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Abstract

A set of experimentally-determined dimensionless parameters is proposed for characterizing
the regime of divertor operation. The objective is to be able to compare as unambiguously
as possible the operation of different divertors and to understand what physical similarities
and differences they represent. Examples from Alcator C-Mod are given.

Background

Recent theory has shown that exactly scaled similarity experiments on tokamak divertors,
where atomic physics is important in addition to plasma physics processes, are not feasible
because there are no free parameters. However, similarity comparisons can be obtained in
principle if either some of the plasma parameters [1], or some of the geometric parameters
[2], or both, are unimportant. Moreover, such comparisons can be made practical if only
approximate similarity is required. Approaches to obtaining similarity with ITER divertor
regimes have been explored under various assumptions about divertor transport scaling.

There are now several moderately similar divertor tokamaks, with increasing quantities
of divertor data, that span a range of dimensionless regimes. In addition to the theoret-
ical approaches to identifying similarity scaling, it seems most natural now to examine
the experimental results to discover what the values of relevant dimensionless parameters
actually are, and therefore to try to compare from experiment to experiment so as to dis-
cover the underlying physics that is similar or different in them. To do this requires a set
of dimensionless parameters to be indentified and, as far as possible, measured on each
experiment. With these stored in appropriate databases, it ought to be possible quickly
to identify dimensionless regimes. Alternatively, the parameters can be evaluated from a
less processed database of raw data once the form of the parameters are agreed, provided
that the database contains the relevant raw data.

The purpose of this note is to propose parameters that determine the regimes of the
relevant physics, and are experimentally measurable. Since judgement must be exercised
in the choice of the exact parameters to include in the set, these choices should not be
regarded either as definitive or as exhaustive. However, it is hoped that the set will form
the basis for discussion, initial comparisons, and further refinement.
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The Formal Parameters

As has been discussed elsewhere [1,2] the dimensionless parameters deriving from the
intensive variables (i.e. density, temperature, magnetic field, etc.) of the plasma can be
considered to be

p*: The ratio of Larmor radius to characteristic size.
V*: The collisionality - ratio of size to mean-free-path.

A*: The ratio of Debye length to size.

P: The ratio of plasma kinetic to magnetic pressure.
T*: The ratio of plasma temperature to characteristic atomic energy.
fj: The ion (or neutral) density of a species, j, as a fraction of electron density.

Of these, it is commonly supposed that A* is unimportant. The parameters fj are un-
doubtedly important but often not explicitly considered.

In addition to these parameters there is a host of other dimensionless parameters that
can be considered to be geometric. These include

" Relative shapes of the plasma and divertor cross-section, including such quantities as
divertor flux expansion factors and relative depth.

" Ratios of poloidal to toroidal field, and hence field-line angle, safety factor, and so on.
Moreover, geometric considerations are essential for the intensive parameters too, because
their values depend upon the choice of their exact definition and where they are measured.
Therefore it is important to be explicit about how the intensive parameters are to be
defined.

The parameters listed above are sufficient to define the similarity of equivalent systems.
If two systems are found with all these parameters the same, then all relevant parameters
are equal for the two systems. However, in comparing systems which are not exactly
similar, there are other dimensionless parameters that describe important processes in the
divertor. It may be of interest to document their values explicitly even if they are in
principle determined by the parameters above. We here propose one such vital parameter:
the ratio of the charge-exchange mean-free-path to the SOL thickness.

The following proposals for specific choices of parameters' definitions are based on
judgement about what is important and what it is generally measured. They are therefore
open to refinement. However, it is hoped that some degree of agreement on parameter
definitions can be obtained along these lines.
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The Specific Parameters

There are, roughly speaking, three poloidal positions in the SOL that may be considered
characteristic. They are, (1) the main chamber, (2) the x-point, (3) the target. By the
"main chamber", we mean the part of the SOL that is adjacent to the core plasma and
sufficiently far from the x-point as not to be significantly influenced by it. The x-point is
the transition between regions of the SOL adjacent to the main plasma and to the private
flux region. This point is representative of the upstream divertor. The target is where the
field lines intersect the solid surface.

