
PSFC/RR-97-7

Feasibility Study of an Iterative Finite
Difference Approach to Kinetic Modeling

of Neutral Particles in Edge Plasmas

M L AdamsI, S I Krasheninnikov 2,
0 V Batishchev3

April 1997

Plasma Science and Fusion Center
Massachusetts Institute of Technology

Cambridge, Massachusetts 02139 USA

IPermanent address: Lake George NY 12845 USA
2Also at Kurchatov Institute of Atomic Energy, Moscow 123098 Russia
3Permanent address: Keldysh Institute for Applied Mathematics, Moscow 125047 Russia

This work was supported by the US Department of Energy, Grant No. DE-FG02-91ER54109.
Reproduction, translation, publication, use, and disposal, in whole or in part, by or for the US
Government is permitted.



Abstract

Numerical stability describes the difference between a computational solution and an exact
solution as the number of iterations increases - in stable simulations the computational
solution will approach the exact solution. Discretisation of the kinetic equation using a
Krook collision operator, by a common finite difference method, is found to have a time
step stability limit much less than the mean free path (Atvth < A). Due to high neutral
density in the divertor region, hence low mean free path, this stability limit prohibits feasible
numerical simulations. However, formulating an integral solution of the Krook equation
before discretisation is found to alleviate the time step stability limit (At > 0). As the
Krook equation is highly nonlinear, and a detailed error analysis is beyond the scope of
this initial study, we gain confidence in our results through a series of plane Couette flow
simulations. Errors are found to be minimal and further study of kinetic neutral modeling
in edge plasmas is warranted.



1 Introduction

At the turn of the decade, Stangeby and McCracken [1] conjectured that reducing the high
divertor target plate incident heat flux as "a major engineering obstacle to the successful
operation of fusion reactors". In 1995, Post [2] presented a review of several atomic processes
that would, in principle, distribute the heat flux over reactor regions other than the divertor
target plate. These processes include: 1) radiation losses through bremsstrahlung from
the central plasma; 2) impurity radiation losses from the plasma edge and divertor plasma;
3) charge exchange radiation losses from the scrape-off layer (SOL) and divertor plasma; and
4) hydrogen radiation losses from the SOL and divertor plasma. Today, current research [3]
has pointed toward the importance of neutral-neutral collisions in any divertor study and
the demand for an efficient code allowing for such interactions, along with plasma-neutral
interactions, is on the rise.

Neutral particle densities in edge plasmas vary over several orders of magnitude. In the
divertor region neutral density may increase to the level where the neutral-neutral interaction
mean free path is of the order of millimeters, and thus becomes a dominant process. Demon-
strated in the next section, typical finite difference numerical kinetic modeling of neutrals
is hindered by a time step limit less than the mean free path. Current codes have focused
on other methods of solution. Pragmatic approaches include linear Monte-Carlo and finite
difference fluid models. Unfortunately, for regimes of most interest to divertor operation,
plasma and neutral gas parameters in the SOL vary enough to prohibit either method from
providing an entirely satisfactory description of neutral transport. Addressing this dilemma,
we present the following feasibility study of an iterative finite difference approach to kinetic
modeling of neutral particles in edge plasmas.

This paper proceeds as follows: Section 2 assumes that numerical stability is the necessary
and sufficient condition for convergence (correct for any well-posed problem with consistent
discretisation) and demonstrates a method for obtaining global stability; Section 3 defines
plane Couette flow and presents an exact Navier-Stokes solution; Section 4 includes 1D2V
plane Couette flow simulation results; Section 5 extends the 1D2V simulation to 2D2V;
Section 6 investigates a range of Knudsen numbers in 1D2V and flow around an obstacle in
2D2V; and Section 7 concludes the feasibility study with suggestions for pertinent areas of
future research.
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2 Theoretical Background

We begin by introducing an equation that adequately describes the behavior of neutral parti-
cles in edge plasmas. Direct discretisation of the governing equation is found to yield unstable
numerical results. A general method is found, extrapolated from the work of Shakhov [4], for
formulating an integral equation before discretisation which yields stable numerical results.

