with film, Presby and
Finkelstein128 reported being forced to achieve attenuation factors as small as 0.04%.

Thus far nothing has been said about the width of the phase-plate groove (or
radius of the depression). The undiffracted wave in the plane-wave approximation
is focused on the center of the plate, but in the real case of a beam of finite width
diffraction effects will broaden the focal spot to a finite size. The groove must be
large enough to accommodate a significant fraction of the focal spot in order to
retain most of the local-oscillator strength. However, the passband in wave-number
space shrinks as the groove becomes wider. The search for an optimal groove width
must be undertaken in the framework of a diffraction analysis. This will be the object
of the next section.

It is clear at this point that if the "undiffracted" field EP contains
large-amplitude, short-wavelength components generated by scattering from the bulk
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plasma density, the spatial dependence of the measured signal will be determined
both by E, and by <o, in a nonlinear fashion in general, and discriminating between
the two will be difficult. One can look upon this also as a diffraction problem: when
large phase variations exist, a finite fraction of the power will be diffracted out of the
phase plate groove, and additional, unwanted interference signals will result. Under
such conditions, the groove width should be broadened to accommodate the entire fo-
cal spot, including those components. Thus, linearity will be preserved at the expense
of a smaller passband.

2.11 Response Properties of the Phase-Contrast Technique

For a complete description of a spatial-filtering process the geometrical-optics ap-
proximation is not sufficient. Instead one must adopt the formalism of diffraction
theory, which was introduced in §2.5. In general, a phase-contrast imaging system
will include an aperture stop, a phase object, a focusing optic, a phase plate, imaging
optics, and a detector located in the image plane. Our objective is to derive the
field distribution in the image plane. We assume that the field distribution behind
the aperture stop is known and, in addition, that no appreciable diffraction occurs
between the aperture and the phase object. This assumption was justified in §2.5 and
was used throughout §§2.5-2.8. Also, all optics and apertures beside the stop will be
taken to be much wider than the cross section of the beam and will be considered
infinitely wide. Finally, the phase shift ,3 impressed on the incident wave by the
plasma is assumed to be much smaller than 1 radian.

We shall use a scalar notation, as no depolarization effects are included in the
analysis. A general approach to this type of problem involves successive applications
of the diffraction integral [Eq. (2.55)]. In addition, the effect of each focusing optic
(which we assume to be a lens for simplicity, although the same considerations would
apply to a concave mirror) is described by the phase shift given by Eq. (C.16).
However, the peculiar characteristics of the system under exam can greatly simplify
the problem. In particular, we can make use of the Fourier-transforming properties
of lenses. If we denote the frequency spectrum of the field directly in front of the lens
as Ei(x±;w,), the field in the focal plane will be given by'0 3 [Eq. (C.17)]

E _(x; w,) = exp - (F + ' At , w ), (2.105)
27rFc C 2F c F

where F is the focal length and A, is the 2D spatial Fourier transform of El. Hence,
the field distribution in the focal plane is proportional to the Fourier transform of
the field in front of the lens. The proportionality factor contains a phase, which is a
function of xI or, equivalently, of kI, through the relation

k, = W-x±. (2.106)

This result suggests that the problem we are considering is best tackled in wave-
number space. To this end, we need two more ingredients.
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Firstly, the wave-number-space equivalent of the diffraction integral is given by
Eq. (2.54), which we rewrite as

F 2 2 1/2
A(k±,w, ; z) =A(k±,w ,;z') exp i (- ki (z-z') . (2.107)

The effect of propagation is thus simply a k1 -dependent multiplicative factor.
Secondly, imaging by a single lens is described in the paraxial approximation by

the following equation:103

E(Mx±, zim; w,)

1 9,m m2x2 X 2
- exp - (zim Ub- Zo + _ I I - ] E(xi, zbj; w,), (2.108)

MC 2zim 2Zobsj

where M is the magnification of the system, and the subscripts iM and obj denote
respectively the image and object coordinates, with the lens at z = 0. This equation
can be derived by means of successive applications of the diffraction integral [Eq.
(2.59)], with the inclusion of the phase shift given by Eq. (C.16). The phase term
in Eq. (2.108) represents the accumulated phase shift along the path of the principal
ray in the paraxial approximation. This path is represented by the line connecting
the point (x±, zboj) with its corresponding point at the image, (Mx±, zim), and in-
tersecting the lens on the optical axis (see Fig. 2.16). When an image is formed by
a series of several optical components, the total path length will be the sum of the
individual ones joining each intermediate image with the following one. It can be
shown by direct calculation that the general expression

E(Mx±, zim; w.) = exp - zim - Zob1 ± (M - 1)2X E(x 1 , zobj; ws)
2(zim - Zobi)

(2.109)
applies, where M now refers to the global magnification of the system, and Zim - Zobj
is the total distance between object and image along the eptical axis. Equation
(2.109) permits to derive the field distribution at the detector if the field at the
object is known: a detailed knowledge of the imaging system is thus unnecessary.
The frequency Fourier transform of Eq. (2.109) is

1
E(Mxi,zimt) = E(xi, zobj, t - td), (2.110)

where

td= Zim - Zobj + 1 (2.111)
C 2(zim - Zobj)

The problem can now be reduced to the following sequence of steps. The k,
distribution behind the aperture stop is obtained by taking the Fourier transform
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Fig. 2.16 One-lens imaging geometry. The diagonal line is the principal ray.

A, of the complete scattered field, which as usual is taken to be E, = E,(1 + ib) in
the aperture and zero elsewhere. The propagption from the aperture to the focusing
lens is decribed by Eq. (2.107); the passage through the lens is described by Eq.
(2.105), from which the spatial distribution in the focal plane can be calculated.
This distribution must then be multiplied by an appropriate transfer function that
describes the effect of the phase plate. The next step is a virtual propagation of the
resulting field through the lens back to the object plane. It is immediately clear from
the structure of Eqs. (2.105) and (2.107) that the phase factors introduced by the
forward propagation and by the passage through the lens are exactly canceled by the
second passage and by the backward propagation. Finally, the imaging process, i.e.,
the propagation from the object to the detector, is described by Eqs. (2.109) and
(2.110).

Therefore the whole problem reduces to a simple multiplication of the original
spectrum by the transfer function of the phase plate, followed by an inverse Fourier
transform and application of Eq. (2.110) to obtain the field distribution in the detec-
tion plane. The entire operation can thus be carried out in real space, replacing the
multiplication by the transfer function with a convolution integral.

The aperture will be taken to be a circle of radius a. Assuming that the incident
wave is monochromatic, and that any large phase shifts from the bulk plasma density
are spatially uniform, we can write E,(x, t) = Evo(x±) x exp [ikoz - iwot + i (b(t))]
[1 +i(x, t)]; we take Epo to be a real quantity. (The case of a diverging or converging
wave, with Epo complex, can be treated by attributing the divergence or convergence
to a fictitious lens and moving the focal and image planes accordingly). Denoting the
transfer function by 'f(ki), and its inverse Fourier transform by T(x±), we can write
the field distribution at the detection plane as follows:

Eim,(Mx±, t) = yeikoZobi wo(t-td)+(P(t-td)J To [P.Epo(1 + #)]}(x±, t - td),

(2.112)
where td is given by Eq. (2.111). The convolution operation is defined by the relation
(f o g)(xj) f f(x' )g(x± - x'I)d 2 XI, and Pa(|xil) is the pupil function of the
aperture, defined as

) if Jyj <; a (2.113)
1. 0 otherwise.

The detector signal is proportional to the power flux in the detection plane,
averaged over a time interval large with respect to 1/wo but small with respect to
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1/w (taking w to be at the high end of the fluctuation spectrum, and larger than the
bandwidth of Epo). The flux can then be written

E(Mxw, t) = C [Eim(Mxi, t)Ei*m(Mx±, t)1. (2.114)
87r

The dependence of td on x1 is in general an undesirable effect. Fortunately, that.
dependence can almost invariably be neglected. The condition for this to be true is

w (M - 1) 2W <
C (im-Z <J 1, (2.115)c 2(zim - Zobj)

where w is a characteristic frequency of the fluctuation spectrum and wo is the half-
width of the interaction region. This condition will be assumed henceforth and the
time delay will be assumed to be a constant.

We can now substitute Eq. (2.112) in Eq. (2.114), obtaining

E (Mxw, t) = 8  2 IT o [P.Eo(1 + ij)1 2 (x, t - td), (2.116)

Expanding Eq. (2.116) to first order in W, we can write C = E6c + , where

Edc(Mx±, t) = 87rM 2 IT o (POE1o)|2 (x, t _ td) (2.117)

and

E(Mx, t) = 4 r, 1 Im{[T o (PEpo)] [T o (P.Epo) (*(xw, t - td). (2.118)

We consider the one-dimensional (ID) case first. We take the coordinate of inter-
est to be x, so that the transfer function is independent of y. The phase plate contains
a central strip of width 2v and power transmissivity (or reflectivity, for a reflective
plate) p that advances or retards the phase by ir/2, while the surrounding area has
no effect on the fields [see Fig. 2.17(a)]. Taking the case of phase advancement for
definiteness, the amplitude transfer function is

T(XF) = 1 - P(X) + i fP(X), (21)

with the pupil function P defined as in Eq. (2.113). Using the correspondence
between focal-plane coordinates and wave numbers expressed by Eq. (2.106), and
approximating w, with wo, we can write the transfer function directly in the reciprocal
space

1(k_) =- + Pk& (k,)(iF - 1), (2.120)
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(a) ..4r(b) -

Fig. 2.17 Reflective phase plate, (a) one-dimensional and (b) two-dimensional.
I

where k, = kov/F. The equivalent transfer function for the two-dimensional (2D)
case, with the strip replaced by a circular depression of radius v [see Fig. 2.17(b)], is
simply

'p'(k = 1 + Pk, (ki|)(iVi - 1). (2.121)

The inverse Fourier transform of the transfer function can be written

T(xi) = S(x±) + (i- - 1)Pk (x±), (2.122)

where Pk, is a real function given by

, (x±) = sin(kcx)6(y) (2.123)

for the 1D case, and by

1 k~
=( = lxi JI(k lxiI) (2.124)

for the 2D case.
The expressions for the dc signal Edc and for the fluctuating signal E can be

written in more explicit form by substituting Eq. (2.122) in Eqs. (2.117) and (2.118).
We obtain, respectively,

dc(MXI, t) = 87rM 2 I LPaEo - P 0 (PaEpo) + p [Pi 0 ( PEpo) , (2.125)

and

E(Mx 1 , t)= 4M 2 Im{ [PaEGo +(i - 1)Pk o (PaEpo)

x [PaEo + (-il - 1)Pk, o (P.Epo )}

= cM2 VPEpo { Pk[ o (P.Epo)J - [Ac o (Pa Epo )]

(2.126)
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where it is now implicit that the right-hand sides are object, rather than image,
quantities and must thus be calculated at xi and at t - td.

(a) Plane Wave and Infinite Aperture

We begin with a highly idealized situation and then gradually add increasing
levels of complication, to better illustrate the intuitive aspects of the phase-contrast
technique.

As a first approximation, let us assume that the incident wave is a plane wave,
i.e., that EVo(xw) = Epo is a constant; and that the aperture is infinite, i.e., that Pa
can be replaced by 1. In Eq. (2.125) the first term in square brackets is equal to zero,
and we find

cE29
Edc(Mx8i, = P81rM 2 . (2.127)

Similarly, Eq. (2.126) becomes

E(Mx±, t) = fp41rM2 ( - A, o . (2.128)

The spatial Fourier transform of this equation takes a particularly simple form:

£(k±/M; 2) = T(k±)@(k±; t - td), (2.129)

r
where we have defined a transfer function given by

T(k) = p cE20/(47r) if Ik kc (2.130)
0 otherwise

in the 1D case, and by

T-(k-L) = ( cE2O/(47r) if |k k (2.131)
0 otherwise

in the 2D case.
Hence, in this approximation, the phase-contrast technique acts as a highpass

spatial filter for k, or kI (see Fig. 2.18). The cutoff value k, can be arbitrarily
small. If it is chosen small enough to include the whole fluctuation spectrum in the
passband, we recover the simple result of §2.10 [Eq. (2.104). Since in this limit the
transfer function is independent of kI, we can say that this is an image-preserving
process: not only is the phase information converted into a measurable amplitude
variation, but this conversion is also local, i.e., the amplitude at each point in the
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Fig. 2.18 Response function of phase contrast in the plane-wave approximation (kewo/2 = 1.5):

(a) ID, (b) 2D.

detection plane is proportional to the phase at the corresponding point in the obiect
plane.

As we move to more realistic situations, one of our principal aims will be to
preserve this imaging property to a good approximation, i.e., to retain a nearly flat
transfer function.

(b) Gaussian Beam and Infinite Aperture

The simplified example of the infinite plane wave will provide guidance in more
complicated situations. At the next level of approximation we can replace the plane
wave with a Gaussian distribution, but we still assume an infinite aperture. The
Gaussian beam is supposed collimated, so that its distribution at the aperture can
be approximated by the distribution at the waist, given by Eq. (2.60):

(87r 1/2 (2 12
Ep0(x )= -P - -exp 2. (2.132)

(If the beam is not collimated, i.e., if the distance from the waist to the object plane
is of the order of a Rayleigh length, all the considerations to follow are still valid,
provided that the phase plate is located at the beam waist created by the lens, rather
than in the focal plane; Eq. (2.132) retains its validity, but wo must then be replaced
by the half-width in the object plane, i.e., wo(1+(,2) 1 2; finally, the image geometry
must also include a fictitious lens that accounts for the beam's divergence.) Here we
shall only study the fluctuating component of the signal, deferring an analysis of the
dc component to the next section.

The signal & is no longer obtained from <3 through a simple convolution. The im-
plication of this is that a transfer function in k, space cannot be defined. Physically,
this is a consequence of the loss of the translational ;3ymmetry of the system in going
from an infinite plane wave to a Gaussian beam, which is by necessity localized in a
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specific region of space. Thus even if b is a pure spatial sine function, the measured
signal will not be sinusoidal, i.e., its spectrum will exhibit some degree of broadening
around the k± value of 0. It is still meaningful, however, to ask what the signal
level is-for different sinusoidal inputs. An inspection of Eq. (2.126) shows that the
signal E is the difference of two terms, one pronortional to b and the other obtained
from a convolution involving ;. The plane-wa,.e case [Eq. (2.128)] suggests that the
first term will dominate at wave numbers k1 > k,, whereas the two terms will be 9
comparable at low kL. If we focus on the high-k± case and on the first term only, we
still cannot define a transfer function because the proportionality factor is a function
of xI. However, by considering the weighted signal

- (MXiL)Pa(I-jj)
'(MxI) = W(x) (2.133)

where we define the weighting function W as

Epo(xi) [P., o (P.Eo)] (x,)
W (x) = ,(2.134)

Epo(O) [P, 0 (P.Epo)] (0)

we obtain a quantity that at high k1 is approximately 1 -oportional to b (with, now,
a constant coefficient of proportionality).

We can now define an approximate transfer function1 3 1 by simply studying the
weighted signal E' at the center of the beam, where the dc signal is maximum. We
take the input to be

(xI, t) = OK (t) cos(K - x 1 + Oo), (2.135)

and by analogy with Eq. (2.129) we can write

8'(0, t) = C(0, t) = T(K)@K (t - td) cos t9. (2.136)

This expression is always formally permissible, but T depends on 79 in general. A
sufficient condition for T to be independent of do is that the beam, the aperture,
and the filter be spatially symmetric. This will be shown rigorously in the general
analysis of §2.13.

After the transfer function has been calculated, it can be used in the approximate
expression

9'(Mx1 , t) ~ T(K)Pa(xjj)@K(t - td) cos(K -x± + no), (2.137)

and thus

E(Mx±, t) ~ W(x±)T(K)Pa(x±I )0jK(t - td) cos(K - x 1 + t9o). (2.138)
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Fig. 2.19 Phase-contrast response function with Gaussian beam and infinite aperture (kewo/2 =

1.5): (a) ID, (b) 2D.

We now replace the pupil function Pa with 1 in Eq. (2.126). Comparing Eq.
(2.136) with Eq. (2.126) we find

T(K) = Vp_ EM0 ( P) ( [ k p

{ P , 0 [poo (6+elo* + 6(2e-013

- o ~ .)kL0 (2.139)2 cos9 
k o

where 6±(k±) = 6(k± T K), Pke is understood to have the argument k, in the 1D
case and IkiL in the 2D case, and use has been made of the relation [f 0 g*]xj= =

(1/27r) 2 [f o g*k,=. Calculating the Fourier transform of Eq. (2.132) yields

1/2 
w k2Epo(k±) = 47r - woexp(-- ex, (2.140)

and substituting Eq. (2.140) in Eq. (2.139) we find

T()(K) = 2 puo(0) erf Q - -erf(Q + K') - -erf(Q - K') (2.141)

for the ID case, where we have introduced the dimensionless quantities Q = kcwo/2
and K' = woK/2, and the dc power flux at the center of the image in the absence

of a phase plate, uo(0) = 2P/(r0M 2 w). Here, erf(y) = (2//ir) f0 e- 2 d is the error
function. Similarly, the result for the 2D case is

T 2 ,(K) = 2 /puo(0) 1 - e Q - 2e-K12  e-0Io(2K' )d] , (2.142)

where Io is the modified Bessel function. These transfer functions are plotted in Fig.
2.19.
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As these expressions show, the transfer function is zero for K = 0 and the phase-
contrast technique acts as a highpass filter as in the plane-wave case. This is a general
property of internal-reference interferometry: the lack of an external phase reference
makes it impossible to measure the absolute phase shift (the K = 0 component). Also,
the transfer function has the symmetry property T(K) = T(-K): this is a general
property of optical processing that does not depend on the symmetry of either the
filter or the optical aperture. Rather, the symmetry stems from the impossibility of
defining a direction of propagation in the spatial domain, or, mathematically, from
the fact that the input function [Eq. (2.135)] is real. This will be proven in §2.13.

Finally, note that the asymptotic value of T for K - ±oo is reduced by a factor
(erf Q) in the 1D case, and by a factor (1 -e-Q) in the 2D case, from the plane-wave
value.

If we now study in particular the 1D case described by Eq. (2.141), we see that
the experimental choice of the k, parameter must strike a compromise between the
two conflicting requirements of ensuring a smooth transfer function over a wide range
of wave numbers and of obtaining a strong overall signal. The first requirement is
met by lowering Q, i.e., by reducing the cutoff wave number; however, an arbitrary
reduction eventually eliminates a large fraction of the LO power, conflicting with the
second requirement. There is of course no rigorous quantitative criterion for deciding
the "best" Q: this experimental choice must rely to some degree on qualitative judg-
ment. Our next level of approximation will constitute a better framework for these
considerations.

(c) Gaussian Beam and Finite Aperture

We now carry our approximation hierarchy one step further by taking into ac-
count the diffraction from the aperture stop. The Gaussian field distribution is re-
placed now by a truncated Gaussian. Substituting Eqs. (2.132), (2.135), (2.123), and
(2.124) in Eq. (2.126), which now includes the pupil function Pa, and comparing with
Eq. (2.136), we find

+sin~k~x)2 /W 2[
7 1)(K) = 2Vuo(0 ) +j k - o [I - cos(Kox)]dx (2.143)

for the ID case, and

T 2)(K) = 2V/uo(0)0 kee~/w J(ker)[1 - Jo(Kr)]dr (2.144)

for the 2D case. The symmetry property T(K) = T(-K) is still satisfied. It is
interesting to note that the asymptotic values for K -+ Do are

T(')(oo) = 2Vuo(0) a sin(kz) e- _ d (2.145)]__a rx
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Fig. 2.20 Phase-contrast response function for varying a.

and 'a

T(2 (oo) = 2 Vuo(0)J ke-r2 / J(kcr)dr, (2.146)

which, depending on the value of of a, can be smaller or larger than the corresponding
values in the limit a -+ oo.

We shall study in detail only the ID case. In experimental practice, the aperture
radius a is usually fixed but one can choose both wo and k,. The transfer function
should then be studied by varying the two dimensionless parameters Q = kcwo/2 and
a = wo/a. In particular, increasing a causes the beam profile to depart from a trun-
cated Gaussian and approach a truncated plane wave. The focal-plane distribution
of a truncated plane wave is the well-known Airy pattern, 3 2 which is characterized
by high-K oscillations. Figure 2.20 shows a set of transfer functions for constant Q
(Q = 1.5) and different values of a: there is an evident loss of smoothness in K space
with increasing a. Also, the overall respoxisivity decreases with increasing a: this ef-
fect is due to the decrease in ke, necessary to keep Q constant while wo is increasing,
and the consequent loss of LO power.

Figure 2.20 is somehat deceptive, as it is based upon the assumption that the
power flux at the center, uo(0), is kept fixed. To do so while a increases requires an
increase in the overall power. The usable power, however, is finite and will have a
specific upper limit for each given laser system. If the power is fixed, uo(0) acquires
a 1/a 2 dependence, and the reduction in responsivity for increasing a is much more
prononunced (see Fig. 2.21). In practice, the transition from the scenario of Fig. 2.20
to that of Fig. 2.21 occurs when a reaches a critical value for which all the available
power can be used without saturating the detectors.

Both Figs. 2.20 and 2.21 appear to suggest that a should be as small as possible.
In reality, as the width of the beam becomes much smaller than the aperture diameter,
spatial uniformity is lost. This effect lies outside the present approximation scheme,
which considers only the response at the center. However, it is clearly an important
consideration; in fact, the existence of a certain degree of spatial uniformity is an
essential condition for the validity of this approximation. In general, a value of a ~ 1
is a good compromise: the energy density at the edge of the aperture is e- 2 times that

91



Fig 221Phsecotrstreposefuctonfovrynga Tot-al rowerfxd)

ID(= O.g

at the center, and Fig. 2.20 shows that the diffraction effects (high-K oscillations)
are quite small.

From a visual analysis of T('O for various values of Q, for a = 1 (Fig. 2.22), we
conclude that values in the range 1.4 ,< Q ,< 1.8 all produce an acceptable compromise
between the requirements of smoothness (good relative responsivity at low K) and
of a good overall signal level. Taking the value Q =1.5 for reference, we find that at
K = kc the transfer function is equal to 0.51, and that in the region K > 27r/wo the
transfer function varies by less than 1%.

If the wave-number spectrum of the phase 0 occupies mostly the region above
kF, the transfer function can be approximated by a constant and we can write

a(Mx, 0, t) ~ W(X, 0)Pa(X)T(OO)(X, 0, t - t), (2.147)

thus recovering the direct proportionality between signal and input phase that was
obtained by the simplified treatment of 62.10 [Eq. (2.104)]. 

(d) Response Properties: an Exact Treatment
To conclude the analysis of the response properties of phase contrast, it is nec-

essary to explore the behavior of the signal at locations other than the center of the
image and to tackle the issue of spatial variation. As was mentioned before, a true
transfer function does not in fact exist, and an input sinusoidal function will be some-
what distorted in the measured signal, as its spectrum is broadened. Substituting
Eqs. (2.132), (2.123), (2.124), (2.126), and (2.134) in Eq. (2.133), we can write in
the iD case

(Mx, 0, t) = 2P(x) P,(x) C() (x, 0, t - ti)

obtjie(x', 0, t - td) Kf(x, x')dx' , (2.148)

J_ L
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Fig. 2.22 Phase-contrast response function for varying Q.

where we have assumed for simplicity that the measurement. is performed only at,
y = 0, and where

/+" sin (k-'(/w- x'))

Cj)) =ir(x - xd) (2.149)
7r (:I: - -r')

Equation (2.148) has the form of a Fredholm integral equation with kernel

sin[k-(.x - x')e (-
7(7(x, -') =) C( .(X) (2.150)

The lack of translational symmetry and, as a consequence, the absence of a true
transfer function are highlighted by the fact that the kernel is not simply a function
of (x - 3').

The corresponding expression in the 2D case is

9'(Mx1 , t) = 2Pa(x±I) [p uO(0) C( 2 )(0) [V(x 1 , t - td)

S x' t - ta) /C 2 ) (X, x' )d2x', (2.151)

where

k2 [21 J .1 (ke I +.x" - 2xx x'cos $
(2 ) = k 1'2 1,U'2 L - X'" I

27r 10 .1 k( y 2 + x', - 2x1x'l cos .

(2.152)
The integral over $ is calculated in Appendix E, and using Eq. (E.8) we can write

k 2 x2 L)(2
= .~ 9 I2[3:.11 (.x1 ).JO(xI) -. x xiJl(x' ),Io(3:iL)] d3l (2.153)

10 X2 -x t
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The kernel is

(2) ,X k,_ Ji(kclx± - x'i1) Pa(Ix'lI)e~"/ /W

kC (xX xx)C= . (2.154)27r kejx:_ - x'1 CM ( x-L|)

General analytical solutions exist for Fredholm equations.1 4 8 The inversion is
performed by calculating an integral over the aperture area. The integrand is the
product of the measured signal and of a resolvent function, expressed in the form
of an infinite sum. If the sum converges fairly quickly, it is possible in principle
to calculate the phase # numerically from the signal measured at several points in
the detection plane. In practice, this procedure would not represent a substantial
improvement over the simpler methods based on the approximate transfer function
unless many measurements were available, e.g., from a large detector array. Also, the
inversion is likely to be noisy and slowly converging for the low-k 1 components, since
the responsivity is low at low kL. Therefore it would be necessary to accompany the
inversion with a form of numerical highpass filtering.

For our present purposes, the usefulness of these complete equations lies in de-
termining the goodness of the transfer-function approximation and the amount of
spectral broadening in the case of a sinusoidal input. We limit our analysis to the
1D case with the set of parameters a = 1, Q = 1.5 (see Fig. 2.23). It is easy to see
that in the case of a sinusoidal input with K > k, [Fig. 2.23(a)] the exact expression
[Eq. (2.148)] is closely approximated by Eq. (2.137), with the transfer function given
by Eq. (2.143); and both are faithful reproductions of the input. The approximation
becomes poor for K < k, [Fig. 2.23(b)]. Similarly, since the broadening in wave-
number space is of order ir/wo, the relative broadening 6K/K decreases rapidly for
increasing K, as shown in Fig. 2.24.
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Fig. 2.23 Comparison of a sample sinusoidal fi function (dotted line), of the corresponding phase-

contrast signal calculated by means of the approximate response function (dashed line), and of the

exact phase-contrast signal calculated with a convolution integral (solid line), for (a) kwo/2 = 5, (b)

kwo/2 = 1, Here, Q=1.5 and a=1.

2.12 Signal-to-Noise Ratio

In the case of experiments performed with CO2 lasers, which emit in the intermediate-
infrared spectrum, detection is generally performed with a photon detector of the
photoconductive or photovoltaic type. The typical detector-preamplifier circuit is
shown in Fig. 2.25.

In a photoconductive detector, incident photons produce free charge carriers,
which change the electrical conductivity of the crystal.' 9 This change in turn can be
measured by an associated electronic circuit. The detector can be operated in current
mode (i.e., at nearly constant voltage) by choosing a load resistance much smaller
than the detector resistance, or in voltage mode (at constant current): the latter is the
more common arrangement for photoconductors in the ~ 10 pim wavelength range,
owing to their low impedance (typically in the 50-200 Q range). Our considerations
in this section apply to n-type materials, where electrons are the majority carriers.
These include in particular the HgCdTe and HgMnTe alloys when operated at liquid-
nitrogen temperature (77 K).'"I The characteristic response time in a photoconductor
is the average free charge-carrier lifetime rc.

In the photovoltaic process, infrared photons are absorbed near a p-n junction,
forming electron-hole pairs that shift the Fermi levels and generate an externally
detectable voltage. Photovoltaic detectors too can be operated in voltage or current
mode, depending on the load impedance. The mechanisms affecting the response time
are more complex than in a photoconductor. Fundamental limits are set by the transit
time through the depletion layer, by the characteristic diffusion time, and by the RC
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Fig. 2.24 Spectrum of the phase-contrast signal generated by a sinusoidal input, for three different

wave numbers. The broadening is caused by diffraction effects.

constant of the crystal-preamplifier system; the last limit is usually the most stringent,
but can generally be tailored for very high-frequency applications. Responses in excess
of 1 GHz have been achieved, whereas photoconductors are usually limited to a few
MHz. Common techniques used to lower the RC constant include choosing a low input
impedance for the preamplifier and applying a reverse bias to increase the width (and
thus reduce the capacitance) of the depletion layer. These procedures increase the
bandwidth but generally reduce the signal-to-noise ratio and the quantum efficiency.

We assume here that in all cases the bandwidth of the input power flux is well
within the response bandwidth of the detector. We also assume that we are oper-
ating in the small-signal regime. This applies to the vast majority of heterodyne
configurations in which the dc power flux is much larger than the ac component to
be measured. We define the voltage responsivity R as follows:

V8= --RAd, (2.155)

where v. is the signal voltage, Ad is the detector area, and C is the flux to be measured.
The responsivity, which has dimensions of voltage/power, is given by15 1

71 Rd Tc
R = Vo (2.156)

hw0 R L + Rd N

for an n-type photoconductive detector, and by

enRdRL
3 woRd±RL (2.157)hwo Rd + R L
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Fig. 2.25 Detector-preamplifier circuit.

for a photovoltaic detector. Here, e is the (positive) elementary charge, 'q is the

quantum efficiency, hwo is the photon nergy, Rd is the dynamic resistance of the

detector, RL is the load resistance, VB is the bias voltage, and N is the total number
of free charges in the unilluminated crystal.

We now specialize our remarks to the phase-contrast case with a one-dimensional

phase plate and assume that the measurement is being carried out with a linear

detector array located at y = 0. If we consider only the signal components at k, > kc,
the ac flux is given approximately by Eq. (2.147); substituting for the ac flux in Eq.
(2.155) we obtain for the signal voltage

v,(x) = R AdT(OO)W(X)Pa(X)#(X), (2.158)

where we have removed the time dependence for simplicity.
Several forms of noise are present in photon detectors. They are usually classified

according to their origin; thus, one distinguishes between intrinsic noise generated in
a dark crystal lattice, photon noise due to background blackbody radiation, and

photon noise due to the dc component in a heterodyne system. To these must be
added any external noise from the associated electronics, which is generally dominated
by preamplifier noise.

Various forms of intrinsic noise exist. The so-called "1/f", or modulation noise,
is observed on contacts and crystal surfaces and is generally negligible at frequencies
above 100 Hz in a well-built detector.1 5 2 The dominant forms of noise in a pho-

toconductor are hermal Johnson noise and thermal generation and T-ecombination
(G-R) noise. The latter is usually negligible in a photovoltaic detector, whereas it is

generally the dominant one in photoconductive elements.
Fluctuations in the background blackbody radiation cause additional noise,

which can be greatly reduced, however, by limiting the field of view of the detec-
tor and, in a cooled system, by placing a cold, narrow bandpass filter on the viewing
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in a photoconductor this expression must be multiplied by a factor of 2 owing to
recombination effects.1 3 Substituting Eq. (2.157) in Ea. (2.162), and introducing
the dc output voltage Vdc = !RAdEad, we obtain for a photovoltaic element

V2LO = 2evd,(Af)RdRL/(Rd + RL). (2.163)

We can now use Eqs. (2.158), (2.159), and (2.162) to write the signal-to-noise
ratio:

S _V3 Ad W()__)2 *2 -
N = = - -[T(oo)W(x)?(x)]2 [1/D + 2Fdadc(x)hwo/]- , (2.164)

where Fd is a correction factor (Fd = 1 for a photovoltaic element, Fd = 2 for a

photoconductor).
The dc power flux can be calculated from Eq. (2.125), using Eqs. (2.132) and

(2.123); a numerical calculation for the case a = wo and k, = 3/wo (see §2.11)
shows that Edc(x) can be approximated by puo(x) = puo(0)exp(-2x 2 /w2) with an

accuracy of 5% throughout the width of the beam, provided p > 0.03. Similarly,
W(x) [Eq. (2.134)] is approximated by exp(-2x2 /w ) = uo(x)/uo(0) with a dis-
crepancy of less than 5%. Finally, Eqs. (2.145) and (2.149) allow us to write T(oo)
= 2,,/uo(0) C0)(0). Therefore we can write Eq. (2.164) as

S _4Ad ],2  *)-
N f C('(0)uo(x)P(x) [1/(pD*2 ) + 2Fduo(x)hwo/7]. (2.165)

To calculate the minimum detectable phase shift, we set S/N = 1 and find

1 { Per 1/2 W 1/ 2

n(X)=C() (Fd + 1/ WoAf (2.166)
C () 0) PPd (X) Pd(X)

where Pd = AduO(X, 0) is the total power incident on the detector element when

p = 1, P, is a critical power given by

P = 77Ad (2.167)
2hwoD. 2

and

WO = h(2.168)
271

is a parameter with the dimensions of an energy.

When the wave number approaches the critical value kc, these expressions are no
longer valid; the signal-to-noise ratio becomes poorer and (min increases. As a first
approximation, one can simply multiply Eq. (2.166) by T(oo)/T(k).
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We can now recognize two opposite limits. If pPd > Pcr/Fd, shot noise dom-
inates. The signal-to-noise ratio is independent of p and the minimum detectable
phase decreases with increasing power as 1/P/i. Therefore the power should be as
large as possible, i.e., the detector should be operated only slightly below its satu-
ration point, Pat. Under these conditions, when the performance of the detector is
limited by saturation, one can write Pd = Paat/p, and the minimum detectable phase
becomes in fact proportional to l. Thus, in practice, it is beneficial to reduce the
p factor to increase the usable power. When the p factor reaches the critical value
that renders Psat/p equal to the maximum power available from the system, a further
reduction in p does not result in any further changes in (min. In general it is clearly
desirable to use a detector with a high saturation limit; since this is specified as a
flux, a large-area detector is better than a small-area one.

In the opposite limit, when pPd < Pcr/F, the intrinsic detector and preampli-
fier noise dominates and bmin cc 1/(PdajP). In the saturation-limited regime, this
dependence becomes in fact pmin oc V, as in the previous case. In this situation,
however, when the critical p is reached, a further reduction of its value is actually
deleterious because of the 1//p dependence. Thus, the optimal value of p is the
one that produces marginal saturation when all the available power is used without
attenuation.

Since the two limits just discussed also depend on the power, a general analysis
must use the full expression given by Eq. (2.166). We shall study here the relevant set
of parameters for the experimental setup described in Chapter 3. With a photovoltaic
detector used in current mode, Fd = I and the detectivity is given by Eq. (2.161).
Substituting Eq. (2.161) in Eq. (2.167), the critical power can be written as

= 2P,(Td + FTpa)hwo (2.169)
71e 2RL

and is thus an intrinsic parameter independent of the detector area.
We shall now study Eq. (2.166) at the 10.6 prm wavelength, with the parameters

RL = 50 Q, Td = 77 K, Tpa = 300 K, NF = 2.8 dB, and t = 0.02. A bandwidth
Af = 1 MHz is assumed. Also, with the parameters wo = a and k, = 3/wo, Eq.
(2.149) gives C)(0) = 0.95. Equation (2.161) gives D* = 2.6 x 108 Hz cmI/ 2 /W.
The minimum detectable phase shift, given by Eq. (2.166), is plotted as a function
of Pd in Fig. 2.26. Each curve in the figure corresponds to a different p value. We
examine here four values: p = 1, for a reflectively coated phase-plate groove, and p =
0.36, 0.17, 0.027, corresponding to the reflectivities of three materials commonly used
in this region of the spectrum, respectively germanium (Ge), zinc selenide (ZnSe),
and barium fluoride (BaF 2). Each of the curves is drawn up to the saturation limit
pPd = Psat or to the maximum available power Pmax, whichever is smaller. Here, we
assume a saturation flux of 1 W/cm2 and an area Ad = 1.6 x 10- cm 2 , hence Psat =
1.6 mW. Also, the available power for the central element in the array is 8.4 mW. For
these parameters, Fig. 2.26 shows that the optimum substrate for the phase-plate
groove is ZnSe. The power must be attenuated by ~ 11% (from 8.4 mW to 7.5 mW),
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Fig. 2.26 Minimum detectable phase shift vs. power incident on a detector element.

and the minimum measurable phase shift is @min = 5 x 10-5 rad. The noise level is
v, = 1.4 IV rms.

2.13 A Comparative Analysis of Internal-Reference Techniques

The formalism developed in §2.11 can easily be applied to techniques other than
phase contrast. In this section we shall study the response properties of alternative
techniques and compare them with those of phase contrast. Firstly, we shall explore
some imaging configurations that differ from phase contrast only in the nature of
the spatial filter that is used in the focal plane. The analysis will be limited to one-
dimensional configurations and to the case of a collimated Gaussian beam, ignoring
the effects of aperture diffraction (i.e., in the limit a -4 oo). The direction of interest
is x and detection is assumed to occur at y = 0. To better illustrate the properties
of the different techniques, we take a rather general type of filter, characterized by a
central strip of transmissivity p, a negative k, side of transmissivity p_, and a positive
k, side of transmissivity p+. In addition, the negative and positive sides introduce
phase shifts a and 3, respectively (see Fig. 2.27). The transfer function can now be
written as follows:

T(k±-) = V ~ei"H(-k, - kc) + iJ-7etOH(k. - kc) + xfpPk,(k,), (2.170)

where H(x) is the Heaviside function [H(x) = 1 for x > 0, H(x) = 0 for x < 0],
and Pk,(kx) is the pupil function defined by Eq. (2.113). A number of well-known
techniques, including schlieren and phase contrast, belong to this general class. A
degenerate case is the dark ground method, for which p+ = p- = 1, a = #0 = 0, and
p = 0; i.e., the zeroth order is removed entirely, while the positive and negative orders
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Fig. 2.27 General reflective spatial filter.

are transmitted unaltered. This technique must be examined separately since, as we
shall soon see, it is radically different from the others.

In addition, we include in this analysis a nonimaging technique that was discussed
in §2.9, called scintillation. This is an intermediate-field measurement performed
without any filtering, which relies instead on amplitude variations generated by the
free propagation of the beam after its interaction with the plasma (see Fig. 2.11).
The Rytov phase is given by the Hermitian component of Eq. (2.83); by direct
comparison with the near-field anti-Hermitian phase given by Eq. (2.84), and referring
to Eq. (2.71), we can formally describe the scintillation technique as equivalent to a
measurement of the phase characterized by the transfer function

T(ki) = 2uo(0) sin [L(z - z).
[2k0 Ip1

(2.171)

One common feature of all internal-reference interferometers is that the transfer
function is zero at k1 = 0. This can be understood intuitively by noting that the
absence of an external phase reference precludes the determination of the absolute
phase shift; that is, only differences in the path lengths between different chords
within the beam can be measured. The k1 = 0 component represents precisely the
absolute phase shift.

Weisen'31 put these observations on a more quantitative footing by employing
general physical arguments based solely on the conservation of energy. He defined a
"maximum homodyning efficiency", which for a sinusoidal input can be seen as an up-
per bound on the transfer function. For a Gaussian beam, the maximum homodyning
efficiency in the one-dimensional case is [1 - exp(-k2w2/4)].

At the conclusion of this section, all the above techniques will be compared with
a heterodyne, Mach-Zehnder interferometer (Fig. 2.12); it was shown in §2.9 that
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this configuration, if the path difference is adjusted to keep the nonfluctuating phase
shift at 7r/2, yields a "perfect" transfer function, i.e., one that is independent of ku..

(a) Central Dark Ground

Seeing dark ground as a limiting case of phase contrast with p = 0, we find
that the approximate transfer function given by Eq. (2.143) is identically zero. That
equation was derived from a first-order expansion in o. We conclude that the lowest-
order signal in the dark-ground case is proportional to @2. This is, of course, a
consequence of the elimination of the local oscillator (LO). From Eq. (2.116), setting
Pa = 1, we can derive the second-order power flux as

8irM2 |To (EPO)1 2 , (2.172)

where T is the inverse Fourier transform of the transfer function

T(k±) = 1 - Pk, (k,). (2.173)

As before, we assume a sinusoidal input o = PK cos(K - x 1 + t9o). With the field
given by Eq. (2.132) and the transfer function given by Eq. (2.173), we can calculate

E(Mx) = uo(x);2 [cos(K -xi + io)

1 1 12
-erf(Q + K') cos to - erf(Q - K') cos to (2.174)
2 -2K)csoJ(214

where Q = kcwo/2, K' = woK/2, and uo(x) = 2P/(7i-M2 w2) exp(-2x 2 /w2). In

the limit K, > k,, this equation reduces to E(Mx) ~ uo(x)p 2 (x), which describes
an imaging system with direct proportionality between the measured signal and the

square of the phase.
The main difficulty associated with this technique is the smallness of the second-

order signal. In the absence of the LO component, detector noise will be dominated
by intrinsic noise; using Eqs. (2.159), (2.155), and (2.174) in the high-k± limit, we
can write the signal-to-noise ratio as

S D*2P2S- = Pd 4, (2.175)
N AdAf '

where Pd = Aduo. Using the set of parameters introduced at the end of §2.12, i.e., Pd
= 10 mW, Ad = 1.6 x 10- cm 2 , Af = 1 MHz, and D* = 2.6 x 10 cm'/ 2 Hz 1 / 2 /W, we
find a minimum detectable phase shift of 3.9 x 103 rad, which, as expected, is much
poorer than in the phase-contrast case. It should be mentioned in passing that the
D* we are using here is rather poor; this is due to the low quantum efficiency (2%) of
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our high-frequency detector. With low-frequency detectors the performance can be
at least an order of magnitude better for both the phase-contrast and dark-ground
methods, while their relative merits remain the same.

(b) General Spatial Filtering

We move now to the general type of phase plate shown in Fig. 2.27 and described
by Eq. (2.170). By analogy with the analysis carried out in §2.11, assuming again
a sinusoidal input # = @K cos(Kx + i9o), we write the first-order power flux in the
general form

C(Mx, t) = T (K)OK (t - td) cos Kx + t9o + 0,(K)). (2.176)

The functions T,(K) and 0. (K) are uniquely determined and are independent of 19o
for any real and linear functional relation between b and E. To see this, let us write
E = F(g), where F is a functional: then

T (K) = (y 2 (cos(Kx)) + F2(sin(Kx)))'1 2 , (2.177)

and

0,(K) = arctan K(sin(Kx)) -x. (2.178)
( (cos(Kx))

Note that the linearity of F ensures that T(K) is symmetric and 03(K) anisym-
metric upon reversal of either K or x: this is a very general property, as it does
not depend on the symmetries of the functional and it applies also to the case of a
diverging or converging beam (Eo complex).

If the phase shift 0., in the limit K > kc and K >> 1/wo, becomes independent
of x, we can then write the approximate expression

E(Mx, t) T(K)W(x)OK(t - td) cos (Kx + t9o + O(K)), (2.179)

which will be valid for large K. Here, W(x) = T(oo)/T7o(co), T(K) = T,=O(K),
and 0(K) = .,=o(K). This equation shows that a monochromatic input will generate
an approximately monochromatic output, multiplied by a weighting function. If the
weighting function is known, the detected signal can be inverted to calculate the phase

OK. However, if the phase shift 0 is different from 0 or ir and the spectrum is not
monochromatic, the technique does not generate an image of 0; different sinusoidal
components will add out of phase and the signal distribution in general will bear no
resemblance to the distribution of 0. A deconvolution operation is necessary in order
to invert the signal.

Note that if the functional F is spatially symmatric, i.e. if T (0(-x)) = F (O(x))
for any g(x), it follows that F(sin(Kx)) = 0 and, by virtue of Eq. (2.178), 0,=0(K) =
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0. Therefore, the spatial symmetry of the beam, of the aperture, and of the filter is
a sufficient condition for the central phase shift 0 to be zero.

If the phase shift 02 is not independent of x in the limit K -+ oo, Eq. (2.179) is

not applicabie at all, and distortion will occur even when the input signal is monochro-
matic.

L Imaging Conditions

To avoid clutter, the derivation of the functions T, W, and 0, is carried out
in Appendix F. The condition for phase imaging, i.e. 0-(oo) = 0 or ir, implies [Eqs.
(F.23) and (F.24)] p+ = p- and a = fl. This is a generalized form of phase contrast
with arbitrary phase shift and reflectivity. The transfer function at high K is [Eq.
(F.25)]

= -2uo(x)/pp~Re(Wo(x)) sinfl, (2.180)

where
Wo(x) = erf(Q - ix/wo). (2.181)

This transfer function is maximized, for a given p, when p+ =p- = 1 and a = 0 =
±7r/2. This is phase contrast proper: we thus reach the important conclusion that
phase contrast is the only technique that both provides phase imaging and maximizes
the signal. Note that this conclusion holds for arbitrary values of Q = kcwo/2.
However, we know from §§2.11 and 2.12 that to obtain an optimal transfer function the
quantity kewo/2 must be in the vicinity of 1.5. The weighting and transfer functions
for phase contrast are calculated in Appendix F and coincide with the expressions
derived in the previous sections, as expected. In addition, the phase O(K) = 0:=o(K)
is found to be zero for all values of K.

If the condition kcwo/2 ~ 1.5 is assumed, the expressions for T and 02 can be
simplified considerably by noting that the function Wo is nearly equal to 1 (within
6%) throughout the region lx/wol < 1. The transfer function and the phase shift are
then given to a good approximation by Eqs. (F.29) and (F.30), respectively

T(oo) = uo(x) lp [p- + p+ - 2\ /p p+ cos(a + ,)]1/2 (2.182)

and

02(oo) = arctan (. cosa-\i-cos (2.183)
( Ip~- sin a + \lp ~ sin,0

In addition, the dc power flux is simply [Eq. (F.31)]

Sdc(X) = puo(x), (2.184)

i.e., approximately all the power flux, attenuated by the transmissivity p, is used in
the LO component. Thus, the signal-to-noise considerations of §2.12 apply. For a
given p, the signal [Eq. (2.182)] and the signal-to-noise ratio are maximized when
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Fig. 2.28 Two-zone spatial filter.

p- = p+ = 1 and a = ±ir -#6. Whenever these conditions are satisfied, the signal-to-
noise ratio is the same as in the phase-contrast case. The condition for phase imaging
(9 = 0 or 7r), by virtue of Eq. (2.183), can be written /fp~~cos a = fp-V-cos 0. Again,
the phase-contrast configura. 3n (p_ = p+ = 1 and a = 8 = ±ir/2) is the only one
to provide phase imaging and to maximize the signal-to-noise ratio.

One special subclass of the configurations discussed here is obtained when the
spatial filter is divided into only two separate zones instead of the three described
by Eq. (2.170). This has practical advantages: a single filter of this type can be
used in different applications by simply shifting it in space, whereas, e.g., a phase-
contrast filter must be built to specifications and generally has little or no flexibility.
In addition, optical alignment is usually less critical with a two-zone filter. This class
of filters can be defined by the conditions p_ = p and a = 0. Thus the negative-k
side and the zeroth-order zone become indistinguishable (see Fig. 2.28). The phase-
imaging condition is now

cos # = \p/p+. (2.185)

This condition can be satisfied only when p < p+. From Eq. (2.182) we find 7-(,,) =
uo(x)fV p+ - p, which, for a given p, is maximized by p+ = 1. The signal-to-noise
ratio is a factor of (1 - p)/4 lower than in the phase-contrast case. If a low value of p
is chosen to improve contrast, the phase-imaging condition [Eq. (2.185)], which can
be obtained through a simplified plane-wave analysis, is insufficient. It is pointed out
in Appendix F that in the case of a finite beam one must also ensure that the LO
power (~ puo) is larger than the dc power lost in the positive-k zone of the spatial
filter (~ uo|l - erf Q12/4). The approximation we have previously made, erf Q ~ 1,
must thus be quantified by requiring 1 - erf QI < 2fp. Depending on the value of
p, this condition may require a value of Q somewhat larger than 1.5.
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The transfer function T(K) and the phase angle O(K), given respectively by Eq.
(F.33) and Eq. (F.34), are plotted in Fig. 2.29(b); for comparison, Fig. 2.29(a) shows
the corresponding functions for the phase-contrast case.

II. Schlieren Techniques

We shall now proceed to examine some limiting cases of this general type of
filter, which correspond to various techniques described in the literature. "Knife-
edge" schlieren techniques are among the oldest in the history of optical filtering
and are widely employed even today. A knife-edge filter, as the name suggests, is
characterized by a step transfer function with values 0 and 1. Thus, again, there are
only two separate zones instead of three.

The standard schlieren configuration transmits all positive orders and blocks all
negative orders (or vice versa). This is obtained by setting p- = 0, p+ = 1, 3 = 0,
and k, = 0. The high-K transfer function and phase shift are given by Eqs. (F.37)
and (F.38), respectively

T(oo) = -- UO(X) [1 - WO(X)]1/ 2  (2.186)
2

and

92(oo) = arctan .(X) (2.187)(1
It is shown in Appendix F that this phase shift decreases monotonically from 900 at
x = 0 to 31* at x = wo. Hence, the constancy requirement is clearly not satisfied.
In addition, the signal-to-noise ratio is degraded with respect to phase contrast by a
factor of 1/4 to 1/16, depending on the operational regime of the detector.

Some of the more undesirable properties of the basic schlieren configuration can
be avoided with a minor modification that involves a simple spatial shift. We now
keep the positive orders and the zeroth order, eliminating the negative orders (p_ = 0,
p = p+ = 1, and 3 = 0). The result is [Eqs. (F.42) and (F.43)]

T(oo) = uo(x)I1 + Wo(x)I, (2.188)

and
~artan1±+Re(W~o))

0,(oo)= arctan . (2.189)
(Im(WO)

When Q ~ 1.5, one finds T(oo) ~ uo(x) and O.(oo) ~ 7r/2. The phase is approxi-
mately constant but nonzero. The signal is one-half that of the phase contrast case,
resulting in a reduction by a factor of four in the signal-to-noise ratio. The trans-
fer function and the phase angle, given by Eqs. (F.46) and (F.47) respectively, are
plotted in Fig. 2.29(c).

III. Compensation of Plasma Transfer Function
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Finally, we examine a type of filter proposed by Lo et al., 47 for a special situation
arising from toroidal launching in a tokamak with azimuthally symmetric turbulence.
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Under these conditions, the plasma itself imposes upon the phase of the laser a transfer
function characterized by a -7r/4 phase shift for negative K, and by a +7T/4 shift
for positive K. The spatial filter is a modified version of a schlieren filter, with the
negative and zeroth orders unshifted in phase, and the positive orders shifted by -Y.
The problem can be studied by combining the transfer functions of the plasma and of

the filter in a function of the type described by Eq. (F.2), with parameters a = -7r/4
and 6 = -y + ir/4. The condition Q - 1.5 is assumed. (We are not considering here
the 1/VI/K1 dependence of the plasma transfer function, which the authors of Ref.

147 propose to compensate with a filter of continuously variable reflectivity X s/IKI.)
In Appendix F it is shown that the conditions for phase imaging and for maximiz-

ing the signal-to-noise ratio are p+ = p- = 1 and y = -7r/2. This is not surprising, as
this configuration renders the plasma-filter system equivalent to a generalized phase-
contrast system; since the phase shift is 450 instead of 90", the signal-to-noise ratio
is degraded by a factor of two.

For reasons of practicality, a simplified, two-zone version of this filter was

proposed,14 7 with p- = p < p+ = 1 and -y = 7r/4. This set of parameters leads
to a phase shift 0 = 0 in a simplified plane-wave analysis. However, it is pointed
out in appendix F that the additional phase-imaging condition |1 - erf Q1 < 2rp
arises in the case of a finite beam. Depending on the value of p, this condition may

require a value of Q somewhat larger than 1.5. When this condition is satisfied, the
signal-to-noise ratio is 1/4 that of phase contrast. The transfer function and the
phase angle are given by Eq. (F.52) and Eq. (F.53), respectively, and are shown in
the comparison plot of Fig. 2.29(d).

(c) Scintillation

The scintillation technique is described entirely by the transfer function given by
Eq. (2.171) and plotted in Fig. 2.29(e). Although there is no phase shift, the oscilla-
tory nature of the transfer function in general precludes the formation of an accurate
image. The zeros of the function represent loss of information. If lowpass filtering is
applied to eliminate the high-K oscillations, the scintillation transfer function acts as
a highpass filter, analogously to phase contrast. However, the phase-contrast transfer
function is much closer to an ideal filter, with a wider flat region and a faster rolloff.
In addition, it was shown in §2.8 that the applicability of this analysis requires that
the beam be collimated; if we define the critical wave number k, as the 50% response
point of the scintillation curve, the collimation condition is Q = kcwo/2 > 1. This
should be compared with an ideal value of Q ~ 1.5 for phase contrast.

The signal-to-noise ratio at the peak of the transfer curve is equal to that of
phase contrast with p = 1. In a saturation-limited regime, a higher performance can
thus be achieved with phase contrast by reducing p.

(d) Mach-Zehnder Interferometer
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Finally, we turn to the Mach-Zehnder interferometer. Since the transfer function
[see Fig. 2.29(f)] is independent of K, only the signal-to-noise ratio remains to be
determined. For a fair comparison, the function uo(x) must now represent all the
power flux available from the laser. The optimal signal-to-noise ratio is obtained
when the plasma and reference beams are equal. Since one half of the power is lost
at tne beam combiner (see Fig. 2.12), each beam will carry one fourth of the original
power when it reaches the detector. For the interference signal we can write to first
order in ;9

E 2 psin wo, (2.190)
2

where wo = (WO - WLO is the total phase difference between the beams, defined in
accordance with Eq. (2.71). The de flux is

UO(X)
£dc = (1 +cos y0). (2.191)

2

In the regime in which intrinsic noise dominates, the signal must be maximized; thus,
the interferometer will ideally be operated at WO = 7r/2. If the detector is saturated,
the phase po should be moved toward 7r (to reduce the de signal and thus the shot
noise) until the signal is just below saturation. The signal-to-noise ratio is 1/16 that
of the phase-contrast case if the saturation level is larger than uo(x). If the saturation
level is lower than uo(x), that ratio will be larger but always less than 1/4.

In the regime in which shot noise dominates, the signal-to-noise ratio is pro-
portional to £ 2 /Ec oc sin 20/(1 + cos po). This function increases monotonically
from 1 at Wo = 7r/2 to a maximum of 2 at WO = 7r. The maximum is a limiting
case in which both the signal and the noise are zero. In practice, if shot noise dom-
inates at Wo = 7r/2, there exists an angle between -r/2 and 7r that maximizes the
signal-to-noise ratio; in these conditions the intrinsic noise and the shot noise are ap-
proximately equal. In all these cases it can be easily proven that the signal-to-noise
ratio is between 1/8 and 1/4 that of phase contrast.

To conclude this section, it is instructive to illustrate the benefits provided by
a phase-imaging system with a simple example. In Fig. 2.30 an arbitrary sample
function, representing the fie distribution in the plasma, is compared with the calcu-
lated signals generated by the phase-contrast, scintillation, and schlieren techniques,
appropriately normalized. Clearly the phase-contrast case is the only one in which
the spatial distribution of the signal follows that of ii. In the other two cases there
is no such resemblance, and a deconvolution operation is necessary to reconstruct the
fi profile from the measured signal; if only a limited number of spatial measurements
can be effected, the operation of deconvolution can be a source of large uncertainties.
These problems are avoided with a phase-imaging technique such as phase contrast.
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2.14 Calibration Techniques

The simplest and most straightforward way to calibrate an infrared phase-contrast
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imaging apparatus is to apply it to the detection of acoustic and ultrasonic waves in
air, as their wavelength range coincides with the range of interest for most plasma
experiments. For instance, a 34 kHz ultrasonic wave has a wavelength of 1 cm, and
a 3.4 kHz sound wave has a wavelength of 10 cm.

The appropriate expression for the perturbed phase in the case of propagation
through air is given in the geometrical-optics approximation by the imaginary part
oi Eq. (2.87):

(x_) = ko I (x±, z)dz, (2.192)

where K is the perturbed index of refraction in response to the sound waves, and we
have removed the dependence on time owing to the low frequency of these oscillations.

The dependence of the index of refraction on the perturbed air density P is given
to a good approximation by the Gladstone-Dale law' 5 4

Af= kGCD , (2.193)

where the Gladston-Dale constant kGD is a function of the optical wavelength but.
is approximately constant in the near- to intermediate-infrared region, taking the
value1'4 kGD = 0.22 cm 3 /g. It should be noted that when the molecular mass of
air is factored into Eq. (2.193), the dependence of the phase on the particle density
given by Eq. (2.192) is approximately a factor 2.1 x 10- 4 smaller than in the case
of the plasma, as can be gleaned by re-examining Eq. (2.85). This dissimilarity is a
consequence of the low polarizability of a neutral gas in comparison with a plasma,
which is composed of charged particles.

The perturbed density is related to the perturbed pressure P by the expression
p /c2, where c, is the speed of sound. At 20*C, the speed of sound is c,

3.44 x 104 cm/s; using the CO2 laser wavelength of 10.6 pm in Eq. (2.192), one can
thus write the numerical relation

(xi) = 1.1 x 10~1 P(x, z)dz, (2.194)

where p is in radians, P is in pPa, and z is in cm. This relation forms the basis of an
acoustic calibration. The sound level can be measured with a calibrated sound-level
meter and converted to pressure units (20 pLPa rms represents the audible threshold,
generally referred to as the 0 dB point). If the sound wave is a plane wave, and if
the integration length is known, the phase can be calculated from Eq. (2.194) and
compared with the detected phase-contrast signal to determine the calibration factor.
As an example, a phase shift of 1 mrad rms, with an integration length of 20 cm,
corresponds to a sound level of 107 dB.

The transfer function can also be determined for a range of wave numbers by
varying the sound frequency. Thus it is possible to experimentally verify the validity
of the functions derived theoretically ia §2.1.1. In addition, it should be noted that a
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Fig. 2.31 Acoustic calibration setup.

calibration can be performed even if the region oc:upied by the acoustic field does not
coincide with the object plane of the imaging apparatus. For a monochromatic wave,
Eq. (2.83) shows that the effect of a spatial shift d from the object plane is a simple
multiplication of the perturbed phase [Eq. (2.192)] by a factor cos(k2d/2ko). If d is
known, the calibration results can be corrected for the cosine factor (although this
correction becomes noisy when the cosine is close to zero). This is very convenient,
e.g., in a tokamak experiment, where the object plane is typically in the vacuum
chamber. Conversely, this effect can be used to verify that the imaging configuration
is correct and that the object plane is in fact at the desired locatiGn. In practice, such
a test in general requires the ability to sweep a broad range of sonic and ultrasonic
frequencies.

A common calibration setup involves a loudspeaker emitting a sound wave that
is approximately spherical (Fig. 2.31). One must then study the effect of the line
integration [Eq. (2.194)] through the field of the sound wave. A spherical wave is
described by the equation -

P(r) = r 0po k, (2.195)

where roP0 is a constant factor, and r is the distance from the source. Taking the
source to be at the origin of the coordinate system, we can write r = (z + z 2 )1/2 .
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Rewriting Eq. (2.194) as b = Co f #dz, where CO is a constant factor, we obtain

/+0o cos [k Vf7 + z2 _ wt]
(x±) = CoroPo J dz. (2.196)

This integral can be calculated,' with the result

(xj) = irCorofo[Jo(kjxII)sin(wt) - Yo(kjxIL)cos(Wt)], (2.197)

where JO and Y are the Bessel functions of the first and second kind, respectively. If
kixil > 1, one can write to a good approximation

(x ) =1 CoroPo cos(klxj| -wt+ir/4). (2.198)

The 1/Vr dependence and the 7r/4 phase shift are strictly a consequence of the
spherical nature of the wave aad would disappear in a plane-wave case.

Since the field pattern in practice fills only a fraction of the total solid angle, it
is important to determine the conditions under which Eq. (2.198) is approximately
valid when the integration length is finite. This can be accomplished by recalculating
the integral in Eq. (2.196) with a Taylor expansion for small z, and also by numerical
integration; both procedures yield the condition zm >6r IrxL/k. In the opposite
case, m « 7r~xI/k, a plane-wave approximation is appropriate.

With more complicated field patterns, numerical methods can be used to calcu-
late the phase from Eq. (2.194) and provide a more accurate calibration (see §3.8).

An alternative method of determining the transfer function in wave-number space
consists of imposing a known phase distribution and measuring the resulting spatial
distribution. The transfer function can be determined by Fourier transforming the
result. The most useful sample functions and the most viable experimentally are step
functions and delta functions. 3 ' However, the accuracy with which these functions
can be obtained experimentally is far inferior to that of an acoustic wave.
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3 Experimental Apparatus

The measurements described in this thesis were carried out with a C0 2 -laser phase-
contrast imaging (PCI) diagnostic. This system measures the vertical line integrals of
the density fluctuations at 16 radial locations within a 7.6-cm-wide region at the outer
edge of the DIII-D tokamak. 70 The principal characteristics of tht PCI diagnostic are
a flat response to wave numbers in the range 1-16 cm~1, a radial resolution of ~ 0.5
cm, a density sensitivity of the order of 109 cm-3, and a detection bandwidth of ~
20 MHz (the data-acquisition bandwidth is 1 MHz).

The development of the PCI system was motivated principally by an interest in
microturbulence and in its relation with anomalous transport. The region explored
by this diagnostic comprises the range r/a = 0.9-1.15, where r/a is the normalized
minor radius (although only a fraction of that range is accessible in a given plasma
discharge). This is the region in which the most dramatic changes in transport and
in the character of microturbulence occur at the L- to H-mode transition. 6 1 This
is also the region where the ELMs (or edge localized modes) are found. 69 The PCI
diagnostic bridges the spatial gap between the reciprocating Langmuir probe 1 and
the reflectometer4 2 ; in addition, both the reflectometer and the PCI system are mostly
sensitive to radial wave vectors, whereas the probe responds to poloidal wave vectors,
providing additional complementarity. Some spatial overlap exists also between the
PCI system and the lithium-beam emission spectroscopy diagnostic."

Phase-contrast imaging is a novel technique in thermonuclear plasma measure-
ments. The pioneering work of Weisen 3 ' demonstrated unequivocally the benefits of
this method, in both low-frequency and radio-frequency applications, as well as its
advantages over conventional scattering techniques in the characterization of long-
wavelength fluctuations. From a theoretical perspective, the analysis presented in
Chapter 2 clearly confirms those advantages, particularly in the high-gradient region
explored by the DIII-D PCI diagnostic.

The development of PCI on a large tokamak such as DIII-D presented consid-
erable technical challenges for which little guidance could be gained from previous
applications. The main difficulty was that of mechanical vibrations, exacerbated
by the tortuous optical path forced by the existing equipment that surrounds the
DIII-D vessel. Indeed, the design and successful completion of a high-gain feedback
vibration-control system was the crucial element in the development of the diagnostic.

This chapter describes the experimental apparatus in detail. The DIII-D toka-
mak and its main diagnostic systems are delineated in §3.1. In §3.2 the geometry
of the measurement is introduced, with a verification of the validity of the approx-
imations on which the theory of Chapter 2 is predicated. The experimental setup,
with details on the individual hardware components, is the subject of §3.3. Section
3.4 contains a discussion of the optical design, including the main design criteria, the
alignment techniques used, and an illustration of the resulting performance.

The feedback vibration-control system is presented in §3.5. Data on the mea-
sured vibrations are shown in order to introduce and justify the design parameters; a
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discussion of the choice of components is then followed by a theoretical analysis of the
design procedure and by a description of the optimization techniques adopted. Fi-
nally, the performance of the system is demonstrated by means of data from vibration
measurements.

Section 3.6 is devoted to the electronic data-acquisition system, which can be
structured in two different configurations, respectively for low-frequency and radio-
frequency applications. The considerations on responsivity presented in Chapter 2

are reexamined in §3.7 for the specific case of the DIII-D system, with additional
observations arising from the geometry and from the details of the optical layout.
Results from acoustic-wave calibrations are offered in §3.8, including comparisons
between the theoretical and measured transfer functions (in wave-number space) and
signal-to-noise ratios, and a general assessment of the performance of the diagnostic.

Finally, §3.9 contains a description of the data-analysis techniques employed in
the course of this work, including details on error analysis and on specially developed
software for the estimation of correlation functions.

3.1 The DIII-D Tokamak

The DIII-D tokamak fusion research program is carried out by General Atomics
under contract to the U.S. Department of Energy. The DIII-D program represents
the culmination of over thirty years of successful nuclear-fusion research at General
Atomics. Collaborations with other U.S. and international fusion programs are an
essential feature of the program. In addition, General Atomics has made the DIII-D
facility available as training ground for graduate students from numerous universities:
the present work is one example of such a collaboration.

The mission of the DIII-D program is to provide data needed for next-generation
fusion devices, such as ITER.6 7 In particular, the program is organized into two main
lines of research: the development of advanced tokamak concepts and the development
of an advanced divertor. 5

The advanced tokamak program addresses the achievement of high confinement,
high beta (the ratio of the plasma pressure to the magnetic energy density, an im-
portant parameter for considerations of reactor economics), and high noninductive
current fraction. The first two goals are being pursued through continued studies
of enhanced confinement regimes (H- and VH-mode) and of the effects of plasma
shaping on both beta and confinement.156 Noninductive current-drive experiments7 5

are being carried out both as a path to steady-state operations and as a means to
modify the current profile in order to obtain improved plasma performance. 157

The advanced divertor program aims to improve the efficiency of ash exhaust
and to reduce the heat load on the divertor. Demonstration of helium ash removal
is a prerequisite of reactor development: without an efficient extraction method, the
accumulation of helium in the core of the plasma would progressively reduce the D-
T reaction rate and hinder the reactor's performance. The recent installation of a
cryopump in the divertor region has allowed a convincing demonstration of helium
removal; in addition, the cryopump has been proven to be beneficial as a tool for
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TABLE 3.1. Peak DIII-D parameters

Major radius 1.67 m
Minor radius 0.67 m
Toroidal field 2.2 T
Plasma current 3.0 MA
Vertical elongation ratio 2.5
Line-averaged electron density 1.4 x 1014 cr-3
Central electron temperature 7 keV
Central ion temperature 21 keV
Volume-averaged beta 12%
Neutral-beam power 22 MW
Radio-frequency power 6 MW

plasma density control, which is necessary for efficient current drive.5 In the area
of divertor heat reduction, studies are continuing with the present, flexible divertor
configuration; at the end of 1996, a new radiative divertor will be installed on DIII-D:
in the new configuration, radiation will be used to dissipate the heat flux before it
reaches the material wall.156

The DIII-D tokamak (see Fig. 3.1) has a major radius of 1.67 m and a minor
radius of 0.67 m, with a D-shaped cross section; the maximum magnetic field is 2.2
T and the maximum plasma current is 3 MA. The main parameters of the device are
listed in Table 3.1. The principal subsystems of the tokamak can be seen in Fig. 3.2.
The large, toroidal magnetic field is generated by 24 coils that encircle the plasma
cross section; the ohmic magnetic field, whose temporal variation drives the main
plasma current, is generated by a solenoid located in the center column of the device;
and the vertical field that is necessary for plasma positioning and shaping is generated
by 18 distributed horizontal coils that surround the vacuum vessel. 4 Two additional
coils are used to apply fine corrections to the overall field, allowing a better control
of certain plasma instabilities.

The vacuum vessel, made of Inconel 625, has recently been completely covered
with graphite tiles on the plasma-facing surface15 6 (see Fig. 3.3). This has greatly
reduced the influx of metallic impurities, while also providing better protection to
the wall. The outer surface of the plasma cross section can be defined either with
material limiters or with a magnetic divertor; the present divertor affords considerable
flexibility in the choice of a plasma shape. In addition to the ohmic heating derived
from the current flowing in tie plasma, auxiliary heating can be applied in the form
of energetic neutral beams (22 MW), 110-GHz electron-cyclotron waves (1-8 MW),
and 30-120-MHz ICRF (fast) waves (6 MW). All three methods have been used also
to drive noninductive plasma currents. 158

One of the key factors in the success of the DIII-D program has been the
evolution of the plasma control system, recently upgraded with the use of digital
techniques.159 This system is now capable of controlling the neutral beam power, the
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Outside view of the DIII-D tokanak with the neutral-beam injectors, after asseibly.

ICRF antenna loading, the pumping speed of the cryoplump (and thus the plasia
density), and a number of other plasma parameters.

DIII-D is also equipped with an extensive set of diagnostics. The development
of state-of-the-art systems to measure the profiles of the electron density and of the
electron and ion temperatures has been the centerpiece of the DIII D diagnostic
program for most of its lifetime. The multipulse Thomson scattering systei can
measure ne and T, profiles with a spatial resolution of 1 cm and a dynamic range
(in temperature) of 10 eV to 20 keV; four C0 2 -laser interferometers measure the
line integrals of n, over one horizontal chord and three vertical ones; the electron
cyclotron emission (ECE) radiometer provides 10-point radial profiles of T, with
a time resolution of 0.1 ims: the 32-chord charge exchange recombination (CER)
diagnostic is used to derive profiles of T and of the plasma rotation velocity with
a spatial resolution as fine as 3 im in the T data at, the edge. These systems.
combined with a visible bremsstrahluing imaging array that, provides the effective
charge profile, form a core of kinetic diagnostics that allow a detailed physics analysis
of a wide variety of plasma discharges.

The magnetic diagnostics, which comprise a large array of external loops and
internal probes, are essential for the operation of the tokamak as they are used for
feedback control of discharge current, shape, and position; in addition, magnetic
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Fig. 3.2 Schematic diagram of the DIIi-D tokamak.

data are used for reconstructing the plasma equilibrium geometry between discharges.
Visible and infrared TV systems provide information on the heat loads on the material
structures of the vessel. An array of 16 photodiodes is employed to measure the H,
radiation, which is related to the amount of recycling and to the level of transport.

In recent years, the main emphasis of the DIII-D diagnostic program has shifted
toward the development of systems to measure the plasma current and the divertor
parameters. To the first group belong the eight-channel motional Stark effect (MSE)
current-profile diagnostic and an ECE Michelson spectrometer designed to study the
high-energy tail of the electron distribution function. Examples of divertor diagnostics
include a dedicated Thomson scattering system and a visible spectrometer.

We conclude this incomplete survey with a brief description of the DIII-D fluc-
tuation diagnostics. The FIR scattering system2 7 measures density fluctuations with
wave numbers in the range 3-24 cm- 1 and wave vectors oriented in the poloidal direc-
tion, with access to most of the plasma cross section. The microwave reflectometer4 2

provides multiple localized measurements of density fluctuations with radially ori-
ented wave vectors, integrating over the range 0-31 cm- 1 . In addition, a two-
frequency correlation reflectometer4 6 is used to study the radial correlation length
of the fluctuations. These diagnostics are all operated by the University of Califor-
nia, Los Angeles.
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Entry Port

Fig. 3.3 Inside view of the DIII-D tokamak, showing the all-graphite wall, the ICRF antenna.

and the two PCI ports.

A fast, reciprocating Langmuir probe,7 1 operated jointly by Sandia National Lab-
oratory and the University of California, San Diego, provides measurements of density
and electric-potential fluctuations, in addition to the density and temperature profiles,
in the scrape-off layer and just inside the last closed plasmla surface, with excellent.
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spatial resolution; a two-point correlation technique is employed to reconstruct the
poloidal wave-number spectrum in the range 0.3-12 cm- 1 . Spatially resolved den-

sity fluctuation profiles are obtained in the plasma edge region with a lithium-beam

emission spectroscopy system;9 wave numbers are in the range 0.4-5 cm' without
restrictions on the orientation of the wave vectors. A core deuterium-beam emission
spectroscopy diagnostic, resulting from a collaboration between General Atomics and

the University of Wisconsin, has recently become operational.5 2

Magnetic fluctuation measurements are carried out with a large array of mag-

netic coils located inside the vacuum vessel and thus immune to the high-frequency
shielding effect of the vessel. An extensive array of soft-x-ray diodes is employed to
detect fluctuations in the plasma emission, which depends on temperature, density,

and effective charge.
The list of fluctuation diagnostics is completed by the MIT PCI system, which

will be described at length in the remainder of this chapter.

3.2 Geometry of the Measurement

The PCI diagnostic employs a C0 2-laser beam with a wavelength of 10.6 pm. The

cross section of the beam in the plasma is circular with a radius of 3.8 cm, defined by

the entrance window. The power distribution within the cross section is Gaussian,
with a half-width (i.e., radius of the e- 2 point) of 3.8 cm also. As will be discussed in

93.3, the parameter (, (the distance between the beam waist and the plasma, divided

by the Rayleigh length) is set to zero with an experimental accuracy of ±0.5. The

half-width at the waist, wo, can therefore differ somewhat from the half-width in the

plasma, wp = 3.8 cm. As pointed out in the paragraph following Eq. (2.132), the
only practical consequence is that the phase plate must be positioned at the beam

waist (created by the focusing optic) rather than in the focal plane, provided that
there is no appreciable change in collimation between the plasma and the focusing

optic.
The beam propagates vertically downwards at the outer edge of the DIII-D vessel

(see Figs. 3.3 and 3.4), occupying the region from R = 227.3 cm to R = 234.9 cm
(where R is the major radius). The surface of the graphite tiles on the outer wall is
located at R = 237.5 cm. In a given discharge, the region probed by the beam may

lie partly inside the last closed flux surface or entirely outside it (in the scrape-off

layer), depending on the plasma geometry (see Fig. 3.5). Combining those different

cases, the range from 0.9 to 1.15 in normalized minor radius (r/a) can be explored.

The total distance covered by the beam inside the vessel wall, from port to port, is

137 cm. As the windows are recessed into the ports, the total distance between the

entrance window - i.e., the aperture stop - and the lower port is 219 cm.

We now proceed to verify the validity of various approximations used in the

derivation of the scattering equations in Chapter 2; we shall thus identify the appro-

priate limit of the measurement in our specific geometry. In §2.5 it was concluded

that the effects of diffraction from the aperture stop could be ignored in the inter-
action region under the conditions |(pl < 0.5, a/w, > 1, and z/ZR <; 0.007. In our
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Fig. 3.4 Cross

surfaces.

section of the DIII-D vessel showing the PCI beam path and the magnetic flux

geometry, |(,| 5 0.5, a = w, = 3.8 cm, z < 219 cm, and 344 m < ZR 430 m;
therefore, all three conditions are satisfied.

Since the detector bandwidth is ~ 20 MHz, we can write w/wo < 3.3 x 10-6;
thus, the low-frequency condition is well satisfied. In wave-number space, spatial
antialiasing lowpass filtering was applied, limiting the spectrum in all cases to k < 40
cm'1; therefore, k/ko 5 6.8 x 10-3, and the low-angle scattering condition is also
satisfied.

Detection is performed in the near field by means of an imaging configuration:
the detector plane is the image of the DIII-D midplane. Hence, we must now inspect
the approximations used in §2.8 for the case of near-field detection. The condition
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Fig. 3.5 Geometry of the PCI measurement.

the detector plane is the image of the DIII-D midplane. Hence, we must now inspect
the approximations used in §2.8 for the case of near-field detection. The condition
k0wo > 1 is well satisfied, as kowo > 2.0 x 10 4 . The Fresnel conditions [Eqs. (2.62)
and (C.6)] translate into Iz - z'Ik 4 /(8k3) < 1, |(1/(kowo)2 < 1, and |('|/(kowo)2 < 1:

to verify these three relations, we insert the numerical values for our system and find
respectively Iz-z'Ik4/(8ko) < 1.1x10 4 , I/(kowo)2 < 1.3 x 10~- 9 , and I('I/(kowo)2 <
1.3 x 10-9. The collimation condition is also satisfied, as I( - ('I < 4 x 10- < 1. It
must also be noted that the distance between the plasma and the front focal plane of
the focusing optic is approximately 4 meters, i.e., much less than a Rayleigh length.

Under near-field detection conditions, the low-divergence condition [Eq. C.42] is
essentially equivalent to the Gaussian-near-field condition: both are expressed by the
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relation Lzk/(kowo) < 1. With Lz = 137 cm, we find for our system Lzk/(kowo)
0.27. Although this number is not much smaller than one, the approximations made
in Appendix C are still quite good. We note here that in most of our experiments
the cutoff value of the spatial lowpass filter was not larger than 10 cm-1, resulting
in the relation Lzk/(kowo) < 0.07. Thus, in these cases the Gaussian-near-field
condition was well satisfied. As will be discussed in Chapter 5, only in one experiment,
characterized by very fine spatial resolution, was the wave-number cutoff value raised
to ~ 40 cm-1.

Under the usual conditions (k < 10 cm-') the relation Lzk 2/(7rko) 1 is satis-
fied, and the measurement is carried out in the Raman-Nath regime [cf. Eq. (2.40)].
The case k > 12 cm- 1 corresponds to the Bragg regime; thus, the high-resolution
experiment mentioned above must be analyzed in a different fashion from all our
other experiments. However, since only the correlation properties of the measure-
ments were analyzed in that study, the considerations at the end of §2.8 apply: in
particular, since the vertical correlation length L, is typically of the order of 4 cm
or smaller, the effective Klein-Cook parameter, Q, = k2'z/(2ko), is smaller than one
even at k = 40 cm m . Therefore, as indicated by Eq. (2.90), each spectral component
S(kR) of the crosscorrelation function in this regime is the sum of the k, = 0 spectral
component and of one-half each of the kr = ±k'/(2ko) components. If the latter
components become negligible well into the Bragg regime, the autocorrelation func-
tion is simply reduced by a factor of two with respect to its value i- the Raman-Nath
regime, as indicated by Eq. (2.92).

Let us now examine the transit phase D = Law/c. For L, = 137 cm, D is equal to
one at a frequency of 35 MHz. Hence, the transit phase is irrelevant to low-frequency
turbulence measurements: in particular, all the data presented in this thesis are
characterized by frequencies below 1 MHz. In the proposed DIII-D core configuration
described in Chapter 7, when used to detect externally launched rf waves, the transit
phase would be a potentially significant parameter. The appropriate integration
length L, for that case is the vertical width of the rf wave front, which can be
estimated by computer codes.

The condition for the validity of the Born approximation, i.e. for the Rytov
phase to be much smaller than one, is given by Eq. (2.33), which in the present case
limits the line integrated density to

N < 3.3 x 1015 cm- 2 . (3.1)

This relation is invariably well satisfied for the fluctuating component of the density,
characterized by frequencies above 1 kHz. According to the discussion in §2.10, the
bulk density may safely violate this condition, provided that its gradient length is
larger than the beam width; in practice, in most cases the Born condition is satisfied
by the bulk density also, since the average is taken over the entire distance traversed
by the beam, including the low-density scrape-off layer. To verify that the condition
is satisfied, let us now inspect a worst-case scenario.
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The maximum density achieved in DIII-D in the region of the PCI beam is
approximately 5 x 1013 cm- 3 . In the case in which the plasma boundary crosses
the midplane in the middle of the beam, the maximum length of the innermost
chord inside the plasma is 40 cm. The maximum line-integrated density is therefore
Nm ~ 2 x 1015 cm-2. Let us now take the extreme case of a step function for the
line-integrated density N(R): we can then write

Nm Nm
N(R) = Nma + "ax sgn(Rboun - R),

2 2

where sgn(x) is the sign function and Rboun is the boundary radius. The first term
on the right-hand side of this equation is a constant (k = 0) component and can thus
be ignored. We are then left with the second component, which gives an effective
line-integrated density of Nmax/2 ~ 1 x 1015 cm- 2 , safely below the limit set by Eq.
(3.1). In the vast majority of cases, of course, conditions are more favorable: the
density is typically lower and its variation is more gradual.

Our final verification concerns Eq. (2.115), which permitted to ignore the spatial
dependence of the delay time in the image plane. We shall take the most unfavorable
conditions, with a 100-MHz frequency and a magnification M = -2 (used in the
high-resolutLon experiment); the distance between object and image is ~ 10 meters.
With these values, we find (w/2c)(M - 1)2W2/(zim - Zobj) ~ 1.4 x 10-3 < 1. Thus,
the condition is well satisfied.

3.3 Experimental Setup

The light source and the beam-generating optical components, as well as the imag-
ing optics, the detector, and the primary electronics, are installed on an aluminum
breadboard optical table (see Fig. 3.6). The table measures 122 by 18% 'm and is
mounted vertically to limit space demands and to minimize the distance froiu the
tokamak (see Fig. 3.7).

The light source is a dc-excited carbon dioxide laser, manufactured by MPB
Technologies (Dorval, Canada). The laser consists of a two-meter-long, sealed-off
glass tube, with two CdTe Brewster windows, housed in a two-mirror cavity; each
mirror can be adjusted externally on both axes by means of micrometers to obtain
a pure TEM0 ,0 (Gaussian) mode. The cavity is ordinarily installed on four invar
rods; in our case, these were replaced with carbon fiber rods, owing to concern over
the performance of the laser in the high ambient magnetic fields that exist in the
proximity of the tokamak.

The temperature of the laser is stabilized with an external closed-loop cooler.
The laser has no grating; rather, line stability is achieved by means of a dither
stabilization feedback system. The output coupler, made of coated germanium, is
mounted on a piezoelectric translator that is made to oscillate at a frequency of 490
Hz, with an excursion of a few nanometers. The power oscillations are monitored and
the equilibrium position is adjusted for maximum power. The resulting long-term
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Fig. 3.6 Schematics of optical-table layout.

power stability is better than 0.5%. Nominal power at delivery was 20 W (22 W
measured); a slow decrease over time was observed, down to the present value of 14
W. The lasing line is the P(20) line of the 0001 -+ 10*0 transition, with a wavelength
of 10.59 jim. The nominal beam width at the output coupler is 3.7 mm, and the
full-angle divergence is 3.6 mrad; the light is linearly polarized.

The choice of a CO 2 laser and of the 10.6 pm wavelength was dictated by sev-
eral considerations. All the approximations examined in §3.2 (small-angle scattering,
Gaussian near field, Raman-Nath, and Born) are more easily satisfied by shorter wave-
lengths, e.g. in the visible spectrum. In addition, diffraction and refraction effects are
reduced at short wavelengths. However, longer wavelengths (e.g., in the far-infrared
spectrum) also have advantages, such as higher tolerances on optical quality and aber-
rations and reduced sensitivity to damage and contaminants on optical surfaces; in
addition, a longer wavelength implies a larger focal spot and thus a wider phase-plate
groove, simplifying both fabrication and alignment and reducing the power density
on the phase plate. The sensitivity to density fluctuations is also proportional to
the wavelength. The 10.6 pm wavelength was found to provide an ideal compromise
between all these conflicting requirements.

The laser power can be attenuated if necessary by up to a factor of 30 by means
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Fig. 3.7 Optical table: the parabolic mirrors, the rf-shielded electronics box, and tIHe C02 laser
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of a continuously variable attenuator located in front. of the cavity opening. Also, a
mechanical shutter is present for personnel safety; the shutter is interlocked with the
doors of the DIII- D hall and prevents beam propagation when closed. A secondary
interlock shuts off the high voltage to the laser head if the shutter fails to close.

The C0 2 -laser bean is combined with a visible HeNe-laser bean) by a ZnSe
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beam combiner. All transmissive components in the optical system were chosen to
be transparent to visible light to facilitate alignment. The HeNe laser operates at a
wavelength of 632.8 nm and has a power of 15 mW; two lenses are used to match the
beam's width and divergence to those of the C0 2-aser beam.

The C0 2 -laser beam is allowed tn propagate and expand freely through several
reflections on the optical table, in order to reach the required width: this free optical
path was originally 315 cm long, but was shortened over time to compensate for the
slowly increasing divergence of the laser beam; the length of the path is currently 224
cm. The beam is then expanded to its final width of 7.6 cm by means of a telescope
arrangement, composed of a plano-convex ZnSe lens of focal length 25.4 cm and of an
off-axis parabolic mirror of focal length 203 cm. The distance between the lens and
the paraboloid is ideally set at a value designed to place the expanded beam waist
in the DIII-D vessel; with an estimated uncertainty of ±5 mm in the position of the
lens, the uncertainty on (p (distance between the beam waist and the plasma, divided
by the Rayleigh length) is approximately ±0.5.

The parabolic mirror has a diameter of 22.9 cm, with the center located 12.7 cm
from the optical axis; this mirror, as well as an identical one used for focusing the
beam on the phase plate, was obtained by cutting and coating a 50.8-cm-diameter
parabolic Pyrex blank. The aluminum reflective coating is protected with an overcoat
of silicon monoxide. This type of coating is used in all the mirrors in the apparatus;
also, all the mirrors located outside the DIII-D vacuum vessel have Pyrex substrates.