It is proposed that intensive dimensionless parameters be defined at each of the three
positions. Generally, in present experiments there are measurements at the target and in
the main chamber but perhaps not at the x-point, although efforts are currently devoted
to obtaining this data.

The radial scale-length with which plasma characteristic lengths are to be compared is
the width of the scrape-off layer, A. It is proposed that this be defined as half the pressure
e-folding length. This e-folding length is the distance from the separatrix to where the
plasma electron pressure (nT) is exp(-1) of its value at the separatrix, or, equivalently
for an exponential profile, the ratio of the radial integral of the pressure to its separatrix
value. The practical advantage of using the pressure is that, except for detached divertors,
the pressure is approximately constant along the flux surface so the A can be evaluated
either from main-chamber or from target measurements. (A potential disadvantage is that
we need both T and n to be measured.) Half the exponential width is used so as to be
typical of the near-separatrix region. Note, of course, that A varies with poloidal position.

The flux surface at distance A is proposed also as the radial position at which the
plasma parameters such as Te and ne are to be evaluated. Their values there will be
slightly smaller (by about 20%) than the separatrix values in the main chamber, which are
most often quoted. However, the advantage of using the values at A is that they are more
representative of the whole SOL. It is found that the divertor target values exactly on the
separatrix are very often strongly influenced by the private flux region and by neutrals,
rendering them even less typical of the divertor fan as a whole.

For the gyrosize parameter, p*, it is proposed that this be defined for singly charged
ions as

(m2 T.) /
eBt

This uses the ion Larmor radius at the sound speed, ignoring the ion temperature. Cor-
rections for finite Ti can be incorporated as an auxiliary parameter Ti/Te. It also uses the
toroidal field whose variation as a function of position is weak, so that the p* variation
from place to plase is caused primarily by temperature differences. Physically, the poloidal
Larmor radius may be key. It then requires the extra geometric parameter of the field-line
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angle, B,/Bt. The ratio of the local poloidal Larmor radius to the local scrape-off length is
almost independent of poloidal position (because each has a Bt/Bp factor and they cancel)
and is equal to p*Bt/Bp using midplane values.

The Coulomb collisionality of greatest interest is that for parallel motions. It is pro-
posed that the parallel connection length, L, for the magnetic field be documented for two
regions: the main chamber and the divertor. We denote by Lm the complete connection
length from target to target and by L, the connection length from x-point to target. (The
inner and outer divertor connection lengths may be different in single-null configurations,
and there are two different total connection lengths for double-null configurations.) The
connection length has a logarithmic singularity at the separatrix arising from the x-point
region. Connection lengths are therefore measured on the flux surface that is a distance
A outside the separatrix, where the plasma parameters are measured. It is proposed that
the mean-free-path for Coulomb collisions be taken as that for electron-ion momentum
transfer, sometimes called "slowing down". Using the plasma formulary [3] expression for
thermal electrons, Ve = 2.9 x 10-6 (n/cm- 3) ln A(Te/eV)- 3/2 and the characteristic speed,
(Te/me)1/2 the electron mean-free-path is

ee = 1.45 x 10-4 m(T/eV)2

(n/102 0 m-3 ) M

taking the coulomb logarithm, ln A, to be 10. We then define

V* = L/X ,

for the different connection lengths.
It should be noted that the ion-ion mean-free-path is essentially the same as the elec-

tron, at the same temperature. The ion-electron mean-free-path is (mi/me)1/2 longer. It
should also be noted that the mean free path for epithermal electrons (v P 3.7vt) respon-
sible for heat transfer is much longer than the thermal value, by a factor approximately 17
accounting for both electron and ion collisions and using the fast electron expressions. This
latter collisionality determines whether the SOL is in the sheath- or conduction-limited
regimes.

