PFC/RR-92-1

DOE/ER/54110-1

Test Data From The US - Demonstration Poloidal Coil Experiment

T.A. Painter, M.M.Steeves, M.Takayasu, C. Gung, M.O.Hoenig*

H.Tsuji, T.Ando, T.Hiyama, Y.Takahashi, M.Nishi, K.Yoshida, K.Okuno, H.Nakajima, T.Kato, M.Sugimoto, T.Isono,
K.Kawano, N.Koizumi, M.Osikiri, H.Hanawa, H.Ouchi, M.Ono,
H.Ishida, H.Hiue, J.Yoshida, Y.Kamiyauchi, T.Ouchi, F.Tajiri,
Y.Kon, H.Shimizu, Y.Matsuzaki, S.Oomori, T.Tani, K.Oomori,

T.Terakado, J.Yagyu, H.Oomori**

January 1992

*Plasma Fusion Center Superconducting Magnet Development Group Massachusetts Institute of Technology Cambridge, Massachusetts 02139 USA

**The Japan Atomic Energy Research Institute Superconducting Magnet Laboratory Naka-machi, Naka-gun, Ibaraki-ken, Japan

This work was supported by the United States Department of Energy, contract no. DE-FGO2-91-ER-54110. Reproduction, translation, publication, use and disposal, in whole or part, by or for the United States government is permitted.

Test Data From The US - Demonstration Poloidal Coil Experiment

by

Superconducting Magnet Development Group MIT Plasma Fusion Center

and

The Japan Atomic Energy Research Institute

ABSTRACT

The US - Demonstration Poloidal Field Coil (US-DPC) experiment took place successfully at the Japan Atomic Energy Research Institute (JAERI) in late 1990. The 8 MJ niobium-tin coil was leak tight; it performed very well in DC tests; it performed well in AC tests, achieving approximately 70% of its design goal. An unexpected ramp-rate barrier at high currents was identified. The barrier could not be explored in the regime of higher fields and slower ramp rates due to limitations of the background-field coils.

This document presents the results of the experiment with as little editing as possible. The coil, conductor, and operating conditions are given. The intent is to present data in a form that can be used by magnet analysts and designers. This work was supported by the United States Department of Energy, contract no. DE-FGO2-91-ER-54110. Reproduction, translation, publication, use and disposal, in whole or part, by or for the United States government is permitted.

Contents	page
1. Executive summary	. 1
2. Introduction	. 3
3. Purpose	. 3
4. Summary of experiment	. 3
4.1 Statistics	. 3
4.2 Single-coil DC tests	. 3
4.3 Series-coil DC tests (US+U1+U2)	. 4
4.4 Single-coil AC tests	. 4
4.5 Series-coil AC tests (US+U1+U2)	. 6
5 Coil and test mode specifications	7
5. 1 Wine	. /
5.1 Wire	. /
5.2 Conductor	. 8
5.5 C011	. 8
5.4 Coll stack	. 13
5.5 Magnetic field distribution	. 13
5.6 Flow	. 14
6. Thermal performance	. 18
6.1 Introduction	. 18
6.2 Cooldown	. 18
6.2.1 Cooldown weight	. 18
6.2.2 Cooldown operation	. 18
6.2.3 Cooldown performance	. 18
6.2.3.1 Cooldown performance curve	. 18
6.2.3.2 Cooldown temperature control specifications	. 22
6.3 Coil heat load measurements	. 22
6.3.1 Sensors and locations	. 22
6.3.2 Coil heat load measurement results	22
6 4 Pressure dron performance	30
6.4 1 Pressure dron performance measurements	. 20
6 4 2 Data arrangement	. 30
6.4.3 Pressure drop performance results	. 33
7. Single-coil DC test results	. 35
7.1 Examination of voltage traces of runs 13-25 and 32-38	. 35
7.1.1 Nature of noise signals	. 39
7.1.2 Additional resistive/inductive voltages	. 39
7.2 Current-sharing temperature measurements	. 39
7.3 Critical-current measurements	. 41

7.4 Simulated nuclear heating and AC loss calibration	44
7.4.1 Stability of US-DPC under nuclear heat loads	44
7.4.2 Calibration of mass flow in AC loss measurements	45
8. Series-coil DC test results	51
9. Single-coil AC test results	52
9.1 Single-coil coupling and hysteresis losses	54
9.2 Estimate of effective filament diameter	75
9.2.1 Analytical model	75
9.2.2 Effective filament diameters	78
9.3 Estimate of coupling time constant	80
9.3.1 Analytical model	80
9.3.2 Effective coupling time constant	81
9.4 Flow choking	83
C C	
10. Ramp-rate limitation	95
10.1 Characterization of an AC test run	95
10.1.1 Quenched or non-quenched	95
10.1.2 Test mode (single-coil or series-coil)	95
10.1.3 Charging waveform	95
10.2 The quenched runs	96
10.3 Behavior	101
10.3.1 Baseline limit	101
10.3.2 Single-coil tests	102
10.3.2.1 Runs quenched in the interpancake lap joints	102
10.3.2.2 Triangular-pulse runs	102
10.3.2.3 Round-edge tranezoidal-pulse runs	105
10.3.2.4 Rinnled transzoidal-nulse runs	107
10.3.2.5 Two-step trapezoidal-pulse runs	107
10.3.3 Series coil tests	100
10.4 Argument for limiting current	109
10.4 Argument for minung current	110
11 I an joint resistance	112
11.1 Loint description	112
11.1 Joint description	112
	112
12 Mechanical performance of the US-DPC	11/
12. Displacement measurements	114
12.7 Displacement measurements	114
12.2 Displacement measurements during DC tests	114
12.3 Displacement measurements during DC tests	117
12.3.1 Shight-coll lesis	117
12.3.1.1 AT recorder charts	11/
12.5.1.2 A Y recorder charts	124
12.3.1.3 Relation between displacement and current squared	124
12.3.2 Series-coil tests (U1+U2+US)	124

12.3.2 Series-coil tests (U1+U2+US)	124
12.3.2.1 XY recorder charts	124
12.3.2.2 Relation between displacement and current squared	124
12.4 Displacement measurements during AC tests	132
12.4.1 Single-coil tests	132
12.4.1.1 XT recorder charts	132
12.4.1.2 XY recorder charts	132
12.4.1.3 Relation between displacement and current squared	132
12.4.2 Series-coil tests (U1+U2+US)	132
12.4.2.1 XY recorder charts	132
12.4.2.2 Relation between displacement and current squared	132
12.5 Strain measurements during DC charge tests	143
12.5.1 Single-coil tests	143
12.5.2 Series-coil tests (U1+U2+US)	143
12.6 Summary	153
13. Recommendations for future work	155
Appendix A. Publications associated with the US-DPC	156
A.1 Annex V	156
A.2 Coil Fabrication.	156
A.3 Conductor critical current	156
A.4 Conductor AC losses	157
A.5 Low AC loss Nb ₃ Sn wire development	157
A.6 Incoloy 908 development	157
A.7 Superconducting poloidal coil design	158
Appendix B AC loss measurement technique	150
B 1 A ssumptions	150
B 2 Measurement model	150
B.2 Typical ΔC loss measurement	161
B.4 Pressure and mass flow measurements of example	164
Appendix C. Table of losses of AC test runs	167
Appendix D. Listing of coil test runs	171

Acknowledgements

We would like to thank the following people for contributing to the completion and success of the US-DPC: Dawood Aized, Stan Autler, Ron Ballinger, Don Beard, Marvin Cohen, Joe Davin, Bob Dowling, Chuck Gibson, Dick Hale, Olivier Herbelot, Il Soon Hwang, Arthur Katz, Milt Machalek, Philippe Marti, Jerry Martin, Bruce Montgomery, Martin Morra, Bruce Oliver, Bob Randall, Dan Reisner, Harold Schreiber, Joel Schultz, Frank Silfies, Dave Smathers, Darrell Smith, and Jack Tracey.

Also, we would like to acknowledge the following companies: Teledyne Wah Chang Albany, Electrocoatings Incorporated, New England Electric Wire Incorporated, International Nickel Corporation, Oxford Superconducting Technologies, Everson Electric Company, Wall Colmonoy Corporation, and Ibaraki-Kosan Corporation.

1. Executive Summary

The United States Demonstration Poloidal Coil (US-DPC) was built and tested under MIT supervision in a collaboration between the Japan Atomic Energy Research Institute (JAERI) and the United States Department of Energy (DOE). The objective of the collaboration was the development of superconducting poloidal coil technology applicable to the next generation of fusion experimental devices. The three goals of the experiment were:

- 1. Evaluation of the manufacturing process in terms of coil performance. For example, did the coil reach the short sample performance of the wire? Did the high-current lap joints dissipate too much power? Note that fabrication techniques for coils built from the brittle intermetallic compound Nb₃Sn differ significantly from those built of the ductile alloy NbTi or built of ductile copper.
- 2. <u>AC operation to 10 T at 10 T/s.</u> Was the coil capable of being charged with a trapezoidal waveform from zero current to constant full current at significant magnetic fields?
- 3. <u>Evaluation of a dual-flow cooling scheme</u>. Is a double-conduit cooling scheme, with independent cable-space and corner helium flows, effective at removing the significant AC-loss heat loads in an ohmic heating coil?

The goals of the US-DPC experiment were only partially realized due to unanticipated AC behavior of the coil. <u>Results</u> are summarized below:

- Evaluation of the manufacturing process in terms of coil performance. Coil performance in the DC mode was excellent. The coil was leak tight under moderate mechanical loads, the cryogenic system worked properly, lap joint resistances were low, the quench protection system worked well, and mechanical behavior of the coil was reproducible. Cable current-sharing temperatures exceeded short sample predictions by up to ≈ 10 %, implying little or no degradation of the Nb₃Sn superconductor by strain or damage - this is the most significant result of the experiment.
- 2. AC operation to 10 T at 10 T/s. The design goal of a charge from 0 T to 10 T at 10 T/s was not realized. However, operation from 0 T to 7 T at 7 T/s was achieved. An unanticipated ramp-rate limitation was identified, which appeared to be related to short-duration energy disturbances and the "limiting current" of the conductor and not to AC losses this is the second significant result of the experiment.
- 3. <u>Evaluation of a dual-flow cooling scheme</u>. Systematic evaluation of the dual-flow cooling scheme was abandoned when the ramp-rate limitation was identified. Heat removal by corner flow typically equaled or exceeded heat removal by cable-space flow.

To itemize manufacturing aspects relevant to the envisioned International Thermonuclear Experimental Reactor (ITER), the US-DPC contributed to high-field, large-coil technology through development of:

- loss-optimized, internal-tin Nb₃Sn wire,
- chrome plating for Nb₃Sn wire,
- Incoloy 908, a low-COE-superalloy conduit,
- wind-and-react techniques on a 2-m-diameter scale,
- a vacuum furnace on a 3-m-diameter scale, and
- low-loss, high-current, Nb₃Sn lap joints.

The experimental results offer several implications for the ITER model coil program. These are:

- Loss optimization of Nb₃Sn wire is effective, since hysteresis losses of the cable were comparable to those predicted from single-wire short samples (see Fig. 9.22).
- Chrome plating is effective as an anti-sintering agent during heat treatment, since cable coupling time constants were comparable to those of single wires (see Table 9.3).
- Vacuum heat treatment is effective in preventing stress-accelerated grain boundary oxidation (SAGBO) of the Incoloy 908 conduit, since the coil was helium-leak tight through more than 300 test cycles.
- Use of a low COE conduit and a wind-and-react technique appear to be sufficient to optimize the critical properties of Nb₃Sn (see Fig. 7.7).
- High-current, low-resistance Nb₃Sn lap joints can be built successfully in an industrial environment (see Section 11).
- No ramp-rate limitations appear to exist below a characteristic limiting current defined as the copper-stabilizer current at which Joule heating equals cooling by the surrounding helium (see Fig. 10.5).

2. Introduction

The United States Demonstration Poloidal Coil (US-DPC) was built and tested under the auspices of "Annex V" to the Implementing Arrangement between the Japan Atomic Energy Research Institute (JAERI) and the United States Department of Energy. As stated in the arrangement, the objective of the collaboration was to conduct tests and to evaluate conductor design concepts and performance in support of the development of superconducting poloidal coil technology applicable to the next generation of fusion experimental devices.

3. Purpose

The purpose of this document is to present data from the US-DPC experiment that can be used to estimate the performance of future poloidal coil designs. Emphasis is on the evaluation of AC losses in the US-DPC cable-in-conduit conductor (CICC).

4. Summary of experiment

The experiment began on November 5 and ended on December 20, 1990. The three goals were: (1) evaluation of the manufacturing process in terms of performance; (2) AC operation to 10 T at 10 T/s; and (3) evaluation of a dual-flow cooling scheme (independent control of cable-space and corner flows).

4.1 Statistics

There were two cooldowns of the facility, of duration approximately one week each. A total of 305 runs were done: 73 DC and 232 AC. The US-DPC quenched 51 times; adequate protection was provided by dump signals from both bridge and inlet-mass-flow-meter circuits. The protection system worked well in both the DC and AC modes, although allowance had to be made for the ferromagnetic nature of the Incoloy 908 conduit.

The nominal operating condition was supercritical helium at 4.5 K, 6 atm, and 60 g/s at the inlet; the two lap joints between double pancakes were cooled with liquid rather than supercritical helium, a design decision that proved to be a problem area. The minimum test temperature was 4 K; the maximum 14.8 K. The minimum flow was 15 g/s, or 2.5 g/s per pancake; the maximum was 60 g/s or 10 g/s per pancake.

4.2 Single-coil DC tests

"Single coil" means that the US-DPC was tested alone (zero background field). These tests established that the coil was leak tight, the cooling system was working, the lap joint resistance was low, and the protection system was working. It was concluded that the fundamentals of the coil fabrication were in order.

When the coil reached 100% charge (30 kA) for the first time, a power supply overheat initiated an unplanned dump that yielded a first estimate of AC losses. The losses were approximately 0.1% of the stored energy of 8.2 MJ. They appeared to be within a factor of 2 of estimates made from single-wire measurements at MIT.

To determine if the conductor had significant resistive portions, flow conditions were

US-DPC Test Report

varied. Most significantly, flow in the cable space was stopped while maintaining corner flow only; the coil was then charged to 30 kA (5.7 T) with no evidence of transition from the superconducting to the normal state.

Current-sharing temperature measurements were made to 30 kA, to compare the 225strand cabled superconductor to single-wire measurements. These measurements were performed by charging the coil to a given current and then slowly raising the inlet helium temperature above 4.5 K until resistive voltage was seen. It was found that the performance was slightly better than predictions taken from a combination of published literature and single-wire measurements at MIT and the University of Wisconsin, indicating no degradation due to damage or strain of the superconductor. These results were confirmed with critical current tests, in which the inlet helium temperature was raised and stabilized and then the coil charged until resistive voltage was seen.

Intermediate ramp-rate tests were done to see if the US-DPC suffered from the limitations of the Japanese U1 and U2, that is, quenches at ramp rates on the order of minutes. The fastest charge was 30 kA/min (0.1 T/s); no evidence of transition from the superconducting to the normal state was found, indicating no limitation at these ramp times.

Nuclear heating tests were performed using a heater in the cable of double pancake B; the maximum heat load was 200 W at 30 kA. This established that the cooling capacity exceeded the ITER specification. It was observed that flow choking occurred in double pancake B, with the general significance that parallel passages may choke when nuclear heating takes place. (This may be true whether heating is balanced or unbalanced, and can have significance for large ITER-scale magnets.)

In summary, the single-coil DC tests provided a manufacturing evaluation of the coil at low fields. The test results indicated that the coil worked well and was neither significantly damaged nor strained.

4.3 Series-coil DC tests (US+U1+U2)

The US-DPC was charged in series with the U1 and U2 background coils to a peak field of 8 T (25.9 kA). The charging time to 8 T was approximately 14 hours, showing the extreme sensitivity of the U1 and U2 coils to intermediate ramps. The series DC test verified the integrity of the US-DPC to 80% of the design field of 10 T before a quench of the U1 coil brought the test to a halt. (Caveat on coil integrity: no tests > 8 T).

4.4 Single-coil AC tests

It was expected that a charge to 5.7 T (30 kA) at a ramp rate of 10 T/s would be achieved without evidence of transition from the superconducting to the normal state. However, an unexpected barrier of either field or current (or both) versus ramp rate was encountered. A secondary purpose, that of evaluating the cooling effectiveness of the dualflow conductor, was pushed aside in favor of a focused look at the more important and completely unexpected ramp-rate limitation. It appeared on the basis of preliminary investigations during testing that the AC losses were too low to account for the ramp-rate limitation.

The "barrier" on performance is illustrated in Table 4.1, and when attempts were made to exceed these values, the coil quenched. It was found that the quenches initiated mainly in two places. At high ramp rates, the quenches initiated in the liquid-helium-cooled lap

run no.	ramp rate	field	current	J _c noncopper
139	19 T/s	3.8 T	20 kA	400 A/mm ²
128	4.3 T/s	4.3 T	23 kA	460 A/mm ²
122	2.7 T/s	4.7 T	25 kA	500 A/mm ²
124	0.71 T/s	5.7 T	30 kA	600 A/mm ²
134	0.55 T/s	6.0 T	32 kA	640 A/mm ²

Table 4.1 - Best performance in single-coil tests for trapezoidal-pulse runs ramped to fields from 3.8 T to 6.0 T (3 s flat tops without quench). Noncopper current density is defined as cable current divided by the cable noncopper area (approximately 50 mm²).

joints, which are monolithic conductors for practical purposes. At lower ramp rates, the quenches initiated in the crossover turn of double pancake C, not in the peak field point of the magnet (crossover turn of B). It was noted that double pancake C had a void fraction of 43 % (larger helium inventory); the other two had void fractions of 38 %. Also, double-pancake C had a current-lead termination that was slightly damaged during fabrication. Figure 4.1 shows the baseline ramp-rate limit as described in section 10.3.1.

To better understand the observed behavior, the following charging waveforms were investigated: (1) two-step trapezoidal pulses; (2) multiple trapezoidal pulses; (3) round-edge trapezoidal pulses (ramp plus half sine wave); and (4) trapezoidal pulses with a superimposed ripple ranging from 6.6 to 16.5 Hz. Investigations were carried out under the nominal cooling conditions of 4.5 K, 6 atm, and 60 g/s. The highest current in the coil was achieved using a round-edge trapezoidal pulse. It was 35 kA (6.6 T) at an average ramp rate of 0.5 T/s.

To investigate the effect of cooling on the ramp limitation, improved cooling conditions were tried (4.0 K, 3.0 atm, 60 g/s); there was no significant improvement. Little difference was observed when the cable-space flow was reduced to zero in double pancake B, or when the corner flow was reduced to zero in pancake 4. Slow-flow cooling conditions were tried by reducing the inlet helium flow to 30 g/s (4.5 K, 6 atm). There was a noticeable, but small, improvement in performance ($\approx 4 \%$).

4.5 Series-coil AC tests (US+U1+U2)

The principal purpose of the series AC tests was to determine if the coil could sustain a ramp rate of 10 T/s to a peak field of 10 T. It was found that it could not.

Four pulse shapes were used: triangular, trapezoidal, round-edge trapezoidal, and rippled trapezoidal. Note that only fast ramps were possible because of the limitations of the U1 and U2 coils. (The U1 and U2 coils would quench at ramps slower than approximately 3 s to currents of approximately 20 kA and above). The flow conditions were nominally 4 K, 6 atm, and 60 g/s at the inlet of the US-DPC (10 g/s per pancake). Table 4.2 summarizes the best performance based on pulses with flat tops, and Figure 4.2 plots the non-quenched series-coil runs in comparison with the baseline limit.

As an example of the temperature rise produced by AC losses and measured at the pancake outlets, run 265 in Table 4.2 is considered. The flow conditions were 4 K, 6 atm, 60 g/s. The trapezoidal pulse had a 1 s rise time, a 0.5 s flat-top time, and a 1 s fall time; it yielded an average outlet temperature rise of approximately 0.5 K on pancakes 2, 3 and 5. That is, the losses in the six pancakes were approximately equal.

run no.	charging waveform	flattop	ramp rate	field	current	J _c noncopper
265	trapezoidal	0.5 s	6.4 T/s	6.4 T	21 kA	420 A/mm ²
271	round-edge trapezoidal	3.0 s	2.3 T/s (avg)	6.8 T	22 kA	440 A/mm ²
277	rippled trapezoidal	0.5 s	6.8 T/s (avg)	6.8 T	22 kA	440 A/mm ²

Table 4.2 - Best performance in series-coil tests.

Figure 4.2 - Data of the non-quenched, series-coil, trapezoidal-pulse test runs fall below the baseline ramprate limit defined by single-coil data. Note, however, that the magnetic fields in the series-coil tests were higher.

The peak helium temperature rise has been estimated by JAERI from work on the DPC-EX to be approximately a factor of 3 - 4 times the outlet temperature rise. Thus, it is estimated that the trapezoidal pulse of run 265 produced a peak temperature rise in each crossover turn of roughly 2 K (absolute peak $T \approx 6$ K).

5. Coil and test-mode specifications

Section 5 is a compilation of specifications of the wire, conductor, coil, coil stack, magnetic field distribution, and coolant flow arrangement. The relevant parameters of the US-DPC and its test arrangement at JAERI are described in detail.

5.1 Wire

The US-DPC wire, made by Teledyne Wah Chang Albany (TWCA), was a titaniumalloyed, internal-tin, modified-jelly-roll Nb₃Sn wire with a local copper-to-niobium ratio of 1.7 to 1. Parameters of the wire are given in Table 5.1. A cross section of the wire is shown in Figure 5.1.

TWCA design designation Volume % noncopper	Cre 2000 46.0	Strand Diameter Volume % copper	0.78 mm 54.0
No. filament bundles	18	Strand pitch	12.7 mm
Strand chrome RRR	2x10 ⁻⁶ m 27	Length/weight	242 m/kg
Heat treatment:	220 C / 175 hrs	+ 340 /96 + 650 / 200	
Within the noncopper region:			
Volume % filament	22.9	Volume % copper	48.8
Volume % tin	15.8	Volume % vanadium	12.6
Local Cu/filament ratio	1.69		
Hysteresis (±3T cycle) ¹	460 mJ/cm ³ -no	ncopper	******
Coupling Time Constant	1 ms	**	н. 1
Hysteresis (±7T cycle) ¹	650 mJ/cm ³ -no.	ncopper	
Temperature dependence of hy	ysteresis loss ($T \ge 4$	$(5 \text{ K})^2$: $Q_h = 1.47 - 0.103 \text{ T}$	[mJ/cm ³ - wire]
Hysteresis ³ - triangular wave	to B_m : $Q_h =$	= 178.2{1 - exp(-0.129 Bm)}	[mJ/cm ³ - wire]

Table 5.1 - Parameters of the TWCA internal-tin Nb₃Sn wire.

Bundle coupling³ - triangular wave to B_m in time T_m : $Q_c = 50.68(B_m/T_m) \ln(1 + 2.4 \times 10^{-3} \text{ RRR } B_m) \text{ [mJ/cm}^3 - \text{wire]}$

Critical current³ (4.2 K, 10 μ V/m) from B = 3 to 13 T: I_c = 1830.9 - 640.58 B + 120.04 B² - 12.707 B³ + 0.69682 B⁴ - 0.015336 B⁵ with R² = 1.000, where R is the correlation coefficient.