After leaving the optical table, the expanded beam is steered to the tokamak by
a series of three 23-cm-diameter mirrors and is directed into the DIII-D port by a
final 10.2-cm-diameter mirror. The larger mirrors were designed to accommodate a
12.7-cm-diameter beam to be used in the future at a different location in the vessel.
The optical path between the parabolic mirror and the entrance port measures ap-
proximately 5.5 meters; owing to space constraints, the path could not be made to be
planar (see Fig. 3.8). The mirrors are housed in precision gimbal mounts equipped
with micrometer adjustments that afford an angular resolution of 0.04 arcseconds.
The mounts are installed in turn on gimbaled support mechanisms, which permit
coarse initial adjustment and are normally fixed in position.160 The first two mir-
rors in the system are anchored to support beams attached to the concrete floor; the
following two are mounted directly on the port flange of the DIII-D vessel.

It is particularly important to ensure that the first two mirrors along the optical
path are free from vibrations, as they are farthest from the vessel and can cause sub-
stantial displacement of the beam before it reaches the tokamak. While the feedback
vibration control system can compensate for angular shifts experienced by the beam
after traversing DIII-D, prior displacements would clearly result in a degradation of
the absolute spatial resolution, or worse, in a loss of power from beam clipping. Pre-
cisely such a problem was encountered after the reciprocating probe7 1 was installed:
owing to mechanical coupling between the mirror supports and the probe, the PCI
beam experienced large oscillations whenever the probe was fired. This problem was
corrected by redesigning the mirror supports and separating them from the probe
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Fig. 3.8 Schematics of optical path.

supports.

The vacuum windows installed on the vessel were supplied by II-VI Inc. (Saxon-
burg, PA). The windows are made of zinc selenide with an antireflective coating on
each surface. The entrance (upper) window has a diameter of 9.5 cm, with a clear
aperture of 7.6 cm: this is the aperture stop of the system. The exit (lower) win-
dow has a diameter of 10.8 cm, with a clear aperture of 8.9 cm; the larger diameter
is designed to accommodate the scattered radiation: indeed, in the absence of an
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antialiasing spatial filter, this window would be the effective aperture stop for the
scattered radiation from the edge of the beam. The windows are mounted with their
normal approximately 1* off the optical axis of the beam, to prevent any residual
reflections into the laser cavity. Each window flange houses a series of O-rings that
provide the primary high-vacuum seal. The window flange is bolted to a vacuum
flange welded to a short section of pipe, which is in turn welded to the main port,
flange bolted to the vessel. The pipe supports the window assembly as well as an
internal tube that holds the in-vessel mirror mount.160

The laser beam travels through the port in a nearly horizontal direction (see Fig.
3.4). A mirror, 12.7 cm in diameter, directs the beam vertically through the vacuum
vessel immediately in front of one of the ICRF antennas, and a second, identical mir-
ror then steers the beam horizontally through the exit port. The mirrors are made of
fused quartz, coated with protected aluminum, and are mounted in a ring attached
to the main support assembly. A defect in the design of the mounts initially causk 1
some asymmetric deformation of the mirror surfaces that resulted in a slight astig-
matism; this was soon corrected through a design modification. Adjustment of the
mirror mounts in the toroidal direction is performed upon installation, after which
the mounts are welded in position. Adjustments of each mount in the poloidal direc-
tion can be effected from outside the vessel by means of a linear mechanical vacuum
feedthrough equipped with a micrometer actuator, which is connected to one of two
pivot rods attached to the mirror mount; precision-ground graphite bearings are lo-
cated between the rods and the support plate. This adjustment capability is essential,
as space constraints limited the clear apertures of the mirrors and, consequently, left
little freedom in their orientation.

The mirrors and the windows are protected by two inconel shield plates. The
original plates were thoroughly redesigned 16 1 when the inside wall was covered entirely
with graphite tiles. The shields themselves were covered with a layer of carbon-carbon
composite material (K-Karb). Built into the plate is a shutter that is flush with the
plate when closed and can be opened outward to allow passage of the laser light. The
shutter is opened and closed by a second linear feedthrough, actuated pneumatically
and controlled by computer. The in-vessel mirrors have suffered some minor damage
on occasion and have been replaced a few times; no damage has been observed on
the windows, which are better protected by their distance from the plasma. Periodic
cleaning is necessary to remove accumulated deposits, but the performance of the
optical system has never been significantly affected.

After exiting the vacuum vessel, the laser beam returns to the optical table
via two additional 23-cm-diameter mirrors, supported by the building floor. The
distance between the exit window and the focusing paraboloid is approximately 4
meters. The entire beam path outside the vessel is enclosed by round thin-walled
aluminum tubes, and the mirrors are housed in aluminum boxes; the optical table is
also totally enclosed by removable panels. These enclosures are designed to protect
the optics and to minimize airborne sound waves and turbulence that might interfere
with the measurements. The option of Iihing the enclosures with sound-absorbing
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material was left as a possible future improvement in case the initial solution proved
unsatisfactory; however, baseline measurements indicated that ambient acoustic noise
was undetectable. Electrically conductive loops were carefully avoided in all the

support structures and enclosures by installing G-10 fiberglass spacers and inserts at

various connections and joints.
The second off-axis parabolic mirror focuses the beam onto the phase plate (see

Fig. 3.6) by way of two rotatable mirrors that are part of the feedback stabilization

system (described in §3.5). Before reaching the phase plate, the beam passes through

a ZnSe beamsplitter: 25% of the power is reflected and imaged onto the position
sensor, and the remaining 75% is transmitted to the phase plate.

Four phase plates, on loan from the TCA laboratory in Lausanne, Switzerland,
were employed in the initial shakedown tests. Subsequently, three plates were fabri-

cated to our specifications by Infrared Optical Products, Inc. (S. Farmingdale, NY).
The plates are one-dimensional filters (i.e., the conjugate area is a central recessed

strip) and have three different substrates with different reflectivities: BaF 2 , ZnSe,

and Ge (see §2.12). The complementary area is coated with protected aluminum;
antireflective coatings cover the back surfaces of the ZnSe and Ge plates (the reflec-

tivity of BaF 2 is too low to present a concern). The manufacturer was not able to

control the width of the groove within the specified tolerance. After a few iterations,
the following widths were obtained, as measured: 635 pm (BaF2 ), 700 pm (ZnSe),
and 560 pm (Ge). With a focal length of 203 cm, these widths correspond to Q
values of 1.76, 1.94, and 1.55, respectively: based on the discussion in §2.11 (part c),
these values were considered to be acceptable; however, the ZnSe plate has a cutoff
wave number that is slightly higher than the ideal value. The majority of the work
presented in Chapter 5 was carried out with the 560-pm Germanium phase plate;
some work was done with the ZnSe plate, and one ELM study was performed using

a TCA reflective plate with a width of 450 pm.

The normal orientation of the groove corresponds to the toroidal direction in

the tokamak, so that the measurement is sensitive to wave vectors oriented along the
major radius. The angle of incidence of the beam on the phase plate is ~ 90; if the

depth of the groove is exactly one eighth of a wavelength, the phase shift caused by
it upon reflection will not be exactly 900, rather 91.10: this corresponds to a loss in
signal amplitude of [1 - cos(1.10)] ~ 2 x 10-4, a clearly negligible factor.

The phase plate is housed in a rotatable ring within a kinematic mirror mount
with dual-axis adjustability, mounted in turn on a dual-axis, micrometer-driven, pre-
cision translation stage (see Fig. 3.9). This allows the accurate positioning of the
phase plate in the focal plane, with the groove intersecting the focal axis. This task
is aided considerably by a power meter located behind the phase plate: by virtue of

the finite transmissivity of the substrates, the phase plate can be positioned correctly
by maximizing the transmitted power.

The correct orientation of the phase plate is established by placing a narrow
rectangular opaque object horizontally against the entrance window on the tokamak,
and rotating the phase plate until the shadow of the object in the HeNe-laser beam
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Fig. 3.9 Frontal view of the optical table. The phase plate is visible in the center. To the right.

of the frame is the feedback vibration-control system.

overlies the groove. The power that reaches the phase plate is approximately 20% of
the laser power, i.e., currently, ~ 2.7 W. Thus, the peak energy flux at the center is

~ 5.3 kW/cm2 - All three substrates were tested with incident fluxes approxinmately
twice as large, and no heating was observed over a period of several hours. The
installed phase plate is cleaned daily during operations to minimize the likelihood of
dust being burned by the beam and damaging the optical surface. No such danage
has ever been noticed. Precautions have been taken to protect all objects located
near the focal plane, even at some transversal distance from the phase plate, since
the rotatable mirrors can displace the beam by a considerable distance: this usually
happens after a plasma disruption, when the feedback stabilization system becomes
unable to track the beam position.

The beam reflected from the phase plate is passed through two or three ZnSe
lenses, depending on the magnification required (see §3.4): the most common config-
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uration involves two lenses of focal length 25.4 cm. The lenses, combined with the
parabolic mirror, create an image of the DIII -D midplane on the plane of the detector
array. The beam is folded by several mirrors that are designed to orient the image
plane so that the direction of the linear array corresponds to the radial direction
at the object (this procedure is necessitated by the nonplanar nature of the optical
path). The orientation procedure is similar to the one used for the phase plate, but
the opaque object is now placed vertically; two mirrors are then adjusted iteratively
to rotate the beam while keeping the total path constant: the procedure is complete
when the shadow of the object in the HeNe-laser beam overlies the detector array.

A second focus is created between the phase plate and the detector: an antialias-
ing spatial filter, consisting of an iris of variable aperture, is used at that location.
This constitutes also the aperture stop for the scattered radiation.

The detector, custom built by Semiconductor Diagnostics, Inc. (Woburn, MA),
is a 16-element HgMnTe photovoltaic linear array, operated at the temperature of
liquid nitrogen (77 K) and housed in a Dewar, equipped with a ZnSe window with
a field of view of 60*. The detector elements are circular with a diameter of 450 Am
and a center-to-center separation of 700 pm. The saturation level is approximately 3
W/cm 2 , with "soft" saturation beginning around 1 W/cm2. Back-bias is applied to
the detectors to reduce their response time (see §2.12); the bias is of the order of a few
mV, but slightly different voltages are applied to different elements in an attempt to
obtain matching responsivities. The 3-dB frequency was rated at 100 MHz. While we
initially lacked the equipment to test the frequency response, a recent measurement
that was carried out with an interferometer setup and an acousto-optical modulator
has led us to estimate the 3 dB point at only 20 MHz. Unfortunately, an even larger
discrepancy was found in the detector responsivity, which was approximately an order
of magnitude lower than rated. With wide variations between elements (up to a
factor of five), we measured an average responsivity of ~ 0.15 A/W, corresponding
to a quantum efficiency of ~ 2%.

The detector and related electronics, as well as the position-sensor amplifiers,
are located in an aluminum box for rf shielding; the box is attached to the optical
table (see Fig. 3.7). Two removable covers are attached to the box with bolts, and rf
leakage is prevented by fingerstock seals. The box is equipped with two ventilation
openings, and air is circulated into the box by an external fan. The laser beam enters
the box via an additional opening.

The detector Dewar is equipped with SMA connectors; the signals are carried by
short (46-cm-long) coaxial cables to the input SMA connectors of 16 preamplifiers.
The preamplifiers, Perry Amplifier (Brookline, MA) model 490, are characterized
by low noise (noise figure = 2.8 dB) and wide bandwidth (100 MHz), as rated and
confirmed by direct testing. Input and output impedances are 50 Q, and the gain is
26 dB.

To prevent unwanted noise, the ±12 Vdc voltage required by the preamplifiers
and by the detector bias circuits is provided by batteries, also located inside the shield
box. An automatic relay circuit interrupts the battery current after each plasma
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discharge and restarts it two minutes before the following one. This permits to use
only a fraction of the capacity of the battery during a day and prolongs its lifetime.
The battery is recharged overnight by an in-built circuit powered by an external ±14
Vdc power supply. The same supply powers all the other electronics (described in
§3.6) in the box during operations; a separate power supply is used for the position-
sensor ampifiers and sensor bias voltage. Both supplies are ungrounded and draw
ac house current through isolation transformers. All the power and ground leads are
fed into the box through lowpass EMI filters. The shield box is insulated from the
optical table by means of G-10 fiberglass spacers and washers; the ground reference
for all the electronic components is taken at a single point on the box, connected by
a braided conductor to a main building ground. Ground loops between the box and
the optical-table enclosure are avoided by using insulated fe'dthroughs for the cables
exiting the enclosure; differential amplifiers are used at the receiving end, located
approximately 60 meters away.

A relative calibration of the PCI diagnostic is generally performed before each
plasma discharge. A tweeter is permanently installed in the enclosure of one of the
23-cm-diameter mirrors, located approximately 280 cm from the plasma midplane
in the direction of beam propagation. The tweeter, which is driven by an audio
amplifier, can launch acoustic waves in a direction equivalent to the radial direction
in the tokamak. The amplifier-loudspeaker system operates in the range 2-20 kHz
and can generate sound levels of up to 100 dB. The amplifier is driven by a sinewave
generator; normally, this is automatically triggered 50 ms before plasma breakdown
and gated for a duration of 10 ms. Since standing waves are quickly established in the
mirror box, only about the first millisecond is useful for calibration purposes. This
procedure permits to account for variations in detector responsivity and other slow
changes in conditions. Thorough absolute calibrations are performed during in-vessel
maintenance periods ("vents").
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3.4 Optical Design

Two main criteria were adopted in the design of the optical system: diffraction-limited
performance, and flexibility in the choice of magnification and image orientation.

To satisfy the first criterion, aberrations, as well as wave-front distortions caused
by defects in the optical components, had to be minimized. Let us examine the latter
effect first. To avoid image degradation from irregularities in the optical surfaces, a
"scratch-and-dig" surface quality"6 2 of 40-20 was specified for most optics: although
this parameter is in general of limited importance, this is a safe specification that,
ensures that the light absorbed or scattered by local defects will be a negligible
percentage of the total radiation.

A more relevant parameter is the surface accuracy, which accounts for errors
in the radius of curvature and irregularities in the curvature. The accuracy was
specified by using the Rayleigh quarter-wave criterion, which permits a maximum
deviation of one quarter of a wavelength between the distorted wave front and the
ideal spherical wave centered on a selected image point. To account for irregularities
in the deformation, the maximum deviation, or optical path difference (OPD), is
generally estimated to be between 3.5 and 5 times the rms value. Thus, an rms OPD
between one fourteenth and one twentieth of a wavelength is usually required. 162 The
OPD produced by a series of optical surfaces is given by the formula

OPDrms = [E e2 A 2 (N - N')2 (cos i)2] 1/2 , (3.2)

where e is the individual surface ims error, A is the ratio between the illuminated
area and the surface area of the optic, (N - N') is the change in refractive index
across the surface (= 2 for a mirror), and i is the angle of incidence of the beam; the
sum is taken over all surfaces in the imaging system, i.e., in our case, over all surfaces
located between the plasma and the detector.

In our analysis, the illuminated area was taken to be the entire cross section of the
Gaussian beam. This is a very conservative approach, as in reality the relevant area is
that filled by the scattered bundle emanating from a single point in the plasma; since
antialiasing filtering, with a passband k < 10 cm-1, was applied in the majority of
our experiments, it follows that the scattered bundle had a full spread of ~ 3.4 mrad,
occupying only a small fraction of each optical surface (e.g., a 2.1-cm-diameter circle
on the focusing paraboloid). Even in the case of the high-resolution experiment, with
km,, ~ 40 cm-1, most of the optics are considerably larger than the area intercepted
by the bundle (the paraboloid is an effective aperture stop for this case). In addition,
it should be remarked that errors in the radius of curvature are corrected in practice
by shifting the focal and image planes, further reducing the OPD.

The error budget was distributed unevenly among the optics because of cost
considerations. The vacuum windows, being the most expensive item, were specified
with the highest tolerance, a maximum peak-to-peak deviation of one fringe per inch
(one fringe is one half of a visible wavelength of 650 nm); as a result, the exit window
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accounts for a peak-to-peak OPD of 2.6 /Lm. The contribution of the 23-cm-diameter
mirrors is much smaller, in spite of a relatively high tolerance of one half of a fringe
per inch, owing to their oversized diameter. All the other optical components have
specifications of one fringe or better over the whole surface, and their contributions
to the OPD are completely negligible compared to that of the window. Applying Eq.
(3.2) to the complete imaging system, using a factor 3.5 between rms and peak-to-
peak values, the result is OPDrm, ~ AO/14 (where \0 = 10.6 psm), as required by the
Rayleigh quarter-wave criterion.

The Rayleigh quarter-wave criterion was adopted also in the analysis of third-
order aberrations. The aberration OPD was calculated as the sum of the contributions
from all the reflective and refractive surfaces in the imaging system, using standard
formulas. 14 9 ,16 2 In addition, the various types of transverse aberrations at the image
(spherical aberration, coma, astigmatism, Petzval curvature, and distortion) were also
separately calculated and compared with the spatial resolution of the measurement.
In all the configurations employed, as will be discussed shortly, the peak-to-peak
aberration OPD was within a quarter of a wavelength, and the transverse aberrations
were much smaller than the size of the detector elements.

The imaging system was designed in stages. The focal length of the paraboloid
was maximized compatibly with practical constraints imposed by the dimensions of
the optical table. A large f-number is advantageous as it results in smaller aberra-
tions, it reduces the power density on the phase plate, and it allows to increase the
groove size, facilitating fabrication and alignment. In addition, the longitudinal tol-
erance on the position of the phase plate is an increasing function of the focal length.
With our value of F = 203 cm, the Rayleigh length in the vicinity of the focal plane
is ~ 1 cm; with the method of maximizing the power transmitted by the phase plate,
described in §3.3, a resolution of a few mm is achieved.

Zinc selenide was chosen as the lens material because of its transparency to visible
light, as opposed to germanium. Both two- and three-lens systems were considered.
For a given magnification, the distance between object and image being essentially
fixed by geometric constraints, a two-lens system has no positional degrees of freedom,
whereas a three-lens system has one degree of freedom. A Fortran program was
written to calculate the positions of the lenses (with a free parameter in the three-
lens case), the aberrations, and the sensitivity of the magnification and of the image
position to small positional errors. Several sets of focal lengths were explored.

The majority of the experiments called for a magnification tMI = 0.15, to image
the Gaussian width of the beam in the plasma onto the length of the detector array.
The spatial resolution is equal to the spacing between detector elements divided by
IMI, i.e., 4.7 mm. Antialiasing lowpass filtering is applied, limiting the bandwidth
to the Nyquist spatial frequency k = 6.7 cm-. A simple two-lens system, shown in
Fig. 3.10(a), was employed in nearly all the studies discussed in this thesis. Both
lenses have a focal length of 25.4 cm; the peak-to-peak aberration OPD is 7 x 10-3 X

A0, with the dominant transverse image aberration being a distortion of 2.7 pm:
therefore, aberrations are completely negligible. In this configuration, the second
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lens is essentially a relay lens; thus, a small shift of this lens produces a change in
magnification without altering the image position (to first order): a shift of 1 cm
corresponds to a 16% variation in magnification. The position of the image can be
fine-tuned with the first lens, using the second one to readjust the magnification.
Also, a real focus is formed approximately 2 cm after the relay lens, allowing the
convenient placement of an antialiasing iris.

This two-lens setup is robust and easy to align. However, it does not allow large
changes in magnification. The two-lens configuration shown in Fig. 3.10(b), with the
second lens now having a focal length of 6.35 cm, was used in a high-magnification

(IMI = 1.2) experiment. In this case only a small fraction of the beam width is
imaged onto the detector length, but the spatial resolution is now 0.6 mm. The cross
section of the beam can be scanned by adjusting the mirror in front of the detector;
however, measurements are confined to the central 4.6-cm-diameter circle to prevent
eccessive aberrations. The bandwidth is limited to 40 cm 1 by an iris located, again,
in a focal plane between the second lens and the detector. With these parameters,
the peak-to-peak aberration OPD is Ao/4 and the image distortion is 0.2 mm; thus,
the Rayleigh criterion is satisfied and transverse aberrations are a factor of 3.5 lower
than the detector spacing. The cylindrical mirror (F = 7.6 cm) shown in the figure
was employed to condense the radiation in the direction corresponding to the toroidal
direction in the plasma, to increase the power density and raise the signal-to-noise
ratio to an acceptable level (still a factor of approximately 100 lower than in the
standard case).

The desire to attain better flexibility in varying the magnification motivated the
design of the three-lens systems seen in Figs. 3.10(c) and (d). The focal length of the
first two lenses is 25.4 cm and that of the third one is 6.35 cm. The magnification
can easily be increased by shifting the last lens away from the detector, without
moving the other optics. This convenience is offset by relatively severe aberrations,
particularly spherical aberration and distortion; these can be contained by limiting,
respectively, the spatial bandwidth and the field of view. The case shown in Fig.
3.10(c) yields a magnification of 0.54 and an attendant spatial resolution of 1.3 mm;
with a bandwidth equal to the Nyquist limit, 24 cm 1 , the spherical aberration
is 0.2 mm; to contain the OPD within the Rayleigh limit, the field of view was
then restricted to a 4.6-cm diameter. The case of Fig. 3.10(d) is characterized by

IMI = 0.24 and a spatial resolution of 2.9 mm; with a Nyquist limit of 11 cm', the
field of view could be expanded to a 5.5-cm diameter, yielding a distortion of 0.15
mm and a peak-to-peak OPD equal to AO/4.

It should be noted that when the role of the aperture stop is played by an
antialiasing iris, set at the Nyquist limit, the transverse spatial resolution at the
image, given by the Sparrow criterion,162 is exactly equal to the detector separation.

The longitudinal resolution at the object, or depth of field, can be evaluated by
imposing the near-field condition Qd = (k 2 /2ko) x Iozl < 1 (see §2.8), where km
is the largest wave number admitted by the system. The resulting limit,
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A\2.
16z1 < "'" (3.3)

7rA0

is equivalent, within a factor 7r/2, to the Rayleigh quarter-wave criterion applied to the
wavefront aberration caused by defocusing." 9 In the most common case, kma, = 6.7
cm 1 , and 6z = ±264 cm; this distance exceeds the length of the plasma column, a
consequence of operating in the Raman-Nath regime. In the Bragg regime (k > 12
cm-1), the nominal depth of field becomes shorter than the plasma column, and
near-field conditions simply cannot be established. In that case the k-dependent
longitudinal modulation expressed by Eq. (2.81) must be taken into consideration.

The tolerance on the longitudinal position of the detector is equal to the depth
of field times the longitudinal magnification (the square of the transversal magnifica-

tion). Therefore,

kZimage ~ iM 2  nAin/(7Ao). (3.4)

If the bandwidth is set at the Nyquist limit, one can write bzimage ±(4/ir) x (s2 /Ao),
where s is the detector spacing; thus, 6 zinage ~ ±6 cm.

As was mentioned in §2.14, acoustic waves are a useful tool for verifying the

correct location of the detector. A displacement d from the object plane causes the

signal from a monochromatic acoustic wave to be reduced by a factor cos(k 2d/2ko)
(naturally, the antialiasing filter is removed when an acoustic test is performed).

When d = 264 cm (the longitudinal tolerance derived above), the first zero of the
cosine factor occurs at k = 8.4 cm-1, corresponding to a frequency of 46 kHz. Op-
erating between 5 and 20 kHz, where the cosine factor remains very close to 1, a

more sensitive procedure is to observe the scintillation signal; this is given by the

Hermitian component of Eq. (2.80), i.e., by simply replacing the cosine with a sine.

With d = 264 cm and a frequency of 20 kHz, one finds sin(k2 d/2ko) ~ 0.3; therefore,
the imaging is considered correct if the scintillation signal at 20 kHz is less than 0.3
times the phase-contrast signal: usually, for better precision, the position of the image

is varied slowly until a point of minimum scintillation signal is found. The change
from the phase-contrast to the scintillation configuration is effected very simply by

translating the phase plate until all the unscattered and scattered radiation impinges

on the complementary area, which then acts simply as a reflector.

Acoustic waves are also used in the important task of centering the antialiasing

iris correctly. By launching -, wave at a fixed frequency, and then slowly closing the
aperture of the iris, the signal should disappear suddenly at a given point; if the

disappearance is gradual, the iris is off-center. This test is repeated by launching the
wave in the perpendicular direction, and the iris is adjusted over a few iterations.
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3.5 Feedback Vibration-Control System

An internal-reference interferometer, such as a phase-contrast imaging apparatus,
is insensitive to vibration-induced variations in the path length. This permits in
general the achievement of a better sensitivity than that obtained with an external-
reference system. However, the phase-contrast technique is vulnerable to vibrations
in a different way: if the beam focus is displaced from the phase-plate groove, the
contrast is lost and the signal disappears. Thus, angular displacements of the beam
are deleterious, while to first order translational shifts are not. The design and
successful implementation of a feedback vibration-control system to keep the beam
correctly focused was the single most challenging task in the development of this
diagnostic.

(a) Design Criteria

The design criteria were based on direct measurements of the vibrations during
various plasma discharges, using a HeNe-laser position sensor located in the focal
plane. It was found that the dominant component in the vibration spectrum, on
both the vertical and the horizontal axis, was an oscillation at - 20 Hz, the reso-
nant frequency of the vessel; superimposed on this is a slow irregular drift observed
throughout the duration of the discharge (see Fig. 3.11).

The amplitude of the vibrations depends on the magnitude of the currents circu-
lating in the magnetic-field coils, with the ohmic-field coils playing the dominant role;
with a plasma current of 2 MA, the 20-Hz vibration in the focal plane is typically of
the order of ±1 mm, while the slower drift ranges from 1 to 2 mm. Higher-frequency
resonances are also observed with diminishing amplitudes, as shown in Fig. 3.12. A
plasma disruption can cause displacements of up to 5 mm in a very short time scale.
For comparison, we recall that the width of the phase-plate groove is in the range
0.56-0.70 mm and that the diameter of the Gaussian focal spot is 0.36 mm.

To evaluate the effect on the measurement of a vibrational shift in the focal
plane, it is useful to recall Eq. (2.120), which gives the transfer function of the
phase-contrast filter. Expressing the shift in wave-number space as k, the modified
transfer function is obtained by replacing the function Pk, (k.) by P, (k. - k,) [these
functions are defined by Eq. (2.113)]. The modified phase-contrast transfer function
is now accompanied by a nonzero phase shift in general, and must be defined through
the general expression given in Eq. (2.176). By using Eq. (2.118) for the case of
an infinite aperture, the transfer function can be written explicitly as a sum of error
functions, which reduces to Eq. (2.141) for k, = 0. For simplicity, we express here
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the transfer function and the phase in the following form:

T(K) cos9(K) = v/uo(0) erf(Q + k') + erf(Q - k')

- [erf(Q + K' + K,) + erf(Q + K' - K' )

+ erf(Q - K' + K,) + erf(Q - K' - K')] ,
1

T(K) sin 0(K) = - uo(0) [erf(Q + K,' + K') - erf(Q + K' - K')

- erf(Q - K' + K') + erf(Q - K' - K)],
(3.5)

where Q = kewo/2, K' = Kwo/2, and k' = k~wo/2.
The percentage variation in the value of the transfer function can be taken as a

measure of the error introduced by the shift. By imposing that the error be less than
1% for k > ir/wo, one can find the condition jk, < 0.13 x k,. With this condition,
we also find that the percentage of dc power lost from the phase-plate groove is less
than 1 X 10- 3 .

The condition 1k. < 0.13 x kc corresponds to a maximum acceptable shift of
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Fig. 3.13 Feedback vibration-control system.

±35 tim. Thus, on the basis of the measurements performed, it was decided that the
minimum requirements for the feedback system would be a damping factor of 1/30
(in amplitude) at 20 Hz and a factor of 1/60 below 5 Hz. The design goals for the
suppression factor were set conservatively at 40 dB (1/100 in amplitude) at 20 Hz and
50 dB at 5 Hz. No attempt was made to control the vibrations during a disruption
event. The need for a high degree of precision was the main motivating factor behind
the choice of a feedback configuration, with the position sensor at the focus, over a
simple open-loop compensation configuration, with the position sensor located before
the correcting mirror.

The design requirements discussed above apply to the direction perpendicular to
the orientation of the groove, i.e., the direction corresponding to the major radius in
the plasma. For better control, a second, independent feedback system was also built
for the toroidal direction; the damping factors for this system, however, were set a
factor of 3 lower than those for the perpendicular system.

The single-loop negative-feedback control system is shown in block-diagram form
in Fig. 3.13. Two similar configurations are used for the two degrees of freedom
represented by the two perpendicular axes. The position of the beam focus on the
phase plate is measured by a dual-axis position sensor located in an image plane
of the phase plate. This image is created by a set of optics that utilize a small
percentage of the radiation, extracted from the main beam by means of a beamsplitter.
The position signals are processed by two electronic frequency-compensation circuits,
whose outputs are used to drive two rotatable mirrors located at a distance of 50 cm
from the phase plate. The two mirrors control the orientation of the beam in the
two perpendicular directions, and attempt to keep the position signals at zero (see
Fig. 3.14). The only optical element between the mirrors and the phase plate is the
beamsplitter.

In the absence of feedforward control elements, and under the assumption that
no vibrational errors are introduced between the rotatable mirrors and the phase
plate, the forward path is characterized simply by a unity transfer function. The
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Fig. 3.14 Illustration of the correction mechanism in the feedback system.

feedback elements comprise the position sensing circuit (including the delivery optics,
the sensor, and the position-computing circuitry), the frequency compensation circuit,
and the rotatable mirrors.

(b) Position-Sensing Circuit

The feasibility of the concept was proven initially by using a visible-light sen-
sor that monitored the position of the colinear HeNe-laser beam. The availability of
lateral-effect detectors, providing continuous, approximately linear position measure-
ments over a wide area, lent considerable attractiveness to the visible-light scheme.
Minor difficulties included the need to block ambient light from reaching the detection
region, and the modest transmissivity of the vessel optics, which initially imposed un-
acceptable limits on the signal-to-noise ratio and on the related sensitivity. When a
15-mW HeNe laser replaced the original 5-mW model, the sensitivity became satis-
factory; however, it was discovered that the laser power was not sufficiently stable for
this application: the power flicker introduced a disturbance in the system, resulting
in an additional vibration of the focal spot on the phase plate. It was decided then
that the system should be based directly on the C0 2-laser beam.

The first quadrant detectors for the 10.6-pm wavelength were being developed
commercially at the time our system was being designed. Our sensor was built by
Belov Technology (New Brunswick, NJ); it is composed of four square (2-mm side)
HgCdTe photoconductive elements in a quadrant configuration (with a spacing of ~
50 pm), as shown in Fig. 3.15, housed in a Dewar for operation at liquid-nitrogen
temperature (77 K). The detectors have a responsivity of ~ 600 V/W (with a bias
current of 20-40 mA) and a detectivity D* ~ 2 x 1010 Hz cmI/ 2 /W. The resistance
of the unilluminated element is ~ 50 Q.

Each position signal is proportional to the difference between the signals from
two opposing elements, divided by their sum. These operations are performed by two
signal-conditioning amplifiers, United Detector Technology (Hawthorne, CA) model
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301DIV: each module provides an analog output proportional to the position (±10
V at full range) and also one proportional to the sum of the signals, for monitoring
purposes. This model is designed for use with visible photodiodes that operate in
current mode (see §2.12): thus, the input stage is a transimpedance amphier. Since
the Belov sensors operate in voltage mode, the input stage had to be modified with
the addition of an appropriate front-end impedance; we also added the necessary
biasing circuit.

Figure 3.16 shows the schematics of the modified circuitry. The common ground
of the four sensors is left floating. The four 100-Q potentiometers are adjusted to
equalize the four signals when the detector is unilluminated; the 50-n potentiometers
are then used to bring the signals close to zero (but not exactly zero, to prevent
the position signal from becoming too large), to achieve maximum sensitivity. This
procedure is repeated every few months to counteract the slow drifts that occur in
the system. The bias current provided by the circuit is ~ 30 mA. Six different values
can be chosen, by means of a switch, for the gain of the input amplification stage; this
gain is not critical, as the position signal does not depend on it: however, the best
performance (largest signal-to-noise ratio) is obtained at a highest gain that does not
cause saturation.

To further reduce the noise, especially at 60 Hz, the internal transformers of the
units are bypassed and the ±15 Vde voltage is provided by an external power supply,
which is carefully filtered and isolated. To avoid rf interference from ICRF sources,
and the attendant amplifier rectification (which was seen early on to constitute a
severe problem), the 301DIV modules are located in the shield box that contains
all the electronics. The power cables are filtered and the sensor cables are shielded.
The position and sum signals are carried by coaxial cables to the control-room area,
approximately 60 meters away.

One disadvantage of quadrant detectors over lateral-effect photodiodes is that the
''position" signal does not depend linearly on the actual position of the beam spot
on the sensor. The response clearly drops to zero when the spot is located on one
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Fig. 3.16 Schematics of the sensor circuitry and input stage of the position-compensation circuit.

element only (see Fig. 3.15). More generally, the sensitivity decreases monotonically
as the beam spot moves away from a centered position. Central to the modeling and
design of our feedback system was the assumption that the displacement is sufficiently
small for the sensitivity to be treated as a constant. The sensitivity at the center can
be calculated for a Gaussian spot; in our case, with a focal half-width of 180 Am, the
sensitivity (assuming a full-range swing of ±10 V) is 125 V/mm.

The optics delivering the beam to the position sensor (see Fig. 3.17) serve three
purposes: creating an image of the phase plate on the sensor, providing the de-
sired magnification, and attenuating the power to avoid damaging the sensor. In
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Fig. 3.17 Schematics of feedback-system optics.

the constant-sensitivity approximation, the magnification does not affect the position
sensitivity: although the sensitivity is inversely proportional to the spot size, the
shifts are also magnified by the same factor. However, it is important to tailor the

magnification to obtain a spot size substantially larger than the element separation

(50 Mm), while keeping the vibration amplitude sufficiently small to allow operating

essentially in the linear regime. Also, it should be noted that by increasing the spot

size, the flux saturation level is reached at a larger overall power, resulting in a better

signal-to-noise ratio. In our system we opted for a magnification of 2.5: hence, the

Gaussian width at the sensor is 0.9 mm.
The saturation level of the sensor elements is of the order of 10 mW/cm2 . An ex-

tended region of "soft" saturation exists above this power level, with the responsivity
progressively decreasing, but with the signal still slowly increasing. Flux levels of the

order of 3 W/cm 2 can be handled safely. Operating well into the saturation regime is
advantageous, since the responsivity is not a factor in the position calculation, while
the signal-to-noise ratio is larger at higher signal levels.

The beamsplitter has a front-surface reflectivity of 25%, while the back surface is
antireflectively coated. Two additional partial reflectors along the path further reduce

the power by a factor of 80, down to a final level of 10 mW (and a maximum flux

on the sensor of 3.1 W/cm2 ). A beamsplitter with a much lower reflectivity would
prevent this loss of essentially one quarter of the available power: however, direct

testing showed that in that case the residual reflectivity from the back surface of the
beamsplitter generates a ghost image that significantly disturbs the performance of

the feedback system. In addition, the discussion of §2.12 proved that at the present
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power levels the sensitivity of the diagnostic depends only weakly on power (cf. Fig.
2.26).

The position of the sensor is fine-tuned with the feedback system in operation.
A deliberate angular displacement is introduced in the beam by tilting one of the
mirrors in the optical path, typically the parabolic mirror. If the sensor is in the
correct location, the beam focus should not move from the phase-plate groove; if the
spot moves, the position of the sensor is corrected slightly and the process is iterated
until the desired configuration is obtained. This testing procedure is quite accurate,
as very small shifts on the phase plate can be detected by monitoring the power
transmitted by it.

(c) Scanning Mirrors

Several solutions were considered for the rotatable mirrors. The two key require-
ments, range and speed, are difficult to satisfy simultaneously. Motors lack speed
and piezoelectric devices do not have sufficient range. The choice fell on scanning
mirrors mounted on galvanometers, manufactured by General Scanning Inc. (Water-
town, MA). With these devices, the deflection of the mirror is proportional to the
applied current, supplied by an amplifier. The amplifier has external offset and gain
controls; the gain can be varied by a factor of six. The resonant frequency of the
scanner decreases and the range increases with increasing size; since the available
range was generally adequate for our purposes, increasing the resonant frequency was
the first priority. The required mirror size depends on the distance of the mirrors
from the focal plane: as will be discussed at the end of this section, the perturbation
introduced by the feedback system is mimimized by maximizing this distance. This
conflicts with the frequency requirement. The compromise choice was a distance of
50 cm; the scanners selected have resonant frequencies in the range 90-100 Hz.

The analysis of a linear and stationary control system is best carried out through
the Laplace transformation.'5 3 In the Laplace-variable space, the closed-loop transfer
function can be written

T(s) G(s) (3.6)
1 + G(s)H(s)'

where G(s) is the forward transfer function and H(s) is the feedback transfer function.
In our case, G = 1 and, referring to Fig. 3.13, we can write

1
T(s) = (3.7)

1 + P(s)C(s)S(s)'

where P, C, and S are the transfer functions of the position-sensing circuit, of the
frequency-compensation circuit, and of the scanning mirror, respectively.

A prerequisite to the design of the compensation circuit is a knowledge of P(s)
and S(s). Although we are chiefly concerned with the low-frequency range, the mag-
nitude of the requird damping factor is such that the high-frequency (up to 2-3
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kHz) characteristics must also be considered in a stability and response analysis. The

bandwidth of the position-sensing circuit is defined by the 301DIV amplifiers and is

~ 10 kHz; thus, P(s) can be approximated by a constant.
The frequency response function of the mirrors, S(iw), was determined exper-

imentally by applying a sinusoidal input to the scanner driver and measuring the
amplitude and phase of the corresponding deflection (by means of a position sensor).
The transfer function S(s) is the analytic continuation of S(iw). [We are using here,
as is customary in control theory, the "engineering" convention for the sign of w: a

harmonic term is represented by the exponential exp(+iwt).] The response functions

for the two mirrors are plotted in Fig. 3.18 in the form of Bode diagrams (log-
magnitude and phase). The behavior of these curves suggests that the scanners may

be modeled approximately as forced oscillators. The transfer function of an oscillator

can be written

2

S(s U" . S(0), (3.8)
s2+2(wns+ n

where Wn is the natural, or resonant, angular frequency and ( is the damping ra-

tio. The parameters are derived from experimental measurements by means of least-

squares fits: the values obtained for v,, = wn/(27r) for the two mirrors were 99 Hz and

87 Hz, and the damping ratios were 0.07 and 0.13, respectively. The time constant

(1/e time in response to a step input) is equal to 1/((wn), i.e., 23 ms and 14 ms,
respectively, for the two mirrors.

This initial model was then improved by including a time delay, and an additional

pole to account for a faster descent at high frequency: the result is

2 - 8r

S(s) = +" I S(O)-(s), (3.9)
s2+2 s+ + s/W+()n);(3

where wd/( 27r) ~ 270 Hz and -r ~ 65 ps for both mirrors. The function -(s) is not

modeled explicitly: it accounts for high-frequency irregularities, such as the secondary

resonance at ~ 2.9 kHz (see Fig. 3.18), and it is equal to unity at low frequency.

(d) Design of the Compensation Circuit

Ideally, the optimal transfer function of the compensation circuit, C(s), can be

obtained by dividing the desired open-loop function by P and S. In practice, there are

usually several constraints that force departures from the "ideal" transfer function.

The principal challenge lies in obtaining the desired overall gain at low frequency (20

Hz) without rendering the system unstable at high frequency. The system is stable

if and only if all the poles of the closed-loop function T(s) have negative real parts.

The poles of T are the zeros of the function 1 + PCS.

Our compensation circuit was built from a combination of integration, derivative,
phase-lead, and phase-lag networks, whose poles and zeros are real and negative. The
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Fig. 3.18 Bode diagrams for the two scanning mirrors used in the feedback system.
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poles of S(s) [cf. Eq. (3.9)] are s = -(w, ± iw(1 - (2)1/2 and s = -wd; their real

parts are also negative (an obvious consequence of the stability of the scanners!). It

follows that all the poles of 1 + PCS lie in the left-hand s-plane. Also, since all

polynomial coefficients in the open-loop function PCS are real, a contour that is

up-down symmetric in the s-plane maps onto a similarly symmetric contour in the

PCS-plane.
In the light of these observations, it is convenient to employ the Nyquist stability

criterion16 3 . First, we draw the Nyquist contour in the s-plane, shown in Fig. 3.19(a):

the integration limits on the imaginary axis are ±o, so the contour encloses the entire

right-hand s-plane. We then map this contour onto the PCS-plane, as shown in Fig.
3.19(b) (for two different cases). The Nyquist criterion, for an open-loop function free

of poles with positive real parts, states that the feedback system is stable if and only

if the PCS-plane contour does not encircle the (-1,0) point. Under the assumption

that the open-loop function PCS is zero for |sI -+ oo, and by virtue of the up-down

symmetry of the plot, the Nyquist criterion can be restated in the following way: at

any point in which the phase of PCS is 1800, the modulus IPCS must be smaller

than one. Figure 3.19(b) shows an example of a stable system and one of an unstable

system. This criterion has a simple intuitive meaning: when the phase is 1800, the

feedback becomes positive instead of negative, and the error signal is reinforced rather

than damped: if the modulus of the open-loop transfer function is larger than one,
the error is amplified indefinitely and the system becomes unstable.

The alternative formulation of the Nyquist criterion can be utilized in a natural

fashion to define the relative stability of the system. Two measures of relative stability
are the gain margin, i.e. the value of 1/IPCSI at the frequency at which the phase

angle reaches 1800, and the phase margin, i.e. the smallest phase lag that has to be

added before the system becomes unstable. In general, increasing the margins serves

to shorten the damping time in response to a step-function input. In the frequency

domain, the margin region is one where, if the margin is too small, the closed-loop

transfer function may have a modulus larger than one, that is, it may amplify rather

than dampen vibrations. Thus, it is important to evaluate not only the open-loop

transfer function, to ensure that the system is stable, but also the closed-loop transfer

function, to ensure that the phase and gain margins are sufficiently large to avoid

undesired amplification.

The model for the transfer function of the scanner, expressed by Eq. (3.9), was

used as a guide in the development of the compensation circuit. A function of the

type s2+2(wns+w2 would compensate the oscillator component perfectly. However,
this function is difficult to obtain in practice, owing to saturation problems and high-

frequency instabilities. We opted therefore for a function of the type (1 + sra) (1 + sr,),
corresponding to a double-derivative network; an additional derivative, (1 + src), was

added to compensate the (1 + s/wd)~1 term in S(s) and prevent an excessively rapid

descent at high frequency. A lag network, (1 + srd)/(1 + s7e), with rd < -e, was

added to enhance the response around 20 Hz. We then added a second lag network,
(1 + srf)/(1 + srg), to provide better control over the high-frequency response; and
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finally we included an integrator (with a low-frequency limiter) (1+srh)-' to enhance

the low frequencies. The resulting function has five zeros and three poles, thus it
diverges quadratically at high frequency; therefore, it was necessary to add also a

four-pole rolloff function to prevent resonances at very high frequency. The complete
transfer function is then

C(s) = (1 + sTa)(1 + srb)(1 + src) I + sra 1 + Srf 1 C(O),
(1 + 8s7ro)(1 + STro2)(I + srrO3)(1 + STro 4 ) 1 + sre 1 + srg 1 + srh

(3.10)

where the Tro's are the rolloff times.
The logical steps described above allowed us to obtain tentative values for all the

T parameters, resulting in a function that approached the design requirements. At

this point a Fortran program was developed to scan the 12-dimensional parameter

space in a region around the initial values, in order to optimize the global transfer
function. The optimization criterion consisted of maximizing the ratio of the gains

(|PCSI) calculated at 20 Hz and at the 180' point, without exceeding a given phase
margin. The set of r parameters defines the relative open-loop function; the global

gain can then be varied as an independent parameter to control the gain margin. This
numerical analysis did not employ the approximate function S(iw) derived from the

model; rather it used the actual measured values at a discrete set of frequency points,
including the second resonance at - 2.9 kHz. This program was rather CPU-intensive

and was run on the NERSC Cray-2 supercomputer at Lawrence Livermore National
Laboratory. The results for different values of the phase margin were evaluated by
calculating the closed-loop tranifer function and also by experimental testing.

For the sake of brevity we shall discuss only the principal (radial) feedback sys-
tem. The results for the second circuit are qualitatively similar, with some changes
due to the slightly different response of the mirror. In Fig. 3.20 are shown the cal-

culated open-loop [Fig. 3.20(a)] and closed-loop [Fig. 3.20(b)) transfer functions for

three values of the phase margin (20*, 300, and 400) and for a gain margin of 1.4. All
three systems satisfy the design requirements, both theoretically and experimentally.
The Nyquist diagrams of Fig. 3.19(b) correspond to the 20*-margin system, and to

gain margins of 1.4 (stable curve) and 0.7 (unstable curve). It should be noted that
at the secona resonance (2.9 kHz) the gain is above unity, but the overall phase at
that frequency is near zero and the systcm remains stable.

The choice of the phase and gain margins depends on the details of the closed-
loop transfer function in the high-frequency range (> 100 Hz). The phase margin is
reached in the vicinity of 200 Hz; since vibrations in that frequency range are not
negligible, a damping ratio of approximately 0.2 is desirable. It is also important
to avoid large amplification factors at L 11 frequencies. Systems characterized by the

three phase margins documented in Fig. 3.20 were employed and tested extensively,
and our preference went to the most aggressive configuration, that is, the 20' system.

The r parameters for this system are as follows: -r = Tb = 7-,= r = 1.8 ms;
Te = rh = 32 ms; rf = 78 ps; rg = 320 ps; Trol = 15 ps; Tro2 = 13 ps; Tro3 = 36 ps;

and Tro4 3.7 Ms.
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Once the system is in place, the gain margin remains a free parameter, as it
can be varied by an overall gain control. We used a modified Nichols chart'" to
aid in the choice of the optimal gain. A Nichols chart is normally defined for a

unity feedback transfer function; in our modified version, we defined it for a unity
forward transfer function, which corresponds to our case. (Our chart can be obtained
from the standard one by a simple 1800 rotation about the (-180*, 0 dB) point.] The
coordinate system of the chart is defined by the phase (abscissa) and by the logarithm
of the modulus (ordinate) of the open-loop transfer function H = PCS; the chart
itself is simply a set of phase and log-magnitude contours of the closed-loop transfer
function 1/(1 + PCS).

Figure 3.21 shows a Nichols chart with a set of curves, each of which represents
the PCS(iw) locus that corresponds to a particular dc gain value, for the 200 system.
The dashed line corresponds to a gain that causes unacceptable amplification of sec-
ondary vibrational frequencies; the solid lines are considered acceptable. A de gain
of 2560 (68 dB), corresponding to a gain margin of 1.4, was chosen as the optimal
operation point. The very high value of the dc gain implies that steady-state shifts
are corrected with a high degree of accuracy.

A compensation circuit with the desired transfer function can be obtained in
simple and inexpensive fashion utilizing two operational amplifiers and a combina-
tion of resistors and capacitors, as shown in Fig. 3.22. The values of the resistances
and capacitances are calculated from the desired r values by solving the set of equa-
tions shown in the figure. A simple Fortran program was written to carry out this
calculation routinely.

The circuitry for the compensation circuits relative to the two directions of vi-
bration was assembled in a box with input and output BNC connectors; a reset
button was included on each channel to set the output voltage transiently to zero, for

alignment purposes. The resistors and capacitors are not hard-wired, rather they are
housed in IC sockets for easy interchangeability. The box is located in a room, called
the "annex", adjacent to the DIII-D control room. The position signals are carried
from the tokamak hall to the annex by twisted-shielded cable pairs, and are then
conditioned by differential-input CAMAC amplifiers (Aeon 3204 modules) to avoid
any ground loops. The amplifiers can also provide additional gain control as needed,
although they are normally set at unity gain. The outputs from the amplifiers are
fed into the compensation circuits; the same signals are monitored on an oscilloscope
during operations and are also digitized and recorded. The output signals from the
compensation circuits are used to drive the scanner controllers, also located in the
annex; these units provide a separate output, proportional to the current driven in
the galvanometers, for monitoring purposes: these signals are also digitized during
plasma discharges. Finally, the output currents are carried to the scanners in the
machine hall by twisted-shielded cable pairs.

(e) Sensitivity and Resolution
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Fig. 3.21 Modified Nichols chart of constant-magnitude and constant-phase contours of the

closed-loop transfer function.

The overall gain of each individual component of the feedback circuit can be
adjusted, so the required global dc gain can be distributed in different ways among
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Fig. 3.22 Schematics of the compensation circuit and defining equations.

the components. This decision is chiefly dependent on sensitivity considerations. The

ultimate limit tehe precision of the error correction attained by the feedback network
is determined by the signal-to-noise ratio. The average squared error o the position
can be formally written as follows:

thPCS|2 +e CSof2 a dh v2ee +a b d
( )2 = - - - (3.11)

(6x) |1 + pCS|2 27r '

where e Hnis the squared intrinsic positional uncertainty per unit frequency of the

position-sensing circuit, is he noise associated with the compensation circuit (at
input), n is the input noise from the scanner electronics, and er is a disturbance in
the mirror position.

For a given value of PCS, the effect of Ep and e. on the spot position is fixed;
the effects of ec and E, however, can be minimized by minimizing |CS| and tS,
respectively. Hence, the best performance is obtained by maximizing P. The value

of IPT can be varied via a range control on the 301DIV unit: the maximum value
corresponds to an output swing of i10 V, as mentioned earlier. The individual

gain values of the various components are as follows: the position-sensing circuit,

as seen earlier, has a gain of 125 V/mm; the input and output stages (op-amps)
of the compensation circuit provide dc gains of 0.16 and 4.14, respectively; and the

driver-scanner system has a dc responsivity in the range 18-72 mnm/V.
The gain control on the scanner driver is very useful for locating the optimal

operation point. By increasing the gain, one can reach an unstable point, character-
ized by the sudden onset of a steady sinusoidal oscillation at the 180' frequency (~
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1.3 kHz). From this point the gain must then be reduced by an amount equal to the
desired gain margin.

It must be remarked that the gain of the position-sensing circuit is such that its
output signal reaches saturation (±10V) when the displacement of the spot is only 0.2
mm on the phase plate, and 0.5 mm on the sensor. Therefore, accurate positioning is
necessary before the feedback loop can be closed. The offset controls on the scanner
drivers are quite use'ul in this respect. In addition, when the loop is closed, the offset
control can be used for very fine adjustments, since its range is now reduced by a
factor equal to the dc gain (= 2560).

The various sources of noise and disturbances included in Eq. (3.11) have been
evaluated both theoretically and experimentally. The total positional uncertainty
in the position-sensing circuit, ep,/A, is estimated conservatively at - 1 pim rms.
Electronic noise is negligible in comparison with thermal and magnetic drifts; thermal
drifts were monitored over a period of several hours, and magnetic-field effects were
evaluated by using a horseshoe magnet and applying a magnetic field larger than the
ambient field during a discharge. Since the dominant components of Ep are at low
frequency (0-10 Hz), where JPCS| > 1, Eq. (3.11) tells us that the contribution of
this uncertainty to the total error is 6x, ~ 1 pm rms.

The electronic noise in the compensation circuit is broadband, and eVf/ <
1 mV rms; the contribution to the positional error is 6x, < ecV'A/IPI < 8 x 10-3
pm rms, a negligible amount. Similarly, the noise in the scanner driver is broadband
and was experimentally determined to be less than 1 mV rms. We can then write
6Xd < edVAf/(JPICimin), where JCmin ~ 0.01 (at ~ 100 Hz); hence, 6Xd < 0.8 /pm
rms.

The only other potentially important disturbance is the effect of the ambient
magnetic fields on the scanner galvanometers. This is a low-frequency effect: thus,
its effect on the positional error in Eq. (3.11) is Sxm : EmV'-AJPCSI, i'e., it is
suppressed by a factor of 2560 (at dc). Rather than measuring em, it proved simpler
to measure 6x, with the feedback loop closed, by using a horseshoe magnet. With
an estimated field of 400 Gauss, we found 6rm < 10 pm (measured by shifting the
micrometer-driven base of the phase plate to the point where the transmitted power
is maximum). With an average field during a plasma discharge of ~ 200 Gauss, we
can estimate an average error of ±5 pm. Since our primary design requirement was to
contain the shift within ±35 pm, an error of this magnitude is considered acceptable.

(f) Performance of the System

The design criteria outlined at the beginning of this section were met success-
fully by the feedback system described above. Figure 3.23 shows the rms vibration
traces, along with the plasma current, for two similar plasma discharges, with no
compensation and with feedback applied; the design target level is also shown in the
figure: the performance achieved is well within this limit. magnified, Fig. 3.23(c)). A
similar comparison is shown for the frequency spectra of the vibrations in Fig. 3.24.
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Fig. 3.23 Comparison of rms vibration levels with and without feedback.

Disruption events generally cause the beam spot to move outside the range of the

position sensor; after a discharge terminated by such an event, the feedback system
must be reset manually, by depressing the reset buttons on the compensation-circuit
box.

It must be remarked in closing that lateral translations of the beam, unlike

angular displacements, are not corrected by this feedback system. Therefore, any
such translations caused by vibrations of the optics result in an error in the image
position. In addition, the correction applied by the feedback system at the focus is
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Fig. 3.24 Vibration autospectrum (a) without feedback and (b) with feedback applied.

also a source of displacement at the image, as shown schematically in Fig. 3.25. To

evaluate the magnitude of these effects, let us assume that the error is due to a single

mirror, located a distance D from the focusing paraboloid and tifted by a small angle

0 from its set position. Then, in the absence of a feedback system, the apparent

position of the object (the plasma) is shifted by a distance

A, = 20(L - D), (3.12)
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Fig. 3.25 Illustration of image-plane shift caused by focal-plane compensation.

where L ~ 5.5 m is the distance between the plasma and the parabolic mirror. With
the feedback loop in operation, the shift becomes

A = -2 D + F ( - 1) , (3.13)

where F is the focal length of the paraboloid and d is the distance between the focal
plane and the rotatable mirrors. Clearly the error is reduced as d is increased, as can
be intuitively understood by inspecting Fig. 3.25. As was discussed at the beginning
of this section, the magnitude of d is limited in practice by considerations of mirror
size; in our case, F/d ~ 4, and F(F/d - 1) ~ 6 m. A comparison between Eqs. (3.12)
and (3.13), with the values given, yields the conclusion that the error is worsened by
the feedback system.

The total error can be estimated as follows: we assume that all the vibrations
are caused by the four mirrors mounted on the DIII-D vessel, and we further assume
that they vibrate with equal average amplitude. We then write the mean square value
of the uncorrected focal displacement as

((bx)2) = 4F 2 ((26)2). (3.14)

Using the experimentally measured value of - 0.7 mm for (6x)rms, Eq. (3.14) gives

rms ~ 0.08 mrad. By virtue of Eq. (3.13) we can also write

(A ,) = 41 (02)i= Di + F - 1j .) (3.15)

Using the distances Di measured in our system, we finally obtain Ap,rms ~ 4 mm.
This value is used as the experimental uncertainty on the absolute spatial location.
The relative spatial resolution, i.e. the distance between chords, is of course known

with greater accuracy (typically 3-8%), both from the geometry of the detector and
of the optical system, and from independent measurements with acoustic waves.

The absolute spatial uncertainty could be improved by adding a second dual-
axis feedback system at the image. This was considered as a possible future upgrade.
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This system could be designed in a much simpler fashion than in the case of the focal
system, owing to more relaxed requirements: a damping factor of - 0.2 at 20 Hz
would be sufficient to ensure a spatial resolution of ~ 1 mm.

Most of the vibrations at the image are not detected as signal because their
frequency is below the 2-kHz highpass cutoff point of the electronics. However, there
are residual vibrations in the 2-4 kHz range, with a typical amplitude of ±15 ptm,
corresponding to a power modulation of ±0.5%. This generates a signal equivalent to
the PCI signal from an apparent laser phase shift of ±1 mrad, a value considerably
larger than the sensitivity of the diagnostic. No vibrations are generally observed
above 5 kHz; the low-frequency limit of our measurements is usually set conservatively
at 8 kHz. Owing to the smallness of the power modulation, no modulational effects
are observed in the spectrum above 8 kHz.

3.6 Electronics and Data Acquisition

Each of the 16 data-acquisition channels that process the 16 detector signals can be
configured in one of two basic forms: one for low-frequency (< 1 MHz) measurements
and the other for rf measurements.

The original low-frequency setup was a straightforward homodyne configuration.
After the preamplification stage, the signals were passed through 14-MHz lowpass
filters and 33-dB-gain amplifiers, and then sent directly to the annex by means of
60-meter-long coaxial cables. In the annex the signals were then further conditioned
and digitized by CAMAC equipment. The cables were all grounded on the rf-shield
box on the optical table and were not grounded in the annex.

The performance of this system was unsatisfactory because of excessive noise.
A noise level of - 10 mV rms at the CAMAC input stage, well above the intrinsic
system noise, was observed regularly on all channels. The frequency content of the
noise was broadband, peaking at approximately 250 kHz with a width of 300 kHz; this
circumstance made it difficult to eliminate the noise through filtering. In addition,
voltage spikes were occasionally observed. All our efforts to eliminate this noise
were unsuccessful: these included modifying the grounding scheme (grounding the
cables in the annex or floating the reference), routing the cables differently, and using
double-shielded cables. It was ascertained that this broadband noise was caused by
electromagnetic pickup occurring in the long cable run between the machine hall and
the annex.

The homodyne configuration was then abandoned in favor of an amplitude-
modulation (AM), suppressed-carrier technique using radio frequencies. In this new
scheme, the signal traveling from the machine hall to the annex is at the rf carrier
frequency; low-frequency electromagnetic noise can then be eliminated by appropri-
ate filtering at the receiving end. A superheterodyne receiver with an intermediate
frequency (IF) of zero effects the demodulation before the final digitization stage.

With this new configuration, the 250 kHz noise became undetectable, implying a
suppression factor of more than 20 dB. The occasional voltage ipikes also disappeared.
The sensitivity of this heterodyne system is limited only by the detector-preamplifier
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noise. Although much early work was carried out with the homodyne system, the
majority of the physics results described in this thesis were obtained with the new
configuration.

The low-frequency AM configuration is shown schematically in Fig. 3.26(a). The
output signals from the preamplifiers are passed through lowpass filters with a 3-dB
frequency of 14 MHz. A 33-dB amplification and line-driving stage follows. These
amplifiers were assembled in the laboratory and are designed to drive a current of 400
mA; the nominal bandwidth is 1 MHz: the measured gain at 1 MHz is 88% of the dc
gain. The output signals from the amplifiers were sent directly to the annex in the
old homodyne setup; in the AM configuration, each of these signals is sent instead to
the rf port of a double-balanced mixer, Mini-Circuits (Brooklyn, NY) model ZLW-6,
with a bandwidth .003-100 MHz. A reference 7-dBm rf signal is applied at the LO
port. The modulated IF signal is further amplified by an rf amplifier (Mini-Circuits
model ZFL-500: 20-dB gain, 0.05-500-MHz bandwidth) and then sent to the annex
via a 60-meter-long coaxial cable.

All of these components are housed in the rf-shield box on the optical table (see
Fig. 3.27), and powered by an external isolated power supply through filtered power
leads; as described in §3.3, the ground reference is taken from a single point on the
box, connected to a building ground. All components are connected by coaxial cables.
All input and output impedances are matched at 50 Q.

Since only eight digitizers are available, eight data-acquisition channels exist in
the annex. An isolated patch panel permits to connect eight of the sixteen signal
cables to the eight acquisition channels in any desired permutation. Changes can be
effected between plasma discharges. The receiving point of each channel is an isolated
rf transformer, designed to break the ground loop. The output of the transformer
is grounded in the annex, as are all subsequent electronics, all located in a single
equipment rack. The signal from the transformer is conditioned first by a lowpass
filter (3-dB point: 35 or 67 MHz, depending on the LO frequency) for harmonic
rejection, and then by a highpass filter (3-dB point: 25 MHz) for initial noise damping;
the highpass filter is removed whenever the LO frequency is lower than 30 MHz: in
any case the low-frequency noise is eliminated completely at the mixing stage.

The filtered signal is sent to the rf port of a Mini-Circuit ZLW-3H double-
balanced mixer (0.05-200-MHz bandwidth); at the LO port is applied a 17-dBm
signal obtained from the same reference that produced the initial modulation: thus,
the IF output is proportional to the original audio signal. With this configuration,
both sidebands are used and the total loss from the double mixing process is only
6 dB. The image signal at twice the LO frequency is eliminated by an additional
14-MHz lowpass filter.

The last segment of the superheterodyne data-acquisition setup is composed of
the entire annex section of the old homodyne system. Eight antialiasing filters are
used with 3-dB passband frequency 1 MHz; these units are 11-pole elliptical lowpass
filters, with 60 dB minimum attenuation at 1.1 MHz, manufactured by TTE, Inc. (Los
Angeles, CA). The final amplification stage consists of four two-channel LeCroy 8100
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Fig. 3.26 (a) Low-frequency data-acquisition configuration; (b) rf data-acquisition configuration.

CAMAC amplifiers; the bandwidth is 1 MHz and the gain can be varied by computer
between 0.2 and 100. The CAMAC digitizers are eight DSP Traq P 2824 ADC
modules, with 12-bit resolution and a maximum sampling rate of 2 Megasamples/s.
All impedances, including the input impedance of the digitizer, are matched at 50 Q.

Two DSP 5003A memory modules provide a data capacity of 128 kilosamples
per tokamak discharge (64 ms at the maximum sampling rate). The digitizers are
controlled by two DSP 4012A controllers, and the system is completed by a 2-MHz
clock. All the equipment is housed in a DSP Optima-860 CAMAC crate. The data
are collected after each DIII-D discharge by the DIII-D MODCOMP computers via a
CAMAC highway; later the data are sent to a VAX 6410 and stored in a permanent
data file.
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Fig. 3.27 Rl-shielded box with view of electronics inside.

Two additional four-channel Aeon 3204 amplifiers are used to condition the posi-
tion signals in the feedback vibration-control system (see t3.5), and for various testing

purposes. The position and scanner signals are digitized by a separate 500-kHz, 8-bil.

digitizer (LeCrov 2264H).

The configuration used for rf measurements is heterodyne; the rf signals are
mixed with the LO reference an( downshifted to the audio range: the resulting signals
are then sent to the annex and digitized. Therefore, this setup is susceptible to the
broadband noise that. was described earlier. However, an opportune choice of the
LO frequency and appropriate filtering call eliminate the problem. For coherent
detection of an ICRF wave. 7 the LO frequency is chosen to be slightly different from
the launching frequency, so that the IF is in the 0 15 kHz range: this allows phase
and quadrature detection through Fourier analysis of the data. For exploration of
broadband phenomena (e.g., parametric-decay waves 80 ), the LO frequency is set at
the edge of the region of interest, but mt sideband selection is effected.

The set of components used inl the rf configuration [shown schemiaticall y in Fig.
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3.26(b)] is a subset of those used in the low-frequency setup: any number of channels
can be switched from one configuration to the other overnight. The signals from the
preamplifiers are sent to the rf amplifiers (as an option, they may be conditioned
by 25-MHz highpass filters first), and then to the mixers. The IF signals from the
mixers are amplified by the 1-MHz amplifiers and sent to the annex, where they are
processed directly by the LeCroy amplifiers (through differential inputs) and then
digitized.

The LO reference signal is generated by a Hewlett-Packard 8656A synthesizer,
operating in the range 0.1-990 MHz with a resolution of 10 Hz. The synthesizer is
located in the annex. The signal is amplified once by a 16-dB amplifier and then
divided by a 2-way power splitter: one half of the signal is used in the machine hall
and the other half is used in the annex. The first branch consists of a double-shielded,
60-meter-long coaxial cable, an isolation transformer (to break the ground loop), and
a 16-way splitter; the second branch consists of a further amplification stage and a
16-way splitter (only eight channels of which are used). The resulting levels are 7
dBm and 17 dBm, respectively.

In the zero-IF superheterodyne configuration, the LO frequency cannot be chosen
arbitrarily. The phase of the LO component of the signal reaching the final mixer
and the phase of the reference signal applied at the LO port of the same mixer must
be equal or differ by 180' for the two sidebands to add in phase. If the difference
is ±90', total cancellation occurs. Quantitatively, the IF signal is proportional to
cos(2LwLo/v), where L ~ 60 m is the length of the cable run from the machine hall
to the annex, and v ~ (2/3)c is the velocity of energy propagation along a coaxial
cable. The frequencies that maximize the signal are then given by the formula fm

~ mc/(6L), where m is any integer. In practice, it is easy to locate the maxima by
varying the synthesizer frequency and observing the variation of the output signal on
an oscilloscope (with a reference signal in input).

It should be noted that small differences in cable length between channels result
in differences in responsivity that increase with the harmonic number rn. The largest
discrepancy has been determined to be ~ 40 cm, corresponding to a responsivity
variation of 13% at 40 MHz. Differences in responsivity between detector elements
are far larger; however, since the effects due to cable-length differences are dependent
on the LO frequency, it is important to carry out a relative calibration before each
plasma discharge.

The fundamental interval c/(6L) was experimentally determined to be 0.78 MHz;
so there is considerable freedom in the choice of the LO frequency: this is useful to
avoid regions where noise and interference may exist. The range 20-40 MHz has been
used in most of our experiments. When some channels are configured for rf detection
and the others for low-frequency detection, the LO frequency must be suitable for
both; since the maximum data-acquisition bandwidth (1 MHz) is larger than the
separation between the LO maxima, it is always possible to find an appropriate
frequency.

Synchronous and asynchronous triggers are provided by the DIII-D timing sys-
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tem. The Traq P digitizers can be pretriggered or post-triggered, and can be pro-
grammed to collect data on multiple and separate intervals.

The digitization rate can be varied between intervals. In low-frequency measure-
ments, the maximum Nyquist frequency of 1 MHz is obtained at tha 2 Megasamples/s
rate. It is often found, however, that most of the activity of interest in the plasma
occurs at considerably lower frequencies; thus, sampling rates of 500 or 200 ksam-
ples/s are often used, trading bandwidth for acquisition time. The 500-ksamples/s
rate is particularly convenient, as each LeCroy CAMAC amplifier contains a 200-kHz
antialiasing filter that can be activated by software. For coherent-wave detection in
the rf case, with the IF in the 0-15 kHz range, 15-kHz antialiasing filters are available
to eliminate the 100-400 kHz cable noise.

The various components in the data-acquisition system were chosen carefully to
ensure that harmonic generation and electronic noise would not degrade the perfor-
mance of the diagnostic. The ultimate sensitivity is indeed limited by the detector-
preamplifier noise, as confirmed by experimental tests (see §3.8). The dynamic range
achievable is given by the resolution of the digitizers: a 12-bit resolution corresponds
to a dynamic range of 66 dB. The leading mixer harmonic intermodulation signals,
excluding those that are suppressed by the various filtering stages, are the follow-
ing: the third-order rf, first-order LO term from the first mixer, which generates a
third harmonic of the original signal; the second-order rf, second-order LO term from
the second mixer, producing a second harmonic; and the LO-IF coupling in the first
mixer, generating a dc signal at the end. The last term is relatively large (< 9 mV at
the CAMAC input), but it is unimportant since it is a simple dc offset and is small
compared to the instrumental range. The first term was measured to be -59 dB and
the second one -60 dB below the signal; therefore, with a broadband spectrum the
signal-to-noise ratio is effectively limited to ~ 56 dB. In practice this is not a limita-
tion, as the noise level at the detector output is -105 dBm (on a 1-MHz bandwidth),
while the signal typically does not exceed -59 dBm (corresponding to a laser phase
shift of - 6 mrad rms). Thus the experimental signal-to-noise ratio is < 46 dB.

Harmonic generation can potentially be a problem in the presence of coherent,
narrowband signals; similarly, the two-tone third-order intermodulation distortion,
rated at ~ -48 dB, could come into play in the presence of pairs of coherent signals,
generating signals at their sum and difference frequencies. The frequency autopower
spectra are always inspected during the data-analysis phase to identify cases in which
the sensitivity at certain frequencies may be limited by these effects.

The amplitude distortion introduced by mixers and amplifiers, at a signal level
of -59 dBm, is rated at less than 3 x 10-. The desire to minimize the distortion,
as well as the two-tone intermodulation, was the main reason behind the choice of a
17-dBm-level mixer for the downshifting stage, where the signal is relatively high.

When the time delay introduced by an electronic component varies as a function
of frequency, phase distortions arise. In our system, the distortion, primarily due to
the antialiasing filters, is less than 20 ns in the 0-500 kHz range, and less than 130 ns
in the 0-800 kHz range. Relative delays between data channels are caused chiefly by
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the antialiasing filters and by the digitizers; a maximum delay of 50 ns is estimated.
At 100 kHz, this assigns a cross-phase uncertainty of ~ 20.

3.7 Response Properties and Sensitivity

The transfer function of the phase-contrast-imaging diagnostic in wave-number space
was derived in §2.11. The transfer function for our system is represented by the curve
marked a = 1 in Fig. 2.21. We remark again here that the transfer function is
essentially flat (to within 1%) for k > 27r/wo and has a low-wave-number cutoff (1/2
of the maximum responsivity) at k = 7r/wo.

The treatment of §2.11 did not take into account the specific detection geometry.
With a finite-area detector, components of sufficiently short wavelength will clearly
be averaged out. To analyze this effect, we adopt the following simple model: we
assume that the output signal from a detector element centered at the coordinate x
is proportional to the surface average of the fluctuating incident flux over a circle of
radius r (r = 225 pm in our case); we also assume that the system is one-dimensional,
i.e., that the incident flux is constant in the y direction; and, finally, we neglect any
variation of the dc power over the element surface. The transfer function of this
averaging process can easily be calculated and can be written, in object coordinates,

1 ,r f 2J 1 (kr')
7av,(k) = I-T 2Vr/2 

-x
2 eik' dx' = r (3.16)

'7rr I,. kr'

where r' = r/M is the radius of the averaging surface in the plasma. In our most
common configuration (see §3.4), IMI = 0.15 and r' = 1.5 mm. The complete transfer
function is then the product of T, given by Eq. (2.143) with a = wo and kc = 3/wo,
and Tv, and is plotted in Fig. 3.28. The vertical lines in the figure correspond to
the Nyquist spatial frequency; the components of the spectrum above that frequency
are stopped by a lowpass antialiasing filter. When the magnification is changed, the
horizontal scale varies identically for both the Nyquist frequency and the function
Tav.

The frequency response of the PCI diagnostic, without antialiasing filters, is
flat in the region 5 kHz-1 MHz; the 3-dB points, determined by the detector and
preamplifiers, are 1 kHz and 20 MHz; the estimated compression at 100 MHz is ~
16 dB. Residual mechanical vibrations impose a low-frequency limit of 8 kHz. In
the case of low-frequency (turbulence) measurements, the antialiasing filters have a
3-dB passband of 1 MHz and a 60-dB stopband of 1.1 MHz. Lower-frequency filters
(200-kHz passband) are used with lower sampling rates.

The overall gain from the detector output to the digitizer, with the CAMAC am-
plifiers set at unity gain, is 63 dB in the low-frequency electronics configuration, and
71 dB in the rf configuration. The theoretical detector -preamplifier rms noise level,
confirmed by experimental data, is ~ 1.4 pV/VMHz, corresponding to a minimum
measurable laser phase shift of - 5 x 10- 5 rad (see §2.12). In the low-frequency setup,
this translates into a noise level of ~ 2 mV rms at the digitizer input. The typical
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Fig. 3.28 Phase-contrast transfer function, including finite-sampling-area effect.

signal level does not exceed ±0.36 mV at the detector, i.e. ±0.5 V at the digitizey;
therefore CAMAC gains of 10 or 20 are typically applied, bringing the noise level
comfortably above the resolution of the digitizer, equal to 2.44 mV (the standard
deviation of the quantization error is equal to 1/V'1~ times this resolution165 ).

In studies of ICRF-wave propagation, the intrinsic noise is rather small owing
to the narrow bandwidth of the launched waves. The limiting factor is generally the
residual rf pickup. Optically heterodyne schemes using mechanical choppers have
been employed to improve the sensitivity.

The principal parameters of the DIII-D phase-contrast-imaging diagnostic are
summarized in Table 3.2.
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TABLE 3.2. PCI parameters

Sensitivity (f nedl)
Radial wave-number range
Vertical wave-number range (instantaneous measurement)
Vertical wave-number range (correlation measurement)
Low-frequency cutoff
Frequency bandwidth (3 dB)
Frequency bandwidth (20 dB)
Data-acquisition bandwidth
Radial resolution
Absolute radial uncertainty
Vertical resolution
Signal-to-noise ratio (20 kHz)
Signal-to-noise ratio (100 kHz)
Signal-to-noise ratio (overall)

1.7x101" cm 2 //MHz
0.8-40.0 cm-1
-0.02-0.02 cm-1

~ -0.6-0.6 cm-1
8 kHz
15 MHz
100 MHz
1 MHz
4.7 mm (typical)
±4 mm
None
<60 dB
<40 dB
<46 dB

3.8 Tests and Calibrations

The PCI system has been extensively tested to ensure a performance in agreement
with theoretical expectations. In particular, the electronics were tested during plasma
discharges by collecting data in the absence of a detector signal. One particular cause
of concern was the sensitivity of the rf mixers to the ambient magnetic field; testing
was done before work began on the full 16-channel superheterodyne data-acquisition
system, and no measurable effect was observed. Noise measurements have led to
constant improvements of the performance of the diagnostics; the sensitivity, initially
limited by electronic-pickup problems (see §3.6), eventually reached its ultimate limit,
determined by the intrinsic noise of the detector-preamplifier circuit.

Tests were also performed to determine whether infrared emission from the
plasma could cause a degradation in sensitivity. The detector is sensitive to wave-
lengths in the range 8-12 yim. The test is carried out by opening the vibration-control
feedback loop, with the system properly aligned, and then turning off the CO2 laser.
The signals are then digitized over an interval longer than the main vibration period
(50 ms). The result of this test was negative: the emission signal was unobservable.

The diagnostic is able to detect acoustic waves in air. The possibility of in-
terference from sounds or air turbulence was investigated by collecting data during
power-supply test shots. This test also produced negative results.

As was discussed in §2.14, acoustic waves are used to calibrate the diagnostic.
Absolute calibrations are carried out during vents, by installing a loudspeaker and
a calibrated microphone (Briiel & Kjwr model 4136) on the tokamak midplane on
opposite sides of the laser beam (in the radial direction). A short (- 10 ms) wave
train is launched from the loudspeaker. The time interval that is considered useful for
the calibration is approximately 2 ms: this was chosen to be shorter than the travel
times of the wave to the opposite wall and to the nearest mirror in the system, to
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prevent spurious signals from echoes or mirror vibrations.
The wave pattern of the loudspeaker is measured separately by scanning the

wave field with the microphone. The angular dependence is modeled with Gaussian

functions, and the analytical model is then used in a Fortran computer code to gener-
ate the expected signal as a function of chord position. This is an improvement over

the spherical-wave approximation that yields the analytical formula expressed by Eq.
(2.197).

The reference wave number for calibration is chosen to be in the region in which
the transfer function is flat, i.e., k > 27r/wo. The radial positions of the chords are de.-
termined by iteratively comparing the phases of the signals with the phases predicted

by the code; this in turn permits to obtain the value of the optical magnification. It

should be noted that slight variations in the detector-to-detector spacing were un-
covered with this technique, and that the measured numbers are always used in all

spatial plots. The absolute responsivities of the 16 data channels are then derived

by dividing the amplitudes of the signals by the amplitudes provided by the code.
The code can also optimize the results by employing a number of free parameters; in

particular, it allows for a longitudinal displacement of the detector from the image of
the vessel midplane.

Shown in Fig. 3.29 are the time traces of the detector signals, along with the 11-

kHz reference oscillator voltage applied to the loudspeaker. The loudspeaker employed
in this test was a piezoelectric tweeter, Realistic model 40-1379. The Gaussian half-

width of its angular pattern in the direction of propagation of the beam was 280. The
time delay and phase difference between the channels are qualitatively consistent with

a chord separation of 4.7 mm, as expected.

The quantitative analysis described above was applied to this data set, yielding

the spatial distribution of the chords shown in Fig. 3.30 and the responsivity profile

shown in Fig. 3.31(a) (the voltage is as digitized, with the CAMAC amplifiers set
at unity gain). The instrumental responsivity is given by the absolute responsivity

divided by the weighting function W(x) [Eq. (2.134)], in accordance with Eq. (2.138).
The instrumental responsivity, calculated by approximating the weighting function

with the Gaussian function exp(-2x2/wI), is shown in Fig. 3.31(b). The irregularity

of the profile is primarily due to differences in responsivity between detector elements;

the detector responsivities reported on the right-hand side of Fig. 3.31(b) are only
indicative, as they were calculated by assuming that the gains of the electronics are

equal to their rated values (and using the measured value of the power flux on the
detector). A separate determination is unnecessary for our purposes.

By varying the frequency of the acoustic waves, the wave-number transfer func-

tion can be measured. Ideally, the result should be independent of the position
within the cross section of the beam; thus, the observed spatial variation is taken
as a measure of the experimental uncertainty on the transfer function. (We recall
that the transfer-function approximation is rigorously valid only in the center of the

beam.) The result is shown in Fig. 3.32, aiong with the theoretical function that

was presented in Fig. 3.28. The experimental function in Fig. 3.32(a) is determined
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Fig. 3.29 Acoustic-wave calibration of the PCI system.

by averaging the transfer function over the eight chords closest to the center of the
beam; the error bars correspond to the standard deviations. In Fig. 3.32(b) is the
corresponding result using all 16 chords.

As was mentioned in §3.3, a relative calibration is carried out routinely before
each plasma discharge. This is performed by launching a single-frequency acoustic
wave at a location outside the DIII-D vessel; the effect of the spatial shift is merely a
small reduction in amplitude, identical on all chords. The sound level is not measured
separately in this case. The wave pattern is factored into the modeling code as in the
in-vessel case.

These calibrations are very valuable for several reasons: the overall responsiv-
ity changes slightly when the LO frequency of the superheterodyne data-acquisition
system is varied, or when the links between detector channels and digitizer channels
are permuted; more importantly, substantial variations are observed in the respon-
sivities of the individual detector elements over relatively short periods of time (of
the order of weeks). In addition, this procedure permits a recalculation of the optical
magnification on every run day; by comparing the starting time of the acoustic wave
on the PCI signal with a reference time, it is also possible to calculate the absolute
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Fig. 3.30 Position of the chords as a function of the channel number, as measured through acoustic

calibration (chords 1, 6, and 14 are missing because of burnt-out detector elements).

position of the beam with an accuracy of a few mm. This is especially valuable in
high-resolution (high-magnification) experiments, when only a portion of the beam
is sampled by the detector array. The absolute uncertainty on the position is dom-
inated by the vibrational error, which, as discussed in §3.5(f), is of the order of 0.4
cm. The uncertainty on the magnification varies between 3% and 8%, depending on
the signal-to-noise ratio.

While an accurate knowledge of the relative normalization factors is generally
very useful, a knowledge of the absolute responsivity is of limited importance in many
cases. However, when that information is desired and significant changes in the rel-
ative calibration factors are observed (as is often the case), an indirect measurement
of the absolute responsivity is obtained by estimating the sound level from the am-
plitude of the signal applied to the tweetar and from the known efficiency of the
tweeter. Uncertainties in the measurement of the signal amplitude limit the accuracy
of the relative calibration to approximately 10-15%. The absolute calibration is also
strongly affected by uncertainties in the knowledge of the wave pattern, resulting in
an accuracy of 30-40%.

As was mentioned at the end of §3.3, pre-shot calibrations are carried out with
a short wave train to avoid echoes. Only 10 to 20 wave cycles can typically be used
before the onset of standing waves renders the calibration meaningless, Hence, the
spectrum is broadened to 5-10% of the acoustic frequency; this makes a calibration
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during a plasma shot difficult because of the strong turbulent background. It may be
possible to add this capability in the future by employing high-frequency ultrasonic
waves: this would provide a valuabie test of the theoretical prediction (discussed
in §3.2) that the bulk plasma density does not distort the PCI transfer function
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appreciably.
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3.9 Data-Analysis Techniques

This section provides a brief overview of the basic techniques of error analysis and
data reduction that are used routinely to extract the relevant physical information
from the raw diagnostic data. More details will be offered in Chapter 5 to better
elucidate the significance of specific results.

During a given run day, at least one shot is recorded with the laser shutter closed,
for noise verification purposes. In addition, a baseline is obtained by digitizing the
signals with the laser on well before the beginning of a shot, to obtain a record of the
laser photon noise.

In each plasma discharge, the amplitude of mechanical vibrations is checked by
inspecting the signals from the position sensors in the feedback system and the low-
frequency (< 5 kHz) PCI signals. These vibrations occur at the detector, whereas
residual vibrations at the focal planes are negligible [see §3.5 (f)]. The complete time
traces of the eight digitized PCI signals are also examined visually to ensure that the
data are not compromised by saturation, noise spikes, or other unusual disturbances.

The acoustic signals recorded 50 ms before the beginning of the shot are used
to establish the relative calibration factors. When an absolute calibration is desired,
the results from the latest in-vessel acoustic test are used, with adjustments derived
from the average change in the relative calibration factors. If that change is large, the
absolute responsivities are recalculated by inferring the sound level from the signal
applied to the loudspeaker (see §3.8). This, in fact, has been the standard procedure.

The basic analysis of fluctuation data begins with a numerical computation of
the following functions: rms values; autospectral and cross-spectral density functions
in the frequency domain; autocorrelation and crosscorrelation functions in the time
domain. The assumptions of stationarity and ergodicity are used to replace ensemble
averaging with time averaging.165 These assumptions are valid only in an approximate
sense, as the character of turbulence does in fact change over time. Care is always
taken to effect the averaging over intervals in which no drastic variations in the
physical conditions are observed (one such example is the L- to H-mode transition).
On a time scale longer than the typical averaging time, the assumption of stationarity
must be abandoned,166 and in fact it is of interest to study the temporal variation of
the average functions, as well as their spatial dependence.

An rms calculation (after removal of the mean value) is accompanied by an
intrinsic relative bias error equal to the reciprocal of the signal-to-noise ratio. Since
the noise is generally white and is known with good accuracy, this bias is removed in
the calculation. The statistical random error can be calculated if the data are assumed
to follow a normal distribution; we shall define the error as the standard deviation of
the probability distribution of the quantity under exam: this corresponds to a 68%
confidence level (two standard deviations correspond to a 95% confidence level). The
relative random error on the rms value is given by 1//2m, where m is the number
of samples over which the average is calculated.'16 When the digital sampling rate
1/At is larger than 2Af, where Af is the bandwidth of the fluctuations, the number
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of samples is given by m = 2TLf, where T is the averaging interval. When, instead,
1/At < 2Af, we can write m = T/At.

In an analysis of the spatial dependence of the rms function, one must also con-
sider the uncertainty on the calibration factor. As mentioned in the previous section,
the typical uncertainty on the relative calibration factors (including the standard de-
viation of the experimental transfer function) is ~10-15%, whereas the uncertainty
on the absolute calibration (systematic calibration error) is -30-40%.

The computation of the spectral functions in frequency space is carried out
through a standard procedure, employing a digital fast Fourier transform (FFT)
algorithm, 167 followed by averaging over frequencies to obtain an unbiased and con-
sistent estimate. Here, m is given by 2T x 6f, where T is the temporal length of the
sample, and Jf is the averaging frequency interval. Data are preconditioned by linear-
trend removal. Error analysis can be performed quantitatively if Gaussian statistics
are assumed. The bias error on the autospectral function is equal to the autopower of
the noise, which is approximately constant in the case of white detector noise, and is
thus subtracted in the calculation; the relative statistical error is /2~/r. In the case
of the cross-spectral function, the bias error on the modulus is generally negligible
and the relative random error is v/5/(|y|v/i), where I-yj is the square root of the
coherence function (the coherence function is defined here, as in most textbooks, as
the square modulus of the normalized cross-spectral function).