For the dimensionless temperature, relative to characteristic atomic physics energy
scale, there is no obvious atomic energy that ought to be prefered; therefore the tempera-
ture in some convenient units is the natural choice of definition. Electron volts seems the
natural choice. More importantly, the electron and ion temperatures may well be different.
For the atomic processes the electron temperature is undoubtedly more important. The
ion temperature is not completely insignificant, expecially for such processes as charge
exchange, but its importance as a dimensionless parameter relative to atomic energies is
much less.
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The key geometric parameters are associated with the plasma shape and the field line
angle. From the point of view of the scrape-off layer, the significant shape parameters
are presumably (1) the ratio of the connection length in the divertor to the connection
length in the main chamber and (2) the ratio of the flux surface spacing in the divertor
to the spacing in the main chamber (i.e. the flux expansion factor), which we will choose
to define at a distance A outside the separatrix so as to be well defined at the x-point
poloidal position. These together also determine the ratio of the divertor poloidal depth
to the plasma radius. Moreover, the flux expansion factor is equal to the ratio of the field
line angles in the divertor and main chamber. However, one value of field line angle is still
required to define the field geometry, it can be taken simply as Bp/Bt at the midplane.

A parameter that may also be important for the details of recycling and related pro-
cesses at the target is the angle in the poloidal plane of intersection between the separatrix
and the divertor target. We will denote this a,. A "horizontal" target plate generally
has a, < r/2, while a "vertical" plate has a, > 7r/2. The total three-dimensional
angle of intersection of the field-line and the target (&t say) is then given by sinat =

sin ap/(1 + B2/B2)1/ 2 , evaluated at the target.

An auxiliary parameter of great importance is the collisionality of neutral flow across
the divertor. For symmetric charge-exchange of hydrogen, the reaction rate is <uv> ;
10- 4 T. 33 m- 3s-' for temperatures of interest. Therefore, the mean-free-path can be

taken as = (2E/m)1/2/n<av> m, where F is the neutral energy. We can consider
specified energy (e.g. cold or Franck-Condon) neutrals, or else hot thermal neutrals with
E = T/2. We define representative cases as the cold expression for 3 eV atoms:

cx,cold ~ 2.4 x 10-2 [(T-.eV)]- 3 3 (n/10 2 0 m 3 )- m

and the hot expression for thermalized atoms:

4cx,hot ; 1.4 x 10-2[(T/eV)/p]0 - (ni/1020 m-3)-l m.

Electron excitation and ionization processes are also of great importance. However, the
plethora of different rates makes the task of defining explicit excitation lengths overwhelm-
ing. In order of magnitude, the ionization rate above about 10 eV temperature is about a
factor of two less than the charge-exchange rate. So that the ionization length is similar
to the charge-exchange length. However, as the electron temperature falls below 10 eV,
ionization rapidly becomes negligible.

We will now present expressions for the dimensional and dimensionless parameters in
table form. We use slightly abbreviated notation for the dimensional parameters as noted
in Table 1. Also p denotes the bulk ion mass in units of the proton mass.
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Table 1. Dimensional Parameters.

Parameter Units Definition

n 2 0  10 2 0 m-3  Electron density at A-surface

T eV Electron temperature at A-surface
Bt T Toroidal magnetic field

L m Parallel connection length
A m Half radial midplane distance to 1/e pressure point.

Qualified by position subscripts: m main chamber, x x-point, and t target.

Table 2. Dimensionless parameters in practical units (eV, m, T).

Parameter Formula Description

L,/Lm Relative parallel length of divertor.
Bpt/Bpm Flux expansion factor at target.
Bp,/Bpm Flux expansion factor at x-point.
Bpm/Btm Field line angle in main chamber (midplane).

.'p Poloidal angle of intersection with target.

p* 1.02 x 10-4 (pT)1 2  Inverse of gyrowidth of SOL.X A
v* 6.9 x 103 - Parallel Coulomb Collisionality.
# 8.0 x 10-5 n SOL toroidal beta.
T Temperature

Ti/Te Relative ion temperature.
fi n /ne Relative species density.

A/ecx,cold 42An 20(T /p)0.33 Transverse cold neutral collisionality.
A/tcx,hot 71An 20(Ti/1)-0-17 Transverse thermalized neutral collisionality.