5.2 Conductor

The cable-in-conduit conductor of the US-DPC consists of a 225-strand cable of multifilamentary Nb₃Sn wires enclosed in two conduits of Incoloy 908, a superalloy selected for its low coefficient of thermal expansion, which nearly matches that of Nb₃Sn. The ideal geometry of the conductor is shown in Figure 5.2. Table 5.2 lists parameters of the conductor.

5.3 Coil

The coil contains approximately 450 meters of conductor in the form of three double pancakes designated A - C connected electrically in series by means of resistive lap joints. Figure 5.3 shows the coil envelope and Figure 5.4 shows the connection schematic. The helium inlets are located at the midpoint, 75 meters from each end of a double pancake. The coil was designed to operate at 30 kA with an overall current density of 50 A/mm² at 10 T and 4 K. Table 5.3 summarizes the coil design.

Figure 5.5 shows a plan view of the coil and centerline geometry of a double pancake. Each pancake has a conductor geometry defined by offset semicircles. The helium inlet of a double pancake is at the 180 degree reference at the inner diameter. As can be seen in

Figure 5.1 - Cross sectional view of unreacted US-DPC internal-tin modified jelly roll Nb₃Sn wire. The diameter is 0.78 mm; 54% is copper; there are 18 filament bundles.

Figure 5.5 (b), only 50 % of the conductor centerlines are on arcs with centers at the "true coil center". Note that the double pancakes are stacked so that two helium inlets (A and C) are located opposite the current leads and one helium inlet (B) is located adjacent to the current leads. That is, the 180 degree reference point of double pancake A and C are located just above and below the 0 degree reference point of double pancake B.

The centerline radii are given in Table 5.4. Note that the crossover turn from 270-to-0to-90 degrees has a center offset of 15 mm. All other turns have an offset of 11.5 mm. The crossover turn spans 360 degrees; we associate one half of a crossover turn with each pancake (16.5 turns per pancake). The primed radii define arcs from 270-to-0-to-90 degrees; the unprimed from 90-to-180-to-270 degrees.

The insulation geometry at a double pancake "180 degree reference" is shown in Figure 5.6. At this location, the inside radius of the groundwall insulation is 500 mm; the inside radius of the crossover is 506.85 mm.

Figure 5.2 - Dimensions of the US-DPC conductor in millimeters. There were full-length heater wires (3.30 mm dia. x 150 m) in two of the three double pancakes (A and B).

Table 5.2 - Parameters of the US-DPC cable-in-conduit conductor (CICC).

Void Fraction (no heater)	43%	Void Fraction (with heater)*	38%
Cable space area	193.0 mm ²	Cable area	108.6 mm^2
Cable helium area (no heater)	82.9 mm ²	Cable helium area (with heater)	74.3 mm ²
Inner conduit area	53.0 mm^2	Outer conduit area	175.4 mm ²
Corner helium area	53.6 mm^2	Number strands	225
Cable type	3x3x5x5	Strand pitch	12.7 mm
Triplet pitch	51 mm	3x3 pitch	102 mm
3x3x5 pitch	203 mm	3x3x5x5 pitch	305 mm
Actual strand diameter	0.78 mm	-	•

* Two of the three cables had 3.2 mm diameter heater wires at their centers.

Figure 5.3 - Envelope dimensions of the US-DPC solenoid. The two lap joints between the three double pancakes are not shown.

Figure 5.4 - Connection schematic showing the helium inlet tees of the A, B, C double pancakes, the A/B and B/C lap joints and the coil leads.

Table 5.3 - Summary of the US-DPC coil design.

Superconductor	Nb ₃ Sn	Conduit	Incoloy 908
Design field	10 T	Design current	30 kA
Design ramp rate	10 T/s	Double pancakes	3
Height	0.154 m	Turns per double pancake	33
Total turns [*]	100	Ampere-turns	3 MA
Inner diameter	1.0 m	Outer diameter	1.8 m
Total conductor length	450 m	Length per double pancake	150 m
Overall current density	50 A/mm ²	Cable-space current density	163 A/mm ²
Turn-to-turn insulation	0.71 mm	Ground insulation	1.88 mm
Barrier disk between pancakes	2.44 mm	Load line (single coil mode)	0.190 T/kA
Load line (series mode)	0.307 T/kA		

* Includes turn for lap joints between double pancakes

(a) Plan view of US-DPC coil.

(b) Conductor centerline geometry.

Figure 5.5 - Reference coordinates of the US-DPC. The assembled coil is shown in (a) and the centerline geometry of a double pancake in (b). Note that each double pancake consists of semicircles with the top semicircle offset from the bottom by a distance x. The helium inlets of the A and C double pancakes are opposite the current leads and that of the B double pancake adjacent to the current leads.

Bottom Arcs (90/180/270)	Top Arcs (270/0/90)
$\frac{1}{R_0} = 518 \text{ mm}$	$R_0' = 533 \text{ mm}$
Other turns	
$R_1 = 548 \text{ mm}$	$R_1' = 559.5 \text{ mm}$
$R_2 = 571 \text{ mm}$	$R_2' = 582.5 \text{ mm}$
$R_3 = 594 \text{ mm}$	$R_{3}' = 605.5 \text{ mm}$
•	•
•	•
$R_{15} = 870 \text{ mm}$	$R_{15} = 881.5 \text{ mm}$
$R_{16} = 893 \text{ mm}$	$R_{16}' = 904.5 \text{ mm}$

Table 5.4 - Centerline radii of each double pancake. Unprimed radii are from the true center; primed radii are from the offset center.

Figure 5.6 - The double pancake cross section at the 180 degree reference of Figure 4.5 (b) shows the insulation builds (helium inlet is not pictured in the cross section). The inside radius of the ground wall is 500 mm. Insulation is epoxy-glass.

5.4 Coil stack

The geometry of US-DPC, U1, and U2 coils in the JAERI test facility is outlined in Table 5.5. The inner radius is approximately 510 mm to the conduit metal; the axial height includes turn and ground insulation (for U1 and U2 this is 4.5 mm gnd + 0.5 mm turn and for US-DPC this is 1.9 mm gnd). In Table 5.5, the inner and outer radii of the US-DPC are average values taken from the true center.

5.5 Magnetic field distribution

The magnitude of the calculated magnetic fields as a function of radius for the singlecoil and series-coil test modes are given in this section.

The field distribution along the midplane of each pancake in the single-coil mode (no background field) has been calculated assuming the following envelope geometry: inner radius to conduit metal of 510 mm, outer radius of 910 mm, and height of 154 mm. The envelope was assumed to contain 100 turns, yielding an overall current density at 30 kA of approximately 48.7 MA/m². The midplanes of the pancakes are positioned at 12.7 mm, 38.9 mm, and 64.3 mm; these are the elevations at which the field as a function of radius is

calculated. Figure 5.7 plots the magnitude of field as a function of radius at the three elevations for the single-coil mode (US-DPC only). Figure 5.8 plots the field as a function of radius for the series-coil mode (U1 + US-DPC + U2). The peak field, located at the inner edge of the crossover turn of double pancake B, is approximately 5.66 T at 30 kA for the single-coil mode and 9.22 T at 30 kA for the series-coil mode.

coil	inner radius (mm)	outer radius (mm)	axial height (mm)	axial position (mm)	operating current (kA)	no. of turns
US-DPC	510 ¹	910	154 2	0 (± 77) ³	30	100 4
DPC-U1	500	1010	313.4	207.7, 521.1	30	127
DPC-U2	500	1010	313.4	- 207.7, - 521.1	30	127

Table 5.5 - Coil-stack geometry of the US-DPC and the JAERI U1 and U2 coils.

¹ inner radius is 500 mm to insulation and 510 mm to conduit metal at 180° reference

² includes two 0.8 mm G10 sheets between double pancakes

 3 z = 0 corresponds to the US-DPC midplane

⁴ 33 turns per double pancake plus 1 turn for lap joints

5.6 Flow

Secondary cooling passages were provided by the four corners between the inner conduit and the outer conduit (see Figure 5.2). In double pancake B (pancakes 3 and 4), the cable-space and corner flows were controlled separately by means of valves. Three cooling modes were thus possible: (1) flow through the cable with zero flow in the corners, (2) flow in the corners with zero flow in the cable, and (3) flow through both the cable and corners. The "normal" flow condition in double pancake B was with all outlet valves open (valves V2 through V5). The nominal inlet flow condition was supercritical helium at 4.5 K, 6 atmospheres absolute, and 60 g/s. See Figure 5.9 for the supercritical helium flow diagram.

Note that although the nominal flow was 60 g/s as measured by a flow meter monitoring the total flow into the US-DPC, the sum of the individual flow measurements of each double pancake varied markedly. The total flow obtained by summing the individual flows was nominally 45 g/s. Furthermore, the mass flows at the inlet of A (pancakes 1 and 2) and B (pancakes 3 and 4) should be the same because the flow crosssections are the same. However, double pancake A's flow is approximately 75% of B's flow. Also, the outlet flows of B do not sum to equal the inlet flow of B. There is a consistent discrepancy throughout the testing, indicating a need for thorough calibration of the flow meters throughout the measuring range in future tests.

Figure 5.7. - Absolute value of magnetic field as a function of radius plotted along the midplanes of the US-DPC pancakes at 30 kA. The plot is for the single-coil mode (US-DPC only). The midplanes of pancakes 1 and 6 are at elevations of \pm 64.3 mm, 2 and 5 at \pm 38.9 mm, and 3 and 4 at \pm 12.7 mm. The peak field at the inner edge of the crossover turn of double pancake B is approximately 5.66 T at 30 kA.

Series-coil Mode Magnetic Field Distribution

Figure 5.8 - Absolute value of magnetic field as a function of radius plotted along the midplanes of the US-DPC pancakes at 30 kA. The plot is for the series-coil mode (U1 + US-DPC + U2). The midplanes of pancakes 1 and 6 are at elevations of \pm 64.3 mm, 2 and 5 at \pm 38.9 mm, and 3 and 4 at \pm 12.7 mm. The peak field at the inner edge of the crossover turn of double pancake B is approximately 9.22 T at 30 kA.

Figure 5.9 - Supercritical helium flow schematic of the US-DPC. There were 10 temperature, 8 pressure, and 7 flow measurement points. Outlets in pancakes 3 and 4 were piped to allow independent control of flow in the corners and cable space (see Figure 5.2). Valves V-3 and V-4 controlled cable space flow; V-2 and V-5 controlled corner flow in double pancake B.

References

1. R. Goldfarb, Private communication.

2. A.K. Ghosh and M. Suenaga, IEEE Trans. Mag., Vol. 27, No. 2, March 1991, p. 2407.

3. M. Takayasu et al., "11th Int'l Conf. on Magnet Tech.", (1989), p. 1033.

6. Thermal performance

6.1 Introduction

The cooldown performance, coil heat load measurements, and pressure drop performance were measured to characterize the thermal performance of the US-DPC. In the cooldown operation, it was demonstrated how to cool a large-scale, forced-cooled, cable-in-conduit conductor to the 4K regime with no resultant damage from excessive thermal stress in the coil. The coil heat loads were estimated by measuring the enthalpy differences between the inlet and outlet helium of the coil. The pressure drop performance across the coil is of interest for future designs of force-cooled, cable-in-conduit conductors. Through the US-DPC experiments, Reynolds numbers and friction factors were calculated by measuring the coil pancake mass flow rate and the differential pressure between the pancake inlet and outlet.

6.2 Cooldown

6.2.1 Cooldown weight

The US-DPC, DPC-U1, and U2 were assembled in coaxial configuration as shown in Figure 6.1. The total cooldown weight including the coil support structure system was around 23 tons as listed in Table 6.1.

6.2.2 Cooldown operation

The US-DPC, DPC-U1, DPC-U2, and the cryogenic pump system, which circulates supercritical helium through the coil system, were simultaneously cooled down to temperatures less than 20 K by using JAERI's 1.2-kW, 350-liter/hour helium refrigerator. Below 20 K, the cryogenic pump system supplied 4 K liquid helium to the coil system. The cooldown flow scheme and method is shown in Figure 6.2.

From room temperature to 90 K, the helium supply temperature was controlled to prevent excessive thermal stresses in the coil by monitoring the temperature throughout the coil system at more than 70 locations. From 90 K to 20 K, the cooldown was limited only by the refrigeration power of the cryogenic system.

6.2.3 Cooldown performance

6.2.3.1 Cooldown performance curve

The helium supply temperature, inlet helium temperature, and outlet helium temperature were measured as a function of cooldown time as shown in Figure 6.3. The helium supply temperature was reduced in a step-like manner by computer control. Up to 50 hours after the cooldown had begun, the coil outlet temperature decreased with the rate of -0.6 K/h. From 50 hours to 100 hours, the cooldown rate was around -3 K/h, and from 100 hours to 150 hours, when the computer control was stopped, the rate was around -1.6 K/h. The cooldown from room temperature to below 20 K was completed in 150 hours.

During cooldown, the mass flow rate to the US-DPC was continuously monitored to maintain the differential pressure across the coil to less than 0.2 MPa. The mass flow rate

Table 6.1 - Cooldown weight of DPC coil system.

COOLDOWN WEIGHT

Superconducting coil	U1/U2 coil US coil	4200kg x 2 2800kg
Supporting structure	Coil supprt Supprt frame Support legs FRP etc.	7400kg 2700kg 350kg 300kg
Total		23000kg

Figure 6.1 - Coil configuration of the US-DPC, DPC-U1, and DPC-U2.

COOLDOWN OPERATION

COIL TEMP. OPERATION

300 - 90 K AUTOMATIC CONTROL BY COMPUTER

- 90 60 K COLD TURBINE START
- 60 20 K WARM TURBINE START

20 - 4 K SHe CIRCULATION PUMP START

Figure 6.2 - Cooldown flow scheme and method.

was changed from a few grams per second in the beginning to around 10 g/s at the end of the cooldown as shown in Figure 6.3.

After cooldown, it was verified that no damage from excessive thermal stress was done to the coil.

6.2.3.2 Cooldown temperature control specifications

The temperature during cooldown was controlled according to the following specifications.

- The temperature difference between the pancake inlet and the outlet was kept below 100 K.
- 2) The temperature difference between the US-DPC and neighboring coils (DPC-U1 and U2) was kept below 50 K.

The results of the temperature control during cooldown are shown in Figure 6.4 for the pancake inlet and outlet temperature differences and Figure 6.5 for the coil temperature differences. The maximum temperature difference between the pancake inlet and outlet was 100 K at the cooldown time of 50 hours, which corresponds to the thermal stress of around 2 kgf/mm² (around 0.2 MPa). The temperature difference profiles as a function of the cooldown time were similar in each pancake.

The maximum temperature difference between the US-DPC and the neighboring coils was around 50 K at pancake No. 1 of the US-DPC at the cooldown time of 50 hours.

The control specifications mentioned above were maintained throughout the cooldown.

6.3 Coil heat load measurements

6.3.1 Sensors and locations

To measure the coil thermal conditions, seven flow meters, eight pressure taps, and 18 temperature sensors were installed as shown in Figure 6.6. An orifice type flow meter was adopted as the mass flow meter, the measurement ranges in the 4 K regime were 3 to 20 g/s for the two flow meters (USMC01 - 02) located at the inlet of double pancakes A and B, 6 to 40 g/s for the flow meter at the inlet of double pancake C (USMC03) and 1 to 10 g/s for the four flow meters (USMC04 - 07) located at the outlet of the double pancakes. Platinum-Cobalt thermocouples were used at temperatures above 20 K, and carbon-glass resistor thermocouples were used at temperatures below 20 K.

6.3.2 Coil heat load measurement results

Similar to the AC loss measurements (see Appendix B), the coil heat load can be calculated by measuring the increase in helium enthalpy from the coil inlets to the outlets and multiplying by the mass flow rate of the given flow channel.

In the experiment, the helium enthalpies were found by measuring the helium pressures and temperatures at the coil inlets and the outlets. The enthalpy difference between the inlet and outlet was then multiplied by the mass flow of the given channel to find the heat load of that particular channel. Finally, the total coil heat load was found by summing the heat loads of the individual flow channels.

Figure 6.4 - Temperature difference between inlet and outlet of US-DPC pancakes 1, 3, 4 and 6 as a function of cooldown time.

Figure 6.5 - Temperature difference between coil spacer and US pancake 1, US pancake 6, U1 pancake A and U2 pancake H as a function of cooldown time.

Figure 6.6 - Cooling flow diagram of US-DPC and sensor locations.

The coil heat load calculation results are shown in Table 6.2 (a) to (e), which are selected for the five typical operation modes:

- (a) Standby mode with the current leads cooled by cold helium vapor.
- (b) US-DPC was charging at 30 kA with the current leads cooled by liquid helium.
- (c) US-DPC was charging at 25 kA and heater input of 70 + 353 W with the current leads cooled by liquid helium.
- (d) US-DPC was charging at 30 kA and heater input of 100 W with the current leads cooled by cold helium vapor.
- (e) US-DPC, DPC-U1, and U2 were charging at 25 kA in series with the current leads cooled by liquid helium.

Pancakes No. 1 and No. 6 (see Figure 6.6) are connected to the negative and positive current leads, respectively. Thus, pancakes No. 1 and No. 6 are subjected to heat conduction from the current lead which is, in turn, strongly affected by the current lead cooling condition.

leads cooled by cold helium vapor.
he current
de with th
n standby mo
n results ir
oad calculatio
(a) Coil heat 1
Table 6.2 -

No.	261	Date	12/5	Time	6:43	Stan	d by Nod	9			
Coil	Panc	ake .	Flow	P in	T in	H in	P out	T out	H out	Heat	Load
			g/s	atm	X	J/8	atm	1	J/8		>
U S	•••		1.50	5.729	4.816	13.68	5.661	5.173	15.38		2.6
	2 #		1.50	5.729	4.816	13.68	5.661	4.709	13.20		-0.7
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Center	0.31	5.729	4.816	13.68	5.663	4.808	13.62		0.0
		Corner	1.01	5.729	4.816	13.68	5.631	4.633	12.88		-0.8
	*	Corner	1.00	5.729	4.816	13.68	5.608	4.701	13.15		-0.5
		Center	0.47	5.729	4.816	13.68	5.621	4.697	13.14		-0.3
	ي *		1.71	5.729	4.661	13.03	5.637	4.591	12.72		-0.5
	ی #		1.71	5.729	4.661	13.03	5.637	9.284	51.76		66.0
c/L (	Sooling	= Gas				Esti	mated To	tal Heat	Load		65.7
U 1	¥ *		. 3.32	5.497	4.629	12.81	5.468	5.961	20.23		24.6
	æ **		5.92	5.497	4.629	12.81	5.514	4.772	13.41		3.6
	ပ #		2.32	5.497	4.629	12.81	5.514	4.772	13.41		1.4
•	a #		2.32	5.497	4.629	12.81	5.434	4.765	13.35		1.3
	ш <b>ж</b>		3.53	5.497	4.629	12.81	5.434	4.765	13.35		1.9
	: **		3.53	5.497	4.629	12.81	-5.440	4.666	12.94		0.5
	3 **		4.82	5.497	4.629	12.81	5.440	4.666	12.94		0.6
•	= +		0.50	5.497	4.629	12.81	5.471	6.231	22.58		<b>1</b> .9
c/L	Soling	= Gas				Esti	sated To	tal Heat	Load		38.7
0 5	× *		3.00	5. 533	4.626	12.82	5.514	6.605	26.54		41.2
	8 #		2.39	5.533	4.626	12.82	5.474	4.759	13.34		1.2
	ပ #		3.00	5.533	4.626	12.82	5.474	4.759	13.34		1.6
	0 #		3.00	5.533	4.626	12.82	5.426	4.683	13.01		0.6
	₩ **		3.05	5.533	4.626	12.82	5.426	4.683	13.01		0.6
	(⊥. ₩		3.05	5.533	4.626	12.82	5.400	4.677	12.97		0.5
	0 #		2.73	5.533	4.626	12.82	5.400	4. 677	12.97		0.4
	**		2.79	5.533	4.626	12.82	5.416	5.705	18.40		15.6
C/L	Cooling	= Gas				Esti	mated To	tal Heat	Load		61.5