2.1 Kinetic Equation with Krook Collision Operator

To describe the behavior of neutral particles in edge plasmas we start with the Boltzmann
equation. After replacing the full collision integral with a model term (introduced simulta-
neously by the Bhatnagar, Gross, and Krook (BGK) and Welander) and neglecting external
forces we may write:

aaf-. = (f--fM )-+c--.- , (1)

where F, F, and r represent spatial coordinate, molecular velocity, and collision interval time
respectively; fM is the Maxwellian velocity-distribution function containing the following
self-consistent terms describing macroscopic properties of a gas: number density

n(r) = f(F, )d3,, (2)

mean molecular velocity

c-0(V) = , F c d3 (3)

and temperature

f f(F, -m(- c--(F)) 2d3A
3n(F) ' (4)

where m is the molecular mass. Equation 1 is commonly referred to as the Krook equation. [5,
6, 7]

Numerical stability describes the difference between a computational solution and an
exact solution as the number of iterations increases. If a numerical scheme is stable the
computational solution will approach the exact solution; in an unstable numerical scheme the
difference between computational solution and exact solution will increase. We examine the
stability of Eq. 1 by using an implicit Euler method for discretisation. Following application

of a mobile operator ( = ,+ ) to the left-hand-side (LHS), discretisation, and a little
algebra the Krook equation becomes:

1 At
fb = &t (fa + Tfb ), (5)

where b = + EAt. For numerical stability this equation requires A < 1 or AtVth < A,
where Vth is the thermal velocity and A is the mean free path. Actually, since this equation
is stable in the limit At -+ 0, it is numerically unstable.
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2.2 Integral Krook Equation

Generalizing the work of Shakhov, an operator is chosen to transform a governing equation
into a first-order linear differential equation and an exponential antiderivative is chosen to
yield a solution. With the mobile operator and exp[fo 1dt'] for our exponential antiderivative,
we may write the following integral form of Krook's equation:

f(t) = e~- *d'f(0) + -I t' dt"fPdt'. (6)

Discretisation of Eq. 6 is achieved through the use of a linear Taylor series expansion for
the Maxwellian velocity-distribution function and definition of a local mean collision interval

( = *2 ). After applying the fundamental theorem of calculus and performing some
trivial algebra, the integral Krook equation becomes:

At 't AfM
f = fae~ + fbM[ -- + {Ate~ + -[1 - e-Tj, (7)

where b = gAt + d. This equation is numerically stable for 4!> 0. In the continuum limit,
as goes to infinity, fb approaches fbM; in the rare-gas limit, as A goes to zero, we see
that fb approaches fa. We have transformed an unstable computational scheme into a stable
scheme with the added benefit of removing any relation between mesh spacing and mean
free path.
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3 Plane Couette Flow and Navier-Stokes Solution

To test a new solution technique for kinetic neutral gas phenomenon, the analysis of plane
Couette flow is a natural consideration. Plane Couette flow, [8, 9, 10, 11] within the class of
parallel-plate flow problems, is distinguished by: 1) a fixed separation distance L; 2) equal
and constant plate temperatures (TIlower plate = Tlupper plate = T); and 3) a constant
relative plate velocity [In this paper, the upper plate is fixed (Viupper plate = 0) and the
lower plate is set in constant subsonic motion (Vilower plate = V; V < Vth).]. Refer to
Fig. 1 for visual clarification.

A

L

0 x
Wall Velocity

Figure 1: Plane Couette Flow

In the continuum limit an exact solution for plane Couette flow may be found by using
the Navier-Stokes equation. As neutral gas increases in density, neutral-neutral collisions
become more frequent, and the mean free path decreases. Relating the continuum limit to
gas parameters, we write for the mean free path:

- Kn =- 
(8)

T4 Re'

where Kn is the Knudsen number, a dimensionless parameter defined by the LHS of Eq. 8;
Re is the Reynold's number, a useful dimensionless parameter for most flow problems de-
scribing the ratio of inertia force to viscous force; 6 is the average mean molecular velocity;
and the subscript r denotes a reference value. To analyze plane Couette flow, and establish
a relation to kinetic simulations in the continuum regime, we assign Kn = 0.01 (Lr = L)
and assume laminar flow (low Re).

Using the one-dimensional nature of the problem, assuming a negligible pressure gradient

(n = T = constant), and applying the boundary condition used to define relative parallel
plate motion we write:
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CX = V(1 - - ); (9)

cyo = cZ0 = 0; (10)

n = n,; and T =T; (11)

where n, is a constant reference density. With V = 0.1Vth, the reader may note Re =
5, validating our assumption of laminar flow. The Navier-Stokes solution will be used to
estimate the accuracy of our numerical simulations.

4 1D2V Simulation of Plane Couette Flow

In this section, our technique to alleviate a mesh spacing stability limit is applied to plane
Couette flow in the continuum regime; results are then compared to the exact Navier-Stokes
solution.

4.1 Governing Integral Equation Formulation

Section 2 highlighted the potential of formulating an integral equation before discretisation;
in theory, with any mesh spacing, the computational solution should approach the exact
solution as the number of iterations increase. This approach is applied to plane Couette
flow by first writing the Krook equation in an appropriate one-dimensional form and then
establishing an associated dimensionless form.