The coherence and cross-phase functions are also routinely calculated. The stan-
dard deviation of the phase estimate is equal to [(Iy|J 2 - 1)/M]1/2. The coherence

function carries a negative relative bias given by twice the reciprocal of the signal-
to-noise ratio: this is removed by subtracting tha noise from the autopower value
before normalization. In addition, an approximate bias error of 2(1 - -y 2 )2 /m is
generated by the sampling procedure. The random error is approximately equal to
2171(1 - Iy|2 )/ /5i; however, more complex expressions are employed to increase the
accuracy of the estimate for low values of 7172 (Ref. 165).

The spectral quantities just described can also be studied as they vary in time
over time scales longer than the integration interval (i.e. the inverse of the smallest
characteristic frequency under exam). This analysis affords a very direct visualization
of the evolution of turbulence during a plasma discharge, and on phase transitions
such as the L-H transition. 168

The computations described thus far are carried out by software available on
the VAX computers at General Atomics, adapted for the needs of our data (particu-
larly to allow the inclusion of calibration factors and noise subtraction). By contrast,
the software for the evaluation of time-delay correlation functions was specially writ-
ten during this thesis work. The program TEMPUS calculates the crosscorrelation
function, the correlation coefficient, and the envelope of the correlation coefficient
between two sets of data. (The envelope is defined as {p 2 + 17j(p)] 2}1/ 2 , where p is
the correlation coefficient and U(p) is its Hilbert transform. 1 65 )

The correlation functions are computed by means of the standard double-FFT
method. 165 The program offers optional detrending and filtering (lowpass, highpass,

177



bandpass, or band-elimination); linear detrending was used routinely in our analysis.
The error analysis in the time domain, in the case of Gaussian probability dis-

tributions, presents many similarities with the frequency-domain case. The estimate
of the autocorrelation function is biased by the noise autocorrelation function only
at zero delay. The correlation coefficient is then negatively biased by the normal-
ization factors, the relative bias being equal to the reciprocal of the signal-to-noise
ratio. As in the case of frequency-domain analysis, the bias is subtracted by software.
The relative random error on the estimator of the correlation function is equal to
(1 + p- 2 )1/ 2 //ui, where p(T) is the correlation coefficient. The standard deviation
of the coefficient estimate is approximated by (1 - p2

In all the cases described, digital highpass filtering is applied at a cutoff frequency
of 8 kHz to eliminate vibrational effects. Different passbands have also been employed
in various cases to investigate specific physics issues.

After the basic analysis is completed, various techniques of higher-level data re-
duction may be employed, depending on the physical problem under investigation. In
all cases, the unique characteristics of the diagnostics have mandated the development
of dedicated Fortran programs to perform the analysis.

It has been found that in many regimes the autospectral functions can be fit-
ted reasonably well with an inverse power law. Therefore, this fitting procedure is
applied systematically to all autospectral power estimations. In the time domain,
autocorrelation functions often approach an exponentially decaying form, and a cor-
responding one-parameter fit is applied to these functions to estimate the local tur-
bulence decorrelation time. By contrast, little success has been achieved in fitting
the crosscorrelation functions with simple functional forms.

The equal-time coefficient and its Hilbert transform form a complex function of
the radial separation that carries information on the radial correlation structure. This
spatial function is generated routinely for a set of discrete time intervals in stationary
regimes of the discharge; this procedure is repeated several times using all spatial
channels as references in turn, to investigate the spatial variation of the correlation
function. A general plot using all possible crosscorrelations is also generated, although
this is useful in general only in the high-resolution cases. In general, it has been found
that this function conforms rather well to the following form:

C(AR; At = 0) =exp - 2 1 + PR iko.RAR + 1 - PR iko, R (3.17)

accordingly, regression analysis 169"170 is applied to the experimental function to
obtain a three-parameter fit to this form: ko,R is then interpreted as an average wave
number, LR as a correlation length, and PR as a propagation coefficient (1 for purely
outward, -1 for purely inward propagation). These quantities can then be plotted as
functions of time, along with their confidence intervals - or "error bars", obtained by
standard propagation through the fit of the statistical uncertainty on C(AR; At = 0)
- with as fine a temporal resolution as allowed by the required statistics. These

178



quantities, particularly the correlation length, are of great interest in the study of
turbulence, as they play an important role in various nonlinear theories (see Chapter
6).

The spatial Fourier transform of C(AR; At = 0) is the normalized radial wave-
number spectrum of the fluctuations, s(kR). Since only a few spatial points are avail-
able, several different techniques of varying complexities for sparse Fourier transforms
have been incorporated in the software. These include the following: simple Fourier
series calculation (integration of the histogram, i.e. by trapezoidal rule); linear inter-
polation followed by Fourier integration; integration by a third-order finite-difference
Gill-Miller method;171 a maximum-likelihood method that integrates a cubic-spline
interpolator; and a maximum-entropy Algebraic Reconstruction Technique (ART)
algorithm.17 2 174 Extensive testing has shown that these techniques yield acceptably
similar results; the maximum-entropy technique is utilized preferentially.

After the Fourier transform has been computed, the spectrum is divided by the
PCI transfer function. The low-k cutoff point is taken to be the 1/e folding point of
the transfer function (approximately 0.8xkc, see Fig. 3.28).

In the case of our diagnostic, the spectrum that can be measured is, strictly
speaking, limited to horizontal wave vectors, with the vertical component equal to
zero. This is a consequence of the vertical line integration. In tokamak physics, it is
more desirable in general to study the spatial distribution of the local spectra, both
in the radial and in the poloidal direction. The geometric constraints of the PCI
apparatus permit to extract some of this information, under appropriate conditions,
from our nonlocal measurement. This is the subject of the next chapter.

Once the average wave number ko,R has been obtained, one can compute the
spatial Fourier transform of the crosscorrelation function C(AR; At) at that particu-
lar wave number: the result can be described as an intrinsic (fixed-k) autocorrelation
function, and its exponential decay gives a measure of the intrinsic decorrelation time
of the turbulence.

A similar spatial analysis is routinely carried out also in frequency space, by
substituting the complex coherence function (the normalized cross-spectral function,
also sometimes called coherency" 5 ) for the spatial correlation function. This function
is seen to follow approximately the same functional form, given by Eq. (3.17), and
the corresponding fitting procedure is accordingly applied to the coherence also. As
a result, average wave numbers and correlation lengths can be generated as functions
of frequency: thus, an approximate dispersion relation ko,R(W) is found.

The obvious next step is the complete spectrum S(kR, w), which is also com-
puted and plotted as a matter of course. In many cases, a more useful quantity is the
conditional spectrum s(kRIW), defined as the spatial Fourier transform of the complex
coherence function. 7 5 " In the case of spatially uniform turbulence, the relation

s(kRIW) = S(kR, w)/S(w) applies: thus, the conditional spectrum provides informa-
tion on the form of the wave-number spectrum as a function of frequency, factoring
out the absolute dependence on frequency.

The probability distribution function (PDF) of the fluctuations and its moments
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were also studied (see §5.7). A program was written for this task. The program
allows the user to select the bin width and the maximum number of standard devi-
ations employed in the calculation of the moments, and permits the introduction of
lowpass and highpass filters. The relative statistical error on the PDF is given as
,/m/(W x PDF), 6 5 where W is the bin width. After the average is removed and
the PDF is normalized to its standard deviation, the moments of third to sixth order
are calculated: the skewness S [relative error E = V/(15 - S 2 )/m], the coefficient of

kurtosis K' = K - 3 [c = (105 - K'2 )/m], the superskewness (e - V/ 45/m), and

the coefficient of super kurtosis KK' = KK - 15 (e ~ V/10395/m).
Two additional analysis techniques developed for this study deserve a brief men-

tion. The investigation of the spectral characteristics of transient events such as
ELMs59 ,69 is often hampered by their short duration, which conflicts with the need of
an adequate statistical sample. Under the assumption that the statistics of separate
events are similar, averaging can be performed over a discrete set of events, rejecting
the time intervals in between. This technique has been applied to ELM studies, as
will be discussed in Chapter 5.

The problem of nonlocality, which will be addressed at length in the next chapter,
can be tackled by exploiting the edge location of our diagnostic and the multichordal
nature of the measurement. If the turbulence amplitude is assumed to be constant on
a magnetic flux surface, and to vary slowly across surfaces, one can attempt to sub-
tract the power signal on the outermost chord, multiplied by an appropriate factor,
from the signal on the adjacent chord, thus removing from the latter the contributions
from the outermost layer. The multiplication factor must be equal to the ratio of the
lengths of the segments of the two chords delimited by the same flux surfaces (power,
rather than amplitude, adds linearly in the case of broadband turbulence). This pro-
cedure can then be repeated for all chords, and a more localized measurement can in
principle be obtained. The software developed for this task computes the multipli-
cation factors for actual magnetic geometries generated by the equilibrium program
EFIT.1 76 Unfortunately, this technique has been generally unsuccessful, indicating -
not too surprisingly - that the assumptions are not valid.

A more defensible alternative is to simply divide the power by the length of the
chord, without performing any subtraction. By further dividing by an estimate of
the vertical correlation length, an estimate of the absolute density fluctuation power
can be obtained. The choice of'the integration length is the principal difficulty in this
procedure: in the SOL one can use either an estimate of the SOL width or the entire
length of the beam path within the vessel; inside the LCFS, one can use the length
of the chord up to the LCFS, or add to it the width of the SOL: this is an especially
important question for chords close to the LCFS. These issues will be discussed in
more detailed in §5.6.

The various functional fits described in this section utilize minimum-X2 algo-
rithms. Analytical formulas are used in the simpkst cases; more generally, numerical
algorithms are employed. These allow for error bars both on the independent vari-
able (spatial uncertainty) and on the dependent variable (statistical uncertainty), and
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also for constraints on the fitting parameters. They are part of the subroutine library
NAG. It should be noted here that these fits often result in large x 2 values. This, of
course, is to be expected in general, as the functional forms are chosen on the basis of
physical intuition and mathematical simplicity, but do not conform to any rigorous

theoretical models. To state it simply, there is no a priori reason to expect the experi-
mental functions to obey these laws. The fitting parameters should then be described
simply as our best experimental estimations of the correlation length, decorrelation
time, etc., all quantities that are integral parts of most theories of turbulence.
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4 Modeling of the Measurement

The steady increase in the complexity of magnetically-confined plasma-fusion experi-
ments over the last three decades has been accompanied by a corresponding increase
in the sophistication of diagnostic technology. The desire to improve the spatial res-
olution of measurements, in particular, has been the motivating force behind some of
the most advanced techniques employed in the present generation of tokamak devices.

In the realm of flucLuation diagnostics, localization has been attained by geomet-
ric means (as with beam emission spectroscopy50 ), by frequency discrimination (as
with reflectometry"), and by local detection (as with material probes 71 ). Transmis-
sion and emission techniques, by contrast, provide measurements that are generally
averaged along the line of sight. Crossed-beam correlation techniques have been
employed to enhance the resolution of C0 2 -laser scattering measurements.1 77 When
multiple lines of sight at different angles are available, local information can sometimes
be inferred by using inversion methods,178 as in the case of x-ray tomography;17 9 sim-
ilarly, the symmetry properties of the medium may permit to eliminate one or more
variables from the problem and to devise an appropriate inversion algorithm. An
integral inversion technique can also be employed to derive the density profile of a
plasma slab from a measurement of its frequency-dependent impedance. 180

THe lack of longitudinal resolution constitutes the principal limitation of trans-
mission techniques. In the case of the DIII-D phase-contrast imaging (PCI) appara-
tus, the problem is alleviated in part by the geometrical constraints of the measure-
ment. Since the beam propagates along the edge of the plasma cross section (see Fig.
3.5), the integration volume spans a relatively small fraction of the minor radius. In
addition, the line integration effectively selects wave vectors that are perpendicular
to the direction of propagation; since, as shown in Fig. 3.5, that direction is nearly
tangent to the poloidal magnetic-field lines, it can be concluded that the measured
wave vectors are nearly perpendicular to the poloidal field. This selection rule aids
considerably in the interpretation of the PCI measurements, as turbulence is gener-
ally characterized theoretically by its spectral distributions in the poloidal and radial
directions (parallel and perpendicular to the poloidal field, respectively). Also, since
the wave vectors are nearly perpendicular to the E x B drift velocity, the measure-
ment is essentially immune to Doppler shifts; thus, the frequency spectrum of the
turbulence can be observed directly in the plasma frame of reference.

These qualitative observations were corroborated by an extensive quantitative
analysis. This analysis is based on a functional model of the turbulence spectrum,
from which the two-point correlation function of the turbulence can be derived. The
pointwise correlation function is then integrated numerically along the two respective
vertical chords; both the magnetic geometry and the E x B velocity profile are derived
from experimental measurements in an actual DIII-D discharge. The final result
of the numerical integration is the correlation function of the corresponding PCI
signals. By repeating this calculation for a variety of turbulence spectra and plasma
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geometries, the constraints on the inverse problem - that is, inferring the spectra
from the measurements - can be verified.

The remainder of this chapter is organized as follows. The inversion problem
for the two-point correlation function is stated in §4.1; solutions based on various
symmetry assumptions are also presented, along with a discussion of the applicability
of these assumptions. A brief analysis of the significance of the correlation function
in various physical scenarios is carried out in §4.2; in particular, some considerations
are offered on the relation between the correlation functions in the plasma frame and
in the laboratory frame in the presence of an E x B drift. In §4.3 our general model
for the turbulence spectra is introduced; the general two-point correlation function is
calculated analytically in Appendix G, while a simplified and approximate expression
is discussed in §4.3 for illustration purposes. The physical meaning of the model is
then explored in §4.4 by applying successive approximations to the general problem
and drawing some qualitative conclusions; part of the mathematical derivation is also
in Appendix G. The computer program developed for the quantitative analysis is
described in §4.5; this section is completed by a discussion of the results, and by a
comparison with the qualitative analysis of the previous section.

4.1 The Integral Inversion Problem

We shall consider a two-dimensional problem with spatial variables R and z; with
reference to the DIII-D PCI geometry, R is identified with the major radius of the
tokamak, and z is the vertical distance from the midplane. We can treat the problem
as two-dimensional because of the symmetric distribution of turbulence along the
magnetic-field lines, which has been proven by experimental observations.18 1 ,1 2 111

view of the small value of the ratio of the poloidal and toroidal fields, the helicity of the
magnetic-field lines (see Fig. 1.1) may be ignored, and we can identify the direction
of symmetry with the azimuthal direction for the purposes of this discussion. Also,
in this section we shall only consider quantities defined in the laboratory frame.

The two-point, time-delayed correlation function of the density fluctuations is
defined as

C12(R, z, t; R', z', t') -- (=(0, z, t) fi(R', z', t')), (4.1)

where the angular brackets <> denote the operation of ensemble averaging.
Similarly, the correlation function of the line integrals of the density fluctuations

(i.e., of the quantities measured by the PCI apparatus) is defined as

F 2 (R, t; R', t') K ! h(R, z, t)dz j fi(R', z', t')dz' ). (4.2)

The inversion problem consists of inferring the function C12 from the measured func.
tion F 2 . Since C12 is a function of four spatial variables, while F 2 is a function of

two spatial variables (see Fig. 4.1), the inversion cannot be performed unless two
variables are eliminated from the problem through symmetry assumptions.

183



z

R
4- Z'

Z C12 (R, Z; R', Z')

R R'

r12 (R, R1

Fig. 4.1 Illustration of local correlation function C 12 (a function of 4 variables) and line-integrated
correlation function r 12 (a function of two variables).

We can substitute Eq. (4.1) in Eq. (4.2) and write

r12(Rav, tav; r, T) = fJC12(Ra, zav, tav; r, (, r) dzav d(, (4.3)

where Rav = (R + R')/2, zav = (z + z')/2, tav = (t + t')/2, r = R - R', = z -',

and r = t - t'.

We can obtain a useful relationship for the autocorrelation functions by defining
the vertical correlation length

z(Ravzavtav) =1 f C12 (Rav, zav, tav; 0, C, 0) d(
Vri C1 2(Rav, 7Zav, tav; 0, 0,1 0)

The factor (7r)-1/ 2 has been introduced for consistency with the Gaussian correlation
function that will be used in our model, and with the definition of £ that has been
used in recent literature,51 i.e., as the 1/e point of the correlation function.

If the turbulence is now assumed to be homogeneous, we can rewrite Eq. (4.3)
as 14 3

r12 (tav; r, ) = IL C1 2(tav, ( d(, (4.5)

where L, is the length of the plasma chord. We have thus removed one variable, zav,
from the problem, and rendered the independent variable Ray redundant: that is, it
would be sufficient to calculate the correlations with respect to a fixed chord, rather
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than between all pairs of chords available. Substituting Eq. (4.4) in Eq. (4.5) for
r = 0 and - = 0, we obtain the equal-time autocorrelation function

Fi 2 (tav; 0, 0) = (ii 2 (tav)) v/fLrz(tav)L,. (4.6)

Hence, we find for the rms value of the turbulence an effective integration length

equal to (,/iLL,)
If we now make the further assumption that the turbulence is isotropic, we

eliminate another variable and we can finally write Eq. (4.5) as

r12(tav; r, r) = L. 0 C12 (tav; 0, T) , (4.7)

where a = r2 + 2 , and it has been assumed that the correlation function vanishes
at distances of the order of the dimensions of the plasma column. Equation (4.7) is
a Volterra integral equation of the first kind, and, in particular, it can be reduced
to an Abel equation for the unknown fuiction a 3 / 2 C1 2 by using the variable 1/a.
Thus, Abel's inversion17 can be applied to the solution of this problem under the
conditions stated.18 3

If the turbulence is isotropic but not homogeneous, Abel's inversion yields

f C12(Rav, Zav, ta-.1; a, r) dzav, the line integral of the pointwise correlation function
at each radial point. If homogeneity over a magnetic flux surface can be assumed,
in addition to isotropy, we again eliminate two variables and can solve the inverse
problem.184 In the special case of a plasma with a circular cross section, the pointwise
correlation function C12 can then be retrieved through two applications of Abel's in-
version with respect to the variables 1/r 2 and 1/R 2, respectively. More complicated
geometries require a numerical solution of the integral equation in the mean spatial
variables.

Unfortunately, all the assumptions considered thus far fail in tokamaks in general,
and particularly in the highly inhomogeneous plasmas that exist at the edge of DIII-
D, where our goal is to study the small-scale structure of the spectra. Recent results
from beam-emission spectroscopy measurements in TFTR5' have shown a marked
anisotropy in the turbulence spectra between the poloidal and the radial direction.
Even the assumption of homogeneity over a flux surface is negated by the up-down
asymmetries observed in the TEXT tokamak.18 5 The contributions from the scrape-
off layer are a source of additional difficulties.

Nevertheless, the peculiar geometry of the PCI apparatus aids in the interpreta-
tion of the results. As can be seen in Fig. 3.5, the direction of propagation of the laser
beam is nearly tangent to the field lines, i.e., it is everywhere close to the poloidal
direction. The effect of the line integration is to eliminate contributions from fluctu-
ations that have a finite spatial frequency along the beam, i.e., wave vectors with a
nonzero vertical component. Thus, the measurement is only sensitive to horizontal
wave vectors. As Fig. 4.2 shows, in our geometry a horizontal wave vector is primar-
ily radial, with only a small poloidal component at locations far from the midplane.
The principal aim of the remainder of this chapter will be to support this simple, but
important observation with a more quantitative foundation.
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Fig. 4.2 Decomposition of a horizontal vector into its radial and poloidal components.

4.2 The Correlation Structure of Plasma Fluctuations

A great many types of fluctuations can coexist in a plasma. The individual nature of
the different excitation modes, combined with the nonlinear coupling among them,
can lead to a variety of spectra in both wave-number and frequency space.

Coherent modes are either generated by external means (as in the case of radio-
frequency waves) or result from large-scale MHD instabilities. In general, these types
of modes are easily identified experimentally by their narrowband spectral functions
and by their high degree of spatial coherence. In addition, MHD modes in practice
are characterized by the periodic nature of the spatial distribution of their magnetic
component, which can be measured by external magnetic coils.

When the spectra are broadband in both frequency and wave-number space,
but the wave-number spectrum at a given frequency (and vice versa) is peaked, one
speaks of a semicoherent mode. In this case the plasma supports a continuous set
of oscillations, characterized by a well-defined dispersion relation. The width of the
frequency spectrum is then related to that of the wave-number spectrum by the
approximate relation

Vg ~ V, Ak, (4.8)

where v9 is the group velocity of the perturbation. Experimentally, a semicoherent
mode is identified by good spatial correlation at fixed frequency.
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In practice, each individual excitation mode has a finite frequency bandwidth,
determined both by its linear damping rate and by its nonlinear interaction with
other modes. 8" The nonlinear interaction between the natural modes can lead to a
turbulent state, which can be loosely defined as a condition in which a large number
of degrees of freedom are excited.1 87 One further distinguishes between strong turbu-
lence, when the growth rate -y is comparable to or larger than the frequency of the
mode, and weak turbulence, when -y < w(k). Experimentally, the signature trait of
turbulence is the broadening of the wave-number spectrum for each given frequency,
and vice versa.

The standard statistical treatment of a turbulent state relies on the postulate of
random phase, which can be stated as follows:

(fi*(k', U') ft(k, w)) = (ii 2 ) I(k, w)6(k - k')6(w - w'), (4.9)

where i(k, w) is the spectrum of the density fluctuations. In the general 3-dimensional
case, the two-point, time-delayed correlation function can then be expressed by means
of the spectral function I(k, w) as follows:

(ii(x, t) ii(x', t')) = 2 ) j I(k, w) eik-(x-x')-iw(t-t') d3 k dw. (4.10)

By virtue of Eq. (4.9), the spectral function is real and positive defined; in addition,
since it is the Fourier transform of a real function, I must be Hermitian, that is,
symmetric upon joint reversal of k and w.

In the presence of an electric field in a magnetized plasma, the frequency of
fluctuations in the laboratory frame is Doppler-shifted according to the following
expression:

Wlab w + k vE, (4.11)

where
ExB (4.12)

This Doppler shift, which has been verified experimentally' 88 by scattering measure-
ments, is a universal effect independent of the particular excitation mode, since all
particles drift at the E x B velocity.1 89 A uniform and constant drift has no effect
on the physics of the modes, as required by Galilean relativity. However, a spatially
varying Doppler shift can significantly alter the correlation structure of the fluctua-
tions: an E x B drift with a nonzero gradient will have the general effect of broadening
the spectral functions.

Sheared electric fields exist in the edge of DIII-D in H mode, and to a lesser
extent in L mode. 6 ' The effect of the E x B shear on the structure of the turbulence
is small when the variation of the Doppler shift over a correlation length is small
compared with the unshifted frequency of the mode. This intuitive assertion can be
justified qualitatively as follows. Let us rewrite the correlation function [Eq. (4.10)]
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in the laboratory frame in the presence of a sheared electric field. By making the
tentative assumption that Eq. (4.9) still holds for the unshifted plasma modes, we
can write

(,,(x, t) ,(x', t')) = _ J d3 k dw I(k, w) exp{ik - (x - x')

- iw(t - t') - ik - [tVE(X) - t'VE(X')] (4.13)

where we have assumed for simplicity that the electric field is constant in time. Equa-
tion (4.13) can be recast as

(ii(X, t) i(X', t')) = d 3k dw I(k, w) exp ik - (x - x')

- i(w + k - VE,av)(t - t') - itavk - VE(X) - VE(X)]

(4.14)

where VE,av = [VE(X) + VE(x')}/2 and tav = (t + t')/2. The last phase term breaks
the temporal invariance of the system: as time (tav) goes by, this phase increases
indefinitely and fluctuations become increasingly decorrelated at any finite distance.
This is equivalent to an unbounded broadening of the spectra. In quasi-steady-state
conditions, this result is clearly paradoxical; therefore, we must conclude that our
ansatz was incorrect: that is, the sheared flow must alter the spatial statistics of
the turbulence, generating a new steady-state spectral function I(k, w) that permits
application of Eq. (4.10) in the laboratory frame.

It is important to note that this effect is not related to any specific measurement
technique; rather, the fundamental structure of the turbulence is itself altered by the
sheared drift velocity. Indeed, the mechanism believed to be responsible for H mode6 3

is the reduction of transport due to decorrelation of the turbulence, caused in turn
by a sheared E x B drift.

Equation (4.14), though invalid in steady-state conditions, must be applicable
for a vanishingly small velocity shear. It is reasonable then to use Eq. (4.14) to
determine the approximate conditions under which the shear can be ignored. We
shall focus on a single frequency component w (in the plasma frame), and postulate
a finite wave packet peaked about a mean wave vector k(w). In the integral over k,
the time-dependent phase term can be neglected if

jtavk - [VE(X) - VE(X')] I < 1 (4.15)

The system must be time-invariant on a time scale of the order of the reciprocal
of the angular frequency of oscillation; thus, we can take ta,, ~ 1/w. Also, the
maximum significant displacement in a given direction i can be taken to be equal to
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Fig. 4.3 Subdivision of integration length into segment of length 1..

the correlation length Li, measured at zero E x B velocity and at fixed frequency.
Thus, Eq. (4.15) yields, as a sufficient condition, the following approximate relations:

i < 1, (4.16)

where we have introduced the shear decorrelation parameters

Li aVE
- - k(w) . (4.17)

The parameter si is equal to the variation of the Doppler shift over a correlation
length (in the ii direction), divided by the unshifted frequency.

When Eq. (4.16) is satisfied, the considerations presented in §4.1 for line-
integrated measurements can be applied, with the appropriate modifications. In
particular, the equivalent expression to Eq. (4.3) is

F12(Rav, tav; r, r)

= JJC12[Ravi zav, tav; r - TVE,R(Rav, Zav), TvE,z(Rav, Zav), T] dZav d(. (4.18)

When considering the Fourier spectrum of F 1 2 , the line integration can be seen as
a sum over L,/CL segments of length L, each of which contributes at the Doppler-
shifted frequency that corresponds to the local drift velocity (see Fig. 4.3). When
the E x B velocity is known with some accuracy, this circumstance can be used to
improve the spatial resolution of a measurement through frequency discrimination;
this method has been applied to FIR scattering measurements in DIII-D.' 90

When the shear decorrelation parameters are large and Eq. (4.16) is not satisfied,
Eq. (4.18) is inapplicable, and indeed the concept of an "intrinsic" spectrum loses
its meaning: the only meaningful information to be extracted from a fluctuation
measurement is then the spectrum in the laboratory frame.
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4.3 A Model of Plasma Turbulence

The statistics of plasma turbulence are defined by the postulate of random phase [Eq.
(4.9)] and by the spectral function I(k, w). In view of the azimuthal symmetry of the
system, we restrict the problem to the two-dimensional poloidal plane. We also adopt
the flux coordinate system defined by the local unit vectors j and 0, which are in
each point normal and tangent, respectively, to the local magnetic flux surface; this
is defined in turn as a surface over which the stream function19 1 0h = RA, is constant
(here, Ap is the toroidal component of the vector potential). This coordinate system
is the natural one in which to define the fluctuation spectra (see Fig. 4.4).

The conversion between the (R, i) system and the (,, j) system, for an arbitrary
vector w, can be readily performed by means of the simple expression

WP = wR cos t9 + w, sin 49

WO = -wR sin 9 + w, cos 9 ,

where 19 is the angle between and the horizontal plane.
We wish to treat the large-scale and fine-scale structures of the turbulence sep-

arately. To that end, we adopt a quasi-homogeneous approximation 10 9 and modify
Eq. (4.10) as follows:

(fi(x, t) fi(x', t')) = (2i) 3 (x,2  tav)) JdkR dkz dw I(k, w)

x exp [ik - (x - x') - iw(t - t')], (4.20)

where xav = (x + x')/2. The validity of this approximation rests on the assumptions

IV In ((ii 2 )) -' > L (4.21)
0 In ((fi2)) /ot! >'> r,

where -rd is the decorrelation time of the fluctuations.
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In the presence of an E x B drift, Eq. (4.20) becomes

(ii(x, t) fi(x', t')) = (2) (ii2 (Xav, tav)) A dk, dw I (k, w)

x exp[ik - (x - x') - i (w + k - VE,av) (t - t')], (4.22)

where the time-dependent term of E:, (4.14) has been neglected under the assumption
i < 1 [cf. Eq. (4.17)].

For the moment we do not specify the function (i 2 ). For the spectral function,
we adopt the following model:

,r L2 (kp -- ko,p )2 L2 (k k - ko,o )2
I(k,w) = 4CePr exp - P - exp -

x Ff±w - w(k)]. (4.23)

The sum over the signs is necessary to ensure that I is Hermitian. It is important
to note that this definition treats space and time asymmetrically. The wave-number
spectrum is assigned first, along with a dispersion relation w(k); then the function F,
as yet unspecified, takes into account the turbulent broadening of the frequency spec-
trum for each given k. Hence, the total width of the frequency spectrum is determined
both by P and by the Gaussian functions. In the language of fluid dynamics (drawing
a parallel between the motion of a fluid and that of our wave packet), it could be said
that this definition reflects a Eulerian approach for the wave-number spectrum and
a Lagrangian approach for the frequency spectrum. The two approaches could be
reversed; however, our choice is consistent with the definitions of correlation lengths
and decorrelation time found in the majority of the literature.

It should also be noted that all the parameters in Eq. (4.23), such as the corre-
lation lengths and the mean wave vector ko, could be dependent on xav and tav.

Our next step consists of prescribing a dispersion relation; this task is simplified
by adopting a group-velocity approximation, i.e., an expansion about the peak wave
vector ko; hence,

w(k) = wo + v 9 - (k - ko), (4.24)

where wo = w(ko) and v 9 is the group velocity.

Finally, we shall explore the two following functional forms for the turbulent
frequency form factor:

Fp(w') = /rWTdexp (4.25)

and

2 (w') 2 rd (4.26)
1 + '2 Td

where w' = tw - w(k). The function F1 presents some advantages for a preliminary
qualitative analysis, as will be seen in the next section, since it has the same functional
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Fig. 4.5 Contour plot of I(kp, w).

form (Gaussian) as the wave-number spectral functions. However, the form factor
given by Eq. (4.26) is more realistic physically, as it expresses the broadening due to
a damping rate y = 1/rd.

In Fig. 4.5 the spectral function I is plotted in contour form in the (k,,, W) plane

(neglecting the variable ko for simplicity). The Gaussian form factor 1 has been
used here.

We are now in possession of all the necessary ingredients to calculate the point-
wise correlation function by means of Eq. (4.22). The calculation is straightforward
but rather tedious: after the simple integral over w is calculated, the remaining in-
tegrands can be rearranged so that the integrals over kR and k, both take the form
of inverse Fourier transforms of Gaussian functions. The general result is derived in
Appendix G, and the correlation function is given by Eq. (G.7).

That rather formidable expression can be simplified considerably by making the
assumption that the poloidal angles 0 and t9' between the fi vectors and the horizontal
are approximately equal; this approximation, which is applicable if the correlation
lengths are sufficiently short, viz., if

< 1, (4.27)

can aid greatly in understanding the physical underpinnings of the model.
Under this approximation, the correlation function is given by [Eq. (G.16)]

,a /'2 +U2
C 12 (x, t; X', t') = (ij 2 (xav, tav)) F(t - t') exp - + 9

x cos [ko . (x - x') - (wo + ko -vEav) (t t] (4.28)
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where
U = x - x' - (t - t')vT, (4.29)

VT = Vg + VE,av, (4.30)

and F(t - t') is the inverse Fourier transform of F(w'), which can take the following

forms [Eqs. (G.1) and (G.2)]:

/ 2)

F (7-) = exp , (4.31)

and

(IrnF2(r) = exp T (4.32)
Td

In particular, the equal-time correlation coefficient is equal to

c12 (x, t; x', t) = exp - + cos[ko - (x - x')]. (4.33)

By taking the two-dimensional Fourier transform of this expression with respect to

(x - x'), we retrieve the normalized wave-number spectral function (i.e., the form

factor in the quasi-homogeneous approximation):

7r L2 (kp :F koP)2 r2 (ko - ko,o )2
2(k, ko) = L :o exp P 4 exp - 4 (4.34)

These results show that the spatial structure of the turbulence is completely described

by the average wave vector ko and by the correlation lengths in the > and 6 directions.

To study the temporal correlation structure, we write the autocorrelation coeffi-

cient by setting x = x' in Eq. (4.28) and dividing by (0):

c12 (x, t; x, t) = F(t - t') exp -(t - t') 2  +

x cos [(Wo + ko - VEav) (i - ')]. (4.35)

If we now choose the Gaussian form factor F 1, given by Eq. (4.31), we obtain

c 12 (x, t; x, t') = exp ( _ <)2 cos [(wo + ko - VE,av) (~ 1 ')], (4.36)
rff

where
2 2 -1/2

Teff + + V . (4.37)
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Fig. 4.6 Illustration of the reduction of the locai decorrelation time in the presence of flows.

Thus, we find that both the wave-packet dispersion (nonzero v9 ) and the E x B drift
reduce the local decorrelation time of the fluctuations. In the present analysis, we
have moved from a Lagrangian to a Eulerian approach, and we are now focusing on a
fixed spatial point: clearly, the faster both the wave packet and the plasma particles
flow past this point, the faster does turbulence become locally uncorrelated (see Fig.
4.6).

This result is consistent with our previous observation that the total frequency
bandwidth is determined both by the intrinsic turbulent broadening and by the widths
of the wave-number spectra, as can also be seen in Fig. 4.5. To show this, we Fourier-
transform Eq. (4.36) with respect to (t - t') and obtain the normalized frequency
spectral function

(4.38)(w)=\rffexp( Teff (±w - wo 4 ko - VEav)2

f~) sP eaex -4 .

To measure the intrinsic decorrelation time, one must revert to the Lagrangian ap-
proach by following the spatial peak of the envelope of the correlation function as a
function of (t - t'). The envelope is given by Eq. (4.28) with the cosine term removed.
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We find that the peak occurs at u = 0, i.e., at x - x' = (t - t')VT. The dependence
of the peak value on time is then clearly given by F(t - t') directly, as shown in Fig.
4.6.

Let us now follow the inverse path, that is, let us find the peak of the correlation
envelope as a function of (x - x'). We take L, = Lo = for simplicity and adopt
again the Gaussian form for F(t - t') [Eq. (4.31)]. By inspection of Eq. (4.28) one
finds that the time delay for which the envelope is maximum is

2
,= VT - (x - x'). (4.39)

Assuming now that Teff < rd, we can write 7, ~ VT - (x - x')/vT, and the peak value
of the envelope of the coefficient can be written

Am.(c 12 ) = exp -[VT X (X . (4.40)

Hence, one can reconstruct the intrinsic temporal correlation function F(t - t') by
varying the spatial separation and following the peak correlation value, only if the
separation is in the same direction as the total velocity (group velocity plus E x B
drift). This is conceptually equivalent to the Lagrangian approach.

By taking the three-dimensional Fourier transform over time and space of the
correlation coefficient, we retrieve the spectral function I(k,w) [Eq. (4.23)], as ex-
pected. By inserting in Eq. (4.23) the Gaussian form of the form factor F, given by
Eq. (4.25), we car also determine the correlation lengths for fixed w. We obtain

(L,(w) = (/ + )
I2P(P) = (~Cp + TdV T )1/2 (4.41)
r_' (W) = r2 + rjd2,2 .9

This result is easy to interpret: the motion of the wave packet and of the particles
increases the correlation length by an amount equal to the distance covered over a
decorrelation time.

Since in the analysis of the shear decorrelation effect, carried out in §4.2, the
relevant correlation lengths were defined at fixed frequency and at zero E x B velocity,
we can conclude now that the shear decorrelation parameters should be expressed as

, = j (LP + r10j,,)1/( - V)VE . k(w)
(L dV')1/216 (4.42)

S= 3 0 + TJ9o) /(O. V)VE - k(w)I

These equations replace Eq. (4.17).
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4.4 Approximate Analytical Modeling

In the last section, and in Appendix G, we were able to derive from our spectral-
function model an analytical expression for the pointwise correlation function of the
density fluctuations. The general expression is given by Eq. (G.7). To complete the
model, we must now calculate r 1 2 , the correlation function of the line integrals of the
density fluctuations, expressed by Eq. (4.3). In the general case, this calculation must
be carried out numerically, as will be discussed in the next section. In the present
section, we shall first endeavor to elucidate the physical consequences of the model
by adopting certain approximations that will permit to perform the line integrations
analytically.

The approximations that we shall introduce are based on the specific geometry
of the DIII-D PCI measurement. In particular, we shall assume that the change in
V over a vertical correlation length is small, that is,

av 1, (4.43)

where

I Z(s in2 V cos2 i9)1 2  (4.44)

(This definition of the vertical correlation length will be justified in our subsequent
analysis.) This low-curvature condition is generally satisfied in our geometry. In
addition, it will be implicitly assumed that Eq. (4.16) is satisfied, viz., that the shear
decorrelation parameters [defined by Eq. (4.42)] are small.

The angle V(R, z) is a function of the variables R = Ra + r/2 and z = zav +(/2;
our first approximation is based on the assumption that the dependence on ( can be
neglected. Thus, we shall use a functional form z9(Rav, zav; r), and we can also write
V' = t9(Ray, zav; -r). The validity of this approximation clearly rests on the low-
curvature condition. With reference to Eq. (G.7), the only remaining dependence of
C 12 on C is through the variable u, [defined by Eq. (G.11)]. We are now able to carry
out the integration over ( in Eq. (4.3) analytically. This is done in Appendix G; the
result is Eq. (G.18), in which the integral correlation function 1 1 2 is now expressed
as an integral over za,

This result is still too involved for our present purposes. At the next level of
approximation, we impose a stronger condition on the curvature, adding to Eq. (4.43)
the following requirement:

L R o9
R N< 1,(4.45)

where

CR = (C cos2 19+2 sin219)1/ 2 (4.46)
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(Note the useful relation LRCZ = ICo.) We can then assume that V ~ 0' within
a correlation length. With this condition, the integral correlation function becomes
[Eq. (G.26)]

P 12 (Ravtav;r,r) dzav 'diz (ii 2 (Rav,Zav,tav)) F(r)exp -

x exp(- (r - TVTR) 2  cos(rkR ~ eff), (4.47)

where

kL+- L) sin(20)
k0,R = Ro + ko'z 2 224R

kop L cos t9 - kOO 4C sin (4.48)

R

ko,z = k0,9 cos t + ko,p sin V, (4.49)

and

eff = o - ko - vg + k VT

= w(koR, 0) + kOR, VE,av,R. (4.50)

(Note that when Cp =4Co, one finds kOR = koR-)

Although nothing has yet been said about the large-scale (i 2 ) distribution, Eq.
(4.47) contains important physical information in an immediately accessible form.
The definition of the vertical correlation length, given by Eq. (4.44), is now readily
justified: its appearance as a multiplicative factor (times a coefficient Vfr) is consistent
with the form of Eq. (4.6), which was based on the definition of the correlation
length given by Eq. (4.4). More importantly, the exp(--IkiC/4) factor indicates
that the line-integrated measurement is sensitive only to wave vectors whose vertical
component is equal to zero, with a tolerance of the order of the reciprocal of L,. This
is intuitively obvious, as any oscillatory component along the direction of propagation

averages to zero upon integration.
Similarly, the second exponential factor in Eq. (4.47) justifies the choice of LR

[cf. Eq. (4.46)] as the horizontal correlation length. For r = 0, the envelope of the

correlation function between chords falls off as a Gaussian function of the distance r
between the chords; in the case of a finite delay, this correlation structure travels at
the total horizontal velocity VTR.

The correlation function oscillates with a spatial frequency equal to the horizontal
component of the peak wave vector ko, when the correlation structure is isotropic
(4, = 4e); in the presence of anisotropy, the spatial frequency is shifted according to
Eq. (4.48).
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Finally, the peak frequency of the signal, given by Eq. (4.50), is equal to the
frequency given by the dispersion relation [Eq. (4.24)] for kR = kR and k, = 0,
Doppler-shifted by the E x B drift.

To further elucidate the spatial structure of the measured correlation function
r 12 , we can calculate from Eq. (4.47) the equal-time correlation function

F12(Rav,tav;r,0)= dzavVd z( 2 )e, ( _ z) exp (r cos(rk,

(4.51)
and by Fourier-transforming it with respect to r we find the wave-number spectrum

Gr(Rav, tav; kR) =fdza z R L, 2)exp ( _
j2 4/

L2 (kR -T kl, R)2
x Iexp ( 4' . (4.52)

As expected, the spectral function is peaked about the values ±kO ,R.
Similarly, we can study the temporal correlation structure by choosing the Gaus-

sian form F1 [cf. Eq. (4.31)] for the form factor in Eq. (4.47), and by calculating the
autocorrelation function

12(Rav, tav; 0, T) = dZav rf-rz (i 2 ) exp ( ,

x exp 2 Cos(rQ'i) (4.53)
R~

where

TReff + VR (4.54),r2 L2) 4.4
dR

This result is reminiscent of Eqs. (4.36) and (4.37) for the pointwise correlation func-
tion. However, only the horizontal velocity now contributes, since the line integration
has selected the k, = 0 component of the spectrum.

The Fourier transform of Eq. (4.53) is

Pr(Rav, tav; ) JdzavEzReff (2 2 ) exp (

x exp -T eff.(W ) (4.55)
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To recover the intrinsic decorrelation time from the measurement, we can follow the
line of reasoning developed for the pointwise correlation case in §4.3: the value of r
that maximizes the envelope of the correlation function for a given r is r = TVT,R,

and its peak value is proportional to exp(-r 2 /2) (see Fig. 4.6). Similarly, for a
given r the envelope peaks at

2

TR,p = r VT,R, (4.56)
R

and if TR,eff < -Td, the peak value of the envelcpe is proportional to the factor

exp(-'ri,,/rj).
Finally, the complete spectral function S(kR, w) is obtained by calculating the

two-dimensional Fourier transform of 1'1 2 . The result is

S(Rav, tav; kR, w) = dZav 7r3/2 CzCR TReff ( i 2 ) exp _

,C2 (k :F ko' )2 exp ( w -F Qo(kR)12
x exp - 4 0R exp4

(4.57)

where

. o(kR) = w(kR, 0) + kRVE,av,R. (4.58)

Thus, for a given w the correlation length is

L' = 2+ + rd2T 1/2. (4.59)

In the specific case of the DIII-D PCI measurement, the edge location allows us to
write It91< 1 (cf. Figs. 3.4 and 4.4). The immediate consequences are that 1R 2 Lp
and C, ~ L4. Also, the selection rule ko,, ~ 0 now translates into k0 ,0 ~ 0. Thus,
we retrieve the condition discussed qualitatively at the end of §4.1, and illustrated by
Fig. 4.2.

Carrying the expansion to second order in V, and barring any large correlation
anisotropy, we can write

LR a- P 1 - 1 ). (4.60)
Z 0 2 L2

To proceed any further, we must make some assumptions on the spatial distribu-
tion of the fluctuations and of the angle t9. If both the distribution of the turbulence
and the flux-surface geometry are up-down-symmetric with respect to the midplane,
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Fig. 4.7 "V" model of flux surfaces.

the angle v9 is an odd function of Zav, and the correlation function [Eq. (4.47)) can
be written

F12(Rav, tav; r,r) = dzav I:rZ ( 2 )p ( _ exp

x exp (- ( -- T,R,) 2 cos(rk',R,± - T7ef,±), (4.61)

where the + and - indices refer to positive and negative 19, respectively. Here, we
have adopted the explicit Gaussian form [Eq. (4.31)] for the form factor F(r).

An instructive, albeit rather crude, approximation can now be made by adopt-
ing a "V" model for the poloidal flux lines. In this model, the arc of flux surface
intercepted by the laser beam at the edge is approximated by an up-down-symmetric
V-shaped curve with its vertex on the midplane (see Fig. 4.7). The angle d has
constant absolute value along a surface, and changes sign across the midplane. The
value of 101, naturally, will generally be different for each surface; however, to simplify
the problem further, and in consideration of the edge location of the PCI apparatus,
we assume that 101 can be taken to be constant along the length of a vertical chord.

We can now calculate the temporal Fourier transform of 1712 from Eq. (4.61),
and normalize it by dividing it by the corresponding function for r = 0. The result
is the complex coherence function,16 5 whose modulus is equal to the square root
of the coherence proper, and whose phase is equal to the spectral cross-phase. To
simplify the calculation, we make the additional assumptions effgi± > 1/rR,,ff,± and

10eff,+ - Peff,- I> 1/rR,effg,: this ensures that the four Gaussian frequency peaks are
well separated and can be treated independently. If we carry out a measurement in
the vicinity of one of the two (positive) frequency peaks, we will measure the following
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complex coherence function:

7Y± (r; W) ~ exp (- + 2 2
Ri +7vT,R,+)

x exp [ir (kRa + (w QR,ff, R +)] (4.62)

Let us now assume JtJ < 1. Equation (4.50) gives, to leading order, Qrif,±
~ neff,- ~ wo - ko,6 ovg,; also, from Eq. (4.54) we can derive TR,eff,+ TR,eff,-

~ (1/ri + /)-/2
Recent experimental measurements" have suggested that the radial

wave-number spectrum is characterized by a standing-wave structure, that is, ko,p = 0
ant' vg, = 0. We shall now briefly examine this case. Under the conditions of our
measurement, the electric and magnetic fields are predominantly radial and toroidal,
respectively; therefore, the dominant component of the E x B velocity in the poloidal
plane is in the 6 direction, and we can set vE,p ~ 0.

Taking 4p/LO to be of order unity, we find from Eq. (4.48) kon,±
~ T9ko, C1/L2 . Also, VT,R,+ ~ T 9 VT,O, and ko,, ~ k0 ,0 . Equation (4.61) can
now be recast in the following approximate form:

Il2(r,) ~C- rz-L, 2 -_ k exp

( VT 2
x cosh 2 r r cos VLOrko,o cos(reQff). (4.63)

The envelope of this expression is even in -r, with a single peak at T = 0 if Irl

e I /(I T-dVTr\/), or two symmetrical peaks (and a local minimum at r = 0)
otherwise (see Fig. 4.8). The envelope is also even in r, with the condition for a
single peak now being ITI < L/(9 VTB/).

Assuming, again, eff > 1/rd, the complex coherence function is approximately
equal to

7(r; w) ~ exp - cos ( L rko, Cos 9 [r , r (w - Ref) . (4.64)

Thus, the coherence function is real, as implied by the time-reversal symmetry of
Eq. (4.63). In an experimental measurement, the spectral cross-phase would jump
between 0 or 7r, while the coherence itself would have an oscillatory character (see
Fig. 4.9).

The spatial Fourier transform of the complex coherence function is the condi-
tional spectrum,1 7 5 whose value at the peak frequency is

s(kR Ie )ff~ VL exp _ L kR T 9O ko,o) . (4.65)
2± C
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Fig. 4.8 Envelope of the correlation coefficient for (a) Irn < L dTad),

(b) Irl > ,C/(drTeV').

Y 2s1i

a-. - --

I I 9

1 I0 *

-I,

11 ZILL
Fig. 4.9 Oscillating coherence function caused by two counterpropagating modes.

Hence, we reach the important conclusion that a traveling poloidal wave packet
(ko,e # 0, v,,o # 0) causes the line-integrated signals to exhibit a standing-wave
spatial correlation structure. This can be understood physically as follows. A ver-
tically line-integrated measurement is sensitive only to the horizontal component of
the wave vector of the fluctuations. In the presence of a poloidally propagating wave
packet, the horizontal projection of the wave vector has opposite signs above and
below the midplane (see Fig. 4.10). The measurement, therefore, "sees" two uncor-
related, counter-propagating waves, which give rise to the standing-wave correlation
pattern shown in Fig. 4.9.
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Fig. 4.10 Counter-propagating horizontal projections of a poloidally propagating wave.

This result is dependent on the postulated up-down symmetry of both the tur-
bulence and the flux surfaces. In real experimental situations, the geometry of the
flux surfaces is often slightly asymmetric (as in the single-null diverted configuration
shown in Fig. 4.11); in addition, the turbulence itself may be asymmetrically dis-
tributed, as past experiments have shown.' 85 In that case, the positive and negative
projections of the wave vectors may not be equal, and the measured pattern may ap-
pear to be propagating inward or outward. However, since the measured wave vectors
are the horizontal projections of nearly vertical wave vectors, the apparent wavelength
will generally be much longer than the actual wavelength of the turbulence. If, as an
extreme example, the turbulence is localized entirely on one side of the midplane (see
Fig. 4.11), the measured horizontal wave number will be kOR - t9 k0 ,9 L/L,, where
9 is an average poloidal angle in the turbulent region. The additional constraint
Iko,el <; 2/e, which arises from the first exponential term in Eq. (4.63), further
limits the region of wave-number space that can be accessed by the measurement.

As a final exercise, with specific relevance to the results discussed in the next two
chapters, let us posit a turbulent spectrum equal to the sum of two counterpropagating
radial modes of identical amplitude; i.e., the two spectra are characterized by ±ko,, $
0, ±vg,, # 0, and ko,9 = 0; we further assume that Iko,,LfI > 1, so that we can neglect
crosscorrelations between the two modes, and IvT,091 < Iv,,pI. Equation (4.61) can
now be written as

r 12 (r, r) ~ Vi/zLz (ii 2 ) exp [_2 + -
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Fig. 4.11 Lower-single-null diverted configuration. The shaded area indicates the turbuelent

region in the model.

x [osh 2 YPr r cos (rkop) cos(rwo)

+ sinh 22 rr sin (rko,) sin(rwo)]. (4.66)

The envelope of this expression is even in r, with either a single peak at r = 0 or
two symmetrical peaks (and a local minimum at 7r = 0). In particular, for Irko,pI < i,
the condition for the existence of two peaks is approximately Ir| > L2/(r,effVg,pvf2).
This insight will help us understand the measured correlation functions in Chapter
6.

In conclusion, this analysis has confirmed that the DIII-D PCI apparatus is
mostly sensitive to the radial wave-number spectrum. A poloidally propagating wave
packet, under normal conditions, will cause only a slight departure (of the order of
the rms poloidal angle ?9) of the measured signal from that generated by the radial
spectrum alone. In particular, a measured traveling-wave pattern will generally imply
the existence in the plasma of a radially traveling wave train.
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4.5 Numerical Modeling

The correlation function of the line integrals of the density fluctuations, defined by
Eq. (4.3), can be calculated from the analytical expression for the pointwise correla-
tion function [Eq. (G.7)] by carrying out the double linear integration numerically. A
Fortran computer program, called PREDICT-PCI, was written for this purpose. This
program "predicts" the integral correlation function that would be obtained exper-
imentally from the plasma turbulence spectrum defined in Eq. (4.23). Within the
confines of this model, the numerical calculation provides an exact result, without,
resorting to any of the approximations adopted in the previous section. In particular,
both the poloidal angle V and its relative variation over a correlation length can take
arbitrary values.

However, the low-shear condition, expressed by Eq. (4.16), must still be sat-
isfied, since, as was discussed in §4.2, the model - and indeed the entire concept
of an "intrinsic" plasma turbulence spectrum - loses its meaning when the shear
decorrelation parameters, defined by Eq. (4.42), are larger than one.

The case of inhomogeneous turbulence can be treated by introducing a spatial
distribution (ft 2 (Rav, zav)). This spatial distribution is specified as a function of the
normalized flux (zero on the magnetic axis, one on the last closed flux surface) and
of the poloidal angle; the functional dependence on both variables is Gaussian, with
means and widths specified by the user.

The program PREDICTJPCI is run on the General Atomics VAX computers. The
integration is carried out in the flux-surface geometry determined experimentally for
actual DIII-D plasma discharges. The reconstruction of the flux-surface geometry
is performed by the equilibrium program EFIT, 17 6 using magnetic measurements and
kinetic profile measurements. Alternatively, the program also allows the user to define
the stream function 9 ' ik(R, z) analytically.

The E x B velocity can also be functionally defined by the user, or it can be
obtained from experimental measurements. The electric field is measured indirectly
through the radial force-balance equation for a given ion species189

Ep = dP -v9,IB + vBo, (4.67)
Zienj dp

where Zi is the atomic number of the species, e is the (positive) electronic charge, P is
the ion pressure, ve,j and vo,j are, respectively, the poloidal and toroidal ion velocities,
and B0 and B4, are, respectively, the poloidal and toroidal magnetic fields. Both the
plasma velocities and the ion pressure profile are measured in the DIII-D tokamak
by charge-exchange recombination spectroscopy.' 9 2 An example of the electric field
profiles obtained by this method in the edge region is shown in Fig. 4.12.

The electric-field profile is generally measured in the midplane. Extrapolation to
different elevations is permitted by the constancy of the electric-field potential over a
flux surface [a property that can be proven from Eq. (4.67)]. The electric field at an
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Fig. 4.12 Electric-field profile on the DIII-D midplane, measured by charge-exchange recombina-
tion spectroscopy in L and H mode.

arbitrary point (R, z) is therefore given by

E,(R, z) = , E,(R', 0), (4.68)
EV((R ,0))

where ) = RA, is the stream function, and R' is the major radius that satisfies the
identity (R', 0) = tP(R, z).

The program PREDICT-PCI is organized as follows. The parameters ko0 p, ko,0 ,
P, Le, wO, n 9,,, vgo, and rd are provided in input. The user chooses one of the

two frequency form factors (P) given by Eqs. (4.25) and (4.26). Also, the spatial
distribution (fit) is specified by assigning the means and standard deviations of the
Gaussian functions, both in the normalized flux and in the poloidal angle.

The code reads the electric-field data (typically an 8-point array) and interpolates
them with a smoothing cubic spline. The flux data [typically a 65 x 65 (R, z) matrix]
are also interpolated with a bicubic spline; the flux data are used both to derive the
function t9(R, z) and to map the electric-field potential along the flux surfaces. (The
spline subroutines employed are part of the IMSL library.) The plasma is assumed
to occupy only the region inside the last closed flux surface, and no attempt is made
at modeling the scrape-off layer.

For maximum efficiency, different integration algorithms are used for the outer
integral (in () and the inner integral (in za,,). A non-adaptive Patterson quadrature
method 94 was chosen for the inner integral, in view of its regularity. An adaptive
Patterson algorithm is used for the outer integral in the autocorrelation case (r = 0),
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whereas in the more irregular crosscorrelation case, optimal performance is achieved
with an adaptive Piessens-de Doncker quadrature method especially suited for an
oscillating integrand. 195 These quadrature algorithms are part of the subroutine li-
brary NAG, with an adaptive interval-subdivision algorithm added in the program
to increase efficiency. All calculations are carried out in double precision (64 bits).

The program can be run in three different modes. In mode 1, only the spatial
correlation function is studied, and no use is made of the group velocity and of the
E x B velocity. The user has the option of requesting the correlation coefficient at
r = 0, or the complex coherence at a fixed (unspecified) frequency: in the second
case, only one of the + and - signs in Eq. (4.23) is selected, and the spectral function
is not forced to be Hermitian. In both cases, one chord is fixed and the position of
the second chord scans a set of discrete values of the major radius; the wave-number
spectrum is also calculated, using an FFT algorithm, and plotted.

In mode 2, the program explores the temporal correlation structure: the auto-
correlation coefficient and its envelope are calculated for a number of discrete time
delays, and the frequency spectrum is also computed (through an FFT routine).

Finally, in mode 3 a two-dimensional scan of both major radius and time delay
is effected, and several functions are calculated: the correlation coefficient and its
envelope, the coherence and cross-phase (as functions of R and w), and the absolute
and conditional spectra (as functions of kR and w). This mode is, naturally, more
CPU-intensive and has been used only in a few cases. (The first two modes typically
require a few hours of CPU time).

Although the plots generated by the program are of normalized quantities (that
is, the correlation coefficient and its transforms), the absolute value of the autocor-
relation function is also given in output (for a unity mean square density (iL2 ) at
the peak of the spatial distribution). This is important, as the exponential term
exp(-,Ck , /4) (see Eq. (4.47)] does not affect the correlation coefficient but can
have a strong damping effect on the overall signal.

In modes 2 and 3, the radial and poloidal shear decorrelation parameters are also
calculated at the frequency wo and at several points along each vertical chord, and
provided in output.

The PREDICT.PCI code was run for a large number of cases. Many of the param-
eter sets chosen were devised for the express purpose of testing the analysis presented
in the previous section. All the qualitative results that were discussed in §4.4 were
confirmed by the numerical analysis.

Results from various PREDICTPCI runs are shown in Figs. 4.13-4.17. In all
cases shown, the Gaussian form factor 1 was used (the alternative form 2 produces
qualitatively similar results). In all cases except the last one, the local wave-number
spectrum was chosen to approximately reproduce the spectrum derived recently from
beam-emission spectroscopy measurements in TFTR.5 1 The values of the main pa-
rameters are ko,p = 0, kO,O = -1 cm-1, ,, = 2 cm, and Co = 3 cm. The frequency
spectrum is defined by the parameters wo/(27r) = 20 kHz, vg,p = 0, vg,o = -2 km/s,
and rd = 45 ps. It should be noted that the damping factor due to the nonzero
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peak poloidal wave number, exp(-LCk 0/4), is ~ 0.78; thus, the signal is only mildly
attenuated.

In Fig. 4.13 a spatially homogeneous case is compared with a case in which
turbulence is localized below the midplane. The program was run in mode 1 (spatial)
at fixed frequency, i.e., with a non-Hermitian spectral function. The analysis of §4.4

[see Eq. (4,65)] predicts a measured spectral function S(kR1w) equal to the sum of two
Gaussian functions with two symmetrical peaks at kR ~ it ko,O Lj/L . The resulting
function, as can be seen in Fig. 4.13(a), has a single peak at kR ~ 0; the apparent
broadening is due to the separation of the two peaks. The slight negative skewness is
an effect of the flux-surface geometry, which is, as shown in the insets, that of a lower-
single-null diverted plasma: thus, |I9J is a little larger below the midplane than above
it, and the negative wave numbers are slightly enhanced. The main message of this
plot is that the measured spectral function is rather similar to the local radial-wave-
number function, while it is affected little by the poloidal-wave-number function.

A larger asymmetry is obtained, as expected, with a localized spatial distribution
[Fig. 4.13(b)]. Now only the negative peak of the two described by Eq. (4.65)
r- mains. In this inhomogeneous case, a propagatdg poloidal wave train results in
a propagating pattern in the integrated signals. However, as was discussed at the
end of §4.4, the measured wave number is kR ±O kO,O C2/r, hence, generally,
IkRj < Iko,ol. In the present case, 0 /P = 2.25 and 0 ~ 0.2 rad; thus,as Fig. 4.13(b)
shows, kR ~ 0.45 x k0,0.

Figure 4.14 illustrates the effect of Doppler shifts on the measured frequency
spectrum. The program was run in mode 2, for homogeneous turbulence. For refer-
ence, Fig. 4.14(a) shows the frequency spectrum in the absence of an E x B drift.
The two cases shown in Fig. 4.14(b) are characterized by E x B drifts calculated
from, respectively, the L-mode and H-mode electric-field profiles shown in Fig. 4.12.
The unshifted peak frequency in the first plot is equal to [cf. Eq. (4.50)] Qeff/(27r)

~ w(kR, 0)/(27r) ~ (wo - vg,oko,o)/(21r) ~ 40 kHz. The half-width of the spectrum
is \/2/(7rrR.a); from Eq. (4.54), rR,eff L 33-40 ps, resulting in a half-width of 11-14
kHz, as confirmed by Fig. 4.14(a).

In L mode, the radial shear decorrelation parameter has a maximum value of ~
0.5 in our geometry. Thus, we can consider an analysis based on the concept of a
Doppler shift at least marginally applicable in this case. Comparing Figs. 4.14(a)
and (b), both the Doppler shift and the Doppler broadening of the spectrum appear
quite modest in L mode. This is yet another consequence of the sensitivity of the
system to radial wave vectors, since the drift velocity lies in the poloidal direction:
the Doppler shift is Aw ~- i9k o,o VE LP

In H mode the broadening is more pronounced, although the peak is still nearly
unshifted. The measured frequency spectral function remains reasonably close to
the plasma-frame spectral function. However, the significance of these concepts now
comes into question, as the radial shear decorrelation parameter is of the order of 2.

Figure 4.15 depicts the envelope of the correlation coefficient in contour form
(mode 3) as a function of r and T, for the unshifted case (no E x B drift). The parity
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Fig. 4.13 Comparison of line-integrated kR spectra in (a) homogeneous and (b) inhomogeneous

turbulence; the source kp and k9 spectra are also plotted for reference.

in both r and r is broken by a slight irregularity involving two secondary peaks, a
consequence of the modest up-down asymmetry of the magnetic-field lines.

Shown in Fig. 4.16 is a comparison of the results of a mode-1 run for two different
flux-surface geometries, i.e., those of a single-null and of a double-null diverted plaima
[depicted in Fig. 4.16(b)], in the case of homogeneous turbulence. Figure 4.16(a)
compares the two wave-number spectra; in going from a single-null to a double-null
geometry, the symmetry increases as expected, but the change is quite modest.
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The last figure in this group, Fig. 4.17, explores two different parameter sets that
produce similar results, to illustrate the intrinsic ambiguity of the inversion problem,
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and the role of physical intuition and prior knowledge in selecting the most probable
spectral function. In both examples, the line-integrated wave-number spectrum peaks
at a negative value kOR - -2 cm- 1. The functional widths are also similar. The
case of Fig. 4.17(a) is based on a homogeneous spatial distribution; therefore, a
negative kop is necessary to obtain a negative kOR. In the second example [Fig.
4.17(b)], ko,p is set to zero, and turbulence is localized below the midplane; one
must then simultaneously satisfy the three conditions L ,1 - i2(1 - L2/,C)/2] ~ LR,

2 ko'O £2/L ~ ko, and jkopCo < 2. The combinations of parameters that satisfy
these three conditions are all rather different from those of the examples analyzed thus
far; for instance, if the condition LP = LO is imposed, one finds k0 ,0 ~ -10 cm',
and £ < 0.2 cm. In the alternative solution shown in Fig. 4.17(b), the conditions
are met by imposing a large L 9/o, ratio.

In this example, both solutions shown in the figure are somewhat in contrast
with the types of spectra that have appeared most often in the literature, such as
those of Figs. 4.13-4.16. However, the contrast is certainly greater in the case of Fig.
4.17(b), which would also directly contradict prior knowledge acquired with other
diagnostics in DIII-D. The only unusual feature in the spectrum of Fig. 4.17(a) is the
appearance of a net radial propagation, which, however, does not directly contradict
previous measurements. Therefore one is bound to accept this solution as the more
probable one. This example is directly relevant to our measurements, and will be
discussed again in Chapter 6.

The PREDICT-PCI code has proven to be a valuable tool in the data-analysis
process. The pointwise correlation function cannot be extracted in a unique way from
line-integrated measurements; however, some information on the local spectra can be
generated by using prior knowledge on symmetry properties and spatial distributions,
and by drawing guidance from the semianalytical results of §4.4. When a spectrum
and a distribution are tentatively postulated, they can be used in PREDICT.PCI, and
the results of the code can then be compared with the experimental measurements.
This procedure is generally iterated a few times to improve the matching. These
applications of the code will be discussed in the next two chapters in connection with
individual results.

The sensitivity of the PCI measurement to predominantly radial wave vectors can
also be visualized in a more direct way by performing the numerical line integration on
individual spectral components, and interpreting the result as a responsivity in wave-
number space. This calculation is carried out with randomized phases, by separately
integrating a cosine and a sine function and then taking the square root of the sum
of the squares. Each horizontal (kR) component is multiplied by the complete PCI
transfer function at each step of the integration. This procedure is of lesser significance
than the more realistic calculations performed by PREDICTPCI, but the results have
an appealing immediacy.

The responsivity is plotted in contour form in Fig. 4.18. At each kp, the ko
spectrum comprises all values that satisfy the relation k, = ko cos 19 + kp sin 9 = 0 for
all V values along the PCI chord; the peak of the ko spectrum occurs at an approximate
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rms value of V. Since the ko range increases for increasing k,, the responsivity must
decrease; this must not be interpreted as a decrease in the responsivity of the system
to k,, as the integral over ko remains approximately constant [this is essentially the
PCI transfer function, Eq. (2.143), multiplied by the finite-area smoothing function,
Eq. (3.16)]. In all cases, it is immediately clear once again that Ikp > 1kol: this is

214

-u

-2 02"

k (cm1 )

I ~

* ~:
* ~

I :,
* Z1
*
*
*
*

* .

I
a

I

.4
I-

-6 -4

a,)

I')

I.
I..

I
I

I
*

*
I *

I
I

I

- I
I

0

-6 -4

X

(0)

2



0

-1 - -0 10
kr (cm-')

Fig. 4.18 Responsivity of the PCI system to individual (kp, ko) modes.

the main conclusion of this chapter.

215



5 Fluctuation Measurements in the DIII-D Tokamak

Anomalous transport remains the single most significant obstacle to performance im-
provement in tokamaks. Plasma microturbulence has long been postulated to be the
chief cause of the enhancement of radial transport over the level predicted from col-
lisional calculations. 196 The experimentally observed correlation between variations
in the amplitude of the turbulence and modifications in the confinement properties
of the plasma has gone a long way towards confirming that postulate. 59 However,
relatively little is known yet about the detailed properties of turbulence and about
the fundamental nature of the underlying instabilities.

This state of affairs motivates a continued experimental effort with traditional
fluctuation diagnostics, as well as the development of new and more diversified diag-
nostic techniques. 197 At the same time, steady progress is being made on the theo-
retical front, in spite of the extraordinary complexity of the subject, which is rarely

amenable to extensive analytical treatment.19 6 The remarkable recent advances in
high-performance computing, which continue at a propitiously rapid pace, have per-
mitted large-scale numerical simulations at an unprecedented level of detail, elevating
them to the rank of a fundamental tool that can be applied directly to the interpre-
tation of experimental results. 198

A similar course of events has characterized the study of fluid dynamics, which
has benefited greatly from developments in flow visualization19 9,2 00 as well as in com-

puting power. In fact, although turbulence in plasmas is considerably more complex
than in fluids, the recent history of fluid dynamics is in many ways a useful blueprint
for the present and future direction of plasma fluctuation studies. A clear example of

this is the recent recognition of the advantages of imaging methods, which are being
proposed for and applied to a variety of plasma settings and diagnostic configurations,
one instance being the work described in this thesis.

The DIII-D device is arguably the best-diagnosed major tokamak in existence.

The array of diagnostics employed in the study of plasma fluctuations is particularly
extensive, as it embraces nearly all the techniques that have been developed in the his-
tory of this field, the major exception being the heavy-ion beam probe. Accordingly,
the investigation of turbulence is one of the focal points of DIII-D activities. The

experimental verification of the theory of turbulence suppression by an electric-field
shear, 63 which was advanced to explain the H mode,60 is one of the eminent success
stories of the DIII-D team.2 0 1 Clearly, then, DIII-D provides the ideal environment
for the development of novel diagnostics, such as phase-contrast imaging (PCI).

The PCI technique, which was described at length in Chapters 2 and 3, provides

several unique capabilities. In particular, when applied to studies of the statistical
properties of turbulence, PCI allows simultaneous multi-point correlation measure-

ments with substantially better temporal resolution than was previously possible. Its

sensitivity to density fluctuations and its dynamic range also set it apart from other

measurement techniques. While PCI also has important limitations - the most sig-
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nificant one being its lack of line-of-sight resolution - it is important to consider
these unique characteristics in the proper context.

It has long been known that low-frequency fluctuations in plasmas display a
distinctly turbulent behavior.10"196 This is reflected both in broadband wave-number
spectra and in broadband frequency spectra at each given wave number. In addition, a
certain amount of randomness in the temporal evolution of fluctuations and a marked
variability from one discharge to the next are often observed. As PCI has moved to
progressively finer temporal and spatial (in one direction) scales, this behavior has
been constantly confirmed. The statistical averages undergo significant temporal and
spatial variations, indicating that a certain amount of randomness survives even at
the statistical level; this implies that the assumption of ergodicity, and even the
less restrictive one of stationarity, upon which all statistical estimates are based, is
partly violated, at least in the time-scale range necessary to achieve good statistics.
Substantial differences in correlation lengths calculated over different time scales have
also been seen in numerical simulations of turbulence.20 2 In addition, some evidence
of intermittency in tokamak turbulence has been reported in the literature.20 3 2 04

A comparison with ordinary fluids may help put this point in perspective. Tur-
bulence in fluids generally exhibits approximate spatial and temporal self-similarity
over a large scale range, known as the inertial range, which was formalized in the
classic work of Kolmogorov. 2 0s However, intermittency - hence, a departure from
self-similarity - has been observed, not only in the dissipation (i.e., small-scale)
range, 206 but also in the higher-order moments in the inertial range, in partial vi-
olation of Kolmogorov's theory.2 0 7 The far greater complexity of plasma dynamics,
particularly in a strongly driven system such as a tokamak, may well act to reduce
the spatiotemporal invariance further. (PCI data exhibit a burstier behavior during
discharge phases with strong auxiliary heating than during those with Ohmic heating
alone.) Indeed, the existence of an inertial range in plasma turbulence has not been
verified experimentally.

In spite of these considerations, several universal features have emerged from
PCI measurements in DIII-D. Many other features that will be described, however,
appear to have a more irregular character. In these cases, especially when comparing
with theoretical models, the results are by necessity only of a semiquantitative nature.
Care will be taken to characterize the results accordingly in the text.

In view of the complexity and variety of the experimental results, and indeed
because of the inherent difficulty of the subject, it was desirable to provide a complete
description of the phenomenology before discussing the interpretation of the results
and comparisons with theory. Although somewhat artificial, this strict partition of
the material should prevent any confusion between facts and speculation. Therefore,
the present chapter is devoted to the experimental results, whereas Chapter 6 will
address their interpretation.

The remainder of this chapter is organized as follows. Section 5.1 contains a
brief review of turbulence measurements in tokamaks; this is by no means intended
as a comprehensive review, and is by necessity rather selective: its main goal is to
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summarize the current knowledge in those areas that were investigated directly in Che
course of this thesis work. In §5.2 an overview of rtcent measurements in DIII-D is
presented.

Preliminary considerations on PCI data in general and on the main analysis pro-
cedures are given in §5.3. The phenomenology studied with PCI is subdivided into
three main lines. The first one pertains to the characteristics of turbulence in approx-
imately stationary states, in different confinement and heating regimes (Ohmic, L-
mode, H-mode): §5.4 describes the frequency spectra and time-domain correlations,
§5.5 the spatial correlation structures and wave-number spectra, §5.6 the amplitude
of the fluctuations, and §5.7 the probability distribution function. The second topic
concerns the dynamics and evolution in time of the turbulence: the main results on
the L-H transition are presented in §5.8, while §5.9 contains a description of a partic-
ular class of "slow" transitions; additional observations on dynamic changes within
each confinement regime are offered in §5.10. The third and last line of research was
the investigation of transient phenomena, particularly edge localized modes (ELMs),
which are discussed in §5.11; a few considerations on MHD phenomena and other
transients follow in §5.12. Concluding remarks are given in §5.13.

This schematic subdivision into topics and sections was chosen for optimal clarity
in the exposition of the material; however, these topics are inevitably interwoven:
thus, individual sections are not generally self-contained.

5.1 Review of Turbulence Measurements in Tokamaks

(a) Turbulence Measurements

Fluctuation measurements have been performed with a variety cf techniques in
many tokamaks.0,208, 197,196 ,20 9 Historically, more extensive measurements have been
carried out in the plasma edge than in the core, owing both to easier access and
to greater theoretical interest, especially since the discovery of the H mode. 60 The
subsequent discovery of the VH mode64 and, more recently, the achievement of im-
proved core confinement in negative-magnetic-shear configurations2 1 0'2  has placed
renewed emphasis on core fluctuation studies. In some cases, the turbulence-induced
fluxes have been directly calculated or estimated, and levels roughly consistent with
the measured anomalous transport have been obtained. Most of the following dis-
cussion will pertain and refer implicitly to fluctuations of the density (fi) and of the
electrostatic potential (q). Measurements of the fluctuating magnetic field (B) and
temperature (T) in the plasma are considerably more difficult, and the database is
correspondingly smaller; these results will be addressed explicitly.

The frequency spectra are almost universally seen to be broadband, with band-
widths up to 1-2 MHz;10 in many cases, the bandwidth is mostly determined by
Doppler shifts and broadening from plasma rotation. 212 --214 The bandwidth mea-
sured at each wave number with scattering techniques is also broad, with Aw ~ ;,
a signature of strong turbulence. 10 '3 Average frequencies are roughly of the order of

218



) ~ wci * pi/Ln, where wei is the ion cyclotron frequency, pi is the ion Larmor radius,
and Ln = V(In nIe)- 1 is the density-gradient scale length.208 This value is consistent
with drift-wave turbulence with wavelengths of the order of an ion gyroradius. (More
will be said about drift waves in Chapter 6.) In TFTR, reflectometry studies have
revealed a broadening of the spectra when heating by neutral beam injection (NBI)
is applied; intrinsic decorrelation times in the range 30-45 ps have been reported for
beam-emission spectroscopy (BES) measurements. More exotic structures have been
seen in the edge and scrape-off layer (SOL) of the Caltech Research Tokamak3" and
of ASDEX: 2 15 these can be characterized as short-lived (~10 ps) long-wavelength
individual filaments that evolve in an irregular fashion.

In addition to the broadband turbulence, coherent or semicoherent features have
been observed10 in the edge region of several tokamaks, including PDX,19 PBX-
M, 2 16 ASDEX, 2 1 7 and DIII-D.2 18 In TEXT-U, semicoherent activity localized around
rational magnetic surfaces (corresponding to rational values of the safety factor q) has
been reported.21 9 These features are generally easy to distinguish from the ambient
turbulence and are attributed to macroscopic or microscopic MHD instabilities. The
b x B drift velocity of these modes is generally found to be 90* out of phase with
respect to the fluctuating density, thus causing no net electrostatic transport.22,61

With few exceptions, most measurements have concentrated on poloidal wave
vectors and poloidally propagating modes. This was motivated by the theoretical
prediction that a variety of pressure-gradient-driven electrostatic modes of the drift-
wave type, which propagate in the electron or ion diamagnetic direction, would be
unstable in tokamaks. These modes were therefore expected to be one of the funda-
mental causes of anomalous transport.1 0 ,22 1 It should be noted that measurements
are carried out in the laboratory frame of reference and cannot distinguish in general
between intrinsic group velocity and plasma rotation. The latter tends to dominate
in NBI-heated discharges.

In Ohmic plasmas in Alcator C the group velocity was found 23 to be predom-
inantly in the electron direction at low density, and in the ion direction at high
density (ne > 2 x 1014 cm-3). A similar behavior was observed in TEXT.1 85 Both in
TEXT 2 2 2 ,2 2 3 and in the Caltech Research Tokamak38 an ion mode was detected also
at lower densities in the edge region (normalized minor radius r/a > 0.85), whereas
propagation was predominantly in the electron direction in the core. More recently,
BES data from TFTR2 24 have pointed to a net separation between a core region with
only an ion mode, and an edge region with both an electron and an ion mode (uncor-
related with its core counterpart and with smaller average wave number); in addition,
the edge ion feature continues into the SOL, whereas the electron component peaks
inside the last closed flux surface (LCFS). Estimates of the plasma-frame velocities
of the ion and electron modes in TEXT 2 2 5 and TFTR2 26 indicate that the former
is approximately of the order of the (ion) diamagnetic velocity, whereas the latter is
anomalously large.

In early measurements, 0 ,1 7 77 ,2 4 the radial and poloidal wave-number spectra
were generally found to be similar (i.e. the spectrum was isotropic in the poloidal
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plane); the spectrum was largest at low wave numbers [kp, < 0.15, where p, is the
ion Larmor radius determined from the ion sound speed c, = (Te/mi)'/ 2 ]. Some
asymmetry was seen in the Macrotor3 7 and Pretext2 2 7 devices, with the poloidal
correlation length exceeding the radial correlation length by a factor 1.5-4. Nonzero
spectral peaks were observed in ATC16 and PDX228 ; inward radial propagation at the
edge was reported for the latter device. The component of the wave vector parallel to
the magnetic field has been measured in a few cases and has been found to be much
smailer than the perpendicular component.1 0 ,25 ,2 2 9 Within the resolution of these
measurements, however, it is generally difficult to determine whether the structure
of the modes is flutelike (kil ~ 0) or ballooning (predominantly concentrated on the
outboard side of the torus).

More recent measurements, utilizing increasingly sophisticated techniques, have
consistently displayed marked radial-poloidal asymmetries. In TEXT 39 , 8 5 and TFTR2 3 0 ,5 1 1
the poloidal spectrum peaked at a finite value, which was a varying19 7 fraction of p;1
the radial spectrum peaked at k, ~ 0. The poloidal correlation length exceeded its ra-
dial counterpart by a factor 1-5 in TEXT-U 23 ' and TFTR5 1 . At large wave numbers,
approximate spectral power laws have been found to apply: S(k) oc k- 4 (TEXT),18 5

and S(k) oc k 3 (TFTR).2 13 Parametric studies of the k spectra in TEXT revealed
no strong dependence of the average k on the plasma current, and a dependence
k c B -6 on the toroidal magnetic field. 85

Spatial variations of the radial correlation lengths have been investigated in
TFTR. Values of 2-3 cm at the edge and of 1-2 cm in the core were derived from BES
data;230 large-scale semi-coherent oscillations were seen in NBI-heated discharges by
correlation reflectometry in the core.4 3 Correlation reflectometry has also been em-
ployed in JET2 32 , which reported core radial correlation lengths in the range 2-20
mm, and in DIII-D ,46,233 where values in the range 1-5 mm were found: in both
cases, the low end of the range corresponds to Ohmic and H-mode plasmas, and the
high end to L-mode plasmas. It should be noted that the interpretation of results
from this technique is surrounded by some controversy. 46- 49

The relative amplitude of the density fluctuations (u/n) is difficult to measure
with good precision, especially in the plasma core. Probes, BES, and HIBP can be
calibrated fairly accurately, whereas scattering and reflectometry systems can provide
only very approximate values. Early estimates of the relative fluctuation amplitude
were found to scale inversely with the density, with a power-law exponent between -1
and -1/2.1"

Several tests of the mixing-length scaling have also been carried out. The mixing-
length concept, which has its roots in the theory of fluid turbulence 23 4 is often
adopted as an ansatz in strong-turbulence models in plasmas.18 7 In the simplest
terms, it is assumed that the fluctuation amplitude saturates at a level such that
the gradient that generated the instability is flattened over the extent of a radial
correlation length (or eddy size in fluid dynamics). Thus, the mixing-length criterion
can be written approximately as / ~ C,/L, where LC is the gradient scale length
of the field (e.g. density, temperature, etc.), and L, is the radial correlation length.
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In experimental tests, the value 1/ik is often used instead of L,.
It is generally found that the mixing-length scaling is verified to within one-

half an order of magnitude, 2 08 with the notable exception of TFR, which reported
amplitudes one order of magnitude too small, 10 and of TFTR, where the amplitude
is larger than mixing-length at the edge196 and smaller in the core3. 2 4 In TEXT,
qualitative agreement with the scaling was found in the edge, 18 5 less in the core.23

One important issue concerning the amplitudes is the adiabatic-electron assump-
tion. This assumption, implying the Boltzmann relationship fi/n ~ e/Te (where e is
the electronic charge and Te is the electron temperature), is used in many theoretical
models197 and implies that the electrons travel the distance of a wavelength in a time
that is short compared to the fluctuation period. The theoretical significance and
implications of this assumption will be touched on in Chapter 6. Results suggest
that the adiabatic-electron assumption is approximately valid in the core but not at
the edge. 197 In particular, in TEXT the ordering T'/T < u/n < eqS/Te was found to
hold. 196,236

The TEXT team also reported finding little or no dependence of the broadband
components of u/n on the plasma current, and an inverse dependence on the magnetic
field, in Ohmically heated plasmas18 5 An increase of the amplitude with applied NBI
power has been seen both by scattering and BES in the core of TFTR, but little change
occurred at the edge;2 13 in this tokamak, u/n was also found to vary approximately
inversely with the global energy confinement time. 2 2 4

The relative amplitude 5i/n increases almost invariably towards the edge and
peaks just inside or on the LCFS.' 0 This was seen in high-density discharges in Alcator
A and Alcator C, which reported fluctuation levels up to 100% at the limiter; 23 similar
behavior was observed in PDX, 22 8 in TEXT (edge u/n ~ 10-20%,185 with some cases
of 50% levels in the SOL' 8 5 ), in TFTR (0.1-1% in the core, 5-10% at the edge),2 1 3

and in DIII-D.' 8 8 Some exceptions should be noted: turbulence in thi low-density
regimes of the Alcator machines displayed a peak at r/a ~ 0.7;23 the fluctuation
amplitude in H-mode discharges in DIII-D has a maximum at 0.7 < r/a < 0.9.185

Strong asymmetries between the inboard and outboard edges, with the latter
exhibiting considerably higher levels of turbulence, have been observed in several
tokamaks [e.g. Alcator C,237 ASDEX (SOL fluctuations),2 15 DIII-D 238]. This be-
havior is indicative of a ballooning character of the modes. In addition, up-down
asymmetries were observed in TEXT; in that case, the direction of the asymmetry
could be reversed by changing the direction of the toroidal field with respect to the
current.

Measurements of magnetic turbulence (as distinct from MHD activity) have also
been carried out in several machines. The fluctuating magnetic field is generally found
to be isotropic in the poloidal plane, while the toroidal component is substantially
smaller.10 Typical levels10 are of the order of B/B ~ 10-5 -10-4; a level < 10-' was
reported for the edge of Text,196 while larger amplitudes (~ 10-4) were measured (by
probes) in the low-temperature core of Tokapole 11.239

Recently, it has become clear that the more tr.-ditional analysis techniques, based
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on time averaging and Fourier analysis, may no longer be equal to the level of sophisti-
cation attained by the experimental techniques. The wavelet-transform technique2 40

has been developed to address the problem of partial nonstationarity of the data, and
has recently been applied to the study of plasma microturbulence. The issue of in-
termittency has also been addressed by studying directly the probability distribution
function (PDF) of the turbulence, which has been found to be non-Gaussian (sug-
gesting intermittency) under certain experimental conditions, 2 0 3,2 04 , 24 1 and Gaussian
in other cases. 2 31 ' 24 1 ' 2 1 1

Also, the nonlinear interactions between plasma modes have been studied with
higher-order correlation techniques; bicoherence analysis on TEXT-U, for instance.
has revealed a coherent nonlinear interaction between a long-wavelength MHD mode
and the broadband turbulence. 21 More recently, wavelet bicoherence methods have
been used to carry out these studies in nonstationary regimes. 2 4 2 ,2 43 ,204 ,24 1

(b) Ihrbulent TRansport

Diffusivities calculated from Coulomb collisions, with appropriate modifications
for toroidal confinement geometries (neoclassical transport) are not sufficient to ex-
plain the experimentally observed rate of transport. Tokamak transport is thus said
to be anomalous. The discrepancy is generally attributed to turbulent fluctuations,
but a firm proof of a correlation between turbulence and anomalous transport, let
alone of a causal relation, is still missing. Even more uncertain is the nature of the
fundamental underlying instabilities. 24 4

Transport is anomalous to some extent in virtually all regimes accessed in toka-
maks thus far, although neoclassical levels have been observed recently in the core of
plasmas with negative magnetic shear, 2 10 ,21 1 a promising regime for adanced-tokamak
scenarios. In particular, the application of external (NBI, radio-frequency, or micro-
wave) heating causes a marked degradation of confinement; for this reason, this regime
is known as the low mode of confinement, or L mode. Under certain conditions at
sufficiently high input power, the plasma undergoes a transition to a regime of con-
finement closer to Ohmic levels, the H mode; even better confinement is obtained in
the VH mode. A second type of enhanced-confinement state has also been achieved
by creating peaked density profiles (e.g. supershots and PEP modes).24

A host of empirical scaling laws for the global energy confinement time (rE) have
been proposed over the years to fit the various regimes that have been discovered and
explored. One common factor is the universal increase of rE with machine size. In
the so-called neo-Alcator scaling24 s, rE is proportional to density up to a saturation
point, beyond which it starts decreasing; this scaling provides a good description of
Ohmic confinement. In L mode, -E is generally seen to be proportional to the plasma
current and inversely proportional to the square root of the input power. 24 The H
mode is simply characterized by the H factor (typically -2), which measures the
increase of rE over its L-mode level. Similarly, H factors of the order of 4 typify the
VH mode. The confinement time also exhibits a strong dependence on the plasma
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shape (improving with increased elongation and triangularityI5 7 ) and on the shape of
the current profile (peaked profiles being beneficial247 ). Correlation of these scaling
laws with theoretical models is still very sketchy, with the partial exception of the
neo-Alcator scaling.24 4

When electrons and ions are considered separately, electron transport is found
to be substantially more anomalous than ion transport. Since the classical cross-field
energy diffusivity is proportional to the square root of the mass, 248 energy transport
would be dominated by ions in the absence of anomalous processes. Instead, the
ion and electron diffusivities are comparable in large tokamaks, and electron energy
transport is in fact larger in smaller de-v ices. The momentum diffusivity is also compa-
rable to its energy counterpart, whereas particle diffusion proceeds at a rate 3-5 times
smaller. 0 ,24 4 Diffusivities always increase towards the edge of the tokamak; indeed,
the global confinement is generally very sensitive to edge conditions, in particular to
the edge gradients and to the rate of recycling from the walls.