US-DPC Test Report

by liquid helium.
ent leads cooled
the cum
30 kA with
charging at
PC was (
e the US-DI
ults while
ad calculation res
I heat lo
- (b) Coi
Table 6.2 -

	it Load	-	12.2	9.1			1.8	1.8	1.1.8	1. 1 1. 1 1. 1 -4. 0	1. 8 1. 1 4. 7 8. 9	1. 8 1. 1 4. 7 41. 6	1. 1 1. 1 1. 1 4. 7 -4. 0 8. 9 8. 9 24. 8	1.8 1.1 4.7 8.9 8.9 8.9 4.3 4.3	1. 8 1. 8 4. 7 4. 7 8. 9 8. 9 8. 9 24. 8 2. 8 2. 7 2. 7	1. 8 1. 1 1. 1 1. 1 1. 1 2. 4 2. 8 2. 6 2. 7 2. 6 2. 6	2. 9 2. 9 2. 9 2. 9 2. 9 2. 9	1. 8 1. 1 1. 1 1. 1 1. 1 1. 1 1. 1 1. 1	1. 8 1. 1 1. 1 1. 1 1. 1 1. 1 1. 1 1. 1	1. 8 1. 1 1. 1 1. 1 8. 9 8. 9 8. 9 8. 9 8. 9 2. 6 2. 6 2. 6 0. 8 0. 9 0. 9 0. 9	1. 8 1. 1 1. 1 1. 1 1. 1 1. 1 1. 1 1. 1	1.8       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1 </th <th>1.8       1.1       1.8       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1   <!--</th--><th>1.1     1.1       1.1     1.1       1.1     1.1       24.8     41.6       2.4.8     2.1       2.5.9     0.9       34.9     0.9       2.3     3.4</th><th>1.8       1.1       1.8       1.1       1.1       1.1       1.1       1.1       2.4       8       9       2.2       2.4       8       2.4       8       1.1       1.1       2.4       8       9       2.4       8       1.2       2.3       2.4       1.2</th><th>1.8       1.1       1.8       1.1       1.1       1.1       2.4       8.9       8.9       8.9       8.9       8.9       8.9       8.9       8.9       8.9       8.9       8.9       8.9       8.9       8.9       9.6       9.7       2.9       0.9       2.9       1.1</th><th>1.8       1.1       1.1       1.1       1.1       24.8       21.8       22.9       0.9       22.9       0.9       22.9       1.1       1.1       1.1</th><th>1.8       1.1       1.1       1.1       1.1       1.1       1.1       24.8       8.9       9.6       2.4       8.9       1.1       1.2       2.2       2.4       1.1       1.2       2.3       3.4       9       1.1       1.1       1.1       1.1</th><th>1.8       1.1       1.1       1.1       1.1       1.1       2.4       8.9       8.9       8.9       8.9       8.9       8.9       8.9       8.9       8.9       8.9       8.9       8.9       8.9       8.9       9.0       9.2       2.9       0.9       2.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1</th></th>	1.8       1.1       1.8       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1 </th <th>1.1     1.1       1.1     1.1       1.1     1.1       24.8     41.6       2.4.8     2.1       2.5.9     0.9       34.9     0.9       2.3     3.4</th> <th>1.8       1.1       1.8       1.1       1.1       1.1       1.1       1.1       2.4       8       9       2.2       2.4       8       2.4       8       1.1       1.1       2.4       8       9       2.4       8       1.2       2.3       2.4       1.2</th> <th>1.8       1.1       1.8       1.1       1.1       1.1       2.4       8.9       8.9       8.9       8.9       8.9       8.9       8.9       8.9       8.9       8.9       8.9       8.9       8.9       8.9       9.6       9.7       2.9       0.9       2.9       1.1</th> <th>1.8       1.1       1.1       1.1       1.1       24.8       21.8       22.9       0.9       22.9       0.9       22.9       1.1       1.1       1.1</th> <th>1.8       1.1       1.1       1.1       1.1       1.1       1.1       24.8       8.9       9.6       2.4       8.9       1.1       1.2       2.2       2.4       1.1       1.2       2.3       3.4       9       1.1       1.1       1.1       1.1</th> <th>1.8       1.1       1.1       1.1       1.1       1.1       2.4       8.9       8.9       8.9       8.9       8.9       8.9       8.9       8.9       8.9       8.9       8.9       8.9       8.9       8.9       9.0       9.2       2.9       0.9       2.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1</th>	1.1     1.1       1.1     1.1       1.1     1.1       24.8     41.6       2.4.8     2.1       2.5.9     0.9       34.9     0.9       2.3     3.4	1.8       1.1       1.8       1.1       1.1       1.1       1.1       1.1       2.4       8       9       2.2       2.4       8       2.4       8       1.1       1.1       2.4       8       9       2.4       8       1.2       2.3       2.4       1.2	1.8       1.1       1.8       1.1       1.1       1.1       2.4       8.9       8.9       8.9       8.9       8.9       8.9       8.9       8.9       8.9       8.9       8.9       8.9       8.9       8.9       9.6       9.7       2.9       0.9       2.9       1.1	1.8       1.1       1.1       1.1       1.1       24.8       21.8       22.9       0.9       22.9       0.9       22.9       1.1       1.1       1.1	1.8       1.1       1.1       1.1       1.1       1.1       1.1       24.8       8.9       9.6       2.4       8.9       1.1       1.2       2.2       2.4       1.1       1.2       2.3       3.4       9       1.1       1.1       1.1       1.1	1.8       1.1       1.1       1.1       1.1       1.1       2.4       8.9       8.9       8.9       8.9       8.9       8.9       8.9       8.9       8.9       8.9       8.9       8.9       8.9       8.9       9.0       9.2       2.9       0.9       2.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1
	it llea	/g	89	58	16		00	00	00 81 66	00 87 20	00 87 66 20 27	00 81 20 21	00 87 20 27 13	00 66 20 21 13 01	00 87 20 21 13 01 01	00 66 66 01 01 01 01 01	00 01 01 01 01 00 00 00 00 00	00           01           01           01           01           01           01           01           01           01           01           01           02	00           66           22           22           01           13           12           12           12           12	00           66           66           22           22           01           13           12           13           12           13           13           13           13           13           13           13           13           13           13           13           13           13           12	00           81           82           83           83           84           13           13           13           13           13           13           13           13           13           12           13           13           13	00           66           66           22           22           22           13           12           13           12           13           12           13           12           13           12           13           12           13           12           13           12           13           12           13           12           13           13           13           14           15           15           12           12           12           13           14           15           15           16           17           18	00         01         00           12         13         13           12         13         13           13         12         13           13         12         13           13         13         13	00         00           12         21           12         13           12         13           12         13           13         12           13         12           89         98	00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00<	00         01         00           13         93         12         13           13         93         12         13	00         01         00           13         12         12         12           13         98         98         13	00         00           66         66           12         22           13         12           12         13           12         13           12         13           12         13	00         01         00           12         12         12         12           12         13         12         12
	no H		12.	12.	18.		1 12.	11.	12. 16.	12. 11. 11.	12. 16. 12.	12. 16. 11. 12. t Load	12. 11. 15. 11. 12. t Load 16.	12. 11. 16. 12. t Load 12. 12.	12. 16. 11. 12. 12. 12. 12.	12. 11. 15. 12. 12. 12. 12. 12.	12. 16. 11. 12. 12. 12. 12. 12.	12. 16. 11. 11. 12. 12. 12. 12. 12. 11.	12. 11. 12. 12. 12. 12. 12. 12. 11. 12. 11.	12. 11. 12. 12. 12. 12. 12. 11. 12. 11. 12. 11.	12. 16. 11. 12. 12. 12. 12. 12. 12. 11. 12. 11. 12. 11. 12. 11. 12. 11. 12. 11. 12. 12	12. 16. 11. 12. 12. 12. 12. 12. 12. 12. 11. 12. 12	12. 16. 11. 12. 12. 12. 12. 12. 11. 12. 11. 12. 11. 12. 11. 12. 11. 12. 11. 12. 11. 12. 11. 12. 11. 11	12. 14. 15. 15. 11. 12. 12. 12. 12. 12. 11. 11. 11. 11	12. 14. 15. 15. 15. 12. 12. 12. 12. 12. 11. 11. 11. 11. 11	12. 16. 11. 15. 15. 12. 12. 12. 11. 11. 11. 11. 11.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11. 12. 11. 12. 12. 12. 12. 12.	11. 12. 16. 11. 12. 15. 11. 12. 12. 12. 12. 11. 12. 12
KA	T out		4.624	1.545	5.812	(. 392		4.351	4.351	4. 351 5. 387 4. 161	4. 351 5. 387 4. 161 4. 471	4.351 5.387 4.161 4.471 4.471 tal Hea	4.351 5.387 4.161 4.471 tal Hea tal Hea	4.351 5.387 4.161 4.471 4.471 4.401 4.401	4.351 5.387 4.161 4.471 1ea 1ea 1ea 4.401 4.401	4. 351 5. 387 4. 161 4. 471 4. 401 4. 401 4. 401	4. 351 5. 387 4. 161 4. 471 4. 401 4. 401 4. 408 4. 408 4. 408	4.401 4.401 4.401 4.401 4.408 4.408 4.408 4.408 4.408	4. 351 4. 161 4. 471 4. 401 4. 401 4. 408 4. 408 4. 408 4. 408 4. 324	4. 351 5. 387 4. 161 4. 471 4. 401 4. 401 4. 408 4. 408 4. 324 4. 324 5. 643	4. 351 4. 161 4. 471 4. 471 4. 401 4. 408 4. 401 4. 408 4. 401 4. 408 4. 401 4. 401 4. 408 4. 401 4. 408 4. 401 4. 408 4. 401 4. 408 4. 401 4. 408 4. 401 4. 408 4.	4. 401 4. 401 4. 401 4. 401 4. 401 4. 408 4. 408 5. 5643 5. 447	4. 351 5. 387 4. 161 4. 471 4. 401 4. 401 4. 408 4. 408 4. 408 4. 324 4. 324 4. 383 4. 383	4. 351 4. 161 4. 471 4. 471 4. 401 4. 401 4. 408 4. 408 4. 408 4. 408 4. 324 4. 383 4. 383 4. 383	4. 401 4. 401 4. 401 4. 401 4. 401 4. 401 4. 408 4. 324 4. 334 4. 383 4. 334 4. 383	4. 351 4. 161 4. 161 4. 161 4. 471 4. 401 4. 401 4. 324 4. 334 4. 334 4. 334 4. 334 4. 334	4. 351 4. 161 4. 161 4. 161 4. 401 4. 401 4. 401 4. 401 4. 324 4. 332 4. 333 4. 333 5. 334 5. 3356 5. 3356 5. 3356 5. 3356 5. 3356 5. 3356 5. 3356 5. 3356 5. 3356657575757575757575757575757575757575	4. 351 4. 411 4. 401 4. 401 4. 401 4. 401 4. 408 4. 334 4. 333 4. 332 4. 333 4. 332 4. 333 4. 332 4. 333 4. 332 4. 332 4. 332 4. 333 4. 332 4.	4. 351 4. 411 4. 401 4. 401 4. 401 4. 401 4. 324 4. 334 4. 334 5. 244
ngle 30	P out	at#	5.733	5. 733	6.584	5.679	5.705		6.592	6. 592 5. 637	6.592 5.637 5.637	6.592 5.637 5.637 ated To	6.592 5.637 5.637 3.637 ated To	6.592 5.637 5.637 5.637 4.536 4.536 5.630	6.592 5.637 5.637 5.637 4.536 5.630 5.630	6. 592 5. 637 5. 637 5. 637 4. 536 4. 536 5. 630 5. 630 5. 550	6. 592 5. 637 5. 637 5. 637 4. 536 4. 536 5. 630 5. 550	6. 592 5. 637 5. 637 5. 637 5. 630 5. 630 5. 550 5. 579	6. 592 5. 637 5. 637 5. 637 4. 536 4. 536 5. 630 5. 530 5. 579 5. 579 5. 579	6. 592 5. 637 5. 637 5. 637 5. 630 5. 530 5. 550 5. 579 5. 579 5. 539	6. 592 5. 637 5. 637 5. 637 5. 630 5. 530 5. 539 5. 539 5. 539 5. 539 3. 539 3. 539	6. 592 5. 637 5. 637 5. 637 4. 536 5. 630 5. 539 5. 579 5. 579 5. 579 5. 579 5. 714	6. 592 5. 637 5. 637 5. 637 4. 536 5. 630 5. 530 5. 579 5. 579 5. 579 5. 579 5. 714 5. 714	6. 592 5. 637 5. 637 5. 637 5. 630 5. 630 5. 539 5. 579 5. 579 5. 579 5. 498 5. 498 5. 498	6. 592 5. 637 5. 637 5. 637 4. 536 5. 630 5. 630 5. 539 5. 539 5. 539 5. 498 5. 498 5. 523	6. 592 5. 637 5. 637 5. 637 4. 536 5. 630 5. 539 5. 539 5. 579 5. 579 5. 579 5. 539 5. 5498 5. 498 5. 498 5. 523 5. 523	6. 592 5. 637 5. 637 5. 637 5. 630 5. 630 5. 530 5. 539 5. 579 5. 539 5. 498 5. 498 5. 498 5. 523 5. 523	6. 592         5. 637         5. 637         5. 637         5. 631         4. 536         5. 630         5. 550         5. 539         5. 539         5. 539         5. 539         5. 539         5. 539         5. 539         5. 539         5. 539         5. 539         5. 539         5. 539         5. 539         5. 539         5. 521         5. 521	6. 592         5. 637         5. 637         5. 637         5. 631         5. 630         5. 630         5. 539         5. 539         5. 539         5. 539         5. 539         5. 539         5. 539         5. 539         5. 539         5. 539         5. 539         5. 539         5. 539         5. 539         5. 539         5. 539         5. 523         5. 523         5. 523         5. 523         5. 523         5. 523         5. 523         5. 523         5. 523
	Ē	J/g	11.68	11.68	11.68	11.68	11.68		11.00	11.53	11.53	11.53 11.53 Estim	11.53 11.53 Estim 11.62	11.53 Estim 11.62	11.53 Estim 11.62 11.62	11.53 Estim Estim 11.62 11.62 11.62	11.53 Estim Estim 11.62 11.62 11.62 11.62	11.53 Estim Estim 11.62 11.62 11.62 11.62 11.62	11.53 Estia Estia 11.62 11.62 11.62 11.62 11.62 11.62	11.53 Estim Estim 11.62 11.62 11.62 11.62 11.62 11.62 11.62	11. 53 Estim Estim 11. 62 11. 62 11. 62 11. 62 11. 62 11. 62 11. 62 11. 62	11.53 Estim Estim 11.62 11.62 11.62 11.62 11.62 11.62 11.62 11.62 11.62	11.53 Estim Estim 11.62 11.62 11.62 11.62 11.62 11.62 11.62 11.52 11.52 11.52	11.53 Estim Estim Estim 11.62 11.62 11.62 11.62 11.62 11.62 11.57 11.57 11.57	11.53 Estia Estia 11.62 11.62 11.62 11.62 11.62 11.62 11.62 11.52 11.52 11.52 11.52	11.53 Estim Estim 11.62 11.62 11.62 11.62 11.62 11.57 11.57 11.57 11.57 11.57 11.57	11.53 Estim Estim Estim Estim Estim Estim Estim Estim Estim Estim 11.57 11.57 11.57 11.57 11.57 11.57	11.53         11.53         Estim         11.62         Estim         Estim         11.62         11.57         11.57         11.57         11.57	11.53 Estime Estime Estime 11.62 11.62 11.62 11.62 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.57 11.
- 07	H		164	164	164 1	164	164 1	164		117	117	117										271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271	271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271 </td <td>271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271   <!--</td--><td>271         117           271         271           271         12263           263         263</td><td>271           271           271           271           271           271           271           271           271           271           271           271           271           271           271           271           271           271           271           271           271           271           271           271           271           271           271           271           271           271           271           271           271           271           271           271           271           271           271           271           271           271           271           271           271           271           271           271           271           271           271</td><td>271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271   <!--</td--><td>271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271   <!--</td--><td>271       271       271       271       271       271       271       271       271       271       271       263       263       263       263       263       263       263       263       263</td></td></td></td>	271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271 </td <td>271         117           271         271           271         12263           263         263</td> <td>271           271           271           271           271           271           271           271           271           271           271           271           271           271           271           271           271           271           271           271           271           271           271           271           271           271           271           271           271           271           271           271           271           271           271           271           271           271           271           271           271           271           271           271           271           271           271           271           271           271           271</td> <td>271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271   <!--</td--><td>271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271   <!--</td--><td>271       271       271       271       271       271       271       271       271       271       271       263       263       263       263       263       263       263       263       263</td></td></td>	271         117           271         271           271         12263           263         263	271           271           271           271           271           271           271           271           271           271           271           271           271           271           271           271           271           271           271           271           271           271           271           271           271           271           271           271           271           271           271           271           271           271           271           271           271           271           271           271           271           271           271           271           271           271           271           271           271           271           271	271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271 </td <td>271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271   <!--</td--><td>271       271       271       271       271       271       271       271       271       271       271       263       263       263       263       263       263       263       263       263</td></td>	271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271       271 </td <td>271       271       271       271       271       271       271       271       271       271       271       263       263       263       263       263       263       263       263       263</td>	271       271       271       271       271       271       271       271       271       271       271       263       263       263       263       263       263       263       263       263
7 : R T	- -				4.1	4.1	•	-	-		<b>i</b> •		•			· · · · ·		+ + + + + + + + + + + + + + + + + + +											· • • • • • • • • • • • • • • • • •
	P in	atm	6.601	6. 501	6.601	6.601	6.601	6.601	6.601		6.601	6.601	6. 601 5. 754	6. 601 5. 754 5. 754	6. 601 5. 754 5. 754 5. 754	6.601 5.754 5.754 5.754 5.754	6.601 5.754 5.754 5.754 5.754	6.601 5.754 5.754 5.754 5.754 5.754	6.601 5.754 5.754 5.754 5.754 5.754 5.754 5.754	6.601 5.754 5.754 5.754 5.754 5.754 5.754 5.754	6.601 5.754 5.754 5.754 5.754 5.754 5.754	6. 601 5. 754 5. 754 5. 754 5. 754 5. 754 5. 754 5. 754 5. 754	6.601           5.754           5.754           5.754           5.754           5.754           5.754           5.754           5.754           5.754           5.754           5.754           5.754	6.601       5.754       5.754       5.754       5.754       5.754       5.754       5.754       5.754       5.754       5.754       5.754       5.754       5.754       5.754	6.601           5.754           5.754           5.754           5.754           5.754           5.754           5.754           5.754           5.754           5.754           5.754           5.754           5.754           5.754           5.754           5.754	6.601           5.754           5.754           5.754           5.754           5.754           5.754           5.754           5.754           5.754           5.754           5.754           5.754           5.754           5.754           5.754           5.754	6.601       5.754       5.754       5.754       5.754       5.754       5.754       5.754       5.754       5.754       5.754       5.702       5.702       5.702       5.702       5.702	6.601           5.754           5.754           5.754           5.754           5.754           5.754           5.754           5.754           5.754           5.754           5.754           5.754           5.754           5.754           5.754           5.754           5.754           5.754           5.754           5.754           5.754           5.754           5.755           5.754	6.601       5.754       5.754       5.754       5.754       5.754       5.754       5.754       5.754       5.702       5.702       5.702       5.702       5.702       5.702       5.702       5.702
- <u> </u>	Flow	8/S	10.12	10.12	1.06	5.76	5.95	0.94	12.04		12.04	12.04 Id	12.04 Id 5.49	12.04 Id 5.49 11.03	12.04 5.49 11.03 6.89	12.04 5.49 11.03 6.89 6.89	12.04 5.49 11.03 6.89 6.89 7.68	12.04 5.49 11.03 6.89 6.89 7.68	12.04 5.49 11.03 6.89 6.89 7.68 9.47	12.04 5.49 11.03 6.89 6.89 7.68 9.47 9.47 4.56	12.04 5.49 11.03 6.89 6.89 6.89 7.68 9.47 4.56	12.04 5.49 11.03 11.03 6.89 6.89 9.47 7.68 4.56 4.56 6.64	12.04 5.49 11.03 11.03 11.03 1.68 6.89 6.89 6.89 6.89 6.89 6.89 6.89 6	12.04 5.49 11.03 6.89 6.89 6.89 7.68 4.56 4.56 6.64 6.27 7.27	12.04 5.49 11.03 11.03 6.89 6.89 6.89 6.89 7.68 4.56 6.64 6.27 7.27 7.27	12.04       5.49       11.03       5.49       6.89       6.89       6.89       6.89       6.89       6.89       7.68       9.47       9.47       9.47       9.47       9.47       1.68       1.14       7.27       7.27       7.14	12.04 5.49 11.03 6.89 6.89 6.89 6.89 6.89 47 7.68 4.56 4.56 6.64 6.27 7.27 7.27 7.14	12.04       12.04       5.49       11.03       11.03       6.89       6.89       6.89       6.89       6.89       6.89       7.68       7.68       7.27       7.27       7.27       7.14       7.14       7.14	12.04       12.04       5.49       11.03       11.03       11.03       11.03       12.04       12.04       12.04       12.04       12.04       12.04       12.04       12.04       12.04       12.14       12.14       12.14       12.14       12.14
<b>Va Le</b>	ake				Center	Corner	Corner	Center				= Lìqu	= Ligu	= Ligu	= Liqu	= Ligu	" Liqu	= Liqu	= Ligu	" Liqu	= Liqu = Cas	= Ligu	= Ligu	= Ligu	= Ligu	= Ligu	" Ligu	= Ligu	= Ligu
	Panc			<b>*</b>	**		**		\$ **		ۍ **	t 6 Cooling	# 6 # A	# 6 # A # B	# # 9 # # # 000   + # * # # # #	# 6 # A # B # D # D	* C * C * C	+ + C + + + + + + + + C + + + C + + + +			0001-10 ++ C ++	* * * * * * * * * * * * * * * * * * *	* * 0 · · · · · · · · · · · · · · · · ·	* * * * * * * * * * * * * * * * * * *		日 日 日 日 日 日 日 日 日 日 日 日 日 日	→ → → → → → → → → → → → → → → → → → →		
	Coil		S D									0 1/J	C/L (	0 1 C/L (	<u>r 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</u>	<u>c/r</u>	<u>r 1</u>	<u>0 1</u>	1 <u>0</u>	1 <u>1</u>	C/L C C/L C	$\frac{c/L}{u}$	<u>c/L ( U 1</u> <u>U 2</u>	U 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	$\frac{c/L}{u^2}$	U 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	$\frac{c/L}{u^2}$	$\frac{c/L}{u^2}$	U 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

US-DPC Test Report

	cooled
	leads
	MTCent
	n une (
41	11M M
. 767	
+ of 70	
inni n	
d host	וח וובמר
5 k \ 2	
on at ⊘	- 10 fi
chamir	16 19 19
or was	
ills-DI	2
hile th	
ults w	
ion res	
alculat	
t load (	
oil hea	
) () -	helium.
le 6.2	liquid
Tat	à

		oad	×	4.6	7.2	0.0	4.4	6.7	8.7	9 9	0.5	8.7	0.0	5.1	2.6	2.4	2.9	1.1	1.3	0.9	6.3	9.1	2.1	2.5	1.4	1.5	1.6	1.5	7.8	7 5
		Heat L		8-	1		l				1	6	2								9	S				-			2	5
70+353W		H out	3/8	31.05	46.57	41.94	46.40	44.95	41.59	37. 52	31.37	Load	17.21	14.07	14.07	14.02	14.02	13.74	13.74	21.41	Load	22.59	13.91	13.91	13.71	13.71	13.72	13.72	18.55	Load
n Heater		T out	X	7.476	9.176	8.626	9.156	8.975	8.583	8.131	7.503	tal Heat	5.447	4.713	4.715	4.703	4.703	4.630	4.630	6.231	tal Heat	6.405	4.680	4.680	4.625	4.625	4.635	4.635	5.720	tal Heat
5 kA witl		P out	atm	7.981	7.981	7.985	7.972	7.952	7.971	7.935	7.935	nated To	7.642	7.710	7.710	7.675	7.675	7. 550	7.660	7.645	ated To	7.440	7.626	7.626	7.628	7.628	7.581	7.581	7. 660	ated To
NS 2:		H in	J/8	50.65	50.65	50.65	50.65	50.65	50.65	39.23	\$9.23	Estil	13.57	13.57	13.57	13.57	13.57	13.57	13.57	13.57	Estiı	13.47	13.47	13.47	13.47	13.47	13.47	13.47	13.47	Estin
11:24		T in	×	9.736	9.736	9.736	9.736	9.736	9.736	8.356	8.356		4.560	4.560	4.560	4.560	4.560	4.560	4.560	4.560		4.545	4.545	4.545	4.545	4.545	4.545	4.545	4.545	
Time		P in	at <b>n</b>	8.165	8.165	8.165	8.165	8.165	8.165	8.165	8.165		7.838	7.638	7.838	7.838	7.838	7. 838	7.838	7.838		7.734	7.734	7.734	7.734	7.734	7.734	7.734	7.734	
11/22		Flow	g/ S	1.77	1.77	0.00	1.04	1.17	0.96	3.88	3.88	i d	5.49	10.25	5.25	5.25	6.42	6.42	7.69	3.94		6.48	4.68	5.74	5.74	6.34	6.34	6.19	5.47	
Date		cake				Center	Corner	Corner	Center			g = Ligu								-	g = Gas									g = Gas
23	•	Pan		+++	* 2	دی **		*		20 ##	ۍ ۲	Coolin	<b>V</b> #	т Т	ပ #	∩ **	دی ج	54. **	0 #	<b>₩</b>	Coolin	× *	80 **	ບ **	۵ **	دی **	ند 44	9 **	±	Coolin
No.		Coil		n S								1/1/2	- -							,	C/L	2								c/1 (