In 1D2D the Krook equation reduces to:

cyo- =- (f. M ) (12)
3y 3

Introducing the following dimensionless parameters: f = ft, f^Mv), r

= ,= ' ^ and v2 = T; and recalling the following definitions:
K n , n , 7- a n d rr =

Kn =-r and T = ,; allows us to write the following dimensionless form of Eq. 12:

OfB L (f - f^M)
cyo-- = -7- (f - ^M) = Kn (13)

For the remainder of the paper dimensionless parameters are used and the "hat" notation is
dropped for simplification.

Choosing an appropriate operator and exponential antiderivative we formulate an integral
equation. No operator is needed since Eq. 13 is already a first-order linear differential
equation; exp[fo'w dy'] is used for our exponential antiderivative. After applying some

algebra and the fundamental theorem of calculus we may write:

f- 1 dy' Y 1 -," dy"l
f(y) = e- f(0 ) + jo 1 e y f?! I fMdy'. (14)

JocyoKn
Note the similarity between this equation to that of the general integral equation given in
Section 2. The only difference lies in possible particle trajectories.
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4.2 Discretisation

A computational solution for ideal comparison to the exact Navier-Stokes solution, suit-
able for a stability analysis, is constructed through minimal discretisation complexity. The
average collision interval approximation is eliminated by using the fixed Knudsen number de-
picting laminar flow. After a Taylor series expansion of the Maxwellian velocity-distribution
function, we write the following numerical approximation:

n-~ AfTM A

fb = fae "" + fb[l - e 'O] + e cyoKn[1 - e 'y0 "]}, (15)

where b = a + Ay. Although only one finite difference approximation was used, that as-
sociated with the Maxwellian velocity-distribution, this is still a highly nonlinear numerical
equation. As an a priori error analysis of this equation would be another paper by itself,
and definitely beyond the scope of this initial feasibility study, preparations will be made for
an a posteriori error analysis.

Aside from the error (O(Ay)) introduced by the Taylor series expansion of the Maxwellian
velocity-distribution function, sources of numerical error include the integration process and
machine accuracy. Integration errors are associated with: 1) method of numerical solution,
2) mesh spacing (number of nodes in velocity space), and 3) truncation of an infinite velocity
space; machine accuracy will increase as the number of operations per iteration increases.
In an effort to minimize the errors not associated with the Maxwellian velocity-distribution
function, we have developed an algorithm that balances integration and machine accuracy
factors. From the results of this algorithm: integration is performed with an upper approx-
imation; a 21 x 21 uniform velocity mesh is used (effects of variable velocity mesh spacing
were not analyzed); and the velocity space domain is -5.5 < (c., cY) 5 5.5.

4.3 Qualitative Stability Analysis

Numerical simulations were performed with an increasing degree of nonlinearity. First sim-
ulation: all assumptions used in deriving the Navier-Stokes solution are used (n = T =
1.0; V, = 0.1). Second simulation: temperature is allowed to vary in the central flow region
(n = 1.0; V = 0.1; Tp = 1.0). Third simulation: full nonlinearity of the Maxwellian velocity-
distribution is retained (V = 0.1; Tp = 1.0). Results of these simulations are displayed in
Figs. 2, 3, 4, and 5.

In the first simulation the error is not noticeable. In fact, the error is of order machine
epsilon (2( - 53)), defined as the greatest floating point number such that 1 - C = 1 is
correct. This allows us to relate the errors associated with higher degrees of nonlinearity
to the Maxwellian velocity-distribution function approximation. In the second simulation
allowing the central temperature to vary is found to be destabilizing. Temperature variations
introduce a noticeable effect on the velocity, however their respective magnitudes of error
are consistent with their velocity ordering. In the third simulation, density variations in the
central flow region and conservation of flux at the boundary are found to be stabilizing with
respect to the velocity and destabilizing with respect to temperature. From these simulations
we estimate the error introduced by a linear Taylor series expansion of the Maxwellian to be
of the order 101% for temperature, 10-2% for density, and 10-'% for velocity.
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5 2D2V Simulation of Plane Couette Flow

In this section, the one-dimensional analysis presented in Section 4 is extended to two di-
mensions. This will require the use of an operator (unlike the 1D case) and a method for
integrating along characteristic trajectories.

5.1 Formation of a Governing Integral Equation

Using the convective derivative, that part of the mobile operator dealing with spatial deriva-
tives, for an operator allows us to reformulate the Krook equation for higher spatial dimen-
sions as:

C. =f = (f .(16)'f Kn (6

The convective derivative describes the velocity along characteristic trajectories. In kinetic
theory, since velocity and space are independent variables, we may describe the direction
of trajectories by - and the velocity magnitude along the trajectory by Ic1 (speed). After
using these concepts Eq. 16 becomes:

l = 1(f - M) (17)
d6 Kn

where is the trajectory coordinate. This is a linear first-order differential equation along
characteristic trajectories. Choosing our exponential antiderivative as exp[ff d<], we
integrate to obtain:

dl' (0 + e 4f dt
f(() = e= .I1Kn f(O) +j 1

1 e ' IcKn fMd(' (18)
fo cKn

Again, this equation is similar to the general governing integral equation given in Section 2.