Furthermore, in many instances a simple diffusive model appears inadequate
to describe tokamak transport. The existence of inward transport processes (pinch
effect); 244 ,249 discrepancies between steady-state and perturbative, or transient, diffu-
sion rates;19 6 ,25 0 ,25 1 evidence of global profile self-organization (profile consistency 25 2

or profile resiliency 2 4 4 ), perhaps related to marginal stability to a class of strongly
growing modes 25 3 ,25 4 ; anomalously fast global changes in diffusivity after the onset of
the H mode: 2 55,2 56 ,6 1 all of these phenomena delineate an extremely complex scenario,
which is still largely unexplained.

Both electrostatic and magnetic fluctuations may cause transport. In the elec-
trostatic case the chief mechanism is the E x B drift; using a Fourier representation
for the linearized perturbed electric field E = -iko, the cross-field time-averaged flux
of a field (e.g., density, thermal energy, etc.) for a given Fourier component is equal
to I, = (1/2cB)keIm(4(*). (Here, we are using a left-handed toroidal coordinate
system (p, 6, q), whose poloidal projection is shown in Fig. 4.4; we are also neglect-
ing the poloidal field for simplicity.] Thus, transport depends on the amplitudes,
cross-correlation, and relative phase of # and j.

Transport from magnetic fluctuations is related to the formation of magnetic
islands in a plasma of nonzero resistivity. Diffusion along a field line occurs at a
much higher rate than across the field, since the characteristic random-walk step size
is the thermal collisional mean free path (typically a few km) in the first case and
the Larmor radius (a fraction of a cm) in the second case. Thus, when a radial
component of the magnetic field develops, it provides a very effective diffusion path;
in particular, when the size of the islands is sufficiently large, a region of stochastic
field lines may form, leading to large-scale diffusion. It should be noted that since
the longitudinal diffusivity is inversely proportional to the square root of the mass,
this type of transport is dominated by electrons. Convective losses, being dominated
by the slower species because of the requirement of ambipolarity, are considerably
smaller than conductive losses.

The question of which type of turbulence is primarily responsible for anomalous
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transport in tokamaks is still very much an open one, in particular in the hot plasma
core, which is inaccessible to magnetic measurements. Stringer 257 advanced the ar-
gument that the nonambipolar flux along stochastic field lines in the core would act
to reverse the sign of the negative electric field predicted by neoclassical theory; since
measurements indicate that the electric field is generally in agreement with neoclas-
sical predictions, he concluded that magnetic fluctuations are probably a negligible
factor in transport. This conclusion is also corroborated by the observations that ion
diffusivities are larger than electron diffusivities in large machines, and that convec-
tive losses constitute a sizable fraction of the total energy losses.24 4 However, since
a fluctuation level of only B/B - 10-' would be sufficient to explain the measured
electron diffusivity,10,2 58 and since measurements of B in high-temperature tokamak
cores are not available, the issue cannot be considered completely resolved. Also, a
correlation between magnetic activity and confinement has been reported in some
experiments.197 Finally, positive electric fields measured in DIII-D6 6 appear to in-
validate Stringer's argument. By contrast, it is generally accepted that magnetic
fluctuations in the plasma edge are too modest to influence transport there."2 44 25 9

The large levels of electrostatic fluctuations measured in tokamaks, especially
at the edge, appear to provide a plausible explanation for anomalous transport in
general.10 ,26 0 ,19 7,26 1 A correlation between increases in fluctuation amplitude and in
diffusivity (and a decrease in the energy confinement time) was seen in TFR2 2 262 ,263

and more recently in TFTR,22 4 ,22 6 although no clear correlation was seen in other
devices.' 9 7 BES data on TFTR have also been used to estimate the turbulent diffu-
sivity by random-walk and strong-turbulence scaling arguments, with good success in
the plasma core.5 1 ,224 Direct measurements of the turbulent electrostatic particle flux
with Langmuir probes, which are capable of resolving fi, # and their relative phase,
have generally produced successful matches with the measured diffusivities. 2738,264,265E
In DIII-D, in-out asymmetries in the heat flux to the divertor are found to correlate
with asymmetries in the fluctuation amplitude. 238

Although diffusive processes appear to account for electrostatic turbulent trans-
port in many cases,10,2 66 the possible existence of large-scale convective cells or flows
has also been investigated. Short-lived, large-scale convective filaments have been
seen, for instance, in the Caltech Research Tokamak3 3 and in ASDEX.' 0'" 5 Studies
in several tokamaks, 5 1 "' particularly in DIII-D, 267,26 ' have concluded that transport
appears to be dominated in many cases by global effects: the measured "Bohnm-like"
diffusivity, D oc cT/(eB) (where T is the temperature) can be justified only with
strong drift-wave turbulence arguments when the random-walk step size is of the
order of the machine size. 18 7 [The so-called "gyro-Bohm" scaling, D ox p*cT/(eB),
where p* is the ion gyroradius scaled to machine size, reflects a step size of the order
of the gyroradius and is seen in H mode under certain conditions.2 69 These results
highlight the difficulties inherent in local measurements and suggest that more com-
prehensive studies of the plasma as a whole may be in order.

(c) The L-H Transition
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The H mode6 0 168,61 is characterized by good energy confinement and is compat-
ible with high-beta performance 27 0 and high rates of helium exhaust; 27 1 it is thus an
attractive regime for a future fusion reactor. H modes have been produced in all diver-
tor tokamaks since 1982, in many limiter tokamaks, and also in several non-tokamak
devices, and with a variety of heating methods6 ' (including Ohmic272 ).

The L-H transition is generally identified by an abrupt reduction in the H,, or D"
spectroscopic emission from the edge, which signals a reduction in recycling caused by
decreased transport to the SOL. The measured diffusivities decrease: this is consistent,
with the formation of a transport barrier 273 in the edge region, whose typical width
of 2-3 cm is fairly insensitive to plasma parameters. 274 Most of the reduction appears
to occur in the electron and angular-momentum diffusivities, with some improvement,
in the particle diffusivity 275 and a modest one in the ion energy diffusivity.2 76 As
a result of the barrier formation, a steepening of the edge density profile and, with
enough heating, of the temperature profile occurs; 59 a similar steepening is observed
in the SOL also.2 77

The profiles continue to evolve typically for several tens of ms after the transition,
with the high-gradient region extending further into the interior of the plasma.2 7 8 On
this time scale, a reduction in transport occurs throughout the plasma.279 ,280 The
global energy confinement time increases by a factor of 2-2.5 over its L-mode value
and was found in DIII-D to be higher for deuterium than for hydrogen (by contrast,
no isotope dependence was seen in L mode).2 '

The leading hypothesis concerning the cause of the increased confinement in
H mode is turbulence stabilization by a sheared E x B drift.63' 2 78 '6 ' This will be
discussed in some detail in Chapter 6. An increase in the magnitude and shear
of the radial electric field Er at the onset of the H mode was seen first in DIII-
D282 ,283 and subsequently in several other tokamaks 8 '2 216 This change has now
been thoroughly documented in DIII-D, thanks to a state-of-the-art charge-exchange
recombination (CER) spectroscopy diagnostic with 0.5-cm spatial resolution. 6 The
electric-field profile in H mode forms a negative well with a width of less than 1 cm 278

and with a minimum located just inside the LCFS: therefore, both the first and the
second radial derivative of Er are large in this region;2 18 the field outside the LCFS
is considerably smaller.23 8 Recent DIII-D results have suggested that the change in
the electric field occurs before the transition,6 6 ,2 18 in agreement with the postulated
causal relation between sheared flow and transport reduction.

It should be noted that the E x B velocity is quite distinct from the perpendicular
plasma flow velocity, which is the sum of the E x B and diamagnetic velocities.
It was found in DIII-D that the latter is negligible at the transition, so that the
perpendicular velocity in fact undergoes a rapid change following the evolution of the
electric field. However, later in H mode, the steepening of the profiles acts to increase
the diamagnetic velocity, which opposes the E x B velocity and becomes larger than
it, so that the total perpendicular ion velocity is smaller than both and is oriented in
the ion diamagnetic direction.192

Furtaer proof of the relation between the electric field and the H mode has been
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provided by experiments in which the H mode was induced by directly applying
a radial field.6 2' 287' 288 Interestingly, the H mode was obtained also with a positive
electric field, although the confinement improvement was smaller in that case. 2 89

Given the relevance of the H mode to reactor operation, a great deal of effort has
been devoted to the determination of scaling laws for the H-mode power threshold. 2 72

The minimum input power for the achievement of H mode is approximately propor-
tional to the magnetic field and to the average density, with little or no dependence
on the plasma current.28 3 ,2 90 The critical parameter appears to be the power flow
across the separatrix rather than the total heating power. 2 9 1,2 9 2 For instance, good
wall conditioning and reduction of the effective charge (Zff) of the impurities (e.g.,
through boronization 2 9 3 ) decreases the power threshold, since a reduced impurity
concentration implies lesser radiation losses; conversely, deliberate impurity injection
has been used to induce a transition from H to L mode. 292 Also, the temperatures
or their gradients are thought to play an important, as yet undetermined, role. In
DIII-D, the ion temperature at the separatrix is always between 100 and 220 eV just
before the transition, regardless of the heating method or of the total power. 2 9 1 ,2 94

Finally, the direction of the ion VB drift relative to the position of the X-point in
a diverted plasma has a very strong effect on the power threshold: when that vector
points away from the X-point, the threshold is up to 3.5 times larger than when the
vector points towards the X-point.2 90

H-mode studies have provided further evidence of the relation between tur--
bulence and anomalous transport. Broadband turbulence at the edge is quenched
abruptly at the onset of the H mode. 19 ,2 95 ,2 96 Magnetic turbulence near the diver-
tor strike point is also observed to decrease. 2 9 7 The reduction in the amplitude of
the fluctuating density is typically of the order of a factor of 2,298 occurs in a very
short time29 9 (< 0.1 ms), and appears to be localized to the velocity-shear layer. 2 83

A lesser decrease in amplitude has been reported for the SOL. 1 2 16 ,2 1 7 A clear asym-
metry between the inboard and outboard edge regions has been observed, with the
former undergoing considerable less change than the latter;30 0 since turbulence is
substantially stronger at the outer edge in L mode,238 the L-H transition brings the
inside and outside levels to comparable values. On a slower time scale, the confine-
ment improvement in the core is also accompanied by a partial suppression of the
turbulence there. 59

Relatively little is known about the changes in the spectral characteristics and
in the correlation lengths of the turbulence at the L-H transition. A decrease in the
radial correlation length was measured by correlation reflectometry in DIII-D3 0 1 ,4 6

and in JET;2 32 also, studies in TEXT have shown that the decorrelation time of the
turbulence is reduced in the velocity-shear layer.

The VH mode, discovered in DIII-D6 ' and reproduced later in JET65 and pos-
sibly in JT-60U 3 2 has produced confinement times up to 4 times larger than in L
mode. In the VH mode the transport barrier involves a larger region than in ordinary
H mode, extending further inside the plasma. 0 3 The most plausible mechanism still
appears to be turbulence stabilization by the E x B shear,6 1 which indeed changes
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in the barrier region,3 0 4 and is accompanied by a reduction in the amplitude of the
fluctuations.21 The VH mode is usually terminated by an MHD event,3 05 which
reduces the confinement to normal H-mode levels.

(d) Edge Localized Modes

Edge localized modes (ELMs) are semiperiodic edge instabilities that occur in
H mode and transiently destroy the transport barrier for the brief duration of the
mode.59 The average diffusion rate during an ELMing H mode is typically 15%-20%
higher than during an ELM-free H mode; on the other hand, ELMs serve the useful
purpose of limiting the density buildup and of cleansing the plasma from impurities
that accumulate during the enhanced-confinement stage. For these reasons, ELMs
are considered essential for reactor operation. ELM studies are continuing with the
principal aim of providing a reliable database for ITER," and special attention is
being devoted to the power loads placed by ELMs on the divertor.

As the name suggests, ELMs are indeed localized to the edge: no changes in
the plasma parameters are observed at r/a < 0.8. The duration of the ELM is
typically of the order of 0.5 ms and does not vary strongly with machine size. Particle
confinement appears to be affected more than energy confinement, probably because
the event takes place in the source region: a single ELM can eject up to 5-10% of the
plasma content.2 92 ELMs were first seen in ASDEX, 06 and have since been detected
in many tokamaks.2 92 MHD (ideal and resistive) instabilities are believed to trigger
these modes, which are characterized by levels of turbulence and confinement similar
to those in L mode.

Three distinct types of ELMs have been identified. The type-I (sometimes called
"giant") ELMs occur when the plasma is at or near the threshold for ideal ballooning
modes,3 07 owing to the steep pressure profile that exists in H mode. Both their
frequency and their amplitude are increasing functions of the input power,281 or
more accurately of the power flow through the separatrix,292 whereas the energy loss
per ELM is approximately constant. The E x B rotation has been shown to slow
down considerably during the ELM, 299 and the broadband fluctuation level increases
simultaneously; in fact, precursor fluctuations in the 30-60 kHz region,6 9 as well as
bursty semicoherent activity,3 08 have been seen by reflectometry in DIII-D up to
20-30 ms before the ELM. The type-I ELM is presently thought to be caused by the
interplay of two different MHD instabilities, the ideal ballooning mode and possibly
a low-n kink. 2 92

Type-II ("grassy") ELMs have been observed only in DIII-D 292 at the highest
input powers in strongly shaped plasmas with high triangularity, 309 when the mag-
netic shear is in the connecting region between the first and the second region of
stability to ballooning modes. 310 These ELMs are characterized by small amplitudes
and a high repetition rate and are considered the most desirable variety of ELM for
reactor operation, 68 because of the relatively small energy load placed by each ELM
on the wall.
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Type-III ELMs occur at the lowest powers and are identified by a distinctive
decrease in frequency, and increase in energy loss, for increasing input power;,1 6 8 2 92

experiments in TCV have shown that the critical quantity is in fact the difference
between the heating power and the H-mode threshold power. 29 2 Resistive ballooning
instabilities are thought to play a role in these ELMs,3 11 which are often preceded
by semicoherent (50-70 kHz) precursor oscillations in both density and magnetic
field, 29 2 which move outward during a period of 10-20 Ms3 12 until they trigger the
ELM proper. Type-III ELMs occur with gradients well below (30-50%) the ideal
ballooning limit in DIII-D 3 13 but close to it in ASDEX: 292 this discrepancy has been
attributed292 to the higher temperatures that act to stabilize the resistive ballooning
modes in DIII-D, allowing ideal MHD dynamics to dominate with larger gradients.
A clear instance of stabilization of type-III ELMs by a temperature increase (from a
sawtooth pulse) has been documented in JET.1

5.2 Overview of Recent Turbulence Measurements in DIII-D

Turbulence studies have been carried out in DIII-D for many years with a steadily
growing set of diagnostics. 66 The early work performed by the UCLA group with
reflectometry systems4 2 ,4 6 and an FIR scattering diagnostic2 7 had a critical role in
documenting the changes in microturbulence that accompany the L-H transition.
The amplitude of the density fluctuations in the velocity-shear region was seen to
decrease rapidly296 ,2 7 at the time of the first observable change in the Da emission
signal. 69

Improved localization of the FIR scattering measurement by means of spatially
dependent rotational Doppler shifts1 90 allowed an evaluation of the magnitude of
the change in ii at the edge, which was estimated to be typically of the order of
50%.298 The reduction was approximately uniform in the poloidal-wave-number range
2 < ke < 5 cm- 1, indicating no major change in the shape of the poloidal spectrum
(which decreases monotonically 27 with ko) and in the poloidal correlation length;
shifted and broadened frequency spectra were seen after the transition, corroborating
the existence of large sheared flows. 298 Correlation reflectometry 46 was employed to
investigate the change in the radial correlation length, which was found to be shorter
in H mode than in L mode.3 15 ,3 0 1

The evolution of turbulence in the H-mode phase was also studied with the
scattering system. A second, slower (tens of ms) but substantial (> 50%) decrease in
the fluctuation amplitude was found' 8 8 to take place in the interior (p,, < 0.9, where
p, is the poloidal flux normalized to its value on the LCFS) in coincidence with the
observed reduction in transport there.2 8 O In H mode, the relative amplitude of the
turbulence (fi/n) was estimated" to peak at 0.7 < p,, < 0.9, in contrast with the
L-mode case in which the peak occurs near the LCFS.

In-out asymmetries have also been documented by reflectometry measurements,30 0

which suggest that L-mode turbulence has a marked ballooning character, which is
substantially diminished in H mode.2 3 8 In addition, reflectometry was employed in
DIII-D in the first systematic studies of ELM turbulence; precursor oscillations were
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identified for both type-I and type-III ELMs (see §5.1) and broadband turbulent ac-
tivity similar to that in L mode was observed to accompany the ELM event itself.0 9

The availability of advanced fluctuation and profile diagnostics and of a charge-
exchange-recombination apparatus with excellent spatial resolution in the edge region 2 861

has allowed the DIII-D team to address quantitatively theories and hypotheses on
the mechanism responsible for the L-H transition. Thanks largely to this effort,
the basic paradigm of fluctuation suppression by a sheared E x B drift is now uni-
versally accepted. 3 1 ,201 This same mechanism, which does not depend strongly on
the physics of the underlying instability, 1 is now believed to play a fundamental
role in a variety of other enhanced-confinement regimes, such as the VH mode6 ,
the high-internal-inductance mode obtained with peaked current profiles,189 and the
negative-central- (magnetic)-shear regime. 3 17

An elegant control experiment was performed in DIII-D to corroborate this
paradigm. By employing appropriate external coils, the toroidal rotation in the core
of the plasma was slowed down (magnetic braking318 ,3 19 ); this acted to reduce the
radial electric field by virtue of the radial force balance. The observed decrease in
the E x B shear was accompanied, as expected, by an increase both in the local
fluctuation level214 and in the transport rate.18 9

A detailed study of the behavior of turbulence across the L-H transition in
the shear layer and in the SOL was undertaken recently by Moyer et al.,21 using
primarily a radially scanned Langmuir probe, 7 1 which is capable of measuring the
density and the potential, as well as the relative phase of their fluctuating components.
By operating at input powers only slightly above the threshold for H mode, the time
scale of the transition was extended considerably, effectively enhancing the temporal
resolution of the measurement. The spatial structure of the H-mode electric-field
well and of the turbulent amplitudes was thus mapped out in detail. A more complex
picture emerges from these results: well into the H mode, the fluctuation amplitude
near the bottom of the well (i.e. where the shear is zero) is similar to or higher than
its L-mode level; however, the turbulent flux remains small owing to a dephasing
between i and i,. This work has highlighted the need for self-consistent theories that
include the phase angle, a feature missing from most current models. 2 8 In the SOL,
the DIII-D probe generally detects a reduction in the density fluctuations of lesser
magnitude than inside the LCFS; the potential fluctuations are often unchanged. 2 5

More recently, probe data have been employed 21' in initial investigations of non-
linear couplings and statistical intermittency by wavelet bicoherence techniques. Data
from recent experiments featuring "very slow" transitions, which show little reduction
in the amplitude of the fluctuations, are also currently being analyzed.

The suppression of edge turbulence at the L-H transition has been confirmed
also by a lithium-beam emission-spectroscopy system.5 3 In addition, DIII-D has
recently acquired a deuterium beam-emission-spectroscopy diagnostic,5 2 which has
been employed to study the core turbulence during negative-central-shear enhanced-
confinement discharges. This system is expected to provide important new informa-
tion on the spatial structure of the turbulence in the future.
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5.3 PCI Fluctuation Measurements in DIII-D: Generalities

The data collection and analysis techniques employed in this work have been related
at some length in §3.9. Here, we wish to stress a few important points that apply to
most or all of the data that will be shown in the remainder of this chapter.

In all cases, the spectral region between 0 and 8 kHz was not accessed: digi-
tal highpass filtering was applied to remove all residual vibrational components [see
§3.5(f)]. Thus, all the results obtained are subject to this constraint, and some
conclusions may conceivably be altered if lower-frequency components were included,
especially since the power spectra are invariably observed to increase at low frequency.
In plots of the frequency spectra, the lower limit is higher than 8 kHz because averag-
ing is performed over frequency: therefore, the lower limit is augmented by one-half
the width of the averaging interval.

Antialiasing filtering was always applied at 1 MHz (3-dB poiut, see §3.6). When
the sampling rate was reduced to 500 ksamples/s, additional filters with a 200-kHz
passband were used in most cases; the experimental observation that the spectral
content above 100 kHz is negligible compared with the lower-frequency signal renders
these filters somewhat superfluous. In fact, the sampling rate was reduced to 200
ksamples/s in a few cases, without any additional filtering.

In all statistical estimates that are subject to a bias from noise contributions (i.e.,
estimates of the rms amplitude, autopower, coherence, and correlation coefficient),
that bias was removed numerically on the basis of independent measurements of the
white-noise level in the same run day and in fact, when feasible, in the same discharge.
The signal-to-noise ratio is typically between 10 and 100; in the frequency domain, a
signal-to-noise ratio of 1000 is often achieved at the lowest frequencies accessed.

Several plots in this chapter will concern the spatial variation of various quanti-
ties. The abscissa of these plots is a radial coordinate, which refers to the intersection
of the PCI chords with the vessel midplane. It must always be remembered that the
measurements are integrated along the chords and thus embrace a range of minor
radii whose lower limit is the point shown in the plot. In the literature, various flux
quantities are often used in lieu of the normalized minor radius, particularly p, and
p, which are defined, respectively, as the poloidal and the toroidal flux normalized
to their respective values on the LCFS; these are not linear functions of the radius
in general. In all shots, the region accessed by the PCI diagnostic is in the range
0.80 < p,, < 1.17, depending on the plasma geometry; the typical range in most shots
is 0.92 < p, < 1.10. In terms of p, the lower limits of these two ranges are, respec-
tively, 0.78 and 0.90. Finally, in terms of the normalized minor radius the equivalent
limits are 0.86 and 0.95.

When data are presented on turbulence, it is always with the implicit assumption
that no coherent modes are observed in the frequency spectrum; these modes are
usually of large amplitude and their presence completely alters the results.

A total of approximately 130 plasma discharges were studied in detail for this
thesis. The results that will be related are always based on observations on several
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shots, except where stated otherwise However, as was mentioned in the prologue to
this chapter, it ;s often difficult to identify quantitative features of the turbulence that
are strictly repeatable from shot to shot, although many qualitative attributes and
trends do have a universal character. For this reason, combining different discharges
to increase resolution or range has generally proven to be of limited utility. Most
spatially or temporally resolved data presented will thus refer to individual shots,
and in fact a fairly limited number of shots will be used in the figures for the sake of
consistency.

Comparisons between shots will preferentially take the form of parametric studies
of individual quantities. In particular, the parametric studies that will be described
here were carried out during a set of experiments designed as a parameter scan of the
L-H transition power.29 0 A scan was performed with single-null diverted magnetic
geometries, with the following reference parameters: toroidal magnetic field BT = 2.1
T, plasma current I, = 1.35 MA, average density fe = 4x 1013 cm- 3 , elongation K =
2, triangularity 6 = 0.28, outer and inner gaps (distances from the separatrix to the
outside and inside walls, measured on the midplane) respectively 6 and 4 cm. Each
parameter was then scanned over a range, while leaving all the other quantities fixed
(in the case of the field scan, the current was lowered to 1 MA). A similar scan for
double-null geometries was centered at 6 = 0.83, with all other parameters being the
same as before; an additional parameter, called DrTep, was scanned for this case: this
parameter is the distance between the separatrix surfaces associated with the two
X-points, measured on the outer midplane, and it quantifies the balance between the
X-points (0 - the reference value - for a balanced double-null, negative for lower
X-point dominant, and positive for upper X-point dominant: the ion VB drift points
towards the lower X-point). In some cases, scans of the input power were obtained
as the power was gradually increased to reach the threshold.

For the purposes of our turbulence studies, these parameter scans were used not
only to study the dependence of the turbulence characteristics on the global quantities
listed above, but also on several other local quantities. In these cases, however, the
whole database was used, without any effort to keep specific parameters constant.
These local quantities include the density and its scale length [Ln. = n,/(&ne/ir)J,
the electron temperature and its scale length, the electron pressure and its scale
length, the parameter q, (the ratio of the density scale length to the temperature
scale length), and q95 (the value of the safety factor at p = 0.95).

In addition, we have used the following parameters of neoclassical transport
theory that are relevant to some turbulence theories. The normalized ion collisionality
is defined as6 v.i = viRq/(vtieO/ 2 ), where vi is the ion-ion Coulomb collision frequency,
R is the major radius, q is the safety factor, vti is the ion thermal velocity, and f = a/R
is the toroidal inverse aspect ratio. The magnetic pumping rate (a form of neoclassical
viscosity) p is defined by the following approximate formulas: 32 0

0.265qviC1/ 2 (l _, 1/2)-1 if v.i < 1 (banana regime)
y= JFcvti/R if 1 < v. < E-3/ 2 (plateau regime) (5.1)

3.O7evfi/(qR 2vi) if v. > 3 /2 (Pfirsch-Schliter regime).
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Owing to the difficulty of obtaining edge ion temperature values for many of these
shots, the electron temperature, which was more readily available, was used instead.
The effect of this substitution will be commented on for specific cases. A repetition
of this study with the actual ion temperature values is planned for the future.

One final caveat concerns the definitions of the confinement regimes. It will be
shown in §5.10 that the character of the turbulence changes considerably during the
H-mode evolution. For the purpose of the stationary-regime measurements described
in §5.4-5.7, "H mode" will refer to an early, ELM-free phase soon after the transition.
In the case of correlation measurements, considerations of statistics require integration
lengths of the order of 8-12 ms; therefore, short-lived events occurring just after the
transition are not revealed by this type of analysis. These events will be discussed in
§§5.8 and 5.9, and dynamic changes during H mode will be addressed in §5.10. L-
mode data refer to a fully developed neutral-beam-heated phase, at least one beam
thermalization time (typically 20-60 ms) after the beam power is applied. The neutral
beams are launched in the direction of the plasma current.

5.4 Frequency- and Time-Domain Analysis

(a) Frequency Autospectrum

The broadband frequency autospectrum in the Ohmic regime is always mono-
tonically decreasing, both inside the last closed flux surface (LCFS) and outside it [in
the scrape-off layer (SOL)]. This behavior is maintained up to the highest observable
frequencies: the signal-to-noise ratio drops to 1 typically between 150 and 500 kHz,
depending on the discharge. In the L mode, the same behavior is observed in a ma-
jority of cases, again at all spatial locations. However, some nonmonotonic spectral
functions have also been seen on chords that cross the midplane more than 3 cm
inside the LCFS, in plasma geometries with the separatrix particularly close to the
outer wall. Generally, these functions can be described as the sum of a monotonic
function and of a feature centered at 40-60 kHz with a half-width of 20-30 kHz.
This observation will be discussed in more detail in §5.8 in connection with the L-H
transition. L-mode spectra in the SOL are monotonic but generally narrower.

Coherent features are often seen in the spectrum. These are generally identified
as MHD instabilities and are clearly distinguished from the background by their
narrow bandwidth; they are also typically of larger amplitude. With the exception of
the 40-60-kHz feature mentioned above, all other semicoherent modes seen in L mode
have proven, upon sufficiently long time averaging, to be in fact completely coherent.
It should be noted that the 40-60-kHz feature would qualify as semicoherent according
to the terminology used in some of the literature. Since in our case the feature has
a width comparable to the normal width of the spectrum, it should be characterized
as broadband for consistency.

The dominance of the low-frequency components of the spectrum is a direct
consequence of the lack of Doppler shifts from poloidally propagating components,

232



which was a central result of Chapter 4 and is thus confirmed experimentally. Indeed,
the rare nonmonotonic features described above correspond to inside locations where
some Doppler shifts are to be expected. The spatial dependence of these features will
be illustrated in §5.8.

The H-mode spectrum has a decidedly more irregular shape and varies consid-
erably from case to case. Both irregularity and variability are more pronounced in
the main plasma than in the SOL. The irregularity is caused by the appearance of
multiple peaks in the region 8-100 kHz: the frequency and spectral width of the
peaks do not display any obvious repeatability and also change in time during a shot.
However, the spectral distribution is essentially the same at all spatial locations in-
side the LCFS. A broad decrease with frequency is still seen, and in some cases the
peaks are absent and the spectrum is in fact monotonic; the width of the spectrum is
generally somewhat greater in H mode than in L mode inside the LCFS, of the same
order in the SOL.

In all the cases that were examined, the spectrum increases at low frequencies
down to the cutoff value of 8 kHz. Thus, the inaccessible low-frequency region of the
spectrum can be expected to be of substantial magnitude.

Typical examples of Ohmic, L-mode, and H-mode spectra are shown in Fig. 5.1.
The regularity of the Ohmic and L-mode spectra suggests a fit to a simple decreasing
function of frequency. When plotted on a semilogarithmic scale, the spectra are
clearly convex, i.e. have a positive second derivative, which is indicative of an inverse
power law (Gaussian spectra would be concave and exponential spectra would be
straight lines). Inverse-power-law fits to the spectra generate exponents in the range
1-3 and averaging at 2 (the Ohmic and L-mode cases shown in Fig. 5.1 obey an w 1.

law). Values very close to 2 are particularly common. In several cases the reduced

x2 is remarkably small, of the order of 1.
A fairly regular behavior is seen in the inverse-power-law exponent as a function

of the spatial position. This behavior also clearly distinguishes the Ohmic and L-mode
cases. As shown in Fig. 5.2, in the Ohmic regime the exponent peaks 1-2 cm inside
the LCFS, whereas in L mode it increases for increasing radius and is maximum in
the SOL. At smaller radii, not shown in the plot, a slight further decrease is generally
seen in both regimes. It should be noted that the absolute value of the exponent,
as well as the ratio of the Ohmic and L-mode values, changes from discharge to
discharge (compare, e.g., Fig. 5.1 and Fig. 5.2); the spatial profiles, by contrast, are
fairly general.

As with many other quantities that will be discussed in this chapter, the inverse-
power-law exponent has been studied as a function of the several plasma parameters
that were listed in §5.3. No regular behavior has been identified, with the partial
exception of a two-point scan of the plasma triangularity in double-null diverted
magnetic geometries. A sharp drop of the exponent, from 3.1 to 1.8, was seen when
the triangularity was raised from 0.67 to 0.83; the location of the chord was 3 cm
inside the LCFS on the midplane.

The nonmonotonic nature of the H-mode spectra is not conducive to a simple
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Fig. 5.1 Autopower spectra in the Ohmic, L-mode, and ELM-free H-mode phases of a discharge
(BT=2 T, Ip=1. 5 MA, fe=3x1013 cm- 3 ). The noise level is 0.13 and the statistical error is 4%.
The Ohmic power is -1.8 MW, and the neutral-beam power is 2.3 MW in L mode and 4.6 MW in
H mode. The midplane location is 0.9 cm inside the LCFS. The Ohmic and L-mode spectra obey
an approximate power law oc f-1.8; the H-mode spectrum is nonmonotonic.

fit. In the few monotonic cases seen, inverse-power-law exponents of the order of 1
have been obtained.

Although simple inverse-power-law fits often produce satisfactory results, in
many cases it is clear upon closer inspection that the L-mode spectral slope de-
crases subtly but abruptly at a frequency between 20 and 40 kHz. Such a case is
shown in the logarithmic plot of Fig. 5.3; in this example an f1 *8 law applies to
the region below 20 kHz and an f -0 dependence describes the region above it. The
abruptness of the transition is evident from the figure.

(b) Time-Delayed Correlation Function

The correlation coefficient displays an oscillatory behavior whose period depends
on the choice of the low-frequency cutoff value. This oscillation is removed by calcu-
lating the envelope of the coefficient, which carries more general information on the
local time-delayed correlation structure.

The envelope of the autocorrelation coefficient is in most cases a monotonically
decaying function, as shown in Fig. 5.4(a) (top box). In the Ohmic regime, the form of
the function depends weakly on the spatial location, becoming somewhat narrower in
the SOL. By contrast, in L mode the function is generally narrowest in the separatrix
region and is broader both further inside and in the SOL. The H-mode function is
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Fig. 5.2 Spatial dependence of the exponent in the inverse-power-law least-squares fit to the

PCI autopower spectrum, in an Ohmic case (BT=1.6 T, Ip=1.36 MA, fii=3xj013 cm- 3 ) and in

an L-mode case (Br=2.1 T, lp=1.43 MA, fii=3x1013 cm- 3 , P,.m=2 MW). The abscissa is the

distance from the LCFS to the PCI chord on the midplane. Error bars on the positions refer to the

distance from the rightmost point; the error on the spacing is considerably smaller. The absolute

value of the exponent is discharge-dependent, while the profile shapes are fairly general for the two

regimes.

less smooth, although generally still monotonic, and changes in time, sometimes on
a time scale of 10 ms or less. This behavior is consistent, as it must be, with that
of the frequency autospectrum. When compared to its L-mode counterpart, the H-
mode envelope is generally narrower at small delay times, reflecting the increased
width of the frequency spectrum, but also exhibits a more prominent tail at large
delays, a manifestation of the narrow frequency peaks that appear in H mode. The
overall width of the function increases in the SOL, where it is comparable to the
L-mode envelope. Interestingly, the shape of the H-mode autocorrelation coefficient
fluctuates in time in the SOL also.

The envelope of the crosscorrelation coefficient between separate spatial channels
displays a variety of shapes (see Fig. 5.4(a)]. As will be seen clearly in the next
section, the turbulence spectrum is characterized by two counterpropagating features
of comparable, but not always identical, amplitude. This is reflected in the partial
left-right symmetry seen in Fig. 5.4(a) for the cases AR=0.49 cm and AR=0.95 cm
(the autocorrelation function is symmetric by definition). At the longer separation
of 1.93 cm, which crosses the separatrix, the inward mode prevails. The existence of
two modes also explains the nonmonotonic dependence of the coefficient on AR (the
peak of the envelope is larger at 0.95 cm than at 0.49 cm): when the two modes are
in phase opposition, the value of the coefficient is depressed, although the correlation
level of each mode can be high.
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Fig. 5.3 Logarithmic plot of autopower spectrum in a neutral-beam-heated L-mode plasma

(BT= 2 .1 T, Ip=1.43 MA, ft=3x1013 cm- 3 , P .eam=2 MW), 1.5 cm inside the LCFS.

Double-peaked functions such as the 0.49-cm case in Fig. 5.4(a) are often seen,
and in some cases the point of minimum near At = 0 is cusplike. This behavior
indicates that each of the two modes has a finite group velocity, approximately equal
to the value of AR divided by the time delay at each peak; this estimate is only
approximate because each mode "pulls" the other peak closer to zero: in fact, de-
pending on the phase relation between the modes at a given AR, the sum of the two
single-peaked functions can result in a single-peaked function with a maximum at
zero, as in the case of AR=0.95 cm in Fig. 5.4(a). The form of these crosscorrelation
functions is thus in many ways in agreement with the approximate analytical model-
ing expounded in §4.4, which for the specific case of two radially counterpropagating
modes yielded the form of the crosscorrelation coefficient given in Eq. (4.66). This
equation constitutes a good qualitative description of the experimental function.

With guidance from theory, as will be discussed in Chapter 6, a search was
conducted for variations in the time-delayed correlation structure with varying cutoffs
in frequency. As shown in Fig. 5.4(b), by raising the highpass frequency to 40 kHz,
the envelope of the autocorrelation coefficient changes little, but the crosscorrelation
envelopes change more substantially. In particular, no double-peaked functions are
found. This result is universal for L-mode plasmas, although the appropriate cutoff
frequency to induce this change in behavior varies from shot to shot, ranging from 20
to 40 kHz. In cases such as that exemplified by Fig. 5.3, in which an abrupt transition
in the slope of the frequency autospectrum occurs at a given frequency, applying a
highpass filter at that frequency produces the results shown in Fig. 5.4(b). No such
regularities have been found in H mode, where the nonstationarity of the correlations
is an added problem.

The envelope of the autocorrelation coefficient is fitted routinely with an expo-
nentially decaying function to obtain a local decorrelation coefficient [which we shall
call rR,eff for consistency with the terminology of Chapter 4 - see e.g. Eq. (4.53)].
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(a) 8-140 kHz range (b) 40-140 kHz range
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Fig. 5.4 Correlation coefficient (dashed curves) and its envelope (solid curves) for four different

radial separations, with (a) full bandwidth, and (b) 40-kHz highpass filter. The minimum significant

value at a 95% confidence level, which is also an approximate measure of the statistical uncertainty,

is 0.02. The reference point is located 1.3 cm inside the LCFS, in a beam-heated L-mode plasma

(BT=2.1 T, 1 p=1.4 3 MA, ie=3.5x(103 cm- 3 , Pbeam=2 MW). The signal-to-noise ratio is ~ 25.

It should be stressed that in most cases the x 2 of the fit is rather large: thus, this
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Fig. 5.5 Spatial dependence of the local decorrelation time, in the Ohmic regime (BT=1.6

T, I= 1 .3 6 MA, fii=3X1013 cm- 3 , POhm=0.65 MW), and in the L-mode and H-mode regimes

(Br=2.1 T, Ip= 1 .4 3 MA, fi=3.5x1013 cm- 3 , P6,am=2 MW). The abscissa is the distance from

the LCFS to the PCI chord on the midplane.

functional form must be regarded only as a convenient approximation.
The spatial variation of rR,eff has been studied in all three regimes (Ohmic, L

mode, and H mode): a representative example is shown in Fig. 5.5. The value of TR,eff

varies between 10 and 50 ps. The Ohmic case is spatially uniform, except for a drop
just inside the SOL. In L mode, a minimum is seen approximately at the separatrix,
while rR,eff is larger inside the LCFS and considerably larger in the SOL. The H--
mode profile is qualitatively similar, with a sharper variation in the high-gradient
region near the separatrix. It should be noted that within the spatial uncertainties
the minimum in both L and H mode could be located either slightly inside or slightly
outside the separatrix.

It is interesting to note that the local decorrelation time is generally larger in H
mode than in L mode, although the H-mode value is somewhat variable and there are
cases in which it is lower. The prevailing behavior indicates that the high-delay tail
in the H-mode correlation coefficient dominates over the narrowing of the function
at lower delays.

The similarity between the spatial distribution of rR,eff and of the plasma pres-
sure inside the separatrix in L and H mode would suggest a possible relation between
the two quantities; such a relation, however, could not apply to the SOL turbulence
nor to the Ohmic case. In fact, there is enough variation between shots to make
such a parametrization impossible in general; if a relation exists, it must also contain
additional variables. Similarly, the parametric scans described in §5.3 have failed to
reveal any regularity of TR,eff, with the partial exception of an input neutral-beam
power scan. This scan was performed in a diverted magnetic geometry in which the
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ion VB drift points away from the dominant X-point: under these conditions, the

threshold power is very high290 (of the order of 15 MW), and a wide range of powers

can be explored. The local decorrelation time was found to decrease slightly with

increasing power.
The definition of rR,eff as a local decorrelation time stems from the formalism

of Chapter 4. There, a dispersion relation w(k) was postulated, and an intrinsic

decorrelation time (rd) was defined as twice the inverse half-width of the frequency
spectrum at each given k [see Eqs. (4.23)-(4.26)]. The local decorrelation time is

similarly related to the width of the complete frequency spectrum, including all wave

numbers; thus, it will generally be a smaller quantity. In our analytical model for

the line-integrated PCI measurement, rR,eff was defined by Eq. (4.54), which we

reproduce here for convenience:

R,eff(+ VTR -1/2 (5.2)

Here, LR is the correlation length seen by PCI, and VTR is the horizontal projection

of the sum of the plasma velocity and of the group velocity of the fluctuations. In

general, VTR is essentially equal to the radial group velocity vg,,.

The intrinsic decorrelation time is an important parameter for comparisons with

theory, as will be explained in more detail in §6.1(d). Physically, it describes the

decay of the peak of the envelope of the crosscorrelation coefficient for all values of

the radial separation. In the language of fluid dynamics, this corresponds to switching
from a Eulerian to a Lagrangian approach, putting oneself in the frame of reference

of the turbulent eddy (or wave packet) as it propagates through space. The behavior

of the intrinsic decorrelation time may well differ from that of its local counterpart,

which is affected by the correlation length and by the group velocity.

To obtain an estimate of Td, we calculate the spatial Fourier transform of the

complex function constructed with the correlation coefficient as the real part and

its Hilbert transform as the imaginary part, for each value of the delay At, at a

specific wave number equal to the peak value given by spatial correlation analysis

(see §5.5). The modulus of the result is then normalized to a value of 1 for At = 0.

The computation, which includes the customary exponential fit, is repeated in time,

so that the time series rd(t) can be generated. This procedure is rather involved

and requires human intervention at several intermediate steps; hence, it has only

been applied to a limited number of shots. It should also be remarked that this

estimation technique is somewhat arbitrary, and the results it yields can therefore

only be considered as one of several possible estimates of rd; particular caution is

suggested by the observation that the decorrelation time is a strong function of the

wave number, as will be shown in §5.5(d).
A general result of this analysis is that the intrinsic decorrelation time is indeed

larger than the local time inside the LCFS. Typically, rd is slightly larger than the

largest of the TR,eff values measured up to 2 cm inside the LCFS; in L-mode conditions,
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Fig. 5.6 Comparison of the local and intrinsic autocorrelation function envelopes in an L-mode

case (BT=2.1 T, Ip=1.43 MA, A=3.5x1013 CM-3, P6eam= 2 MW).The local function refers to a

chord located 1.3 cm inside the LCFS. The intrinsic function is calculated at the average radial wave

number, ko,R = 3 cm- 1 . The 95% confidence level is 0.01. Fitted decorrelation times are 35 ps

(intrinsic) and 12 ps (local).

this implies that the local value is generally up to a factor of two smaller than Td in
the proximity of the separatrix. A comparison between the local and the intrinsic
envelope is shown in Fig. 5.6 for an L-mode plasma. In the SOL, Td and TR,eff are
comparable.

We also find that rd is systematically larger in H mode than in the L mode, as
is often, but not always, the case for the local decorrelation time. Typical values
are 20-40 ps in L mode and 40-80 ps in H mode. The H-mode correlation function
sometimes undergoes rapid variations in time, and the X2 of the fit is higher than in
L mode, indicating a more irregular functional shape. It should be noted that the
peak wave number generally increases at the L-H transition: thus, rd refers to two
different values of koR in the two regimes.

The input-power scan described earlier revealed a slight but measurable decrease
of the intrinsic decorrelation time with increasing power, as evidenced by Fig. 5.7.

This type of analysis may be expected to reveal the type of short-lived, long-
wavelength filaments that have been seen in the edge and in the scrape-off layer
(SOL) of the Caltech Research Tokamak3" and of ASDEX, 2 15 were they present in
DIII-D. No evidence for such structures has been found, and further corroboration is
provided by a lack of high-frequency components in the frequency spectrum. However,
predominantly poloidal structures would not be uncovered by this measurement; it is
also possible that they have an irregular or intermittent nature and thus cannot be
seen by standard Fourier analysis.
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Fig. 5.7 (a) Intrinsic autocorrelation function envelopes for three different input neutral-beam

powers (the 95% confidence level is 0.04); (b) intrinsic decorrelation time as a function of power.

The functions are measured in L-mode plasmas (Br=2.1 T, I,=1.35 MA, i, =4 x 1013 cm- 3 ) in the

region from the LCFS to 3 cm inside.

5.5 Spatial Correlations and Wave-Number Spectra

(a) Spatial Correlations

The spatial correlation function is a complex Hermitian function, constructed by
taking the equal-time correlation coefficient as the real part and its Hilbert transform

as the imaginary part. This procedure extracts information on the directionality of

the modes, which would be lost by employing only the coefficient, which is an even

function by definition. A large imaginary part indicates preferential propagation in

one direction.

For a given time interval in a shot, eight correlation functions are obtained by us-

ing each digitized spatial channel in turn as reference. A ninth function is constructed

by combining all possible pairs of channels: this generally displays some irregularities

due to the spatial variation of the correlation structure. This spatial variation is in-

vestigated through a comparative study of the eight individual functions. The typical

channel-to-channel spacing is 4.7 mm. Having 16 detectors available, different choices

of channel-digitizer couplings have been employed, resulting in a variety of spacings
and ranges. The spatial variation is, of course, smaller in the high-resolution setups

(see §3.4); a minimum spacing of 0.37 mm was reached in one case.

The real part of the spatial correlation function is in most cases wavelike, with a

finite spatial period, and decays spatially with a finite decay length. The period and

the decay length inside the LCFS are generally longer in the L-mode regime than in

the Ohmic regime. In H mode, both lengths are shorter than in L mode and generally

shorter than in the Ohmic regime. Ohmic H modes display similar characteristics to

auxiliary-heated H modes. In the SOL, by contrast, the correlation function does not
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change significantly from L to H mode, and any change observed is usually in the
opposite direction from that of the main plasma: that is, the decay length is longer in
H mode. In particular, several cm into the SOL the decay length in the late H-mode
phase becomes generally very long.

Examples of Ohmic, L-mode, and H-mode correlation functions inside the LCFS
are shown in Fig. 5.8. The wavelike structure described is readily apparent; the spatial
decay is particularly easy to visualize by inspecting the envelope of the real part of the
correlation function. These cases were especially chosen because they displayed little
spatial variation: thus, all possible crosscorrelations are shown together. As shown
in Fig. 5.8, the imaginary part is also wavelike and has different magnitudes in the
three cases. In Ohmic plasmas, the Hilbert transform is generally small and indicative
of a slight outward propagation [as in Fig. 5.8(a): the direction of propagation is
determined by the sign convention]; this character is preserved in the SOL, but the
average magnitude is smaller (essentially no net propagation). A large variety of
behaviors has been seen in L-mode plasmas: outward [as in Fig. 5.8(b)], inward,
and no propagation; the imaginary part generally becomes smaller in the SOL, and
vanishes several cm into the SOL. Finally, the H-mode correlation function is typically
more balanced than its L-mode counterpart, and the residual propagation is in the
same direction in a given discharge; the case shown in Fig. 5.8(c) is thus somewhat
atypical, with a larger imaginary part than in Fig. 5.8(b).

It should be stressed that it is difficult to find regularities in these patterns, and
the above considerations are by necessity qualitative. In particular, sharp differences
in the direction of propagation have been observed in otherwise very similar plasmas.

The principal purpose of the high-resolution experiments was to confirm this
wavelike behavior with fine radial spacing. In the Ohmic example shown in Fig. 5.9,
the average channel-to-channel spacing was 0.37 mm, but only every other channel
was digitized. The structure of the functions of Fig. 5.8 is clearly confirmed with
striking accuracy. As was discussed in §3.2, a spatial antialiasing filter is always
employed to limit the passband to the Nyquist spatial frequency, whose typical value
is < 10 cm-1; in the high-resolution case, the passband was raised to 40 cm- 1 , thus
allowing hypothetical fine-structure components to appear in the correlation function.
In all cases, no such features were observed, as Fig. 5.9 attests. The absence of high-
wave-number components was confirmed by a test that will be described later in this
section.

Although the high-resolution configuration has the potential of operating partly
in the Bragg regime, the considerations of §2.8 and §3.2 apply: the correlation function
would be in fact the sum of a Raman-Nath and a Bragg component. The similarity
of Fig. 5.9 to Fig. 5.8(a) simply indicates that the k, = ±k' /(2ko) components (k,
is the vertical wave number and kR the horizontal one) are either absent or behave
like the k. = 0 components. In addition, a spectral analysis of these data reveals that
their kR content is concentrated in the region kR < 10 cm- 1, and thus lies in fact
entirely in the Raman-Nath regime. This is universally true for all the cases analyzed
for this thesis, as will be discussed in subsection 5.5(c).
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Fig. 5.8 Equal-time coefficient and its Hilbert transform for three cases: (a) Ohmic (BT=2.1

T, Ip=1.9 MA, fl=3x1013 cm- 3 , input power = 3.5 MW), (b) L mode and (c) H mode (both

BT=2.1 T, Ip=1. 2 5 MA, ie=3.5x1013 cm- 3 , input power = 6.2 MW). The solid curves represent

the envelopes of the equal-time coefficient. The plots refer to the region between the LCFS and 3

cm inside. The 95% confidence level is 0.02. Fits give correlation lengths, respectively, of 1.2 cm,

1.5 cm, and 1.2 cm; and average wave numbers of 3.4 cm- 1 , 2.8 cm- 1 , and 3.9 cm- 1.

It is of interest to determine whether standing waves exist in the turbulence; these
would manifest themselves in a pattern of nodes and peaks in the spatial distribution
of the amplitude. Although the amplitude does vary spatially, as will be shown in
the next section, no such clear pattern has generally emerged. In particular, the
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Fig. 5.9 Equal-time coefficient and its Hilbert transform from a high-resolution measurement

in an Ohmic plasma (Br=2 T, I,=1.5 MA, fie=3.3x1013 cm- 3 ), in the region from the nominal
position of the separatrix to 0.6 cm inside. The 95% confidence level is 0.02. The signal-to-noise

ratio for all channels ranges from 4 to 10.

spatial variations are usually uniform throughout the frequency spectrum, negating
the possibility of dispersive standing waves.

Two peculiar types of spatial correlation functions deserve a separate discussion;
in Chapter 6 we shall attempt to interpret them. When studying the correlation
structure across the separatrix in an L-mode plasma, an abnormally high correlation
level is sometimes observed between the regions just inside and just outside the sep-
aratrix; however, both regions are less correlated with the points in between, which
are in the proximity of the separatrix. Clearly, this type of structure departs from
the usual decaying wavelike behavior. An example is shown in Fig. 5.10(a). The
magnitude of the Hilbert transform is quite small, indicating no net propagation.
For this phenomenon, it is useful to explore also the spatial coherency function (see
§3.9) at various frequencies (this function is the frequency-domain equivalent of the
complex correlation function): this is plotted for four frequencies in Fig. 5.10(b).
Although the 13-kHz case could be interpreted as an ordinary wavelike pattern, the
higher frequencies clearly prove that such an interpretation is not appropriate, and
that the absolute correlation level has in fact a minimum somewhere between the two
extreme points. In particular, the correlation between the two extremes is strikingly
high at 53 and 73 kHz.

This phenomenon is observed most clearly and most frequently when the plasma
current is high (- 2 MA) and the edge safety factor q95 is low (qgr < 4), although
a rigorous parametric scan has not been carried out. After the L-H transition, this
structure is never observed across the separatrix, but in some cases it is seen in a
region 3-4 cm inside the LCFS; in a later phase during the H mode, it sometimes
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in an L-mode plasma (BT=2.16 T, Ip=2.0 MA,

fte=4.4X1013 cm-3 , Pbeam= 6 MW). The 95% confidence level is 0.02 for the coefficient and 0.07

for the coherency.

moves again to the LCFS. Weaker versions of this pattern, with lesser departures
from the canonical monotonically decaying behavior, are also seen in L modes and
late H modes in the region 3-5 cm outside the separatrix.

A second phenomenon with unusual characteristics is seen only in the SOL in
H mode. A high level of correlation is observed throughout the SOL, beyond the
width of the density gradient; moreover, as the spatial position is moved inwards, the
sign of the real part of the correlation function goes sharply from positive to negative
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Fig. 5.11 Equal-time coefficient and its Hilbert transform, relative to three different reference

points, in the SOL of an H-mode plasma (BT=2.1 T, 1,=l.35 MA, fi=4.5x 10s Cm-3, Pham=1.6
MW). The 95% confidence level is 0.03.

approximately 1-2 cm outside the LCFS, and is then reversed again when the LCFS is
reached. The correlation level between the separatrix and the outer SOL is low. This
behavior indicates the existence of a region between 0.5 and 1.5 cm outside the LCFS
in which density fluctuations are 180' out of phase with respect to .he surrounding
regions. The Hilbert transform is near zero, indicating no net propagation.

An example of this structure is shown in Fig. 5.11. In plot (a), with the outermost
point as reference, both the high correlation level and the sign changes are clearly seen.
Plot (b), relative to the region just outside the LCFS, displays the sign reversals even
more clearly. Finally, plot (c), relative to the separatrix, exhibits a more orthodox
behavior, with a reduced correlation level. The time-delayed correlation function for
these cases is similar to the autocorrelation function plotted at the top of Fig. 5.4(a)
for points with positive equal-time correlations, and to its mirror image (peak at -1/-
0.8) for points with negative correlation; in some cases the rounded peak is replaced
by a cusp. These types of structures are not seen in all H modes, but we have not
succeeded in identifying any dependence on the discharge conditions and parameters.

In the late H-mode phase, hybrid versions of the two phenomena just described
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have been seen: these display both a sign rmversal and an intermediate region of
reduced correlation.

(b) Fits to the Spatial Correlation Function

In an effort to obtain convenient low-order fits to the observed correlation func-
tions, we have found the most satisfactory model function to be of the form (Eq.
(3.17)]

(PAR)2 (1+ kORR + 1-R pC(AR; At = 0) = exp [ 2 2/ (5.3)

this three-parameter fit provides an average wave number koR, a correlation length
£R, and a propagation coefficient PR (1 for purely outward, -1 for purely inward
propagation).

These fits provide a convenient reduced description of the correlations, but it
must be remembered that they are not dictated by any theoretical model, and in fact
the x2 is generally rather high. For a more accurate study, it is essential to investigate
the experimental functions directly.

The results presented in the previous subsection can be handily restated in terms
of these parameters; in particular, as shown in Fig. 5.8, the correlation length is longer
in L mode than in the Ohmic regime, and slightly longer in the Ohmic regime than
in H mode: values in the range 1.2-3.5 cm have been measured inside the plasma
in Ohmic and L-mode conditions, and values down to 0.4 cm have been recorded in
H mode; in the SOL, LR is generally shorter than 1 cm. The average wave number
is comparable in the Ohmic and L-mode cases (1.8-4 cm- 1 ), and larger in H mode
(up to 7 cm-1). The propagation coefficient is positive in all three plots of Fig. 5.8.
Clearly, the structures seen in Figs. 5.10 and 5.11 do not conform to Eq. 5.3.

The spatial dependence of the correlation function is illustrated by Fig. 5.12 (L
mode) and Fig. 5.13 (H mode). In L mode, little variation generally occurs within the
region from the LCFS to 4 cm inside, in both confinement modes. This can be seen
by comparing Figs. 5.12(a) and (b), which show the correlation functions relative to
the two extreme points in the same time interval: the two functions are similar, and
are fitted with similar parameters. Figs. 5.12(c) and (d) refer to a similar shot and
depict the correlation function in the SOL. In the inner SOL, the correlation length is
reduced and the wave number increases; deeper in the SOL, this trend is accentuated
further: correlations are minimal in Fig. 5.12(d). These results are generic to L-mode
conditions; similar considerations apply to Ohmic plasmas also.

In H mode, the spatial variation inside the LCFS is again modest, as seen in
Figs. 5.13(a) and (b); going into the SOL, a decrease is observed in the average wave
number, whereas the correlation length increases slightly: this particular variation is
not systematic and changes from shot to shot. Deeper into the SOL, a clear increase
in the correlation level is seen, unlike in the L-mode case. The fits are generally
poorer in H mode than in L mode, indicating increased irregularity.
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Fig. 5.12 Equal-time coeficient and its Hilbert transform, relative to two reference points inside

the LCFS [(a) and (b)) and to two points in the SOL [(c) and (d)] for two similar L-mode plasmas

(BT=2.1 T, J,=1.35 MA, ft,=4x1013 cm- 3 , Pbcam=1.8 MW). The 95% confidence level is 0.03.

Fits give correlation lengths, respectively, of 2.1 cm, 2.0 cm, 0.8 cm, and 0.4 cm; and average wave

numbers of 2.0 cm- 1 , 2.1 cm~ 1 , 3.2 cm-1, and 4.4 cm- 1 .

The propagation coefficient is at most a weak function of the position, with no
discernible regularity.

Various frequency filters have been applied to the data in an effort to identify a
dependence of the correlation length on the passband. Moving the low cutoff from 8
to 20-25 kHz generally produced little change; thus, the sharp change in the spectral
slope often seen in this region (see §5.4) is not related to a change in the correlation
properties. As the highpass frequency is moved to progressively higher values, the
correlation length is gradually reduced.

The parametric studies listed in §5.3 were applied to the three correlation fitting
parameters. Dedicated scans of global parameters, performed by varying one param-
eter at the time, produce only a few experimental points but have the advantage of
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Fig. 5.13 Equal-time coefficient and its Hilbert transform, relative to two reference points inside

the LCFS [(a) and (b)] and to two points in the SOL [(c) and (d)] for two similar H-mode plasmas

(BT=2.1 T, Ip=1.35 MA, i =4x 1013 cm- 3 , Peam=1.1-1.8 MW). The 95% confidence level is 0.03.

The minimum signal-to-noise ratio at the outer edge of the SOL is 5. Fits for cases (a)-(c) give

correlation lengths, respectively, of 0.9 cm, 0.7 cm, and 1.2 cm; and average wave numbers of 2.8

cm- 1, 2.6 cm-1, and 2.3 cm- 1 . No adequate fit could be made to case (d).

separating the independent variables. Scans of local parameters, by contrast, were

made by using data from all the global scans, with no effort to keep any quantities
constant. This approach was preferred in view of the difficulty of selecting the in-
dependent variables without prior knowledge; as a result, however, the local scans
must be considered of a more qualitative nature. In all the scans, the correlation
parameters were measured in the region between 1 and 3.5 cm inside the LCFS.

All parameter scans in H mode failed to reveal any regularities; in addition, as
mentioned before, the fits are often poor in this regime. In L mode, a general result is
that the dependence on global parameters appears stronger than on local parameters
(but the caveat of the preceeding paragraph applies). The global scans are shown in
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Fig. 5.14. Data referring to double-null diverted configurations are plotted separately
from those for single-null plasmas [these geometries are shown schematically in Fig.
4.16(b)]. It should be noted that the input power is not kept constant in each scan,
owing to the variation of the H-mode power threshold; therefore, the power remains
as a hidden variable.

The characteristic lengths (correlation length LR and average wavelength 27r/ko,R)i
are increasing functions of the input power and of the line-averaged density; their de-
crease with plasma current should be considered only a preliminary result, since only
two points are available. No clear dependence on the toroidal magnetic field is seen.
The correlation length has a definite dependence on the parameter Dr,, also: al-
though there is some scatter in the data at negative Drep, the correlation length
clearly decreases for positive values of Drep. At the highest value Dr,,, = 0.6, for
which the H-mode threshold power is highest, three points are shown, corresponding
to three shots with increasing input power [reflected in the scan in Fig. 5.14(a)]: In
the third shot the transition to H mode was finally obtained.2 90

An additional global parameter, the thermal-energy confinement time TE, was
also scanned without constancy constraints. The scan is shown in Fig. 5.14(f). No
clear relation between TE and LR or ko,R is found.

The local-parameter scans are plotted in Fig. 5.15. The parameters are measured
at the intersection of the midplane with the chord on which the turbulence quantities
are estimated. The average wave number did not display any regular behavior versus
any parameters and was thus left out of these plots for the sake of brevity, with the
exception of the ion sound gyroradius scan, which was kept for illustrative purposes
and also for theoretical reasons. Studies of the correlation length as a function of
the ion sound gyroradius, of the local density, of the density gradient length, of the
electron temperature, and of the temperature gradient length [Figs. 5.15(a)-(e)] failed
to evince any regularities. The same is true for the scan of q95 (the safety factor at
p =- 0.95). On the other hand, we observe [in Figs. 5.15(f), (g), and (i)] a scattered
decrease of LR with increasing 7 e = L,,/LT and with increasing magnetic pumping
rate [defined by Eq. (5.1)] and an increase of LR with increasing normalized ion
collisionality v.j (see §5.3). We recall that all quantities are estimated by using the
electron temperature in lieu of the ion temperature. The large horizontal bars for the
parameters that depend on the temperature are due to the large relative errors in the
temperature measurement by Thomson scattering at the edge of the plasma. Points
with relative errors larger than 100% were not used.

The propagation coefficient PR was also studied parametrically. Figure 5.16
contains only those scans (global and local) that display some degree of regularity.
All other scans were highly irregular. Points lying above the dashed median line
refer to predominant outward propagation, and vice versa. PR remains essentially
constant when the magnetic field is varied [Fig. 5.16(a)], with the exception of the
lowest value BT = 1.08 T, which corresponds to a drop of PR to a negative value. The
propagation coefficient decreases with increasing line-averaged density but increases
with increasing local density [Figs. 5.16(b) and (c)]. However, the latter is, again, an
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Fig. 5.14 Global parameter scans of the radia correlation length and average radial wave number

for sets of lower-single-null and double-null diverted L-mode plasmas. Scans (a)-(e) were performed

while keeping the other parameters constant; scan (f) combines shots from all other scans. The

parameters are: (a) neutral-beam power; (b) toroidal field; (c) plasma current; (d) line-averaged

density; (e) the X-point imbalance parameter Drsep (negative when the ion VB drift points towards

the dominant X-point, and vice versa); (f) thermal-energy confinement time. The three points at

Drsep = 0.6 in (e) correspond to the power scan in (a).

unconstrained scan. A similar increase of PR is observed when the temperature, the
density gradient length, and 77e are increased [Figs. 5.16(d)-(f)].

In general, more caution should be exercised in considering the scans of Fig. 5.16
than the scans of the characteristic lengths, as the parameter PR exhibits considerable
variability from shot to shot and from one experiment to the next. In particular,
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mode plasmas used in the global scans of Fig. 5.14. The parameters are: (a) ion sound gyroradius;

(b) local electron density; (c) electron temperature; (d) density gradient length; (e) temperature

gradient length; (f) Ye = Lfl/LT; (g) safety factor at p = 0.95; (h) normalized ion collisionality (see

§5.3); (i) magnetic pumping rate (see §5.3).

qualitative observations indicate that shots with outward-propagating turbulence are
underrepresented in this data set. A repeat of this study on a much larger database
would certainly be well worth doing.
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constant; scans (c)-(f) combine shots from all other scans. The parameters are: (a) toroidal field;

(b) line-averaged density; (c) local density; (d) electron temperature; (e) density gradient length; (f)

77e = Ln/LT (LT is the temperature gradient length).

(c) Wave-Number Spectra

The wave-number spectrum s(kR) is computed as the spatial Fourier transform
of the complex spatial correlation function described in subsection (a). Since that
function is Hermitian, the wave-number spectrum is real. As discussed in §3.9, several
methods have been employed to calculate the Fourier transform; the results were
generally in good agreement, and the maximum-entropy method17 2- 7 4 is preferred
in general. After the Fourier transform is computed, it is divided by the PCI transfer
function for the specific phase plate used in the experiment.

It should be recalled that this spectrum is, strictly speaking, a function of the
horizontal wave number in the poloidal plane, with the vertical wave number equal
to zero. Although the discussion of Chapter 4 allows in general an identification of
this wave number with the radial wave number, we shall postpone all interpretative
considerations to Chapter 6 and adopt the notation s(kR) here.

Physically, the spectrum must be positive definite; however, calculating the spec-
trum from experimental data with the procedure indicated is not guaranteed to gen-
erate a positive definite function. With some of the techniques employed, including
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maximum entropy, it is possible to constrain the result to be positive; nevertheless, we
have generally preferred not to impose that constraint and to regard the appearance
of large negative values as an indication of a failure of the statistical requirements of
the calculation, for instance stationarity and ergodicity. In cases of particularly irreg-
ular spacing of the digitized channels, however, the constraint of positive-definiteness
has in fact been applied to improve the calculation.

All the spectra that will be shown in the remainder of this chapter are only
plotted at most up to the Nyquist spatial frequency. An antialiasing filter was always
used at that frequency. The width of the phase-plate groove is 560 pm, except where
otherwise noted. This corresponds to Q = 1.55 [see §2.11(c)] and to the transfer
function shown in Fig. 3.32. The minimum kR used in the plots is 0.8 x k, = 0.65
cm- 1 . The broadening caused by diffraction, as was shown in Fig. 2.24, is of the
order of 1 cm--

As is clear from the structure of the spatial correlation function discussed in
subsection (a), the spectrum s(kR) is normally double-peaked, with the two peaks at
approximately symmetric positive and negative values, corresponding to the average
wave number obtained from the fit. The 1/e width of the two curves is ~ 4/LR. The
positive peak will be larger when PR is positive, and vice versa.

In general, in turbulence, the assumption of random phase is used [see Eq. (4.9)
and related discussion]. This implies that different spectral components are essentially
uncorrelated. Any correlations, in particular between the positive- and negative-kR
components, would be revealed by standing-wave structures in the amplitudes. Since
such structures are not seen in general, as discussed in subsection (a), we conclude
that the two counterpropagating spectra are in fact generally uncorrelated.

Typical examples of Ohmic, L-mode, and H-mode spectra are shown in Fig.
5.17. As the range utilized for these spectra is smaller than the width of the laser
beam, values below ~ 2 cm' must be regarded with caution. Confidence in the va-
lidity of the spectra at low k is gained by examining the correlation functions directly.
In particular, the finite value of the peak wave number, which is a fundamental result
arising from the wavelike nature of the correlation function, cannot be explained away
by finite-width effects. In addition, measurements have also been made by using the
complete width of the beam (sacrificing resolution and spectral bandwidth), and the
structure of the low-kR range has been seen to conform to that seen in Fig. 5.17.

Figure 5.17 displays the characteristic features of the spectra in the three confine-
ment regimes: generally nearly balanced in the Ohmic regime; unbalanced, narrower,
and with a lower ko,R in L mode; more balanced but more irregular, and broader, in
H mode. We reiterate that the dominant direction of propagation in L mode, and
the residual one in H mode, vary considerably; and that balanced cases are also seen,
as Fig. 5.16 attests. By way of illustration, an inward propagating case is shown in
Fig. 5.18, corresponding to the spatial functions of Figs. 5.12(a) and 5.13(a) for L
and H mode. Again, the broadening and increased in-out balance of H mode are in
evidence. Also, the portion of Fig. 5.18(a) with negative values of s(kR) is clearly
negligible.
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Fig. 5.17 Normalized radial wave-number spectra in the region between the LCFS and 3.5 cm
inside, for three cases: (a) Ohmic (B-r=2.1 T, lp=1.9 MA, fie=3x1013 cm- 3 , input power = 3.5
MW), (b) L mode and (c) H mode (both Br=2.1 T, Ip=1 .3 MA, ke=3X013 CM-- 3 , pbeam=15

MW). The shaded areas represent confidence intervals. The spectra are normalized to an integral
of 1. The blank region near k = 0 is below the instrumental cutoff. Case (a) corresponds to Fig.
5.8(a).

As suggested by the spatial correlation results, the spectra in the SOL are gen--
erally broader and shifted to higher wave numbers, with the exception of the outer
SOL in the late H-mode phase, which is rather well correlated and exhibits narrower
spectral features.
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BT=2.1 T, Ip=1.3 5 MA, fie= 4 x 103 cm 3 . The shaded areas represent confidence intervals. The

spectra are normalized to an integral of 1. The blank region near k = 0 is below the instrumental

cutoff. Case (a) corresponds to Fig. 5.12(a), case (b) to Fig. 5.13(a).

In one experiment, the antialiasing iris was deliberately opened to allow large-k)?
component to pass through the optical system. Comparing amplitudes, frequency
spectra and correlation functions for similar shots with and without the spatial fil-
ter showed that there was no observable difference. Although a spectral analysis is
meaningless beyond the Nyquist frequency, aliased high-kR components would ap-
pear below the Nyquist frequency and would affect the quantities listed above. In
particular, the amplitude would be expected to increase. The lack of change is taken
as a confirmation of the lack of detectable activity in the spectrum beyond ~10 cm-.
Any studies of those components would require filtering out the long-wavelength part
of the spectrum, in addition to employing a high-resolution configuration and a low-
reflectivity phase-plate substrate (e.g. BaF 2 ) to enhance the signal-to-noise ratio.

In a second test, the phase plate was rotated by 900 to render the system sensitive
to the toroidal, rather than the radial, component of the wave vector. The PCI cutoff
value remained the same, i.e. ~0.8 cm-1; and the orientation of the image was left
unchanged, i.e. in the radial direction. The only aim of this test was to determine
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whether toroidal spectral components with k, > 0.65 cm- existed at all. The signal
fell below the noise level, confirming the expected lack of high-k, activity. It should be
noted that this test is not parti-ularly stringent, as measurements of the component
of k along the magnetic field in other tokamaks10 ,2 5 ,2 2 9 have shown it to be < 0.01
cm-1, and any sizable toroidal components arising from the perpendicular wave vector
would be cancelled by the line integration in PCI.

(d) Dispersion Relations

The spatial correlation properties of the turbulence have been studied also in
the frequency domain. The standard procedure is to generate the complex coherency
function, which takes the place of the correlation function [an example is shown in Fig.
5.10(b)). A similar decaying wavelike behavior is observed in the frequency domain
also. The greatest variability is found in H mode, which, as was discussed in §5.4, is
also characterized in general by an irregular frequency spectrum. In particular, areas
of increased coherence are sometimes seen at high frequency (80-120 kHz) during the
H-mode phase.

By applying the usual three-parameter fits to the coherency function, the average
wave number, the correlation length and the propagation coefficient can be studied as
functions of frequency. The first function in particular takes the form of an approx-
imate dispersion relation for the peak value of the wave number. Typical examples
of these functions for the Ohmic, L-mode, and H-mode regimes is shown in Fig.
5.19. The trends observed in the time domain are present in these plots as well. The
correlation length is longest in L mode and shortest in H mode; in the Ohmic case
it is slightly longer than in H mode at low frequency, but the two are quite similar
throughout the rest of the spectrum. The average wave number typically decreases in
going from Ohmic to L-mode conditions and increases again in H mode, displaying
also a more irregular behavior: in fact, as seen in Fig. 5.19(b), ko,R is often smaller
in H mode than in L mode at high frequency; it should be recalled that the frequency
spectrum is also broader in H mode. The propagation coefficient is generally closer
to zero in the Ohmic and H-mode regimes.

The increase of ko,R with frequency is a general feature; in many cases, the
dispersion relation is well approximated by an offset-linear function (the region below
8 kHz is, however, precluded to the measurement). The correlation length often, but
not always, decreases with frequency: in L mode the three most common functional
forms are (a) increasing up to a maximum in the 20-40-kHz range (where a change in
the slope of the frequency spectrum occurs) and then decreasing, (b) monotonically
decreasing, (c) increasing up to a maximum, then decreasing and finally becoming
approximately constant above 60-70 kHz. Case (a) is shown in Fig. 5.19(a); cases (b)
and (c) are shown, respectively, in Figs. 5.20(a) and (b). The average wave number
remains approximately linear in all three cases. Both ko,R and LR are generally flatter
and more irregular in H mode than in L mode, and are flatter in the SOL than inside
the LCFS.
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Fig. 5.19 (a) Average wave number (dispersion relation), (b) correlation length, and (c) propa-
gation coefficient as functions of frequency, for Ohmic (BT=2.1 T, Ip=1.9 MA, h'!=3x1013 cm- 3 ,
input power = 3.5 MW), and L-mode and H-mode plasmas (BT=2.1 T, Ip=1.3 MA, fe=3x1013

cm-3, Peam=15 MW), in the region between the LCFS and 3.5 cm inside. The three cases corre-
spond to those shown in Fig. 5.17. The shaded areas indicate confidence intervals. Smoothing was
performed over a 10 kHz interval.

The relatively slow variation of LR agrees with the veak dependence of £R in
the time domain on the bandpass of the digital filter.
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functions of frequency for two different L-mode plasmas [(a) BT=1.3 T, Ip=1.0 MA, hi,=4x 1013

cm- 3 , Pbeam=0.6 MW, lower single-null); (b) BT=2.16 T, 1,=1.35 MA, fie=4.5x1013 cm- 3 ,

Pbcam= 3 .6 MW, double-null]. The measurements are made in the region between the LCFS and 3

cm inside. The shaded areas indicate confidence intervals. Smoothing was performed over a 10 kHz

interval. The region below 24 kHz is not shown as it contained coherent MHD activity.

We must stress that the trends just described cannot be considered universal
observations: they merely describe the prevailing behavior. For instance, some cases
of flat or slightly decreasing dispersion relations have been seen, even in Ohmic plas-
mas. On the other hand, the general decrease of LR is a nearly universal feature.
This variability is, once again, greater in the case of the propagation coefficient. In L
mode, in particular, PR can be positive [Fig. 5.19(c)], negative (Fig. 5.20), or zero.
Often, but not always, PR moves towards zero at high frequencies.

It is interesting to note that, owing to the form of the dispersion relation, the
character of the cross-spectral function (and coherence) is usually quite different from
that of the autopower spectrum. While the latter is monotonically decreasing, the
former peaks at different frequencies depending on the spatial separation: this stems
from the fact that the coherence is zero at separations equal to odd multiples of
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one-half the average wavelength, which is itself a function of frequency.
As a consequence of the offset-linear dispersion relations, the group velocity

is normally larger and more nearly constant in frequency than the phase velocity.
Typical values for the group velocity v,,R are in the range 1.5-4 km/s in Ohmic and L-
mode plasmas, and up to 20 km/s in H mode. The phase velocity ranges from 0.3 km/s
at low frequency to 2.5 km/s at high frequency in the Ohmic and L-mode cases; and
from 0.3 km/s to 5 km/s in H mode. It must be remembered that these approximate
velocities apply separately to both inward- and outward-propagating components,
which are independent and uncorrelated to a good approximation (because of the
lack of standing-wave structures).

We are now in a position to re-examine and understand the difference between
the local and intrinsic decorrelation times, discussed in §5.4. Based on the model
developed in §4.3, the defining relationship is Eq. 5.2. Since no macroscopic radial
flows exist in the plasma, we can rewrite that expression as

7'R,eff =- + .g, / (5.4)
SR

The local decorrelation time TR,eff is thus determined primarily by the smaller of
the intrinsic decorrelation time -rd and of the correlation-length propagation time
CR/vg,R. The former was found to be the range 20-80 ps; based on the above
discussion, the latter is in the range 5-25 ps in L mode, and as low as 1 /is in H mode.
Thus, clearly, the local decorrelation time is in general smaller than the intrinsic one.
The numerical discrepancy between CR/v,,R and 7-R,eff (which lies in the range 12-30
ps inside the LCFS) must be attributed to the crudeness of the model, which assumes
that Td is independent of k, and posits very specific forms for the spectral functions.
The discrepancy becomes very large in H mode.

The functional dependence of the intrinsic decorrelation time on the wave number
has a prominent role in many theoretical models of turbulence. This function can be
studied by taking the spatial Fourier transform of the complex function constructed
with the correlation coefficient as the real part and its Hilbert transform as the
imaginary part, for each value of the delay At, and normalizing the modulus of the
result to a value of 1 for At = 0. The usual exponential fit can then be applied for
each value of kR.

The function thus obtained is plotted in Fig. 5.21 for an Ohmic, an L-mode, and
an H-mode case; the function is only plotted in the region where the signal-to-noise
ratio is sufficiently large to permit a reliable fit; as the spectrum becomes small, the
signal-to-noise ratio decreases also (the spectra s(kR) are also plotted for reference).

In all cases examined, as shown in Fig. 5.21, the decorrelation time increases
indefinitely as kR approaches zero, down to the lowest measurable point. This in-
frared divergence is characterized by a power law rd oc k-", with the exponent a in
the range 1-1.5. In general, the form of the Td(kR) function is not related in any
obvious way to that of the spectrum s(kR). At large kR, the decorrelation time either
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decreases indefinitely or reaches a minimum and then begins increasing again; the
latter behavior is generally seen in H mode, which is also typically more irregular,
as evidenced by Fig. 5.21(c). The existence of a minimum is also often suggested
by measurements in L mode, but it always occurs in a region of vanishing spectrum,
rendering a definite characterization difficult in general. As was discussed in §5.4, the
decorrelation time is larger in H mode than in L mode. Figure 5.21 shows that this
behavior is characteristic of the entire spectrum, not just of the peak point.

(e) The Complete Wave-Number and Frequency Spectrum

The absolute S(kR, f) spectrum can be obtained by combining all the tools
described in the previous subsections. The absolute spectrum is calculated as the
Fourier transform in both space and time of the time-delayed correlation function.
Since this spectrum is unnormalized, the calibration factors (measured with acoustic
waves, see §3.8) are relevant to this calculation. Another useful spectral quantity is
the conditional spectrum s(klf), which is the spatial Fourier transform of the complex
coherency function and is approximately equal to S(k, f)/S(f) (this relation is exact
when the spectra are independent of the spatial position). Thus, at each frequency
the conditional spectrum is normalized to a unity wave-number-space integral.

The information that can be gained from these spectra is summarized in the
various quantities studied earlier in this chapter, with the exception of the absolute
amplitude, which is the subject of the next section. Figure 5.22 contains a typical set
of spectra for Ohmic, L-mode and H-mode plasmas in contour form. The spectra
are compressed by taking their cubic root and then plotting the contours on a linear
scale, in order to bring out the high-frequency features.

The dispersion relations discussed before are confirmed by the shapes of the
spectra in Fig. 5.22 (these are in fact the same shots and time intervals used in Fig.
5.19). The monotonic decrease of the spectral amplitude with frequency is also clearly
seen, as well as the more irregular features of the H-mode turbulence. Also, as will
be discussed in §5.6, the amplitude of the fluctuations is strongly reduced in going
from L to H mode. It is interesting to note that the frequency spectrum at each wave
number is not always monotonic: see for example the high-kR end of the Ohmic case
in Fig. 5.22(a).

The corresponding conditional spectra are plotted in Fig. 5.23. The peak in L
mode now appears at 30-40 kHz: this is a result of the correlation length having a
maximum, and thus the spectral width having a minimum, at this frequency [see Fig.
5.19(a)]. As explained before, this behavior is comrr-n but not universal.

An immediate visualization of the changes occurring from L to H mode is pro-
vided by 3-dimensional plots of S(k, f), as shown for two different shots in Fig. 5.24.
These plots are now linear. Plot (a) is characterized by predominantly outward prop-
agation, whereas (b) displays inward propagation. In both cases, both the monotonic
dependence on frequency and the sh- p reduction in amplitude from L to H mode
are readily apparent.
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Fig. 5.21 Intrinsic decorrelation time (solid carves) and normalized spectra (dashed curves) as
functions of the radial wave number in the region between the LCFS and 3.5 cm inside, for three

cases: (a) Ohmic (BT=2.1 T, I,=1.9 MA, i,=3x1013 cm- 3 , input power = 3.5 MW), (b) L mode

and (c) H mode (both BT=2.1 T, I,=1.25 MA, fie=3.5X1013 cm- 3 , input power = 6.2 MW). The

shaded areas represent confidence intervals. The cases are the same as those of Fig. 5.8. The

Nyquist spatial frequency is 11 cm- 1 . Inverse-power-law fits in the region -4 < kR < 4 cm- 1 yield

the exponents (a) 1.1, (b) 1.4, and (c) 1.2.

For completeness, in Fig. 5.25 are shown two additional examples of conditional
spectra in two different L-mode plasmas; these correspond to the dispersion relations

262



S(kRf) spectrum (to the power 1/3)

Step size - 1.4x10 7 (cm- 3 g)1/3

(a) Ohmic

(b) L modeCr
0

0*
Sr
h.

U-

150-

100-

50-

0

150-

100-

50-

0-

150-

100

60

0.

(c) H mode

N

9

PA

-8 -s -4 -2 0 2 46
ki (cm-1)

Fig. 5.22 Absolute S(k, f) spectra for Ohmic (BT=2.1 T, Ip=1.9 MA, fie=3x 1013 cm- 3 , input

power = 3.5 MW), and L-mode and H-mode plasmas (both BT= 2 . 1 T, I,=1.3 MA, fi,=3x1013

cm- 3 , Pbcam=1 5 MW), in the region between the LCFS and 3.5 cm inside. The cases are the

same as in Fig. 5.19. Units are such that the integral of S over frequencies and wave numbers is

the average square line-integrated density (in cm- 4 ). Contours are drawn using the power 1/3 for

better spacing; the level is proportional to the intensity. Smoothing was performed over a 10 kHz

interval.
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Fig. 5.23 Conditional s(klf) spectra for Ohmic (BT=2.1 T, Ip=1.9 MA, fh=3x10'3 cm-3, input

power = 3.5 MW), and L-mode and H-mode plasmas (BT=2.1 T, Ip=1.3 MA, fie=3x103 cm-3,

Pbeam=15 MW), in the region between the LCFS and 3.5 cm inside. The cases are the same as ill

Fig. 5.22. Units are such that the integral of S over wave numbers at each frequency is equal to

one. Smoothing was performed over a 10 kHz interval.

of Fig. 5.20. As was mentioned in connection with that figure, the three cases seen in

Figs. 5.25(a), 5.25(b), and 5.23(b) represent the three most common types of spectral
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Fig. 5.24 Absolute S(k, f) spectra for L-mode and H-mode plasmas in two different shots: (a)

BT=2.1 T, l,=1. 2 5 MA, ie=3.5X1013 cm- 3 , input power = 6.2 MW [same case of Fig. 5.8 (b)

and (c)]; (b) BT=2.1 T, Ip=1.35 MA, fie=4x1013 cm- 3 , input power = 2.2 MW). The spectra

pertain to the region between the LCFS and 3 cm inside. Units are such that the integral of S over

frequencies and wave numbers is the average square line-integrated density (in cm 4 ). Smoothing

was performed over a 10 kHz interval. The region below 24 kHz is not shown in (b) as it contained

coherent MHD activity.

functions found in L mode.
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Fig. 5.25 Conditional s(klf) spectra for 2 L-mode plasmas [(a) BT=1.3 T, Ip=1.0 MA, ne=4x 1013

cm-3, Pbeam=0.6 MW, lower single-null); (b) BT=2.16 T, Ip=1.35 MA, f1e=4.5x10 13 cm-3,
Pbeam= 3 .6 MW, double-null], corresponding to the cases of Fig. 5.20. The measurements are
made in the region between the LCFS and 3 cm inside. The integral of S over wave numbers at each

frequency is equal to one. Smoothing was performed over a 10 kHz interval. The region below 24

kHz is not shown as it contained coherent MHD activity.

5.6 Fluctuation Amplitude

The rms amplitude of the line-integrated fluctuating signal is calculated in a standard
fashion by averaging over time, as discussed in §3.9. The systematic error on the
absolute rms value is of the order of 30-40%; thus, the absolute value is of limited
significance. However, the spatial distribution of the amplitude can be studied with
greater accuracy, since the uncertainties on the relative calibration factors are of
the order of 10-15%. Finally, the time evolution of each rms signal is typically
subject only to a small statistical error and is a very useful indicator of trends in the
turbulence: this last topic will be addressed in §§5.8-5.10.

In order to obtain an average density fluctuation level, the line-integrated rms
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level must be divided by the effective integration length, which is given by (1 /FWL ) 2W
[where 4z is the vertical correlation length and L_ the chord length: see Eq. (4.6)].
The choice of these parameters is rather difficult. There are no direct measurements
of 4, = Lo in DIII-D at present. On the basis of measurements of poloidal spectra
in DIII-D 32 ,238 and of poloidal correlation measurements in other tokamaks", we
have used L, =3 cm as a reference value in our analysis; on theoretical grounds,6 3 we
assumed that the poloidal correlation length is the same in L and H mode.