1	5
, et et	2 2 2
i c	3
1004	neau
ţ	<u>د</u>
1287	5
Ą	E E
4	5
in h	2 E
Ś	ŝ
۰۰ پر	5
ti	2
ri L	-
eate	2
4	2
∆ A	5
301	
at a	5
ainc	5
Char	2
SEA	3
βCν	• ) -
IS-D	) )
he L	
le t	
Whi	
ults	
res	
tion	
cula	
<u>S</u>	
load	
eat	
ii h	<i>,</i> .
300	apor
- -	۲ س
6.2	Relic
able	ld L
ř	8

No.	20 Date	11/21	Time	16:58	5 SN	0 kA Nuc	lear Hea	tine 100	
Coil	Pancake	Flow	P in	Tin	H in	P out	T out	H out	Heat Load
		g/s	atm	X	J/8	atm	X	J/8	*
S	<b>* 1</b>	9.75	6.034	4.616	12.98	5.093	4.891	13.81	8.1
_	# 2	9.75	6.034	4.616	12.98	5.093	4.950	14.10	10.9
-	# 3 Center	4 63	6.034	4.616	12.98	5.071	5.575	17.63	21.8
	Corner	5.60	6.034	4.616	12.98	5.040	5. 594	17.76	26.8
	# 4 Corner	5.78	6.034	4.616	12.98	5.066	5.495	17.12	23.9
_	Center	4.70	6.034	4.616	12.98	5.102	5.667	18.24	24.7
	<b>*</b> 2	11.58	6.034	4.507	12.57	5.094	4.566	12.40	-2.0
	9 **	11.58	6.034	4.507	12.57	5.094	4.735	13.10	6.1
c/L c	ooling = Gas				Esti	mated To	tal Neat	Load	120.4
1 N	¥ ¥	7.10	5.070	4.629	12.65	4.829	5.565	17.62	35.3
	<b>#</b> B	9.04	5.070	4.629	12.65	4.826	4.745	13.06	3.7
	c #	7.29	5.070	4.529	12.65	4.826	4. 745	13.06	3.0
	<b>t</b> D	7.29	5.070	4.629	12.65	4.869	4.738	13.04	2.8
	دن **	7.84	5.010	4.629	12.65	4.869	4.738	13.04	3.1
_	s.	7.84	5.070	4.629	12.65	4.874	4.660	12.71	0.5
	C *	8.57	5.070	4.629	12.65	4.874	4. 660	12.71	0.5
_		5.87	5.070	4.629	12.65	4.855	5.575	17.68	29.5
C/L C	ooling = Gas				Esti	mated To	tal Heat	Load	78.4
2	* *	8.45	5.015	4.630	12.63	4.928	6.146	22.60	84.2
	8	3.12	5.015	4.630	12.63	4.858	4.725	12.98	1.1
	ပ #	6.75	5.015	4.630	12.63	4.858	4.725	12.98	2.4
	G #	6.75	5.015	4.630	12.63	4.835	4.677	12.76	0.9
	±	6.65	5.015	4.630	12.63	4.835	4.677	12.76	0.9
	с. #	6.65	5.015	4.630	12.63	4.833	4.677	12.76	0.9
	5 *	4.05	5.015	4.630	12.63	4.833	4.677	12.76	0.5
	*	7.02	5.015	4. 530	12.63	4.874	5.747	18.93	44.2
c/L C	ooling = Gas				Esti	mated To	tal Heat	Load	135.1

28

Table 6.2 - liquid helit	(e) Coil heat load calcu .m.	ulation results	while the US-I	DPC, DPC-U1, 8	and U2 were ch	larging at 25 k	A in series wi	th the current	leads cooled by	_
No.	31 Date	12/ 6	Time	0:22	<u>n+1n</u>	2+US Ser	ies 25 k	Y		$\square$
Coil	Pancake	Flow	P in	Tin	H in	P out	T out	H out	Heat Los	p
		g/s	atm	X	J/8	21m	X	J/8		
S D	•••	4.55	4.074	4.185	10.56	3.602	4. 341	10.94	1.	
	<b>t</b> 2	4.55	4.074	4.185	10.56	3.602	4.130	10.17	-1.	••
	<b>t</b> 3 Center	2.54	4.074	4.185	10.56	3.578	4.293	10.75	0.	5
	Corner	2.61	4.074	4.185	10.56	3.598	4.052	9.93	-1-	9
	# 4 Corner	2.77	4.074	4.185	10.56	3.602	4.109	10.09	· [-	87
	Center	2.09	4.074	4.185	10.56	3.606	4.204	10.43	-0.	67
	<b>*</b> 5	3.71	4.074	4.017	10.00	3.577	4.021	9.78	-0-	80
-	<b>‡</b> 6	3.71	4.074	4.017	10.00	3.577	4.718	12.58	<b>.</b>	G
C/L	Cooling = Ligu	ıid			Esti	mated To	tal Heat	Load	- <del>9</del> -	0
1	<b>*</b> A	7.83	3.980	3.990	9.87	3.551	4.353	10.97	æ.	9
	<b>#</b> B	9.72	3.980	3.990	9.87	3. 622	4.171	10.32	4.	-
	ပ #	8.64	3.980	3.990	9.87	3.622	4.171	10.32	3.	σ
	Q #	8.64	3.980	3.990	9.87	3.545	4.159	10.28	3.	S
	(L) **	9.00	3.980	3.990	9.87	3.545	4.169	10.28	3.	7
	11) 44	9.00	3.950	3.990	9.87	3. 597	4.072	9.96	0.	•0
	5 #	8.75	3.980	3.990	9.87	3.597	4.072	95-96	0.	∞
	H #	8.02	3.980	3.990	9.87	3.576	4.501	11.58	13.	4
1/2	Cooling = Liqu	ıid			Esti	mated To	tal Heat	Load	39.	-
0	¥ ¥	8.70	4.023	3.983	9.86	3.652	4.304	10.82	<b>8</b> .	-
	8	7.91	4.023	3.983	9.86	3.554	4.163	10.26		~

**US-DPC** Test Results

January 1992

0 0

10, 59

4. 066

3. 529 3. 500

.. ..

023

-

8.60 8.21

Liquid

8

Cooling

17

8.61

دد. **

**

5 H (**#**) **

Load

Heat

Estimated Total

23.

0.4 ę.

0

91 16

9. 6

0. 5 0.5

9.92 9.92

4.078

3. 555 3.555 3.529

3.554 554

9.86 9.86

983 983

3 . .

4.023

8 C 0 623

** -**

.023 4.023 4.023 4.023

-

9.02 9.02 8.61

9.86 9.86 86 86 ъ, 9

3.983 3.983 3.983 983

4.078 4.066

. . .

26 26

10. 10.

.163 163
The cooling of the current leads was performed so that cold helium vapor or liquid helium was supplied to the current leads by pressurizing the 20,000-liter liquid helium dewar through six parallel supply lines with a supplying pressure head of around 0.02 MPa. Unbalanced cooling flow distributions sometimes occurred in such operation. In practice, according to Table 6.2, the heat loads for the pancake No. 1 and No. 6 were 2.6. to 8.1 W and 6.1 to 66 W with cold helium vapor cooling and -34.6 to 12.2 W and -30.5 to 9.6 W with liquid helium cooling. Note that the negative heat load means that the pancake heat should conduct to the current lead. Heat loads for pancakes No. 1 and No. 6 account for almost all of the coil heat load.

In the stand-by mode, where the total cold helium vapor supplied to each current lead was approximately 0.2 g/s, the total heat load of the US-DPC was approximately 66 watts as listed in Table 6.2 (a). In the US-DPC 30 kA single-coil charge, where a total of 4 to 7 g/s liquid helium was supplied to the three sets of current leads, the total heat load of the US-DPC was approximately 42 watts as listed in Table 6.2 (c).

#### 6.4 Pressure drop performance

#### 6.4.1 Pressure drop performance measurements

During cooldown the Reynolds number of the helium flowing through the coil changed from a few hundreds to a few thousands, and the pressure drop as a function of mass flow was observed on pancake No. 1 of the US-DPC. The data were arranged as friction factor vs. Reynolds number to characterize the coil pressure drop performance.

### 6.4.2 Data arrangement

1) <u>Reynolds number</u>

The Reynolds number (Re) is calculated from the following formula:

$$Re = \frac{\dot{m}D_h}{\mu A_h}$$
(6.1)

where m is the mass flow rate (g/s) of the pancake,  $D_h$  is the hydraulic diameter (cm) of the pancake,  $\mu$  is the helium viscosity (g/cm-s), and  $A_h$  is the helium cross-section (cm²) of the pancake.

2) Friction factor (Darcy's friction factor)

The Friction factor (f) is calculated from the following formula:

$$f = \frac{2\rho g D_h A_h^2 \Delta P}{L \dot{m}^2}$$
(6.2)

where g is gravity acceleration (981 cm/s²),  $\rho$  is helium density (g/cm²),  $\Delta P$  is pressure drop through the pancake (gf/cm²), and L is the length of a flow channel (cm).

#### 3) Helium density and viscosity

The helium density and viscosity were calculated by using the average temperature and pressure of the pancake at the inlet and outlet:

$$T_{av} = 0.5 (T_i + T_o),$$
 (6.3)

$$P_{av} = 0.5 (P_i + P_o)$$
(6.4)

where  $T_{av}$  is the average temperature (K),  $T_i$  is the helium inlet temperature (K) of the pancake,  $T_o$  is the outlet temperature of the pancake, and  $P_{av}$ ,  $P_i$  and  $P_o$  refer to average, inlet, and outlet pressure (atm), respectively.

# 4) <u>Helium cross-section $(A_h)$ </u>

There are two flow paths in a coil pancake: the main-flow channel for cable-cooling and the sub-flow channel for conductor cooling, as shown in Figure 6.7. The helium cross section of the main-flow channel is  $0.743 \text{ cm}^2$  and that of the sub-flow channel is  $0.536 \text{ cm}^2$ .

## 5) <u>Hydraulic diameter ( $D_h$ )</u>

The hydraulic diameter is defined as follows:

$$D_{h} = \frac{4A_{h}}{Pe}$$
(6.5)

where Pe is wetted perimeter. The wetted perimeter for the main-flow channel is 61.44 cm, and 11.76 cm for the sub-flow channel.

The hydraulic diameter is estimated as a composite hydraulic diameter for both flow channels based on the parallel flow circuit as shown in Figure 6.7. In the laminar flow regime, the pressure drop for each flow channel is expressed as follows:

$$\Delta P = \frac{C\dot{m}_1}{A_{h1}D_{h1}^2}$$

$$\Delta P = \frac{C\dot{m}_2}{A_{h2}D_{h2}^2}$$
(6.6)
(6.7)

where C is a constant, the subscript 1 refers to the main flow channel, and the subscript 2 refers to the sub flow channel. The total mass flow in is expressed as  $\dot{m} = \dot{m}_1 + \dot{m}_2$ . Using these relationships, the pressure drop as a function of the total mass flow is expressed as:

$$\Delta P = \frac{Cm}{A_{h1}D_{h1}^2 + A_{h2}D_{h2}^2}$$
(6.8)





The pressure drop is expressed as a function of the composite hydraulic diameter  $(D_h)$  and the helium cross section  $(A_h)$  as follows:

$$\Delta P = \frac{Cm}{A_h D_h^2} \tag{6.9}$$

Thus, the composite hydraulic diameter is:

$$D_{h} = \sqrt{\frac{A_{h1}D_{h1}^{2} + A_{h2}D_{h2}^{2}}{A_{h}}}$$
(6.10)

The composite hydraulic diameter is determined to be 0.1236 cm.

#### 6.4.3 Pressure drop performance results

Using the values as defined above, the friction factor as a function of Reynolds number is shown in Figure 6.8. In this figure the Haugen-Poiseuille relation for the laminar flow regime of a smooth tube is also shown. The empirical relation¹, which modifies the formula of Plandtl-Karman as:

$$\sqrt{\frac{1}{f}} = 0.87 \ln (\text{Re}\sqrt{f}) + A$$
 (6.11)

is also shown in Figure 6.8. Here, A is selected to be 3.0 to fit the data.

The data show the friction factor to be higher than the friction factor determined by the Haugen-Poiseuille and Blasius relations. The transition region from laminar flow to turbulent flow could not be defined easily. The empirical relation shows good agreement for the data up to Reynolds numbers of a few thousand.

Another estimation of the composite hydraulic diameter is performed by attempting to fit in the data to the Haugen-Poiseuille relation at the region of the low Reynolds number, the definition of the composite hydraulic diameter for this analysis is:

$$D_{h} = \frac{A_{h1}D_{h1} + A_{h2}D_{h2}}{A_{h}}$$
(6.12)

where it is assumed that  $A_h D_h$  is the key parameter for determination of the relationship between the pressure drop and mass flow rate through the pancake. The arithmetic average of  $A_{h1}D_{h1} + A_{h2}D_{h2}$  is taken into account for the parallel flow circuit, and D is calculated to be 0.1045 cm. The pressure drop performance plotted as the friction factor versus Reynolds number is shown in Figure 6.9.

In Figure 6.9, the relations of Haugen-Poiseuille, Blasius, and the empirical formula, where A was chosen as 2.7 to fit in the data, are also plotted. The data are close to the Haugen-Poiseuille relation to Reynolds numbers of a few hundreds.

#### References

1. E. Tada, et al., "Thermal Performance Results of the Nb-Ti Demo Poloidal Coils (DPC-U1, U2)", Proc. MT-11 (1989) p. 830.



Figure 6.8 - Pressure drop performance of pancake no.1 using an estimated hydraulic diameter of 0.1236 cm.





### 7. Single-coil DC test results

Tests of the US-DPC alone established that the coil was leak tight (1-2  $\mu$ Torr vacuum) under moderate mechanical loads, the cryogenic system was working properly, the lap joint resistances were low ( $\leq 0.5 n\Omega$  at 30 kA with 2.2 T at lap joints), the protection system was working, and there was no significant damage to or degradation of the Nb₃Sn cable.

### 7.1 Examination of voltage traces of runs 13 - 25 and 32 - 38

Most of the data for dc runs is contained as folding strip chart records and some as digital memory records. The x-t traces of runs 13 - 25 and 32 - 38 were investigated with concentration on the crossover turns A, B and C. The investigation attempted to answer questions such as the following. Was there any evidence of normal zones not observed during the experiment? Since coil quenches originated mostly in the crossover of double pancake C, was there more voltage noise on the crossover of C than on A or B? If so, was it repeatable? Was it dependent on ramp rate?

The investigation considered folding strip charts designated XT-02: nos. 1, 2, 3 and 3' and digital memory data where available. Crossover-turn voltages A, B and C and coil current were considered. The study examined upward ramps and flattops; downward ramps and flattops were not examined. The observations were found to be:

- 1) Noise on voltage traces was not reproducible from run to run (see Fig. 7.1). It did not happen at the same currents or ramp rates. There was a small amount of noise at zero current before most runs.
- 2) Noise of significant amplitude on the three crossover turns was simultaneous and geometrically similar. There was no occurrence of isolated signals of significant amplitude on A, B or C. "Significant amplitude" means voltage spikes greater than about 10  $\mu$ V (note that critical voltage was defined as 3.30 m x 10  $\mu$ V/m = 33  $\mu$ V). See Fig. 7.2.
- 3) The ratio of inductive voltage signals A:B:C during ramps was identical to the ratio of significant-amplitude noise signals A:B:C in all cases examined. The ratio was approximately 1 : 1.33 : 1.52. (Note that resistive (?) voltages altered the ratios slightly at higher currents by adding or subtracting resistive signals to the inductive signals.)
- 4) The noise was not periodic. It was not sinusoidal. It appeared as sequences of single spikes, sometimes closely spaced and sometimes not. There were both noisy (run 23) and noise-free (run 24) runs.
- 5) There were apparently resistive voltages at the current flattops (current transfer? electronics? thermoelectric?), which were fairly consistent and reproducible in all runs examined. Crossover A developed negative voltages at nonzero currents, B developed positive voltages, and C developed predominantly negative voltages. As an example, measurements from runs 18 and 20 are listed in Table 7.1 ( $\approx \pm 3 \mu V$ ).







Figure 7.2 - Noise voltages for run 13 on crossovers A, B and C. The signals were simultaneous and in fixed proportion to each other, indicative of inductive voltages. The offsets in time are due to the staggered placement of the chart recorder pens. The vertical sensitivity is  $50 \,\mu$ V/cm and the horizontal sensitivity is  $1 \, \text{min/cm}$ .

Run 18			
Current	A V (V/I)	<u> </u>	<u> </u>
9 kA	-6 μV (-0.7 nΩ)	+ 12 $\mu$ V (1.3 nΩ)	$-5 \mu V (-0.6 n\Omega)$
15 kA	$-18 \mu V (-1.2 n \Omega)$	$+ 19 \mu V (1.3 n\Omega)$	$-12 \mu V (-0.8 n \Omega)$
18 kA	$-22 \mu V (-1.2 n\Omega)$	$+20 \mu V (1.1 n\Omega)$	$-16\mu V$ (-0.9 n $\Omega$ )
21 kA	$-26\mu V$ (-1.2 n $\Omega$ )	+ 28 μV (1.3 nΩ)	$-18 \mu V (-0.9 n\Omega)$
Run 20			
Current	A V (V/I)	<u> </u>	<u> </u>
9 kA	-10 μV (-1.1 nΩ)	+ 10 $\mu$ V (1.1 nΩ)	+9 μV (1 nΩ)
15 kA	$-18 \mu V (-1.2 n \Omega)$	+ 18 $\mu$ V (1.2 n $\Omega$ )	+5 $\mu$ V (0.3 nΩ)
18 kA	$-20 \mu V (-1.1 n \Omega)$	+ 22 $\mu$ V (1.2 n $\Omega$ )	$-5 \mu V (-0.3 n \Omega)$
21 kA	$-22 \mu V (-1.0 n\Omega)$	$+ 30 \mu V (1.4 n \Omega)$	$-9 \mu V (-0.4 n \Omega)$
24 kA	$-27 \mu V (-1.1 n\Omega)$	$+30 \mu V (1.4 n\Omega)$	$-8\mu V$ (-0.3 n $\Omega$ )
27 kA	$-32 \mu V (-1.2 n\Omega)$	$+ 41 \mu V (1.5 n\Omega)$	$-9\mu V$ (-0.3 n $\Omega$ )
28.2 kA	shorted VT	+ 40 $\mu$ V (1.4 nΩ)	$-8\mu V$ (-0.3 n $\Omega$ )

Table 7.1 - Voltages at current flattops (di/dt = 0) for runs 18 and 20.

- 6) During the intermediate ramps with the dc power supply, there were either significant resistive, as well as inductive, voltages on the crossover of B or the inductive voltage increased linearly in time (ramp rates from 5 kA/min to 30 kA/min runs 32 to 38). See Figure 7.3 and Table 7.2.
- 7) There were insignificant voltages on the crossovers of A and C during the intermediate ramps, which are difficult to resolve. The A voltage was negative and the C voltage positive; both were roughly  $20 \,\mu\text{V}$  at the end of the ramp (30 kA). See Figure 7.3.
- During the intermediate ramps with the dc power supply, the inductance of crossover B appeared to decrease by roughly 2 4 % going from 5 kA/min to 30 kA/min. See Table 7.2.
- 9) There were isolated small-amplitude noise spikes on the crossover of A which were not evident on either B or C. They were predominantly of negative polarity and of roughly  $5 10 \,\mu\text{V}$  amplitude.
- 10) The time stability of the instrumentation amplifiers appeared to be excellent. The drift was less than approximately 1 2  $\mu$ V at sensitivities of 50  $\mu$ V/cm.



Figure 7.3 -Comparison of induced voltages in crossovers B and C during a ramp to 30 kA at 10 kA/min (run 33). The resistive voltage component on B can be modeled as a constant resistance of roughly 3 n $\Omega$  or a linear increase in inductance with current. Typical geometrically-similar noise signals can be seen also on B and C.

Table 7.2 - Apparent inductance of crossover B at the beginning and end of intermediate ramps to 30 kA (runs 32 to 38). The voltage  $V_i$  denotes voltage at the beginning of the fast ramp, which was at a current of approximately 1 kA, not 0 kA, since an initially slow ramp was required to lessen the inductive signal due to the Incoloy magnetization. The voltage  $V_f$  denotes voltage at the end of the fast ramp.

Run	di/dt	di/dt	Vi	V _f	V _i dt/di	V _f dt/di
32	5 [°] kA/min	83.3 A/s	545 μV	555µV	6.543 μH	6.660 μH
33	10	166.7	1090	1110	6.540	6.660
34	15	250	1600	1650	6.400	6.660
35	20	333.3	2125	2175	6.375	6.525
36	25	416.7	2650	2725	6.360	6.540
37	30	500	3175	3250	6.350	6.500
38	30	500	3150	3250	6.300	6.500

### 7.1.1 Nature of noise signals

The noise signals of significant amplitude were inductive in nature. That is, flux from the noise events linked the three pick-up loops of the crossover-turn voltage taps in exactly the same way that flux from the transport current linked the loops. This implies that the noise source was common to the three crossovers and may have been due to the power supply, because it is difficult to see how a local perturbation in current could yield signals that were exactly proportional to the ramp-up signals. (Local events would generate bigger voltage signals in the loops that were closer and smaller signals in the loops that were further from the source.) The higher noise on C was due to a slightly larger Faraday's law pick-up loop relative to A and B; the area ratios of the loops A:B:C is 1 : 1.33 : 1.52.

The isolated small-amplitude noise spikes on the crossover of A were not evident on either B or, more importantly, on C. One of the goals of this study was to see if there were any special events on C. This study found nothing special or unusual in the behavior of C relative to A and B.

#### 7.1.2 Additional resistive/inductive voltages

The observed voltages on the crossovers during flattops can be explained by a current transfer mechanism, which is a function of the location of voltage taps relative to where the transfer takes place. This is the only way to rationalize the occurrence of negative-resistance voltage signals, if it is assumed that the instrumentation amplifiers were stable in time and that thermoelectric effects were not present.

The growing voltage on crossover B during the intermediate ramps (runs 32 - 38) implies either a fixed resistance above the "current transfer" value, present only during the ramps, or an increase in inductance during the ramps. An increase in inductance could have at least two causes. They are either a redistribution of current in the cable (current moves radially inward in strands) or an increase in the area enclosed by the crossover turn due to Lorentz forces. The observed linear change in inductance is more likely due to a current redistribution than an area change, because the crossover radius will grow linearly with applied force; applied force is proportional to current squared, and loop area is proportional to radius squared. This implies that the inductance would not vary linearly, rather it would vary roughly as the sum of two terms, the first with current squared and the second with current raised to the fourth power.

#### 7.2 Current-sharing temperature measurements

The coil was first charged to a given current and then the inlet helium temperature was slowly increased by using two resistive heaters shown as a main heater and a sub-heater in Figure 5.9. The temperature was adjusted by the input power of the main heater (100 W to 400 W). The sub-heater power was always 70 W which made the A and B double pancakes warmer than C. The helium temperature was continuously raised until resistive voltage was observed on the crossover turn (innermost turn). The crossover turn voltage of the center double pancake (B) rose first, followed by that of coil A. The temperature increment near the critical point was about 0.3 K per minute.

Figure 7.5 shows crossover turn voltages of B and C as a function of inlet helium temperature. As seen in this figure, the crossover voltage of B increased gradually with increasing temperature. On the other hand the voltages of A and C decreased. Similar

behavior of the crossover voltages was observed in critical current measurements which will be shown in the next section. The gradual slope of crossover voltage was separated by an extrapolation of a straight-line fit in order to read current-sharing temperature and critical current.