Non-geometric quantities qualified by position subscripts: m main chamber, x x-point,
and t target.

A spreadsheet [4] has been set up whereby the dimensionless parameters are calculated
once the dimensional parameters of Table 1 and additional independent parameters (mostly
geometric) of Table 2 are input. An illustrative example of this spreadsheet is given in
Table 3.
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Alcator C-Mod Examples

The parameters defined above have been included in the Alcator C-Mod edge database
and are calculated automatically, based primarily on probe data (embedded and fast-
scanning probes). We illustrate the range of parameters on C-Mod by several figures
based on operation during March through April 1995. Fig 1 shows a plot of poloidal field
against separatrix density; the current grouping shows that the field depends primarily on
plasma current, as expected. (This data is all at toroidal field of 5.3T.) Fig 2 plots the
dimensionless parameters p* versus v*. The value of v* ranges from about 10 to over 400,
corresponding to the observed range of regimes from sheath-limited to conduction-limited.
Fig 3 plots .0* versus A. The betas are low; the widths a few millimeters. All these data
are main-chamber parameters (denoted 'mid' in the plots).

In Fig 4 we show the total connection length (target to target) as a function of the ratio
of A to the poloidal Larmor radius (i.e. (B,/Bt)1/p*). Connection length varies primarily
with current. The SOL width is typically only a few times the poloidal gyrolength, thus
emphasizing the importance of cross-field drifts, as has been experimentally observed. Fig
5 illustrates the values of the 'cold' neutral collisionality at the outer divertor (x-axis) and
the main chamber (y-axis). The neutral collisionality is generally less than about 0.4 in
the main chamber, implying that a significant fraction of neutrals can cross the SOL. At
the divertor, however, the collisionality is much higher (particularly at high densities) and
the divertor leg is therefore 'thick' to neutrals.

These illustrative examples document the parameter ranges spanned by this set of
experiments. It is intended that inter-machine comparisons be carried out using the defi-
nitions described here.
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Figure Captions

Figure 1 Plot of similarity database parameters (SIM.) poloidal field versus separatrix
density (at midplane).
Figure 2 Plot of p* versus v* (at midplane).
Figure 3 Plot of #* versus A.
Figure 4 Plot of total connection length versus A/p, (at midplane).
Figure 5 Plot of cold neutral transverse collisionality (A/gc,cold) at the midplane versus
at the outer divertor.
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Table 3. Spreadsheet for Calculation of
Experimental Divertor Similarity Parameters

Example
Parameter Units Value
B.t T * 4.OOE+00
L-m m * 2.20E+01
L-x/L-m * 1.60E-01
B.pt/B-pm * 3.70E-01
B-px/B.pm * 1.40E-01
B.pm/B-tm * 1.70E-01
alpha-p * 5.OOE-01
m-i/m.proton * 2.OOE+00

Main chamber

n-20 102O *0

T eV *

T-i/T-e*

Delta m *

rho*

nu*
beta

D/Lcold
D/Lhot
D/rho.p

X-point

n-20 10^2 *

T eV *

Ti/Te *

Delta-x m
rho*

nu*
beta

D/1.cold

D/Lhot

D/rho.p

Target

n.20 10^2 *

T eV *

T-i/T-e*

Delta-t m

rho*
nu*
beta

D/1-cold

D/1.hot

D/rho.p

alpha-t

Denotes input value *

8.40E-O1
6.OOE+O1
1.OOE+00
1.60E-03
1.78E-01
3.54E+01
2.52E-04
2.18E-01
4.76E-02
9.55E-01

1. 40E+00
4.OOE+01
1.OOE+00

1.14E-02
2.03E-02
2.13E+01
2.80E-04
2.27E+00
6.07E-01
8.35E+00

2.44E+00
5.20E+00
1. OOE+00

4.32E-03
1.94E-02
2.19E+03
6.34E-05
7.64E-01
5.66E-01
8.77E+00
3.O1E-02
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