The chord length has been taken to be the entire propagation path inside the
vessel for studies of the SOL or of the distribution both inside and outside the sep-
aratrix. In some studies of the distribution only inside the main plasma, the length
of the chord within the separatrix has been used, giving rise to larger average values,
under the assumption that turbulence levels in the SOL are considerably smaller.
Given all these assumptions, all the absolute values must be taken only as indicative
ones, whereas the radial profile of the relative amplitude and comparisons between
shots bear a more direct quantitative significance.

To study the radial profile, we have employed a set of similar discharges with
different positions of the separatrix, amounting to an effective radial scan on the part
of the PCI system. The results are shown in Fig. 5.26. The uncertainty on the
relative amplitude, rather than that on the absolute amplitude, is used for the error
bars, to compare the spatial points properly.

The radial profile generally exhibits a peak at a location 0.5-1.5 inside the LCFS
in all confinement regimes [see Fig. 5.26(a)]. On the inboard side, the amplitude
drops sharply beyond this peak; on the outboard side, the decrease is more gradual,
and is followed by a plateau region in most cases in the first 2 cm of the SOL, beyond
which the amplitude drops to very small values.

Typical peak values in L mode are of the order of 1-2x 1013 cm 2 ; values both
further inside and in the inner SOL are approximately 1/3-1/2 of the peak value.
As shown in Fig. 5.26(b), the peak value of the average rms ii, calculated using the
full length of the PCI chords, is in the range 0.4-0.8x 1012 cMn3 ; the corresponding
values obtained by using only the segments inside the LCFS are 1-2x 1012 Cm- 3 , as
shown in Fig. 5.26(c).

In H mode, the amplitude is smaller than in L mode everywhere inside the LCFS,
and the ratio of the two is maximum in the peak region just inside the LCFS. It should
be noted, however, that the magnitude of the amplitude ratio varies considerably from
shot to shot, ranging typically from 1.2 to 3. In the innermost region, 4-6 cm inside
the LCFS, the ratio is often close to one. In the SOL, the H-mode amplitude can be
somewhat smaller than its L-mode counterpart (as in the case of Fig. 5.26), but it
is also sometimes equal or larger. The shape of the profile is qualitatively similar to
that in L mode, but the peaking inside the LCFS is less prominent.

In our data, the amplitude appears to be largely unaffected by auxiliary heating.
Although there are no 3ystematic scans in the Ohmic regime, the Ohmic profiles
are qualitatively similar to the L-mode profiles. Moreover, no discernible change in
amplitude is observed on individual chords during a period equal to the beam slowing-
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Fig. 5.26 Radial profiles in L and H mode of (a) rms values of calibrated line integrals of fluctuating

density fi; (b) rms values of h averaged over entire path length, assuming a vertical correlation length

C2 =3 cm; (c) rms values of ft averaged over region inside LCFS, with LC =3 cm. Data collected

from a set of similar shots with varying separatrix position (BT=2.1 T, lp=1.35 MA, n, =4x 1i13

cm-3, Pbeam=1.1-2.3 MW, lower single-null). Error bars are determined by channel-to-channel

calibration uncertainties; the common uncertainty is 40%.

down time after the beams are turned on. The only exception to this is at the peak
just inside the LCFS, where a slight increase is sometimes seen after the beam turn-
on: therefore, the profile is somewhat flatter in the Ohmic regimes. It will be recalled
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that after the beams are turned on the correlation length generally increases, as was
shown in §5.5; also, changes both in the slope of the frequency spectrum and in the
decorrelation time were documented in §5.4. Transitions from beam-heated H modes
to Ohmic H modes, obtained by turning off the beams, have similarly failed to evince
any change in amplitude.

The frequency autopower spectra corresponding to the rms data of Fig. 5.26(a)
are shown in the 3-dimensional plots of Fig. 5.27. The peaking inside the LCFS is in
evidence, as is the sharp amplitude drop from L to H mode. The spectra at locations
well inside the LCFS are shifted to higher frequencies in L mode, and are fairly flat
in the region 30-90 kHz; this behavior is somewhat difficult to see in Fig. 5.27(a)
because of the scale. This mid-frequency range is suppressed sharply in H mode,
whereas the low-frequency region, which accounts for a significant fraction of the
power, is essentially unchanged. In the region closer to the LCFS, the suppression
is essentially uniform across the spectrum. The lack of any kind of standing-wave
structure is also evident from these plots.

As was discussed in §3.9, a progressive subtraction algorithm, which attempted
to subtract from each signal the contributions from the outer layers measured on the
other chords, was generally unsuccessful in producing acceptable results (i.e. the re-
sults were extremely irregular or negative powers were obtained). A simpler scheme
was also tried, which consisted of subtracting only the SOL contribution from the sig-
nals inside the LCFS (weighted by their effective integration lengths). This technique
was more successful, and was used in a parametric amplitude scan that employed the
set of shots used in the scans described in §5.5. The scans that exhibited some reg-
ularity, as well as some irregular ones that are of theoretical interest, are shown in
Fig. 5.28. Again, since shots from the same run are compared, the uncertainties on
the relative amplitudes are used as error bars.

In general, h failed to show any iegularity; the only case shown is the power
scan in Fig. 5.28(a), which suggests a slight increase in amplitude with increased
power. All the other scans shown are of the relative amplitude fl/n. Here, h is the
chord average as explained earlier, while n is calculated at the intersection of the
chord with the midplane and is thus a peak value. Given this discrepancy, caution
should be exercised in interpreting these scans: once again, the variation of h/n is
more significant than its absolute value. It was deemed preferable to employ this
procedure than to use the line-averaged density, as the spatial distributions of ii and
n are clearly different, and also in view of the large relative error on the measurement
of n at the edge of the plasma. The chords used for this scan lie in the region 2-3 cm
inside the LCFS, away from the layer with the largest gradient of h.

Among the scans not shown are those of the magnetic field, of the plasma current,
and of the confinement time, which did not suggest any regularity. A slight decrease in
h/n with increasing power is seen; h/n also decreases substantially as the density, the
electron temperature, and the density gradient length increase. No regular behavior is
seen when the temperature gradient length, the ion sound gyroradius, or the magnetic
pumping rate are varied. Some corielation appears to exist between high relative
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Fig. 5.27 Radial profiles of frequency autospectra of calibrated line integrals of fl, in (a) L mode

and (b) H mode. Data collected from a set of similar shots (same as in Fig, 5.26) with varying

separatrix position (BT=2.1 T, l,=1.35 MA, ii,=4x 1013 cm-3, Pbeam=1.1- 2 .3 MW, lower single-

null). Smoothing was performed over a 10 kHz interval, Relative error bars (not shown) are ~10%;

the uncertainty on the absolute calibration is 40%.

fluctuation levels and inward propagation, and vice versa. No isotope scaling was
available, as all measurements were carried out in deuterium plasmas. Finally, it
will be noted that double-null diverted plasmas are characterized by lower relative
fluctuation levels than single-null diverted plasmas.
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5.7 The Probability Distribution Function

The probability distribution function (PDF) of the turbulence was studied in several
plasma shots, at all the spatial locations accessed by PCI and in all confinement
regimes. A normality test was performed, and the higher (third to sixth) moments of
the distribution (normalized to the appropriate power of the variance) were generated
in all these cases. The third moment is known as the skewness and the fourth moment
as the kurtosis.17 0 The fifth and sixth moments are sometimes called "superskewness"
and "super kurtosis".322 In the case of a normal (Gaussian) PDF, all moments of odd
order are zero, the kurtosis K is 3, and the super kurtosis SK is 15. For this reason,
it has become conventional to define a coefficient of kurtosis K' = K - 3; similarly,
the coefficient of super kurtosis is SK' = SK - 15.

The coefficient of kurtosis is perhaps the most immediate indicator of adherence
to, or departure from, normality. The kurtosis is often referred to as "flatness fac-
tor", as leptokurtic (K > 3) distributions are generally more peaked and platykurtic
(K < 3) distributions less peaked than Gaussian distributions. In fact, the kurtosis
has been shown to be an indifferent measure of flatness. In fluid mechanics and, more
recently, in plasma physics, leptokurtic distributions have often been taken to indi-
cate the presence of intermittent behavior. 20 3 However, although bursty turbulence
is invariably leptokurtic, the reverse is not true: the exponential distribution, for
example, is characterized by a kurtosis K = 6. The existence of intermittency must
be determined indipendently by verifying that the dynamical system under exam
lacks temporal self-similarity. 207 Similarly, platykurtic distributions suggest, but do
not prove, the existence of coherent structures, a sinusoidal oscillation gives rise to a
PDF with K = 1.5.

In this work, we have not proceeded beyond a determination of the PDF and an
assessment of normality. In particular, no independent test of intermittency was per-
formed. Care was taken to avoid time intervals with "obvious" bursty behavior, such
as L-H transitions and ELMs (which, when tested, exhibited the expected leptokur-
tosis); similarly, regions with MHD activity were also excluded from the analysis.
The usual 8-kHz highpass filter was applied in all cases. Datasets were divided into
bins to determine the PDF in a hystogram fashion. Various bin widths and filters
were used in an attempt to better elucidate the nature of the PDF.

When estimated over intervals shorter than 40 ms, the PDF is generally mesokur-
tic (K = 3); moreover, the higher moments are also consistent with a Gaussian dis-
tribution and the PDF can be fitted rather well by a Gaussian, with a reduced x2

typically of the order of 1.5-2.5 (using the statistical uncertainty introduced in §3.9).
This behavior has been observed in a majority of cases in Ohmic, L-mode, and H--
mode plasmas, both inside and outside the LCFS. A typical example is shown in
Fig. 5.29(a), along with a superimposed Gaussian; in this example, as in most cases,
the moments of third to sixth order are consistent with a Gaussian PDF within the
statistical uncertainties.

The case shown in Fig. 5.29(a) is standard, with the interval from -6a to 6o-
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Fig. 5.29 Probability distribution function for (a) 8-250-kHz (Nyquist) bandwidth and (b) 8-

40-kHz bandwidth, calculated over a 20-ms interval. The data are divided into 121 bins of width

0.1xa. The dashed curve is a Gaussian with the same standard deviation a. The measurement

refers to an L-mode plasma (BT=2.1 T, Ip=1.7 MA, ie=3x10's cM- 3 , input power = 2.5 MW),

2 cm inside the LCFS. The noise level is (a) 0.03xa, (b) 0.005xa. The 95% confidence level is (a)

4x10- 3 , (b) 3x10- 2 . The moments, calculated from -6ar to 6a, are: (a) skewness S = -0.08±0.04,

coefficient of kurtosis K-3 = 0.09±0.10, superskewness SS = -0.6±0.3, coefficient of super kurtosis

SK - 15 = 1.0 ± 1.0; (b) S = -0.07 ± 0.10, K - 3 = 0.1 ± 0.3, SS = -0.2 ± 0.9, SK - 15 = 0.6± 2.8.

(where or is the standard deviation) subdivided irnto 121 bins of width 0.1 x o, and the
moments calculated over this entire interval. The sampling rate in this case was 500
ksamples/s: the number of independent samples is equal to 9680. Slight variations
in the bin size, an increase of the characteristic interval to ±l0or, and variations in
the time interval from 10 to 40 ms have not evinced any significant changes beyond
the statistical uncertainties. The normality of the PDF remains unaltered also when
different bandwidths are selected. The PDF for the range 8-40 kHz is shown in Fig.
5.29(b); the complementary region (40-250 kHz) is also normally distributed.

Since the 95% confidence level [4x10-' in Fig. 5.29(a), 3x10- 2 in Fig. 5.29(b)]
corresponds to amplitudes well below the 6a limit, the computation of the moments
was repeated within the narrower range defined by that level. Only in the second

(narrow-bandwidth) case did the kurtosis change significantly, to 2.0 ± 0.1.
It should be noted that leptokurtic distributions were observed in a few cases,

inside the LCFS in L and H modes. However, in no case was the kurtosis larger than

4.5.
Longer intervals were utilized in cases of exceptional regularity, especially in

Ohmic and low-power L-mode plasmas. As the interval size increases beyond 50 ms,
an increasing leptokurtic behavior is always observed, along with a noticeable peaking
of the PDF at zero amplitude. This is not accompanied by any visible burstiness.

A comparison between a 20-ms interval and a 200-ms interval is shown in Fig.
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Fig. 5.21 Probability distribution function for (a) 20-ms interval and (b) 200-ms interval; the

bandwidth is 8-250 (Nyquist) kHz. The data are divided into 121 bins of width 0.1 xa. The dashed

curve is a Gaussian with the same standard deviation a. The measurement refers to an L-mode

plasma (BT=2.1 T, Ip=1.7 MA, fie=3x 1013 cm- 3 , input power = 2.5 MW), 2 cm inside the LCFS.

The noise level is (a) 0.02xa, (b) 0.05xa. The 95% confidence level is (a) 4x10- 3 , (b) 4x10- 4 .

The moments, calculated from -6a to 6a, are: (a) skewness S = -0.07 ± 0.04, coefficient of kurtosis

K - 3 = 0.06 ±0.10, superskewness SS = -0.5 ±0.3, coefficient of super kurtosis SK - 15 = 0.7± 1.0;
(b) S = -0.07 ± 0.01, K - 3 = 2.42 ± 0.03, SS = -0.9 ± 0.3, SK - 15 = 37 ± 1.

5.21. In this example, the kurtosis rises to 5.42 in the longer case (which includes
96800 independent samples), while the super kurtosis reaches a value of 52. Again,
variations in bin size and bandwidth do not produce any significant changes. A
computation of the moments within the 95% confidence range [±4.5 x o for the case
of Fig. 5.21(b)] also generates identical values within the error bars. On the basis
of the cases examined (8 spatial channels in 7 shots), values of the kurtosis between
5.3 and 5.6 appear to constitute a constant asymptotic limit. The largest interval
employed in this study was 200 ms.

274

I1
10f S.

a-
10r

-~2

110r

-- 4

S -0.01 K-3 2.42

r

r

110

i0

id?
161

1-2

103

10r

U-

6

i I m -AMW

1. -

(a) 20 me interval



(a) Density (b) Temperature

.......... .... . . ..

4 T Laser
2 .2 beam-

O 2
0 3 >

O

4 2I
31

1~

L mode L mode

> 2 F Separatrix..

3 A

E0 2

1H Hmods
0 ....... 0........... 4....*IuE.

190 200 210 220 230 240 260 190 200 210 220 230 240 260

Major radius (cm) Major radius (cm)
Fig. 5.31 Midplane radial profiles of (a) the density and of (b) the electron temperature in L

mode (8 ms before the L-H transition, top) and in H mode (4 ms after the transition, bottom).

The measurements are made by a Thomson scattering system and are mapped to the midplane via

flux-surface mapping. The plasma parameters are BT=2.1 T, Ip=1.25 MA, iie= 3 .5 x10 cm- 3 ,

and input power = 6.2 MW.

5.8 The L- to H-Mode Transition

In the preceding four sections the properties of edge turbulence in various heating and

confinement regimes, including the L and H modes, were presented. The differences

between the L mode and the H mode have thus been elucidated systematically. In

the present section we shall focus on the dynamics of the L-H transition, whereas the

distinctive properties of the two regimes will not be repeated in detail.

The general phenomenology of the L-H transition was presented in §5.1(c). As

was discussed there, the transition is characterized by the formation of a transport

barrier at the edge of the tokamak cross section. The changes occurring in the density

and electron-temperature profiles, as measured by the Thomson scattering system,
are illustrated in Fig. 5.31. A clear steepening of the density gradient at the plasma

boundary is observed, which leads to the formation of a pedestal inside the LCFS; a

similar, although more modest, effect is also seen in the temperature profile. The data
shown in Fig. 5.1 for the H mode refer to a time immediately after the transition.
However, the profiles continue to evolve for several tens of ms after the L-H transition,
and a confinement improvement eventually occurs throughout the discharge.

As repeatedly discussed in earlier sections, the amplitude of the turbulence at
the edge, inside the LCFS, decreases abruptly at the onset of the H mode. This
suppression is observed routinely by all the edge fluctuation diagnostics in DIII-D.
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In all instances examined thus far, different diagnostics always detect the amplitude
drop at the same time within their respective temporal resolutions: these include the
reflectometer," the FIR scattering system, 2 7 the reciprocating Langmuir probe71 and
the lithium-beam emission spectroscopy apparatus, 3 in addition to PCI. Moreover,
the timing of the turbulence decrease coincides with the earliest sign of a reduction
in transport through the LCFS, as indicated by the drop in the D,, spectroscopic
emission signal, which is a measure of particle recycling in the edge.

An example of the simultaneity of these events is shown in Fig. 5.32: here, rms
signals from two reflectometer channels, from the FIR scattering system and from
PCI are compared with the D, signal. There is good agreement on the timing of
the transition, with no evidence of any delay within the temporal resolutions of the
measurements. The magnitude of the change is different for different diagnostics, as
they are sensitive to different spectral regions and spatial locations.

In view of the hypothesis that anomalous transport is caused primarily by tur-
bulence, and that the transport suppression at the onset of the H mode is a result
of turbulence quenching, it is of interest to explore the possibility of a delay between
the latter and the former in more detail. In this regard, it is instructive to examine
directly the time trace of the PCI signal rather than its rms value, which requires inte-
gration over a finite time interval. The PCI signal, appropriately filtered to eliminate
the low-frequency vibration noise, is plotted in Fig. 5.33 against the D" signal.

This particular case, in which the D, signal varies over a period of approximately
0.8 ms, has been chosen for illustrative purposes: although the turbulence suppression
is clearly much more abrupt (<0.1 ms, as seen in the detail at the bottom of the
figure), it occurs approximately at the time that the D,, signal begins to change.
A visual examination of the figure makes it impossible to state whether one event
occurs before the other. This conclusion is universally true, and it applies also to
cases in which the D, signal also decreases over time periods of the order of 0.1 mis.
It should be noted that similar time scales for the quenching of the turbulence have
been reported by other DIII-D diagnostics 2 99

As shown in previous sections, the fluctuation amplitude is not the only char-
acteristic turbulent quantity to be different in L and H mode. Inside the LCFS, the
radial correlation length is reduced and the average radial wave number is increased
at the transition:- these changes occur simultaneously with the amplitude drop, al-
though the temporal resolution of the correlation measurements is limited by the need
for adequate statistics. It was also noted in §5.4(b) that both the local and the in-
trinsic decorrelation time are generally larger in H mode than in L mode; this change,
however, has been described as a byproduct of a more pronounced modification of
the shape of the time-delayed correlation furctions, which become narrower at small
time delays and broader at large time delays: the resulting net broadening is an av-
erage effect which does not exhibit the abruptness of change of the other correlation
quantities discussed above.

A typical example of the time history of these quantities across an L-H transition
is shown in Fig. 5.34. This example will be followed by a more detailed discussion of
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(PCI) signal at a major radius located 0.5 cm inside the LCFS, (c) rms 0-mode reflectometer
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The plasma parameters are BT=2.0 T, Ip=1.6 4 MA, fte=3.8x11 3 cm- 3 , and input power = 13

MW.
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the behavior of the individual quantities in the remainder of this section. Figure 5.34
also serves to introduce a commonly observed phenomenon known as a dithering L--H
transition, which is generally interpreted2 9 2 as a series of L-H and H-L transitions
occurring at a critical input power, which eventually result in the plasma settling in
a steady-state H mode. The dithers in the Da signal are accompanied by analogous
dithers in the rms fluctuation amplitude. Within the resolution of the correlation
estimates (±2.5 ms), the first point in Fig. 5.34 to lie entirely in H mode clearly
displays both a shortened correlation length and an increased average radial wave
number. The decorrelation times, although larger in average in H mode than in L
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mode, are evidently much more erratic and do not change suddenly at the transition.
Although, as mentioned above, the fluctuation amplitude inside the LCFS is

systematically lower in H mode than in L mode, it was shown in §5.6 that the same
is not always true in the SOL; in fact, au increase in amplitude is observed by PCI
in the majority of cases at the L-H transition. Figure 5.35 shows the time histories
across a transition of the rms fluctuation amplitudes on seven radially spaced PCI
chords. While the three top traces, affected by turbulence inside the plasma boundary,
exhibit a clear decrease at the start of the H mode, the bottom four SOL traces show
an increase in the average amplitude; in addition, the SOL signals are characterized
by considerable variability in H mode.

The magnitude of the amplitude decrease inside the LCFS varies considerably
from discharge to discharge, by as much as one order of magnitude: the suppression
factor ranges approximately from 0.7 to 0.1, with a majority of cases lying in the
vicinity of 0.5. In Chapter 6 we shall present an attempt to relate this factor to
the changes in the correlation length and in the density gradient, in the context of
the so-called mixing-length scaling. Here, it is interesting to observe that the sup-
pression factors measured by other edge fluctuation diagnostics also display marked
variability 298 and have a strong spatial dependence, 218 with the average factor being
approximately of the order of 0.5,298 in agreement with PCI.

The behavior of the fluctuation amplitude at the L-H transition in the SOL, as
observed by PCI in DIII-D, differs from that reported by other diagnostics: a decrease
in amplitude, though less pronounced than in the main plasma, has been documented
for the SOL of DIII-D 6 1 and other devices.21 1, 21 6 This discrepancy may indicate an
even stronger dependence on the spatial location or possibly on the spectral range in
that region.

In the frequency domain, the amplitude suppression inside the LCFS occurs
throughout most of the spectrum. However, the simultaneous spectral broaden-
ing, which was described in §5.4(a), causes the H-mode amplitude in some cases
to rise above its L-mode counterpart at high frequency. A typical case, with no such
crossover, is shown in logarithmic contour form in Fig. 5.36. In this case, the sup-
pression factor is approximately 0.15 at the lowest frequency (- 10-30 kHz) and rises
to 0.5 at a frequency of 150 kHz.

The frequency broadening that accompanies the transition is evidenced by an in-
crease in the average frequency, plotted in Fig. 5.37 alongside the D, emission signal
and the rms fluctuation amplitude. In addition, this figure shows the change in the
exponent obtained from an inverse-power-law least-squares fit tu the PCI autopower
spectrum. As was discussed in §5.1(a), a value of 2 is typical of L mode; in H mode,
the irregularity of the spectrum results in a poorer fit, but the values obtained are
generally smaller than in L mode, reflecting once again the general spectral broad-
ening: the trace in Fig. 5.37(d) confirms this behavior. A point of interest is that
the variation of the shape of the spectrum occurs somewhat later than the changes
both in the amplitude and in the correlation length: as shown in Fig. 5.37, both the
average frequency and the inverse-power-law exponent change approximately 2 to 5
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Fig. 5.34 Time traces of (a) D, line emission from the divertor, (b) rms density fluctuation
amplitude, (c) radial correlation length, (d) average radial wave number, (e) local decorrelation
time, and (f) intrinsic decorrelation time. Measurements (b)-(f) are made with PCI in the region
from the LCFS to 0.8 cm inside it. The dithering L-H transition is identified by the drop in the D.
signal. The absolute rms fi level is calculated over the chord segment inside the LCFS, assuming a
vertical correlation length of 3 cm; the systematic error is estimated at 40% and the random error
on the time trace is 6%. The plasma parameters are BT=2.1 T, Ip=1.25 MA, ne,=3.5xj01 3 cm-t
input power = 6.2 MW.
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and the bottom four curves refer to the SOL. The L-H transition is identified by the drop in the D,

signal. The systematic error on the rms fluctuation level is estimated at 40% and the random error

from channel to channel is 18%. The plasma parameters are BT=2.1 T, Ip=1.37 MA, nL,=4x i10

cm- 3 , input power = 1.9 MW.

ms after the L-H transition.
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Fig. 5.36 (a) Time trace of the D, line emission from the divertor and (b) contour plot in
logarithmic scale of the time evolution of the PCI autopower spectrum 0.3 cm inside the LCFS,
across the L-H transition (the level is pn -portional to the logarithm of the intensity). A smoothing
interval of 20 kHz was used to estimate the autospectrum. with a statistical uncertainty of 11%. The
plasma parameters are BT=2.0 T, IP=1.64 MA, ie=3.8x1013 cm-3, and input power = 13 MW.

It was mentioned in §5.4(a) that only in rare cases are nonmonotonic features
observed in the PCI autopower spectra in L mode. These cases invariably occur
on chords located several cm inside the LCFS, an instance made possible only by
locating the plasma boundary very close to the outer wall of the DIII-D vessel. This
circumstance leads to a natural interpretation of these nonmonotonic features as the
result of Doppler shifts from the increased poloidal components of the fluctuation wave
vectors at the upper and lower ends of the chord, coupled with a nonzero poloidal
E x B velocity. In some of these cases, the changes in both the E x B velocity and
the spatial distribution of the turbulence at the L-H transition lead to a substantial
modification of the shape of the spectrum, and a local spectral increase may occur.
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Fig. 5.37 Time traces of (a) D, line emission from the divertor, (b) rms density fluctuation

amplitude, (c) average fluctuation frequency (weighted with the autopowEr), (d) exponent in the

inverse-power-law least-squares fit to the autopower spectrum. The PCI measurements [(b)-(d))

refer to a major radius 0.8 cm inside the LCFS. The systematic error on the rms fluctuation level is

estimated at 40% and the random error is 5%. The plasma parameters are Br=2 T, Ip=1. 5 MA,

fie=3x10 3 cm- 3 , input power = 4.1 MW.

A striking example of such a phenomenon is seen in Fig. 5.38, where a broad peak at,
approximately 38 kHz in L mode gives way to a considerably narrower and somewhat
higher peak in H mode. However, it should be remarked that in all cases, as in the
one shown in the figure, the integrated power still decreases at the L-H transition.

The different behavior of the spatial correlation characteristics at the L-H tran-
sition in the main plasma and in the SOL, which was discussed in §5.5, is exemplified
by the time traces in Fig. 5.39. While the correlation length inside the LCFS de-
creases at the transition [Fig. 5.39(a)], in the SOL it either remains constant or
increases, sometimes substantially, particularly several cm into the SOL, as shown
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Fig. 5.38 Autopower spectra in the L-mode and H-mode phases of a discharge (BT=2.16 T,

IP=1. 3 5 MA, ,=4.5X 1013 cm-3 , input power = 3.6 MW). The noise level is 1.4x 1021 cm-% and
the statistical error is 10%. The midplane location is 3.4 cm inside the LCFS.

in Fig. 5.39(b). The propagation coefficient can have any value between -1 (purely
inward propagation) and 1 (purely outward propagation) in the main plasma in L
mode, but typically becomes close to zero in H mode; in the SOL, by contrast, it is
generally in the vicinity of zero both in L and H mode, as documented by Fig. 5.39.

A decrease of the correlation length inside the LCFS at the L-H transition is also
usually seen in the frequency domain at all frequencies [see, e.g., Fig. 5.19(a)]. The
reduction becomes weaker as the frequency increases, and the correlation length itself
is typically a decreasing function of frequency in both regimes, as was discussed in
§5.5(d) and as is evidenced by the time traces of the correlation length at 11 different
frequencies plotted in Fig. 5.40.

As discussed earlier in this section and in §5.4(b), the time-delayed correlation
functions undergo rather complex changes - qualitative as well as quantitative --
at the L-H transition. In the main plasma, the shape of the envelope of the autocor-
relation coefficient is substantially modified, with a narrowing at small delays and a
broadening at large delays. This reflects the corresponding changes in the reciprocal
frequency domain, where the autospectra become broader overall but also develop
irregular, narrower peaks. As a rule, exponential fits are poorer in H mode than in
L mode; nevertheless, they provide the only satisfactory method for estimating the
time history of the decorrelation time, which is generally found to increase slightly
at the L-H transition.

A clear example of the evolution of the autocorrelation envelope through the L-H
transition is shown in contour form in Fig. 5.41(b). Both the low-delay narrowing
and the high-delay broadening are in evidence. The characteristic irregularity of the
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Fig. 5.39 Comparison of L-H transitions in two discharges [(a) BT=2.1 T, IJ,=1.3 MA, i'i=3x 1'13

cm-3, input power = 15 MW; (b) BT=2.1 T, ,=1.35 MA, ne=4.5x1013 cm-3, input power = 1.6

MW)): (i) D, line emission from the divertor, (ii) radial correlation length, (iii) radial propagation

coefficient (-1 for purely inward and +1 for purely outward propagation). The shaded areas indicate

confidence intervals.

H mode, which develops only a few ms after the transition, can also be readily seen.
An examination of the intrinsic autocorrelation envelope [calculated at the peak
of the wave-number spectrum, as described in §5.4(b)] yields qualitatively similar
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20-kHz interval. The temporal resolution of the correlation estimate is ±2.5 ins. The shaded areas

indicat confidence intervals. The plasma parameters are BT=2.1 T, I,=1.3 MA, ne=3x1 i' cn-3,
input power = 15 MW.

conclusions, as can be seen in Fig. 5.41(c).
In the SOL, the behavior of the correlation functions across the L--H transition is
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Fig. 5.41 (a) D, line emission from the divertor, (b) contour plot of envelope of local (3.4 cm

inside the LCFS) time-delayed autocorrelation function, (c) contour plot of envelope of intrinsic

autocorrelation function in the region between 3.5 and 5 cm inside the LCFS. The step size in the

contour plots is 0.11; the 95% confidence level is 0.05; the level is proportional to the intensity. The

resolution of the correlation estimate is ±2.5 ms, as indicated by the dashed lines around the L-H

transition. The plasma parameters are BT=2.1 T, Ip=1.3 MA, e,=3x1013 cm-3, input power

15 MW.

more erratic. In most cases, little or no variation of the decorrelation time is observed.
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However, the H-mode functions become generally even more irregular in time than
their main-plasma counterparts; indeed, in some cases in which both the rms level
and the correlation length in the SOL do not vary appreciably at the transition, this
irregularity appears to be the only detectable effect in the SOL of the onset of H
mode.

The probability distribution function (PDF) of the turbulence is almost invari-
ably Gaussian in all regimes and in all locations, when calculated over intervals shorter
than 40 ms (see §5.7). Longer intervals yield non-Gaussian, leptokurtic distributions.
A study of the temporal evolution of the PDF across the L-H transit*an is meaning-
ful, of course, only when short intervals are considered. An example of this kind of
study is shown in Fig. 5.42, which depicts the evolution of the third to sixth moments
of the PDF, estimated over half-overlapped 5-ms intervals (the even-order moments
are plotted with the Gaussian value subtracted). The intrinsic intermittency of the
L-H dithers yields, as expected, positive coefficients of kurtosis and of super kurto-
sis. However, it is strikingly clear that all moments are equal to zero, within their
statistical uncertainties, both in L mode and in H mode.

To conclude this section, it is worth mentioning that a few cases of "back" H-L
transitions have also been observed during this study. It is well known that a power
hysteresis effect is at work in the L-H-L cycle, with the power at which the back
transition occurs being lower than the L-H threshold power.323 From the viewpoint
of turbulence dynamics, however, the H-L transitions can be described as L-H tran-
sitions in reverse: both the rms level and the correlation length increase back to the
original L-mode values, over a similar time scale. It should be stressed, though, that
these observations were limited in number and were only of a qualitative nature.

5.9 Slow L-H Transitions

This section describes observations made during a specific experiment aimed at study-
ing the L-H transition at input powers only slightly above the transition threshold.2 18

As the input power approaches the threshold, the transition occurs on a progressively
slower time scale. In particular, the reduction of transport, as measured by the spec-
troscopic Da emission signal, becomes more gradual in the vicinity of the threshold.
If the physical mechanisms at work during and immediately after the transition re-
main unchanged, this procedure permits, in effect, an experimental investigation of
the transition with increased temporal resolution.

From the point of view of the turbulence measurements carried out with PCI,
the results of this study were consistent with the observations detailed in the previous
sections, both in L mode and in the fully developed H-mode phase; novel features
emerged, however, in the transient intermediate phase identified by the gradual de-
crease in the Da signal. The conjecture that these features may always be present
in the course of the transition is not inconsistent with measurements performed dur-
ing faster transitions, as the temporal resolution would be insufficient to reveal them
in those cases.
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Fig. 5.42 (a) D0 line emission from the divertor, and (b-e) third, fourth, fifth, and sixth moment

of the PCI probability distribution function (PDF), minus the Gaussian value (respectively 0, 3, 0,

15). The dithering L-H transition is indicated by the drop in the D, signal. The PDF is estimated

over half-overlapped 5-ms intervals (2500 samples), with a bin size equal to 0.1 standard deviations;

the moments are calculated over a range of six standard deviations. The PCI major radius at the

midplane is 3.4 cm inside the LCFS. The shaded areas indicate confidence intervals. The plasma

parameters are BT=2.1 T, Ip=1.25 MA, ie=3.5x101 cM 3 , input power = 6.2 MW.

This experiment was carried out in lower-single-null diverted plasmas with a

toroidal magnetic field of 2.1 T, a plasma current of 1.37 MA, and a line-averaged
density of 3.2x 103 cm- 3 . The neutral-beam power was 2 MW, approximately 30%
higher than the threshold for obtaining H mode.2 18

The time histories of the rms fluctuation levels on three chords, two of which

intersect the plasma while the other lies entirely in the SOL, are shown at the top

of Fig. 5.43, along with a De, emission signal for reference. At the start of the drop
in the D, trace, which signals the onset of the H mode, the fluctuation level on the

plasma chord decreases rapidly, reaching a minimum in - 50 As. Only a slight drop

is observed on the SOL chord. After a quiescent phase ~ 0.6 ms long, the fluctuation

level rises again, to a value similar to that of L mode on the plasma chords, and
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to a substantially larger value on the SOL chord. This turbulent phase, which will
henceforth be called the early H-mode phase, subsides slowly, on a 20-30 ms time
scale. In the final (late H-mode) phase, which begins approximately when the D"
signal completes its descent, the fluctuation amplitude is lower than in L mode on
the plasma chords and of the same order as in L mode on the SOL chord, in accord
with past measurements (see §5.8).

The short duration of the quiescent, low-turbulence phase is evidenced by the
blown-up traces shown at the bottom of Fig. 5.43. The raw PCI signals (high-pass-
filtered at 8 khz as usual) are shown here because rms statistics would not be adequate
on this time scale. The sudden reduction of turbulence at the L-H transition is clearly
visible, as is its resurgence approximately 0.6 ms later.

Figure 5.44 shows the frequency autopower spectra of the fluctuation signals
in logarithmic scale on the same three chords, calculated at three different times,
respectively in L mode, in early H mode, and in late H mode. In L mode, least-
squares fits to inverse power functions for all 8 chords that were digitized yielded
exponents in the range 1.7-2.3 with reduced X' values smaller than 1; these values
are typical, as was discussed in §5.4(a).

The spectrum is shifted toward higher frequencies in early H mode and also
becomes more irregular inside the LCFS. The average level is similar to that in L
mode on all plasma chords and in the deep SOL, whereas it is considerably larger at
the SOL location shown in Fig. 5.44(c).

Finally, the fluctuation level in late H mode is considerably lower than that in
L mode on all plasma chords, whereas the two are of the same order on all SOL
chords; this is, again, in agreement with past measurements. The H-mode frequency
broadening is especially pronounced in these discharges, as illustrated in particularly
clear fashion by Fig. 5.45, which shows the time traces of the autopower spectrum
calculated at one location (inside the LCFS) for seven discrete frequencies. While
the power decreases drom L to H mode at low frequency, the reverse is true at high
frequency, in accordance with the spectra shown in Fig. 5.44. It must be remembered,
however, that the integrated power decreases, as evidenced by the rms traces in Fig.
5.42.

The early H-mode phase contains all the new phenomenology uncovered by this
experiment and thus deserves further exploration. The region within the SOL lo-
cated 1 to 2 cm outside the LCFS is particularly interesting, as the amplitude of the
fluctuations in largest there, and indeed it is extraordinarily large in absolute terms.

A natural line of inquiry concerning the early H-mode phase pertains to the
structure of the spatial correlations. The answer is provided by Fig. 5.46, which
compares the radial correlation functions in the L-mode, early-H-mode, and late-H-
mode phases, relative to a reference point situated 1.5 cm outside the LCFS.

The L-mode and late-H-mode cases exhibit the usual decaying wavelike behav-
ior [see §5.5(a)], with the correlation length in the SOL being slightly longer in H
mode than in L mode [see also Fig. 5.39(b)]. By contrast, the early-H-mode case is
characterized by an abnormally high correlation level between the SOL and locations
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Fig. 5.43 Time traces (top) of the D, line emission from the divertor, and of the PCI rms signals

at three radial locations, the top two being inside the LCFS and the bottom one in the SOL. In

the blowup of the L-H transition (bottom) the same signals are shown, but the PCI rmis signals are

replaced by the raw signals, high-pass-filtered at 8 kHz. Note that the vertical scales are different for

different PCI channels. The absolute (systematic) PCI calibration error is estimated at 35%. The

statistical uncertainty of the rms estimate is 10%. The plasma parameters are B1=2.1 T, IL=1.4:i

MA, fi,=3x10I3 cm- 3 , input power = 2.5 MW.

inside the LCFS. Moreover, the equal-time coefficient between these points is positive
everywhere, with the exception of a point at the location of maximum fluctuation am-
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Fig. 5.44 Autopower spectra at three radial locations, in the L-mode (solid curves), early-H-mode

(dashed curves), and late-H-mode (dotted curves) phases of a discharge with a slow L-H transition.

The time trace of the divertor D, emission signal for this shot is shown in Fig. 5.43. The statistical
uncertainty on the spectra is 10%. The plasma parameters are BT=2.1 T, Ip=1.43 MA, ie=3x 10 3

cm- 3 , input power = 2.5 MW.

plitude (1 cm outside the LCFS), which is in phase opposition with all other points;
such a phase-inverted layer has been observed also in a number of fully developed H
modes, as was discussed in §5.5(a) in connection with Fig. 5.11, 'it the high, and
roughly constant, correlation level between the SOL and the interior points sets this
case apart from all others.
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Fig. 5.45 Time traces of (a) the D, line emission from the divertor, and of (b) the PCI autopower
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PCI calibration error is estimated at 35%. Note that the vertical scales are different for different

frequencies. The plasma parameters are BT= 2 .1 T, lp=1.43 MA, fie=3x1013 cm 3 , input power

= 2.5 MW.

5.10 The Evolution of Turbulence During a Plasma Discharge

In the previous two sections we have explored the dynamics of the L-H transition.
The present section will address some aspects of the dynamical evolution of turbulence
throughout a DIII-D discharge. The chief point that we shall attempt to demonstrate
is that turbulence varies throughout a discharge in a very complex way, and can by
no means be considered simply a function of the confinement regime, be it Ohmic, L--
mode or H--mode. Because of the sheer diversity of behavior observed, and because
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the main focus of this thesis has been on the L-H transition and on ELMs, it is
impossible here to even approach a complete description. An overview of a few keA
observations will be offered, with the aid of one representative example for illustration.

The example is shown in Fig. 5.47, which contains the time histories throughout
several confinement regimes of the divertor Da emission signal, of the neutral-beam
injected power, of the thermal-energy confinement time, of the rms PCI density fluc-
tuation level just inside the LCFS, and of the radial correlation length.

In this discharge, an "early" neutral beam is turned on well before 1900 ms,
with the purpose of inhibiting deleterious MHD instabilities ("locked modes") and
of keeping the recycling low in the subsequent H-mode and VH-mode phases, thus
allowing good confinement to develop. In this early-beam phase, the neutral-beam
power is comparable to the Ohmic power, and the confinement time is close to its
Ohmic value.

After the main beams are turned on at 1900 ms, the confinement time begins to
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Fig. 5.47 Time traces of (a) DG line emission from the divertor, (b) neutral-beam injected

power, (c) thermal-energy confinement time, (d) PCI rms fluctuation level 0.3 inside the LCFS, and

(e) radial correlation length in the region from the LCFS to 1.5 cm inside it. The absolute PCI

calibration error is estimated at 35%, whereas the statistical error on the rms estimate is 3.5%. The

plasma parameters are Br=2.16 T, Ip=1.54 MA, vie=3x1013 cm- 3 . The Ohmic input power is

approximately 1 MW.

decrease to the L-mode level corresponding to the specific input power. After a beam
slowing-down time (~60 ms), the confinement reaches its lowest level and a. noticeable

increase in the D0 recycling signal is observed. Throughout this phase of confinement
deterioration, both the rms fluctuation level and the radial correlation length are
slightly larger than in the early-beam phase. These observations are consistent with
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the general results presented, respectively, in §5.6 and in §5.5(b). As was mentioned
in §5.6, however, an increase in the rms level is generally seen only in this region, just
inside the LCFS; elsewhere, the Ohmic and L-mode level are usually equal.

As seen in Fig. 5.47, both the rms level and the correlation length change little
in time during the early-beam phase, but become more irregular after the main bean)
power is applied. These both appear to be general characteristics of the Ohmic and
L-mode regimes. Since a longer correlation length is theoretically expected to imply
larger turbulent diffusion, as will be discussed in Chapter 6, it is not surprising to
observe that the correlation length in the interval 1900-2020 ms describes an arc
similar and opposite to that followed by the confinement time. The relation between
the two, if any, would of course be rather complex, particularly since the former is an
edge quantity and the latter is a global one. However, this qualitative correlation has
been observed in most of the L-mode cases examined. A similarly regular behavior
in Ohmic plasmas, and a more irregular one in the L-mode regime, is seen in the
time histories of the frequency spectra.

A dithering transition to H mode occurs, beginning at 2010 ms, in the case of Fig.
5.47. The Da signal decreases sharply and the confinement time rises gradually in
the early H-mode phase free of edge localized modes (ELMs). A gradual transition
to VH mode follows, while the confinement time continues to increase, reaching a
peak at 2225 ms. MHD activity, starting at the small peak in the D" signal at 2165
ms and lasting until 2320 ms, begins to degrade the confinement progressively, and
eventually leads to the onset of the ELMing H-mode phase at 2270 ms. The ELMs
can be seen clearly as large peaks in the Da signal; in this regime, the confinement
time decreases until it reaches a steady-state value approximately equal to one-half
its peak VH-mode value.

The sharp reduction of both the rms fluctuation level and the correlation length
at the L-H transition, thoroughly documented in §5.8, is in evidence in Fig. 5.47 as
well. The correlation length remains short until the onset of MHD activity (the delay
in this event between the correlation-length trace and the D, trace is an artifact of
the different time resolutions of the two measurements). By contrast, the rms level
begins increasing around 2100 ms and reaches a value approximately equal to the
L-mode level. In addition, the rms trace displays a marked irregularity as a function
of time in H mode.

These observations are quite general; in some cases, the correlation length also
rises during the H mode, but generally remains below its L-mode value. (It must be
remarked that the simultaneity of the rms increase and of the onset of VH mode is
coincidental and a peculiarity of this particular discharge.) The average frequency
of the fluctuations, which increases at the L-H transition (see §5.9), decreases corre-
spondingly when the rms level rises during the H mode.

A rise of the fluctuation level during H mode has in fact been seen by a number
of diagnostics; it has been shown in DIII-D 2 18 that the reduction of the turbulent
flux just after the transition is primarily due to the suppression of the fluctuation
amplitude, whereas after the amplitude recovers the flux remain low primarily because
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of a dephasing of nearly 900 between the turbulent density and E x B velocity [see
§5.1(b)]. The amplitude increase is interpreted as part of a feedback process: as
the improved confinement leads to the formation of a steep pressure gradient at the
plasma edge, this in turn is able to drive microinstabilities in that region.

The complex dynamics of H mode are the reason behind our choice to focus on
the very early part of the H-mode phase in §§5.4-5.7, in view of our specific interest
in the L-H transition. The later, more turbulent, phase of the H mode departs
in significant ways from the phenomenology described in those earlier sections. A
detailed study beyond the effects described here has not been carried out, and could
certainly constitute a valuable future extension of this work.

Although no systematic study of the VH mode has been attempted with PCI, no
evidence of distinctive VH-mode effects has been uncovered thus far. This is perhaps
not surprising, as the VH mode can be described as resulting from an extension of the
H-mode transport barrier to the interior of the discharge, beyond the range accessed
by the PCI system.

In Fig. 5.48 the time history of the autopower spectrum for the same discharge
and at the same PCI location is shown in three-dimensional form, along with the D0

signal for reference. Visible in this plot is one additional effect observed well into the
H-mode phase: the formation of temporary spectral features centered at frequencies
between 20 and 80 kHz. Although the H-mode spectrum is often nonmonotonic
immediately after the transition, as discussed in §5.4(a), the irregularities become
more prominent in the later phase. The feature centered at 35 kHz appearing at 2100
ms in Fig. 5.48 is an example of this; this feature is indeed primarily responsible for
the concomitant increase in the rms level.

The MHD activity occurring from 2165 ms to 2320 ms is clearly seen in Fig.
5.48. This is a coherent mode at 30 kHz (the observed broadening is a result of the
10-kHz smoothing), which appears in the PCI signal at a larger amplitude than the
background turbulence, causing a corresponding increase in the rms fluctuation level;
the lengthened correlation length (see Fig. 5.47) is also a result of the high coherence
of this mode. Similar large-amplitude MHD modes are often seen in the PCI signal
and will be briefly commented on in §5.12.

Finally, ELMs are accompanied by a level of turbulence often higher than that
of L mode, as Figs. 5.47 and 5.48 clearly attest. This turbulence only exists within
each single ELM, and drops to usual H-mode levels between ELMs. The discreteness
of the ELMs is not clearly seen in these figures, partly because ELMs are bunched
together in this discharge and partly because the MHD mode does not vanish until
2320 ms. The ELM phenomenon is the subject of the next section.
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MHD activity

0

Fig. 5.48 Three-dimensional plot of the time history of the PCI autopower spectrum on a chord

located 0.3 cm inside the LCFS, and time trace of the D, line emission from the divertor. A
smoothing interval of 10 kHz was used to estimate the autospectrum, with a statistical uncertainty

of 10%. The absolute calibration error on the power is 70%. The plasma parameters are BT=2.16

T, Ip=1.54 MA, iie=3x 103 cm- 3 , and input power = 8 MW.

5.11 Edge Localized Modes

Edge Localized Modes (ELMs) are semiperiodic edge instabilities that occur in H
mode and destroy the H-mode transport barrier temporarily; after the instability
subsides (typically in a fraction of a ms), the barrier is recreated. 59 An overview of
the phenomenon was provided in §5.1(d). As explained there, ELMs are considered
essential for steady-state reactor operation, as they permit density control and also
expel impurities and spent fusion ashes.2 9 2

Although ELMs are believed to be manifestations of MHD instabilities and are
indeed accompanied by large fluctuation levels, 292 much remains unknown about the
detailed mechanism that triggers them. The existence of several distinct types of
ELMs, believed to be related to different instabilities, is an added complication.

In this section we shall present the results of a systematic study of the various
types of ELMs carried out with the PCI system in the DIII-D tokamak. In addition
to the type-I (or "giant") and type-III ELMs, observed in a variety of toroidal fusion
devices, 292 a third variety - labeled type-Il, or "grassy" - has been found only in
DIII-D.3 0 9, 292 In addition, other phenomena that bear some similarity to standard
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ELMs have been identified in DIII-D; in this section a brief mention will be made of
the so-called "X event" that often terminates the VH-mode phase of the discharge.

From the point of view of turbulence, all ELMs are invariably accompanied by
a burst of fluctuations at a level equal to or, more often, higher than that of L mode.
It is clearly of considerable interest to explore whether the characteristics of this
turbulence (spectral content, dispersion relation, wave-number spectra, etc.) are also
similar to those of the L-mode variety, or to identify any distinguishing features.

A basic difficulty in any statistical analysis of ELM behavior is the short duration
of the phenomenon, which results typically in poor statistics. In order to increase
the number of statistical samples, a multiple-averaging technique has been adopted
for this study; this technique, which was introduced in §3.9, entails carrying out the
averages over intervals composed of several discontinuous segments, each of which
lies within the lifetime of an ELM. Under the assumption that individual ELMs are
characterized by similar spectral properties, this technique increases the number of
samples by a factor equal to the number of segments used in the analysis. In all cases,
the segments were selected carefully by eliminating all atypical ELMs and, of course,
by restricting each estimate to only one class of ELMs and to a single discharge. This
technique proved inapplicable to grassy ELMs, owing to their very short duration and
complex dynamics, which will be briefly illustrated later in this section. It should
also be mentioned that the database for type-III ELMs is considerably smaller than
that for type-I ELMs, as it was limited to a single run (one experimental day).

Typical autospectra for type-I and type-III ELMs are shown in Fig. 5.49. The
spectrum of type-I ELMs is compared to an L-mode spectrum for the same discharge;
no L-mode data were available for comparison with the somewhat more elusive type-
III ELMs. The spectral content of type-I ELMs is similar to that of L-mode tur-
bulence, and the two spectra obey similar inverse-square laws: this similarity was
confirmed in all the cases examined. The ratio of the absolute values of the spectra,
on the other hand, varies considerably from shot to shot, from a factor of 1 to a factor
of 20 inside the LCFS. In no case was the ELM autospectral power smaller than its
L-mode counterpart; the value of -10, seen in Fig. 5.49(a), can be considered typical.

The spectrum of type-III ELMs has a broadband component, which is similar
in shape and magnitude to the type-I-ELM spectrum, and a narrowband component
centered at 96 kHz. 70 ,32 5 The latter part is seen in most, but not all, type-III ELMs
studied; when examined within a single ELM, this component is found to be in fact
completely coherent: the broadening seen in Fig. 5.49(b) is caused by slight variations
in freqency from ELM to ELM, by the complete disappearance of the features in some
ELMs, and by the smoothing used in the statistical analysis.

It should be noted that the smoothness of the spectra shown in Fig. 5.49 provides
implicit validation to the multiple-averaging technique, as it confirms that no large
variations in the spectral content occur from ELM to ELM.

The ELM spectrum is found to have little spatial dependence across the range
accessed by PCI, including locations deep in the SOL. Since the L-mode fluctuation
level is, by contrast, substantially lower in the deep SOL than in the main plasma,
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Fig. 5.49 PCI autopower spectra shown on a logarithmic scale for two discharges: (a) comparison

of type-I ELMs (solid line) and L mode (dashed line); (b) type-III ELMs. L-mode data were not

available for case (b). The spectra are estimated over 10-ms intervals with 10-kHz smoothing; in

the case of the ELMs, the intervals are composed of (a) 10 and (b) 19 discontinuous 1-ms intervals

coinciding with individual ELMs. Note that the vertical scales are different for the two plots. The

location of the PCI chord is (a) 1 cm and (b) 1.7 cm inside the LCFS. The statistical uncertainty

is (a) 10% and (b) 7%. The absolute calibration error on the power is (a) 60% and (b) 70%. The

spectra in (a) obey approximate power laws f-2.04 (type-I ELMs) and f -200 (L mode), The plasma

parameters are (a) Br=2.16 T, Ip=2.0 MA, jie=4.4x10 13 cm-3, and input power = 6 MW; (c)

BT=2.1 T, Ip=1.0 MA, ft,=5.5x 1013 cm- 3 , and input power = 6.9 MW.

the ratio of the ELM level to the L-mode level becomes generally quite large in the
SOL.

The same segmentation technique can be employed also to generate the complete
frequency and wave-number spectrum S(kR, f). Typical examples for type-I and type-
III ELMs are shown in Fig. 5.50. Again, both types of spectra (with the exception
of the 96-kHz coherent feature far the type-III ELMs) are qualitatively similar to
the L-mode spectrum (cf., e.g., Fig. 5.22). In particular, both peak at nonzero wave
numbers, both positive and negative. The main differences are a tendency of the ELM
spectrum to peak at lower values of k (typically in the neighborhood of 1 cm-1)
and a slower increase of its peak wave number with frequency. Also, no instances
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Fig. 5.50 Absolute S(k, f) spectra estimated over multiple (a) type-I ELMs and (b) type-III ELMs

by averaging over (a) 10 and (b) 19 separate 1-ms intervals, in the region between the LCFS and 3.5

cm inside [(a)] and 2.3 cm inside [(b)]. The data used are the same as for Fig. 5.49. Units are such

that the integral of S over frequencies and wave numbers is the average square line-integrated density

(in cm- 4 ). Contours are drawn using the power 1/3 for better spacing; the level is proportional

to the intensity. Smoothing was performed over a 10 kHz interval. The plasma parameters are (a)

BT=2.16 T, I,=2.0 MA, iE=4.4x1013 cm- 3 , and input power = 6 MW; (b) BT=2.1 T, Ip=1.0

MA, fe=5.5x1013 cm- 3 , and input power = 6.9 MW.

of predominantly inward propagating spectra have been found during ELMs: net
propagation is always outward, although it is nearly balanced in many cases (as in
Fig. 5.50); by contrast, both iiward and outward propagation have been observed in
L mode, as was discussed in §5.5.
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Fig. 5.51 (a) Average wave number (dispersion relation), (b) correlation length, and (c) prop-
agation coefficient as functions of frequency, estimated over multiple ELMs by averaging over 10
separate 1-ms intervals (type-I ELMs, solid lines) and over 19 separate 1-ms intervals (type-III
ELMs, dashed lines) in the region between the LCFS and 3.5 cm inside (type-I ELMs) or 2.3 cm
inside (type-III ELMs). The data used are the same as for Figs. 5.49 and 5.50. The region above
80 kHz is suppressed for type-III ELMs as coherent activity invalidates the fits. The shaded areas
indicate confidence intervals. Smoothing was performed over a 10 kHz interval. The values for the
three parameters averaged over the bandwidths shown are koR = 1.5 cm- 1 , LR = 2.3 cm, and PR

= 0.12 for type-I ELMs, and kOR = 1.0 cm~1, LR = 3.1 cm, and Pi = 0.23 for type-III ELMs.
The plasma parameters are (a) BT=2.16 T, 1 p= 2 .0 MA, ie=4.4x1013 cm- 3 , and input power = 6
MW; (b) BT=2.1 T, 4,=1.0 MA, ie=5.5x10' 3 cm- 3 , and input power = 6.9 MW.

These considerations can be visualized more readily by examining the three fit-
ting parameters kO,R (average wave number), LR (correlation length), and PR (prop-
agation coefficient, = -1 for purely inward and = +1 for purely outward propagation),
as functions of the frequency. These functions are shown in Fig. 5.51 for the two
types of ELMs (the type-III-ELM functions are truncated below the coherent mode,
for which the fitting becomes meaningless). This figure should be compared to Figs.
5.19 and 5.20 for L mode.

The weaker dispersion of the ELM turbulence as compared with L-mode fluc-
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tuations is evidenced by the slow increase of the ko,R function with frequency for
type-I ELMs, and the nearly flat function for type-III ELMs. The behavior of the
correlation length is qualitatively similar to the L-mode case, but its absolute value is
generally approximately a factor of 2 to 3 larger. Finally, the propagation coefficient
is always positive, confirming that net propagation is always outward.

We turn now to the topic of ELM dynamics and of the temporal correlations be-
tween the increase in the Da emission signal, which identifies the ELM experimentally,
and the fluctuation enhancement.

A comparison between the PCI rms signal and the Da signal for a series of type-
I ELMs, and for two ELMs in detail, is shown in Fig. 5.52. The detail also shows
the evolution of the PCI autopower spectrum, at a location 0.5 cm inside the LCFS,
in contour form. Within the resolution of the measurement, as documented in the
figure, the peaks in the D, and fluctuation signals always coincide. However, the D,
signal invariably decays more gradually than the fluctuation signal (inside the main
plasma). On the other hand, the fluctuation level often begins to rise dramatically
up to 2-3 ms before any change is observed in the emission signal; this "precursor"
turbulence is generally observed more prominently further inside the plasma than
near the boundary, but has no apparent regularity in time: as clearly demonstrated
by Fig. 5.52, precursors may appear before an ELM and not before the next one. A
more gradual rise in the turbulence level is seen in the blowup of Fig. 5.52, starting
soon after the first ELM and leading to the second one; this activity, however, always
appears to match a corrispondent slow rise in the D, signal.

Whether these precursor fluctuations are the same phenomenon as those mea-
sured earlier with reflectometry in DIII-D6 9 ,30 8 remains an open question. As was
discussed in §5.1(d), the reflectometry results documented both narrowband (30-60
kHz) and semicoherent oscillations, for periods of up to 20-30 ms before a single
ELM. As shown clearly by Fig. 5.52, PCI has revealed no evidence of nonmonotonic
spectra, both in the precursor phase and during the ELM proper; moreover, precur-
sors never appear more than 2-3 ms before the ELM. It is possible, however, that the
different spatial locations and spectral ranges of the two measurements may account
for the discrepancies, which would then simply reflect different manifestations of the
same phenomenon.

PCI measurements of type-I ELMs deep in the SOL, an example of which is
shown in Fig. 5.53, reveal a somewhat different pheromenology from that of the
main plasma. Each ELM is followed by a series of "echoes", in the form of additional
fluctuation bursts; these echoes vary in magnitude from ELM to ELM, and from chord
to chord for each ELM, seemingly at random. Also, the amplitude of the bursts may
exceed that of the main ELM. Since these echoes appear to be very short-lived, it may
be speculated that this variability is due in part to the finite sampling rate: that is,
the fluctuation peak may fall between two samples in some cases, and its amplitude
would then be underestimated.

It should be noted that the measurement relative to Fig. 5.53 extends to 7.1 cm
outside the LCFS; the level of turbulence associated with the ELM there is extremely
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Fig. 5.52 Time traces of the D, line emission from the divertor and of the PCI rms level (top);
blowup of the same traces for two type-I ELMs, and contour plot in logarithmic scale of the time

evolution of the PCI autopower spectrum (bottom; the level is proportional to the logarithm of the

intensity). Precursor activity is seen before the first ELM in the blowup, but not before the second

one. The PCI chord intersects the midplane 0.5 cm inside the LCFS. The statistical error on the rms

level is 10%; the absolute amplitude calibration error is 40%. A smoothing interval of 20 kHz was
used to estimate the autospectrum, with a statistical uncertainty of 22%. The plasma parameters

are BT=2.1 T, Ip=1.25 MA, fte=3.5x 1013 cm- 3 , input power = 6.2 MW.

high in comparison with any activity observed in L mode. A peculiar feature of type-I
ELMs in the SOL is that the correlation level of the fluctuations is typically larger in
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parameters are BT=2.1 T, Ip=1.4 MA, fie=8xO1 cm- 3 , and input power = 5 MW.

the echo phase than during the ELM itself, as shown at the bottom of Fig. 5.53 for
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one specific pair of chords. Precursors are also sometimes seen in the SOL but are,
as a rule, of more modest amplitude than inside the LCFS.

An examination of the dynamics of type-III ELMs leads to the establishment
of a clear and seemingly universal experimental distinction of type-III from type-I
ELMs. As shown in the comparison of the D, emission signal and of the PCI rms
signal in Fig. 5.54, in the case of a type-III ELM the fluctuation burst occurs well
in advance of the peak in the D, signal. This delay is always between 0.4 and 0.6
nis. The evolution of the autopower spectrum shows the characteristic monotonically
decreasing spectrum with the addition of a coherent high-frequency mode at 80-100
kHz, consistent with Fig. 5.49(b).

The same discharge and time interval shown at the bottom of Fig. 5.54 are used
again in Fig. 5.55 to examine the temporal evolution of the coherence between two
adjacent chords (0.5 cm apart radially) across one type-III ELM. Like the autopower
spectrum, the coherence is also largest 0.4 to 0.6 ms before the D" peak: indeed,
at the time the latter occurs, no significant turbulent activity remains, and usual
H-mode conditions are restored.

'he turbulent activity associated with type-II ELMs does not display any sig-
nificant spatial variation, both inside the LCFS and in the SOL.

A different view of the evolution of the autopower spectrum in time is provided
by Fig. 5.56(a), which depicts five ELM events in succession. Both the broadband
turbulent activity and the high-frequency mode are clearly associated with individual
ELMs, and in fact precede them as stated before. Because of the smoothing required
by the autopower estimation, the coherent nature of the high-frequency mode is not
revealed by this plot. However, Fig. 5.56(b) clearly shows that the radial coherence,
calculated at the peak frequency of 96 kHz, is close to one across the PCI range from
inside to outside the LCFS. Moreover, the cross-phase increases with radial separa-
tion, and is consistent with a coherent, outward-propagating mode with a wavelength
of approximately 4.5 cm. The same result is found for all type-III ELMs that contain
this mode, although the frequency varies by as much as ±10 kHz.

However, as was mentioned earlier, not all such ELMs exhibit this mode, and no
correlations were found between its onset and any other measurements. In particular,
no similar coherent signal is seen in any of the signals from the soft-x-ray diode
array; by contrast, normal, non-bursty MHD activity is usually detected by both PCI
and the soft-x-ray diodes. Unfortunately, no fast magnetic-flux data were collected
during the times of occurrence of these ELMs, rendering a comparison with magnetic
measurements impossible.

As was mentioned briefly in §5.1(d), semicoherent (50-70 kHz) precursor oscilla-
tions in both density and magnetic field have been documented (with reflectometry
and external magnetic coils, respectively) for periods up to 20-30 ms before individ-
ual type-III ELMs in DIII-D.3 1 ' During the precursor phase, the mode appears to be
moving outward, until it eventually triggers the ELM. It is possible that this mode
may coincide with the high-frequency mode measured by PCI; because of its location
at the extreme outer edge of the tokamak cross section, PCI can be expected to letect
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Fig. 5.54 Time traces of the D, line emission from the divertor and of the PCI rms level (top);

blowup of the same traces for one type-III ELM, and contour plot in logarithmic scale of the time

evolution of the PCI autopower spectrum (bottom; the level is proportional to the logarithm of the

intensity). The PCI chord intersects the midplane 1.7 cm inside the LCFS. The statistical error on

the rms level is 10%; the absolute amplitude calibration error is 35%. A smoothing interval of 20

kHz was used to estimate the autospectrum, with a statistical uncertainty of 22%. The discharge

is the same as for Fig. 5.49(b). The plasma parameters are BT=2.1 T, IJ=1.0 MA, ii,=5.5x101

cm- 3 , and input power = 6.9 MW.

the mode only in its latest phase, when the broadband turbulence that characterizes
the ELM is already in progress (but before the D, signal begins to rise, as we have
seen). The discrepancy in frequency alone does not invalidate this hypothesis, as the
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Fig. 5.55 (a) DQ line emission from the divertor, (b) PCI rms level, and (c) contour plot of the
time evolution of the coherence between two PCI chords 0.5 cm apart (the level is proportional to
the intensity). The PCI measurements are made 1.7 cm inside the LCFS. The statistical error on the
rms level is 10%; the absolute amplitude calibration error is 35%. A smoothing interval of 20 kHz
was used to estimate the coherence, with a maximum statistical uncertainty of -12%. The interval
shown is the same used at the bottom of Fig. 5.54. The plasma parameters are BT=2.1 T, Ip=1.0
MA, fi,=5.5X103 cm- 3 , and input power = 6.9 MW.

measurements described in §5.1(d) were carried out over two years prior to the PCI
measurements, in considerably different plasma conditions.

Type-II, or "grassy", ELMs present qualitatively similar features to the other
two types of ELMs from the point of view of edge turbulence; that is, ELM activity
is accompanied by an increased and oscillating fluctuation amplitude, as shown in
Fig. 5.57. However, the short duration and high repetition rate of type-I ELMs have
hampered all efforts to carry out a meaningful statistical analysis with PCI thus far.
As shown in the bottom part of Fig. 5.57, the period of the ELMs on the D" and PCI
signals appears similar; peaks in one signal appear to be correlated with valleys in the
other, and vice versa. The continuous transition from one ELM to the next, however,
makes it difficult to establish whether this is the result of a true anticorrelation or
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Fig. 5.56 (a) Three-dimensional plot of the evolution in time of the PCI autopower spectrum

1.7 cm inside the LCFS (estimated over a 20-kHz smoothing interval, with a statistical uncertainty

of 16%), and time trace of the DG line emission from the divertor; (b) coherence and cross-phase

with respect to a chord located 2.3 cm inside the LCFS, plotted as a function of the distance from

the LCFS (with maximum statistical errors of, respectively, 11% and 80). The positive slope in the

phase function indicates outward propagation; a cosine fit to the complex coherency function gives a

wavelength of 4.5 cm. The discharge is the same as for Figs. 5.54 and 5.55. The plasma parameters

are BT=2.1 T, 4p=1.0 MA, ft=5.5x10' cm- 3 , and input power = 6.9 MW.

of a delay. Moreover, these observations are only qualitative and are accompanied
by sufficient irregularities that a temporal correlation analysis of the two signals has
produced no clear results.

To conclude this section, Fig. 5.58 shows an example of an X event signaling the
termination of the VH-mode of a discharge. The X event appears as an abnormally
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Fig. 5.57 Time trace of the Da line emission from the divertor, showing an L-H transition and
type-Il ELMs (top); blowup of the same trace and PCI rms fluctuation level during type-IT ELMs

(middle); and further blowup of both traces (bottom). The PCI chord intersects the midplane 1.4
cm inside the LCFS. The statistical error on the rms level is 10%; the absolute amplitude calibration
error is 40%. The plasma parameters are B'r=2. 1 T, Ip=1l.35 MA, fRe=4x1i0' cm-3 , and input
power = 5 MW.

large type-I ELM on the Dc, signal, and is generally followed by regular ELMing
activity. This description also applies to the fluctuation measurements, as seen both
in the PCI rms signal and in the PCI autopower spectrum, which are consistent with
normal type-I-ELM activity.
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Fig. 5.58 Time traces of the D, line emission from the divertor and of the PCI rms level (top);

blowup of the same traces for an X event, and contour plot in logarithmic scale of the time evolution

of the PCI autopower spectrum (bottom; the level is proportional to the logarithm of the intensity).

The PCI chord intersects the midplane 1.2 cm inside the LCFS. The statistical error on the rms

level is 10%; the absolute amplitude calibration error is 30%. A smoothing interval of 20 kHz was

used to estimate the autospectrum, with a statistical uncertainty of 22%. The plasma parameters

are BT=2.16 T, 4=2.0 MA, fie=9X101 3 cm- 3 , and input power = 5.5 MW.

5.12 Transient Phenomena

Coherent modes are often detected by PCI. These modes are generally identified as
MHD phenomena, and are also detected typically by external magnetic coils and
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by soft-x-ray diodes. Owing to the paucity of reports on the density content of
MHD activity in the scientific literature, this constitutes a potentially rich area of
investigation that is available for future studies with PCI on DIII-D. In the course of
the present study, only incidental observations have been made, which will be briefly
addressed in this section.

The principal distinguishing feature of MHD phenomena is their temporal coher-
ence, which is reflected in peaked frequency spectra. The bandwidth of these coherent
modes, as observed in the PCI autopower spectra, is indeed typically defined by the
averaging procedure, rather than by the intrinsic width of the modes. Examples of
these modes have already been shown, in Fig. 1.3 and in Fig. 5.48. Figures 5.59(a)
and (b) show the coherence spectra of a PCI signal with a signal from a magnetic
coil and with a signal from a soft-x-ray diode; large (> 0.8) peaks are clearly seen in
both spectra at the frequency of the MHD mode, equal to 23.2 kHz.

The spatial coherence and cross-phase functions for the PCI array, with respect
to a fixed reference point, are shown at that frequency in Fig. 5.59(c); it is instructive
to contrast this plot with that in Fig. 5.56(b) for the coherent mode accompanying
type-III ELMs: whereas the latter displays a continuously varying phase, indicative
of a radially propagating wave, in the former the phase jumps abruptly from 0" to
1800, signaling the existence of a standing-wave structure. This structure is even more
apparent when the real and imaginary parts of the complex coherency function are
plotted [Fig. 5.59(d)]: the wave form is displayed by the real part, while the imaginary
part remains close to zero (no propagation). A wavelength of approximately 6 to 8
cm can be estimated from this plot.

Since MHD modes are characterized by a poloidally varying structure, with long
poloidal correlation lengths and long poloidal wavelengths (by comparison with the in-
tegration length of the PCI beam), which are routinely measured by spatial magnetic-
coil arrays, it is easy to interpret the apparent standing-wave structure along the lines
of the discussion of §4.4. The poloidal mode will appear to the PCI beam as a ra-
dially outward-propagating mode below the midplane and as an inward-propagating
mode above the midplane (or vice versa; see, e.g., Fig. 4.10). The sum of the two
counter-propagating waves, upon line integration, can be expected to produce the
standing-wave pattern observed. In addition, the measured radial wavelength is equal
to the poloidal wavelength of the mode divided by the average poloidal angle along the
extent of the beam [see, e.g., Eq. (4.62), with the effective radial wave number kO,R
given by Eq. (4.48), and 40 > 4l. The measurement shown in Fig. 5.59(d), with
the average poloidal angle estimated at 0.15-0.3 radians, gives an estimate of 20-50
cm for the poloidal wavelength of the mode, corresponding to a poloidal quantum
number m -7-20.

In a few instances in the course of this study, semicoherent phenomena have also
been observed, only during the H-mode and VH-mode phases of a discharge. These
events are in many ways similar to the usual coherent MHD modes, with the exception
of their bandwidth, which is finite, i.e. larger than the limit set by the experimental
procedure. A clear example is shown in Fig. 5.60 for an H mode evolving into a
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Fig. 5.59 (a) Coherence between signal from magnetic loop and PCI signal; (b) coherence

between signal from soft-x-ray diode and PCI signal (the PCI location is 1.2 cm inside the LCFS);

(c) coherence and cross-phase between PCI chords, with the reference point located 4.1 inside the

LCFS; (d) real and imaginary parts of PCI coherency with respect to the same reference chord. The

maximum statistical uncertainty is 6% for the coherence estimates, 3% for the coherency, and 6' for

the cross-phase. The plasma parameters are BT=2.16 T, I,=2.0 MA, fie=9x 1013 Cm 3 , and input

power = 5.5 MW.

VH mode; the large bursts of fluctuations seen in the PCI autopower spectrum are
characterized by a bandwidth of approximately 10 kHz, while the smoothing interval
in this estimate is 2 kHz.

These phenomena are also seen by the soft-x-ray diodes and by the magnetic
loops and are thus also identified tentatively as MHD events. Their spatial structure
is similar to that of the more coherent modes, and a large (>50%) level of coherence
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Fig. 5.60 Three-dimensional plot of the time history of the PCI autopower spectrum on a chord

located 0.4 cm inside the LCFS, and time trace of the D, line emission from the divertor. A

smoothing interval of 2 kHz was used to estimate the autospectrum, with a statistical uncertainty

of 22%. The absolute calibration error on the power is 45%. The plasma parameters are BT=2.16

T, Ip=1. 6 5 MA, fe=4.5X1013 cm- 3 , and input power = 14 MW.

is observed between the PCI signals and both the magnetic and soft-x-ray signals.
As a final remark, it is worth mentioning one additional transient event that

deserves further study with the PCI system: the sawtooth instability. In some cases,
sawtooth crashes are accompanied by small bursts of broadband fluctuations, similar
in aspect to ELMs. No systematic analysis of these events has been carried out thus
far.
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5.13 Concluding Remarks

A rich phenomenology of edge tokamak turbulence has been described in this chapter.

The PCI system, owing to its unique properties and to its optimal location at the
extreme outer edge of the DIII-D tokamak, has permitted the identification of several
novel properties of the density fluctuations in that region, in a variety of plasma
conditions and operating regimes. As a well-tested and mature diagnostic technique,

the DIII-D PCI apparatus clearly holds great promise for future plasma physics

studies, as new regimes are being explored and new theoretical advancements pose
continuous challenges to experimental measurements. The results described in this
chapter will be anaiyzed and discussed in Chapter 6.

Attempts have also been made at employing the PCI system to detect radio-

frequency (rf) activity, both from externally launched waves and from secondary

modes nonlinearly generated by them (parametric instabilities8 0 ). The present lo-

cation of the PCI system is not suited to these measurements, since the waves in

that region are expected to have radial wave numbers below the PCI cutoff point or
poloidal structures that would cause cancellation upon vertical integration. Indeed,
no detection has been possible above the noise limit, which in the case of directly

launched waves was determined by direct pickup from the rf transmitter. Mechanical
choppers were employed in an attempt to shift the detection frequency away from
that of the source, but electronic feedthrough in the data-acquisition rf mixers still

kept the noise limit well above the intrinsic detector noise.
Plans have been advanced for extending the PCI measurement to an inner loca-

tion better suited to this type of study, as will be discussed in §7.4; also, in §7.1 we
shall present an optically heterodyne version of PCI that can be used to circumvent

the rf pickup problems mentioned above.
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6 Discussion of Experimental Results

It is a good morning exercise for a research scientist to discard a pet hypothesis every day before

breakfast. It keeps him young.

Konrad Lorenz, On aggression.

Turbulence remains one of the great unsolved problems of macroscopic classical
physics, and continues to pose challenges surely as baffling as those of the post-
Newtonian frontiers of physics that have been the main focus of scientific exploration
in the twentieth century. The basic underlying equations, as well as some of the
essential statistical tools, have been known for over a century; yet, over a hundred
years after the first speculations by Lord Kelvin 326 and Reynolds 327 on the concept of
eddy viscosity and over fifty years after the first attempt by Kolmogorov 205 to predict
the properties of fully developed turbulence (and, one might add, five centuries after
Leonardo da Vinci's pioneering observations of intermittency in fluids), the analytical
approach to turbulence remains beset with prohibitive difficulties.

This is true even in the prototypical, and simplest, case of incompressible flu-
ids, which are described by the well-known Navier-Stokes equation.3 28 In spite of
its outward simplicity, this equation may well contain all of turbulence, 206 includ-
ing the transition to fully chaotic behavior observed at high Reynolds number. In
a plasma, the addition of electromagnetic forces between charged particles to the
pressure-gradient and viscous forces clearly complicates the problem even further.
New degrees of freedom are introduced by the collective plasma motion: the nonlin-
ear interaction between eddies in fluids is then augmented by the interaction between
the fundamental plasma oscillation modes, and between these and the eddies.

In view of these difficulties, it is perhaps not surprising that many of the basic
tenets of turbulence theory can still be legitimately criticized on a conceptual level.
For example, there is no theorem yet proving the existence and uniqueness of the
solution to the Navier-Stokes equation in three dimensions; 206 these fundamental
properties, therefore, are strictly only conjectures. The same can be said about the
nature of the averages that are involved in turbulence theory. Indeed, it may be argued
that "[ilt is not meaningful to talk of the properties of a turbulent flow independently
of the physical situation in which it arises. In searching for a theory of turbulence,
perhaps we are looking for a chimera." (P.G. Saffman). 329 It is certainly true that
any significant advances in turbulence must still rely primarily on experimental and
computational efforts.

It is against this daunting backdrop that plasma physicists are attempting to
shed light on some of the properties of plasma turbulence, particularly in experi-
ments not especially designed for these studies, such as thermonuclear plasma devices,
where turbulence, however, plays a fundamental role in determining the outcome of
the experiment. In this chapter an attempt will be made to organize the results of

316



the studies that were described in the previous chapter, performed with the Phase-
Contrast Imaging (PCI) system on the DIII-D tokamak, in the light of their relation
with theory; it will be shown that, in spite of the difficulties, significant new un-
derstanding is emerging with direct relevance to the key problems of transport and
confinement in tokamaks. It must be stressed, however, that many of the key results
of this work are of a phenomenological nature.

An important property of the PCI measurements deserves mention here. As
was proven and discussed at length in Chapters 4 and 5, this apparatus is sensitive
to plasma density modes whose wave vectors are primarily oriented in the radial
direction. Under the generally accepted assumption that edge turbulence is chiefly
electrostatic, the effect of fluctuations on transport is to cause a drift of the charged
particles in the E x B direction [see §5.1(b)]. Since the linearized perturbed electric
field E = -ik is radially oriented for radial wave vectors, the E x B direction is
essentially poloidal. It follows that radial electrostatic modes do not cause any direct
loss of particles or energy through cross-field transport.

Thus, a fundamental question is: what is the relevance of radial modes to trans-
port and to turbulence studies in general? The answer is twofold: radial modes may
interact nonlinearly with modes that do cause transport and thus affect it indirectly;
also, in a strong-turbulence scenario, any subclass of modes may be employed to
explore the general properties of turbulence, such as spectra, correlation lengths, am-
plitudes, etc.. These two considerations will guide the exposition of the analysis in
the remainder of Chapter 6.

This chapter is structured as follows. In §6.1 a brief introduction to the current
state of the theory of turbulence in tokamaks is offered, with particular emphasis
on turbulence at the edge and on its relevance to the L-H transition and to Edge
Localized Modes (ELMs). Sections 6.2-6.4 address issues that are specific to the
radial modes measured by PCI: §6.2 in particular explores the relation between our
measurements and theoretical and numerical studies of the nonlinear generation of
radial modes by poloidally propagating fluctuations of the drift-wave type; it will be
shown that our observations are consistent with theoretical predictions and that the
radial modes are in fact extremely important in controlling and regulating transport.
Section 6.3 deals with the possible relation of radial structures observed across the
plasma boundary with convective cells, while §6.4 addresses the radial correlation
structure in the scrape-off layer (SOL).

The remainder of the chapter is devoted to the general properties of turbulence.
Observations pertaining to the frequency and temporal domains, to the space and
wave-vector domains, and to the amplitude of the fluctuations are compared with
theory in §§6.5, 6.6, and 6.7, respectively. The theory of self-organized criticality and
related ideas are examined in §6.8 in the light of PCI measurements. A comparison
of the estimated turbulent diffusivities with the experimentally measured values is
carried out in §6.9. In §6.10 a detailed discussion of theories of the L-H transition,
accompanied by new tests of key predictions made possible by PCI, is presented.
The topic of "slow" transitions is examined separately in §6.11. ELMs are the main
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subject of §6.12, which investigates the significance of the results shown in the previous
chapter in relation with recent theoretical work; some further thoughts on MHD and
other transient phenomena are also offered. Brief concluding remarks are given in
§6.13.

6.1 Review of Some Aspects of Tokamak Turbulence Theory

(a) Plasma Instabilities

A confined plasma is, by definition, not in thermodynamic equilibrium. 91 Thus,
it attempts to evolve towards equilibrium by destroying confinement, e.g., in the most
obvious way, by expanding towards the confining walls. The deviations from equi-
librium are sources of free energy for instability; three fundamental such deviations
can be identified: 22 1 the non-uniformity of density and temperature, which contains
expansion free energy; the possible non-Maxwellian nature of the velocity distribu-
tion function, which is associated with velocity-space free energy; and the plasma
diamagnetism, i.e. the difference between the plasma and vacuum magnetic fields,
which is a source of magnetic free energy.

In a closed system such as a tokamak,' the velocity distribution is generally close
to equilibrium, and the main sources of instability are the expansion and magnetic
free energy. In particular, the conservation constraints in a closed system result in a
competition between two principal destabilizing effects, the tendency of the plasma to
expand to regions of lower magnetic field and the kinking of a plasma column to reduce
the magnetic free energy, and two stabilizing effects, a strong longitudinal magnetic
field (which tends to resist the kinking) and magnetic shear, that is, a variation in
space of the direction of the field lines.

Rosenbluth and Rutherford 221 have provided a useful and insightful classification
of instabilities in closed systems on the basis of the dynamics of electrons in the
direction parallel to the magnetic field. If one writes the fluid equation of motion of
the electrons along the field,

dvo VIlpeme - eEi - meveivl - , (6.1)

where E is the electric field, ve is the electron-ion collision frequency, p, is the
electron pressure, and ne is the electron density, each term in the right-hand side of
the equation can be associated with a broad class of instabilities: the electric-field
term with ideal MHD, the drag term with resistive MHD, and the pressure-gradient
term with microinstabilities. The left-hand inertia term may usually be neglected.

Because of their considerable virulence, ideal MHD instabilities were the subject
of some of the earliest work in thermonuclear fusion. Part of the success of the
tokamak configuration may be ascribed to its favorable MHD-stability properties.
The theory is now well understood, and the operational limits dictated by the need for
MHD stability are well known. In particular, external kink modes are stabilized by a
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sufficiently large safety factor q at the edge, 330 and by a sufficiently peaked and narrow
current profile;2 internal kink modes are found to be stable at low values of /3 (the ratio
of plasma pressure to magnetic pressure) and in general pose no significant threat to
confinement in tokamaks. Pressure-gradient-driven modes, whether of the internal
interchange (flutelike, with k11 - 0) or ballooning33  (localized to the exterior of the
torus) type, are stabilized by a combination of magnetic shear, curvature, elongation,
and low 3:191 numerical work performed in the late 70's and early 80's33 2 has provided
very detailed predictions for the maximum 0 attainable in a given configuration, which
have been widely verified experimentally.

In a finite resistivity plasma, magnetic flux tubes are allowed to diffuse across
the fluid, and symmetry-breaking may ensue, causing changes in the magnetic-line
topology ("magnetic reconnection") and the formation of magnetic islands.2 The so-
called tearing-mode instabilities that originate from this free-energy source grow more
slowly (in the ms range) than ideal MHD instabilities: thus, the plasma may adjust
and recover from the onset of such an instability, as in the case of the "sawtooth"
crash that occurs when the safety factor falls below 1 on the magnetic axis. In other
cases, such as that of the disruptive instability, resistive MHD modes may cause the
termination of the discharge. 2 In addition to tearing modes, resistive equivalents of
pressure-gradient-driven MHD modes may also occur in a tokamak: resistive inter-
change instabilites are generally stable when the safety factor on axis is larger than
1,221 whereas resistive ballooning modes may contribute to the observed high levels
of broadband turbulence at the edge of the plasma.

Microinstabilities are fine-scale instabilities that draw their free energy from inho-
mogeneities in the plasma pressure. Since the geometrical details of the configuration
are accordingly less important than in the case of large-scale modes, much of the early
work in the linear theory of microinstabilities was carried out in simplified slab ge-
ometries, which have allowed a comprehensive analytical treatment Lo he developed.
Over the years, both toroidal and nonlinear effects have been added to the basic
theory, generating increasingly involved stability criteria, which in most cases rely
crucially on complex numerical work. Electron drift waves, with or without the im-
portant added effects of particles trapped by the inhomogeneihy in the magnetic field
due to toroidal geometry, are believed to be a significant contributor to the observed
turbulence, particularly at the edge; 10 in particular, the so-called ion-temperature-
gradient (ITG), or ion-mixing, mode, 33 3- 33 5 resulting from a coupling of ion drift
and sound waves, 336 is currently the focus of intensive research both theoretical and
experimental, and will recur throughout this chapter.

(b) Plasma Turbulence

The electromagnetic forces between charged particles and the ensuing excita-
tion of collective modes set plasmas apart from ordinary fluids, whose turbulent dy-
namics are dominated by interactions between eddies with no intrinsic characteristic
frequency. 18 6 Thus, a treatment of turbulence in plasmas must differ from that in
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fluids not only because of the added complication of a larger number of degrees of
freedom, but also in a purely qualitative sense. Nevertheless, some of the methodology
developed in nearly a century of research in fluid turbulence has found applicability
in plasma turbulence theory as well.

In some cases, the similarities are only of a mathematical nature, while the
underlying physics can be very different. For instance, scaling laws for the wave-
number spectra, similar to the celebrated Kolmogorov scaling for fluids,2 05 have been
found for specific types of waves in plasmas." 7 However, these laws are by no means
general, and in fact the basic tenets of Kolmogorov's theory (scale invariance and
energy cascade to small scales2 07) are not readily applicable to plasma turbulence
at large: in particular, certain nonlinear couplings in plasma interactions support an
inverse cascade of energy to large scales. 3 S

It is worth mentioning that the limitations of Kolmogorov's theory for fluids
themselves are the object of much current research also. Consider the following. A
central assumption of the theory is self-similarity of the velocity field at inertial-
range scales: that is, the statistical properties of the field are independent of the time
window over which it is sampled.20 In a self-similar flow, certain scaling laws apply
to structure functions of all orders (the structure function of order p is defined as
the average of the pth power of the velocity increment over a given distance). While
these scaling laws are well satisfied for the low orders, increasing departures from
their predictions are observed at p >4. This indicates that the flows are increasingly
non-self-similar (or intermittent) at the smaller scales within the inertial range, in
partial violation of Kolmogorovs theory 207

Since the nonlinear dynamics of a plasma are dominated by wave-wave and wave-
particle interactions, perturbative approaches can be adopted when those interactions
can be assumed to be weak. The simplest such approximation is quasilinear theory,
in which only the reaction of the oscillations on the average velocity distribution is
considered.33 r Unfortunately, direct interactions between the oscillating modes begin
to play a considerable role at fairly small fluctuation amplitudes, rendering such an
approximation applicable only under very narrow conditions.187

The natural next step is to consider only the lowest-order interactions, that is,
three-wave scattering and scattering of a wave by a particle (nonlinear Compton
scattering): 186 this is the weak-turbulence approximation. In general, this expansion
requires that the growth time of the perturbations be considerably large than the
characteristic time of conservation of the relative phases of the different waves. 187 The
weak-turbulence theory has been completely developed analytically, 339 ,340 in analogy
with the theory of phonon-phonon interactions in solids. 3 41 However, its applicability
has proven very limited, both in its predictive ability221"0 and from a conceptual
point of view, as the lowest-order and higher-order (four-wave, etc.) interactions are
in fact in many cases of comparable strength.