5.2 Discretisation

Discretisation is complicated by the freedom of characteristic trajectories; it is common for
trajectories to miss existing nodes. For extending our numerical analysis into 2D, we recall
the successful factors of 1D and attempt to approximate the initial distribution function
from a backward step along the characteristic curve. Figure 6 is included to clarify the value
of fa used in the following equation:

-At-
fb = fae eleKn + f[ 1 - ei JeKn] + {ALe dlKn + JKn[1 - e IeIKn]}. (19)

An a posteriori error analysis may now focus on the difference between 1D and the 2D
results, attributing deviations in space to the approximate initial distribution function.
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Figure 6: Method for Approximating the Initial Distribution Function

5.3 Self-Consistent 2D2V Couette Flow Simulation

Figures 7, 8, 9, and 10 present the 2D2V results obtained with full nonlinearity of the
Maxwellian velocity-distribution function and periodic boundary condition. Negligible profile
variation along the horizontal dimension validates the 2D2V results.

Effects of the f" and fa approximation were obtained in the continuum regime and
should not be assumed to carry over to the rare-gas regime. Actually, error contributions
are reversed for higher Knudsen numbers.
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6 Numerical Examples

The previous two sections compared kinetic simulations with an analytic solution and estab-
lished confidence in the accuracy of the output. In this section, various Knudsen numbers
are investigated in 1D2V and flow over an obstacle is investigated in 2D2V. All results are
obtained with self-consistent values of density, mean molecular velocity, and temperature in
the Maxwellian velocity-distribution function. As an added bonus, the 1D2V results were
obtained on a variable structured mesh.

6.1 Various Knudsen Numbers

Extending the analysis of 1D2V plane Couette flow in the continuum regime, we examine
a range of Knudsen numbers on a variable structured mesh. Results, obtained with full
nonlinearity of the Maxwellian, are depicted in Figs. 11, 12, 13, and 14. As the Knudsen
number increases, slip flow develops near the boundary. The analysis of this flow phenomenon
was a topic focused on in the seminal papers referred to earlier in the paper.
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6.2 Obstacle Flow

Extending the analysis of 2D2V plane Couette flow, performed in the continuum regime,
we examine flow around an obstacle. Full nonlinearity of the Maxwellian is retained and a
uniform structured mesh is used. Two flow regimes are depicted in the figures below. The
first flow regime, depicted in Figs. 15-19, occurs when the distance between obstacles is small
(hysteresis effects are unimportant in this study). The resulting flow pattern, commonly
called a swirl, resembles a fluid within a cavity, acted on by a shearing stress. Increasing the
distance between steps eventually allows for steady flow to develop and the formation of two
eddies may be witnessed, see Figs. 20-22. Under the latter conditions we may estimate the
connection length from the following interpolation formula given by Traub [12]:

= -3.27 - 10- 6 Re + 0.0193Re + 1.2,S (20)

where d is the connection length and S is the step height. With Reynolds number 5 and
step height 0.5 this equation yields a value of 0.648 for the connection length, see Fig. 21.
This value is consistent with our numerical simulations.
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7 Concluding Remarks

Formulation of an integral equation (using integration along characteristics of the general
kinetic equation with Krook collision operator) and subsequent discretisation (with minimal
complexity) was found to yield stable numerical solutions with mesh spacing much greater
than the mean free path.

As the resulting integral equations are highly nonlinear, much is unknown about the
behavior of this technique and any blind application of this technique is not warranted. In
each simulation presented in this paper some feature of expected flow pattern was known; all
simulations included an identical boundary condition that estimated the dynamics of flow
patterns well but may not be suitable when energy transfer is important at the boundary.
These issues deserve further attention and the authors hope a detailed error analysis is
performed in the near future.

With independent space and time variables, integration along characteristic trajectories
greatly enhances numerical efficiency (compared with traditional computational fluid dy-
namics (CFD) approaches such as the splitting technique or method of characteristics) and
has the potential for massive parallelization. Since computational speed was not an issue
in this paper no results were given, however we will mention that the one eddy obstacle
simulation was performed on a Pentium 75 processor and required approximately 12.01 sec
of CPU time per iteration and converged to machine accuracy after 5698 iterations. These
topics warrant further numerical and computational analysis of the discretisation process
used with this method.
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