Table 7.3 shows the measurement results of current-sharing temperatures. Data were obtained at an electric field criterion of  $10 \,\mu$ V/m.



Figure 7.5 - Reproduced crossover turn voltage traces of double pancakes B and C as a function of inlet helium temperature measured by carbon-glass sensor USTC01 (Run #73).

Run	Current	Field	Temperature
73	5.0 kA	0.94 T	14.8 K
28	10.0	1.9	13.6
29	15.0	2.8	12.5
30	20.1	3.8	11.6
43	25.1	4.7	10.5
44	30.0	5.7	9.3

Table 7.3 - Results of current-sharing temperature measurements.

## 7.3 Critical-current measurements

In critical current measurements, temperature was first raised in the same method as that of the current-sharing temperature measurements. Temperature was stabilized at a given value, and then the coil was charged until resistive voltage was observed on the crossover turn of the center double pancake as seen in Figure 7.6. Part (a) of this figure shows crossover turn voltages of B and C and inlet helium temperature as a function of current. The crossover voltage of double pancake B increased gradually with increasing current, and the voltages of A and C decreased as seen in the current-sharing temperature measurements. However, the voltage of the entire pancake (75 m), including a half of a crossover turn, did not develop a significant slope as shown in Figure 7.6 (b).

Table 7.4 shows the measurement results of critical currents at an electric field criterion of  $10 \,\mu$ V/m. The current ramp rates were 0.2 kA/min (Run #45), 0.5 kA/min (Run #46), and 1 kA/min (Run #72). In this table the shape-exponent parameter n is also shown, which has been defined as follows,

$$V = V_0 (I/I_0)^n$$

where  $I_0$  is a current at a reference criterion voltage  $V_0$ . In this analysis, the gradual slope of the crossover voltage was separated from the measured voltage by a straight-line fit.

Figure 7.7 summarizes the results of critical current and current-sharing temperature measurements. Solid triangles and circles show critical current and current-sharing temperature results, respectively. Two other data sets, obtained from single-strand tests, are also plotted in this figure. The open squares show critical temperatures estimated from the temperature dependence of critical currents of single wires similar to US-DPC wire measured at the University of Wisconsin¹. Open circles in figure 7.7 were obtained from an interpolation of the zero-current critical temperature  $T_c^*(B)$  obtained at Oxford University for a bronze-matrix Nb₃Sn wire² and the critical currents of US-DPC wire measured at MIT³.

As seen in Figure 7.7, the performance of the US-DPC was slightly better than the predictions from single wire data. This could be explained by a lessening of the uniaxial strain effect created by mechanical coupling of the superconducting cable to the low thermal-coefficient-of-expansion Incoloy 908 conduits⁴.

The strain effect has been evaluated by using a critical current equation developed by Summers et al⁵. They obtained the following critical current formula as a function of field B, temperature T and uniaxial intrinsic strain  $\varepsilon$ , on the basis of previous work of Hampshire et al⁶ for temperature dependence, and Ekin⁷ for strain dependence.

$$\begin{split} I_{c}(B,T,\varepsilon) &= C(\varepsilon) \{ B_{c2}(T,\varepsilon) \}^{-1/2} (1-t^{2})^{2} b^{-1/2} (1-b)^{2} & (A) \quad (7.1) \\ & \text{where} \\ C(\varepsilon) &= C_{0}(1-a \, |\varepsilon|^{u})^{1/2} & (AT^{1/2}) \\ B_{c2}(T,\varepsilon) &= B_{c20}(\varepsilon) (1-t^{2}) \{ 1-0.31 \, t^{2} \, (1-1.77 \, \ln(t)) \} & (T) \\ B_{c20}(\varepsilon) &= B_{c20m} \, (1-a|\varepsilon|^{u}) & (T) \end{split}$$

$t = T/T_{c0}(\varepsilon)$	
$b = B/B_{c2}(T,\varepsilon)$	
$T_{c0}(\epsilon) = T_{c0m} (1-a  \epsilon ^u)^{1/w}$	(K)
$a = 900$ for $\varepsilon < 0$ , 1200 for $\varepsilon > 0$	
u = 1.7	
w = 3	
$B_{c20m}$ = Maximum (strain-free) upper critical field	(T)
$T_{c0m}$ = Maximum zero-field critical temperature	(K)
$C_0$ = Coefficient independent of field, temperature, and strain	$(AT^{1/2})$
$\varepsilon = $ Uniaxial strain	

The last four items are input parameters for curve fits. Three parameters ( $B_{c20m}$ ,  $T_{c0m}$ , and  $C_0$ ) are related to the material properties of the superconductor. The strain  $\varepsilon$  relates to sample fabrication or handling and operating conditions (temperature, Lorentz force).

When  $B_{c20m} = 27.5 \text{ T}$ ,  $T_{c0m} = 16 \text{ K}$ , and  $C_0 = 8800 \text{ AT}^{1/2}$  were selected for curve fits of single-wire and US-DPC coil data, the resulting fits to Equation 7.1 were made by adjusting strain values only⁴. The US-DPC coil showed a strain of -0.1%. Single-strand samples on a stainless steel barrels tested at MIT showed intrinsic uniaxial compressive strains of about -0.36%. The two solid lines in figure 7.7 are calculated from Equation 7.1 with intrinsic strains  $\varepsilon = -0.10\%$  and -0.46%. The critical current data at temperatures between 2.5 K and 11 K measured at the University of Wisconsin were confirmed to fit Equation 7.1 with  $\varepsilon = -0.46\%$  with  $B_{c20m}$ ,  $T_{c0m}$ , and  $C_0$  the same as above. Experimental strain data of the US-DPC wire measured by Ekin and Bray⁸ have been shown to agree fairly well with the calculated data obtained from Equation 7.1 using the above selected parameters.

Run	Temperature	Current	Field	n	
45	11.8 K	19.02 kA	3.6 T	35	
46	11.0	22.94	4.3	27	
72	10.2	26.65	5.0	20	

Table 7.4 - Results of critical-current measurements.



Figure 7.6 - Reproduced traces of (a) crossover turn voltages of double pancakes B and C, and inlet helium temperature as a function of charge current, and (b) entire pancake voltage of top pancake of double pancake B (Run #72).



Figure 7.7 - Test results of critical current and current-sharing temperature for the US-DPC coil with expectations obtained from single-strand data. The solid lines were obtained from Eq. 7.1 with intrinsic strains  $\epsilon = -0.10\%$  and -0.46% using  $B_{c20m} = 27.5$  T,  $T_{c0m} = 16$  K, and  $C_0 = 8800$  AT^{1/2}.

### 7.4 Simulated nuclear heating and AC loss calibration

In order to investigate the performance of the US-DPC under nuclear heating loads, cable heating wires were installed in double pancakes A and B (see Figure 5.2). Runs 39 and 40 are runs in which the cable heater of B was energized, and the following two sections provide analysis of these runs. Section 7.4.1 presents quantitatively the areas of stable operation maintained under heat loads from the cable heaters, and section 7.4.2 calibrates the AC loss measurement technique by using the cable heaters to provide a known energy input into double pancake B.

### 7.4.1 Stability of US-DPC under nuclear heat loads

The 150 m length coaxial cable heater of double pancake B was energized in runs 39 and 40 to deposit a known power per unit length in the conductor during steady-state dc operation. Inlet flow conditions to the entire coil were set at an absolute pressure of 7.1 atmospheres, a temperature of 4.6 K and a mass flow of approximately 60 g/s. Current-

versus-time profiles that indicate when the heater was energized are given in Figure 7.8.

In Run 39, the US-DPC was charged at 10 kA/min to 20 kA and the heater charged at a current of 0.78 A to deposit a power of approximately 84.2 watts( $\approx 0.55$  w/m) in the cable based on a measured heater resistance of 135  $\Omega$  at 4.5 K. The heater was then turned off and the current ramped at 10 kA/min to 30 kA where the heater was turned on again at 82.1 w. The coil was completely stable with no observed resistive voltages, but with observed flow choking at the helium inlet of double pancake B.

In run 40, the US-DPC was charged at 10 kA/min to 30 kA and the heater energized to approximately 100, 152 and 208 w respectively (maximum power was limited by flow choking at the B helium inlet). No normal voltages were observed. After the heater was turned off, the coil was dumped successfully from 30 kA into the 49.3 m $\Omega$  dump resistor. This was the second full-current dump of the US-DPC.

## 7.4.2 Calibration of mass flow in AC loss measurements

This section presents an investigation of nuclear heating run 40 for the purpose of estimating the total mass flow in double pancake B. The method uses the known heater power as a basis of estimating a total outlet flow that would give the observed temperature rises (changes in enthalpy) in the four outlets of B. The goal of this comparison of "estimated flow from temperature rises" to "measured flow by meters" is to calibrate the AC loss measurements given in later sections and to estimate their level of accuracy.

#### Assumptions

- 1) During the heat-pulse flattop, thermal equilibrium was established (steady state, steady flow process).
- 2) The outlet pressures were constant and unchanged by the heating pulse.
- 3) Heater power during the pulse flattop was constant and equal to 151.7 watts.
- 4) The outlet temperature measurements via the CGR's were accurate.
- 5) The mass flow pressure drop equations provided by JAERI are accurate in the range of operation considered.
- 6) The mass flows in pancakes 1 and 2 were equal to each other; the mass flows in pancakes 5 and 6 were equal to each other.
- 7) Mass flow may be estimated by using the average enthalpy difference determined from the four outlets of double pancake B.

### **Results**

Based on the difference in outlet temperatures before and during the heating interval, the estimated total mass flow through coil B for run 40, DM-48 was <u>17.60 g/s</u>. The measured total mass flow from USMC-04, 05, 06, 07, using the JAERI pressure drop versus mass flow equations, was 17.12 g/s. The ratio of "estimated by temperature rises" to "measured by flow meters" is 17.60/17.12 = 1.028.



Figure 7.8 - Current-versus-time profiles for single-coil dc nuclear-heating runs 39 and 40. The coil was charged and discharged at 10 kA/min. Flat top times are approximate. The heater was energized 3 to 4 minutes at the power levels shown. No normal voltages were observed at any time.

### <u>Analysis</u>

The method of analysis is outlined here. The experiment was designated run 40, DM 48. The heater was in the center of double pancake B; it had a resistance of 135  $\Omega$  at 4.5 K. The heat pulse was trapezoidal with approximately a 20 s rise time, a 200 s flattop, and a 20 s fall time. The heater power during the 200 s flat top was 151.7 w. The temperatures before and during the pulse are listed in Table 7.5.

The pressures before and during the pulse are assumed equal. This assumption is based on an examination of the XT traces of the pressure transducers in which the pressure rise during the pulse was observed to be no more than approximately 3 - 5 % (see XT-3 records). Table 7.6 lists the appropriate helium enthalpies.

Outlet Location	Sensor	T _{during}	T _{before}	$\Delta T = T_{during} - T_{before}$
pancake 1	TC03	4.928 K	4.898 K	0.030 K
pancake 2	04	5.025	4.902	0.123
pancake 3 - cable	05	5.990	4.690	1.300
pancake 3 - corner	06	6.000	4.730	1.270
pancake 4 - corner	07	5.880	4.670	1.210
pancake 4 - cable	08	6.100	4.750	1.350
pancake 5	09	4.632	4.527	0.105
pancake 6	10	4.784	4.760	0.024

Table 7.5 - Outlet temperatures measured by calibrated carbon glass resistors before and during the heat pulse by the cable heater. Precision is  $\approx \pm 0.75$  mK.

Table 7.6 - Outlet temperatures, absolute pressures and enthalpies for run 40, DM 48.

Outlet Location	Pressure	T _{during}	h _{during}	T _{before}	h _{before}
pancake 1	5.17 atm	4.928 K	14.05 J/g	4.898 K	13.92 J/g
pancake 2	5.17	5.025	14.50	4.902	13.94
pancake 3 - cable	5.15	5.990	20.76	4.690	13.00
pancake 3 - corner	5.16	6.000	20.83	4.730	13.18
pancake 4 - corner	5.13	5.880	19.97	4.670	12.91
pancake 4 - cable	5.13	6.100	21.99	4.750	13.26
pancake 5	5.12	4.632	12.74	4.527	12.28
pancake 6	5.12	4.784	13.41	4.760	13.30

# Parasitic losses

The parasitic heat losses to A and C were calculated assuming mass flows in these double pancakes to be as measured by inlet meters MC01 for A and MC03 for C. The equations of the meters were given by JAERI and are thought to be accurate based on calibrations of at least one meter with water. They are:

USMC01 and 02:	$m = 2.36 \ (\rho \ \Delta P)^{0.5}$
USMC03:	$\dot{m} = 4.86 \ (\rho \ \Delta P)^{0.5}$
where	$\rho$ = helium density [g/cc] $\Delta P$ = pressure drop across orifice [mm Aq]

The unit "mm Aq" stands for millimeters of water, where 1 atm = 10,334 mm Aq at 4 C. The densities and pressure drops for calculations of mass flow in A and C are listed in Table 7.7.

	Location	Pressure	Temperature	Density	Pressure Drop
	А	PT01 6.08 atm	TC01 4.616 K	NBS 631 0.1388 g/cc	MC01 375 mm Aq
***	С	PT02 5.96	TC02 4.506	NBS 631 0.1402	MC03 278

Table 7.7 - Supercritical helium absolute pressures, temperatures, densities and pressure drops for A and C inlets.

The calculated mass flows into A and C are thus

 $\dot{m}$  (A) = 17.0 g/s  $\dot{m}$  (C) = 30.0 g/s

The parasitic losses from B to A and C during the nuclear heating pulse can be estimated using these flows. They are

Loss to A 
$$P_A \approx 0.5 \text{ m} [(h_{during} - h_{before})_1 + (h_{during} - h_{before})_2]$$
  
 $P_A \approx 0.5 (17.0) [(14.05 - 13.92) + (14.50 - 13.94)] = 5.87 \text{ watts}$ 

and

Loss to C 
$$Pc \approx 0.5 \text{ m} [(h_{during} - h_{before})_1 + (h_{during} - h_{before})_2]$$
  
 $Pc \approx 0.5 (30.0) [(12.74 - 12.28) + (13.41 - 13.30)] = 8.55 \text{ watts}$   
The total parasitic loss is then estimated to be  $5.87 + 8.55 = 14.4 \text{ watts.}$ 

### Mass flow from enthalpy

The mass flow from double pancake B can now be estimated. It is

$$\dot{m} \approx \underline{P(heater) - P(parasitic)}{0.25 \sum (h_{during} - h_{before})_i}$$

 $mdot \approx (P_{h} - P_{p}) / 0.25 ((h_{d} - h_{b})_{3ca} + (h_{d} - h_{b})_{3co} + (h_{d} - h_{b})_{4ca} + (h_{d} - h_{b})_{4co})$ 

 $mdot \approx (151.7 - 14.4) / 0.25 (20.76 - 13.00 + 20.83 - 13.18 + 19.97 - 12.91 + 21.99 - 13.26)$  $mdot \approx 137.3 / 0.25 (31.20) \approx \underline{17.60 \text{ g/s}}$ 

#### Mass flow from JAERI meters

The mass flows for the four outlets of B, based on the orifice flow meter calibrations, are calculated using the formula

USMC04 - 07: 
$$\dot{m} = 1.18 (\rho \Delta P)^{0.5}$$

The densities and pressure drops required for the mass flow calculation are given in Table 7.8.

Table 7.8 - Supercritical helium absolute pressures, temperatures, densities and pressure drops for mass flow calculations at double pancake B outlets.

Location	Pressure	Temperature	Density	Pressure Drop
**********	PT04	TC05	NBS 631	MC04
3 - cable	5.15 atm	5.990 K	0.1046 g/cc	95 mm Aq
	PT05	TC06	NBS 631	MC05
3 - corner	5.16	6.000	0.1044	139
	PT06	TC07	NBS 631	MC06
4 - corner	5.13	5.880	0.1081	168
	PT07	TC08	NBS 631	MC07
4 - cable	5.13	6.100	0.0997	108

The mass flows at the outlet of double pancake B are thus calculated to be:

 $\dot{m} (3 - \text{cable}) = 1.18 (0.1046\text{x}95)^{0.5} = 3.72 \text{ g/s}$  $\dot{m} (3 - \text{corner}) = 1.18 (0.1044\text{x}139)^{0.5} = 4.50 \text{ g/s}$  $\dot{m} (4 - \text{corner}) = 1.18 (0.1081\text{x}168)^{0.5} = 5.03 \text{ g/s}$  $\dot{m} (4 - \text{cable}) = 1.18 (0.0997\text{x}108)^{0.5} = 3.87 \text{ g/s}$ 

The total mass flow from the JAERI meters adds up to 17.12 g/s.

#### **Conclusion**

One of the nuclear heating runs has been used to estimate the accuracy of the measured mass flows in the double pancake B. Subject to the stated assumptions, it is concluded that the mass flows calculated from the measured pressure drops across the outlet flow meters, the fluid density, and the equations provided by JAERI are accurate to within 3%. The AC loss measurements should be roughly at this level of accuracy, because the parasitic losses (or gains) to (or from) double pancakes A and C are limited by the small temperature gradients between B and A and C.

## References

- 1. D. P. Hampshire and D. C. Larbalestier, "The critical density throughout the superconducting phase of multifilamentary Nb₃Sn wire for forced flow fusion applications measured using the Bean-Campbell ac magnetization technique," IEEE Trans. Mag., 25:2382 (1989).
- P. A. Hudson, F. C. Yin, and H. Jones, "The critical current density of filamentary Nb₃Sn as a function of temperature and magnetic field," IEEE Trans. Mag., 19:903 (1983).
- M. Takayasu, C. Y. Gung, M. M. Steeves, M. O. Hoenig, J. R. Hale, and D. B. Smathers, "Critical currents of Nb₃Sn wires for the US-DPC coil," IEEE Trans. Mag., 27:1767 (1991).
- M. Takayasu, M. M. Steeves, T. A. Painter, C. Y. Gung, and M. O. Hoenig, "Comparisons of AC losses of Nb₃Sn single strands and US-DPC conductor," CEC-ICMC conference, Huntsville, Alabama, June 1991.
- 5. L. T. Summers, M. W. Guinan, J. R. Miller, and P. A. Hahn, "A model for the prediction of Nb₃Sn critical current as a function of field, temperature, strain, and radiation damage," IEEE Trans. Mag., 27:2041 (1991).
- 6. D. P. Hampshire, H. Jones, and E. W. J. Mitchell, "An in-depth characterization of (NbTa)₃Sn filamentary superconductor," IEEE Trans. Mag., 21:289 (1985).
- J. W. Ekin, "Strain scaling law for flux pinning in practical superconductors. Part 1: Basic relationships and application to Nb₃Sn conductors," Cryogenics, 20:611 (1980).
- 8. J. W. Ekin and S. L. Bray, National Institute of Standards and Technology, Boulder, Colorado, Private Communication.

### 8. Series-coil DC test results

In runs 47 - 59 the US-DPC was connected in series electrically with the U1 and U2 and charged by the DC power supply. A maximum current of 25.9 kA was reached before a quench of the U1 coil brought the test to a halt. Figure 8.1 shows the complex charging waveform of run 58, the maximum current run. The waveform reflects the experience of the JAERI staff at charging the U1 and U2 coils to currents above approximately 12 kA. That is, the triangular-wave pattern was thought to be necessary to achieve stability in U1 and U2 during ramps above 12 kA.

The inlet flow conditions of the US-DPC at various times during run 58 are summarized in Table 8.1.



Figure 8.1 - Charging current waveform for maximum-current DC test (run 58). The test began at 10:24 AM on 12/05/90 and ended with a quench at 25.89 kA of the U1 coil at 22 minutes past midnight on 12/06/90. The a/a/b/b/c/c groups denote ramp rates of the triangular wave patterns thought necessary to stabilize the U1 and U2 coils. There was a waiting period of 30 minutes after each triangular-wave pattern before starting the next ramp.

Time	Absolute Pressure	Temperature	Mass Flow
10:35	2.45 atm	4.2 K	39 g/s
13:29	4.07	4.2	39
16:53	3.06	4.2	39
19:55	4.32	4.2	39
22:38	4.35	4.2	39
00:25	4.37	4.2	39

Table 8.1 - The inlet flow conditions at various times during run 58.

## 9. Single-coil AC test results

AC losses of the US-DPC have been determined by measuring the changes in the thermodynamic state of the supercritical helium exiting the coil during and after each pulse. Although the basic waveforms were trapezoids that had equal upward and downward ramp times, data from other waveforms are reported for purposes of comparison. The AC loss measurement method is based on temperature profiles at the exit, such as the one shown in Figure 9.1, and the assumption that outlet pressures and mass flows were constant. The short-lived pressure and flow fluctuations due to the pulse were on the order of 5 - 10 seconds duration and negligible when compared to the AC loss measurement periods which lasted approximately 200 seconds. For a detailed description of the AC loss measurement technique, see Appendix B. Figure 9.2 shows an index of current-charging waveforms employed during the AC testing of the US-DPC.



Figure 9.1 - The temperature profile shows a typical measurement of the supercritical helium coolant as it exits the US-DPC. This temperature profile results from a triangular current pulse in the single-coil mode (run 88, pancake 4, corner flow). The absolute pressure was 5.3 atmosphere.



Figure 9.2 - Index of charging waveforms produced by the JT-60 power supply for AC tests of the US-DPC. The power supply was capable of 300 MVA at 60 kA and 5 kV.

### 9.1 Single-coil coupling and hysteresis losses

The measured losses of the middle double pancake ("B" - pancakes 3 and 4) for symmetrical trapezoidal waveforms are plotted against the reciprocal of ramp time with flattop current as a parameter in Figure 9.3. This type of plot is informative because the loss for a given flattop current, hence field, can be divided into hysteresis and coupling components by reasoning as follows.

Experiments have shown that the hysteresis loss per cycle per unit volume of US-DPC wire subjected to a triangular wave of field with a peak of  $B_m$  is approximately

$$Q_h [mJ/cc] = 178.2 \{1 - exp(-0.219 B_m)\}$$
 (9.1)

It is evident that the hysteresis loss depends only on the maximum value of current, since field and current are directly proportional. Bundle coupling loss per unit volume of wire, defined as the loss due to eddy currents that circulate between the eighteen filament bundles in the wire, is assumed to account for all the remaining AC loss. For ramps of field it takes the form

$$Q_{c} [mJ/cc] = 50.68 \frac{B_{m}}{t_{m}} \ln (1 + 2.4 \times 10^{-3} \text{ RRR } B_{m})]$$
 (9.2)

where RRR is the residual resistivity ratio of the copper stabilizer (27.2 for the US-DPC). Combining the two equations shows that in this estimate the total loss depends simply on the maximum current and ramp time  $t_m$ . When the maximum current is fixed at some value, a one-over- $t_m$  dependence results

Q(fixed B_m) [mJ/cc] = 
$$a + \frac{b}{t_m}$$
 (9.3)

where a and b are constants. This is the basis for the form of most of the AC loss plots that follow.