Under these strong-turbulence conditions, perturbative approaches cannot be em-
ployed directly. It is particularly in the treatment of strong turbulence that plasma
theory has benefited considerably from methods developed in fluid turbulence theory.
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It must be stressed, however, that these methods have found only limited applicabil-
ity, owing to the enormous analytical difficulties that they face and to the untested
assumptions that they are often forced to employ. 42' 43 Such assumptions are neces-
sary, for instance, to achieve closure in renormalization schemes 344 and particularly
in Kraichnan's Direct Interaction Approximation (DIA) theory.345

In recent years, thanks to advancements in massively parallel supercomputers,
considerable progress has been made in simulating strong turbulence and related
transport with numerical codes.199 A variety of gyrokinetic346-350 and gyrofluid351-353 I
codes are now in existence, and have recently generated results in remarkably good
agreement with experiment,199 owing in no small part to the development of ingenious
new solution techniques. 354-3 16 Results from some of these codes will be discussed in
some detail in comparison with our measurements in the next section.

(c) Edge Tokamak Instabilities

The steep gradients present at the edge of a tokamak are fertile terrain for insta-
bilities of the drift-wave type. Indeed, one branch of this mode, the collisionless or
"universal" instability, was predicted early on 2 to be always unstable and to eventu-
ally provide the ultimate limit to confinement in a tokamak. Two other main branches
exist, the dissipative drift wave (destabilized by finite collisionality) and the trapped-
electron mode. The history of drift-wave theory is characterized by the progressive
addition of increasingly realistic conditions (magnetic shear, toroidicity, etc.), result-
ing alternately in predictions of stability or instability.'0 When full toroidal effects
are included, it is now generally expected that some of the modes will be unstable,
the trapped-electron branch being probably the most relevant one at the edge.97

The linear theory of the ITG mode was developed analytically in the 1960's. 333--33

The mode results from a coupling of ion acoustic waves with the ion-pressure gradi-
ent, which causes a negative-compressibility instability.336 The ITG mode was later
proposed as a possible explanation of the observed inward density pinch,35 7 The sta-
bility criterion for this mode is given in terms of the parameter n, the ratio of the
ion-density-gradient length to the ion-temperature-gradient length. In the linear the-
ory, ITG modes are predicted to be unstable for 77i > 2/3 for collisional plasmas and
for qj > 2 for collisionless plasmas (in this context, a plasma is considered collision-
less when the mean free path from ion-ion collisions is long compared to the parallel
wavelength).

ITG modes have long been suspected to be the chief agents in the confine-
ment degradation that occurs in the presence of auxiliary heating (L mode), which
causes large temperature gradients in general. The physics of the ITG instability is
therefore used in many cases as the starting point for numerical studies of tokamak
turbulence,35135 although trapped-electron modes have also recently been added
to these codes.35 6 As mentioned in the previous subsection, these studies have re-
cently succeeded in reproducing several features of the experimental measurements,
including spectral distributions, fluctuation amplitudes, and the ballooning character
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of the turbulence. However, because of the strong turbulence that develops, efforts
to identify any mode conclusively on the basis of experimental measurements alone
have generally been unsuccessful. Thus, it will be essential to repeat these numeri-
cal studies in the future with different instability drives, with the aim of identifying
distinguishing features of the different types of turbulence.

Trapped-ion modes, which may be associated with both ion and electron drift
waves,' 0 have been considered a good candidate for core turbulence" 7 but are gen-
erally less relevant at the edge. In particular, low-frequency, nondispersive structures
known as convective cells, similar to the Rayleigh-Benard cells found in ordinary flu-
ids heated from below in a gravitational field,"' 8 may be generated nonlinearly by
trapped-ion modes3 59 ,360 and can provide an efficient means of radial transport in the
core. Convective cells can also appear as byproducts of a variety of other modes," 1

including ordinary drift waves and MHD instabilities, and can thus be important at
the edge also,10,3 58 as will be discussed in §5.3.

The large flow shear often predicted and experimentally observed at the toka-
mak edge, particularly in the SOL, may excite the fluid Kelvin-Helmholtz instability 3

and the parallel-ion-flow-gradient instability.3 62 ,3 6 3 In general, the latter is more ro-
bust and goes unstable more easily; 3 4 in addition, the Kelvin-Helmholtz instability
is stabilized by magnetic shear."' Recent detailed numerical studies of these insta-
bilities with three-dimensional codes have yielded the intriguing and unconventional
conjecture that their dynamics in the SOL may have a crucial role in causing the
L-H transition. 36 5 ,36 6 We shall return briefly to these modes in connection with PCI
measurements in the SOL in §6.11.

Other instability drives that are peculiar to the physics of the SOL are radiation-
ionization and atomic-physics drives,36 7 which may also excite drift waves and parallel-I
ion-flow-gradient instabilities.36 8 ,36 9 Turbulence in the SOL can thus be expected to
be substantially different from that in the main plasma.

Resistive MHD physics may also be at play in the edge of the plasma. Owing
to its relative tractability, the resistive interchange instability370 has been used as
the basis for many nonlinear computer simulations of turbulence, 371- 3 74 but it is not
expected to be of great significance in the edge plasma region. However, resistive
interchange modes may be unstable in the open field lines of the SOL; 317 the sheared
flows that occur in H mode are expected to be a stabilizing force. 3 75

In the plasma edge, resistive ballooning modes are often cited as the domi-
nant instability along with ITG and trapped-electron modes.36 In fact, recent three-
dimensional computational studies of resistive-ballooning and ITG physics in a fluid
plasma model have revealed considerable similarities in their excitation mechanisms. 3 76

Resistive-ballooning convective cells form the basis of one of the most recent among
several models of the physics of the L-H transition, which is also able to reproduce
the ELM instability. 377

The rippling mode, 378 a resistive MHD instability excited by the parallel cur-
rent in the presence of a temperature gradient,' 0 has generally been excluded as a
significant mechanism at the edge because it lacks the universality needed to explain
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turbulence in all tokamaks379 and because its typical wavelengths are too short in
comparison with experimental values.198

Finally, as was discussed in §5.1(b), tearing modes are commonly believed to
influence transport only in the core.2 45,260 The short-poloidal-wavelength regio.. of the
spectrum (microtearing modes) had been hypothesized to be a significant component
of edge turbulence also, in view of its presumed stabilization by flow shear, such as
is found in the low-turbulence H-mode regime;38 0 however, a detailed analysis has
shown no such stabilization to occur.2 99

(d) Turbulent TRansport

The difficulties encountered in analytical treatments of strong turbulence are re-
flected and amplified in the task of calculating the anomalous diffusivity that it causes.
In fact, the two approaches employed almost universally in estimating transport are,
respectively, phenomenological and heuristic, rather than analytical.

The phenomenological approach 38 ' adopts the following argument. Since the lin-
ear growth rate for many modes is smaller at long wavelengths, small-scale turbulence
tends to grow first; large-scale modes can then be seen as an additional inhomogene-
ity of the background plasma and act as an added driving force for the small-scale
instabilities. Hence, energy flows to small scales, where it is damped by viscosity
and Landau damping; if it is assumed that damping is of a diffusive nature and that
turbulence is fully chaotic and thus isotropic, the marginality condition requires that
the damping rate Dk2 (where D is the diffusion coefficient) be equal to the linear
growth rate y, at the smallest unstable k1 . Therefore, one can conclude that18 7 ,221 , 97

D ~ . (6.2)
I

The heuristic approach, 187 grounded in the concepts of strong (electrostatic)
turbulence, associates a density fluctuation ii to a fluid displacement = Lii/n,
where L, is the density-gradient scale length. The time-averaged particle flux can
then be written as r = 'yii. A mixing-length argument, similar to the time-honored
ansatz used in fluid turbulence to describe eddy viscosity,2 1 is then employed to
relate the saturated fluid displacement to the radial correlation length, by writing

= L,. By virtue of the relation D = FLn/n, one then finds

D = [yLc (6.3)

Thus, in this scenario a similar relation to Eq. (6.2) is obtained, with k± replaced
by 1/Lc, the width of the wave-number spectrum. To the extent that any analytical
approach to strong turbulence has been worked out,382' 2 similar scaling relations
have been found. 22 1 Equation (6.3) can also be obtained on dimensional grounds in
a simple random-walk model of diffusive transport.
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Using simple arguments on the ordering of the coupling coefficients in three-wave
interactions, Kadomtsev" 7 has shown that in weak-turbulence conditions Eq.(6.3)
should be replaced by

D= [. (6.4)

The growth rate -y in Eqs. (6.2)-(6.4) is usually very difficult to calculate theo-
retically and to measure experimentally. When experimental values are substituted
in these equations, y is normally replaced by 1/reff, the reciprocal of the measured
decorrelation time. Since -y should be calculated at the point of maximum diffusivity,
we have chosen in this thesis to employ preferentially the value 1/Td, where rd is the
decorrelation time calculated at the peak of the wave-number spectrum [see §5.4(b)].

It must be stressed that the arguments used here to estimate the diffusivity are
by no means universal or unique. In particular, the heuristic approach relies to a
great extent on the physics of drift waves and on the adiabatic-electron assumption.
Under these conditions, a stable wave (y = 0) would produce no net transport, in
agreement with Eq. (6.3), because the perturbed density and velocity are 900 out
of phase. In more general situations, one can envision a near-stable wave (with a
large decorrelation time) that generates radial diffusion precisely because of its long
lifetime.1 93 In this case, a more appropriate relation, which can be constructed by
dimensional arguments, is

D = [0 i 2 eff]a. (6.5)

Throughout the history of tokamak research, many scalings of global confine-
ment parameters have been proposed, both on purely experimental grounds and on
the basis of heuristic arguments similar to the ones discussed above. The latter
approaches generally refer to specific classes of instabilities. In particular, the pos-
sibility of microinstabilities evolving into global modes,"' 3 or other forms of "action
at a distance" 3,193 which would justify the Bohm-like scaling observed in L mode,
is currently a hotly debated topic. A different but related idea is that of a coupling
between the SOL and the edge plasma, which allows the turbulence in the SOL to
drive fluctuations in the main plasma.38 5 ,3 6 7 ,36 6

It is worth mentioning here one line of reasoning whose most recent incarnation
is currently the object of intense research. We are referring to the idea of marginal
stability: 3 6 if a class of strong instabilities is assumed to be active in the plasma, it
may be postulated that the profiles will relax to an equilibrium state that renders the
plasma marginally stable to those modes.38 r This ansatz allows one to sidestep the
difficulties associated with analyzing the details of the instability, and general con-
finement scalings can be generated as a result. The principle of profile consistency 25 2

is a well-known example of such an approach.
Marginal-stability criteria recur in more recent literature,38 8 ,38 9 and have more

recently been expanded in the more general theory of self-organized criticality (SOC). 3 90 1
Self-organized criticality was introduced 39 1 with the initial aim of providing an ex-
planation to the ubiquitous 1/f noise, and has then been applied to fields as diverse
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as the analysis of earthquakes 39 2 and to plasma physics. 39 0 In an SOC state, trans-
port can occur even below marginality, where it is dominated by large-scale transport
"events" (or avalanches) associated with near-stable modes. 393 This scenario differs
greatly from conventional random-walk diffusive models and leads to an intrinsic
intermittency in the transport39 4 that poses significant challenges to experimental
verification of the theory. Some comments on the possibility of an experimental test.
will be offered in §6.8. Numerical studies of SOC models are currently in progress.3 74

(e) The L-H Transition

Several years after the experimental discovery of the H mode in ASDEX in
1982,60 improvements in diagnostic techniques for measuring the plasma velocity
profiles, the radial electric field and turbulence made finally possible a comprehen-
sive phenomenological description of the L-H transition in DIII-D, 2 22 9 6 and sub-
sequently in other machines.6 ' These measurements in turn spurred an intensive
theoretical effort that has continued for the past seven years, leading to a sound
understanding of the fundamental physical mechanisms that are at play in the tran-
sition; however, while a wide consensus exists on these basic principles, many of the
details remain to be worked out satisfactorily and are therefore being actively debated
in the theoretical community.20 1

The central idea in the leading theories of the L-H transition is the stabilization
of turbulence by a sheared E x B drift."3 ,2 7 ,61 The decrease in the turbulence level
then causes a reduction of anomalous transport. As was discussed in §5.1(c), a sharp
increase in the first and second derivatives of the radial electric field is observed in
the edge region at - or possibly immediately before - the transition, resulting in
the formation of a negative well just inside the LCFS.2 71,2 1 8 This mechanism has
the universality needed to explain the broad variety of devices and experimental
conditions in which the H mode has been produced.,3 16 20 1

In general terms, one can envision several possible ways for sheared flows to act on
turbulence. Following Newman et al., 394 four distinct mechanisms can be identified:
(a) linear stabilization of individual modes, whose detailed physics will be mode-
dependent in general; (b) nonlinear decorrelation of turbulence in a strong-turbulence
scenario; (c) dephasing between the fluctuating density (or temperature, angular
momentum, etc.) and the fluctuating radial velocity 372 ,2 1 8 ; and (d) if transport is
not of a random-walk nature, but instead chiefly caused by large-scale, correlated
transport events ("avalanches"), sheared flows may act to decorrelate these structures
and reduce transport. Case (d) belongs to the theory of self-organized criticality,3 9 0

which was briefly discussed at the end of the previous subsection and will not be
examined further here.

Linear studies present the considerable advantage of analytical tractability, and
often result in detailed criteria for the stabilization of the modes. However, the criteria
are different for different instabilities, and are not always satisfied experimentally; in
fact, flow shear is destabilizing in some cases, such as the Kelvin-Helmholtz6 3 and
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parallel-ion-velocity-gradient 36 2 instabilities. The effect of E x B shear on ITG modes
has been investigated by several authors, both analytically 395 ,3 96 and numerically; 397

a reduction of transport is found in general. Hassam 398 found that E x B shear is
always stabilizing for a variety of flutelike modes; a similar result has been obtained
for drift-tearing modes.399 A specific analysis for interchange and drift instabilities in
the SOL also concluded that they are stabilized by flow shear.375

Excepting an early attempt to explain the L-H transition with the stabilization
of microtearing modes,380 which was later shown in fact not to occur,29 9 the earliest
work in this area concerned itself with the nonlinear stabilization of turbulence. An
initial analysis of the effect of a radial electric field on collisional-drift-wave turbulence
by Chiueh et al. 0 0 was expanded and generalized by Shaing et al. 01 , and especially
by Biglari, Diamond, and Terry, 63 4 02 who considered the effect of shear through
the advective E x B nonlinearity (i.e., the change in time of the velocity of a fluid
element caused by the E x B flow) on generic flutelike modes in cylindrical geometry.
In an oft-cited paper,6 3 these authors used a two-point renormalization technique for
strong turbulence, 344 and concluded that the E x B shear caused a decorrelation of
the turbulence, independent of the signs both of the electric field (Er) and of its radial
derivative (E,).

This decorrelation can be understood in simple qualitative terms by noting that
all particles in the plasma are subject to the E x B drift, and that a shear in that
velocity will cause any radially extended (i.e., correlated) eddies to be torn apart on
a sufficiently long time scale. It is interesting to note that even in the absence of
true shear (Er = 0), the toroidal curvature alone would result in differential rotation
of radially separated strata and thus in eddy breaking: this is the effect that was
considered by Shaing et al., 400 but was later shown to be negligible in comparison
with the effect of shear (Er / 0) under realistic H-mode conditions. 3

By dimensional arguments, it can be expected that a criterion for nonlinear
turbulence decorrelation will involve some increasing function of the velocity shear
(which has the dimensions of a frequency) being larger that the reciprocal of the
intrinsic decorrelation time of the turbulence in the absence of shear, rd. The analysis
of Ref. 63, indeed, generates the criterion

W8 > 1/Td, (6.6)

where

Los = L x (6.
T-VEXB(6.7)

is the shearing rate, vE'x is the E x B velocity shear, and C, and 4, are the radial
and poloidal correlation lengths, respectively.

The shearing rate can be interpreted as the rate at which two points separated
radially by a radial correlation length become separated poloidally by a poloidal cor-
relation length by virtue of the sheared rotation. The adimensional critical parameter
word is rather similar to the radial shear decorrelation parameter introduced in §4.2
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and defined by Eq. (4.17); the main difference is that w in the latter substitutes 1/d
in the former. That parameter was obtained by imposing the condition that secular
terms in a Doppler-shifted turbulent spectrum be negligible, so that a steady-state
regime could be attained; the alternative would be an indefinite decorrelation of the
turbulence as it evolves in time. That condition resulted in a prescription of the
form of Eq. (6.6) [see Eq. (4.15)]. This provides an independent confirmation of the
validity of this criterion. The criterion given by Eq. (6.6) has also been confirmed by
a few experimental tests, in TEXT 4 03 in PBX-M, 2 16 and in JFT2-M.0 4

Analytical scaling formulas were also found 3 for the modified radial correlation
length and decorrelation time in the limit of large shear (VE'B >> 1/rd), which are
respectively

£r,H Lr,L(2WuTd,L) -1/3(6.8)

and

rd,H = rd,L(2wurd,L). (6.9)

Here, the subscripts L and H refer to L-mode (no-shear) and H-mode (large-shear)
conditions, respectively. From these equations it becomes apparent that both a tem-
poral and a spatial decorrelation occur.

These scaling laws can be obtained by heuristic arguments also. In the equa-
tion for the density evolution, the steady-state condition requires that the diffu-
sive term Dn" balance the shear-decorrelation term vExBftr/Lo; using the relation
D = I2 L/Td, one then finds the characteristic radial length given by Eq. (6.8).196 For

the decorrelation time, Itoh and Itoh40 5 consider a model in which turbulent eddies
are stretched poloidally and compressed radially by the sheared E x B flow, while
the area is preserved by the stretching. An initially circular fluid element is deformed
into an ellipse, with the minor axis after a time t equal to kr 1(1 + wft 2 )-1/ 2 ; taking
this expression to be an effective radial wavelength and substituting it in the formula
11/r~ = Dk2 , for t = rdH, one finds, for wrd > 1, Eq. (6.9). It should be noted/d, H = ref =TdHonWs
that, although the scaling derived by this argument coincides with that of Ref. 63,
the two models are conceptually quite different in their treatment of the poloidal

structure of the eddies: the tearing of the eddies envisioned by Biglari, Diamond and

Terry6 3 implies that the poloidal correlation length in H mode is the same as in L

mode, whereas Itoh and Itoh405 consider an eddy stretching mechanism that, causes

the poloidal correlation length to be, in fact, longer in H mode than in L mode.
Shaing et al., 406 employing heuristic arguments, derived results similar to those

of Ref. 63, but argued that the relevant velocity is the E x B velocity plus the electron

diamagnetic drift velocity. As a result, shear decorrelation can occur even for Er = 0,
and a negative electric field is more effective in inducing decorrelation than a positive

field, since in the former case the E x B drift is in the same direction as the electron

diamagnetic drift. Experimentally, spontaneous H modes are generally accompanied

by negative electric fields, although H modes have been induced with positive sheared
fields also. 2 89
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It is worth mentioning that shear decorrelation is possible in ordinary fluids as
well, 407 but it is generally dominated by the onset of the Kelvin-Helmholtz instability
(which, in a plasma, is stabilized by magnetic shear6 1 ), and has therefore received
scant consideration in that context.

Considerable numerical work has also been carried out in an effort to provide
more detailed prescriptions for stabilization. Staebler and Dominguez found that ITG
modes are stabilized by a positive second derivative of the electric field 408-409 (as is
found experimentally in the E, well structure in H mode), and, in later work, also by
a nonzero first derivative. 41 0 Other authors have found shear stabilization to occur for
short-wavelength drift-resistive ballooning modes41 and for tearing modes, 2 but not
for long-wavelength drift waves4 13 or resistive-interchange modes." One quasilinear
numerical analysis for trapped-electron instabilities found them to be destabilized by
E' > 0.409

Zhang and Mahajan4 1 4 have proposed a heuristic model of turbulence suppres-
sion by a sheared flow, which attempts to reconcile different results found in previous
literature that are valid in different regimes. However, their central result is of lim-
ited utility, since it is given in terms of a quantity equal to the squared ratio of the
fluctuation amplitude in L mode to that in H mode, multiplied by the squared ratio
of the respective average wave numbers. Experimentally, the first ratio is larger than
one and the second ratio is smaller than one, and their product may be smaller or
larger than one; theoretically, the two ratios have been analyzed separately in the
literature, so that a scaling of the product does not contain er.ough information for a
valid comparison.

Hahm4 15 has built on the work of Biglari, Diamond and Terry63 to provide a
more general formulation valid in toroidal geometry and in the presence of magnetic
shear. Later, Hahm and Burrell also included the effects of a finite toroidal aspect
ratio and of a noncircular cross section, 41 6 and of a large toroidal velocity.4 1 7 These
effects are all factored into a more general expression for the shearing rate w8, which,
for the case of flutelike modes with moderate magnetic shear, reduces to

=4 IVV'| 2 d2q$'C' B4,d1 2  (6.10)oB4 dV2

where BO is the toroidal magnetic field, b = RAO is the stream function, and the
electric potential 0 is assumed to be a flux function (this assumption can be justified
by neoclassical scaling arguments6 ). This modified shearing rate is generally consid-
erably larger on the outboard side of a flux surface than on its inboard side; this
is in agreement with the observation that turbulence is less affected by shear at the
inboard edge than at the outboard edge.300

The toroidal theory just described4 1 5- 4 1 7 is not strictly an extension of the pre-
vious analysis performed in cylindrical geometry, as it uses in fact a different (bal-
looning) formalism. As a result, although the criterion expressed by Eq. 6.6 remains
valid [with w, given by Eq. (6.10)], the scaling laws found for the decorrelation time
and for the radial correlation length are in fact quite different. The former is found
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to have only a weak logarithmic dependence on the shearing rate, and is thus es-
sentially the same in L mode and H mode; the correlation length obeys the scaling

,/,= (1 + W T)1/2, which gives an asymptotic dependence 4, Oc w; 1 for

wTrd > 1, as opposed to 4C c U-1/3 for the cylindrical case.13 In general, the toroidal
analysis is expected to be more applicable to a moderate-shear case.

Recently, these scalings have been used to calculate the change in the random-
walk diffusivity D = C2/Td from L to H mode, yielding a result in agreement with
the observed transition from Bohm-like to gyro-Bohm scaling. 418 However, any such
heuristic inferences must be regarded with caution, as two-point correlation theories
cannot by themselves generate any transport coefficients: a complete theory of tur-
bulent transport must include a full self-consistent treatment of the reaction of the
fluctuations on the flow and of the phase relations between different fields (e.g. den-
sity and potential). For instance, the scalings given by Biglari, Diamond and Terry63

would imply, in a random-walk diffusive scenario, that the diffusivity is the same in
L and H mode, a result that is patently false experimentally. For these reasons, the
third decorrelation effect that was listed at the beginning of this subsection, that is,
the dephasing between turbulent fields, can be treated properly only in the context of
a self-consistent theory of the L-H transition. This requires, as a first 3tep, an analy-
sis of the physics of flow generation, and more specifically of the effect of turbulence
on the plasma flow velocity.

The predictions of neoclassical theory for the plasma flow,6 ,3 20 particularly in
their most recent update,41 9 have been found to agree with experimental measure-
ments for impurities but not for the main ion species192 at the edge of the tokamak.
Indeed, neoclassical theory may be of limited validity in this region owing to the short
gradient scale lengths (which, in first approximation, cause a squeezing of the banana
orbits in the presence of a sheared electric field 4 20). Specific edge effects must then
be considered to explain the sudden generation of large sheared flows at the onset of
the H mode.

Shaing et al.406 proposed ion orbit loss as the dominant mechanism of flow gen-
eration. High-energy ions in banana orbits situated within a banana width (poloidal
ion gyroradius) from the plasma boundary are lost and produce a net negative electric
field, which generates a poloidal E x B flow, damped in turn by viscosity. With the ad-
dition of the standard nonlinear turbulence suppression mechanism, a self-consistent
system of equations can be written, which results in a bifurcation at a critical value
of the collisionality.

This model, which has undergone several iterations,421,422 has succeeded in ex-
plaining certain aspects of the L-H transition" but has also encountered some im-
portant difficulties: L-H transitions have been obtained at a very wide range of
collisionalities and the rotation of the main ions is not always in the electron dia-
magnetic direction, 192 as this theory would predict; also, the width of the large-flow
region is expected to increase with temperature, 423 whereas it is approximately con-
stant experimentally; finally, it is difficult to extend any model that depends on ion
orbit loss to the VH mode, in which confinement improvement extends well beyond
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a banana width from the LCFS.6 '
A model advanced by Itoh and Itoh,424 which has been progressively expanded

over the years, 4 2 5 ,42 6 also bases the ion dynamics at the edge on the ion orbit loss
mechanism, but completes the set of equations with an anomalous electron flux rather
than with the drag from parallel viscosity as in Shaing's model.4 27 It is a general
feature of neoclassical transport that the flux is intrinsically ambipolar, that is, the
transport equations imply automatically that the electron and ion fluxes are equal;
however, when turbulence-induced fluxes are considered, this automatic ambipolarity
is lost, and ambipolarity must be imposed as an additional constraint (to preserve
charge neutrality). 2 57 This is known as non-intrinsically-ambipolar diffusion. In the
Itohs' model, the ion and electron fluxes are constrained to be equal at the LCFS,
and a bifurcated solution is obtained, leading to the possibility of a phase transition
(the L-H transition) for certain values of the edge density and temperature. 4 28

In addition to the difficulties associated with ion orbit loss, mentioned above,
this model has also been faulted61 for its prediction that the electric field should
always be positive, in marked disagreement with experiment. Also, an attempt was
made to expand the theory to explain the VH mode,42' but a numerical solution of
the complete set of equations bas failed to find any transport barriers in the core of
the plasma. 42 9

A rather different flow-generation mechanism, which does not rely on ion orbit
loss, has been proposed by Hassam et al., 42 7,4 30 employing an idea advanced earlier
by Stringer.43 ' If a poloidal asymmetry develops in the anomalous particle diffusivity,
and the diffusivity exceeds the poloidal-flow damping rate (mostly due to magnetic
pumping, a form of neoclassical viscosity, and thus of the order of the ion-ion collision
frequency), a flow instability ("Stringer spinup") can develop. 431' This instability may
cause the onset of the H mode.4 32

This model, unlike Shaing's, does not depend strongly on the collisionality regime,l
and unlike both Shaing's and the Itohs', does not restrict flow generation to a layer
within a poloidal ion gyroradius from the LCFS: thus, it is consistent in principle
with VH-mode observations. However, ion rotation is predicted to be always in the
electron diamagnetic drift direction, in conflict with experimental results.6 '

A model that must be rejected because of its lack of universality is that of Tendler
and Rozhansky 433 , 34 which ties the H mode with the existence of an X point and is
thus inconsistent with limiter H modes.

In a series of papers, Hinton and Staebler 43 s- 437 have presented a study of
electric-field generation that included the effect of changes in the pressure gradi-
ent (through the momentum balance equation). A bifurcation is obtained in the
pressure gradient rather than in the poloidal rotation as in Shaing's model.406 This
approach has the considerable merit that the model is built into a transport code,
which includes transport equations for particles, energy and momentum, and is thus
not zero-dimensional as in all previous cases. In addition, this model has been suc--
cessful in reproducing the VH mode and, in fact, has yielded a prediction for the
penetration depth of the transport barrier.437 The main element that is missing from
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this analysis is the reactive effect of fluctuations on the electric field.
Turbulence can drive a flow through the Reynolds stress, which appears formally

in the advective nonlinearity in the momentum balance equation: the effect can
be at play whenever d(< bo 0 >)/dr - 0.438 This requires both radial propagation
(I3 = ik,4/B) and radial inhomogeneity. 4 39 In general, when a broad range of poloidal
wave numbers exists in the spectrum, cancellation occurs and the Reynolds stress is
small. However, near the LCFS the radial symmetry is broken and the average effect
may be nonzero; in addition, a large fraction of the residual Reynolds stress may be
contributed by the low-ke region of the spectrum. By the same mechanism, convective
cells may also generate a flow: in this case, one can visualize the phenomenon as a
vortex "peeling off" into the shear flow, thus providing energy to it. 44 0 '4 4 1

The Reynolds stress can provide the "missing link" necessary to close the loop
in a self-consistent model of the interplay of flow (and thus electric field) and tur-
bulence, and of the L-H transition. This has been referred to as a predator-prey
scenario, with the flow shear as the predator and the density fluctuations in the role
of the prey.362 In the initial work of Diamond, Carreras, et al., 4 '3 2 the fluctuation
evolution was modeled by assuming a linear instability growth, a nonlinear diffusive
flow of energy to other modes (mode-mode coupling), and damping by sheared flow;
the latter was given heuristically as the simplest term in a one-point fluctuation model
that satisfies the symmetry requirements, i.e., as a damping rate wo/yo, where yo is
the linear growth rate: thus, it is considerably different from the rate derived in the
two-point correlation theory of Biglari, Diamond, and Terry.63 The flow is driven by
the Reynolds stress (dynamo effect)4 4 3 and damped by magnetic pumping.

Combining the two evolution equations, one finds two equilibrium solutions,
which are identified with L and H mode; the L-mode solution is stable when the
product of the linear growth rate and of the Reynolds stress is smaller than the
product of the nonlinear mode-coupling damping rate and of the magnetic-pumping
damping rate. 4 4 2 The L-H transition can then be formally described as a second-order
phase transition, with the flow as the order parameter: the H mode is the ordered
state, with the turbulent energy being channeled into an ordered flow. Quantitative
expressions were then given for the first time for the power threshold for H mode and
for the time scale of the transition, which were in fair agreement with experimental
results.

In later versions of this work, 44 4 ,6 8 the set of equations was expanded to describe
self-consistently also the evolution of the pressure gradient and of the electric field,
with the final aim of providing a complete theory of the H mode, the VH mode and
ELMs. In its most recent incarnation," this model has succeeded in reproducing
several aspects of the complex dynamics of H mode. In particular, as the reduced
turbulence level in H mode becomes unable to sustain the sheared flow through the
Reynolds stress, it is substituted in this role by the increased pressure gradient,
which is the chief flow-generating force in the later stages of H mode. This is in good
agreement with experimental observations. 6

This theory is fundamentally zero-dimensional. However, spatial dependence
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has been added through simple diffusive terms for all the quantities, with the aim
of providing a model of the VH mode."8 The VH mode is described as the result
of a flow-shear front propagating inwards,"" but many details remain unexplained:
in particular, no clear explanation has been found for the absence of ELMs in this
regime.

In spite of its success, this theory is still incomplete. In particular, it does not ad-
dress the fundamental question of the cross-phase between turbulent fields, e.g. den-
sity and velocity, which is found experimentally to be the dominant cause of transport
reduction in late H mode.218 Some work along these lines has been carried out, both
analytically370 and numerically, 372 for the specific case of the resistive-interchange
instability: it was found that both a nonzero first derivative and a nonzero second
derivative can induce a dephasing between ii and 0, thus reducing transport inde-
pendently of any changes in the fluctuation levels. Additional work on the dephasing
caused by diamagnetic effects has appeared in more recent literature.4 46

A recent paper4 4 7 provides a different self-consistent model of the L-H transition,
using the physics of the resistive-ballooning instability. The set of equations was
solved numerically, and two stable solutions were found and identified with L and H
mode.

(f) Edge Localized Modes

The theoretical understanding of ELMs is considerably more limited than that
of the L-H transition. As was discussed in §5.1(d), ELMs are generally believed to be
triggered by MHD instabilities at the edge; listed in order of appearance for increasing
input power, type-III ELMs are associated with resistive ballooning instabilities, type-
I ELMs with ideal ballooning and low-n kink instabilities, and type-II ELMs (found
only in DIII-D 292 ) with ideal ballooning instabilities. The X event that usually
terminates the VH mode is thought to be a kink-induced "monster" ELM.68

Much of this classification, however, remains conjectural. For instance, it has
been hypothesized 68 that changes in the threshold for ideal ballooning modes due to
the electric-field shear448 may allow them to play a role in type-III ELMs also.449

It is clear that MHD physics alone cannot explain the full dynamics of ELMs,
which are accompanied by broadband turbulence as well as coherent MHD modes.
Also, the sheared rotational flows that are present in H mode are reduced for the
duration of an ELM. 299 An ELM can thus be partially characterized as an H-L-H
transition sequence.

Attempts have been made to weave ELMs into a self-consistent theory of the H
mode, 68 ' 449 by including the evolution of the pressure gradient, the MHD-fluctuation-
induced viscosity, magnetic pumping, and quasilinear MHD ballooning dynamics;
resistive ballooning modes were not considered here. This model449 has reproduced
several aspects of the evolution of ELMs for the full range of input powers, with
the aid of heuristic assumptions. In particular, a low-power branch whose frequency
decreases with power (type-III ELMs) has been seen in numerical solutions, 6 as
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well as the opposite behavior at higher power (type-I ELMs), eventually evolving
into high-frequency, low-amplitude bursts, which are identified as type-IL, or grassy,
ELMs. Since the model is zero-dimensional, it cannot predict the radial extent of the
instabilities.

Itoh et al."' have recently found a limit cycle, which they named M-mode,
between electrostatic and magnetic turbulence in the vicinity of the threshold for the
ideal ballooning instability. This mode has been identified with type-I ELMs.

6.2 The Physics of Radial Modes

The radially propagating modes detected by PCI, which were described at length in
Chapter 5 and particularly in §5.5, have characteristics that differ substantially from
those of radial spectra that have been described in the literature. The most striking
dissimilarity is the location of the peak in wave-number space: while the PCI spectra
peak at finite k, previously observed spectra generally peak at k, = 0.51 However, this
ostensible discrepancy vanishes upon closer inspection. In these previously reported
cases, the S(k,) spectrum was integrated over a wide range of poloidal wave numbers,
whereas the DIII-D PCI system selects the region of the spectrum with ko ~ 0, as
was discussed in Chapter 4. Therefore, the PCI measurements contain novel and
unique information on a region of the spectrum that was hitherto mostly unexplored.
Radial modes have been measured only in a few cases: we recall here the nonzero k,
peaks found in ATC,16 and the inward-propagating modes seen in PDX.2 28

It is worth repeating here that an exact inversion of the measured PCI spectra to
derive the local spectra is intrinsically impossible, since the line integration eliminates
part of the local information. Our conclusion that the nonzero kR peaks that we have
measured reflect the existence of radial modes with nonzero k, peaks must rely in
part on prior knowledge and physical intuition. The computer simulations presented
in §4.5 played a fundamental role in this selection process.

An important example in this context was provided in Fig. 4.17, which shows
two very different local spectra and spatial distributions that give rise to similar line-
integrated PCI spectra; this in particular is a predominantly negative-kR spectrum,
which has been seen in many experimental cases. As was discussed in connection with
the figure, the local spectrum shown in Fig. 4.17(b) is in great contrast with spectra
found in the experimental and theoretical literature, and disagrees specifically with
measurements carricd out in DIII-D; the spectrum shown in Fig. 4.17(a) is therefore
accepted as the more probable one.

The same is true for all the spectra that are discussed in this chapter and in the
previous one. In particular, the interpretation of the radial modes that are the subject
of this section is given on similar grounds as the most probable one. The alterna-
tive interpretation of finite kR components as the result of spatially inhomogeneous,
poloidally propagating modes, although technically acceptable in specific cases, fails
to explain the universality of such components: poloidally propagating modes would
not produce nonzero kR peaks at all radial locations.
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Fig. 6.1 Two-dimensional vector diagram of fluctuating electric field and corresponding E x B
velocity for a single radial mode.

As was mentioned in the prologue to this chapter, electrostatic radial modes do
not directly cause any cross-field transport, as their E x B velocity is oriented in
the poloidal direction. This is illustrated in Fig. 6.1, which shows the instantaneous
spatial distribution of the radial electric field and of the corresponding E x B velocity
for a single radial mode. Each mode then corresponds to a sheared poloidal flow.

Radial spectra that peak at k,. j 0 have been clearly predicted, in fact, by several
recent theoretical and numerical studies. The most lucid description of these modes,
provided in a form that is particularly conducive to comparisons with experiment,
was given in a 1994 paper by Waltz, Kerbel, and Milovich.451 These authors carried
out a study of ion-temperature-gradient (ITG) modes in a ballooning representation
on a poloidal annulus of the cross section of the torus, using a three-dimensional gyro-
Landau fluid computer model; this model includes the effects of Landau damping,...
but does not account for trapped-particle effects. This and other recent models have
allowed for the first time n = 0 radial modes to develop from the calculation.

In the past, the difficulty of separating these modes from the steady-state equi-
librium flows had led researchers to eliminate them artificially from the simulation.
An essential new feature in these recent codes, which has allowed the correct inclusion
of radial modes, is the proper treatment of adiabatic electrons. Under the assump-
tion that electrons, owing to their small inertia, can flow rapidly along the field lines
and reach an equilibrium distribution in response to an electric field in a time much
shorter than a fluctuation period, the relation u/n = e4/Te applies. However, if two
flux surfaces are at a different potential, this assumption would imply rapid trans-
port of electrons across the flux surfaces, which is unphysical. The modified relation
h/n = e(4- < >)/Te, where <> indicates a flux-surface average, is thus used in
these studies.3 52 3 56

The radial modes are generated nonlinearly, through a wave-wave coupling pro-
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(a) Without radial modes (b) With radial modes
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Fig. 6.2 Schematic visualization of turbulent ITG eddies (a) in the absence of radial modes and

(b) in the presence of radial modes; the E x B velocity vectors of a single radial mode are shown.

cess, by the main ITG instabilities, which propagate in the poloidal direction. The
main damping mechanism is Landau damping, with a smaller contribution from mag-
netic pumping.451 The radial modes, which manifest themselves as sheared poloidal
flows (see Fig. 6.1), react on the main ITG turbulence by tearing up its radial struc-
ture and reducing its radial correlation length, thus inhibiting their ability to cause
radial transport. This mechanism is entirely analogous to the sheared-flow decorrela-
tion of turbulence that is believed to be responsible for the reduction of transport in H
mode (see §6.1). However, it must be noted that we are dealing here with turbulent,
small-scale flows, as opposed to the steady-state, coherent, large-scale flows that are
seen in H mode.

The effect of the sheared flows can be seen as a channeling of turbulent energy
into ordered (in the case of H mode) or turbulent (in the case of the radial modes)
flows. The effect of this redistribution on the spatial structure of the turbulent eddies
is depicted schematically in Fig. 6.2.

An example of the resulting evolved spectra from the code 51 is shown in Fig.
6.3(a). The peak drive, the ITG instability, contains a large fraction of the energy
and peaks at k, = 0 and finite ke; thus, a system that measures the S(k,) spectrum
integrated over all k's would detect a peak at k, = 0. The smaller radial modes
peak at ko = 0 and finite kr. In Fig. 6.3(b) the computed spectrum is superimposed
on the spectral region to which the PCI system is sensitive. It is immediately clear
that this system would be expected to detect the radial modes and to be essentially
unaffected by the main ITG turbulence. Our measurement of a finite kr peak is
thus a striking confirmation of the existence of thesc modes and a rare example of a
theoretical prediction in plasma turbulence that has been verified experimentally.

Although they do not directly cause transport, the radial modes can be expected
to have a regulating effect on it, through the shear decorrelation mechanism. A central
result of the numerical work of Waltz et al." was that the role of the radial modes
is in fact critical. When the radial modes were artificially "turned off", it was found
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Fig. 6.3 (a) Contour plot of two-dimensional wave-number spectrum of evolved ITG turbulence,
generated by a 3D gyro-Landau fluid computer simulation [reproduced with permission from Waltz,
Kerbel, and Milovich, Phys. Plasmas 1, 2229 (1994)1; (b) same plot shown with shaded area
representing spectral region accessed by the DIII-D PCI system (the boundary is defined by the
1/e point of the responsivity function).

that the amplitude of the poloidal modes increased, and hence the diffusivity (i.e.,
the rate of transport), increased, the latter by approximately a factor of 10. Hence,
even in L-mode conditions, anomalous transport is much smaller than it would be in
the absence of the shear decorrelation effect.

We can also directly estimate the efficacy of the shear-decorrelation mechanism
through the following numerical analysis. The computer simulations find that the
relative potential fluctuations are larger than the relative density fluctuations:45 ' that
is, e 4/Te > ft/n. By rearranging this expression as q > (u/n) Te/e, we conclude that
the quantity (u/n) Te/e can be regarded as a lower limit for the absolute potential
fluctuation level 4. Combining PCI estimates of ii with density and temperature
measurements by Thomson scattering, we estimate (fi/n) Te/e ~ 10-20 V; thus, > 2
10 V. Since the average radial wave number ko, has been shown [see §5.5(b)] to be
larger than 1.8 cm- 1, we can set a lower limit for the radial derivative of the electric
field at dE/dr = ko,. > 32 V/cm2 . At a field of 2 T, this value corresponds to a
minimum E x B velocity shear of dvEx B/dr = 1.6 x 106 s-1. This value is of the same
order as that of the macroscopic, steady-state shear that exists in H mode and that is
believed to be responsible for the dramatic turbulence suppression that accompanies
the L-H transition (see §6.10).

Some caveats are in order at this juncture. This numerical analysis45 2 ,41i, 2 02

was carried out in an annulus in the core of the plasma (p - 0.5). Whether it can
be extrapolated to the edge is a matter of speculation. ITG modes are expected
to be unstable in the edge as well, but different instabilities (particularly resistive
ballooning modes) may also be at play there; in addition, the interaction with the
SOL, with added complications from atomic physics and radiative effects, may also
have to be taken into consideration. Finally, simulating ITG turbulence at the edge I
is technically more difficult. For these reasons a similar computational study has not
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been attempted for the edge region thus far.
Another difficulty arises from the adiabatic-electron assumption, which is prob-

lematic at the edge. This assumption requires that the parallel component of the
wave vector be nonzero, albeit very small, and that the trapped-electron popula-
tion be small (in toroidal devices, a fraction of the charged particles is trapped in
the magnetic mirror created by the radially decaying magnetic field on the outboard
side of the torus). The latter requirement is only satisfied when collisionality is high
enough to scatter electrons out of the trapped orbits in an average time shorter than
the period of the orbit (bounce time), but not so high that parallel dynamics are
affected. In the relatively collisional edge of the plasma, trapped-electron effects are
expected to be important; only preliminary attempts have been made at including
these effects.3 56

In addition, the scope of possible comparisons between experiment and simula-
tions is fairly limited at present: the PCI measurements have generated a wealth of
information on the radial modes that has no equivalent at present on the computa-
tional side. In particular, no information exists on the frequency spectra (although
they are expected to peak at zero frequency, in agreement with observations), no stud-
ies have been made of the radial-mode spectrum in H mode, and no parametric scans
have been carried out numerically to determine the scaling of the kr peak or of the
width of the radial spectrum in L mode (experimental scans are shown in Figs. 5.14
and 5.15). It is only known"' that the k, peak occurs at a fraction (typically ~1/2)
of the reciprocal of the ion gyroradius, as shown in Fig. 6.3. This is in fair qualitative
agreement with experiment, as evidenced by a comparison with Fig. 5.15(a).

Also, the numerical analysis is constrained to preserve radial parity: i.e., no dis-
tinction is made between positive and negative kr, or outward- and inward-propagatingi
modes. By contrast, experimental measurements show that the spectra, although bal-
anced in many cases, can also be predominantly propagating in either direction; the
dominant direction of propagation and the imbalance factor may depend on a number
of plasma parameters, as illustrated by Fig. 5.16.

In spite of these limitations, the mere experimental observation of finite-wavelengthl
radial modes constitutes an extremely promising and exciting development. A num-
ber of fluid,3 5 8 ,4 11 ,3 76 gyrofluid 3 5 1 3 5 2 " and gyrokineti 347 ,198 computations have
also predicted in recent years the existence of these modes and their fundamental role
in regulating transport. Although the details may differ (there are varying opinions,
for instance, on whether magnetic pumping plays a significant role in damping the
radial modes), all treatments agree Gn the basic physical interaction between ITG and
radial modes. However, as the chief focus of these studies has been transport rather
than the turbulent spectra, information on the latter remains relatively scant. In view
of our results, additional runs dedicated to the specific question of the dependence of
the radial spectrum on the plasma parameters would certainly be desirable.

It is remarkable that similar phenomena -- that is, the nonlinear generation of
sheared, or zonal, flows and their reactive regulation of radial transport - had al-
ready been predicted nearly twenty years ago by Hasegawa and coworkers, 5 3 through
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a combination of analytical45 4 and numerical work for drift waves in plasmas and
Rossby waves45 5 in planetary atmospheres. In these works, the mechanism consid-
ered for radial-mode generation is three-wave interaction, which is known to support
an inverse cascade of energy to large scales, 338 and was found numerically to generate
condensation at ke = 0 and finite kr. The general idea of shear decorrelation was also
introduced in that context,45 3 and was believed to apply to the zonal flows observed
in the atmosphere of Jupiter.

Although all the studies discussed thus far focus on the nonlinear dynamics of
drift and ITG waves, it may also be worth revisiting the linear theory 456 to investigate
whether some of the radial-mode phenomenology can be understood on the basis of
linear-instability criteria alone.

It is also entirely possible, of course, that similar radial modes could arise from
rather different instabilities. For instance, recent work by Cohen and Xu366 on the
physics of the Kelvin-Helmholtz and parallel-ion-velocity-gradient instabilities, using
a two-dimensional computer model of the SOL, has generated spectra that exhibit
nonzero kr peaks at k,9 = 0; moreover, the value of kr at the peak increases in going
from L to H mode, in qualitative agreement with PCI measurements. In this study,
a finite kr was shown to be in fact a stabilizing agent. Work is currently in progress
to compare our data with additional dedicated simulations with this code.

Also, a recent numerical simulation of resistive-ballooning turbulence4 57 has gen-
erated radial correlation functions with the characteristic decaying wavelike behavior
observed by PCI, corresponding to radial modes with finite kr. The value of kr at the
peak appears to decrease with decreasing plasma 0 in the simulation: at low / only
a decaying correlation function is observed. In our parameter scans, we have found
no clear dependence of ko,r on the temperature or on the magnetic field, and only a
slight decrease of ko,, with increasing density (see Fig. 5.14).

The existence of radially propagating waves is also of considerable interest in
relation to the Reynolds stress mechanism, which, as was discussed in §6.1, allows
turbulence to drive steady-state flows and is an integral part of recent self-consistent
theories of the L-H transition.4 38,4 42,36 2,444,6 S Turbulence can drive a flow at a rate
given by d(< fD0 >)/dr : 0.13' Thus, both a radial inhomogeneity, as is generally
found at the plasma edge, and nonzero radial and poloidal wave numbers are re-
quired for this mechanism to be effective. However, in the presence of many poloidal
eigenmodes, substantial cancellation generally occurs from mode summation, and
the low-k region of the spectrum is expected to provide the dominant contribution.
This is the region accessed by PCI; thus, the nonzero k, peak found there provides
an indication that the Reynolds stress may indeed be a significant flow-generating
agent.

Radial propagation is a key element in certain theories of turbulence coupling
between the core and the edge 384,383,36 0 and between the SOL and the edge. 45 8 ,45 9 ,36 0

In the former case, although a nonzero kr is not necessary for propagation in toroidal
geometry,384 a preferential group velocity in the positive radial direction is envisioned.
In the case of SOL-edge coupling, the reverse is true 459 and turbulence is expected to
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propagate from high to low fluctuations in general.3 60 A variety of semiquantitative
formulas have been given in these theories for the radial group velocity, which are
generally in the range of values found by PCI [1.5-4 km/s in L mode: see §5.5(d)].
However, exact comparisons are difficult in general: for instance, linear toroidal cou-
pling of drift waves causes a radial group velocity that is directly proportional to the
sine of the poloidal angle, and is thus zero on the midplane;4 59 the integration path
of the PCI beam would then cover a wide range of group velocities.

In recent work by Garbet and Waltz, 311 transport is dominated by large-scale
near-stable structures that propagate radially and have very long intrinsic decorrela-
tion times. Similar predictions arise from the theory of self-organized criticality, 394,374

which will be discussed separately in §6.8. These long decorrelation times should be
revealed by a spatial analysis utilizing a Lagrangian approach, i.e., following the wave
packet as it propagates in space; equivalently, the intrinsic decorrelation time as a
function of k,, derived in §5.5(d) (see Fig. 5.30), should also be large around the
peak of the S(kr) spectrum. Instead, our analysis has failed to reveal decorrelation
times of the order of those predicted by the theory.3 6 0 It is still possible, however,
that diagnostics that span a broader spatial range [e.g., beam-emission spectroscopy
(BES)"2 ] may be able to detect these long-lived structures.

In addition, the existence of both inward- and outward-propagating components
in the radial spectrum, with alternate and irregular dominance of one or the other,
is difficult to reconcile with the predictions of any individual theory. Thus, the rela-
tionship of our results with these theoretical efforts is unclear at present.

The novelty and uniqueness of the measurements of radial spectra described in
this thesis should provide motivation for studying this region of the spectrum with
other diagnostics as well. A two-dimensional imaging system, e.g. with BES, would be
in an ideal position not only to investigate the ko ~ 0 portion of the spectrum, but also
to determine quantitatively its relation to the remaining components; in particular,
the relative amplitudes of the peak ITG drive and of the radial modes, shown in Fig.
6.3, would constitute important information and would provide a fundamental test of
the computational analysis. Also, it would be of great interest to ascertain whether
the radial modes are truly toroidally symmetric (n = 0) or whether they have a finite,
albeit long, parallel wavelength; however, such a measurement would be difficult to
perform: toroidally spaced probes, for instance, could not isolate the radial modes
for analysis.

Measurements of correlation lengths, decorrelaticn times, amplitudes, etc., even
when performed on the radial modes alone, as done by PCI, can generally be consid-
ered representative of the characteristics of turbulence at large, in a generic strong-
turbulence scenario. However, this assumption could be refined if additional infor-
mation were available on the relation between the radial modes and the main turbu-
lence. In particular, the spectra calculated numerically4 11 (see Fig. 6.3) imply that
the amplitude of the radial modes, when extrapolated to the whole spectrum, would
systematically underestimate the total amplitude. Also, if the poloidal spectral width
of the radial modes differs from that of the main instability, the effective poloidal in-
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tegration length would be different from that employed in Chapter 5 to estimate the
local fluctuation amplitude. The impact of these unknown corrections, however, is
rather limited, since estimates of the absolute amplitude are the least significant ones
among those obtained with PCI, owing to their large intrinsic uncertainty.

6.3 Convective Cells

In §5.5(a) two peculiar types of spatial correlation structures, which did not conform
to the more common decaying wavelike behavior, were presented. We shall discuss
them in turn in this section and in the following one.

The first type of structure, exemplified by Fig. 5.10, is characterized by a high
correlation level between points located just inside and just outside the LCFS, with a
lower correlation level between each of them and the LCFS itself. We shall show now
that this pattern is consistent with the existence of convective cells situated astride
the separatrix.

Convective cells in plasmas are similar to the Rayleigh-B6nard cells that arise
in a fluid heated from below in a gravitational field. The cells are spatially pe-
riodic, nondispersive, low-frequency (w -+ 0) electrostatic instabilities, which break
the symmetry of the plasma electric field by introducing a poloidal component, which
in turn generates a radial E x B drift that can transport particles and energy radi-
ally across the field lines. These structures, which are similar to flutelike interchange
modes in toroidal geometry, 460 can be generated nonlinearly by a variety of plasma
modes, 36 1 ,46 1 including drift WaVes359,462 and resistive ballooning modes.4 1 1 3 7 7 A pic-
torial representation of convective cells across the plasma boundary is shown in Fig.
6.4.

In common models of convective cells, the spatial structure is assumed to be
nonoscillating (w = 0), and the cells are modeled with a sinusoidal function cos(kr) cos(keyo),U
where y,9 is a coordinate along the poloidal direction.44 0 In our case, the experimental
data lead us to consider finite-frequency fluctuations. We can then envision that the
fluctuations will not be perfectly coherent, i.e. that they will occupy a finite region
of wave-number space and will have a finite correlation length. However, we must
retain the characteristic standing-wave cell structure: this implies that components
with positive and negative wave numbers are correlated and of equal amplitude. Thus,
the random-phase postulate given in Eq. (4.9) must be modified as follows:

(fl*(ki, w') fi(k, w)) = VI(k, w)I(k', w) [6(k - k') + 6(k + k')] 6(w - w'), (6.11)2

with the additional constraint I(k, w) = I(-k, w).
We can now utilize, with opportune modifications, much of the formalism de-

veloped in Chapter 4. In particular, we adopt for simplicity a bi-Gaussian spectral
function; thus we can write, by analogy with Eq. (4.23),

r =e2 (±k, - ko r) 2  L2 (±ko - koe)2I(k, w) = 4LLo exp r 4 exp - 4
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Fig. 6.4 Convective cells located across the separatrix, with detail of the outer edge of the tokamak.

The contours are equipotential surfaces, and the arrows indicate the direction of the instantaneous

E x B velocity.

x Z [t- - (6.12)

where F is the frequency distribution function about the dispersion relation for a
given k. The first sum over the signs is necessary to satisfy the wave-number parity
requirement, while the second sum ensures that I is Hermitian.

If we now ask the question of what signal will be detected by PCI, the intuition
developed in Chapter 4 allows us to conclude that it will be significant only if the
poloidal wave number is small; otherwise, the line integration would cause cancella-
tion. In general, convective cells are expected to be large-scale phenomena, with a
poloidal quantum number m < 20; under these conditions, the poloidal wavelength
27r/ko,o is of the order of, or longer than, the PCI integration length. Thus, we set
ko ,8 to zero for simplicity. We also assume that the poloidal angle 9 is negligible along
the PCI path, and that the density fluctuations are homogeneous, i.e. that (ii 2 ) does
not depend on r or ye. With guidance from §4.4, we can now write the equal-time
correlation function between the signals measured on two PCI chords as

rl 2 (rav; Ar, 0) = v[Lo exp (- cos(ko,rAr) + exp ( cos(2korrav

(6.13)
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where L6 is the integration length, Ar is the radial distance between the two chords,
and rav is the radial position of the median point between them. Note, by comparison
with Eq. (4.51), that the correlation function is now a function of the absolute position
also, as should be expected for any standing-wave structure. Here, we take the radial
origin to be on the LCFS, in accordance with the convective-cell pattern shown in
Fig. 6.4.

Finally, we can derive from Eq. (6.13) the equal-time correlation coefficient,
which can be written as

712(rav; Ar, 0) = [exp cos(ko,,Ar) + exp ( ) cos (2korav)

x /41+exp cos(2ko,rri) -1/2

[2)4 - 1/2
1+exp ( cos(2kor 2 ) (6.14)

The coherency function in frequency space takes a similar form, with a modified
correlation length that takes into account the structure of the frequency-broadening
function F; for our present purposes it is not necessary to derive the explicit expres-
sion.

It can be easily verified from Eq. (6.14) that the correlation coefficient between
two points in symmetric positions about the LCFS (rh = -r 2 ) is always one. On the
other hand, the coefficient between the LCFS and any other point (r1 = 0, r 2 0 0) is
always less than one, and follows a decaying oscillatory pattern as a function of r 2 .
Finally, if one point is kept fixed at a given distance from the LCFS, the envelope
of the coefficient (i.e. with the oscillating factor removed) reaches a minimum when
the second point is on the LCFS. This behavior is qualitatively consistent with the
correlation coefficient plotted in Fig. 5.10(a); the coherency functions shown in Fig.
5.10(b) also display a similar behavior.

Naturally, this model is highly idealized and cannot be expected to reproduce
the measured correlation function exactly. In particular, the fact that the correlation
coefficient between symmetric points about the LCFS is less than one suggests that
the convective cells are accompanied by turbulence of a different nature, probably of
the broadband type observed in general.

An examination of Eq. 6.12 allows one to conclude that the autocorrelation
function (Ar = 0) has a maximum for r = 0 and falls to one-half the maximum value
at a distance from the LCFS of one eighth of a wavelength. This should result in a
partial node-peak structure in the spatial distribution of the amplitude of the PCI
signal. Since the amplitude is the square root of the autocorrelation function, the
excursion from peak to valley should be of 29%. The amplitude of the PCI signal
is generally largest in the vicinity of the separatrix (see, e.g., Figs. 5.25 and 5.26),
in agreement with expectations: however, this is true in general, not only when the
peculiar correlation patterns discussed in this section are seen. Therefore, it is not
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clear whether a specific change in the amplitude distribution occurs in this case.
In addition, the probable presence of "normal" broadband turbulence alongside the
convective-cell pattern would act to reduce the distance between peak and valley to
less than 29%. Since channel-to-channel errors in the amplitude estimate are typically
of the order of 10-15%, detecting the peak-node structure may be difficult in practice.

As was discussed in §5.5(a), these correlation structures are most often seen at
the highest values of the plasma current, with q995 < 4; it may thus be argued that
convective cells at the edge could be related to low-q resistive-MHD resonances. 43 9

The frequency spectrum of these fluctuations is similar to the usual one, i.e. it
is monotonically decreasing. Since convective cells are expected to be chiefly low-
frequency phenomena, it would certainly be of considerable interest to extend the
measurement to the very-low-frequency region, below our instrumental cutoff of ~8
kHz.

Both the wavelength and the correlation length of the convective cells appear
to be in the order of 2-4 cm (see Fig. 5.10): it is difficult to provide a more accu-
rate estimate within the instrumental limitations. The poloidal wavelength must be
considerably longer (>10 cm) to avoid cancellation from line integration. It is pos-
sible, however, that a broader range of poloidal wave numbers may be involved: the
high-ko region of the spectrum is simply inaccessible to PCI. In fact, it is expected
theoretically4 6 3 ,3 5 9 that enstrophy (mean square vorticity) should condense in this
spectral region, principally because of its k4 dependence 464 (the vorticity V x v is
proportional to a second spatial derivative of the electric potential for E x B flows).
In view of this, simultaneous measurements of a broader range of poloidal wave num-
bers (e.g. with BES or FIR scattering) would certainly be a valuable future addition
to this study.

In H mode, these high-correlation structures disappear or migrate inwards into
the plasma or outwards into the SOL. The correlation level between points inside and
outside the LCFS becomes invariably quite small. This is consistent with the general
shear-decorrelation mechanism described in §6.1, which is expected to be effective
on all radially correlated fluctuation structures. In particular, convective cells may
actually feed the sheared flows by virtue of the Reynolds stress, in a manner similar
to that of a vortex "peeling off" into two counterstreaming flows. 440 It is interesting
to note that a recent paper3 77 has presented a complete theory of the L-H transition
and of ELMs on the basis of resistive-ballooning convective-cell physics alone. Away
from the shear layer near the LCFS, the shear decorrelation mechanism would be less
effective and convective cells may survive, as indicated by our measurements.

The identification of the measured structures with convective cells can be taken
as a reasonable working hypothesis in view of the several corroborating points listed
above. More dedicated measurements in low-edge-q plasmas would be desirable to
expand the database and attempt more comparisons with theory.
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6.4 Density-Fluctuation Well in the SOL in H Mode

In this section we shall comment briefly on the H-mode phenomenology that was
described at the end of §5.5(a). In some cases, the radial correlation function in
the SOL takes the form exemplified by Fig. 5.11: a high correlation level exists
throughout the SOL, with a narrow layer situated between 0.5 and 1.5 cm outside
the LCFS oscillating 180* out of phase with respect to the regions on both sides of
it. The correlation level between the SOL and the region on or just inside the LCFS
is low.

Bacause the correlation level in the SOL is high everywhere, this structure cor-
responds to a distribution of ft that is approximately flat, with the exception of a
negative well in correspondence with the counteroscillating layer. Indeed, in the ab-
sence of this well the ft distribution would reflect a long wavelength that would fall
beyond the spectral cutoff point of the PCI system; however, the well, approximately
like a delta function, acts to broaden the k, spectrum and permits detection by PCI.

On the basis of measurements carried out with the reciprocating probe in DIII-
D, the cross-phase between the fluctuating density (fi) and electric potential (4) is
known to be approximately constant in space in the SOL."' The phase is close to
90* (causing maximum transport) both inside and outside the LCFS in L mode, and
increases to ~120* in H mode outside the LCFS, while it reaches ~180* just inside
the LCFS, in correspondence with the well in the E x B flow velocity. If we thus
assume a constant phase in the region we are exploring, we can conclude that the
spatial distribution of 4 is similar to that of ft, i.e. flat except for a negative peak
I cm outside the LCFS. The fluctuating radial electric field, equal to the negative
radial derivative of 4 is thus near zero everywhere and should have a positive and a
negative peak in rapid succession in the same region, 1 cm outside the LCFS. The
same is true of the fluctuating E x B velocity.

If these deductions are true, and we make the working assumption that turbu-
lence is isotropic in the SOL, we can conclude that throughout most of the SOL radial
transport is inhibited in H mode, even though the absolute ii level can be significant
and the sine of the cross-phase between ft and 4 is only down by a factor of two with
respect to L mode.

It must be stressed that this type of structure has not been confirmed with other
diagnostics, particularly the reciprocating probe. Indeed, we do not have simultane-
ous measurements with PCI and the probe in discharges in which this mechanism
is at work. Furthermore, we have not succeeded in identifying any clear distinction
between these discharges and those that exhibit a more regular wavelike correlation
structure. These conclusions should thus be regarded as preliminary.
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6.5 Frequency Spectra and Time-Delayed Correlation Function

In the remainder of this chapter we shall explore systematically the phenomenology of
turbulence that was presented in Chapter 5, using the characteristics of the measured
radial modes as a representation of the general features of edge turbulence in DIII-
D. As mentioned previously, the validity of this representation is predicated upon
a strong-turbulence ansatz. Similar extrapolations recur, of course, throughout the
history of plasma turbulence measurements, as no single diagnostic system is capable
of accessing the entire fluctuation spectrum. In our specific case, the considerations of
§6.2 suggest that the greatest uncertainty in this extrapolation concerns the absolute
amplitude of the radial modes in relation to the rest of the spectrum.

This section addresses the frequency- and time-domain analysis that was pre-
sented mainly in §5.4. Studies of the frequency spectra benefit especially from the
radial-mode selection rule (ke - 0): since the E x B and diamagnetic flows in the
plasma lie on the flux surfaces and are thus orthogonal to radial wave vectors, radial
modes are immune to Doppler shifts, and measurements carried out in the laboratory
frame are essentially equal to those in the plasma frame. It must be remembered,
however, that finite, albeit small, ke components can be detected by PCI, particularly
on chords located several cm inside the LCFS; thus, small Doppler shifts may occur.
However, the numerical simulations discussed in §4.5 and shown in Fig. 4.14 proved
that these frequency shifts are negligible in most cases. This property of PCI allows
it to make a unique and novel contribution to turbulence studies.

Experimentally, the form of the spectra shown in §5.4 is a direct confirmation
of the lack of Doppler shifts: most of the energy is concentrated below 100 kHz, in
marked contrast with measurements carried out with other diagnostics in DIII-D,
which detect considerable activity at several hundred kHz. An extreme example was
shown in Fig. 5.38 for a chord located several cm inside the LCFS; even in that case,
the peak was shifted only to 38 kHz. For these reasons, spectral comparisons between
PCI and other DIII-D diagnostics have proved fruitless in general, with the partial
exception of the reflectometer, which is the only other system sensitive mainly to
radial wave vectors. However, reflectometer spectra are usually broader than those
of PCI, and indeed the poloidal-wave-number range of the reflectometer is expected
to be wider than that of PCI, although a quantitative estimate is difficult for the
former.

In Ohmic and L-mode plasmas, the PCI autospectra are almost invariably mono-
tonically decreasing with frequency (see Fig. 5.1), and are generally well fitted by
inverse-power laws with exponents in the range 1-3 and averaging at 2. Values very
close to 2 are in fact particularly common; this inverse square law is consistent with
a Lorentzian spectrum, which corresponds to an exponentially decaying time-delayed
correlation function, i.e. to an imaginary part of the frequency (damping rate). Thus,
steady-state or saturated turbulence may be characterized by a simple damping rate,
which, however, is difficult to measure experimentally: the spectrum must saturate
at sufficiently low frequencies, as required by integrability and indeed as in the case of
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the Lorentzian function; since no such saturation is observed above the instrumental
cutoff point of 8 kHz, it must occur at an unknown lower frequency, which would also
provide a measure of the damping rate.

The spatial dependence of the inverse-power-law exponent, shown in Fig. 5.2, is
difficult to interpret simply, especially since it is considerably different in Ohmic and
L mode. It may be argued that the larger exponent measured deep in the SOL could
be indicative of a more coherent spectrum there; also, the increased decorrelation
time in that region, shown in Fig. 5.5, corroborates that inference, which may be
construed as a sign of weaker turbulence in the SOL than in the main plasma.

The decorrelation time was also found to decrease for increasing neutral-beam
power (see Fig. 5.7). This, again, appears to indicate that the increased drive causes
a stronger turbulent state.

Few theoretical predictions exist for the frequency spectrum of the turbulence.
One such prediction, for drift-resistive waves,465 is indeed an inverse square law, in
agreement with our measurements. Experimentally, in most cases - and especially
in tokamaks - laboratory-frame frequencies are dominated by Doppler shifts; when
this is so, indeed, the frequency spectrum is often assumed simply to be equal in form
to the wave-number spectrum" (this is known as Taylor's hypothesis and is widely
used in fluid mechanics 206 ). In plasmas with small flow velocities (stellarators, reverse
field pinches), and in tokamaks when Doppler-shift subtraction was possible, similar
inverse-square laws have again been found. 197 Thus, there is good agreement among
the measurements reported.

There is also general agreement on the basic observation that tokamak plasma
fluctuations have a turbulent nature, revealed by the finite width of the frequency
spectrum measured at each wave number, and, moreover, that turbulence is strong,
since that width is comparable to the value of the frequency at the peak. 0 2 3 ,2 1 9

One of the testable predictions of the theory of self-organized criticality (SOC) 39 3,394 ,374

is the form of the autopower spectrum. This is found, from numerical simulations,
to obey a f-' power law at high frequency (the region of single-avalanche transport
events), and to undergo a sharp transition to a f -1 law at lower frequency (associated
with interacting avalanches); at even lower frequency a flat (uncorrelated) region is
found, followed finally by an anticorrelated region with positive exponent (typically
1/2), due to large-scale discharge events.3 9 3 All these regions pertain to the spectrum
of transport events, while the local turbulence spectrum is generally characterized by
larger frequencies. The discharge-event region is thought to be irrelevant in the case
of tokamak plasmas, 394 because it involves time scales longer than the confinement
time. The f- and f- 4 spectra, on the other hand, have been confirmed by specific
tokamak simulations.394 ,374

Experimentally, we have often seen a sharp transition from one inverse-power
law to a different one at frequencies of the order of 20 kHz (see Fig. 5.3); however,
the exponents are in disagreement with SOC predictions, and in fact the exponent is
always smaller in absolute value at the higher frequencies. It is quite possible that
these spectra are those of the local turbulence rather than those of the transport-
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event envelope. Indeed, there is no quantitative prediction yet for the characteristic
frequencies of the SOC spectrum for relevant modes such as ITG or resistive balloon-
ing instabilities. The model used thus far has involved resistive interchange modes
because of their greater tractability;3 7 4 the range given for the f ' region of the spec-
trum in this model, calculated for the edge plasma of DIII-D, is approximately 1-25
kHz. However, it is likely that electrostatic turbulence (e.g., ITG modes) woulu give
rise to substantially lower frequencies, which may fall below the 8-kHz PCI cutoff.
This consideration provides additional motivation for taking measures to lower that
cutoff value.

The nonmonotonic features often observed in the H-mode autopower spectra
could be interpreted as semicoherent spectral regions, indicative of a weaker turbu-
lent state than in L mode; this is also reflected in the larger decorrelation times
measured (see, e.g., Fig. 5.5, especially for the points on and just inside the separa-
trix). However, the overall H-mode spectrum occupies a broader bandwidth: thus, a
decorrelation effect also occurs at the transition from L to H mode.

The narrowband features in H mode do not appear to have similar characteris-
tics to the semicoherent mode often seen in DIII-D, especially by the reciprocating
probe. 2 18 That mode, which occurs late in H mode, is in fact more coherent and is
estimated to have too short a poloidal wavelength to be detected by PCI in general.
However, it bears some resemblance to a semicoherent MHD mode observed in some
H-mode cases with PCI and shown in Fig. 5.60, which will be touched upon again
in §6.12.

The time-delayed correlation function can exhibit a variety of shapes, as was dis-
cussed in §5.4. Simulations based on the SOC paradigm display double-peaked corre-
lation functions, which reflect the dual nature of the avalanche process: avalanches are
caused both by "bumps" propagating down the pressure profile and by voids propagat-
ing upwards; this, in fact, is one of the distinguishing features of the SOC in compari-
son with a marginal-stability state, which supports only downward displacements.3 9 4

Double-peaked correlation envelopes are often measured by PCI [see, e.g., the second
box from the top in Fig. 5.4(a)]; in some cases, they result in a cusp near the point
At = 0. Moreover, by applying an appropriate high-pass filter the double peak is
usually replaced by a single peak [see Fig. 5.4(b)], as would be predicted by the SOC
theory, since the double-peaked structure is due to the low-frequency transport-event
spectrum rather than to the higher-frequency turbulence spectrum.

However, this agreement is likely to be incidental: the form of the frequency
spectra does not conform to SOC predictions, as was discussed above, and the double-
peaked correlation functions can b easily interpreted as the result of two counter-
propagating wave packets, which our spatial correlation analysis has shown always
to exist (see §6.2). This was shown explicitly by the analytical modeling carried out
in §4.4, particularly in Eq. (4.66); as noted there, the two counterpropagating radial
modes give rise to either a single-peaked or a double-peaked correlation envelope,
depending on the relative values of the radial separation, the decorrelation time, and
the radial group velocity.
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As in the case of the frequency spectra, few concrete predictions of the turbulence
decorrelation time have appeared in the theoretical literature; an exception to this
is a recent study of global, or "general", drift-wave eigenmodes, which attempted to
explain the Bohm-like confinement scaling in L mode on the basis of toroidal coupling
of drift waves. 38 3 The global decorrelation time is estimated there as rd = qR/vti,
where q is the safety factor, R is the major radius, and vti is the ion thermal velocity.
This quantity is in the range 0.03-0.8 ms for DIII-D, and can be in agreement with
our experimental values (see §5.4) at the low end of that range (for ion temperatures
> 1 kcV).

The dependence of the instrinsic decorrelation time on the wave number is of
considerable interest in the context of theories of turbulent transport. The functional
dependences shown in Fig. 5.30 are characterized by an infrared divergence of the
type Td o k-', with 1 < a < 1.5. The Nyquist limit and the signal-to-noise ratio
at high k make it difficult to assess whether an ultraviolet divergence also exists,
although H-mode data [Fig. 5.30(c)] appear to support this hypothesis.

Infrared divergence was predicted 338 by the solution of the Hasegawa-Mima
equation.. 4 for the nonlinear evolution of collisionless drift waves in a fluid approx-
imation; however, an exponent a = 3 was found. In spite of the slower divergence
observed experimentally, the results are compatible with the possibility of an infrared
"catastrophe",390 since a diffusivity D = Ek < f >k rd(k) would then imply that
transport is dominated by large-scale events. This has been proposed as an expla-
nation for the "global" Bohm scaling in L mode, particularly in connection with the
ideas of self-organized criticality. 390 However, the observed transition to gyro-Bohm
scaling in H mode requires the disappearance of the infrared divergence, 390 which
is found instead to remain unchanged in H mode [see Fig. 5.30(c)]. This suggests
that more theoretical work is needed to fully understand the implications of this
divergence.
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6.6 Spatial Correlations and Wave-Number Spectra

In this section the phenomenology of the spatial turbulence structure, described in
§5.5, will be reviewed and discussed.

The structure of the wave-number spectrum measured by PCI is dominated by
the peculiarities of the radial-mode spectrum, in particular by the peak at finite
kr. The peak occurs at a value equal to a fraction of the reciprocal of the ion
gyroradius, similar to the peak value predicted for the poloidal spectrum of collisional
drift waves466 467 at low fl.

At large kr, the spectrum decays rapidly, as was shown in §5.5. This is in qualita-
tive agreement with theoretical expectations. Quantitatively, a number of asymptotic
scalings for the S(k) spectrum have appeared in the literature: representative exam-
ples are the asymptotic k-17/ 6 dependence4 65 and the similar k- 3 scaling4 68 found
for collisional drift waves, the k- 3/ 2 law31 5 and the k- 4 scaling338 predicted for
collisionless drift waves, and the k-3.2 dependence of ITG modes. 469 These inverse
power laws all have exponents in the range 1.5-3.25. Unfortunately, the experimental
resolution and the smoothness of the data at high k are not sufficient to verify these
scalings in any quantitatively meaningful way.

The measured radial correlation length is typically of the order of 10-40 ion
sound gyroradii. It is often problematic to compare this value with theoretical
predictions, 336 as the latter typically involve parameters that are unknown or dif-
ficult to measure: this applies, e.g., to predictions for ITG modes,469 for global drift
waves38 3 and for trapped-ion modes.470 Early semiquantitative predictions for ITG
modes334 (4, - piL,/LT, where pi is the ion gyroradius, and L. and LT are the
magnetic-shear and temperature-gradient scale lengths, respectively) generate val-
ues that are somewhat smaller than the experimentally observed range. Also, a
three-dimensional slab fluid simulation of drift-resistive ballooning modes carried out
specifically for the edge of DIII-D"' yielded a prediction L, ~0.8 cm, which also falls
short of the experimental values. On the other hand, a simple scaling for the radial
width of toroidal drift modes, 10 ,3 83 4, ~ Vp-/L7 (where L, is the density-gradient
scale length), generates values in fair agreement with experiment, if L" is taken to
be of the order of the plasma minor radius.

The results reported in §5.5(b) on the spatial variation of the correlation length
(see Figs. 5.12 and 5.13) find no correspondence in theory. It is perhaps not surprising
that the correlation length is shorter in the SOL than in the main plasma in L mode,
in view of the narrowness (i.e., large gradients) of the SOL. However, the correlation
length in the SOL, unlike in the main plasma, is considerably larger in H mode,
in spite of the increased narrowness of the SOL; this counterintuitive observation
indicates that a qualitatively different type of turbulence exists in H mode, replacing
the L-mode activity that is suppressed by the sheared flows: it could be argued, for
instance, that Kelvin-Helmholtz or parallel-ion-velocity-gradient instabilities, which
can be excited by the sheared flow, may be at work in the H-mode regime in the
SOL.
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Simulations of self-organized criticality3 74 find long correlation lengths in the
low-frequency region of the spectrum, indicative of large-scale transport events, or
avalanches (see discussion in §6.5). These long correlation lengths reflect the long -

decorrelation times of the events, which remain correlated as they propagate down
the slope of the pressure profile; thus, they should be revealed by a Lagrangian
analysis, for instance by studying the correlation length as a function of frequency.
These measurements, discussed in §5.5(d), have shown that the correlation length is
generally a decreasing function of frequency, but no significant quantitative departurds
from the Eulerian correlation lengths have been detected (see Figs. 5.19 and 5.20).
This corroborates the speculation, advanced in the previous section, that even if an K
SOC state indeed exists in the plasma, the transport-event region of the frequency
spectrum lies below the 8-kHz instrumental cutoff of the PCI system.

The dominance of long-wavelength modes in the turbulence spectrum is a com-
mon feature of many measurements is a number of different plasma experiments.
In general, most of the fluctuation energy has been found to be concentrated at
k < 0.2/pi, especially at the edge and particularly in larger tokamaks;10,1 8 5 ,2 30 ,2 1 3 ,18 8

in smaller tokamaks the spectrum is often found to peak in the region k ~1/p,.47

Correlation lengths may be expected to differ in different machines, and in-
deed a fairly wide range of values, from 0.2 to 4 cm, has been reported in the
literature.1 n2 31 23 0 ,5 i'4 ,2 32 It is somewhat surprising, however, that the radial -

correlation lengths measured by correlation reflectometry in the edge of DIII-D2 33 ,4 6

are generally 3 to 5 times shorter than those measured by PCI, albeit in different
discharges. This discrepancy is unresolved at present: possible causes may involve
the slightly different spatial locations and spectral regions of the two measurements.
Results from a new heterodyne reflectometer system are being processed at present
and should soon be available for more detailed comparisons.

The dependence of the average radial wave number and of the radial correlation
length on local and global plasma parameters in L mode was examined in §5.5(b). As
was discussed there, only a few regular trends were found; even in those cases, it is not
meaningful to attempt any functional fits, because of the small number of points (in
the case of global-parameter scans) or because the data are too scattered (for local-
parameter scans). In general, we have found a stronger dependence of the turbulence
quantities on the global plasma parameters than on the local ones: this appears to be

in qualitative agreement with the measured Bohm-like scaling of the confinement time
in L mode, which is theoretically associated with large-scale (or "global") transport
events (i.e. involving spatial scales larger than the ion gyroradius). 18 7 ,3" 3

The ability of turbulence to cause radial transport is generally related to the
width of the radial correlation region: i.e., a long correlation length would be expected
to coincide with higher anomalous diffusivity. Thus, the increase of the characteristic
lengths (correlation length, C,, and average wavelength, 27r/ko,,) with increasing r
input power and their decrease with increasing current [see Fig. 5.14(a) and (c)]
appear consistent with the L-mode scaling of the diffusivity, which is proportional to
the square root of the power and inversely proportional to the current.24  By contrast,
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this line of reasoning does not lead to a simple interpretation of the increase of the
characteristic lengths with increasing average density; part of this increase may be
attributed to a slight increase in input power, but this does not appear sufficient to
justify it: an intrinsic dependence on the density thus seems probable.

The sharp decrease of the correlation length when the parameter Dre,, goes from
negative to positive [see Fig. 5.14(e)] provides an intriguing link between predictions
of neoclassical theory and strong-turbulence shear-decorrelation concepts. We recall
that a negative value of Drae, indicates that the ion VB drift points towards the dom-
inant X-point, and vice versa. The H-mode power threshold increases sharply when
Drsep goes from negative to positive. 2 9 0 An explanation that has been proposed4 72 ,4 73

for this observation, within the realm of neoclassical theory, is based on poloidal tern-
perature gradients in the SOL, which point away from the X -point: when the ion VB
drift also points away from the X-point, the gradients cause an outward energy flux
on the outboard side of the tokamak and an inward flux on the inboard side; upon
poloidal averaging, the outward flux dominates: thus, confinement is degraded and
the power threshold for transition to the high-confinement regime is correspondingly
increased. The reverse is true for the case of the ion VB drift pointing towards the
X-point.

In L mode, the diffusivity, or equivalently the confinement time, appears to
depend on the power flow across the separatrix rather than on the total heating

power. 291,92 It may thus be argued that the turbulent correlation length should also
be a function of the power flow across the LCFS. Therefore, the shorter correlation
length found when the ion VB drift points away from the X-point may be a result
of the lower energy confinement and lower power flow in that case. A shorter radial
correlation length, in turn, renders the shear-decorrelation mechanism less effective,
since the shearing rate - the key decorrelation parameter - is proportional to the
correlation length [cf. Eq. (6.7)]. Thus, under these conditions the H-mode power
threshold can be expected to be higher, as is seen experimentally.

Although theoretical models generally suggest that the characteristic spatial scale
of the turbulence should scale as some function of the ion sound gyroradius, 22 1 we
have not identified any such dependence. A similar result was obtained with FIR
scattering measurements in the TEXT tokamak. 197

The radial correlation length 4, decreases as the parameter '% is increased [see
Fig. 5.15(f)]. In general, 71e is of the same order as qi, which is a measure of the
ITG instability drive.33 4 The variation of 4, can then be tentatively attributed to
the excitation of a larger number of modes when 7i is large, resulting in a broader kr
spectrum and thus in a shorter correlation length. The scattered decrease of 4r with
increasing magnetic pumping rate [see Fig. 5.15(i)] could also be ascribed to a sim-
ilar phenomenon: magnetic pumping damps the poloidal plasma flow, which has an
inhibiting effect on the turbulence; increasing pumping could then result in increased
excitation of ITG moes. The dependence of 4, on the normalized ion collisional-
ity v.i probably also reflects the hidden dependence on the magnetic pumping rate:
since most of the data fall in the plateau and Pfirsch-Schliiter regimes, the magnetic
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pumping rate is a monotonically decreasing function of i.j (see Eq. 5.1).
The propagation coefficient PR, a measure of the predominant radial direction

of propagation of the turbulence, has also been studied as a function of several
plasma parameters. Some trends have emerged, as was discussed in §5.5(b); how-
ever, to our knowledge there is no theoretical prediction to which these results can
be compared: although radial propagation has been explored in several theoretical
papers,384 ,383,458,360 each analysis tends to favor one direction of propagation or the
other, and no parametric dependence of the directionality is given. For this reason,
the parameter scans shown in Fig. 5.16 are offered as a mere phenomenological result
for future theoretical consideration.

To conclude this section, we briefly examine the frequency dependence of the
spatial correlation parameters, presented in §5.5(d). The correlation length and the
average wavelength normally decrease with frequency. This is in general agreement
with the fact that most dispersion relations in plasma physics are monotonically
increasing.91 The approximate offset-linear dispersion relation ineasured in most cases
by PCI (see Figs. 5.19 and 5.20) suggests that the group velocity may be the funda-
mental parameter that defines the spectral distribution of the turbulence. However,
it is possible that these dispersion relations are specific to the radial modes rather
than determined by general properties of turbulence.

The group velocity is of the order of 1.5-4 km/s in Ohmic and L-mode plasmas,
and up to 20 km/s in H mode. These velocities are substantially subsonic, although
the H-mode values may approach the ion sound velocity in the SOL (with tempera-
tures of the order of 10 eV). It is likely that these group velocities are determined by
some form of linear (toroidal) or nonlinear coupling of drift-wave modes that gives
rise to radial propagation. Theoretical studies of these types of coupling 384 ,360 ,458 ,3 16

have indeed generated group velocities comparable to the experimental values.
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6.7 Fluctuation Amplitude and Test of the Mixing-Length Scaling

As we turn to the issue of the absolute amplitude of the fluctuations, it is worth
summarizing a few cautionary notes that have appeared several times in this chapter
and in the previous ones. At present, estimates of the absolute amplitude of the
line-integrated fluctuations are subject to considerable experimental uncertainties,
primarily associated with the difficulty of modeling the spatial pattern of the acous-
tic waves used to calibrate the system; additional uncertainties are contributed by
signal-to-noise limitations. As discussed in §3.8, the typical accuracy on the absolute
amplitude is 30-40%, while the random channel-to-channel error (with the systematic
component removed) is of the order of 10-15%; this can also be taken as a measure
of the shot-to-shot error, at least for discharges belonging to the same experimental
run.

Estimates of the average density-fluctuation level are even more problematic,
since they require a division of the PCI signal by an effective integration length, equal
to ( VWLL)/ 2, where C, is the vertical (essentially poloidal) correlation length and
L, is the geometric integration length. These two quantities are known only in an
approximate way. In particular, since we lack systematic and direct measurements
of the poloidal correlation length in DIII-D, in all cases in this thesis we have used
a value of 3 cm, with an estimated uncertainty of ±1 cm, on the basis of poloidal-
wave-number spectra measured by FIR scattering. 321 ,2 38

Of course, even when an rms amplitude is calculated, it cannot be legitimately
interpreted as a local measurement, but only as an average along the corresponding
PCI chord. As was shown in §4.1, a formal inversion to obtain local values is impos-
sible unless certain symmetry assumptions are made: no such assumptions have been
deemed valid in the edge plasmas of DIII-D.