As an example of the division of loss into two parts, refer to Figure 9.3. With a 0.3 s ramp time  $(1/t_m = 1/0.3 = 3.33 \text{ s}^{-1})$  and 20 kA flattop (run 116), the total loss of double pancake b was 1650 J, with 846 J for hysteresis (at  $1/t_m = 0$ ) and 804 J for coupling. Assuming that the other two double pancakes had comparable losses, the sum of losses for the three is approximately 3 x 1650  $\approx$  5000 J, which is 0.14% of the 3.6 MJ stored energy of the coil  $(1/2 \text{ LI}^2 = 1/2 (0.0182)(20,000)^2 = 3.6 \text{ MJ})$ .

There are two items to be considered in Figure 9.3. First, two data points from triangular current pulses have been included to allow an estimate of the 30kA flattop-current curve. One triangular-pulse point, on the 18 kA curve, is seen to be very close to its trapezoidal-pulse neighbor. The proximity of these two 18 kA points argues for the triangular loss as an estimate of the trapezoidal loss and has allowed a 30 kA curve to be estimated by plotting the curve through the triangular-pulse point at  $1/t_m = 2 \text{ s}^{-1}$ . However, the hysteresis loss estimated by this method is much higher than would be expected from a (1 - exp (-kB)) relationship. The three trapezoidal-pulse data points by themselves project to a more believable hysteresis loss of approximately 1500 J. But these three points indicate an enormously high coupling loss in the 30 kA case. Refer to Section 10.3.2.2.

Second, all data were for 60 g/s total helium flows. Similar current pulses for 30 g/s flows were not included in Figure 9.3 because at the lower flows the mass flow meters were operating below their design and calibration ranges. The 30 g/s data are thought therefore to be less reliable. Figure 9.4 compares loss estimates for 20 kA flattop trapezoidal-pulse runs with total flows of 30 and 60 g/s. The 30 g/s runs result in loss data approximately 50% above the 60 g/s runs. The 60 g/s curve is taken as a calibration of the 30 g/s runs.

The data presented in Figures 9.5 through 9.16 extend the range to include pancakes 2 and 5 as well as 3 and 4. Note that pancakes 1 and 6 have not been included since their outlet helium flowed through the coil leads and absorbed their Joule heating loss, thus making estimates of AC loss unreliable. These figures also show how losses were removed by the dual-flow cooling scheme. It is seen that 50 % or more of the losses were removed by corner flow.





Figure 9.3 - Measured AC loss of pancakes 3 and 4 of the US-DPC for trapezoidal-current pulses in the singlecoil mode as a function of the reciprocal of ramp time with flattop current as a parameter. Two triangular pulses are also plotted, one at a peak current of 18 kA and the other at 30 kA. The inlet helium flow conditions were approximately 60 g/s, 6 atm absolute pressure and 4.5 K. The line through the three 30 kA trapezoidal-pulse data points (without triangular point) intersects the vertical axis at a value closer to the expected hysteresis loss.

## **US-DPC** Test Report



Figure 9.4 - Calibration of 30 g/s runs against more accurate 60 g/s runs. The 30 g/s curve is thought to overestimate losses by approximately 50% due to inaccuracies in the flow measurements in the low-flow range. Measured losses of pancakes 3 and 4 for 20 kA flattop trapezoidal-current pulses in the single-coil mode as a function of the reciprocal of ramp time are plotted.



Figure 9.5 - Measured AC loss for 15 kA flattop trapezoidal-current pulses in the single-coil mode as a function of the reciprocal of ramp time with pancake designation as a parameter. The losses of pancakes 3 and 4 are lower than those of pancakes 2 and 5 due to the field distribution in the single-coil mode (see Figure 6.7).



Reciprocal of Ramp Time 1/tm (1/s)

Pancake 3	Cable Pancake 3	Corner Pancake 3
y = 259 + 42.7x	y = 113 + 20.5x	y = 146.5 + 22.1x
Pancake 4 y = 319 + 45.3x	Cable Pancake 4 y = 120.7 + 21.0x	Corner Pancake 4 y = 198.7 + 24.3x

Figure 9.6 - Measured AC loss for 15 kA flattop trapezoidal-current pulses in the single-coil mode as a function of the reciprocal of ramp time for pancakes 3 and 4 with corner-versus-cable flow as a parameter. The plot compares cooling effectiveness of the cable space and corner flow areas - energy removed by corner flow is greater than that removed by cable flow.



	18 kA	Flattop	Trapezoidal	and	Triangular	Runs	Pancake No
600							

Pancake 5	y = 812 + 117.2x	Pancake 4	y = 352 + 80.5x
Pancake 2	y = 563 + 90.2x	Pancake 3	y = 244 + 91.7x

Figure 9.7 - Measured AC loss for 18 kA flattop trapezoidal and triangular current pulses in the single-coil mode as a function of the reciprocal of ramp time with pancake designation as a parameter. Run 83 designates triangular-waveform data.

**US-DPC** Test Report

January 1992



Reciprocal of Ramp Time 1/tm (1/s)

Pancake 3	Cable Pancake 3	Corner Pancake 3
y = 244 + 91.7x	y = 102.7 + 45.7x	y = 141 + 46x
Pancake 4	Cable Pancake 4	Corner Pancake 4
y = 352 + 80.5x	y = 126 + 39.8x	y = 226 + 40.7x

Figure 9.8 - Measured AC loss for 18 kA flattop trapezoidal and triangular current pulses in the single-coil mode as a function of the reciprocal of ramp time for pancakes 3 and 4 with corner-versus-cable flow as a parameter.



Figure 9.9 - Measured AC loss for 20 kA flattop trapezoidal-current pulses in the single-coil mode as a function of the reciprocal of ramp time with pancake designation as a parameter. Runs 246 through 249 were omitted due to low mass-flow rates.



Pancake 3	Cable Pancake 3	Corner Pancake 3
y = 362 + 122.1x	y = 152.7 + 68.3x	y = 206 + 54.4x
Pancake 4	Cable Pancake 4	Corner Pancake 4
y = 451 + 112.3x	y = 169.2 + 60.8x	y = 270 + 60.5x

Figure 9.10 - Measured AC loss for 20 kA flattop trapezoidal-current pulses in the single-coil mode as a function of the reciprocal of ramp time for pancakes 3 and 4 with corner-versus-cable flow as a parameter



Pancake 5	y = 889 + 429x	Pancake 4	y = 484 + 206x
Pancake 2	y = 642 + 255x	Pancake 3	y = 430 + 168x

Figure 9.11 - Measured AC loss for 22 kA flattop trapezoidal-current pulses in the single-coil mode as a function of the reciprocal of ramp time with pancake designation as a parameter.



Reciprocal of Ramp Time 1/tm (1/s)

Pancake 3	Cable Pancake 3	Corner Pancake 3
y = 430 + 167.9x	y = 180.9 + 100.2x	y = 249 + 67.7x
Pancake 4	Cable Pancake 4	Corner Pancake 4
y = 484 + 206x	y = 192.4 + 92.7x	y = 292 + 113.1x

Figure 9.12 - Measured AC loss for 22 kA flattop trapezoidal-current pulses in the single-coil mode as a function of the reciprocal of ramp time for pancakes 3 and 4 with corner-versus-cable flow as a parameter.


Figure 9.13 - Measured AC loss for 25 kA flattop trapezoidal-current pulses in the single-coil mode as a function of the reciprocal of ramp time with pancake designation as a parameter. Run 233 was omitted from this graph due to its low mass flow rate.



Figure 9.14 - Measured AC loss for 25 kA flattop trapezoidal-current pulses in the single-coil mode as a function of the reciprocal of ramp time for pancakes 3 and 4 with corner-versus-cable flow as a parameter.



Figure 9.15 - Measured AC loss for 30 kA flattop trapezoidal and triangular current pulses in the single-coil mode as a function of the reciprocal of ramp time with pancake designation as a parameter. Run 88 designates triangular waveform data.

y = 1014 + 319x



Reciprocal of Ramp Time 1/tm (1/s)

Pancake 3	Cable Pancake 3	Corner Pancake 3
y = 1014 + 319x	y = 463 + 210x	y = 550 + 109x
Pancake 4	Cable Pancake 4	Corner Pancake 4
y = 1132 + 446x	y = 494 + 228x	y = 638 + 218x

Figure 9.16 - Measured AC loss for 30 kA flattop trapezoidal and triangular current pulses in the single-coil mode as a function of the reciprocal of ramp time for pancakes 3 and 4 with corner-versus-cable flow as a parameter.

Figure 9.17 is a cross plot of data presented previously showing loss as a function of flattop current for constant ramp times. These curves show loss energy to approximately follow a power-law relationship with flattop current:

$$Q = k I_m^n$$

where the exponent n lies between 1 and 3 and k is a constant depending on ramp time. Based on the data trend, it is possible or even likely that the 2.0 and 5.0 second curve fits are inaccurate above 25 kA and that the "boundary" curve is given by the 11.0 second ramp time. If this is the case, the exponent may be closer to 2 than to 1 and a current-squared relationship may be a fair approximation of loss energy as a function of transport current in the single-coil case.

Figure 9.18 is a plot of average loss power for the single-coil mode that includes data from both triangular and trapezoidal waveforms. The form of the average loss power expression follows immediately from the loss energy equations 9.1 and 9.2.

$$Q = Q_h + Q_c \tag{9.4}$$

$$Q = a(1 - e^{-bB_m}) + c\frac{B_m}{t_m}ln(1 + d B_m)$$
(9.5)

where a,b,c and d are constants and d  $B_m < 1$ . Noting that for small values of x

 $e^{x} \approx 1 + x$ 

and for small values of x satisfying  $-1 < x \le 1$ 

$$\ln(1 + x) \approx x$$

it follows that

$$Q \approx f B_m + g \frac{B_m^2}{t_m}$$
(9.6)

where f and g are constants. Dividing both sides by 2  $t_m$  yields average power during the ramps up and down as a function of ramp rate.

$$P_{avg} = \frac{Q}{2t_m} \approx \frac{f}{2} \left(\frac{B_m}{t_m}\right) + \frac{g}{2} \left(\frac{B_m}{t_m}\right)^2$$
(9.7)

It is evident from the figures that this relationship applies fairly well.

Figure 9.19 is a plot of average AC loss power versus current ramp rate for the series mode. Although there are only a few data points, the trapezoidal data fit the two-term loss expression quite well. The series-loss data appear to be roughly equal in magnitude to the single-coil-loss data.

Figure 9.20 is a plot of AC loss versus the reciprocal of ramp time for a two-step trapezoidal current pulse. Note that the time to the maximum current flattop is defined as having three components in this case: the first ramp time, the first flattop time and the second ramp time. Since this type of waveform is more difficult to deal with than a simple trapezoid, the dimensions of the current pulses and the loss data are listed in Table 9.1.

Figure 9.21 shows hysteresis losses for pancakes 2 - 5, where hysteresis loss is defined as the yintercept value of the measured AC-loss vs. reciprocal of ramp time. Note that the losses above 25 kA may include joule heating as explained in Section 10.3.2.2.



Figure 9.17 - AC loss of pancakes 3 and 4 as a function of flattop current in the single-coil mode with ramp time as a parameter. Note that the data point denoted by an open triangle was not included in the 5.0 s curve fit. Ramp rate is obtained by dividing flattop current by ramp time.



Ramp Rate Im/tm (kA/s)

$$y = 24.5x + 0.213x^2$$

Figure 9.18 - Average AC loss power of pancakes 3 and 4 in the single-coil mode as a function of current ramp rate. Included in the data are both trapezoidal and triangular current pulses. Maximum field ramp rate is obtained by multiplying Im/tm by (5.66 T / 30 kA).



Trapezoidal Waveforms  $y = 10.1x + 0.589x^2$ 

Figure 9.19 - Average AC loss power of pancakes 3 and 4 in the series mode as a function of current ramp rate. Maximum field ramp rate is obtained by multiplying Im/tm by (9.22 T / 30 kA).

Run	Il	I _{max}	t ₁	t ₂	t ₃	t ₄	Loss
195	20 kA	25 kA	4.0 s	3.0 s	1.0 s	5.0 s	1204 J
196	20	25	1.6	3.0	0.4	2.0	1264
197	20	25	0.8	3.0	0.2	1.0	1520
198	20	25	0.4	3.0	0.1	0.5	1983

Table 9.1 - Dimensions of current pulses and AC loss data for the 2-step trapezoidal runs plotted in Figure 9.20. I₁ is defined as the first flattop current.



Figure 9.20 - Measured AC loss for 2-step trapezoidal current pulses as a function of the reciprocal of ramp time for maximum flattop currents of 25 kA. Note that the fall time t4, not shown on the diagram, equals the sum of t1 and t3.



Figure 9.21 - Hysteresis losses of pancakes 2 - 5 in the single coil mode as a function of maximum current with pancake designation as a parameter.

## 9.2 Estimate of effective filament diameter

Section 9.2 outlines the analysis used to calculate the effective filament diameter  $D_{eff}$  of the US-DPC wire and presents the results. In section 9.2.1, the detailed equation for the critical current is explained as well as the procedure used to find  $D_{eff}$ . In section 9.2.2, the measured hysteresis loss is used to find the effective filament diameter. The  $D_{eff}$  value obtained from the US-DPC tests is then compared with the  $D_{eff}$  value obtained from single wire measurements. Finally, a sensitivity study is presented which investigates (1) the effect that the variation of strain and temperature have on the  $D_{eff}$  calculation and (2) the effect that the detailed critical-current equation (compared to a simple exponential equation) has on the  $D_{eff}$  calculation.

# 9.2.1 Analytical model

The hysteresis loss of a round superconductor in a perpendicular triangular-ramp field with an amplitude much higher than the penetration field, can be described as shown in Equation 9.4 below¹.

Q_{h, ramp} [Joule/m³ of wire] = 
$$\frac{8}{3\pi} \int_{B_0}^{B_m} \lambda J_c(B) a dB$$
 (9.4)

where  $\lambda$  is the volume fraction of the non-copper materials in the wire,  $J_c(B)$  [A/mm²] is the critical current density of the non-copper region, B [T] is the external field which varies between  $B_m$  and  $B_0$ , and a [m] is the filament radius. Equation 9.4 was derived from Bean's critical-state model and is adopted here as first-order estimation of the hysteresis loss. For a known loss, the effective filament diameter,  $D_{eff}$ , is evaluated as shown in Equation 9.5.

$$D_{eff} [m] = \frac{3\pi}{4} \frac{Q_{h,ramp}^{measured} [Joule/m^3]}{\int_{B_0}^{B_m} \lambda J_c(B) dB}$$
(9.5)

As seen in Equation 9.5, the effective filament diameter depends heavily on the critical current density function.

Two functions that fit the experimental data are available. The first one, given in Equation 7.1 and reproduced in Equation 9.6, is obtained from a model described by Summers et  $al^2$ .

$$J_{c}(B, T, \varepsilon) = \frac{C(\varepsilon) (1 - t^{2}(T, \varepsilon))^{2} (1 - b(B, T, \varepsilon))^{2}}{B_{c2}^{0.5}(T, \varepsilon) b^{0.5}(B, T, \varepsilon)}$$
(9.6)

where

$$\begin{split} J_c(B,T,\epsilon) &\text{ is in } A/mm^2 \text{ of non-copper} \\ C(\epsilon) &= C_0(1\text{-}a |\epsilon|^u)^{1/2} \\ C_0 &= \text{ coefficient independent of field, temperature, and strain} \\ t(T,\epsilon) &= T/T_{c0}(\epsilon) \\ B_{c2}(T,\epsilon) &= B_{c20}(\epsilon)(1\text{-}t^2)\{1\text{-}0.31 t^2(1\text{-}1.77 \ln t)\} \\ B_{c20}(\epsilon) &= B_{c20m}(1\text{-}a|\epsilon|^u) \\ b(B,T,\epsilon) &= B_{c2}(T,\epsilon) \\ T_{c0}(\epsilon) &= T_{c0m}(1\text{-}a|\epsilon|^u)^{1/w} \\ a &= 900 \text{ for } \epsilon < 0, 1200 \text{ for } \epsilon > 0 \\ u &= 1.7 \\ w &= 3 \end{split}$$

The four fitting parameters are  $B_{c20m}$ ,  $T_{c0m}$ ,  $C_0$ , and  $\epsilon$ .

In addition to field, Equation 9.6 includes the effects of temperature and strain on critical current density. Thus, a single equation can be used to describe the same conductor tested in different background conditions.

With  $B_{c20m} = 27.5 \text{ T}$ ,  $T_{c0m} = 16 \text{ K}$  and  $C_0 = 8800 \text{ A} \text{ T}^{1/2} \text{ mm}^{-2}$ , Equation 9.6 fits the critical current data best with  $\varepsilon = -0.001$  for the US-DPC measurement, and  $\varepsilon = -0.0036$  for the single-wire measurement.³

A second function in exponential form, where  $J_{c,w}(B)$  is in A/mm² of non-copper is

$$J_{c,w}(B) = 5972 e^{-0.2162 B}$$
, for 2.5 T < B < 15 T (9.7)

This fits the measured data for single-wire barrel tests that depend on applied field only.

The integration in Equation 9.5 should be started from  $B_0 = 0$  T if the external field was changed from zero to a maximum value then returned to zero. However, Equation 9.6 is not valid as the external field approaches zero because the critical current is limited by self field. In order to do the integration without introducing a large error, the critical current density at near-zero external field,  $J_{c0}$ , is estimated by linear extrapolation of the single-wire results. Note that the  $J_{c0}$  is by no means the real zero field critical current density. By letting  $J_c(B^*, T, \varepsilon) = J_{c0}$  in Equation 9.6, a B* can be found which is the new lower bound of the integration, ie.  $B_0 = B^*$  in Equation 9.5.

The constants to be used in computing the effective filament diameter are  $J_{c0} = 1.76 \text{ x}$  $10^{10} \text{ (A/m}^2 \text{ of non-Cu)}$  and  $B^* = 0.169 \text{ T}$ . The total area will be the sum of a constant area  $J_{c0}B^*$  and the integration started with a non-zero field,  $B^*$ .

The field distribution along the radial direction of a double-pancake winding is highly non-uniform. Therefore, the integration of the critical current density over the applied field is calculated turn-by-turn. The total loss is the sum of the losses in all the turns of the double pancake. By substituting Equation 9.6 into Equation 9.5, the effective filament diameter in meters is expressed as shown in Equation 9.8.

$$D_{eff} = \frac{Q_{h,ramp}^{measured} \ [Joule/m^3 wire]}{\frac{4}{3\pi} \lambda \sum_{n=1}^{N} \frac{V_n}{V_{tot}} \left[ J_{c0}B^* + C B_{c2}^{0.5} (1-t^2)^2 \left( 2b^{0.5} - \frac{4}{3}b^{1.5} + \frac{2}{5}b \right)_{b^*}^{b_{m,n}} \right]}$$
(9.8)

where  $b_{m,n} = B_{m,n}/B_{c2}$  is the dimensionless maximum field of the nth turn in the pancake winding,  $b^* = B^*/B_{c2}$  is the dimensionless lower bound of the integration,  $V_n$  is the volume of the superconducting cable in the nth turn, and the  $V_{tot}$  is the total volume of the superconducting cable in the double pancake.

# 9.2.2 Effective filament diameters

In the US-DPC tests, the ratio of transport to critical current was less than 40% in the highest field region. From single-wire AC loss measurements shown in an earlier article⁴, the additional loss due to the transport current was estimated to be less than 5% and thus was neglected in the present analysis.

The AC-loss results from double pancake B have been selected for computing the effective filament diameters. Refer to Figure 9.21. By using Equation 9.8, the best-fit effective filament diameter is found to be 19.8  $\mu$ m when data at 30 kA are neglected. The variation is about 30%, with a maximum of 23  $\mu$ m at 25 kA and a minimum of 17.5  $\mu$ m at 15 kA.

Similar calculations using Equation 9.8 have been performed for single-wire losses, and the best-fit  $D_{eff}$  is found to be 21.8 µm with a variation of about 10%.⁴ It is concluded that the effective filament diameters from two experiments with very different conditions are in reasonable agreement. Computed hysteresis losses (Eqn 9.4) using these best-fit diameters are compared to US-DPC data in Figure 9.22.

The sensitivity of effective filament diameter to variations in temperature and strain has been examined using Equation 9.8. The procedure uses single-wire temperature and strain values (T = 4.2 K and  $\varepsilon$  = -0.0036) and the US-DPC field distribution. The resulting effective diameters are listed in Table 9.2 (cases 3 to 5) along with those calculated at standard US-DPC and single-wire conditions (cases 1 and 2). The variations of effective diameter are within 3% of 19.8  $\mu$ m. Therefore, the hysteresis loss and the D_{eff} calculation using the J_c model of Equation 9.6 are not very sensitive to temperature and strain effects in the range considered.

Table 9.2 also includes a sensitivity study made by applying the exponential  $J_c$  model to estimate effective diameters. Both the US-DPC and the single-wire diameters are recalculated by substituting Equation 9.7 into Equation 9.5. This yields 38  $\mu$ m as the best-fit of the US-DPC data and 28  $\mu$ m as the best fit of the single-wire data. The former agrees fairly well with that estimated by JAERI (45  $\mu$ m).⁵

Comparing cases 2 and 7, the disagreement in effective diameters is about 35%, which is caused by the different J_c distributions in the low-field region (< 2.5 T). Due to the non-uniform field distribution along the US-DPC conductor, 10% (I_m = 25kA) to 25% (I_m = 15kA) of the cable volume sees an applied field lower than 1 T. The underestimation of the low-field J_c thus becomes more apparent to the D_{eff} evaluation for the US-DPC than for the single wire. As seen in Table 9.2, the D_{eff} in case 6 is 30% higher than in case 7 when same J_c model is applied, and a factor of 2 higher than in case 1 (better J_c model). One may conclude that the low-field critical current distribution is more important than temperature and strain effects in calculating hysteresis loss and effective filament diameter.



Figure 9.22 - Comparison of the US-DPC extrapolated hysteresis losses with the calculated hysteresis losses using the best-fit effective filament diameters.  $D_{eff}$ = 21.8 µm is estimated from the single-wire experiment, and  $D_{eff}$  = 19.8 µm from the US-DPC experiment. Data at 30 kA are considered less reliable and have been neglected in this comparison.

Table 9.2 -	Comparisons of	effective	filament	diameters.
-------------	----------------	-----------	----------	------------

Case	Q _h (measured)	J _c model	Test	T[K]	ε [%]	D _{eff} (µm)
1	US-DPC (4.5 K)	$J_{c}(B, T, \varepsilon)$	US-DPC	4.5	-0.1	19.8
2	single wire (4.2 K)	$J_{c}(B, T, \epsilon)$	single-wire	4.2	-0.36	21.8
3	US-DPC (4.5 K)	$J_{c}(B, T, \epsilon)$	US-DPC	4.2	-0.36	20.1
4	US-DPC (4.5 K)	$J_{c}(B, T, \epsilon)$	US-DPC	4.5	-0.36	20.4
5	US-DPC (4.5 K)	$J_{c}(B, T, \epsilon)$	US-DPC	4.2	-0.1	19.4
6 7	US-DPC $(4.5 \text{ K})$	$J_{c,w}(B)$	US-DPC	4.2		38 28
1	single wife $(4.2 \text{ K})$	J _{C,W} (D)	single-wile	4.2		20

#### References

- 1. M.N. Wilson, "Superconducting Magnets", Clarendon Press, Oxford (1986).
- L.T. Summers et al., A Model for Prediction of Nb₃Sn critical Current as a Function of Field, Temperature, Strain, and Radiation Damage, IEEE Trans on Mag, MAG-27, No. 2 (1991), p. 2041.
- 3. M. Takayasu, et al., Critical Currents of Nb₃Sn wires of the US-DPC Coil, "CEC-ICMC Conference", Huntsville, June 1991.
- 4. C.Y. Gung, et al., Comparisons of AC Losses of Nb3Sn Single Strands and US-DPC Conductor, "CEC-ICMC Conference", Huntsville, June 1991.
- 5. JAERI, Review of US-DPC experiments, in "Proceedings US-DPC test results workshop", ed. J.V. Minervini, MIT PFC, April 1991.