Beyond the intrinsic instrumental uncertainties discussed above, there are also
uncertainties associated with components of the turbulence that are not accessed
by the measurement. In wave-number space, PCI selects wave vectors with k0 ~ 0;
dividing the measured amplitude by the effective integration length mentioned earlier
gives a correct value for the average fluctuation level only if the turbulence spectrum
peaks at ko = 0 and if its poloidal width is constant for all values of k, (see discussion
ir §4.4). We know in fact that there is a substantial spectral feature that peaks at
finite ko; however, the considerations of §6.2 lead us to believe that the portion of the
spectrum seen by PCI does indeed peak at ko: the main uncertainty in estimating the
total amplitude is then due to the unknown relative magnitude of the two components.

In frequency space, PCI data below 8 kHz are filtered out. Since the spectra
always increase indefinitely as the frequency decreases towards 8 kHz, it can be ex-
pected that the unmeasured low-frequency components contain a sizable fraction of
the turbulent energy.

The two effects just described are difficult to estimate quantitatively. Hence, we
have not attempted to correct for these effects and we must simply accept that our
estimates of the average fluctuation amplitude will underestimate the true value in
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general.
Parametric studies of the relative fluctuation amplitude, u/n, shown in Fig. 5.27,

have evinced certain clear trends in some cases. The amplitude of the turbulence
increases slightly with applied power, in qualitative accord with the confinement
degradation that occurs when auxiliary heating is applied; the relative amplitude,
however, decreases, because of a concomitant increase in density in the cases shown
in Fig. 5.27(a). No clear dependence was found on the plasma current, which has a
strong correlation with the diffusivity, and on the magnetic field and the ion sound
gyroradius, which are critical quantities in turbulence theory. Past measurements in
TEXT, by contrast, did report some dependence (although weak) on the current and
on the magnetic field.' 8 5

The relative fluctuation amplitude is a decreasing function of both the density
and the electron temperature [see Fig. 5.27(b) and (c)]. The former result is in
agreement with several previously reported scalings.10 Less information exists on
temperature scalings. In some cases, for instance in TEXT" 5 and Alcator C, 2 3

a mode traveling in the ion diamagnetic direction was observed to appear at high
density, with a corresponding increase in the fluctuation level. The lack of such a
mode in our data may then be attributed to the peculiarities of the radial-mode
spectrum.

Also, a decreasing dependence of the relative amplitude on the density-gradient
scale length L, is found [Fig. 5.27(d)], whereas no clear correlation with changes
in the temperature-gradient scale length is seen [Fig. 5.27(e)]. In general drift-wave
models, the instability drive is iuversely dependent on L,: thus, the large value of
fi/n at low Ln appears consistent with this scenario. Also, this inverse scaling is in
qualitative agreement with the mixing-length relation, 235 h/n ~ ,/La, especially
since the radial correlation length -, is not strongly dependent on Ln [see Fig. 5.15(d)
and §6.61. More will be said about the mixing-length scaling later in this section.

On the other hand, the drive for the ITG mode is strongly depedent on the
ion-temperature gradient: however, it must be remembered that the gradient length
shown in Fig. 5.27(e) is for the electron temperature; thus, the lack of correlation
shown here cannot be deemed conclusive.

It must also be remembered that these local-parameter scans are all uncon-
strained: in comparing, e.g., Figs. 5.27(b), (c) and (d), the "true" dependence may
be on ne, on Te, on Ln, or on a combination of the three.

A variety of measurements in tokamaks have reported that the relative fluctua-
tion amplitude h/n increases sharply towards the plasma boundary.0 ,23 ,22 ,SS,213,18S

At least part of this increase is due to the negative density gradient, and direct in-
formation on the spatial distribution of the absolute level ii is generally unavailable.

In our measurements (see §5.6), the line-integrated fluctuation amplitude was
found to be relatively flat in the region from 6 cm inside to 1 cm outside the LCFS,
with the exception of a sharp peak located approximately 1 cm inside the LCFS (see
Figs. 5.25 and 5.26). Since the contribution from the inner layer of the SOL is not
negligible, it is difficult to provide an accurate estimate of the integration length in
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the vicinity of the LCFS; thus, the information on the distribution of ii that can be
extracted from these measurements is rather limited. The peak inside the LCFS,
however, confirms clearly that, this region (the shear layer in H mode) has larger
turbulence levels and is thus likely to have an important role in the dynamics of
anomalous transport.

As the PCI system is capable of measuring both the absolute amplitude of the
density fluctuations and their radial correlation length, PCI data can be used to test
the mixing-length scaling.

The mixing-length concept is rooted in fluid-turbulence theory234 and has been
often adopted as an ansatz in strong-turbulence models in plasmas.187 The ansatz,
which can be expressed as

h ~ Cr (6.15)
n L7

bears a simple intuitive interpretation. As fluctuations, driven by a density gradient,
grow towards a turbulent state, their amplitude is assumed to saturate at a level
such that the gradient is flattened over the extent of a radial correlation length. The
mixing-length scaling has been found to be approximately consistent with several ex-
perimental measurements, 1 0 ,208 ,196 although significant discrepancies have also been
reported. 10 ,196,224,235 Also, some theoretical models that do not rely on a mixing-
length postulate and can thus put it to the test have found fluctuation amplitudes,
e.g. for trapped-ion modes, 47 0 lower than the ones predicted by the scaling.

A proper test of the mixing-length scaling with line-integrated measurements
requires some manipulation of Eq. (6.15). By rearranging the terms, squaring the
result, and integrating it along the PCI line of sight, we can write

-2 Cdz ~ 2L2Cdz. (6.16)

The left-hand side of this equation is the mean square value of the PCI signal. The
right-hand side can be estimated from the density profile measured by Thomson
scattering and mapped to the PCI chord, and by using the radial correlation length
measured with PCI; the vertical correlation length £,, as before, is estimated at
3±1 cm. The calculation is performed by a computer code, which computes the line
integral of a cubic spline fit to the integrand on the right-hand side of Eq. (6.16).
The result is expressed as the square root of the ratio of the left-hand side to the
right-hand side of Eq. (6.16), written as ii/nmI, where

n.. II2 dz;](6.17)

here L, is the integration length.
The mixing-length test has been applied to several plasma discharges. Results

vary considerably, but some notable trends have emerged. In L mode, the fluctuation
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Fig. 6.5 Rms fluctuation density normalized to the value predicted by the mixing-length scaling,

(a) for L and H mode, using the respective density gradients, and (b) for H mode, comparing the

values obtained by using, respectively, the L-mode and the H-mode density gradient. The vertical

correlation length was estimated to be 3 cm; the measured radial correlation lengths are 1.19 cm in

L mode and 0.82 cm in H mode. The abscissa is the major radius of the PCI chord on the midplane.

The plasma parameters are BT=2.1 T, Ip=1.25 MA, fe=3.5x 101 cm- 3 , input power = 6.2 MW.

amplitude is generally within one order of magnitude of the mixing-length value, and

is lower than it in most cases. In H mode, ii/nml is normally approximately one order

of magnitude lower than in L mode, although in a few cases the two were found to

be comparable. A typical case for L and H mode, for seven different PCI chords, is
shown in Fig. 6.5(a). The spatial variations seen in the figure are not particularly

significant, as their character changes considerably from shot to shot.

As was discussed at the beginning of this section, PCI estimates of the absolute

amplitude fi are believed to underestimate the true value. Thus, L-mode results are

roughly consistent with a mixing-length scaling, indicating the presence of strongly
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turbulent activity. The sub-mixing-length scaling of H-mode plasmas then may pos-
sibly suggest a transition to a weaker-turbulence regime; thus, the mechanisms that
suppress the fluctuations in H mode could cause a qualitative, as well as quantitative,
change in the nature of the turbulence. This is in general agreement with theories that
have attempted to explain the transition from a Bohm-like to a gyro-Bohm diffusivity
scaling from L to H mode as a transition from strong to weak turbulence. 3 9 0,39 4 ,389

However, a caveat is in order. The drop of ii below the mixing-length value
in H mode is due both to a relatively modest decrease in fi and to an often sharp
increase in the density gradient. In other words, the fluctuation amplitude drops even
though the instability drive becomes in fact larger; in fact, as the H mode evolves, the
enhanced drive does indeed cause the amplitude to increase again, as was shown in
§5.10 (see, e.g., Fig. 5.47). The early H mode, used for the mixing-length test, is thus
a transient phase, during which the turbulence suppressed by the flow shear has not
had enough time to recover under the effect of the increased gradient drive. It is of
some interest, then, to test the mixing-length scaling in H mode also by calculating

nmI from the L-mode density profile (but using the H-mode correlation lengths).
The result is shown in Fig. 6.5(b) alongside the one calculated previously by

employing the H-mode profile. Clearly, by using the L-mode profile the fluctuation
amplitude in H mode becomes considerably closer to the mixing-length value, and
the scaling is in fact quite similar to the L-mode scaling shown in Fig. 6.5(a). This
reflects the fact that the decrease in the amplitude h at the L-H transition is of
the same order as the decrease in the radial correlation length. Thus, if this line
of reasoning is correct, it must be concluded that a strong-turbulence mixing-length
scaling applies equally to L-mode and H-mode plasmas.
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6.8 Self-Organized Criticality

Self-organized criticality (SOC) is one of the most promising among recent devel-
opments in plasma turbulence theory. 390 ,394 ,374 As it is still in a very early phase,
this theory - which was introduced briefly in §6.1 - has offered thus far only a
few preliminary predictions that could be tested experimentally. At various points
in the course of this chapter, several possible tests have been explored. The aim
of this section is to provide a brief summary of these ideas, with some additional
considerations.

The frequency spectrum in an SOC is found from numerical analysis to be char-
acterized by a number of distinct regions, characterized by different power laws and
by sharp transitions from one region to the next.39 3 ,3 94 While similarly sharp changes
in slope have been documented with PCI, there is substantial disagreement on the
power laws. It was argued in §6.5 that the spectrum measured by PCI is the local
turbulence spectrum, whereas the characteristic spectra of the large-scale transport
events that are the hallmark of an SOC are likely to be located at very low frequency,
below the 8-kHz PCI cutoff point.

Some qualitative agreement was found in the form of the PCI time-delayed cor-
relation functions, which are often double-peaked as found in numerical SOC analy-
ses. In view of the above considerations on the frequency spectrum, this agreement
was deemed incidental, particularly since the form of the correlation functions bears
a simple explanation in terms of the well-documented coexistence of inward- and
outward-propagating radial modes.

The infrared divergence in wave-number space of the intrinsic decorrelation time,
also discussed in §6.5, could be related to a dominance of the diffusivity on the part
of large-scale (i.e., low-k) events. 390 However, the infrared divergence survives in H
mode, in disagreement with predictions.

Finally, our measurements failed to reveal Lagrangian correlation lengths (that
is, calculated in the frame of reference of the traveling wave packet) substantially
longer than their Eulerian (i.e., local) counterparts, as discussed in §6.6.

An important additional feature of SOC models is intermittency in transport. 394 ,474§

The intermittency is a result of the statistics and probability dynamics of large-scale
transport events, and is not related to any intermittency in the turbulence itself;39 4

indeed, a flux associated with fluctuations that obey Gaussian statistics is charac-
terized by non-Gaussian statistics, 373 which is a necessary (though not sufficient)
condition for intermittency. It should also be noted that intermittency itself is not a
sufficient condition for an SOC state to exist: intermittency is also seen in supercrit-
ical transport.37 4

Assessing whether a given dynamical system is intermittent is very difficult ex-
perimentally, as it involves studying the spatial and temporal structures of the fluc-
tuations over large scale ranges, to test whether scale invariance is broken. Generally,
only normality tests on the probability distribution function (PDF) are performed:
a Gaussian or platykurtic170 PDF (i.e., with K < 3, where K is the kurtosis) would
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rule out intermittency, whereas a leptokurtic PDF (K > 3) would be compatible
with, but not prove, intermittency.

As was discussed in §5.7, the PDF of PCI data, when estimated over intervals
shorter than ~40 ms, was generally found to be Gaussian in all heating and confine-
ment regimes. Moreover, the separate PDFs of the low-frequency and high-frequency
regions of the spectrum (separated at 40 kHz) are also Gaussian. No intermittency
can therefore exist over time scales of the order of 40 ms or less.

Over longer intervals, particularly approaching 200 ms, the PDF invariably be-
comes more peaked and leptokurtic, with an asymptotic kurtosis of 5.3-5.6. This
behavior may thus be indicative of intermittency over long time scales, in agreement
with the SOC paradigm that attributes transport to "rare", large-scale events. 0 3 7 4

Intermittency is meaningful only if it involves spatial scales in the "inertial range",
i.e. larger than the dissipation range for Landau damping (klvti/w > 1) and viscous
gyrodamping (k pi > 1);203,204 in the dissipation range intermittency is expected to
arise from the dynamics of mode damping. In general, knowledge of the wave-number
spectra allows us to conclude that the PDFs measured belong indeed to the inertial
range.

Also, the time scales involved support the conclusion that the frequency spectrum
of these events lies well below 8 kHz. Direct observation and characterization of these
events is likely to be very difficult with any experimental technique.

6.9 Estimates of Turbulent Diffusivity

The transport of particles and energy caused by electrostatic turbulence is an im-
portant consideration for thermonuclear plasmas. By contrast, the power flux due to
the electrostatic fields themselves is generally negligible: the kinetic-energy content
of electrostatic modes is always far larger than its electrostatic potential energy. This
can be seen easily by writing the kinetic energy as Ekin = nmif 2 /4 and the potential
energy as Epot = 5 2 /(167r); with 3 equal to the E x B velocity, we find that the ratio
of the potential to the kinetic energy is approximately &pot/Ckin = v2 /(4c 2 ), where

VA is the Alfv~n velocity: this ratio is typically in the range 1-3x10- 4 .
Thus, the direction and magnitude of the group velocity are of far lesser signif-

icance to confinement than those of the E x B velocity. In a turbulent state, these
quantities, as well as the cross-phase between the fluctuating scalars (e.g. density and
radial velocity), are difficult to calculate and predict in general. Experimentally, in
the case of a scalar measurement such as that performed by PCI, we can only attempt
to estimate the fluxes and the diffusivities on the basis of generic strong-turbulence
assumptions.

Here, we use a random-walk approximation, and estimate the diffusivity as Drw =
L2/Td, where L, is the radial correlation length and Td is the intrinsic decorrelation
time, both of which are measured by PCI. We find that Drw is typically in the range
1-20 m2/s. These values are roughly of the same order as the ion diffusivity at the
edge, where the estimate is made; however, it should be noted that transport analysis,
hence a determination of the diffusivity, is particularly problematic in this region.

359



Random-walk diffusivity

10

(4 10

0 5 10 15 20
Input power (MW)

Fig. 6.6 Random-walk diffusivity, calculated as the ratio of the square of the radial correlation
length to the intrinsic decorrelation time, as a function of ir.put neutral-beam power in an L-mode
plasma. The plasma parameters are BT=2.1 T, Ip=l.35 MA, fie=4x1013 cm-3.

By way of illustration, Fig. 6.6 shows Drw as a function of the neutral-beam
power in L mode, combining data from Figs. 5.7(b) and 5.14(a). The random-walk
diffusivity increases with power, in qualitative agreement with the diffusivity scaling
in L mode (proportional to the square root of the power2 46 ).

In a random-walk model, the confinement degradation that occurs when auxiliary
heating is applied appears to be caused mostly by a decrease in the decorrelation time
in the edge region (see, e.g., Fig. 5.5 for rd in the Ohmic and L-mode regimes), and
to a lesser extent by an increase in the correlation length [as was discussed in §5.5(a)].

6.10 Tests of Theories of the L-H Transition

The review of the theoretical work on the L-H transition in §6.1(e) touched on sev-
eral ideas concerning the cause of the suppression of turbulence and transport that
accompanies the transition. It is now generally accepted that the shear in the plasma
flow velocity, particularly the E x B velocity, plays a crucial role in the transition.
However, as discussed in §6.1(e), several different mechanisms whereby shear can af-
fect turbulence have been proposed. In particular, a number of papers"'5 ,'' 39 6, 39 8

have found various criteria for linear stabilization of the relevant instabilities. These
criteria are generally different for different modes and involve the linear drives (i.e.
gradients) rather than the properties of the turbulence. Thus, although some of these
criteria can be and have been verified by experimental measurements, these tests do
not generally involve fluctuation diagnostics specifically. In this section, therefore, we
shall concentrate on the nonlinear shear stabilization of turbulence.

The prototypical nonlinear shear-decorrelation criterion, set forth by Biglari,
Diamond, and Terry,6 3 is found in Eq. (6.6), which is repeated here for convenience:
w, > WT, where w, V oBIer/LO is the shearing rate and Vx is the velocity
shear, and HT 1/dr is the reciprocal of the decorrelation time in the absence of
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Fig. 6.7 Profiles of the radial electric field in the outer 10% of the plasma cross section, determined

by charge-exchange recombination spectroscopy and fitted by a cubic spline, in L and H mode. The

plasma parameters are BT=2.16 T, Ip=1.54 MA, fie=3X1013 cm- 3 , input power = 8.5 MW.

shear (L mode). While other details differ, sometimes substantially, this criterion
has been widely accepted and has appeared as a key ingredient in a number of other
theories.4 1 5 ,4 0 5 ,4 1 4 In one study,406 the E x B drift was replaced by the total electron
flow (E x B plus diamagnetic drift). In the following discussion we shall address only
the more common criterion, involving only the E x B velocity.

The PCI system is capable of determining simultaneously two of the parameters
involved in the shear-decorrelation criterion, that is the radial correlation length 4,
and the intrinsic decorrelation time rd. Moreover, these parameters can be studied as
they vary in time, with a resolution of a few ms. A quantitative test of the criterion
then becomes possible. As before, the poloidal correlation length is estimated from
wave-number spectra measured in the past by FIR scattering:32 1,238 the estimated
value is 3±1 cm. This is also consistent with published data from BES measurements
in TFTR.5 1 The electric-field profile is measured by charge-exchange recombination
spectroscopy, and the profile is then fitted with a cubic spline, as shown in Fig. 6.7
for an L-mode and an H-mode case in the outermost 10% of the plasma cross section.

Using all the above ingredients, the quantities w, and WT are compared in the
spatial plots of Fig. 6.8. The quantities derived from PCI measurements are deter-
mined by statistical averages in the region 0. 9 5 p, < 1.0 (where p,, is the normalized
poloidal flux). This range is visualized by the segment drawn for WT. The largest
contribution to the error bar for w, is given by the estimate of the poloidal correlation
length. As can be seen clearly in the figure, the shear decorrelation criterion is fo'Ind
to be well satisfied in H mode, whereas the quantities w, and WT are approximately
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Fig. (3.8 Shearing rate w, vs. intrinsic turbulence decorrelation rate wr in L and H mode. The
shearing rate, w, = (Lr/GL)(dvExB/dr), is determined from the electric-field profiles shown in
Fig. 6.7, from the radial correlation length measured by PCI, and from an estimate of 3±1 cm for
the poloidal correlation length based on FIR scattering measurements; the shaded area indicates
a confidence interval. The decorielation rate, equal to the reciprocal of the intrinsic decorrelation
time, is shown as a segment over the spatial range used by PCI to estimate its value. The plasma
parameters are BT=2.16 T, Ip=1 .54 MA, fie=3x1O'3 cm- 3 , input power = 8.5 MW.

of the same order in L mode, in agreement with theory.6 3

Two theories of the L-H transition provide explicit, and different, scalings for
the radial correlation lengths and decorrelation times in L and H mode. The Biglari-
Diamond-Terry (BDT) analysis, 3 carried out in cylindrical geometry, is expected
to be valid in the limit of large E x B shear; the Hahm-Burrell (HB) theory,4 16

developed in toroidal geometry, should be more applicable to the moderate-shear
case. PCI measurements have allowed for the first time a quantitative test of these
models.

The experimentally measured ratio of the H-mode and L-mode radial correlation
lengths, for a set of DIII-D discharges, is plotted alongside the two scalings in Fig.
6.9, as a function of the shear decorrelation parameter (),d. The BDT scaling is 6 3
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Fig. 6.9 Ratio of the radial correlation lengths in H and L mode, as a function of the shearing

rate multiplied by the intrinsic turbulence decorrelation time: values measured by PCI (circles),
prediction of Biglari-Diamond-Terry theory6 3 for strong shear in cylindrical geometry (solid line),

and prediction of Hahm-Burrell theory 4 16 for moderate shear in toroidal geometry (dashed line).

The experimental values refer to the region 0.95 < p,, < 1.0, where p,, is the normalized poloidal

flux.

LH/LL ~ (2wed)-1/3, where the subscripts L and H denote L-mode and H-mode
quantities, respectively; the HB scaling is 416 LH/L ' (1 W2 2)-1/ 2 . Within the
error bars, the BDT scaling appears to provide a reasonable fit, as would be expected
from the large value of the E x B shear (measured by the abscissa wS7d). The HB

scaling is considerably less satisfactory.
The ratios of the intrinsic decorrelation times for the same set of shots are plot-

ted in Fig. 6.10, again with the BDT and HB fits. The BDT scaling is rH/TL 
(2w) 2 / 3 . The HB scaling includes only a logarithmic dependence on a compli-
cated combination of parameters; for practical purposes, a constant value of 1 (i.e.
decorrelation time essentially unchanged from L to H mode) can be used. In this case,
the roles of the two fits are reversed and the HB scaling fits the data better than the
BDT scaling. This discrepancy may be attributed to the incomplete nature of the
theories that generate these scalings, which only consider the effect of flow shear on
the turbulence, through a two-point correlation analysis, but are not self-consistent.
Indeed, as was observed in §6.1(e), the BDT scalings would imply equal diffusivities
in L and H mode in a random-walk scenario, an obviously false result; thus, it is
perhaps reasonable that the BDT scalings for L, and rd are not both valid.

In self-consistent theories, however, the decorrelation time has been modeled only
in an ad hoc manner. The dependence of Td on shear is a power law2362 Td -
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Fig. 6.10 Ratio of the intrinsic decorrelation times in H and L mode, as a function of the shearing

rate multiplied by the intrinsic turbulence decorrelation time: values measured by PCI (circles),
prediction of Biglari-Diamond-Terry theory6 3 for strong shear in cylindrical geometry (solid line),
and prediction of Hahm-Burrell theory4 16 for moderate shear in toroidal geometry (dashed line). 0

The experimental values refer to the region 0.95 < p, < 1.0, where p" is the normalized poloidal

flux.

by inspecting Fig. 6.10, it is easy to see that this scaling law is even less satisfactory
than the BDT scaling. Indeed, the decorrelation time is experimentally found to
increase slightly at the L-H transition in most cases, as the figure shows. This may
simply indicate an increased stability of the modes, which leads to a smaller growth
rate and thus to a larger decorrelation time; or it could be argued that the chief
L-mode instabilities (e.g., ITG modes) are drastically suppressed in H mode and are
replaced by new and less virulent instabilities (perhaps Kelvin-Helmholtz or parallel-
ion-flow-gradient modes), which would then have altogether different characteristics.
In this case, a proper test of the nonlinear scalings discussed above would require an
isolated analysis of the modes that are suppressed, a very difficult task in practice.

A complete self-consistent theory of the L-H transition would require also an
explicit calculation of the anomalous diffusivity. As was discussed in §6.1(d), only
heuristic or phenomenological estimates can be used at present. The most widely used
estimate is based on a random-walk model, with the diffusivity given by Drw = C2/Td.
The ratio of the experimental random-walk diffusivities in H and L mode, calculated
for the same set of discharges of Figs. 6.9 and 6.10, is plotted in Fig. 6.11. This ratio
is in the range 0.1-0.4. Thus, the diffusivity drops by more than the factor of two
that would be expected by the doubling of the confinement time typically seen from L
to H mode. However, it must be remembered that the PCI measurements are carried
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Fig. 6.11 Ratio of experimental random-walk diffusivities in H and L mode, as a function of the

shearing rate multiplied by the intrinsic turbulence decorrelation time. The diffusivity is calculated

as the square of the radial correlation length divided by the intrinsic decorrelation time: both

quantities are determined from PCI measurements. The experimental values refer to the region

0.95 < p,, < 1.0, where p,, is the normalized poloidal flux.

out at the edge, where the transport barrier forms first, while the confinement time
is a global quantity. It can thus be argued that the local diffusivity (a quantity that
is difficult to measure accurately at the edge) may decrease by more than a factor of
two, in agreement with the random-walk estimate.

Among the PCI observations that are unexplained at present, one deserves special
mention. As was shown in §5.10 (see Fig. 5.37), both the average frequency of the
turbulence and the exponent in the inverse-power-law fit to the frequency spectrum
change (the former increases, the latter decreases) 2 to 5 ms after the L-H transition;
by contrast, the amplitude of the turbulence and the radial correlation length are
always seen to change at the time of the transition within the temporal resolution
of the measurement. Future theoretical investigations of the L-H transition should
address this discrepancy in behavior.
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6.11 Slow L-H Transitions

"Slow" L-H transitions, obtained by operating at input powers only slightly above
the H-mode threshold, are characterized by a peculiar phenomenology, which was
described in §5.9. The peculiarity is an intense turbulent activity that begins approx-
imately 0.6 ms after the L-H transition and raises the fluctuation level to a value
comparable to that of L mode, and in some locations larger than it. As measured by
PCI, this activity peaks on a chord that intersects the midplane about 1 cm outside
the LCFS. During this turbulent phase, which lasts up to 20-30 ms, the D, emission
signal continues to decrease slowly: thus, the turbulence does not affect confinement
significantly; when the D, signal reaches its H-mode steady-state value, the turbulent
activity subsides and normal H-mode fluctuation levels are established.

The location of the peak in amplitude, combined with its exceptionally large
magnitude in absolute terms, suggests that this activity is localized to the SOL,
particularly to a region 1 to 2 cm outside the LCFS. The inner chords would also
be affected by this activity as they cross the SOL, but to a lesser extent, since the
integration length is longest on the chord intersecting this region at an approximately
tangential angle. This is consistent with observations. Also, the irregularities in the
frequency spectrum inside the LCFS could be explained as the sum of two distinct
spectra: that of the SOL and that of the main plasma. Only the latter would appear
on the outside chords.

In this early-H-mode phase, the large correlation level between the SOL and lo-
cations inside the LCFS, shown in Fig. 5.46, is also consistent with a large-amplitude
turbulence localized to a region within the SOL, if the additional assumption of a
long poloidal correlation length is made. The inner chords intersect this region at
some poloidal distance from the location of the SOL chords, so that a long poloidal
correlation length would allow their line-integrated signals to be well correlated.

The physical mechanisms at play in this early-H-mode activity are unclear at
present. This SOL turbulence may be related to a parallel-ion-velocity-gradient
(PIFG) instability362 (or possibly a Kelvin-Helmholtz instability63 ). Unfortunately,
measurements of the parallel velocity in these shots, while suggesting the existence of
large gradients, do not have a sufficiently large signal-to-noise ratio to provide a clear
answer. Even if better measurements were available, it would be difficult to verify
the conditions for the PIFG instability, as they depend crucially on the signs of the
poloidal and toroidal wave numbers; 36 6 the latter is particularly difficult to measure.
To pursue this line of inquiry further, specific simulations are needed with existing
codes. 366
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6.12 Edge Localized Modes and Other Transient Events

As was discussed in §6.1(f), much remains unknown about the physics of Edge Local-
ized Modes (ELMs). In particular, there has been no theoretical work predicting the
characteristics of the broadband turbulence that accompanies the ELMs. The phe-.
nomenological studies of ELMs performed with PCI in DIII-D, that were presented
in §5.11, are thus mainly offered as material for future theoretical interpretation. In
this section we shall merely explore some points of interest that have emerged from
those studies.

The broadband turbulence within a type-I or type-III ELM is, within the resolu-
tion of the measurements, similar to L-mode turbulence. In particular, the frequency
spectra are entirely analogous; the characteristic spectral lengths (correlation length
and average wavelength) are slightly longer for ELMs, and their monotonically de-
creasing dependence on frequency is somewhat weaker. The mairn differences between
ELM and L-mode turbulence are its amplitude (typically a factor of 3-4 higher for
ELMs), its spatial location (predominantly in the vicinity of the LCFS in L mode,
whereas it encompasses most of the SOL during an ELM), and its predominant radial
direction of propagation (indifferent in L mode, always outward during an ELM).

In view of the similarity of the turbulence signatures in L mode and during an
ELM, the ELM could be described as an H-L "back" transition followed by an L-H
transition. The remaining differences in the turbulence, as well as the greater speed
of the ELM termination in comparison with an L-H transition, may be ascribed to
the different pressure profiles in the two cases.69

The chief difference between type-I and type-III ELMs, in terms of their broadband-
turbulence content, is the timing of their appearance in relation to the peak in the
Da signal: the peak in the fluctuation amplitude precedes the D, peak by 0.4-0.6
ms in the case of a type-III ELM, whereas the two are simultaneous for a type-I
ELM. This key new result should be a focus of both theoretical analysis and fur-
ther measurements with other diagnostics. The magnitude of the delay for type-III
ELMs is qualitatively consistent with typical growth times involved in resistive MHD
instabilities;2 2 1 it may then be argued that the onset of a resistive ballooning insta-
bility, believed to trigger the type-III ELM,"' would cause transport and expulsion
of particles on such a time scale, after which a peak in the recycling signal can be
expected to occur. By contrast, ideal-MHD time scales are in the As range; this is
consistent with the lack of measurable delay seen in the case of type-I ELMs.

The peculiar phenomenology of type-I ELMs in the SOL, where seemingly ran-
dom "echoes" to the primary ELM event are often seen in the PCI signal (see Fig.
5.53), is also rather intriguing. It may be speculated that as the rate of transport
returns to H-mode levels after the occurrence of an ELM, the readjustment of the
profiles may lead to local violations of the ideal balooning stability condition in the
SOL.

An important question in any study of ELMs is the relation of the broadband
turbulence to the various MHD instabilities that are believed to trigger the ELMs.
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It is generally believed that the onset of the MHD mode causes a self-consistent
adjustment of the plasma equilibrium, 68 which leads in turn to an increased level of
turbulence, probably through a temporary slowing down of the sheared flows2 99 that
regulate turbulence in H mode. The ELM is terminated when conditions for H mode
are reestablished.

This general picture is consistent with the lack of coherent activity observed by
PCI during or before a type-I ELM, again because of the rapid growth of ideal MHD
instabilities (in the ys range); however, it should be noted that semicoherent precursor
activity to type-I ELMs has been documented by reflectometry in DIII-D,69 ,308 in
possible disagreement with this interpretation. On the other hand, the considerably
slower growth rates of resistive MHD events can explain the observation of a coherent
mode during the duration of a type-III ELM (see Fig. 5.56). The outward propagating
character of this mode also suggests that it may be a manifestation of a semicoherent
mode seen earlier by reflectometry: 312 in that case, the precursor oscillations were
observed to move radially outwards during a period of 10-20 is until they triggered
the ELM; at this point, they should indeed be expected to be visible on the PCI
signal, which is only affected by the outermost region of the plasma.

To conclude this section, it is worth recalling that coherent modes are observed
not only during type-III ELMs but in a variety of plasmas, primarily during H mode
(see §5.12). No systematic study of these phenomena has yet been carried out with
PCI data. We merely note here that these modes do not appear to influence the
broadband turbulence significantly; however, it would certainly be worth carrying
out a more accurate characterization of the interaction of coherent and broadband
fluctuations through bicoherence analysis.

The semicoherent bursts occasionally seen in H mode (see Fig. 5.60) could be
related to a semicoherent mode seen often by the reciprocating probe in DIII-D well
into H mode. 2 18 This possible correspondence, as well as the nature of the mode,
should be explored further in the future.
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6.13 Conclusions

As was announced in the prologue to this chapter, many of the key results described
in this thesis are of a phenomenological nature and thus await further theoretical
analysis. However, it has also been shown that PCI measurements have already
allowed direct verification of theoretical predictions in several areas, and qualitative
interpretations of the results have been offered in several other cases.

In some ways, theory and experiment in the field of plasma turbulence have
now reached a symbiotic and specular relationship. Verification of existing theories
requires measurements that are currently beyond our present capabilities (e.g. the
turbulent Reynolds stress); at the same time, however, experiments are providing in-
formation that theory has thus far been unable to address (e.g., in the case of PCI, the
parametric dependence of radially propagating turbulence). Further progress, thus,
can likely only come from fundamental innovation, both in analytical and numerical
methods and in experimental techniques.

In view of the inherent difficulties that characterize the study of turbulence,
both theoretically and experimentally, the progress reported in this thesis is rather
encouraging, and provides special validation to the specific diagnostic approach of
laser imaging. Further work both with the existing PCI instrument on DIII-D and
with new instruments yet to be developed would be certain to further advance our
knowledge of plasma turbulence and anomalous transport in tokamaks.
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7 Other Applications of Phase-Contrast Imaging

The mergence of two of the most vital areas of contemporary optics, image process-
ing and laser technology, has provided experimenters in fluid dynamics and plasma
physics with a powerful new diagnostic tool. Novel imaging techniques are constantly
being devised, and the field will undoubtedly continue to find new applications in the
future.

This chapter is devoted to a few selected applications of the phase-contrast imag-
ing (PCI) technique, which spring naturally from the main work described in this
thesis. These methods are directly applicable to the specific environment of toka-
mak plasmas, and could in fact be explored experimentally by modifying the DIII-D
PCI apparatus. The basic ideas are not new and have been proposed previously by
other authors. However, a thorough analysis was lacking, and the following discussion
attempts to fill the gap between the conceptual and the practical.

This chapter is configured as follows. A heterodyne version of PCI is considered
in §7.1; possible advantages over the homodyne case are discussed, and the main prop-
erties of the technique, including responsivity and sensitivity, are analyzed briefly and
compared with those of homodyne PCI. Section 7.2 shows how the symmetry proper-
ties of the phenomenon under study may be exploited to improve the spatial resolution
of the measurements; the chief limitation of transmission techniques, namely, the lack
of resolution along the direction of propagation of the beam, may be circumvented
by an appropriate choice of beam geometry. An alternative method that can be
employed to achieve a similar result is presented in §7.3: in this scheme, the line-
integrated signals from two crossed beams are correlated to localize the measurement
to the intersection region; third- and fourth-order correlations may also be used to
study the nonlinear coupling between plasma modes. The discussion in §§7.2 and 7.3
is not limited to the phase-contrast method, rather it applies to any line-integrated
imaging technique. Finally, some suggestions for future work and possible upgrades
of the DIII-D PCI system are offered in §7.4.
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7.1 Heterodyne Phase-Contrast Imaging

When a phase-contrast imaging apparatus is employed to investigate externally launchedi
rf waves, measures must be taken against the possibility of electromagnetic pickup of
the source signal in the detection electronics. Owing to the instrinsically high sensi-
tivity of the diagnostic technique and to the narrow bandwidth of the source, it may
be difficult in practice to shield the electronics to such a degree that direct pickup
becomes undetectable. As Weisen pointed out,"' such problems can be prevented
altogether by employing an optically heterodyne configuration, so that the measured
signal appears at a different frequency than that of the reference signal.

For an internal-reference system such as PCI, the simplest heterodyne config-
uration is obtained through intensity modulation of the laser power. The resulting
power flux can be written in the general form

9het (XI, ) = aC [1 + /3 cOs(Wmt), (7-1)

where wm is the modulation frequency and . is the total flux available from the laser
source; here, 0 < ce < 1, as the time-averaged flux cannot be larger than E, and
0 < 3 < 1, as the instantaneous flux cannot be negative.

Since the modulational factor is independent of x1 , the analysis of the response
properties of PCI that was carried out in §§2.10 and 2.11 is also applicable to the
heterodyne case. Both the dc signal Edc and the fluctuating signal t calculated
previously are now simply multiplied by the factor a[I + ,cos(wmt)]. Therefore,
the nonfluctuating signal will now have an actual dc component and a component at
the modulation frequency win; similarly, the fluctuating component will appear both
at its natural frequency w and at the shifted frequencies wm ± w, in two symmetric
sidebands about win. Whether detection is effected on a single sideband or on both
sidebands, the spatial response properties of this heterodyne system are identical to
those of homodyne PCI.

Differences arise, however, in the signal-to-noise ratios of the two configurations.
A preliminary observation is that in the case of double-sideband processing (accom-
plished, e.g., by straight mixing of the detector signal with the modulation reference
signal, followed by quadrature detection), the noise power is twice that of the cor-
responding homodyne case, owing to the contributions of the two sidebands. There
is, therefore, an unavoidable loss of a factor of two in the signal-to-noise ratio. In
single-sideband processing, the loss is greater, since although the noise is not dou-
bled, the signal power is reduced by a factor of four, as is the signal-to-noise ratio.
However, single-sideband processing must generally be used when the objective of
the measurement is the detection of an rf signal, since the two sidebands are too far
apart to be processed by the same electronics.

With reference to the discussion in §2.12, we can now calculate the power levels
of the different types of noise in the heterodyne case, normalized to the homodyne
noise power. Single-sideband detection will be assumed. Shot noise is determined

371



entirely by the dc component of the local-oscillator flux; hence, we can write

2Vn,LO,het (7.2)
Un,LO,hom

In the case of intrinsic detector-preamplifier noise, we obtain instead

2

Un,D,het _(73)

Vn,D,hom

The signal ratio can be written

2
U,bet __ (7.4
s,hom

Therefore, we obtain the following expressions for the signal-to-noise ratio:

S a 2/4 if shot noise dominates (7.5)

() bet \/horn { a 2 32/4 if intrinsic noise dominates.

Clearly, in both cases the optimum heterodyne performance is achieved with a = =
1, with a degradation of a factor of four from the homodyne configuration.

In a saturation-limited regime, when power in both the homodyne and the het-
erodyne case must be attenuated, one must impose the constraint a(1 +0) = 1. Thus,
in this case Eq. (7.5) must be modified as follows:

S /4(1+ )] if shot noise dominates 7.6)
bVet rN #2/[4(l + #)2] if intrinsic noise dominates.

These ratios are maximized when I = 1 (and a = 0.5), and they are equal to 1/8
and 1/16 in, respectively, the shot-noise and intrinsic-noise regimes.

In the case of rf detection, the degradation in the performance of a heterodyne
PCI system may well be compensated by the elimination of direct pickup.

An intensity-modulation scheme can be implemented experimentally in several
ways. An electro-optic modulator employs a birefringent crystal, whose index of
refraction changes in response to an applied electric field. In combination with ap-
propriate polarizers, these crystals can produce linear intensity modulation of up to
approximately 40%, around a mean power equal to one-half the input power, at fre-
quencies up to 500 MHz. Thus, since a = 0.5 and 13 ; 0.4, optimal performance
is not attained. In the unsaturated regime [Eq. (7.5)] one finds a signal-to-noise
reduction factor of 0.02 in the shot-noise-dominated case, and of 0.01 in the intrinsic-
noise-dominated case.
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Fig. 7.1 Intensity modulation scheme employing an acousto-optic modulator.

Acousto-optic modulators may also be used. When a radio-frequency signal
(of frequency wa) is applied to an acousto-optic cell, the power of the input laser
beam is apportioned between two output beams: the direct beam travels in the same
direction and has the same frequency as the input beam, whereas the diffracted beam
is deflected and is shifted in frequency by w,. The fraction of diffracted power depends
on the applied rf power. The power in both beams can be modulated by modulating
the intensity of the rf source [generally, wm ,< wa/4; note that the maximum value of
w,/(27r) is typically of the order of 80 MHz]. The power fluxes in the deflected and
undeflected beams can be written, respectively,

Ed = AE 1 + B cos(wmt) (77)
1 + B

and

E. = E - Ed, (7.8)

where A is approximately proportional to the peak rf power applied to the cell, and
can range typically from 0 to 0.8. The modulation coefficient B can range from 0 to
1.

If the deflected beam is employed, one finds a = A/(1 + B) and 8 = B; if the
direct beam is used instead, one can write a = 1 -A/(1+B) and 0 = AB/(1 +B-A).
In both cases, it can be easily shown by using Eq. (7.5) that the highest signal-to-noise
ratio is obtained by maximiming A and B, subject to their respective constraints, i.e.,
by setting A ~ 0.8 and B = 1. For the deflected beam, this gives a signal-to-noise
factor of 0.1 in the shot-noise regime, and of 0.04 in the intrinsic-noise regime. For the
direct beam, those factors are, respectively, 0.07 and 0.04. This method is therefore
preferable to that based on the electro-optic modulator, and use of the deflected beam
is preferable to use of the direct beam.

An even better performance can be achieved by using an acousto-optic modulator
with an unmodulated rf drive and a 50% deflection factor (A = 0.5 and B = 0), and
by then recombining the two beams (see Fig. 7.1). Now the modulation frequency is
Wm = w'. The parameters are # = i and, because of the 50% power loss at the beam
combiner, a = 0.5; hence, the signal-to-noise factors are 1/8 (shot-noise regime) and
1/16 (intrinsic-noise regime).

373



Lens Spatial
s__ Filter

C02 beam A-0 "
Cell

Plasma '

RF MODULA1ON (wa)

Fig. 7.2 Intensity modulation by misalignment of two frequency-shifted beams.

Higher efficiencies, that is, higher values of a may be attained by allowing two
laser modes to beat at slightly different wavelengths. However, if enough power is
available to reach the saturation level of the detector (the optimal operational point
in all cases), the fundamental limits on the signal-to-noise ratio remain 1/8 and 1/16
of the homodyne value for, respectively, the shot-noise and intrinsic-noise regimes.

It should be noted that in all these intensity-modulation schemes, the nonfluc-
tuating component of the power flux appears both at zero frequency and at the
modulation frequency win. If the preamplifiers are ac-coupled, the dc component is
eliminated as in the homodyne case; however, the shifted signal will be transmitted
by the electronics up to the mixing stage, and could potentially limit the dynamic
range of the system, depending on the saturation level of the electronics.

Weisen14 2 also proposed a different configuration, in which the direct and diffractedl
beams from an acousto-optic cell are made to cross in the plasma at a small angle 0
(see Fig. 7.2), which must be larger than the largest scattering angle to be resolved.
The spatial filter in the focal plane is the same as in the central-dark-ground method,
with a conjugate area of zero transmissivity and a perfectly transmitting complemen-
tary area. The optical axis of the system coincides with the direction of propagation
of one of the beams.

The phase-contrast signal is now the interference signal between the zeroth-order
field in the oblique beam and the scattered field in the straight beam. This signal is
modulated in both space (in the direction of deflection) and time, being proportional
to cos(wot - Okox), with wm = w,. This system is in effect an interferometer and not
strictly an internal-reference system; however, it retaimn the most desirable property
of an internal-reference system, that is, the insensitivity to vibrations, since the two
beams utilize the same optical components.

This technique permits to improve the contrast by increasing the fraction of
the power that is carried by the straight beam, just as in the homodyne case one
can reduce the transmissivity of the conjugate area. If enough power is available,
the signal-to-noise degradation can reach the theoretical limit of 1/2. An additional
advantage is that the nonfluctuating power flux that reaches the detector is now
strictly a dc signal, and an ac-coupled preamplifier will prevent it from saturating the
electronics.
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7.2 Localization of the Measurement by Symmetry Considerations

A line-integrated measurement is intrinsically unable to provide information on the
spatial distribution of the quantity under exam along the direction of integration.
However, when the phenomenon under study is known a priori to possess certain
spatial symmetry properties, the geometry of beam propagation can generally be
chosen in a way that minimizes the uncertainties introduced by the integration. As
was discussed in §4.1, when symmetry properties allow to reduce the dimensionality of
the problem, it may be possible in some cases to remove those uncertainties altogether.

(a) Localization by Toroidal Launching

As a very simple example, suppose that turbulence is known to be distributed
homogeneously in a certain direction, not only in its statistical correlation properties
but also in its instantaneous form: that is, the spatial spectrum in that direction, at
any given time, is a delta function centered at a wave number of zero. Clearly, then,
that spatial variable can be eliminated from the problem. If the beam is launched
in that particular direction, the line integration does not reduce the amount of in-
formation, and in fact it serves the useful purpose of increasing the signal. Ideally,
an imaging system can then provide a two-dimensional mapping in the perpendicular
plane with arbitrary spatial resolution.

Turbulence in tokamak plasmas does possess a similar symmetry property, albeit
not such a simple one. Turbulence is known to be symmetrically distributed along the
magnetic field lines.' 11 18 2 This allows to reduce the dimensionality of the problem
from three to two; however, the variable of integration clearly cannot coincide with
the symmetry variable, since the magnetic-field lines are curved around the torus.
Thus, the line integration in general will take the form of a convolution integral in
the two remaining independent variables.

To take maximum advantage of the symmetry, the direction of propagation
should be approximately toroidal, i.e., it should be tangent to the toroidal magnetic-
field lines83 (see Fig. 7.3). We shall make the temporary assumption that the helicity
of the lines can be ignored, that is, that the poloidal field can be ignored in compar-
ison with the toroidal field. In cylindrical coordinates, the fluctuating density will
then take the functional form A = h(R, z). If we now take a chord whose major radius
and elevation at the tangency point are respectively Rb and Zb, the line integral along
the chord can be written

0 Id(R 2 )T(Rb, Zb) = I fdl = JR h(R, Zb) ,(7.9)
b b

which can be recast as an Abel integral equation by an appropriate change of variables.
Hence, Abel's inversion17 8 can be employed to derive the dependence of ii on R from a
series of measurements on different chords with different values of Rb. The dependence
on z is measured by simply varying the elevation of the chord.
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Fig. 7.3 Top view of a tokamak with a tangentially launched laser beam.

If the helicity of the field lines is taken into account, the problem becom-s more
complex. To examine the problem, we must first qualify the concept of symmetry
along the field lines. That symmetry, in its previously stated form, would imply
that the wavelength and the correlation length along each line are infinite; on an
ergodic flux surface, this implies total symmetry over the entire surface. Since this is
contrary to observation, the paraliel wavelength and correlation length must in fact
be finite. Indeed, measurements of these quantities have been limited to distances
shorter than the circumference of the torus.181 ,18 2 We shall therefore assume that the
parallel correlation length is shorter than the toroidal circumference.

For the purposes of our problem, we can now identify each field line by the major
radius and elevation of its intersection with the reference azimuthal half-plane # = 0,
which is taken to be the plane of closest approach of the probing beam to the axis of
the torus (see Fig. 7.3). We can thus write ii(R, 0, z) = ii(Ro, 0, zo), where

{R= F(R,q#,z)
zo = G(R, q, z). (7.10)

These functions are single-valued because of the finiteness of the parallel correlation
length.

A given chord within the laser beam is identified by the coordinates Rh and zb
of its intersection with the half-plane 4 = 0. The cylindrical coordinates of a point
along a chord can be parametrized as follows:

2 R + (2)1/?{R =(Rb= arctan((/Rb)
Z Z ,

(7.11)
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Fig. 7.4 Illustration of projection of points along the laser chord onto reference plane through

field-line mapping.

where C is a linear coordinate along the chord, with its origin at 4 0. Thus,
a point ( along a chord is connected by a field line to a point with coordinates
Ro = F'((; Rb, Zb), 4 = 0, and zo = G'((; Rb, Zb) (see Fig. 7.4), where

F'((; Rb, Zb) = F ((R2 + (2)1/ 2 , arctan((/Rb), Zb)

G'((; Rb, Zb) = G ((R2 + (21/2 arctan((/Rb), Zb)

In these equations, Rb and Zb are parameters that identify the chord. We now want
to define the inverse function of F' with respect to the variable (; this function
will be multivalued in general. Therefore, we formally define the discrete set of -

functions ( = Fj- 1(Ro; Rb, Zb), for i = 1, . . . , m, where each function is defined over
a subdomain Gi(Rb, Zb) of the RO axis. Finally, we can define the functions

zo = Zi(Ro; Rb, zb) = G'(F1(Ro; Rb, zb); Rb, zb). (7.13)

These m equations jointly describe a curve in the half-plane <b = 0; this curve is the
projection of the laser-beam chord on that half-plane through field-line mapping (see
Fig. 7.5).

We can now formally write

T(Rb,zb) = . (/Ri +(2 1/2,arctan((/Rb), Zb) d(

= ,i Rb i (Ro, 0, Zi(Ro; RZ, Zb)) ) dRo, (7.14)
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Fig. 7.5 Projected trajectory of a laser beam by field-line mapping.

where

( Fi~-C OF

Ro v/ Rf +T2 OR
+ Rb OF

R2 +(2 igo

This expression is to be evaluated at = FJ-1(Ro; Rb, Zb), with R, q, and z given by
Eq. (7.11).

Equation (7.14) can be cast in the form of a two-dimensional Volterra equation
of the first kind"' 8 :

T(Rb, z) j dzO

where the kernel components are

Ki (Rb, zb; Ro, zo) ii(Ro, 0, zo) dRo, (7.16) I

(7.17)

In the simple case of Eq. (7.9), we find m = 2, Fl'-(Ro; Rb, Zb) = +(R2 -R2)1/ 2 ,
F'1(Ro; Rb, zb) = -(R2 -R 2)1/ 2, and Zi(Ro; Rb, zb) = Zb.

In the more general case, Eq. (7.16) must be solved by a method of successive
approximations. 475 In practice, the small value of the pitch angle will aid in the
solution. In particular, if the magnetic shear is small in the region of interest, the
direction of launching can be oriented to be tangent to the field lines, with a nonzero
vertical component; Eq. (7.16) is then well approximated by Eq. (7.9).
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A C0 2 -laser fluctuation imaging experiment that employs toroidal launching is
currently in progress on the CDX-U tokamak at Princeton University.1

(b) Localization by Spatial Filtering

The symmetry of fluctuations along the field lines can also be exploited in con-
junction with spatial filtering to achieve spatial localization along the direction of
propagation. This technique, which has been applied to scattering and imaging exper-
iments employing vertical launching, 4764 7 7 is based on the existence of two separate
selection rules for the detectable wave vectors: the symmetry along the magnetic-field
lines implies that the wave vector must be perpendicular to the field, and the scatter-
ing selection rule (see §2.3) forces the vector to be perpendicular to the direction of
propagation of the beam. Therefore, the measured wave vector at each point along
the beam must be perpendicular to the plane defined by the beam axis and by the
local magnetic field. The combined effects of toroidal geometry and magnetic shear
cause the direction of the wave vector to be different at different points along the
beam. Spatial filtering can then be used to select a direction, thus localizing the
measurement to the region in which that particular direction satisfies the selection
rules.

In the case of vertical propagation, the wave vectors must be horizontal. The an-
gle formed by the wave vector and the major radius is equal to O, = arctan(BR/Bo),
where BR and BO are respectively the radial and azimuthal components of the mag-
netic field in cylindrical coordinates (see Fig. 7.6). The angle Ok is usually small,
but it varies along the direction of the beam, typically changing sign across the mid-
plane. The azimuthal (toroidal) component of the wave vector can be selected by
spatial filtering within the intrinsic resolution of the measurement, i.e., for a Gaus-
sian beam with half-width wo, Ako ~ ±2/wo. Hence, the spatial resolution that can
be achieved, for a given radial wave number kR, is approximately given by

B4 OBR ~1

Az ~ i2wo I L . (7.18)

Unfortunately, in many cases BR varies little over large portions of the cross
section. In the geometry of the DIII-D PCI apparatus, which has access only to
the outer edge of the tokamak, some degree of resolution could be achieved by this
method only for wavelengths of the order of a few mm, far shorter than the range of
interest for our studies.

For a possible alternative launching geometry in DIII-D (see §7.4) with a major
radius R = 2 m, a test case for a lower-single-null diverted plasma with plasma current
I, = 1.37 MA and central toroidal field BT = 2.1 Tesla yielded the following result:
the quantity BR/B 4 is essentially constant in the region 0.5 < r/a < 0.9 (where
r/a is the normalized minor radius), taking the value -0.1 above the midplane and
+0.1 below it. The variation from -0.1 to +0.1 occurs in a small region around the
midplane (r/a ~ 0.4). The only goal that can be achieved by the filtering technique
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Fig. 7.6 Selection rules for the wave vector, which must be perpendicular to the magnetic field

and to the direction of propagation of the laser beam.

in this case is to distinguish between the upper and lower regions and detect any
up-down asymmetries. For this to be possible, the wave number must satisfy the
condition 2/(wolkRI) < 0,2.
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Fig. 7.7 Crossed-beam imaging geometry.

7.3 Crossed-Beam Correlation Technique

The crossed-beam correlation technique was developed in the context of scattering
from plasma density fluctuations by Surko and Slusher, 177 and was subsequently
applied to the Alcator A and Alcator C" tokamaks. The technique employs two
intersecting laser beams, which provide measurements of the density fluctuations in-
tegrated along the respective directions of propagation. The correlation function of
the two signals is predominantly affected by fluctuations occurring near the intersec-
tion point. In the case of plasma turbulence, the correlation volume is sufficiently
small to allow this technique to provide a substantial improvement in the spatial
resolution of the measurement.

A crossed-beam scheme may be employed also in conjunction with an imaging
technique, 83 although to our knowledge such an experiment has not been carried out
yet. In exploring this scenario, we shall ignore all diffraction effects arising from
the finite widths of the beams, and assume simply that the measured signals are
proportional to the line integrals of the fluctuations along the respective chords.

(a) Second-Order Correlations

In general, a number of discrete measurements will be carried out along parallel
chords within each of the two beams (see Fig. 7.7). Correlation functions may be
calculated between each chord of the first beam and each chord of the second beam;
each pair will cross at a point located within the intersection region, which is in the
shape of a parallelogram (a rhombus when the beam diameters are equal), as seen in
Fig. 7.7.
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Fig. 7.8 Two-chord crossed-beam correlation geometry. The two localized areas of turbulence
shown have a characteristic correlation length 1. The area at the intersection contributes to the
signal, whereas the other one does not.

In the following analysis, we shall use much of the formalism that was developed
in Chapter 4. We consider a two-dimensional system, with two beams propagating in
the (x, z) plane at angles ±9 to the z-axis; in particular, we choose the origin of the
system to be the intersection point of the two chords under consideration. We want
to calculate the following correlation function:

1 2 (t, t') ii (x, t)d( j (x', t')d('\, (7.19)

where ( and (' are the coordinates along chords -y and y', respectively (see Fig. 7.8),
and the angular brackets <> denote the operation of ensemble averaging.

The postulate of random phase [Eq. (4.9)] allows us to write the pointwise
correlation function in the quasi-homogeneous approximation as (Eq. 4.20)]

(ft(x, t) i(x', t')) =(2) 3 (52 (Xav, tav)) AR Ak I (k, w)

x exp[ik - (x - x') - iw(t - t')), (7.20)

where xav = (x + x')/2 and tav = (t + t')/2. The validity of this approximation rests
on the assumptions

|V in (2)) I-' (7.21)
| n ((ii2)) / t > -d,
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where L is a characteristic correlation length, and Td is the decorrelation time of the
fluctuations.

As in §4.3, we adopt here the following model for the spectral function I(k, w):

Ir C2 (ik, - ko,,)2 L kz-k,)2
I(k, w) = I ' 1Z exp [- 4 exp - 4 ]

x Pl[iw - w(k)], (7.22)

where 4 and C, are the correlation lengths in the x and z directions, respectively;
also,

P1 (w') = V r"W exp - 4  , (7.23)

where w' = iw - w(k), and

w(k) = wo + v9 " (k - ko). (7.24)

Here, wo = w(ko) and v9 is the group velocity.
The pointwise correlation function n this model is similar to the expression given

in Eq. (4.28), with some necessary modifications. Here, it takes the form

(i(x, t)i(x', t')) =(i 2 (xavtav)) F1(t - t') exp [- ( +

x cos [ko - (x - x') - wo(t - t')], (7.25)

where
U = X -X' - (t - t')vg, (7.26)

and F1 (t - t') is the inverse Fourier transform of F1 (w'), that is,

F1 (r) = exp - ). (7.27)

To pursue the issue of locality, we choose a Gaussian spatial distribution, constant
in time, of the form

(2(Xav, tav)) = i 0 exp -2&v - X0 _ (za, - zo)2 (7.28)

The condition imposed by Eq. (7.21), averaged over the Gaussian curves, now implies
7, > L and rz >> Cz. All the coordinates can be expressed as functions of ( and ('
(see Fig. 7.8) as follows:

x - X' = + (')sin 0 (7.29)
z - z' = (( - (')cos(
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and {Xav = (4 -')(sin0)/2 7.30)
Zav = (4 + (')(cosO)/2.

Equation (7.19) can now be calculated, using Eqs. (7.25), (7.28), (7.29), and
(7.30), and with a change of variables to (( - (') and (( + (')/2. The calculation is
tedious but straightforward, and yields the result

i27rr/;7'z e I r 2  ( £'Z a) 2
r 12() = os2  exp exp - 7'2 k x tan2

SZo - rvg,,/(2 tan 0)]2 (xo - V,,, tan 0/2)2
x exp\ -~ £/4tn0 exp )

2! + L2 /(4 tan20g) 712 + L2 tan2 0/4
/2 L12

x cos (2zOkO,z-j tan 0 + 2xoko, tan 0 - Q'r, (7.31)

where r = t - t'; also,
, = tan20)-1/2
S=(Z - + (7.32)

/ 1 ta2 \-1/2

1 4tan ) (7.33)

and
'2 47,12 tan2 0

Q =wo - ko,,g'z - ko,xv 9,1  ..
Z 2:

Let us firbt examine Eq. (7.31) in the case r = 0 (equal-time correlation func-
tion). The localization of the measurement is defined by the two exponential functions
in the second line of Eq. (7.31). The first exponential indicates that the measure-
ment is localized to a vertical region of half-width 4/(2 tan 0) around the intersection
point. This can be understood physically as follows: if turbulent activity exists in
a region in which the beams are separated by a distance larger than a coriJation
length, the signal is exponentially small (see Fig. 7.8). Of course, this argument
requires that turbulence be sufficiently localized, that is, T)2 < L./(2 tan 0). Under
normal conditions, when the correlation lengths C. and L. are of the same order, for
T = 0 the exponential involving x 0 reduces to exp(-o/i); this term simply carries
the obvious requirement that the intersection point lie within the turbulent region in
the x direction.

The exponential functions involving ko in Eq. (7.31) provide selection rules for
the measurable wave vectors. Normally, with z < %, we find from Eq. (7.32) that
'' C4,. Therefore, the selection rule for koz is simply Iko,2 , < 2/L; that is, since

the beams propagate in a nearly vertical dh ection, the component of the wave vector
along the z direction must be equal to zero - within a tolerance of the order of the
reciprocal of the correlation length - to avoid cancellation from line averaging.
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The condition on ko,1 arises because the two beams propagate in slightly different
directions. If the condition 7, < L,/(2 tan 9) is satisfied, we find from Eq. (7.33)

' ~1,. The horizontal distance traveled by each beam within the turbulent region is
equal to 2,2 tan 0; correspondingly, the selection rule for ko,, is Iko ,< 1/(i2 tan 9).

The first phase term [in the third line of Eq. (7.31)] ~ 2ko,2zo tanG is also
simple to interpret: this is the average phase shift caused by the k, spectrum at a
horizontal distance 2zo tan 9. The second phase term is due to the vertical separation
of the beams in the turbulent region; since that separation varies considerably over
the horizontal extent of the turbulence (2727), the rms phase shift is much smaller -
by a factor C2 /(22/ tan 9)2 - than its mean value 2ko, xo/ tan 9.

It is important to explore the role of the angle 9 in the correlation function. The
vertical localization of the measurement improves with increasing 9, as the beams be-
come separated beyond a correlation length at shorter distances from the intersection
point. However, the overall signal decreases with increasing 9, owing to two distinct
effects: the integration volume becomes smaller, and the joint selection rules for the
two beams become increasingly restrictive.

The first effect can be quantified by examining a simple case in which L. = L,
L, 7 = 71, ko = 0, and xO = 0. Then, the equal-time correlation function, from
Eq. (7.31), can be written

r12(0) = o c 2 9 (7.35)
cos2 0

This is a monotonically decreasing function of 9 in the range 0-45' (and then increas-
ing again from 450 to 900, as required by the symmetry of the problem). Its value at
o = 0 is given by the familiar expression for the autocorrelation function hi2rvj; its
value at 9 = 45' is ~ii 7rL 2 , a factor L/7 smaller.

The shrinking of the accessible wave-vector space, caused by the selection rules
for the misaligned beams, is reflected mathematically in the exponential functions
of ko,z and ko,. in Eq. (7.31). The strongest dependence on 0 is in the term
exp(-7 2 k2" tan2 9).

It is clear, therefore, that the choice of the angle 0 must strike a compromise
between the conflicting requirements of spatial localization and of a large signal am-
plitude.

To conclude our analysis of Eq. (7.31), we briefly examine the time-delayed case
(r $ 0). Under the conditions L' L , and 2127 tan 0 < L., the shifted frequency [cf.
Eq. (7.34)] is Q' ~ wo - ko,zvgZ. By comparison with Eq. (7.24), we can also write
Q' w(kog, 0); that is, this is the frequency corresponding to the k, = 0 component
of the turbulence, as mandated by the selection rules that we have discussed above.
The shift caused by the selection rule on ko,. is smaller, since that selection rule is
less stringent, as was shown earlier.

The localization conditions are modified for -r 0 in the presence of a finite group
velocity. The correlation function at a given r carries information on a localized region
that is not centered in the intersection point, rather in the point with coordinates

O = oTVg,, tan 9/2, zo = r7vg,/(2 tan 0). At this location, the vertical and horizontal
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separations of the beams are equal to the respective distances covered by the turbulent
wave packet in the time r. Taking the case of a uniform horizontal distribution
(l/x -+ oo) for simplicity, and retaining the condition 2 7z tan 0 < 4L, we find that the
dependence of the peak signal on zo is cx exp[-4z' tan2 /(L2 + rV )

It should be noted that an imaging configuration allows one to study the spatial
distribution of the fluctuations. If the vertical dimension of the rhombus shown
in Fig. 7.7 is larger than the characteristic localization length, i.e. if 2w 0/ sin 0 >
4,/(2 tan 0), performing correlation measurements on different pairs of chords permits
to map the spatial distribution of turbulence within the rhombus.

(b) Signal-to-Noise Ratio

The considerations made thus far are valid, strictly speaking, only if the ensemble
averages can be calculated exactly. In reality, these are estimated by sample averages
based on a finite number m of realizations. The previous analysis assumed the limit,
m -+ oc. When m is instead finite, turbulence originating outside the intersection
region contributes statistically to the correlation function, taking the appearance of
statistical "noise". We proceed now to calculate that contribution. We shall assume
that xO = 0 and zo = 0.

The variance of the estimate of the correlation function F12 is estimated by the
quantity165

r = ,(7.36)

where a 2 is the sample variance of the estimate of [12. The signal-to-noise ratio for
£12 can then be written

(-) r . (7.37)N rOr

The sample variance takes the form

2 = (i(xi, t)d(I ii(x 2 , t)d(2 ft(x', t')d(' f (x',t')d( - 2(t - ).

(7.38)
To calculate this expression, we assume joint Gaussian statistics (with zero meaii

value) for the density fluctuations at any four points in the plasma; we call then write
the fourth-order moment of the fluctuations as follows: 165

(i51ii2i3i4) = (i~2) ( 4) + (i1h3 ) (5i25i4) + (ii1 4 ) (l 2 i 3) . (7.39)

Equation (7.38) can then be written

L2 = r 2(0)F?2(0) + FY2 (t - t), (7.40)

where Fl and F22 are the equal-time autocorrelation functions of the line integrals of
ii along chords y and -y', respectively (see Fig. 7.8). [We have implicitly assumed that,

386



(ii2 ) is constant in time, as indicated by Eq. (7.28).] Each of these two functions can
be calculated formally in the same way as r12 from Eq. (7.19), the only difference
being the coordinate transformations: Eqs. (7.29) and (7.30) must. be replaced by

x - x' = i(( - (')sinO (7.41)
z - z' = ( C- ')cosO

and
Xav = ±((+ (')(sin 0)/2 (7.42)
Za{ = ((+ (')(cos 0)/2,

where the plus sign applies to chord -y and the minus sign applies to chord y'. Carrying
out the integration, we find

Pri(o) = 0 rf 7iY exp 4 , (7.43)

where ko,, is the projection of ko on the chord -. Also,

L= (cos 2 6 sin2 )1/ 2  (744)

and

Y cos2 0 sin2 )/ 2  (7.45)

The expression for 1722(0) is obtained by that for Prl(0) by replacing ko,, with ko,.
We simplify further by assuming ko = 0; we also take r = 0, to obtain the peak

signal-to-noise ratio. We can finally substitute Eq. (7.36) in Eq. (7.37), making use
of Eqs. (7.31), (7.40), and (7.43), and write

r(=S- 1)1/2 1 + os4 ) -1/2 (7.46)

When 4C = L, = L and 1, = 17 = 7, substituting Eqs. (7.32), (7.33), (7.44), and
(7.45) in Eq. (7.46), we obtain

S) + (tan20 + 47 2/ 2 )(tan 2 0 + L2 /4 2 ) ) -1/2

- = (m - 1)2/2 + +. (7.47)

This function decreases monotonically from ~ (m/2)1/ 2 at 0 = 0, to ~r. m 1 /2 C/7 at
0 = 45* (assuming m > 1 and 7 > L). For 0 < 1 and 2710/L > 1, one can write
approximately

- ~ mi/2 . (7.48)
( S 207

387



Thus, as expected, the signal-to-noise ratio is proportional to the square root of the
number of realizations and to the length of the region to which the measurement is
localized.

In many cases, one is concerned with extracting a signal from the intersection
region in the presence of noise from a turbulent region located elsewhere along the
beams. If the rms amplitude of the latter turbulence is fi)ut, and its spatial extent is
7out, the signal-to-noise ratio can be written approximately

~ 1i/2 i0(7.49)
\ ) r Rout 2yu

Thus, for this technique to be meaningful, the condition

M > 4 -2"u (7.50)

must be satisfied.
In practice, data averaging is usually performed over time, under the assump-

tions of stationarity and ergodicity. In the case of digital sampling, the number of
realizations is then equal to the product of the averaging time T and of the sampling
rate; in the case of analog averaging, or when the digital sampling rate is larger than
2Af (where Af is the bandwidth of the fluctuations), one can write m = 2TAf.

Similar considerations can be applied to the frequency cross-spectral function.
The signal-to-noise ratio expressed by Eq. (7.47) applies to the spectral function
also, with m = T/At, where in the ca.- of averaging over time, At is the interval
over which the Fourier integrals are calculated, and in the case of averaging over
frequencies, At is one-half the reciprocal of the averaging interval.

Carrying out the correlation calculations by software provides the experimenter
with the crucial ability to repeat the procedure on different intervals, using different
smoothing functions, and so on. An obvious consistency check can be performed,
for instance, by increasing the number of statistical samples and studying the trend
of the results: the measured amplitude should decrease as the number of samples
increases, and the phase should vary randomly, until the signal-to-noise ratio becomes
substantially larger than one; from that point on, i.e., when the signal originates
predominantly in the correlation region, no significant changes should be observed.

Coherent edge modes with long poloidal correlation lengths would, of course, in-
validate this argument. However, these mudes are easily identified experimentally by
their narrow bandwidth, and they can be filtered out in the analysis of the turbulent
part of the spectrum. Moreover, it should be possible to determine the radial location
of such modes by comparing the phase difference between the signals from two crossed
chords with the difference between the signals from two parallel chords within either
beam: this will give the separation between the beams and thus the radial location.
This is another example of the considerable advantages of a multichordal (imaging)
technique with respect to a simple forward-scattering measurement.
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(c) Higher-Order Correlations
When line-integrated signals are measured on parallel chords within an imag-

ing configuration, their second-order correlation functions provide information on the
spatial structure and on the wave-number spectrum of the turbulence in the perpen-
dicular direction. This technique, which was discussed at length in Chapter 4 and
was employed routinely in our measurements, conveys information that is averaged
along the direction of integration and is thus poorly localized.

In the preceding discussion within this section, it was shown that the same
correlation techniques, when applied to two crossed beams, provide spatially resolved
data, localized in the intersection region. However, the phase information is lost in the
correlation procedure, and the local wave-number spectrum cannot be reconstructed.

By resorting to higher-order correlation functions in a crossed-beam configura-
tion, it is possible to extract phase information from the measurement, while at the
same time localizing this information to the intersection region. The ultimate result
of this procedure, however, is not the wave-number spectrum; rather, it is a function
that is related to the nonlinear interaction between modes in the plasma. In addi-
tion, the signal-to-noise ratio is generally smaller than in the case of second-order
correlation analysis. Nevertheless, this technique deserves consideration, in view of
the exciting results of recent studies of nonlinear interactions in plasmas,21 9 ,4 78 ,2 42

and by virtue of its very attractive promise of combined spatial and wave-number
resolution. We shall analyze the third-order case in some detail and then offer some
comments on higher-order correlations.

We want to calculate the third-order correlation function for the chords 7Y1, Y2,

and 13, shown in Fig. 7.9. This function is defined as

F 123 (ti, t 2 , t 3 ) = fi(x, tl)d(1j ii(x 2 , t 2 )d ( 2 Ii(x3, t 3 )d(3). (7.51)
'1 2 'Y3

The origin of the coordinate system is set at the intersection of -Y1 and Y3; the ori-
gins of the linear coordinates (1, (2, and (3 are chosen to coincide with the points,
respectively, z, = 0, z 2 = 0, and ' 3 = 0.

By analogy with our previous analysis, we adopt a quasi-homogeneous approxi-
mation, expressing the pointwise third-order correlation function in the form

(fi(x 1, t1 )i(x 2 , t 2 )ii(x 3 , tW)) = (i2(Xav, tav)) 312 Y 3 (u 1 , U2 ; 71, 72), (7.52)

where xav = (x 1 + x 2 + x 3)/3, tav = (t + t 2 + t3)/3, ul = X1 - x 3 , u2 = X2 - x 3 ,
TI = ti - t 3 , and T2 = t2 - t 3 -

The choice of the variables on which the correlation form factor F3 depends
is dictated by the requirements of spatial and temporal invariance. It should be
noted that if the probability distribution functions of ft (at any three locations and
times) are jointly Gaussian, the function F3 is zero.165,479 In particular, the equal-
time, normalized triple autocorrelation form factor Y 3 (0, 0; 0, 0) is the skewness of the
distribution of fi, which is zero for any even distribution function.
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Origin 20

Y72

Fig. 7.9 Three-chord correlation geometry.

In general, the distribution will be nearly Gaussian in a strongly turbulent regime,
characterized by rapid growth and decay of transient structures,478 whose nonlinear
interaction results in complete randomization of the phases and in the absence of a
well-defined dispersion relation. At the other extreme lies a regime characterized by
a set of uncorrelated, noninteracting modes; in this case the distribution is strongly
non-Gaussian, but the triple correlation again vanishes because of the statistical in-
dependence of the modes.

The third-order correlation function becomes relevant in intermediate situations,
including the weak-turbulence scenario, the strong-turbulence scenario when total
randomization has not occurred, and the case of nonlinear interaction between a
semicoherent mode and background plasma turbulence.2 19 In these cases, which have
frequently been observed in thermonuclear plasmas, the triple correlation carries in-
formation on the degree of nonlinear coupling between the modes.

To elucidate this connection, we write the form factor Y3 in the form of a Fourier
integral:

3(Ul, U2;,2)= (2)6 f d2 ki d2k 2  dwi Jd12 I3 (k1 , k 2 ; w,2)

x exp[i(ki -ui + k 2 * u2 - W 1 T1 - w27 2 )], (7.53)

where the Hermitian function 13 is the third-order cumulant spectrum, or bispec-
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trum,480 which measures the statistical dependence between the three waves
(ki, wi), (k 2 , w2 ), and (k, + k2 , W1 + w2 ). By virtue of Eqs. (7.52) and (7.53) we
can write

(fl(ki, UJi)f(k2, W2)fL(k3, WA

= (ii2 (Xav, tav)) 3 1 2 I 3 (ki, k 2 ; wi, w2) (ki + k 2 + k 3) 6(wI + W2 + W3). (7.54)

We can express the three-wave interaction in the form of the quadratic nonlinearity1873

fi(k, w) = fij(k, w) + d2k' dw' A(k', k - k'; w', w - w')

x ft(k', w') ft(k - k'; w - w'), (7.55)

where fi is the component of the density fluctuation spectrum ft that is independent of
the quadratic interaction term. Multiplying Eq. (7.55) by ii*(ki, w1) and fI*(k 2 , W2 ),
calculating the ensemble average, and making use of Eq. (7.54), the following relation
is obtained between the coupling coefficient A and the triple correlation function 13:

13*(k 1 , k2 ; WI, w 2 ) = (ii2)1/ 2 I(ki, wi) [2I(k 2 , W2 )A(ki, k 2 ; w, mW 2 ) + (k + k 2 )

X 6(wI + W2 ) Jf A(k', -k'; w', -w') I(k', w') d2k'dw'

(7.56)

where we have neglected four-wave interaction terms; here, I(k, w) is the second-order
spectral function, or power spectrum, defined by Eq. (4.9).

To investigate the issue of locality, we adopt again a Gaussian form for (ii 2 ), but
we assume homogeneity in the x direction for simplicity: thus we write

(ij 2 (Xav, tav)) = nexp (Zav - Zo) 2  . (7.57)

The function 13 is left unspecified.
We can now calculate the triple-chord correlation function expressed by Eq.

(7.51). Given its dependence on Tl and T2, it is simpler to calculate directly its
double Fourier transform; using Eqs. (7.52), (7.53), and (7.57), we can write

F12 3 (wi,Uw2 ) = dk d 2 k2 I 3 (kik 2;wi 2 ) d(1 d<2 d(3

x exp - (zav-Zo) 2  exp[i(k 1 -ul + k 2 -u 2 )]. (7.58)

To carry out the triple chord integration, we must first express all coordinates as
functions of (1, (2, and (3, as follows:

UI1X = -((I + (3) sin 6 (7.59)
U1,z = ((I - (3) COS (,
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2,x = - ((2 + (3) sin 0 + /2 (7.60){2,z = ((2 - (3) cos 9,

and

Zav = ((1 + (2 + (3)(cos 0)/3, (7.61)
where is the horizontal projection of the distance between -y and 72 (see Fig. 7.9).

The triple integration in Eq. (7.58) is performed readily by means of a linear
change of variables to the set ((1 + (2 + (3; (1 - (2 + (3; (3); since two delta functions
appear in the result, the integrations over k1 ,, and k2 ,, can be carried out also. The
result is

(67r) 1/2 - 1
c123(, W2) = O (2r)2] dk2, exp ik2,,4 ]dk,,

x exp [v2(kilz + k2,2)2 tan2 ] exp[-2izo(ki,, + k2 ,,) sin 6]

/ kl, -2k2, k2, -2k,,\
x 13 kl,,, 3 t2 ,an0, k2,, 2, 3 i tan0; W1, W2)

(7.62)

It should be noted that the selection rules that are implicit in the functional form of
13 in Eq. (7.62) imply that the components of k, and k2 in the direction of Y1 (and
72) are equal. In general, the vertical wave numbers will be small, because they are
expressed by linear combinations of the horizontal wave numbers, multiplied by the
small factor tan 6.

To determine the localization properties of this measurement in a qualitative
fashion, we can assign a characteristic width R., to the bispectrum I3 as a function
of (ki, + k2 ,,). We then define a third-order horizontal correlation length L3,_ =

2v2/2Ik.. The double integral in Eq. (7.62) can be recast as an integral over the
sum and difference of kl,, and k2 ,.; at = 0, the integral over (ki,. + k2,.) will
vanish for Izol > L3,./(2 sin0) [assuming, as before, q, < L3,./(2 tan 0)]. Therefore,
the localization properties of the triple correlation function are similar to those of the
second-order crossed-beam correlation function, with L3,, replacing C4. In general,
these two correlation lengths will be of comparable magnitude.

As anticipated, the function 1 12 3 retains also phase information, through the
term exp(i~k2,,/2). Thus, by varying the position of the chord 72 within the beam,
thereby repeating the measurement for different values of , the spatial distribution
of P123 can be reconstructed. Under the assumptions zo = 0 and 9 < 1, the Fourier
transform of F12 3 with respect to /2 yields, to zeroth order in 0,

_(2r)1/2
P123(k2,.; W1, UW2) ~ ?,ri 1/2 95 I(ki1,., 0, k2,,, 0; W 1, W2) dki1,.. (7.63)

This quantity represents the third-order correlation between a purely horizontal mode
of wave number k2 ,, and all other horizontally propagating modes, and is localized
to the intersection region of the beams.
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The signal-to-noise ratio can be estimated by repeating the steps of part (b) of
this section. Adopting again a quasinormal approximation, and ignoring all crosscor-
relation terms in comparison with the autocorrelation terms, the sample variance for

1 1 2 3 may be written, by analogy with Eq. (7.40),

t72 ~ F11 (0)L122 (0)' 33 (0), (7.64)

and the signal-to-noise ratio takes the form

(S) = (m - 1)1/2 11231 (7.65)
N r12.

Guided by the second-order case, we estimate r 1 2 3 at T, = 0, r2 = 0, and ( 0. If
the bispectrum is approximately isotropic, assuming again 0 < 1, but 791 > L3, and
using Eq. (7.62), we can write approximately

1/2 -3[ f
123(0, 0) ~-_ (7r)r dkl,, dk 2 ,, dwi dW2 13(kl,,, 0, k2,., 0; W1, W2)

x exp [- 2 (ki,. + k2 ,z)202

~ 0 j JpL| , (7.66)

where pL3 is the skewness of the distribution of ii.
Substituting Eqs. (7.64) and (7.66) in Eq. (7.65), and using Eq. (7.43) with

ko = 0, we finally obtain the order-of-magnitude relation

r 0 M 121L3/ . (7.67)N1 073/2

In the case of noise from turbulence localized outside the intersection region, with
rms amplitude itut and effective vertical extent 77Out, we can write, by analogy with
Eq. (7.49),

rm ~M / I m 1/20 _ 3 .(7.68)

Imposing S/N > 1 results in the approximate condition

m > Ojut u .(7.69)
~ 53 3L

Clearly, this condition is considerably more demanding than that expressed by Eq.
(7.50) for the two-chord case, owing to the dependence on the sixth power of the
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Fig. 7.10 Four-chord correlation geometry.

density ratio, on the third power of 7lout/L3, and on the second power of the reciprocal

of 1p31 . Still, in quasi-steady-state conditions, when long averaging times are available,
it may be possible to obtain a signal-to-noise greater than one.

Similar considerations apply to higher-order correlation functions. In the fourth-
order case, one would employ the geometry shown in Fig. 7.10, and calculate the
function

P 123 4  (f jid(i h 2d( 2 ii3d(3 h4d(4 P12r.4--r1,24-r,4r23. (7.70)
f172 If a ,'4

This function is the quadruple line integral of the fourth-order cumulant, 480 whose
spectrum is related to four-wave interactions among plasma modes. The function
r 1234 is again localized to the intersection region and contains horizontal wave-number
information. Its signal-to-noise ratio is approximately

~ O mI2 A4 ho 4 (7-71)
r234 Rout

where p4 = (ii 4 ) / (ii2) 2 - 3 is the coefficient of kurtosis of the probability distribu-
tion function of fi, which vanishes in the case of Gaussian probability distributions.
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An impractically large number of realizations would likely be necessary for this signal-
to-noise ratio to rise above one. The ratio diminishes further when higher orders are
considered.

7.4 Suggestions for Future Upgrades on DIII-D

In this section a few suggestions are offered on possible additions to the DIII-D PCI
system. The first ones to be discussed involve only software development for data
analysis, while the remainder of the section examines possible material upgrades and
hardware development.

In recent years the limits of traditional statistical analysis, in its application
to plasma fluctuation studies, have been recognized with ever greater clarity. The
concomitant development of advanced statistical techniques, which proved to be par-
ticularly suited to this field of investigation, has led several researchers to include
those new methods in their data-analysis procedures, often with interesting and novel
results. The phase-contrast imaging technique, in particular, could reap significant
benefits from third-order correlation analysis and wavelet analysis.

The higher-order correlation techniques examined in the previous section may
be applied also to parallel chords within a single beam. In particular, the normal-
ized third-order correlation spectral function in frequency space, or bicoherence, is
an important quantity that carries information on the nonlinear (quadratic) interac-
tion between triplets of modes. In the experimental conditions found in tokamaks,
there is a rich variety of modes that are known to interact nonlinearly, giving rise
to generalized turbulent states. Bicoherence methods have been employed to ad-
vantage in the study of these interactions. 2 19 ,4 78 Digital bispectral analysis is now a
well-established technique, 480 and its application to the DIII-D PCI system would
significantly expand the capabilities of the system.

Wavelet analysis is a recent method 2 40 that has found extensive applications in
the fields of turbulence and chaos. This technique addresses the problem of nonsta-
tionarity, which hampers traditional methods based on Fourier decomposition and
time averaging. In wavelet analysis, a signal is decomposed in pseudo-Fourier com-
ponents that depend on both frequency (fast events) and time (slow evolution). This
method presents similarities with the quasi-homogeneous approximation 109 that was
used in our models of plasma turbulence in Chapter 4 and in the present chapter. The
wavelet technique has been shown to be better suited than traditional Fourier anal-
ysis to the investigation of transient or short-lived events, such as are often observed
in tokamak plasmas (particularly in the vicinity of a phase transition, such as the
L- to H-mode transition). Recently, the wavelet and bicoherence methods have been
combined to explore nonlinear coupling between short-lived turbulent structures. 2 42

Various forms of conditional analysis could also be beneficial. In particular,
statistical analysis with a condition imposed on the amplitude 481 ,231 can be useful
in isolating large-amplitude fluctuations that may behave differently from the small-
scale turbulence and that may dominate transport in tokamaks, according to some
theories. 390 ,462,36 0
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Two possible material upgrades of the DIII-D PCI apparatus have been pro-
posed, of considerably different scale. The more modest upgrade, which was briefly
mentioned in §3.7, consists of installing a dual-axis feedback vibration-compensation
system for the image plane, in addition to the existing one for the focal plane. This
upgrade would permit to greatly improve the absolute spatial resolution of the mea-
surement. This system would be a simplified replica of the existing one, with more
relaxed performance specifications: a damping factor of 1/5 at 20 Hz would be suffi-
cient to ensure an absolute spatial resolution of ~ 1 mm.

In the second material upgrade under consideration, a second line of sight would
be made available further inside the tokamak. The major radius at this location is
approximately 2 meters, corresponding to a normalized minor radius as small as 0.2
in certain plasma geometries (see Fig. 7.11). The larger size of the interior ports
would permit a beam diameter of 12.5 cm, which would also constitute the upper
limit on the measurable horizontal wavelengths.

One important application of this configuration would be the detection and char-
acterization of tne externally launched rf waves that are used for fast-wave current
drive7 5 (see §1.1). This interior location corresponds to the region of greatest interest,
where the physics of wave absorption is important; at the same time, the wavelength
of the waves in this region lies in the range that is accessible to PCI. In general, in
the case of a coherent wave, line averaging does not subtract information from the
measurement; in addition, the wave front of the fast wave can be modeled by means
of existing computer codes. A direct spatial mapping of the phase and amplitude of
the fast wave would be an unprecedented achievement, and would greatly contribute
to our understanding of the physics of wave propagation and absorption.

In the study of turbulence, the lack of localization due to line averaging would
constitute a more serious problem in this future geometry than in the present one.
However, as shown in Fig. 7.11, a crossed-beam configuration could also be employed.
As was shown in the previous section, correlation techniques applied to two crossed
beams allow to localize the measurement to the intersection region. With an angle of

~ 17* between the chords, a localized spatial mapping of the fluctuation amplitude
distribution could be obtained within a parallelogram that spans a vertical range of
68 cm and a horizontal range of 10.2 cm. This would permit a detailed, spatially
resolved study of core turbulence, on which far less is known than on turbulence at
the edge.

It should be noted that the large E x B poloidal drifts observed in many cases in
the edge of DIII-D may provide additional means to discriminate the correlated core
turbulence from the random contributions from the edge through frequency analysis,
as has been done for FIR scattering measurements.1 90 Thus, under these circum-
stances, it may be possible to relax the requirement on the number of realizations
[given formally by Eq. (7.50)].
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Fig. 7.11 Interior-beam upgrade and crossed-beam geometry in DIII-D.
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8 Summary and Conclusions

A novel technique for measuring plasma density fluctuations, phase-contrast imaging
(PCI), has been perfected and applied to the edge of the DIII-D tokamak. This
thesis has described a variety of results obtained with this diagnostic system, and has
provided a complete theoretical treatment and a numerical analysis of the technique.
Future applications and suggestions for future work have also been explored.

8.1 Summary

The principles of the measurement are grounded in the physics of light-plasma inter-
action, and have been derived by following the two complementary and equivalent
approaches of scattering and propagation in a dielectric. The Born and Rytov ap-
proximations were then introduced, and the latter was shown to be preferable in the
specific case of this technique. This approximation was then employed to investi-
gate in detail the general properties of scattering and imaging measurements in the
various possible detection schemes (near-, intermediate-, and far-field). This analysis
included for the first time the effects of a finite, although small, fluctuation frequency.
An extension of geometrical optics to the finite-frequency case was also given and was
shown to be equivalent to the scattering framework in the Raman-Nath limit.

The response properties of the phase-contrast technique were then derived ana-
lytically for the first time for a truncated Gaussian beam, and were compared with
the response functions of several other techniques under the same conditions. A
comparison of the signal-to-noise ratio of these techniques was also provided.

The layout and the properties of the PCI apparatus on DIII-D were described in
detail. Particular emphasis was placed on the successful design and implementation
of a novel feedback vibration-stabilization system, which is an essential component of
the proof of principle of this technique on large tokamaks.

As the PCI technique provides line-integrated measurements, it is intrinsically
nonlocal. This limitation and its implications were discussed in considerable detail.
In the specific case of the DIII-D apparatus, geometrical constraints reduce the un-
certainties associated with the line integration. The effect of these constraints was
explained qualitatively in an intuitive fashion, and was then explored rigorously with
the aid of an analytical model of plasma turbulence. This analytical work was sup-
plemented by a more accurate numerical analysis, which confirmed the main results
of the initial qualitative considerations. In particular, it was found that the DIII-D
PCI measurement is mostly sensitive to wave vectors oriented in the radial direction,
and, for this reason, is essentially unaffected by Doppler shifts from plasma rotation.
This important result implies that the frequency spectra can be measured directly in
the plasma frame of reference.

All diagnostics used in the study of plasma fluctuations are sensitive to a subset
of the total spectrum, both in frequency and wave-number space. In addition, each
diagnostic system can only access a finite region of space. For this reason, each
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technique is specific to the peculiar components of the fluctuations that it is able to
measure; however, under general strong-turbulence assumptions, each measurement
can also be considered representative of the properties of turbulence at large. Thus,
in the case of PCI in DIII-D, we have explored the detailed properties of radial modes
(that is, modes with purely radial wave vectors) and the more general properties of
turbulence.

The phenomenology was presented systematically in terms of time- and frequency-N
domain correlations, spatial correlations and wave-number spectra, amplitude, and
probability distribution function; further details were provided on the temporal dy-
namics of the turbulence, particularly across the L-H transition and during Edge
Localized Modes (ELMs).

Radial modes have been shown to be characterized by nonzero peaks in the wave-
number spectrum. These modes, observed and documented for the first time in this
thesis, were predicted earlier by theoretical and numerical work, which concluded that
they play a fundamental role in regulating transport. This study thus constitutes a
rare example of a theoretical prediction in plasma turbulence that has been clearly
verified experimentally.

The existence of convective cells, possibly related to resistive-ballooning reso-
nances, is consistent with measurements performed with PCI in L-mode plasmas
with low safety factor at the edge. rhese structures, which can cause substantial
cross-field transport, are found to disappear in H mode, in agreement with theory.

Several phenomenological results have been obtained on the general properties
of turbulence, extending previous measurements to areas that are often of interest for
comparison with theory. These include, as mentioned earlier, the frequency spectra
in the plasma frame (which typically follow an inverse power law), the dependence on
frequency of the correlation length and of the average wave number (dispersion rela-
tion, typically increasing in an offset-linear fashion), and the probability distribution
function (Gaussian over short time scales, non-Gaussian over time scales longer than
40 ms, indicating possible long-time-scale intermittency).

Also, the variations of the key turbulence quantities with the plasma parameters
have been systematically analyzed. Of the more regular cases, some were found to
be consistent with theoretical or independent experimental results, whereas others
were simply offered for future theoretical consideration. The random-walk diffusivity
was found to increase with input power in L mode, and to decrease sharply at the
L-H transition, in accord with the behavior of the anomalous plasma diffusivity; in
addition, the numerical value of the random-walk diffusivity is close to that of the
ion diffusivity at the edge.

Measurements of the fluctuation amplitude and of the correlation length were em-
ployed to test the mixing-length criterion. This was found to be satisfied by Ohmic
and L-mode plasmas, whereas H-mode plasmas had fluctuation amplitudes well be-
low the mixing-length level. This result may indicate that the L-H transition can
be described as a transition from strong to weak turbulence; however, this conclu-
sion may be invalidated by considerations of H-mode dynamics, which await a more
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extensive analysis.
Important new results were obtained in the area of the L-H transition. A number

of theories of the transition have been in existence for several years, several of them
awaiting experimental confirmation. A quantitative criterion for the occurrence of the
L-H transition, based on the concept of shear decorrelation of turbulence, has emerged
from the most widely accepted theoretical analysis. The ability of the PCI system to
provide time-resolved measurements of correlation lengths and decorrelation times has
been instrumental in performing a test of this criterion with unprecedented accuracy;
the criterion has thus been clearly verified. Furthermore, two independent and rather
different quantitative predictions for the changes in the correlation length and in the
decorrelation time at the transition have also been tested for the first time, with
mixed results: each of the two theories was successful in predicting only one of the
two quantities.

A systematic study of Edge Localized Modes (ELMs) was also carried out. A
multiple-interval averaging technique was employed to obtain statistically relevant
results on intrinsically transient events. Many similarities were found in the spectra
and dispersion relations of turbulence during ELMs and in L mode, although the
absolute fluctuation amplitude is generally substantially larger in the case of ELMs.
Thus, from the point of view of turbulence, ELMs are similar to H-L-H transition
sequences; the difference in amplitude and in the speed of the transition may be
ascribed to the different pressure profiles in the two cases. Systematic diffcrences
between type-I and type-III ELMs were discovered: the fluctuation burst in a type-I
ELM is simultaneous with the peak in outward transport, and the spectrum contains
only broadband turbulence; by contrast, the fluctuation peak precedes the point
of maximum transport by 0.4-0.6 ms and the spectrum contains also an outward-
propagating, coherent mode at approximately 100 kHz. These differences may be
related to the very different characteristic time scales of ideal and resistive MHD,
respectively.

A few possible additional applications of PCI have been presented. Heterodyne
PCI can be employed to improve the signal-to-noise ratio in the case of synchronous
detection; its properties have been shown to be very similar to those of homodyne PCI.
Improvements in the localization of the measurements can be achieved by symmetry
constraints or by crossed-beam correlation techniques; the latter in particular has
been proposed for a future upgrade on DIII-D. PCI can also be employed to measure
radio-frequency waves; one of the purposes of the proposed upgrade is, indeed, to
characterize for the first time the spatial structure of the fast waves used in current-
drive experiments.
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8.2 Suggestions for Future Work

Laser-imaging techniques are still in their infancy in the realm of plasma fluctuation

studies. It is certainly desirable to develop new and increasingly sophisticated tech-

niques, particularly to improve the spatial localization of the measurements. New

ideas will undoubtedly surface in the future and will lead to advances as spectacular

as those already experienced by fluid dynamics.

The PCI technique itself can be expanded and adapted to different configurations,

laser wavelengths, and detection techniques. The applications that were discussed
and analyzed in Chapter 7 in particular are feasible with present-day technology and

have the potential of generating new knowledge in the field of plasma fluctuations.

The upgrade that has been proposed for DIII-D (see §7.4) would explore both the

heterodyne PCI technique and the crossed-beam correlation technique, and would

lead to two prized and novel results: a spatially localized mapping of the turbulence

distribution in the plasma core and a first-time study of the spatial structure of fast

waves.

Additions to both the software and the hardware of the present DIII-D system
can also be implemented with great potential benefits. On the hardware side, photo-

conductive infrared detectors have now achieved performances considerably superior

to those of the detector currently in use: an improvement of the sensitivity by at least
one order of magnitude would be easy to obtain. Also, a second feedback stabilization

system for the image plane, in addition to the present one for the focal plane, would

considerably reduce the absolute spatial uncertainty of the measurement (see §3.5)
and possibly decrease the lowest accessible frequency below 8 kHz.

On the software and data-analysis side, higher-order correlation techniques, such

as bicoherence analysis, would be very beneficial for examining the spectra of non-

linear wave-wave interactions in the turbulence. Also, wavelet analysis could be

employed to provide a more accurate characterization of transient events, such as the

L-H transition and ELMs (see §7.4).

The present PCI system is currently operational on DIII-D and is available for

further physics studies. In this thesis we have focused by necessity on a number of

specific topics, such as radial modes, the L-H transition, mixing-length scalings, and

ELMs. Investigation of these topics is by no means complete, and further studies,
particularly utilizing dedicated plasma shots, would be extremely desirable: this is

especially true of ELMs and of the mixing-length scalings. A larger database of ELMs

is certainly needed for a more complete characterization, and a more detailed analysis

of type-II, or grassy, ELMs is in order; the mixing-length scaling has been tested in

H mode only just after the transition, and the dynamic changes during the complex
H-mode phase remain to be explored.

More generally, the evolution of turbulence throughout a discharge, particularly

in the late-H-mode phase, should be studied systematically. Other topics that have

only received preliminary attention in this thesis, but are nevertheless of great interest,
are the following: parametric scans of the turbulence quantities, convective cells,
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the VH mode, SOL dynamics in the early-H-mode phase, the effect of sawteeth on
turbulence, MHD and other coherent and semicoherent events.

8.3 Conclusions

The study of turbulence, whether in fluids or in plasmas, remains one of the most
challenging areas of classical physics. Although it is often motivated by practical
concerns - in the case of fusion plasmas, confinement - this area of research is also
fascinating in itself and continues to provide momentum to an incessant expansion of
the boundaries of mathematical, computational, and experimental techniques.

In some ways, because of its resilience to "classical", or conventional, approaches
and of its ability to supply new surprises at every step, turbulence has had a funda-
mental role in challenging some of our most cherished notions and in changing the
very way we think of a physical system. Turbulence may well prove to be the stuff of
twenty-first century physics.
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Appendix A

Derivation of the Scattering Equation

In this appendix the scattering equation (2.22) is derived from the wave equation
expressed in integral form [Eq. (2.21)]. The scattering equation is usually obtained in
the literatures," from the expressions for the radiation fields produced by accelerated
charges. It is shown here that the problem of scattering can be treated entirely within
the framework of a plasma dielectric model. This, of course, is to be expected; the
present alternative derivation, however, serves to better elucidate the nature of the
necessary approximations.

Our starting point is the integral wave equation (2.21):

E(x, t) = Eo(x)e-iW0 + J - [-ren'E' + 1 V'(E'.V'ln c')] d3x', (A.1)/1 47r ret

where the prime indicates quantities to be calculated at (x', t'), t' is the retarded
time (t' = t - R/c), and R = lxi - x'i1. We assume that for all points in the plasma
the relation R > L holds, where L is a characteristic dimension of the interaction
region (see Fig. 2.1), and that koR > 1, where ko = wo/c. This allows us to ignore
all integrals in which terms cc 1/(koR) 2 multiply quantities that are localized to the
plasma region, such as (1 - c) or Vf. We also make the assumption, justified by Eqs.
(2.1) and (2.11), that 11 - el < 1. Furthermore, c is taken to vary on a much slower
time scale than 1/wo. A key ingredient in the following analysis is Coulomb's law,
which can be written as

V.-E =--E -Vc. (A.2)

We concentrate now on the second term within the square brackets in Eq. (A.1).
The spatial derivatives are intrinsic derivatives with respect to the spatial variable
x'. On the other hand, the expression in square brackets as a whole depends on x'
also through the retarded time t' = t - |x - x'j/c. If we denote the total differential
operator with respect to x' as V we can write

V' = V/' - (V't') a= V'/ f t' (AaT Tt, T(A.3)

where ft is a unit vector in the direction of x - x'. Hence, we can write

1 1 [v' (E Vic' )] d3 x'=I 11+2, (A.4)
4"r W e ret

where
1 J1 [ (E' - V'd'\
7r= R V' dTi (A.5)4J R e'x e dx
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and
I2 O = i E' - V'E' d3X1', (A.6)

where the substitution O/Ot' -+ -iwo has been effected. Calculating the integral in
Eq. (A.5) by parts, we obtain

If i [-E' -V']e d3x' ~ 0, (A.7)

where the last equality is justified by the 1/R 2 dependence of the integrand. Using
Eq. (A.3), Eq. (A.6) can be recast as

12 = 13 + 14, (A.8)

where

13 = E' LV- -(e' - 1)lda, (A.9)4rcJR[ fret'
and

14= fa fi - E' a(E' -1)1 d3'. (A.10)
47rcJR[ c al ret

The function 13 can now be calculated with an integration by parts:

13 = i 1 E' - 2ni(n -E') d X
47r = (1 1 ret d,

- [(E' - 1)V'T- da' (A. 11)

Again, the first integral can be neglected thanks to the 1/R 2 dependence of the
integrand. In the second integral we replace V' with V' + (n/c) a/at' [Eq. (A.3)],
obtaining

iw0 f 1 ' V6\13 = - L I V' -E' - 6 e dax'

- (n -E') dX'. (A.12)40 J f [fl 1t ( 1(' /iret (.2

Substituting Eqs. (A.6), (A.12), and (A.10) in Eq. (A.8), we find

iwO fI [1 - 2 e'-1) E'7-]r'e' d 3X
47rc R K f ' ) f I' e

_ O i fi re' - 1 (wo - 2 (i -E') d3 x', (A.13)
ir2 J W 6 at' / .ret
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where use has been made of Eq. (A.2). The time derivative of ln(c' - 1) in the right-
hand side of Eq. (A.13) can be ignored in comparison with wo; also, we can replace E'

with 1 in the denominator. Similarly, the quantity (C' - 1)/e can be neglected in the
left-hand side, which then becomes identical with the right-hand side of Eq. (A.6).
Thus, we can combine Eqs. (A.6) and (A.13) and write

2 [' - 1)(n - E')Irt d3 x'
I 4 7c2 t (A.14)

Using Eqs. (A.7) and (A.14), with E given by Eq. (2.11), Eq. (A.4)
written

can now be

1 [ 1[VI (E' -V'E ]Fialy 7ainr s of the vetrietiyE in(.E)=-ix(n
dax' = [ren'(n E')],, dx'.

Finally, making use of the vector identity E' -- ii (ii . E') = -ni x (ni x
rewrite Eq. (A.1) as

E(x, t) = Eo(x)e-iwot + re n fn x (n x E') d]r '3.

This concludes the derivation.
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Appendix B

Evaluation of Diffraction Effects

We want to derive the diffraction ratio [Eq. (2.66)]

V(x_±, z; a, zE) IEo(x, z; a, zE) (B.1)
I Eo(x-, z; oo) I

at an arbitrary point beyond a screen S in which is a circular aperture E of radius
a (see Fig. 2.5). We recall that when the condition 2z/(k w) < 1 is satisfied, Eqs.
(2.63) and (2.65) are applicable.

The numerator in the right-hand side of Eq. (B.1) can be calculated from Eq.
(2.65). Substituting for EO from Eq. (2.63) with z replaced by zE and adopting a
scalar notation (justified by the scalar nature of the equations), we obtain

Eo(x, ,) = 8P 1 /2 (2) 1/2 po exp(-arctan()

x exp U2 du'u'eXp ( ,2)exp ( l

f
2  1-2i/

x 1 exp (-2.uU' cos 0) do. (B.2)

Here, the longitudinal coordinates have been normalized to the Rayleigh length ZR

kowo/2, i.e., C z/zR and (r, zE/zR; the perpendicular coordinates have been
normalized to the Gaussian half-width wo, i.e., u =x/wo and u' x/wo. The
integral over the aperture was expressed in polar coordinates. The integration over
0 gives the result 27rJo(2u'(-1 cos 0).

The undiffracted field is given simply by Eq. (2.63) calculated at z + zrj:

Eo(x:, z; oo) = rP 1 2 (2) 1/2 exp[iko(z + zy)]
S\[ ((+ ()2/

x exp -i arctan ((+ (E) ]exp -1+iU r (B.3)

Using Eqs. (B.2) and (B.3) in Eq. (B.1) we obtain after some rearrangement
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V(x-,z;a,zE)= 1+(2

x exp U2+ u2.+((+ )

+ 2 (

x e exp [ (2 + 

fo 1+( E

x JO (V Y) dY ,(B.4)

where the integration variable is Y 0 '
The quantity D is a measure of the perturbation introduced in the incident

gaussian beam by diffraction from the aperture. If the integral over Y is extended to
infinity, V becomes 1 for all values of x_, z, and zE, and the Gaussian function (B.3)
is unaltered.

For finite values of a, the integral in Eq. (B.4) must be evaluated numerically.
This evaluation was carried out in the following fashion: the parameters were assigned
the values ( = 0.003, (y = 0.05, and a = a/wE = 1 (where wr = wo(1 + (2) 1/ 2 is

the half-width in the aperture plane), which are typical for our setup (described in
Chapter 3); each of these three parameters was then varied independently over a
range around the initial value, while the other two parameters were kept fixed, and
for each case D was plotted as a function of x±/a.

Figure B.1 shows a representative set of three curves in the a scan; Fig. B.1(b)
in particular is the reference point for all three scans. The function is close to 1 for
xI < a and drops to low values for xj > a. This matches the intuitive expectation
that the diffracted field profile should approximate the profile at the screen, which
is Gaussian for x1 < a and is zero for x1 > a. Also, D oscillates around 1 up to a
certain radius and then falls off suddenly; the oscillation amplitude is larger in the
center and at the edge of this region and smaller in between. It appears natural
to characterize the "goodness" of the approximation by means of three quantities:
the maximum deviation from 1 in the central region (the most important region for
diagnostic purposes, since the power density is higher there), the maximum deviation
at the edge, and the ratio of the cutoff radius to the aperture radius a. The first
quantity is 20% at a/wr = 0.8, drops to ~ 10% at a/wE = 1, and decreases more
slowly at larger aperture radii. The edge deviation, by contrast, depends little on a
and is < 10% over a wide range (0.8 < a/wr < 2). The cutoff radius is also weakly
dependent on a: it increases with a and is larger than 0.95 x a for a/Wr > 0.7.

The z scan, three examples of which are shown in Fig. B.2, indicates that the
edge deviation is affected little by changes in z, whereas the central deviation increases
and the cutoff radius decreases as z is increased. To keep the central deviation below
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10% and the cutoff radius above 95% of the aperture radius (for a/Wr = 1), Z/ZR

must be kept below 0.007. Experimentally, this is a parameter that is defined by the
geometry of the plasma chamber. In our case, as will be seen in Chapter 3, z/zR

ranges from ~ 0.003 to 0.007 over the length of the plasma column.
Finally, there is no noticeable change when the position of the waist is changed

relative to the aperture plane, with Zr/ZR varying from 0 to 0.5 (Fig. B.3). In the
conditions of our experiment, this variation corresponds to a displacement of ~ 172
meters, far more than the optical path of our whole apparatus. This parameter is
therefore irrelevant under these conditions.

In closing, it is worth mentioning that in real experimental situations every mea-
surement is made over a finite region of space. In particular, with an imaging config-
uration such as that used in the present work, information is collected over a finite
radial range, owing to the finite area of the detector elements. If that extent is com-
parable to or larger than the spatial period of the diffraction oscillations, averaging
occurs and the effect of diffraction is consequently reduced. This is indeed the case
in the setup described in Chapter 3: the typical averaging distance is ~ 0.08 x a,
whereas the oscillation period in the reference case of Fig. B.1(b) is - 0.025 x a. We
can thus consider the effects of diffraction negligible for our setup.
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Appendix C

Derivation of the Scattering Signal

in the Rytov Approximation

We wish to recast Eq. (2.48),

V 1 (x, t) = -e-O(xA r n'e1 d X' (C.1)
R Iret

in a form that explicitly displays the density spectrum

fte(ki, w; z) =i e-ik_ -x-+iwtn,(x±, z, t)d2Xdt. (C.2)

The unperturbed field eto is assumed to be monochromatic, i.e., eVbo(x)
= e-iotEo(x). Substituting for ne from the inverse Fourier transform of Eq. (C.2)
we can write

- -___e_ fo r , 2I fdz' 2f kL x
01(X, ) - Eo(x, t) (2Ir)3  d d2 k-ekj '

x f dw fie(k,, w; z')e-iw(t-R/c)EO(x't, z')e-iwo(t-R/c) (C.3)

which can be rearranged to give

V),(x, t) = - 1 r J dwe-wt dz' J d2k_ 1e(ki, w; z')
Eo(x, t) (27r)3 1 1 j

Iei(wo+w)R/c e iEo(x' z')d 2 x'L. (C.4)
RI

In the analysis that follows we shall always implicitly assume that the frequency
spectrum of the density fluctuations satisfies the condition w < wo. Accordingly, mul-

tiplicative terms of order w/wo will be neglected. However, phase terms or exponents

proportional to w may still be significant and cannot in general be ignored, as will
become clear at the end of our discussion. The integral over x'- in Eq. (C.4) can be

simplified by adopting a parabolic, or Fresnel, approximation. To properly assess the
necessary requirements, a somewhat circuitous route must be followed. The integral

over x'I, which we shall call I, has the form of a convolution integral. Since the two-
dimensional Fourier transform of exp(ik, R)/R is 27ri(k2 - k2 )- 1 / 2 exp~iz(k 2 -k2 )1/2],

we can write the Fourier transform of I as

Z(K) = (k2 2 exp [i(z - z')(k2 - K2)1/2] AO(K - kj; z'), (0.5)
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where k. = (wo + w)/c and AO is the 2D spatial Fourier transform of E0 . The
condition for the applicability of the Fresnel expansion, which was stated in the
discussion following Eq. (2.57), is

|z - z'1K 4

8k3 < 1. (C.6)

Here, K indicates the sum of the spectral components of the unperturbed field EO and
of the density perturbation -h. If Eq. (C.6) holds, we can apply the approximation
given by Eq. (2.57) to Eq. (C.5); in addition, since k/ko < 1 and kowo >> 1 [Eq.
(2.64)], we can replace the denominator (k' - K 2)1/ 2 with k,. The result is

2iri K 2

Z(K) = kexp i(z - z') k, + 2k A,(K - k,; z'). (C.7)

The inverse Fourier transform of Eq. (C.7) has again the form of a convolution
product:

egas+->M- z'/c .WO + W IXi - x' 12
= ,( / T exp [ , +ik.- x' Eo(x', z')d J'z - z 1 I c 2(z - z')

27ric [k. c.c2 z -z' . 2wo + w ,
= exp ik - x 1 - / +:- (z - z )WO +W wo +w 2 C wO+w I

koeika(2u-z') k
x .[, exp (i, z 1xIL - X' 12 Eo(x'I, z')d2xI] ,

27ri (zu z1) -2(zu - z1)

(C.8)

where we have introduced the unperturbed coordinates

woz + wz' (C.9)
wo + w

and
kL

x xi - (zU - z')-. (C.10)

Recalling Eq. (2.59), which describes the evolution of the unperturbed field EO in the
paraxial approximation, we see that the expression collected in the square brackets
at the end of Eq. (C.8) is simply equal to Eo(xu±, zu). We can now use Eq. (C.8) in
Eq. (C.4) and obtain

,1(x, t) = ( 7 r , dwe-iw' dz'exp .- (Z - z')
(2)2 k-c wo+ I

]d2 kciexp iki-x. -i .cjzi Ix d2 _Lex (k_ -x_ -iwo + w z2

x fe(ki, w; z') Eo(xu1, z.) (C.11)
Eo(x)
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where the multiplier c/(wo + w) has been replaced with I/ko.
We now specialize our considerations to the case of a Gaussian beam. We note

the useful relations, which can be derived from Eq. (C.9),

z - z' Z Z' Z- Z'
= =. (C.12)

The ratio between the projected and incident fields in Eq. (C.11) can be written, by
virtue of Eq. (2.63), as

Eo(xsw, z) = -y exp[ko(z, - z)] exp -1 ]E O(x) p i \ 1 2 -

x exp k_ - x) exp ( _()2 k w (C.13)

where the longitudinal coordinates have been normalized to the Rayleigh length ZR =
kowO/2: thus, C z/zR, C' z'/zR, and (u zu/ZR. We have also introduced the
collimation parameters 105 y 1 + i(, 7' =1 + i(', and u = 1 + i(u. The origin of
the z axis is taken to be at the beam waist.

Substituting for the field ratio from Eq. (C.13), Eq. (C.11) becomes

0 1(x,t) = - 2- e-d dz'- - exp iL - Z')

x exp - - d2kj exp i k±- xi)

x exp -'k-- (zu - z') ft(k, w; z'). (C.14)
-r,,, 2ko I

For completeness we can also write the Rytov phase for the case in which the
unperturbed field is a plane wave. This can easily be obtained from Eq. (C. 14) in the
limit wO -+ oo, -y = -Y' = -= 1, (W( = 2z/ko, (w0 = 2z'/ko, and 0 = 2zu/ko.
The result is

Vi 1(x,t) = (2 )2 dwe-" dz'e(~Z) d2 k.Lk' *

x exp [-i (zU - z') fte(k±, w; z'). (C.15)

(a) Far-Field Detection

Let us know explore Eq. (C.14) in the specific case of extreme-far-field detection.
This is accomplished experimentally by measuring the field in the front focal plane of
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a focusing optic (see Fig. 2.7). The effect of a thin lens of focal length F and infinite
aperture in the paraxial approximation is to introduce a spatially dependent phase
shift10 3

zMg(x2) = 16)

To simplify calculations, we now revert to the Born scheme by assuming II << 1
and we study the Born field e'o i. We are now considering the region of free space
beyond the end of the plasma column and we can exploit the fact that the Born field
follows the laws of free-space propagation. This would not be true of the full Rytov
field exp(Vbo +?V1). We cannot simply use the propagation equation (2.59) because the
scattered field is no longer monochromatic. However, in the presence of a spectrum
of frequencies, w, = wo + w, the linearity of the Helmholtz equation (2.52) permits
us to obtain the correct time-dependent solution simply as a superposition of the
individual frequency components given by Eq. (2.59), with ko replaced by w,/c. In
view of the scalar nature of the problem, all equations will be written in scalar form.

We can now apply the free-space propagation integral [Eq. (2.59)] or its recip-
rocal wave-number equivalent [Eq. (2.58)] to each w. component and derive the field
in the lens plane zi as a function of the field in an arbitrary plane z, beyond the
plasma. To calculate the field at the lens focus, we can then make use of the Fourier
transforming properties of lenses. If we denote the frequency spectrum of the field
directly in front of the lens as Ei(x±; w,), the field in the focal plane will be given
by103

Ef (x±; w,) = exp Lz (F + -- A- w) , (C.17)

where A, is the two-dimensional (2D) spatial Fourier transform of El. Hence, the field
distribution in the focal plane is proportional to the Fourier transform of the field in
front of the lens. The proportionality factor contains a phase, which is a function of
xi (focal-plane coordinates) or, equivalently, of k1 , through the relation

ki = w . (C.18)
c F

This well-known result can be obtained in a simple fashion by applying the phase
shift given by Eq. (C.16) to the field and then calculating the diffraction integral [Eq.
(2.59)] for z = F.

Before we proceed to calculate the Born field, it is useful to derive an expression
for the unperturbed field Eof (the subscript f denotes that the field is calculated at
the lens focus). The Gaussian field spectrum at the beam waist is given by Eq. (2.61);
this can be used in Eq. (2.58) to find the field spectrum in the lens plane, A. Finally,
Eq. (C.17), with w, = wo, yields the focal-plane field distribution. This rather simple
calculation gives the result

87r P 1/2 (2\1/2 kowo 2 2
Eof (x1 7 ,z, + F) = -i ;--~}~ } 2 exp " F2
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F/x 2 2
x exp iko z, + F + I- )J. (C.19)

Each frequency component of the Born field in the plane of the lens is equal to

the product of the corresponding component of the Rytov phase given by Eq. (C.14)
and of the unperturbed field given by Eq. (2.63), both calculated at z = z1 . The 2D
spatial Fourier transform of the Born field is then

___ r,8rP /2 )1/2 __ d-ep eikozi It1
Au(k±, u)) = - - - dz' exp i -(zI - z')

(27r)2 ko \ c 7r WO^ 'YU J 2 C

xf d2 k lexp [- k (z - z')] he(k, w; z')
-7u 2ko I

x Jexp (- L2) exp i (Lk' - k) -x dex. (C.20)

The integral over x1 in the last line of Eq. (C.20) can be readily calculated:

the result is 7rwo-yu exp [- Ik1 - (y'/ 7 )k' 12 0Y /4]. We can now use Eq. (C.20)

in Eq. (C.17) to obtain the Born field Elf in the focal plane; dividing Elf by the
unperturbed field [Eq. (C.19)] and Fourier transforming the result with respect to W

finally yields the Rytov phase 01f. After some tedious but straightforward algebraic

manipulations, we obtain the following result:

z, + 2F (_
f(x±,t) = (2 2 k0  d exp {iW t - z + F(z - F)

x exp _ +LZR d 2 k_ exp k

IWs ZR X2 1
xexp -- k -x-L dz'expI-i1+ z'

(wo F V J L wo 2F2 Zj

x exp k- . exp -i ' _) (k , w; z'), (C.21)

where w, = wo + w.

We note in passing that if one wants to expand the Rytov exponential to second
order or beyond, one cannot simply use the various powers of the ?lf phase derived

here. The field Eog4, for I > 1, does not satisfy the Helmholtz equation, and therefore
it is not legitimaun to use Eq. (C.20). Instead, one must first calculate the 2D Fourier

transform of the fleld Eo01 in the near field, then insert it into the propagation

equation (2.58), and finally evaluate the focal-plane distribution by means of Eq.
(C.17). So the present derivation is only valid in the Born approximation.

Before we proceed to calculate uf(x±, t) = JEof12 if, we recognize at this point

that some terms in Eq. (C.21) can be neglected, upon multiplication by Eof, under
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one rather weak assumption. It is convenient to introduce here a fictitious ordering
parameter r < 1; for the purposes of the following considerations, T can be identified
with (w/wo) 1/ 2, and we shall ignore all exponents of order r', with I > 0. Our
assumption is that k w ~' 0(r'), with I > -1, for the entire spectrum under exam:
this is clearly a generous upper limit on k1 , but one that will allow us to ignore terms
of order k2w (w/wo). We can now quantify also the Fresnel conditions given by Eq.
(2.62) for the Gaussian beam and by Eq. (C.6) for the Rytov phase, by writing the
three relations 2Izu/(k3W4) - Or 1), 2Iz'l/(k w ) ~ 0(-'), and 1z, - z'1kI/8k ~
0(r1 ), with 1 > 1.

We observe now that in the complete Born field Eof blf the sum of the leading
terms in the real exponents is -(k2W2/4F 2 ) x±_ - Fk/kj1 2 . We can therefore assume
that at the observation point the inequality

Fk ( 1 2)
xi k k , + (C.22)

holds. Thus, in our ordering
the basis of these arguments,
xk2w2/2F 2 - 0(r m ), with m
ponent (w/wO)(ZR/F)(k±
- O(rtm ), with m > 1.

hierarchy, xikw0/F 2 - 0(rm) with m > -1. On
the exponent xizR(i + w/2wo)/(cF 2 ) ~ (w/WO)4
> 1, can be neglected. Similarly, we can ignore the ex-

- x) <; (w/2wo)(k 2W2)1/2(X2 k 2W2 /F2)1/2

Under these assumptions, Eqs. (C.19) and (C.21) can be combined to yield

Uf(xit) = - i rexP x 1 dwe-wt d2k_ exp -wk

x exp ( kR- x) Jdz'exp -i ( + z'

x exp i8k - x exp (i ' iie(k, w; z'),

where Ef,oo = 2(P/c)1/2kowo/F is the Gaussian field amplitude at xi = 0, and we
have introduced the retarded time t' = t - (zj + F)/c + (zj - F)X2 /(2cF 2 ).

Since ni, is a real quantity, the spectral function fte(kI, w; z) must be Hermitian,
i.e., fie(k±, w; z) = f*(-ki, -w; z). Therefore, Eq. (C.23) can be rewritten
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U (x , ) = -i r, 0 d I d 2k , ex p -k L 2 -k Lw ,

2X2

x Idzl e(k,, w; z')exp W _ z'

exp W k1 -X exp -ki'i)

x exp (± k, . x) exp -iw rt' + (1 + X/2F2)

±i/3(ki, w;z)±i k± - xj}, (C.24)

where 3(k_, w; z) = -(i/2) lf(he/i*) is the phase of the spectrum. This equation
can be rearranged to display the sinusoidal time dependence explicitly:

U(xt)= 2r 0 dwI d2k± exp (- kwX - k2w2 dz'
(27r) 2 ko j 0  2F'2 4 V

x -Le(ki, w; z') 1[I, cos(wt' + 0,) + iTi cos(wt' + 0j)], (C.25)

where I,(ki, w; xi, z') and Ii(k, w; x±, z') are real quantities defined by

ZR W(
1, (kL, w; x_[, z') 2 cosh (2 ki -x_ -F 2 cos 2- k-k x1

- ' - (C.26)

and the phases obey the relations

0k (k, w; x±, z') = 4< ± arctan tanh (-k, . xi)

Xcot 1 W k K -zI - J 1]
xak x- - -  z (C.27)tan (wo F 2ko w F

where

<b =z' + -Fk)- xF -fl(ki, w; z'). (C.28)

Equation (C.24) can be simplified considerably by adding a further approxima-
tion. We assume that the Gaussian beam is at least weakly collimated throughout
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the length of the plasma column; this is quantified by the following requirements:
(z'/zR)wok' ~ 0(r 1 ) and z'/ZR ~ 0(r-1) (it is understood here that the specified
order indicates only a lower limit). Owing to the possibility of a r-- dependence, these
conditions, along with the previously stated ones, impose rather weak constraints.
Note now that the inequality in Eq. (C.22) implies also that (z'/zR)x2k2w2/F 2

0(r-1 ). We can now neglect the following phase terms: w(1 ± w/wo)z'X/(cF 2 ) ~
(w/2umo)(Z'/ZR)(X 2k 2 2/F 2)

0(r), and (w/wo)(z'/F)(k± - x±) , (w/2wo)(z'/zq)(Xk2w/F 2 )1/ 2

kw2)1/2 , 0(,r).

Equation (C.24) now becomes

Uf r (xdwt) = - d I d 2 k, exp k w
~1 rX±t) (27r) 2 ko Jok0x 8/

Jdz'jfe(k, w;z') exp [ 2I2 F k- k ]

x s wt' - Z ( k±. x _ kc _
kCos ZW F 2k c

e x [ _ 4 ! & X L k 2
m xp 2F2 +2kok

x sin t' - Z' k xi + - - , (C.29)

where U! r and uf denote respectively the real and imaginary parts of Uf.
Under the same conditions, in the region defined by Eq. (C.22) we can derive

the Rytov phase by simply dividing Eq. (C.29) by the square modulus of Eq. (C.19).
The result is

1;f(xi,t 0 = I( k dw d d2k, ex p -ki-- (27r)2ko jJk w

x Zfe(kj, kz±, w)Iexp (i-!O k± - exp Tiot"

iizpk 1 -- TkL ir(k-L, k,±, w) ,(C.30)

where z, is an average plasma coordinate, and we have introduced a new retarded
time t" = t - (zi + F - z,)/c + (zi - F)xi/(2cF2 ); also, we have introduced the
full four-dimensional spectrum ft(k 1 , w), with phase P(k, w) = -(i/2) In(ne/i*), and
k,, = w/c - k - (xi/F T k±/2ko).

We now proceed to calculate the signal in the case of the modified heterodyne
configuration obtained by orienting the LO beam along the vector ko + KLO. The
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signal is given by [Eq. (2.76)]

U,,het(XL) = 2p Re [(Eof (xi) -Egf(xi - FKLO/ko))

x t91(xL)eWW(A)+0LOt-WOo ]. (C.31)

Substituting from Eqs. (C.19) and (C.30) in Eq. (C.31), we find

Up,,et(Xi,t) ( 2 pEfr fd d2k,

{Ifie(k±,kz+,w)Iexp [i ( FKLO+ kL )2

x exp - (KLO - k )2 sin [(QLO - w)t + OH+]

- (k- k -, w)exp [- j (x FKLO - 21

x exp - (KLO + k,2 sin f(OLO + W)t + OH-] (C.32)

where

0±(x±) = ±zpk_ - X- i F(k±L, k±, w) i L(z - z,)

+ (I - KLO xi - F KLO + (W1) - OLO- (C.33)

(b) Near- and Intermediate-Field Detection

We now proceed to study the Rytov phase V) for near- and intermediate-field
detection (Fig. 2.11). In the case of intermediate-field detection, the Born approxi-
mation will be implicitly assumed.

The starting point is again Eq. (C.14), which we rearrange as follows:

V1 (x, t) = - (r fdwe-wtJ d2 k-L dz'h.e(k, w; z')ie(z-z')
(21r)2 ko

x exp- -] exp i k- xi

x exp -k (( -'). (C.34)
4 -y,
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We can now make some relatively weak assumptions that will simplify this expres-
sion. We assume that the beam remains collimated between the interaction and the
detection region, and retain only terms up to first order in 1( - ('I in the exponents.
As in the far-field case, we introduce an ordering parameter r < 1 which we take now
to be of the same order as I( - ('I. We also take w/wo to be of first order or smaller,
so that terms of order 1( - ('w/wo can also be discarded. We then impose a weak
upper limit on the value of k, by requiring that kiwo(1 + (2)1/2 ~ 0(r-). We also
note that in the Born field EOe01 the sum of the real parts of the exponents is, to

leading order, -(1/w(1 +(2)1Lxi - ki-L (( - (')/2|2; this results in the inequality

lxiL I< wO(1 + (2)1/2 + kijwo( - (' (C.35)r1V 2

We can therefore state that x2/w2(1 + (2) 0(70 ). Finally, the Fresnel conditions
[Eqs. (2.62) and (C.6)] can be expressed as 1(1/(kowo) 2  0(r 2 ), ('I/(kowo) 2

O(r2 ), and Iz - z'IkI/(8k3) ~ 0-(r 2 ). It is important to note that the first two rela-
tions are the only conditions imposed on the distance from the waist to the interaction
and detection region, i.e. on ( and C'. Since kowo is generally a very large number,
those conditions may be compatible with rather large values of ( and (', while their
difference must be small.

Using Eq. (C.12) we now find that, to first order, y/, ~ 1 + i(( - (")/(1 + (2)
S1+ i(w/wo)(( - (')/(1+( 2 ) ~ 1. Also, the term (xI/w2)(1/-y - 1/y) ~ i(X2/w2)

(( - (J)/(1 + (2) ~ i[x0/ws(1 + (2 )](/wo)(( _ (') is of second order and can be
neglected. With these approximations, and exploiting the Hermitian character of ne,
Eq. (C.34) becomes, to first order in r,

0 1(x, t) = - , / du f d2 ki / dz'fte(ki, w; z')I e iWe±e(zz')
-(27r) 2 ko 0  _J, Jv z e

x exp ii - (( - (') 1T k -x exp [±i#(ki, w; z')]

x exp tI T ki- -xi- - 1F 2w k
1 ___2_O ( )2 LO 24__

x exp -i(( - 4' - 2 4ki}. (C.36)

We can rearrange Eq. (C.36) to display the sinusoidal time dependence explicitly,
obtaining

V) 1 (x, t) = 1 )2 d / d2 ki / dz' exp I + (2 4k 1 fte(ki, w; z')
(27x)2 k[ J ' I (C.37)

X [j, cos(wt' + 0') + iJi cos(wt' + 0j)], (C.37)
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where the retarded time is redefined as t' = t - z/c, and J, (ki, w; x1 , z') and
ji (k , w; xi, z') are real quantities defined by

jr W(k, w; x]{, z') = x 2 x { 2cosh(2T)

2 2 ______/2W CC +(kj

::F 2 cos (I-()1+-- 2kI (C.38)

where

T ki. -xi + 0 1 (C.39)
1 +(2 Wo 1+ (2 2

The phases satisfy the relations

6 (k±,w;x±,z') = e arctan [a -() 1+ 0+(2 k1
I ta ;2 1 +(2) 4

+ W ((2 k1- xi] x tanh T (C.40)

where

Z 1 + (2 1k X

+ W 2 - ) (; - (') - 3(k±,w; z'). (C.41)
WO I +(2 4

These expressions cannot be simplified further unless some stronger conditions are
imposed on the length of the interaction region and/or on the distance between the
plasma and the detector plane. The weakest requirement we can choose is the low-
divergence condition

L, < ko. (C.42)k,

This inequality, which must be satisfied by all spectral components in the plasma
(or by those that will not be stopped by post-detection filtering), means that the
scattered wave components, after propagating throughout the length of the plasma
column, must not stray outside the width of the gaussian beam, measured at the
waist (see Fig. 2.10). We can bring Eq. (C.42) within the ordering hierarchy by
requiring that L.k 1 /(kowo) - 0(r). This can also be restated by saying that the
quantity IC -CIkiwo is of first order in r for any two points C' and C in the plasma.
To simplify things further, we also eliminate all first-order terms and keep only terms
of zeroth order or larger.

Under these conditions, z' can be replaced by a constant z, in all the exponentials
in Eq. (C.36) except exp(Fiwz'/c) and exp(±iwskc('/4). The integral over z' can
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formally be eliminated by introducing the longitudinal wave number spectrum, and
Eq. (C.36) becomes

0 1(x,t) (2) 2  dw d2ki Z Ijie(k±,k,±,w)Ie:wt"

xexp i(1- 2]k_ -x exp k- x.
1 ~ ~ 4))2 w1 k 1 +(

x exp [±i(k±, k, w)] exp _+ 2 -2

x exp ( ) ) 4 (C.43)

where (p = zp/zR. Here we have introduced a new retarded time relative to the
propagation from the plasma to the detector, t" = t - (z - zp)/c, and k,, = ,j/c +
kI/(2ko); also, r(k, w) = -(i/2) tn(fii/i*) is the phase of the (k, w) spectrum. If, in
particular, we impose LkI/ko < 1 (Raman-Nath limit) and wL,/c < 1, the Rytov
phase will simply be proportional to the k, = 0 component of the density, viz., its
line integral.

The relatively simple dependence of the Rytov phase on the detector-plane co-
ordinates x1 suggests that a spatial Fourier analysis of the signal could yield useful
information on the (k±, w) spectrum. This could be accomplished by using a two-
dimensional detector array, for instance. We calculate now the temporal and spatial
Fourier transform of the signal:

fi(K, 0; z) = (Eo - EO) 0 1(x±, z, t)e-(K'x - d2xidt. (C.44)

The Gaussian field intensity can be taken from Eq. (2.63), which gives simply

E 22x 2
E0 . E; = exp I ( + 2)), (C.45)

where Eoo = 4(P/cwo)'/ 2 Using Eqs. (C.45) and (C.43) in Eq. (C.44), expressing
,he(k, w) again as f fie(k±, w; z') exp[-ik,(z' - zp)]dz', and carrying out the integra-
tions over time, space, and frequency, we obtain

2 22
SH (K,2; z) - E0 0 w0 re _,4 dk exp (- ~ 2 wmk k

S4 k ir/Jd 1+(2 8

x exp - s(1+(2 K - k-L I 1P
1 8 1 + (2

x exp i f2(C - (,)!wok dz'i (k±, Q; z')eiQ(,- ')/c.ii/4

wo4 4
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where uH and fii denote respectively the Hermitian and anti-Hermitian components
of fi.

We now calculate the frequency spectrum of the Rytov phase, b1I(x; Q)
= f j1(x,t)exp(ift)dt, in the limit in which both the plasma and the
detector lie within the Gaussian near field, 105 defined by the condition 1( - ('Iwok±
< 1 (see Fig. 2.10). More precisely, we assume 1( - ('Iwok - 0(r). From Eq.
(C.43), expressing fte(k, w) again as f fte(k., w; z') exp[-ik,(z' - zp)]dz', we derive

1P1(xt -t) =* I dwe-it d2keikiexjL
(2ir )2 ko J _ J

x Jhe(kw, w; z') exp i - (z - z') dz'. (C.47)

A comparison with Eq. (C.15) shows that the Rytov phase in the Gaussian-near-
field approximation is the same as in the plane-wave approximation. The frequency
spectrum is

SH (x; Q) =d_ 2 .i-x. dz'e '-z)/c
a 27r kO J f

k2
x fte(ki, w;z') x ;sns< (z-z'), (C.48)

icos [2k0 zo ) ,(.8

where, again, the subscripts H and a denote the Hermitian and anti-Hermitian com-
ponents, respectively.

To conclude, we calculate the crosscorrelation functions of the real and imaginary
parts of the Rytov phase. By virtue of Eq. (C.47) we can write

(x±, z, t) C (x', z, i') = (21)4 j f d 2 k,, J d 2 k± 2 ei(kiIx -k2x'")

x Jdif dw2 J dzJ dz ei[(wI-W2)Z/c

x exp [W 2 tI + Z/) -iwi t+

x sin rkI1 (Z - z xsn [ (z - z
c [s2ko osk 0  2

X (f(ki, wi; z') A*(k 2 , W2; Z)). (C.49)

We can now substitute for the correlation function from Eq. (2.89) in Eq. (C.49);
changing the longitudinal variables to z' = (z'+ z')/2 and A = z' - z', and carrying
out the integrations over k± 2 , W2 , and A, we obtain
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= 2(27) 4k2 Jdwe-W(t-) d2k± IG(k, w) 12

x e kI(x±-x'1 )

x {eQC/4 cosh (Q T:F cos _(z - zI) }
(C.50)

where we have removed the subscript 1 from k1 and w, and we have defined Q,
= kf-_/(2ko) and Dc = wL./c.
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Appendix D

Time-Dependent Geometrical Optics

In this appendix the equations of geometrical optics are derived from the wave equa-
tion (2.12). Our treatment is similar to the standard derivation (see e.g. Born and
Wolf 92), but it is expanded to include the time dependence of the eikonal and am-
plitude functions. The magnetic permeability 1L is assumed to be unity.

(a) Geometrical Optics

The wave fields are written in the form

E(x, t) = e(x, t)e~iwoteikos(xt) (D.1)

and
H(x, t) = h(x, t)e~'twtekoS(x't), (D.2)

where S(x, t) is a real function, called the eikonal or optical-path function. Substi-
tuting for E from Eq. (D.1) in the wave equation

E d 2

(V 2 _ -2-)E + V(E-V Ine) = 0 (D.3)
c 2 j t2

and arranging terms by powers of ko, we find

ko _ (VS)2 e
cI

+ iko 2(VS - V)e + 2! 1 - 4) e + eV 2 S - eje/c 2 + VS(e -V inE)
c ( c

+ V2 e sci/c2 + V(e. V In E) = 0. (D.4)

The geometrical-optics approximation is the limit A -+ 0. At this stage the magnitude
of e is arbitrary. We now retain only the lowest-order terms in A, that is, the k2 terms.
The result is the eikonal equation,

(VS) 2 _ E (1 - S/c) 2 = 0. (D.5)

The surfaces S = constant are called the geometrical wave fronts. To clarify the
significance of the eikonal equation, we make use of Eq. (D.5) to define the unit
vector

s VS (D.6)
'fi(1 - S/c)
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The light rays of geometrical optics are everywhere tangent to s, that is, the ray
equation can be written as

dx= , (D.7)
dI

where 1 is the length of arc of the ray.
A connection between the intuitive concept of light rays and physical optics can

be established by calculating the Poynting vector, averaged over a time period large
with respect to 1/wo. By making use of Faraday's law to leading order in 1/ko,

h = S , (D.8)
I - /C,

one can write the time-averaged Poynting vector as

(S) = Re(E x H*) = Re(e x h*) = j_ 1. [(e -e*)VS - (VS e)e*]. (D.9)
8r 98r 7r1-S/c

By virtue of Coulomb's law to leading order,

VS -e = 0, (D.10)

Eq. (D.9) simplifies to

(S) = C (eVS= 2  C WVS, (D.11)
87 I - S/c f (1 - S/C) (

where w, = e (e e*)/(167r) is the time-averaged electric energy density. Finally,
Ampere's law, e = -(1/e)(1 - S/c)-I(VS x h), combined with Eq. (D.8), permits
us to write

we = (e e*) (VS x h) - e*
16r 16r 1-/c
- h - (VS x e*) = - (h - h*) = wi, (D.12)

167r1-S/c 167r

where wm is the average magnetic energy density. Thus, we can rewrite Eq. (D.11)
as

(S= C VS C
(S) = c . WVS = 7WS, (D.13)

where w = we + wm is the total energy density. Hence, the unit vector s defines the
direction of energy flow, and Eq. (D.13) gives the velocity of energy propagation as
c/V,.
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The evolution of the amplitude e is described by the next order of approximation.
By setting the iko terms in Eq. (D.4) equal to zero, we obtain

V_ (1 - (8 + --- e + 1V2S - c e + I(e - V In E)VS = 0, (D.14)

where 0/8fl - -1/ 2 (1-/c)- 1 (VS.V) denotes the component of the gradient tangent
to the ray. From this equation we can derive two separate equations for the wave
intensity e2 = e - e* and for the unit polarization vector e/e. Taking the scalar
product of Eq. (D.14) with e*, adding the complex conjugate, and making use of Eq.
(D.10), we obtain the intensity equation

' ( 1 _ )(e 2 + r e2) 2 2 0

c l c at +2 (D.15)

Dividing Eq. (D.14) by e, we find

$ /O(e/e) O1e2 \/E (e/e) \E 1 ae2
+) (y-/ -ye + - --

0- 2e3 8 + c 2t c e 3

+ 1 e 2 _ )+ (e.Vlnf-)VS=O, (D.16)2e C2 2e

which, upon subtraction of Eq. (D.15) multiplied by e/(2e3 ), can be rewritten

( -) / + - (e -V ln) VS = 0. (D.17)
c \ l c at } 2 e

This equation shows explicitly that depolarization along a light ray is only due to the
polarization charge density p = -(1/47r)E - V InE [cf. Eq. (2.14)].

Note that the intensity equation (D.15) can be integrated along a light ray,
yielding

Ine(12, t) = (In e(li, t')Iret - 1 j (V2S _ ES/c 2 )(1 - /cWC-1/2 dl, (D.18)
2 11 1ret

where the subscript ret indicates that the quantity in brackets is to be evaluated at

the retarded time t' = t - (fI/c) j dl'.

(b) Geometrical Optics in the Rytov Approximation

To bring the geometrical-optics approximation into the framework of the Rytov
scheme (see §2.4), we need to introduce now the Rytov ordering parameter, that is,
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11 - El < 1. We write the eikonal as S(x,t) = So(x) +Si(xt) and the amplitude as
e(x,t) = eo(x)ii(x,t), and we assume that Si/So and Intl are of order 11 - (I. The
connection with the Rytov phases is established by writing

iPo = In eo + iko(So - di) (D.19)

and
i1 = In q + ikoS 1. (D.20)

It is important to note that there are now two independent ordering parameters,
1/ko and 11 - el, and that both expansion orders must be defined at each step of the
analysis.

To zeroth order in 11 - cl, we can write e -+ 1, and since So does not depend on
time, the eikonal equation (D.5) reduces to

IVSoI = 1. (D.21)

If we are considering an incident wave traveling along the z direction (see Fig. 2.1),
we can simply take

So(x) = z. (D.22)

Thus, the light rays are straight lines parallel to the z axis. Similarly, Eq. (D.15)
reduces simply to

= 0, 
(D.23)

8Z

while Eq. (D.17) states that there are no depolarization effects.
These results show that the zeroth-order field distribution in the (x-y) plane

does not vary with z. If, in particular, the field distribution is Gaussian, we conclude
that no apodization effects are observed at this level of approximation (i.e., zeroth-
order Rytov and first-order geometrical optics). This can easily be understood by
re-examining Eq. (2.63), which describes the evolution of the Gaussian field, and
noticing that all apodization effects are of order 1/ks. In particular, we can now
use Eq. (2.63) to quantify the defining conditions for this level of approximation as
1/(kozR) < 1 and z/ZR < 1, i.e.

k0w1 > 1 (D.24)
2

and
2z/(kowo) < 1. (D.25)

These conditions can also be derived within the geometrical-optics formalism. The
term that we have ignored at this level of approximation is the second-order term
V 2 eo in Eq. (D.4). For a Gaussian the peak value of this term is -4eo/w2. The
requirement that this term be negligible with respect to the zeroth-order term k2eo
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Densit
wave

Plasma

Fig. D.1 Modified wave fronts and light rays from density perturbation in the plasma.

yields Eq. (D.24), within a factor of two. The other condition is subtler, as we cannot
simply require that V2 eo be smaller than the first-order term, since the latter is zero.
One must solve instead the new equation

V 2 eo + 2iko & = 0. (D.26)

If the approximation V2 eo ~ -4eo/w2 is used, the solution is eo(z) ~ eo(0) x exp(-iz/zR).I
Imposing this exponent to be small implies Eq. (D.25).

We now examine the geometrical-optics equations to first order in 11 - El. Since
we expect S1/So to be of order |1 - cl, we ignore the quadratic terms (VS1)2 and 8?.
Thus, the eikonal equation (D.5) can be written

2VS 0 - VS + 2 + (1 - e) = 0, (D.27)
C

which, by virtue of Eq. (D.22), becomes

2 19 + 2 S+ (I - )=0. (D.28)

The solution to this equation can be expressed in the form

1 (x 1 , z, t) = - [ (xiz',t -z - I dz', (D.29)
S , X - , Z t = 2 [ Cz oL I

where zo is an arbitrary point outside the plasma, where S1 is zero. In the derivation
of Eq. (D.5) it was seen that at this level of approximation in the geometrical-optics
hierarchy the amplitude of the field is unaffected; thus, q = 1. By analogy with the
arguments in §2.4, for the simple case of a uniform and constant E, the condition for
ignoring the quadratic terms (VS 1 )2 and 8? in Eq. (D.27) is gleaned easily from Eq.
(D.29): the requirement is 11 - fJ < 4, as we found in §2.4 [Eq. (2.51)].

The ray trajectory is given by Eqs. (D.7) and (D.6), which at this approximation
level yield, by virtue of Eqs. (D.22) and (D.29),

dx1
-, ~ i + - (V,,E)dz', (D.30)

di 2
where i is a unit vector in the z direction. The ray trajectories and wave fronts are
depicted in Fig. D.1.
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For the specific case of a plasma, operating the substitution [Eq. (2.11)]

E - 1 = -47rrefie/ko

and using Eq. (D.20), Eq. (D.29) becomes

0 1(x, z, t) = -iAore Ihe[xL, z', t - (z - z')/c] dz',

(D.31)

(D.32)

which is identical with Eq. (2.84). This equation was derived within the Rytov
formalism as the zeroth-order limit for Q -+ 0 and Qd -+ 0, where Q = L.k2/2ko,
Qd = (z - zp)kI/2ko, and L 2 is a characteristic length of the plasma column. It is
therefore reasonable to expect those limits to be equivalent to the geometrical-optics
limit.

To prove this equivalence, we must use the geometrical-optics equations to first
order in 1/ko. Keeping only first-order terms in 11 - El, the integral solution for the
intensity, Eq. (D.18), becomes

In T(12, t) = [In 77(11, t')]ret - [V 2S, _ j/C2],ret dl, (D.33)

Since the term in square brackets is of first order, the zeroth-order trajectory can be
used for the integration, i.e., di = dz. We can now write

In q(z,t) = - [V 2S, - S1/C 2 Iret dz', (D.34)

where the integrand must be evaluated at the retarded time t' = t - (z - z')/c, and
zo is a point encountered by the wave before entering the plasma. Using Eqs. (D.29)
and (D.31), we can calculate

V2S, 1 21rr, I dwe-w J d2k ekj_ xj 0 ne + ite
(21r) 3 ko j [ az c

- + kI) Jne(k, w; z')e~(z'z')w/dz' (D.35)

and

/C2 ( 2rrJ dwe-iWt Jd2k eikl..xi
(2 r) 3 k , ' 2

x 'fkw ze( )~d'
(D.36)
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where fie is the spectrum defined in Eq. (C.2). Substituting Eqs. (D.35) and (D.36)
in Eq. (D.34) and integrating to a point z located outside the plasma, we find

in 77(z, t) = - 1 rrde-t d2kieikj x. dz"es(z-z")/c
(27r) 3 Q I f IO

x i fne(ki, w; z") + kj fi,(k±, w; z')ei(z"-z')w/cdz']

(D.37)

Inverting the order of integration between z' and z" in the last term, and carrying
out the integration over z", we find

In i(z,t) = 3(2 ) Aor dwe-iwt d2k eki'x _

Xk w; z)e-(z z')I dz'. (D.38)[O 2wo 2ko J

In our treatment of the Rytov expansion we made the assumption that all multiplica-
tive terms of order w/wo could be ignored. If we accordingly ignore the first term ir
the square brackets, we can then take the temporal Fourier transform of Eq. (D.38),
and, by using Eq. (D.20), we finally obtain

Vi H(xI;Q) = - - d2kski i
27r ko f

x ' e(ki, ; z') eQ(z -z')/c k (z - z')dz', (D.39)
0z 2

where 1H denotes the Hermitian component of Vi1; this expression coincides with
Eq. (2.81) to first order in Q and Qd. The correspondence between the geometrical-
optics approximation and the limit Q -4 0 and Qd -+ 0 is thus confirmed. It should
be noted that the first-order geometrical-optics equations do not affect the eikonal;
since the imaginary part of 01 is proportional to S1 [Eq. (D.20)], the anti-Hermitian

component of ik is also unaffected. Correspondingly, the first correction to the anti-
Hermitian component of Eq. (2.81) is of second order in Q and Qd.

To first order in 11 - 4, using Eq. (D.21), the depolarization equation (D.17) is
reduced to

(a(ez/eo) 1 eo - V In 1E. (D.40)
9z C (t 2 eo

Taking a harmonic component oc eik- xi of the perturbed dielectric constant (e - 1)
in the direction of eo, we can write approximately

~ k±LzI1 - EI/2. (D.41)
eo
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For this term to be negligible with respect to the Rytov phase ikOS 1 , given to zeroth
order (in the geometrical-optics sense) by Eq. (D.29), we must require

k± < ko. (D.42)

This result is identical with Eq. (2.27), which expressed the condition for neglecting
depolarization effects in the wave equation.

To complete our proof of the validity of the geometrical-optics expansion, we must
now examine the terms in the wave equation (D.4) that are of first order in 1/ko,
and determine the conditions under which they can be neglected in comparison with
the zeroth-order terms. (In the Rytov expansion, of course, all these terms must be
calculated to first order in II - El.) These conditions, combined with the requirements
that Q < 1 and Qd < 1, which are necessary to ensure that | - 11 < 1, will define
the geometrical-optics limit in which Eq. (D.32) is valid.
The terms we need to examine are:

likoeoV 2S, I~ kokI11 - eILeo/2;

likoeo5i/c 2 - kow 2 1I - eILeo/2c2;

and

likoVSo(eo - VE)l ^~ kokill - cleo.

The term involving e is negligible if In 77 < 1, which has already been proven. The
remaining term involving el is automatically negligible if all the others are. Each of
these terms must be small in comparison with Ik2(1 -E)eo1. The resulting inequalities
are, respectively,

k 2L, /(2 ko) < 1, (D.43)

k± < ko, (D.44)

and
w < 2wo. (D.45)

Equation (D.43) reiterates the Raman-Nath condition Q < 1, Eq. (D.44) is the
condition for small-angle scattering, and Eq. (D.45) is a relation that was assumed
throughout the derivation of the Rytov equations. To these three relations we only
need add Qd < 1, i.e.,

kj(z - z,)/(2ko) < 1, (D.46)

where z, is an average plasma coordinate. Equations (D.43)-(D.46) define the geometrical-I
optics approximation in the context of the Rytov expansion.
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Appendix E

Calculation of an Integral

We want to calculate the integral

27r J, 2+z 2yz cos
T = I4 (EA1)

0o ,y2 + Z2 - 2yz cos #

where q denotes the angle between the two-dimensional vectors y and z. We use the
known relation155

J(x =I P(K)eK 2K, (E.2)
|xi 27r J

where

P, (K) =1 if JKJ < 1 (E.3)
0 otherwise.

Substituting Eq. (E.2) in (E.1) we find

I= J d ,P(jKj)e K-(y-E)d2K. (E.4)21r

We can now introduce polar coordinates in the K plane, using the y vector as refer-
ence, and write

1 I dk KdK j eiKy cos -iKz cos(-0)d, (E.5)
27r J J

where 0 is the angle between y and K. This equation can be rearranged with a change
of variables 0' = 0 - 0 to give

1 f KdK j eiKy cosadO -iKz co 'd#'. (E.6)
2xr 0 0 fo

The integrals over the angles are readily calculated, with the result

I = 27r j Jo(Ky)Jo(Kz)KdK. (E.7)

This integral is also known, 155 and the final result is

= 2 2 [yJI(y)Jo(z) - zJ(z)J(y)]. (E.8)
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Appendix F

Transfer Function of a Generalized Spatial Filter

Our starting point is Eq. (2.118) for the first-order power flux , rewritten here in
the limit a -+ oo and for a one-dimensional configuration at y = 0:

C
C(Mx, 0, t) = 4M 2 Im{[T o EI[T o (E)]*}, (F.1)

where it is understood that the right-hand side must be calculated at the object and
at the retarded time t - td, td being the propagation time from the plasma to the
detector. We shall calculate the convolution products via inverse Fourier transforms
of the products in wave-number space. The ingredients we need are Eq. (2.170),

t(k) = /~~e" H(- k - k) + fp~~ e H(k - kc) + jFpPk,(k), (F.2)

and the one-dimensional Fourier transform of Eq. (2.132),

(P 1012 2 k2

E(k) = 4 ) exp wk, (F.3)

where we have removed the subscript x from k for simplicity. Also, with a sinusoidal
input b = OK cos(Kx + t9o), we can write

1(k) J Epo(x)(x)e-kdx = 2 (r 'PK [exp ( W-(k - K )2

2 wk+ )2

+±exp -w(k + K - i7o (F.4)

where we have made use of Eq. (2.132).
Now Eq. (F.1) can be rewritten

((Mx) = C 1 Im [(It$oeikdk ( *f4*eikdk]. (F.5)
47rM 2 (2ir)2- )i U J /

A straightforward, albeit tedious, calculation yields the result

((Mx, t) = 'T(K) OK(t - td) cos(Kx + t9o + OT(K)), (F.6)

where
T (K) = uo(x) /A 2 + B 2 , (F.7)

432



and
.,(K) = -arctan(B/A). (F.8)

The functions A and B are defined by

A(K; x) = -(y'-jsina+ v/p-i+sini3)Re(Wo - W+) + P-_ P+Im(Wo - W4 )

22
+ (pV ~cos a-v'M cos/3-_ P-;P+Im(WvoW*), (F.9)

and

B(K; x)= (Vpp -sin a + sin#)Im(W-) + P- P+ Re(W_ )

+ (v ~~Zcosa - vfi+ cos # - ~ Re(WoW* ), (F.10)

where

Wo(x) = erf (- (F.11)

W±(K; x) = W 1(K; x) t W2 (K; x) (F.12)
2

and

W1 (K; x) = erf (k ±2K)wo _ i . (F.13)
2 er . 2 . F.O

Also,

2O(x) = 2e-22/Wo (F.14)

is the dc power flux in the absence of a spatial filter.
For signal-to-noise ratio considerations we shall need the dc power flux also. This

can be obtained from Eq. (2.117), written in the form

Edc(MX) = c 1 (12 f2 2 dikdk *ft* Pe-ikdk. (F.15)
87rM 2 (27r-)2 )~Id~ U&J ~ ~ e

Substituting Eqs. (F.3) and (F.2) in Eq. (F.15), and using Eq. (F.14), we find

6d,(Mx) = UO(x)I rei 1 WO + e O + FpRe(Wo) 2 (F.16)uox1 p..e 2 +2p~
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(a) Imaging Conditions

Let us now study Eq. (F.6) in the limit K >> kc and K > 1/wo. In this limit,
W41 1, W 2 -+ -1, W+ -+ 0, and W- -+ 1. Thus Eqs. (F.9) and (F.10) become,
respectively,

A(oo;x) = -(,fp/psina + vfp-psin#)Re(W) + P- P+ IM(Wo), (F.17)
2

and

B(oo; x) = P- + +(V z~~cos a - 2cos 2+ + Re(Wo). (F.18)

It is clear from these expressions and Eq. (F.8) that the phase shift 0,(K) is in
general a function of x even in the limit K -+ oo. The dependence on x is folded into
the function WO. For configurations that render 0(oo) independent of x, it is shown
in §2.13 that Eq. (F.6) can be replaced by the approximate expression [Eq. (2.179)]

S(Mx, t) ~ T(K)W(X)OK(t - td) cos(Kx + t9o + 0(K)), (F.19)

which will be valid for large K. Here,

W(x) = 7T(oo)/Ta=o(oo), (F.20)

T(K) = Tx=O(K), (F.21)

and
0(K) = Ox=o(K). (F.22)

In order to obtain true phase imaging, one must not only require that 0, be
independent of x, but also that 0 = 0 or 0 = ir; this condition, by virtue of Eq. (F.8),
translates into B(oo; x) = 0 for all values of x. Using Eq. (F.18), we can then write

P- = P+ (F.23)

and
cosa = cos 0, (F.24)

which further implies a = )3, since the solution a = -/6 leads to a null signal. These
conditions define a generalized form of phase contrast, with arbitrary phase shift
instead of ±ir/2. Using Eqs. (F.7) and (F.17), we find the transfer function at high
K

T,(oo) = -2uo(x)Ipp-~Re(Wo(x)) sinfl. (F.25)

The maximum signal, for a given p, is achieved for p- = p+ = 1 and a = 3 = ±r/2.
Thus, we arrive at the following important results: the only filter in this class to
produce a phase image is a generalized phase-contrast filter, and the phase-contrast
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filter proper is the one the maximizes the signal. It is important to note that this
conclusion holds for arbitrary values of kewo/2. However, the arguments presented in

§§2.11 and 2.12 show that an optimal reponse function is obtained for kcwo/2 ~ 1.5.
For the phase-contrast case (choosing the solution a = / = -ir/2 for consistency

with the configuration described in §2.11), we substitute Eq. (F.25) in Eq. (F.20)
and find

2 2 Re(Wo(x))
W(x) = e-,/ , (F.26)

erf Q

where Q = kcwo/2. This expression coincides with Eq. (2.134) in the limit a -+ 00,

as expected. Also, substitution of Eq. (F.7) in Eq. (F.21) yields

T(K) = 2p uo(0)[erf Q - W+(K; 0)], (F.27)

which is identical with Eq. (2.141). Finally, substituting Eq. (F.8) in Eq. (F.22) we
obtain

0(K) = 0. (F.28)

Thus the phase shift (at x = 0) is 0 for arbitrary K.
If we now return to the general case, but assume that kewo/2 ~ 1.5, we find that

the function WO differs from 1 by less than 6% throughout the region Ix/woI < 1. In
this case, 92(oo) becomes approximately independent of x. Using Eqs. (F.7), (F.8),
(F.17), and (F.18), and assuming Wo = 1, we can write

T (oo) = uo(x) p [p- + p+ - 2I-pip+ cos(a + /3)] /2, (F.29)

and

0.(oo) = arctan .Vcos/3 (F30)
( vp-- sin a + .p-+ sin

Also, Eq. (F.16) yields the simple result

Edc(X) = puo(x), (F.31)

signifying that approximately all the power flux, attenuated by the transmissivity

p, is used in the LO component. The signal-to-noise ratio considerations of §2.12

thus apply. For a given p, both the signal [Eq. (F.29)] and the signal-to-noise ratio
are maximized when p- = p+ = 1 and a = ±7r - /. Whenever these conditions

are satisfied, one obtains the same signal-to-noise ratio as in the phase-contrast case.
From Eq. (F.30), the condition for phase imaging [9(oo) = 0 or 7r] is now fp-/ cos a =

Vp~cos 3. Again, the phase-contrast configuration (p- =p+ = 1 and a = # = ±r/2)
is the only one to achieve phase imaging while maximizing the signal-to-noise ratio.

For the subclass of filters defined by the relations p_ = p and a = 0 (which has

the practical advantage of requiring only a two-zone filter, as discussed in §2.13), in
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the Q ~ 1.5 case, the phase-imaging condition 92(oo) = 0 becomes, thanks to Eq.
(F.30),

cosf = fp/p+. (F.32)

This condition can be satisfied only when p < p+. From Eq. (F.29) we find T(oo) =
ug(x) vp+ - p, which, for a given p, is maximized by p+ = 1. The signal-to-noise
ratio is a factor of (1 - p)/4 lower than in the phase-contrast case. Under these
conditions, using Eqs. (F.7),. (F.9), and (F.10) in Eq. (F.21), with Wo = 1, we find

T(K) = uo(0)VV1 -p [1 - W+(K; 0)]. (F33)

This function is plotted in Fig. 2.29(b).
This scheme requires an additional caveat when a small value of p is chosen to

improve contrast. If f is of the same order as II - erf Q1, the approximations used to
find the conditions for phase imaging are no longer applicable. One must use instead
the full expression for the phase shift [Eq. (F.8)], which, combined with Eq. (F.22),
yields ( W_ (K; 0) 1 - erf Q

9(K) = +arctau erQ-W1K0 2-- p (F.34)(erf Q- W+(K;O)V .- 2V '

which in the limit K -- oo becomes

(/_1~ ~pI - erfQ
0(oo) = arctan (.V7 (F.35)

Hence, the condition for phase imaging is 1 -erf QI < 2 Vp. This condition is a subtle
effect of the finite width of the beam and does not appear in a simplified plane-wave
analysis. Its meaning can be elucidated by observing that the de flux at the center
of the beam is, by virtue of Eq. (F.16),

Edc(0) = uo(0) p + ! (I - erf Q)2 . (F.36)

The small factor (1 - erf Q) 2/4 represents the fraction of dc power that falls on the
positive k region of the spatial filter, which has a transmissivity of 1. The useful part
of the dc power is the fraction that is transmitted by the central region of the filter.
Although a majority of the dc power is concentrated in the central region, it is then
reduced by the transmissivity p. The condition for phase imaging thus states that
the LO power must be larger than the de power lost in the wings of the spatial filter.

In practice, since erf Q decreases rapidly with increasing k,, a careful choice of
the k, parameter will ensure that the phase-imaging condition is satisfied; conversely,
however, the margin for error is rather limited. For example, if p = 0.027 (reflectivity
of BaF 2), a value of Q = 1.5 results in 6 = 32', whereas at Q = 2 the shift is reduced
to 6 = 50.
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The function 9(K) = 9,=o(K) is plotted in Fig. 2.29(b) for the case p = 0.17.
In this case the imaging condition is well satisfied even for Q = 1.5.

(b) Schlieren Techniques

We shall now proceed to explore some special cases in this class of spatial filters,
which correspond to techniques found in the literature. The knife-edge schlieren
configuration is obtained by setting p. = 0, p+ = 1,13 = 0, and k, = 0. Using the
symmetry properties9 7 erf(-z) = -erfz and erf(z*) = (erf z)*, we find the relation
W 1 (K; x) = -W2(K; x), and we conclude that W+ is imaginary and W_ is real. Also,
Wo(x) = erf(-ix/wo) is imaginary. Using Eqs. (F.7), (F.8), (F.17), and (F.18), we
can write

T (oo) = - Uo(X) [1 - W2(X)] 1 / 2  (F.37)

and

92(oo) = arctan iwi(). (F.38)

The function WO is tabulated in mathematical table books 97 and can also be easily
calculated by series expansion. The value of 9 decreases monotonically from 90"
at x = 0 to 310 at x = wo. This large variation will inevitably cause substantial
distortion of any sinusoidal input signal.

From Eq. (F.16) we calculate

Edc(MX) = Wuo( )[1 - WOW)]. (F.39)

Limiting our analysis to the point x = 0, we see that the dc signal is multiplied by
1/(4p) with respect to the phase contrast case, whereas the ac signal is multiplied
by 1/(4./F). Repeating the steps of §2.12, in the regime in which shot noise domi-

nates, we find S/N oc &2 /edc: thus the signal-to-noise ratio is reduced by a factor of
1/4; when intrinsic detector-preamplifier noise is dominant, or in a saturation-limited
regime, the signal-to-noise ratio has the dependence S/N oc e2 , and the reduction
factor becomes 1/16.

The approximate weighting and transfer functions can be calculated from Eqs.
(F.20) and (F.21):

W(x) = e-2xw / 1 W_ 2(X)] 1 2 , (F.40)

and

T(K) = - O) erf )Kwo. (F.41)

The phase shift 6 is not a useful parameter in this case, owing to the spatial variation
described above.
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A modified schlieren configuration can be obtained by eliminating the negative
orders while keeping the zeroth order. This is cbtained by setting p = 1, p_ = 0,
p+ = 1, and # = 0. As before, we substitute Eqs. (F.17) and (F.18) in Eqs. (F.7)
and (F.8), with the results

1
T (oo) = o(X)I + Wo(X)|, (F.42)

and

0,(oo) = arctan .+ (F.43)
(IM(WO)

If we again assume kcwo/2 ~ 1.5, we find 1.(oo) ~ uo(x) and O,(oo) ~_ 7r/2. Thus,
the responsivity of this technique is one-half that of phase contrast (at p = 1) and
the phase shift is 900. The dc component is obtained from Eq. (F.16):

X1 2c = )1+Wo Uo(X), (F.44)

where the last equality holds for the standard condition kcwo/2 ~ 1.5. Thus, once
again, the dc power includes approximately all the power available. Since the signal is
one-half as large as in the case of phase contrast, the signal-to-noise ratio is degraded
by a factor of 1/4 in both the shot-noise and intrinsic-noise (or saturated) regimes.

From Eqs. (F.20), (F.21), and (F.22) we obtain (for arbitrary Q)

W(x) = e-2x 2/.2 11 + Wo(X),
1+erfQ (F.45)

T(K) = UO(O) ( + erf Q) W_ (K; 0), (F.46)
2

and
(K)=-. (F.47)

2

Thus, the phase shift is independent of K for all values of Q. The functions T and 0
are plotted in Fig. 2.29(c).
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(c) Compensation of Plasma Transfer Function

Finally, we consider a situation in which the plasma geometry itself imposes
upon the phase a transfer function characterized by a -7r/4 phase shift for negative

k, and by a 7r/4 phase shift for positive k.'4 7 The spatial filter is a modified version

of a schlieren filter, with the negative and zeroth orders unshifted in phase, and the
positive orders shifted by -y. We can treat the problem by combining the transfer

functions of the plasma and of the filter in a function of the type described by Eq.
(F.2), with parameters a = -7r/4 and 8 = -Y + 7/4. For simplicity, we assume from

the start the condition kcwo/2 ~ 1.5 which implies Wo ~ 1. Also, as in the phase-

contrast case, the dc power flux is simply puo(x). Substituting Eqs. (F.17) and (F.18)
in Eqs. (F.7) and (F.8), we find

T (oo) = uo(x)vF (p+ + p- - 25/p+p- cos Y)1/ 2  (F.48)

and (t/vi- V/2I+ cos(y + 7r/4)
6(oo) = - arctan - .i( +7r/4) (F.49)

It follows that the condition for phase imaging (9 = 0 or 7r) is1 4 7

- = arccos / (F.50)
\ 2p+ 4

With this constraint, Eq. (F.48) becomes

T (oo) = uo(x ~~(V ± /2p+ -- p , (F.51)

where the ± signs correspond to the two y values that satisfy Eq. (F.50). To maximize
the signal-to-noise ratio, one must maximize the absolute value of the quantity in

parentheses in Eq. (F.51), subject to the constraints p- 1, p+ < 1, and 2p+ ;>
p_. It is easily found that the maximum value is attained by the upper branch at

p+ = p- = 1, corresponding to -y = -7r/2. The responsivity is T,(oo) = v2Wpuo(x);
thus the signal-to-noise ratio is a factor of two lower than in the phase-contrast case.
The reason for this is simply that the combined plasma-filter system under these
conditions is equivalent to a generalized phase-contrast system with a phase shift of

450 instead of 90*.
The authors of Ref. 146 apparently failed to consider the upper-branch solution

that leads to this optimal set of parameters. The filter that they considered for their
numerical simulations is characterized by p_ = p < p+ = 1 and -y = 7r/4 (lower
branch). The transfer function is T.(oo) = -Vp-uo(x); hence, the signal-to-noise
ratio is reduced by a factor of four with respect to phase contrast. However, this type
of filter has the considerable advantage, shared by all filters of the schlieren type, of
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being divided in only two zones instead of three. This simplifies in general the task
of aligning the optical system and reduces its sensitivity to mechanical vibrations.

This scheme requires an additional caveat, as in the case of the two-zone phase-
imaging filter described by Eq. (F.32): if the quantity ,Fp is of the same order as
II - erf Q , the approximations used to find the conditions for phase imaging are no
longer applicable. One must use the full expressions [Eqs. (F.7) and (F.8)], which,
upon substitution in Eqs. (F.21) and (F.22), yield

T(K) = 1 iuo(0) p (erf Q - W+) 2 1 - V 2

W -p 1+(v'-1) 21/2

2 erf Q (F.52)
p 2 2 =

and

O(K)= -arctan [W_ 1 erf Q -p
\ 2 /p (1 - x/p-/)(erf Q - W+)

1 erf Q )
± H (F.53)1 - x//p erf Q - V+ X=

In the limit K -+ oo, the phase-imaging condition requires that 11 - erf QI < 2v.
The implications of this condition were discussed in the paragraph following Eq.
(F.34). The functions T and 0 are shown in Fig. 2.29(d).

r

L
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Appendix G

Density Correlation Function

in a Gaussian-Spectrum Model

We want to calculate the correlation function expressed by Eq. (4.22), making use
of Eq. (4.23) for the spectral function, of Eq. (4.24) for the dispersion relation, of
either Eq. (4.25) or Eq. (4.26) for the frequency form factor, and of Eq. (4.19) to
express the wave vectors in flux coordinates. The integral over W is calculated easily
by noting that the inverse Fourier transform of F1 (w') is

F1(-r) = exp - (G.1)

and that of F2 (w') is

F 2 (r) = exp . (G.2)

The remaining integral over kR and k, is proportional to a two-dimensional inverse
Fourier transform of a generalized two-dimensional Gaussian function, which takes
the following general form:

dkR dk, exp(-A 2k 2 - B 2 k2 - C 2 + DkR + Ek. + FkRkz)

x exp(i RkR + izk.)dkRdk,. (G.3)

One finds by direct integration that this integral converges if and only if

P = 4A 2B 2 - F2 > 0, (G.4)

yielding the result

1 (-4A 2 B 2C 2 + C 2 F 2 + EDF + B 2 D 2 + A 2 E 2

i= exp )
x exp( -A -_B - FtzgR)

x exp ( 2DB 2 R + 2EA 2k + EFCR + DFZ) (G5)

In our case, the discriminant is equal to

V = 32 [1 + cos 2 (9 - ')] + 64 sin 2(V - d'), (G.6)
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b

which always satisfies the convergence condition expressed by Eq. (G.4). Here, 29 and
29' are the poloidal angles at the positions x and x', respectively (see Fig. 4.4).

We can now write the general result as follows:

C12(x, t; X', t') = (fi(x, t) f(x', t'))

= (i 2 (Xav, tav)) Cpre F(t - t')

x exp[-i(wo - ko -vg)(t t')]&1£ 2 9 3 + c.c., (G.7)

where xav = (x + x')/2, t., = (t + t')/2, V is given by Eq. (G.6), and F takes one of
the two forms given by Eqs. (G.1) and (G.2). Also,

E, = exp (k2, + k2,9'C)[1 - cos(19 - 19')]2

+ (k 2 + k2,0p2) sin2(9 - 9')) (G.8)

E2 = exp - {2 2,(sin2 t9 + sin 2 29') + f (cos 2 t9 + cos 2 29')]

+ u2 [2(cos2 t9 + cos 2 19') + £$(sin 2 19 + sin 2 19)]

+ 2uzuR (L2 - 2) sin(V + 29' (G.9)

and
C3 = exp(iq -u), (G.10)

where
u = x - x' - (t - t')VT, (G.11)

q = 6 k ,L (Sin 19 - sin 19') + ko,eL4(cos19 - cos 29')] sin(19 _- 9')

+ c~C [ko,(cos29 + cos29') - ko,8(sin 9 + sin 9')] [1 + cos(9 - V')] ,
(G. 12)

q 6 = [-ko,,L4(cos 29 - cos29')] sin(?9 - 9') + ko,e L4(sin V - sin 29')

+ £L [ko,,(sin9 +sin9') + ko,o(cos9 +cos9')] [1 +cos(9 - d')]

(G.13)
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I

VT = V9 + VEav, (G.14)

and V(X) + vE(x')

VE,av E x (G.15)
2

In the special case t = ', we find V = C2L'/16, 91 = 1, E2 = exp[-(u2/L2

+u2/2l)], and 63 = exp(iko - u) [where we have made use of the coordinate trans-
formation given by Eq. (4.19)]. Hence, Eq. (G.7) reduces to

C 1 2 (x, t; x', t') = (f 2 (xav, tav)) F(t - t') exp [ ( + 2

x cos [ko - (x - x') - (wo + ko - VE,av) (t - t')]. (G.16)

We shall now calculate the function [Eq. (4.3)]

F12(Rav, tav; r, r) = JC1 2(Ra zav, tav; r, C, r) dzav d(, (G.17)

where Rav = (R + R')/2, zav = (z+ z')/2, tav = (t +t')/2, r = R - R', z- z', and

r = t - t'. We make the assumption, justified in §4.4, that the angles 0 and 9' do not

depend on the variable (. Their functional forms are, therefore, t = V(Rav, zav; r)
and ' = V(Rav, zav; -r). The only remaining dependence of the integrand C 12 (n (
is through the variable u_ in the coefficients 92 and 63. Thus, the integral over C in

Eq. (G.17) has the form of the inverse Fourier transform of a Gaussian. The result

can be expressed as follows:

F12 (Rav, tav; r, r) dzav (. 2(Rav, zav, tav)) v'2 D F()

x exp[-i(wo - ko - vg)r]E1 E4 E5 £ 6 + c.c., (G.18)

where
D' = r2 (cos2 0 + cos2 0') + L2 (sin 2 0 + sin2 '), (G.19)

£4 == exp ( , qz) , (G.20)

E (lep {(12 - £0) 2 [sin(20) - sin(20')2 + 16L } P (G.21)

and

(,2 - £C) sin(O + i')
C6 = exp iUR (qR + qz l, ± ). (G.22)
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When t9 = W', one finds V = fgLf/16 and D' = 242, where

-R = (C2 cos 2 19 + £C sin 2 t) 1/2. (G.23)

Also, q = ko, E1 = 1, E4 = exp(-L2k2~/4), £5 = exp(-u2 /2), and £6 = exp(ik0RuR),
where

sin Cos 2 19) 1/2
(G.24)

(L - L) sin(2N)
kI koa + k9~

kOR R + o ko - C2o ysi
2 

.

R

(Note that when . =
simplifies to

r' 12 (Rav, tav; rT )

(G.25)

LO, one finds k"R = koR.) Hence, for V = 79', Eq. (G.18)

= dzav 1 /vKL (i12 (RaV, zav, tav)) F(r) exp ( 4z

x exp ( (r - rVT,) 2 ) COs(rkJR - r2efcos~r), (G.26)
R~?

Qeff = waoko - Vg + koR VT,R.
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