#### 9.3 Estimate of coupling time constant

Section 9.3 outlines the analysis used to calculate the coupling time constant  $\tau_{eff}$  of the US-DPC wire and presents the results. In section 9.3.1, a description of the model used to find the US-DPC coupling time constant is given. In section 9.3.2, the measured coupling losses found from runs 205 through 207 are used to find the effective coupling time constant

of the US-DPC which is then compared with the  $\tau_{eff}$  value obtained from single wire measurements. Finally, as a check of the analytical model, the coupling losses of the US-DPC trapezoidal-pulse runs are compared to the coupling losses predicted by the analytical model.

#### 9.3.1 Analytical model

Based on the anisotropic continuum model¹ for a twisted superconducting wire with uniformly distributed filaments, the coupling loss in a perpendicular triangular-wave field is written as²

$$Q_{c,ramp} \left[ \text{Joule/m}^3 \text{ of wire} \right] = 2 \left( \frac{L}{2\pi} \right)^2 \int_0^{T_m} \frac{\dot{B}^2}{\rho(T, B)} dt$$
(9.9)

where L (m) is the wire twist pitch and  $\rho(T, B)$  is an effective transverse resistivity as a function of temperature and applied field as shown below.

$$\rho(T, B) \text{ [ohm-m]} = \kappa \left(\frac{\rho_{0,RT}}{RRR} + \beta B\right)$$
(9.10)

where  $\rho_{0,RT}$  is the zero field, room temperature resistivity of the matrix material, B is a scaling factor for magnetoresistivity, RRR is the residual resistivity ratio, and  $\kappa$  is the scaling factor for transverse resistivity expressed as the ratio  $(1-\lambda)/(1+\lambda)$  with  $\lambda$  equal to the volume fraction of superconductor. The external field is a linear function of time,  $|dB(t)dt| = (B_m - B_0)t/T_m$ . The final form of coupling loss in a triangular-wave field can be written as shown in Equation 9.11.

$$Q_{c,ramp} = 2\left(\frac{L}{2\pi}\right)^2 \frac{B_m - B_0}{\beta T_m} \ln \left[\frac{\frac{\rho_{0,RT}}{RRR} + \beta B_m}{\frac{\rho_{0,RT}}{RRR} + \beta B_0}\right]$$
(9.11)

where  $Q_{c,ramp}$  is in Joule/m³ of wire.

For the US-DPC chrome-plated wire in the full-size cable, RRR equals 27.

The coupling loss of a superconducting wire in a perpendicular sinusoidal field is expressed as shown in Equation  $9.12^2$ .

$$Q_{c,sinusoidal} \text{ [Joule/m3 of wire]} = \frac{B_r^2}{2\mu_0} \frac{\pi\omega\tau}{1+\omega^2\tau^2}$$
(9.12)

where  $B_r(T)$  is the peak-to-peak value of the applied sinusoidal ripple field and  $\omega$  is the angular frequency. The coupling time constant at B can be written as shown in Equation 9.13.

$$\tau [s] = \tau_{\text{eff}} \frac{\rho_{\text{L}}(T = 4.2 \text{ K}, \text{B} = 0)}{\rho_{\text{L}}(T = 4.2 \text{ K}, \text{B})}$$
(9.13)

The parameter  $\tau_{eff}$  is defined as the effective coupling time constant at a bias field set to zero, which is expressed as shown in Equation 9.14.

$$\tau_{\rm eff} \,[s] = \frac{\mu_0}{2\kappa\rho_{\rm L}(T = 4.2 \,\,{\rm K},\,{\rm B} = 0)} \left(\frac{L}{2\pi}\right)^2 \tag{9.14}$$

#### 9.3.2 Effective coupling time constant

Three of the US-DPC test results (runs 205 to 207) for double pancake B are used to evaluate the effective coupling time constants. All were single-coil trapezoidal pulses ramped up from 0 kA to 20 kA in 1 s, followed by a flat-top of 13 s, then ramped down to 0 kA in 1 s. In the latter two runs, a sinusoidal waveform field (6.5Hz) was superposed on the flattop for 11 s with peak-to-peak current values of 600 A and 1400 A. The coupling loss due to the sinusoidal ripple was obtained by subtracting the total loss of run 205 from that of either run 206 or 207. With the known coupling loss, the effective coupling time constants of the US-DPC double pancake B were calculated by Equations 9.12 to 9.14.

The results are listed in Table 9.3. The effective coupling time constants of the singlewire coupling losses calculated by the same method are also shown for comparison. Except for Case 2 (Run 207 minus Run 205), all the cases have consistent effective coupling time constants and scaling factors for transverse resistivity. The anomaly of Case 2 is probably due to a local recovered quench which added joule heat to the AC losses, thus increasing the effective coupling time constant.

The experimental coupling losses of double pancake B in single-coil trapezoidal-pulse tests (Fig. 9.23) are obtained by subtracting the extrapolated hysteresis losses from the total losses. The calculated coupling losses using Equation 9.11 are also shown.

Case	Type of test	Peak-to-peak field of sinusoidal wave	Frequency [Hz]	Bias field	Coupling loss [Joule]	τ _{eff} [ms]	к
1	US-DPC	Ir = $0.6 \text{ kA}$	6.5	20 kA	285.22	1.66	1.01
2	US-DPC	Ir = 1.4 kA	6.5	20 kA	2660.9	2.86	0.59
3	Single-wire	Br = 0.086 T	7.5	3.37 T	0.00880	1.74	0.96
4	Single-wire	Br = $0.086 \text{ T}$	7.5	4.30 T	0.00868	1.79	0.94

Table 9.3 Comparison of effective coupling time constants.



Figure 9.23 - Comparisons of measured coupling losses and the calculated coupling loss from Equation 9.11 for the case of single-trapezoidal pulse fields.

### **References**

- 1. W.J. Carr, "AC Loss in a Twisted Filamentary Superconducting Wire I," J. Appl. Phys., Vol. 45, No. 2, 1974, p. 929.
- 2. M.N. Wilson, "Superconducting Magnet", Clarendon Press, Oxford (1986).
- 3. C. Gung, et al., "Comparisons of AC Losses of Nb3Sn Single Strands and US-DPC Conductor," CEC-ICMC Conference, Huntsville, June 1991.

### 9.4 Flow choking

During AC testing of the US-DPC, the flow at the inlet of each double pancake was momentarily restricted or "choked" due to the AC loss energy input to the SHe coolant. Figures 9.24 and 9.25 plot the resultant flow reduction at the inlet of double pancake B for specific trapezoidal current pulses. Figure 9.24 plots the flow reduction as a function of flat top current at a constant ramp time of 2.0 seconds, and Figure 9.25 plots the flow reduction as a function of ramp time at a constant flat top current of 20 kA. The trends show that the flow reduction increases as the flattop currents increase and as the ramp times decrease. Table 9.4 lists the current charging parameters and the steady state and minimum flows as well as the resultant flow reduction for the AC test runs plotted in Figures 9.24 and 9.25. Figures 9.26 through 9.35 show the flow measurements and current profiles for the AC test runs plotted in 9.24 and 9.25.



Figure 9.24 - Flow reduction at the inlet of double pancake B as a function of flattop current at constant ramp times of 2.0 seconds. Figures 9.26 through 9.29 show actual flow measurements and current profiles for the runs plotted above.



Figure 9.25 - Flow reduction at the inlet of double pancake B as a function of ramp time at constant flattop currents of 20 kA. Figures 9.27 and 9.30 through 9.35 show the actual flow measurements and current profiles for the runs plotted above.

Run	Ramp Time	Flat Top	Steady State	Minimum Flow	Flow Reduction	Flow Reduction
110.	(s)	(kA)	(g/s)	(g/s)	(g/s)	(%)
102	2.0	15	12.56	10.2	2.36	19
110	2.0	20	12.57	9.4	3.17	25
143	2.0	22	12.41	9.4	3.01	24
120	2.0	25	13.05	8.5	4.55	35
139	0.2	20	13.25	4.0	9.25	70
116	0.3	20	13.07	4.8	8.27	63
115	0.5	20	13.05	6.2	6.86	53
114	0.75	20	13.01	6.2	6.81	52
111	1.0	20	12.63	6.5	6.13	49
109	5.0	20	12.57	10.8	1.77	14

Table 9.4 - Data plotted in figures 9.24 and 9.25 including parameters of the current charging profile and the steady state and minimum flows.



Figure 9.26 - Flow choking in run number 102 . Flow is temporarily reduced or "choked" from its steady state value of 12.56 g/s to a minimum of 10.2 g/s during ramps. The current pulse and flow reaction have the same zero times. Conversion from pressure drop to mass flow is given by the following equation where  $\rho$  is approximately 0.140 g/cm³.

$$\dot{m} (g/s) = 2.36 \sqrt{\rho} (g/cm^3) \times \Delta P (mmAq)$$



Figure 9.27 - Flow choking in run number 110. Flow is temporarily reduced or "choked" from its steady state value of 12.57 g/s to a minimum of 9.4 g/s during ramps. The current pulse and flow reaction have the same zero times. Conversion from pressure drop to mass flow is given by the following equation where  $\rho$  is approximately 0.140 g/cm³.

$$\dot{m}$$
 (g/s) = 2.36  $\sqrt{\rho}$  (g/cm³) x  $\Delta P$  (mmAq)



Figure 9.28 - Flow choking in run number 143. Flow is temporarily reduced or "choked" from its steady state value of 12.41 g/s to a minimum of 9.4 g/s during ramps. The current pulse and flow reaction have the same zero times. Conversion from pressure drop to mass flow is given by the following equation where  $\rho$  is approximately 0.140 g/cm³.

$$\dot{m}$$
 (g/s) = 2.36  $\sqrt{\rho}$  (g/cm³) x  $\Delta P$  (mmAq)



Figure 9.29 - Flow choking in run number 120 . Flow is temporarily reduced or "choked" from its steady state value of 13.05 g/s to a minimum of 8.5 g/s during ramps. The current pulse and flow reaction have the same zero times. Conversion from pressure drop to mass flow is given by the following equation where  $\rho$  is approximately 0.140 g/cm³.

$$\dot{m} (g/s) = 2.36 \sqrt{\rho} (g/cm^3) \times \Delta P (mmAq)$$



Figure 9.30 - Flow choking in run number 109 . Flow is temporarily reduced or "choked" from its steady state value of 12.57 g/s to a minimum of 10.8 g/s during ramps. The current pulse and flow reaction have the same zero times. Conversion from pressure drop to mass flow is given by the following equation where  $\rho$  is approximately 0.140 g/cm³.

$$\dot{m} (g/s) = 2.36 \sqrt{\rho} (g/cm^3) \times \Delta P (mmAq)$$



Figure 9.31 - Flow choking in run number 111 . Flow is temporarily reduced or "choked" from its steady state value of 12.63 g/s to a minimum of 6.5 g/s during ramps. The current pulse and flow reaction have the same zero times. Conversion from pressure drop to mass flow is given by the following equation where  $\rho$  is approximately 0.140 g/cm³.

$$\dot{m} (g/s) = 2.36 \sqrt{\rho} (g/cm^3) \times \Delta P (mmAq)$$



Figure 9.32 - Flow choking in run number 114 . Flow is temporarily reduced or "choked" from its steady state value of 13.01 g/s to a minimum of 6.2 g/s during ramps. The current pulse and flow reaction have the same zero times. Conversion from pressure drop to mass flow is given by the following equation where  $\rho$  is approximately 0.140 g/cm³.

$$\dot{m}$$
 (g/s) = 2.36  $\sqrt{\rho}$  (g/cm³) x  $\Delta P$  (mmAq)



Figure 9.33 - Flow choking in run number 115. Flow is temporarily reduced or "choked" from its steady state value of 13.05 g/s to a minimum of 6.2 g/s during ramps. The current pulse and flow reaction have the same zero times. Conversion from pressure drop to mass flow is given by the following equation where r is approximately 0.140 g/cm3.

$$m (g/s) = 2.36 \sqrt{\rho} (g/cm^3) x \Delta P (mmAq)$$



Figure 9.34 - Flow choking in run number 116. Flow is temporarily reduced or "choked" from its steady state value of 13.07 g/s to a minimum of 4.8 g/s during ramps. The current pulse and flow reaction have the same zero times. Conversion from pressure drop to mass flow is given by the following equation where r is approximately 0.140 g/cm3.

$$\dot{m}$$
 (g/s) = 2.36  $\sqrt{\rho}$  (g/cm³) x  $\Delta P$  (mmAq)



Figure 9.35 - Flow choking in run number 139. Flow is temporarily reduced or "choked" from its steady state value of 13.25 g/s to a minimum of 4.0 g/s during ramps. The current pulse and flow reaction have the same zero times. Conversion from pressure drop to mass flow is given by the following equation where r is approximately 0.140 g/cm3.

$$\dot{m}$$
 (g/s) = 2.36  $\sqrt{\rho}$  (g/cm³) x  $\Delta P$  (mmAq)

#### **10.** Ramp-rate limitation

During AC testing, a ramp-rate limitation was discovered. In order to show the behavior of the limitation, the following chapter presents comparisons of the current versus ramp time data of various groupings of runs. First, section 10.1 presents three classifications by which each run is characterized to provide sensible comparisons of the data. Next, section 10.2 presents for each quenched run, the initiation point and time of quench, quench and flattop current, ramp time, detection system delay time, and run classifications. Also, a typical crossover-turn voltage rise during quench is shown. Section 10.3 compares various groupings of test runs to reveal the ramp-rate limitation behavior. Finally, section 10.4 presents an argument for using the limiting current as a means of predicting the ramp-rate limitation

### 10.1 Characterization of an AC test run

The US-DPC data contain 205 AC test runs (runs 74 - 278) each of which are characterized by the following classifications.

#### 10.1.1 Quenched or non-quenched

There are 51 quenched runs and 154 non-quenched runs. The 51 quenches can be further classified according to their initiation point.

<u>Crossover Turn</u> -- Connects the upper and lower pancake at the inner diameter and experiences the highest field of any turn in the double pancake.

Interpancake Lap Joint -- Connects the double pancakes at the outer diameter and experiences low fields.

<u>Middle Turns</u> -- Wound outwardly from the crossover turn and terminate at either the interpancake lap joints or the current leads. Voltage taps were not attached on individual turns through the middle of the double pancakes, so the exact point of normal-zone initiation could not be pinpointed in this region.

## 10.1.2 Test mode (single-coil or series-coil)

There are 180 single-coil and 25 series-coil test runs. The single-coil test runs were performed by charging only the US-DPC with no contribution from the background field coils, U1 and U2. The series-coil test runs were performed by charging the US-DPC in an electrical series connection with the background field coils.

# 10.1.3 Charging waveform

Six different charging waveforms and combinations thereof were employed: triangular, trapezoidal, round-edge trapezoidal, rippled trapezoidal, and two-step trapezoidal. For a schematic of each waveform refer to Figure 9.2.

### 10.2 The quenched runs

The lap joint and middle turn quenches could not be included in most of the analysis due to the placement of voltage taps for digital records. Nevertheless, the following questions were answered, where possible, for each quench:

- 1. Where did the quench initiate?
- 2. What was the average time of initiation of trapezoidal-pulse quenches?
- 3. Of all the quenches, what percentage initiated before onset of the flattop current?
- 4. What was the current at the time of initiation for before-flattop quenches?
- 5. Were there any unusual data that reveal the cause of the ramp-rate limitation?
- 6. What was the delay time of the quench detection system?
- 7. What was the rise in voltage across the crossover turn normal zone?

Table 10.1 and Figures 10.1 and 10.2 list and plot the quench data. Note that all of the middle-turn quenches occurring during the series-coil tests showed a voltage rise in the crossover turn, and it is believed that the initiation point was close to the crossover turn for these runs. The sole middle-turn quench occurring during the single-coil tests (run 237) did not show a voltage rise in the crossover turn.

From the data in Table 10.1 and Figures 10.1 and 10.2, the answers to the above questions are as follows:

1. Where did the quench initiate?

Of the 51 quenches, 34 (66.7%) initiated in the crossover turn of double pancake C. Note that the highest field in the US-DPC occurs in the crossover turn of double pancake B, which would therefore be the expected point of normal zone initiation. The only difference in the geometry of double pancake C is the absence of a heater wire through the cable center, resulting in a larger void fraction. For a further breakdown of the quenched runs according to their initiation point, see Table 10.2

Another interesting note is that of the seven quenches occurring during the series-coil tests, six (86%) initiated in the middle-turns, and just one initiated in the crossover turns.

Table 10.2 - Breakdown of the 51 quenches according to their initiation point.

initiation point	number	overall percentage
crossover turn of double pancake C	34	66.7
interpancake lap joints	7	13.7
middle turns of double pancake C	5	9.8
crossover turns of double pancakes B and C	2	3.9
middle turns of double pancake B	1	2.0
middle turns of double pancakes A, B, and C	1	2.0
no data due to a mistrigger of the detection system	1	2.0

lat	016 1U.1 - A CUILD									
12 Q	quench initiation point	quench mutation time t _q (s)	ramp ume t _m (s)	before or after flattop?	աղ/եղ	aump ume t _{dump} (s)	quencn current I _Q (kA)	m ¹ / p ¹	cnarging profile	comments
4	C crossover	0.90	1.0	before	0.90	1.31	27.3	0.910	triangle	t = 0 at the beginning of the current pulse for
8	C crossover	0.93	0.1	before	0.93	1.34	1.12	0.934	tnangle	all runs
33	Joint	1 20	0.74 52	- 4	1 033	CI.2 AI C	24.0	3.8	pzdn	Mass flow to joint too low
3 E	Crossover	5.86	609	hefore	0.975	6.30	29.5	0.983	tmzd	
126	C crossover	6.85	1.01	before	0.977	7.30	29.3	0.977	tupzd	
129	C crossover	1.10	1.03	after	1.068	1.71	24.0	1.00	tıpzd	
130	C crossover	1.30	1.03	after	1.262	1.99	23.0	1.00	tupzd	
133	C crossover	1.13	1.02	after	1.108	1.82	24.0	8.1	rıpzdı	
135	C Crossover	4.04	3.96	after	1.020	4.55	27.5	8.1	upzd	
5	joint		0.35			2.31	22.0	8.9	trpzd	
4	joint		0.24			CC.2	21.0	0.1	pzdn	0.08
2	C Crossover	16.1	25.0 , 67.0	belore	10.00	12.2	28.3	C+V-U	z-step tipza	Intermediate flattop time = $0.96$ s
	B and C crossover	B-4.0/,C-4.04	0.77 0.77	atter	1.000*	B-4.34,C-4.29	B-30, C-30	N.1	z-step upza	intermediate flatton time = $2.9/8$
2,3	H IS AND C CROSSOVER	13-4.43,C-4.42	11.0.11.0	ociore	1 013	5 m	D-47.1, C-47.2	200	17-Step upzu	
		1.74	2.4	after	1017		0.02	8.8	up zu	Double and triple tranezoide have nominal 3 s
22		7 16	No.	after	1017	7.65	0.02	8.9	tmad	flattone with 0.5 e downramme. Ouadminle
2.2	i cuosoru		0.52,051			6.20	22.0	00.1	dble trozd	trapezoid has nominal 2 s flattops with 0.5
29	ioint		0.52.0.49.0.49			11.47	20.0	1.00	triple trpzd	sec downramps.
133	ioint		0.5.0.58.0.48.0.6	1			18.0	1.00	quad. trpzd	
181	C crossover	1.78		before		2.26	26.7	0.89	round-edge	Possible non-propagating quench in B
182	C crossover	7.98	8.0	before	0.998	8.42	29.3	0.993	trpzd	
186	C Crossover	7.22	7.51	before	0.961	1.7.1	29.4	0.964	tıpzd	
185	C crossover	7.58	8.0	before	0.948	8.09	29.2	0.942	tıpzd	
<u>161</u>	C crossover	8.26		before		8.73	29.3	0.916	tıpzd	
56	C crossover	9.95	9.93	after	1.002	10.3	33.0	8.8	tıpzd	
ត្តន៍	C crossover	60.1	6.7	after	800.1	10.1	23.0	<u>8</u>	pzdn	Possible non-propagating quench in B
	C crossover	1.09	101	alter	6/070	6C.1	0.62	3.8	npza	rossible non-propagating quencil in D
ຊະ 	C CTOSSOVET	7.86	1.01	hefore	410.1 0 070*	40.1 8 34	24.0	0.970	2-sten trnzd	intermediate flatton time = $3.00$ s
12	C CLOSSOVEL	90.7	3 60 134	hefore	0.990*	8.42	29.5	0.983	2-step trpzd	intermediate flatton time = $3.01$ s
220	C crossover	2.91	1.01. 1.01	hefore	*0200	3.42	29.3	0.977	2-step trozd	intermediate flattop time = $0.98$ s
22	C crossover	3.64	1.0, 1.57	after	1.017*	4.17	29.0	1.00	2-step trpzd	intermediate flattop time = 1.01 s
22	5 DATA NOT	RECORDED	PROPERLY,			MISTRIGGER.	DATA	NOT	RECORD	ED PROPERLY MISTRIGGER.
232	2 joint		1.004	! •		3.66	25.0	8.9	tupzd	Mass flow to joint too low (?)
25	C Crossover	8C.1	7C-1	alter	4c0.1	cy.1	0.02	<u>8</u> .1	upzu bolooi-	Volução of consource the voltage real
235	C Crossover	6.81	6.97	hefore	110.0	7.25	28.1	0.937	trozd	IN CALINER OF CLOSED COLLEGE 113C.
ន័	C crossover	7.75	7.95	before	0.975	8.15	29.2	0.973	tıpzd	
24	C crossover	8.73	8.96	before	0.974	9.17	29.2	0.973	tıpzd	
245	5 C crossover	6.81	7.02	before	0.970	7.18	29.2	0.973	rippled	All values difficult to read due to ripples.
252	C crossover	5.71	*****	before	l	6.02	28.9	0.963	rippled	All values difficult to read due to ripples.
52	C crossover	5.59	01-0	betore		0.02	7.87		rippled	
5 S			0.70			1			timed	After nin 753 the series could tests hearin
2.0	C middle nums		1.12			1.54			trozd	UIWI 1011 #22, MIC 201102 COIL #212 COB11:
8	5 A.B.& C middle		0.89				-		tupzd	The six middle-turn quenches in the series-coil
275	C middle turns		1.1			1.21			round-edge	tests showed voltage rises in the crossover
32	5 C crossover	1.23	1.11	after	1.108	1.53	22.0	1.00	tabzq	turns as well.
Ĩ,	S C middle tums		1.1		-	1.4			nzdn	
*	for the two-step trapeza	oidal wavetorm, the	tn / tm calculation d	efines t _m as th	e summa	from of the mittal to	nramp. the final u	oramp, a	nd the internet	ediate flation.

US-DPC Test Report

2. What was the average time of initiation of trapezoidal-pulse quenches? The quench initiation time  $t_q$  is listed in column three of Table 10.1. Of the 22 trapezoidal-pulse quenches for which both the quench initiation time and ramp time could be determined, the average initiation time exceeded the ramp time  $t_m$  by 3.1%. The standard deviation of ratios of  $(t_q / t_m)$  is 6.8%.

 $(t_q / t_m)_{average} = 1.031$ 

- 3. Of all the quenches, what percentage initiated before onset of the flattop current? Of the 36 quenches for which both the quench initiation time and ramp time could be determined, 20 (55.6%) initiated before and 16 (44.4%) initiated after the onset of the flattop current.
- 4. What was the current at the time of initiation for before-flattop quenches? Of the eighteen before-flattop quenches for which both the quench and flattop current could be determined, the average quench current was 96.0% of the flattop current.
- 5. Were there any unusual data that reveal the cause of the ramp-rate limitation? No conclusions could be drawn as to the cause of the ramp-rate limitation.
- 6. What was the delay time of the quench detection system?

Of the 36 quenches for which the delay time could be determined, the average delay was 0.46 seconds with a maximum of 0.69 seconds and minimum of 0.25 seconds. The delay time is defined as the dump time  $t_{dump}$  (column 7 in Table 10.1) minus  $t_q$  and is plotted in Figure 10.1 as a function of run number. Figure 10.3 shows dump and quench times as measured from a typical crossover turn voltage trace.

7. What was the rise in voltage across the crossover turn normal zone?

Of the 36 quenches for which the voltage rise  $\Delta V$  could be measured, the average rise was 1.77 volts with a maximum of 2.89 volts and a minimum of 0.33 volts.  $\Delta V$  is defined as the total increase in voltage of the crossover turn before the coil dump and is plotted in Figure 10.2 as a function of run number. Figure 10.3 shows  $\Delta V$  as it was measured from a typical crossover turn voltage trace. Note that the voltage trace has a spike at the time of dump. This spike was present in all the quench voltages and was not included in the measurement of  $\Delta V$ .



Figure 10.1 - Delay time of the JAERI quench detection system as a function of run number. Delay time is defined as dump time  $t_{dump}$  minus quench initiation time  $t_q$  (see Figure 10.3). For a description of the power supply and detection system at JAERI see reference 1.



Figure 10.2 - Voltage rise  $\Delta V$  in the crossover turn of double pancake C as a function of run number.  $\Delta V$  is defined as the total increase in voltage of the crossover turn before the coil dump (see Figure 10.3).



Figure 10.3 - The voltage trace in the crossover turn of double pancake C during the quench of run 186 shows a typical measurement of quench time and current  $t_q$  and  $l_q$ , dump time  $t_{dump}$ , voltage rise  $\Delta V$ , and flattop current  $l_m$ . The current ramp for this run begins at t = 1.58 s, and the current must be divided by 0.951 to compensate for instrumentation error.

## 10.3 Behavior

In order to show the behavior of the ramp-rate limitation, a baseline limit is used to compare the current versus ramp-time data of various groupings of test runs. Section 10.3.1 establishes the baseline limit, which is then compared with the ramp data from subgroupings of single-coil and series-coil test runs in sections 10.3.2 and 10.3.3, respectively.

### **10.3.1 Baseline limit**

The baseline limit is a linear curve fit of the current versus ramp-time data for crossover turn quenches produced in the single-coil test mode by single trapezoidal waveforms as shown in Figure 10.4 and described by Equation 10.1.

I = 23.2 + 0.845 t(10.1)

where: t in seconds is either time to quench  $t_q$  or ramp time  $t_m$ I in kA is either quench current  $I_q$  or flattop current  $I_m$ 

Note that when the normal zone voltage began before onset of the flattop current, the quench current and time to quench data were plotted, and when the normal zone voltage began after onset of the flattop current, the flattop current and ramp time were plotted.

The standard deviation of the baseline limit is 0.878 kA, which corresponds to 3.7% of the predicted current at one second ramp times and 2.8% of the predicted current at 10 second ramp times.

Figure 10.5 compares the non-quenched, single-coil, trapezoidal-pulse runs with the baseline limit to highlight the effect of the ramp-rate limitation.



Figure 10.4 - Linear curve fit of single-coil, trapezoidal-pulse, current-versus-time quench data used to define a baseline ramp-rate limit. The limit is compared with various groupings of AC test runs.


Figure 10.5 - Comparison of the baseline ramp-rate limit to non-quenched trapezoidal-pulse data. Attempts to charge beyond the limit resulted in quenches of the US-DPC.

# 10.3.2 Single-coil tests

In order to form sensible comparisons with the baseline ramp-rate limit, the single-coil test runs were separated into subgroups of runs quenched in the interpancake lap joints, runs pulsed by triangular waveforms, runs pulsed by round-edge trapezoidal waveforms, runs pulsed by rippled trapezoidal waveforms, and runs pulsed by two-step trapezoidal waveforms in sections 10.3.2.1 - 10.3.2.5, respectively.

# 10.3.2.1 Runs quenched in the interpancake lap joints

Of the seven interpancake lap joint quenches, all occurred at nominal ramp times of one second or less, and five of the seven occurred at currents below the baseline limit as shown in Figure 10.6. The slope and intercept of a linear fit to the data argue for a physical mechanism that differs from the baseline quench mechanism. Note that the lap joints were cooled with liquid rather than supercritical helium. It is hypothesized that at high ramp rates, eddy current heating of the joints boiled away all or most liquid in the joint manifolds, resulting in poor heat transfer and consequently quenches at the joints.



Figure 10.6- The interpancake lap joint quenches compared with the baseline ramp-rate limit. All lap joint quenches occurred at nominal ramp times of one second or less and five of the seven occurred at currents below the baseline limit.

#### **10.3.2.2** Triangular-pulse runs

Of the 15 triangular-pulse runs, two showed normal-zone voltage rises as shown in Figure 10.7. The quenched runs exceeded the baseline ramp-rate limit by as much as 14%, and the non-quenched runs exceeded the baseline limit by as much as 27%.

Because the triangular pulses have no flattop currents, a quench-indicating voltage rise may have been undetectable due to the immediate, rapidly decreasing down-ramp current. As a check, Figure 10.8 plots the measured AC loss data of the non-quenched runs (all of which occurred at 0.5 second ramp times) as a function of the maximum current to see if the behavior of the measured losses could be accounted for by AC loss theory alone or if undetected normal zones created unpredictable increases in the measured losses due to joule heating. In this plot it is revealed that at currents between 20 and 25 kA, the measured AC losses begin to increase exponentially, deviating from the behavior predicted by the calculated losses and indicating joule heating has occurred. (Note that the apparently higher losses in pancake 5 are probably due to inaccurate mass flow measurements at the inlet of double pancake C.) A conclusion can be made that normal zones were initiated in the 0.5-second-ramp-time runs, but the quench detection system was not triggered due to the absence of a flattop current.



Figure 10.7 - The triangular-pulse runs compared to the baseline ramp-rate limit. The currents at 0.5 second ramp times appear to exceed the limit without quenches.



Figure 10.8 - The AC losses of individual pancakes from the non-quenched, triangular-pulse runs. At currents between 20 and 25 kA, the measured AC losses begin to increase exponentially, deviating from the behavior predicted by the calculated losses and indicating joule heating has occurred. Note that the apparently higher losses in pancake 5 are probably due to inaccurate mass flow measurements.

### 10.3.2.3 Round-edge trapezoidal-pulse runs

One of the eight round-edge trapezoidal-pulse runs quenched, as shown in Figure 10.9. The quenched run (no. 181) exceeded the baseline ramp-rate limit by 8.1%, and the nonquenched runs exceeded the baseline limit by as much as 12.1% (no. 180).

The significance of the round-edge trapezoids is that the ramp current I(t), given by Equation 10.2, creates a steadily decreasing ramp rate that eliminates the sharp transition to flattop (thought at the time of testing to initiate quench).

$$I(t) = (I_m/t_m)t + 0.283 I_m \sin(\pi t/t_m)$$
(10.2)

Two examples of the difference between round-edge and standard trapezoids are shown in Figure 10.10, which plots the current waveforms of runs 180 and 181 with the equivalent ramps of standard trapezoidal waveforms.

For the reader's reference, Figure 10.11 plots the ramp-rate variation of runs 180 and 181 during charging. It is evident that the ramp rates near the transition to flattop were significantly smaller than initial ramp rates.



Figure 10.9 - The round-edge trapezoidal-pulse runs exceeded the baseline ramp-rate limit by 8.1% during the quenched run and by as much as 12.1% during the non-quenched runs



Figure 10.10 - The ramp currents of runs 180 and 181 illustrate the difference between the round-edge trapezoidal waveforms and the equivalent standard trapezoidal waveform.



Figure 10.11 - Ramp-rate as a function of time for runs 181 and 180.

# 10.3.2.4 Rippled trapezoidal-pulse runs

Of the eight trapezoidal-pulse runs with AC current ripple, the baseline limit was exceeded by as much as 3.1% during the three quenched runs and by as much as 6.1% during the five non-quenched runs as shown in Figure 10.12. Contrary to expectations, these runs showed that the addition of a coupling-loss-inducing ripple to the charging waveform seems to slightly enhance the coil performance.



Figure 10.12 - Comparison of the baseline ramp-rate limit to data from trapezoidal waveforms that contained AC current ripple.

# 10.3.2.5 Two-step trapezoidal-pulse runs

Of the nineteen two-step trapezoidal-pulse runs, the baseline limit was exceeded by as much as 14.2% during the seven quenched runs and by as much as 16.6% during the twelve non-quenched runs as shown in Figure 10.13. It appeared that an intermediate flattop in the ramp allowed the baseline limit to be exceeded.

The intermediate flattops were of either one or three second nominal duration. The three second duration allowed cold inlet-helium to completely flow through the crossover turn and thereby reestablished the base temperature (nominally 4.5K) before initiating the second ramp. However, the duration of the flattop seemed to have no significant effect on the ramp stability as shown in Table 10.3. Four of the seven quenches had a three second intermediate flattop, indicating that reestablishment of the base temperature was insufficient to stabilize the coil.



Figure 10.13- Comparison of the baseline ramp-rate limit to data from two-step trapezoidal-pulse runs.

run	quenched?	1st ramp	intermediate	intermediate	2nd ramp	final	total ramp
no.		time	flattop current	flattop time	time	current	time
		(s)	(kA)	( <u>s</u> )	(s)	(kA)	(s)
152		0.75		0.02	0.22	20	2.05
154	yes	0.75	22	0.90	0.52	20	2.03
122	yes	0.76	22	2.97	0.31	30	4.04
154	yes	0.77	22	2.96	0.77	30	4.5
217	yes	3.32	20	3	1.71	30	8.03
218	yes	3.69	22	3.01	1.34	30	8.04
220	yes	1.01	22	0.98	1.01	30	3
223	yes	1	22	1.01	1.57	29	3.58
150	no	1	22	1	1	27	3
151	no	1	22	1	1	30	3
155	no	2	22	3	0.75	30	5.75
195	no	4	20	3	1	25	8
196	no	1.6	20	3	0.4	25	5
197	no	0.8	20	3	0.2	25	4
198	no	0.4	20	3	0.1	25	3.5
219	no	1	22	1	1	27	3
221	no	1	22	1	1.6	30	3.6
222	no	1	22	1	1.6	30	3.6
224	no	1	22	1	1.6	29	3.6
225	no	1	22	1	1.6	29	3.6

Table 10.3 - Ramp data for the two-step trapezoidal-pulse runs.

#### 10.3.3 Series-coil tests

The series-coil tests were limited to eighteen non-quenched and seven quenched runs (numbers 254 to 278). Of the seven quenches, six initiated in the middle turns and one initiated in the crossover turn of double pancake C. However, the middle turn quenches also showed normal zone voltages in the crossover turns, indicating that quench initiation occurred close to the crossover turn. Further analysis is required to quantify exact initiation points and times.

Because the middle-turn quench times could not be determined accurately, only the non-quenched, trapezoidal-pulse runs are plotted in comparison with the baseline ramp-rate limit as shown in Figure 10.14, which plots flattop current vs. ramp time, and 10.15, which plots flattop magnetic field vs. ramp time. Figure 10.14 shows that the non-quenched flattop currents fell below the currents predicted by the single-coil baseline limit. However, Figure 10.15 shows that the flattop magnetic fields fell approximately 50% above the fields predicted by the single-coil baseline limit. This implies that the ramp-rate limitation of by the US-DPC was more dependent on current than magnetic field.



Figure 10.14 - The flattop currents of the non-quenched, series-coil, trapezoidal-pulse runs do not exceed the single-coil, baseline ramp-rate limit.





#### **10.4** Argument for limiting current

A threshold or "limiting" current may exist below which the US-DPC was unconditionally stable at any ramp rate in the single-coil mode. This current would be the intercept of the baseline limit, which equals approximately 23 kA. In support of the argument, Figure 10.16 compares the baseline limit with data from the two fastest-ramp, single-coil, trapezoidal-pulse runs (numbers 147,  $t_m = 300$  ms and 148,  $t_m = 200$  ms). Both runs were stable in the crossover and middle turns at these extraordinary ramp rates (di/dt  $\approx 100$  kA/s; dB/dt  $\approx 20$  T/s), although both quenched in the interpancake lap joints.

The term limiting current is interpreted here as the copper-stabilizer current at which Joule heating power equals helium cooling power. For transient disturbances during a ramp that cause a loss of superconductivity at currents below the limiting current, cooling would exceed heating and recovery should be theoretically possible. Limiting current takes the form²:

$$I_{lim} = \sqrt{\frac{A_{cu}p_{w}h(T_{c} - T_{b})}{\cdot \rho}}$$

where  $A_{cu}$  is the stabilizer copper area,  $p_w$  is the wetted perimeter, h is the heat transfer coefficient,  $\rho$  is stabilizer resistivity,  $T_c$  is critical temperature and  $T_b$  is bath temperature.



Figure 10.16 - The single-coil mode baseline ramp-rate limit has a 23 kA intercept. Runs 147 and 148 (ramp times of 300 and 200 ms respectively) were without quench in the crossover or middle turns and support the conjecture that below 23 kA the coil would be stable at any ramp rate.

# **References**

- 1. T.Isono, et. al., "Power supply system for the Demo Poloidal Coils," MT-11, Vol.2, 1989, pp. 835 840.
- 2. L. Bottura et al, "Design criteria for stability in cable-in-conduit conductors," Cryogenics, Vol. 31, July 1991, pp. 510 - 515.

### 11. Lap joint resistance

The US-DPC consists of three double-pancakes joined together in series by two interpancake lap joints as described in section 5.3 and illustrated in Figure 5.4. The most important parameter of the lap joints is their electrical resistance, and in this chapter, the electrical resistance measurements are presented. Section 11.1 presents the geometry and fabrication steps of the lap joints, and section 11.2 presents the resistance measurements.

### **11.1 Joint description**

The ribbon lap joints of the US-DPC have the geometry shown in Figure 11.1. The ribbons were made by undoing the last-stage cable transposition so that the 45-strand subcables could be placed side by side. During heat treatment of the superconductor, the copper stabilizers of the wires sintered to the 0.7-mm-wall CDA 102 copper tube into which they were placed. In addition to the copper-to-copper sinter bonds, the cable space of the ribbons was filled with 50/50 (Sn/Pb) soft solder after heat treatment. The mating surfaces of the conductor ribbons were tinned and soldered using 0.10 mm thick Sn/Pb/Cd (51/31/18) sheets between the ribbon surfaces. The connected or overlap length of the two lap joints is given in Table 11.1.



Figure 11.1 - Geometry of the US-DPC ribbon lap joints. The orientation of the ribbons in the coil was with the long side (42 mm) vertical. The ribbons were clamped between copper blocks not shown in the figure.

Table 11.1 - Length of ribbon lap joints in the US-DPC.

Length			
941.1 ± 25 mm			
$871.2 \pm 25 \text{ mm}$			

#### **11.2 Measured resistances**

The resistance of the ribbon lap joints was measured during single-coil DC runs 23 - 25 and is presented as a function of current in Figures 11.2 and 11.3. The range of resistance was from 0.2 to 0.6 n $\Omega$ . Note that at 30 kA the field at the lap joints, which was approximately parallel to the 42 mm dimension, was 2.2 T in the single-coil mode.



Figure 11.2 - Resistance of lap joint A/B as a function of coil current. Data were taken from single-coil runs 24 and 25.



Figure 11.3 - Resistance of lap joint B/C as a function of coil current. Data were taken from single-coil runs 23 through 25.

### 12. Mechanical performance of the US-DPC

Mechanical behavior of the US-DPC was observed by displacement and strain measurements. Note that displacement in the axial direction could not be measured directly due to limited space and was inferred from strain measurements on bolts of the support structure.

#### **12.1** Displacement measurements

Displacements in the radial direction at two points of the innermost turn of pancake 6 were measured by two extensometers, USDS01 and USDS02, as shown in Figure 12.1. These extensometers were mounted to poles fixed on the base plate of the coils. Each extensometer had a 10 mm movable rod of which the amount of movement was equal to the displacement. The extensometers were located so that the top of the rod touched the coil surface and the movable range was 5 mm. Since the coil base plate could not move, the measured displacements were absolute.

#### 12.2 Sensors and locations

Strains of the coil support bolts that compress the whole coil stack were measured by strain gauges directly mounted on the centers of the bolt lengths. Sensor locations are shown in Figure 12.2. The mechanical behavior of the stack was monitored by strain measurements of the support bolts during DC tests.

#### 12.3 Displacement measurements during DC tests

In the figures of this section, positive values of displacement show that the coil contracts, and negative values show that the coil expands. The average value (which eliminates coil movement resulting from stack misalignment) should be used when mechanical behavior of the coil is discussed.





Figure 12.1 - The location of the extensioneters, USDS01 and USDS02 are shown on the top view and side view of the coil stack (U1 + US-DPC + U2). The radial displacements are measured at the innermost turn of pancake 6 of the US-DPC.







### 12.3.1 Single-coil tests

### 12.3.1.1 XT recorder charts

Figures 12.3 through 12.8 show XT charts of current and displacements (USDS01 and USDS02) of run numbers 18, 20 and 23. The discontinuous points of displacement match with balance voltage spikes and are shown by arrows in these figures. It seems that the whole coil moved as the magnetic force was increased because a positive displacement was measured in USDS01. The XT recorder charts given here are summarized in Table 12.1.

 Figure	Chart number	Shot	From	То	Number of Spikes	
number					DS01	DS02
 12.3	XT	#18	18 kA	21 kA	2	2
12.4	XT	#20	18 kA	21 kA	0	0
12.5	XT	#20	24 kA	27 kA	0	0
12.6	XT	#20	27 kA	27 kA	1	0
			27 kA	30 kA	1	1
12.7	XT	#23	24 kA	27 kA	0	0
12.8	XT	#23	27 kA	30 kA	0	0

Table 12.1 - Summary of XT recorder charts.

Two discontinuous points with balance voltage spikes in both USDS01 and USDS02 are observed in the first charge (run number 18) between 18 kA and 21 kA as shown in Figure 12.3. However, in the second charge (run number 20) displacements smoothly increase with increase of current between 18 kA and 21 kA as shown in Figure 12.4. In run number 20, the displacement record is serrated and a few discontinuous points with balance voltage spikes are observed over 24 kA which is the virgin region for the coil as shown in Figures 12.5 and 12.6. The smooth displacement records over 24 kA in the second charge (run number 23) are obtained as shown in Figures 12.7 and 12.8.



Figure 12.3 - The XT chart recording of the current and extensometers, USDS01 and USDS02, for run number 18 from 18 kA to 21 kA.



Figure 12.4 - The XT chart recording of the current and extensioneters, USDS01 and USDS02, for run number 20 from 18 kA to 21 kA



Figure 12.5 - The XT chart recording of the current and extensometers, USDS01 and USDS02, for run number 20 from 24 kA to 27 kA



Figure 12.6 - The XT chart recording of the current and extensometers, USDS01 and USDS02, for run number 20 from 27 kA to 30 kA and from 27 kA to 27 kA.





Figure 12.8 - The XT chart recording of the current and extensometers, USDS01 and USDS02, for run number 23 from 27 kA to 30 kA.

### 12.3.1.2 XY recorder charts

XY charts of run numbers 24 and 32 in which currents are charged up to 30 kA are shown in Figures 12.9 and 12.10, respectively. A small hysteresis effect is observed in both USDS01 and USDS02. Figure 12.11 shows a comparison between run numbers 24 and 32. In USDS01, the displacement of run number 32 is about 0.2 mm larger than that of run number 24. In USDS02, the displacements are about the same.

### 12.3.1.3 Relation between displacement and current squared

As mentioned above, the average value in which the coil movement is eliminated should be used when the mechanical behavior of the coil is discussed. The displacements which are plotted as a function of current squared are shown in Figures 12.12 and 12.13. A residual displacement after discharge is observed in run number 18 (the first charge) as shown in Figure 12.12. The data of run numbers 20, 23, 24, 25 are plotted in Figure 12.13. The residual displacements disappear and good reproducibility is obtained after run number 18. Usually, the average displacements are in proportion to current squared. But in the case of US-DPC, the average displacements of USDS01 and USDS02 are not in proportion to current squared in wide range from 0 kA² to 900 kA². Up to 300 kA², the displacements are in proportion to current squared, but over 300 kA², the displacements saturate. The maximum average value at 30 kA is about 0.45 mm (run numbers 23 through 25). In addition, it has a scatter between 0.35 mm (run numbers 33 through 38) and 0.53 mm (run numbers 66 through 69).

### 12.3.2 Series-coil tests (U1+U2+US)

### 12.3.2.1 XY recorder charts

The XY chart of run number 58 (see Fig. 8.1) is shown in Figure 12.14. A decrease of displacement during the long holds is observed in this figure. The configuration of measured curves is similar to that of the single-coil tests.

#### 12.3.2.2 Relation between displacement and current squared

The displacement plotted as a function of current squared is shown in Figure 12.15. The configuration of the measured curves is similar to that of the single-coil tests. In addition, measured values are slightly larger than those of the single-coil tests. Up to  $200 \text{ kA}^2$ , displacements are proportional to current squared, but over  $200 \text{ kA}^2$ , displacements saturate. The maximum average value at 30 kA is about 0.6 mm.











Figure 12.11 - The XY chart recording of the current and extensioneters, USDS01 and USDS02, compare the differences in the hysteresis effect of run numbers 24 and 32.









.



# 12.4. Displacement measurements during AC tests

### 12.4.1 Single-coil tests

### 12.4.1.1 XT recorder charts

Figures 12.16 through 12.19 show XT charts of current and displacements (USDS01 and USDS02) of run numbers 124, 175, 180, and 243. The figures show the displacement curves corresponding to the various current patterns.

#### 12.4.1.2 XY recorder charts

The XY charts of run numbers 155 and 243, where the current was charged to 30 kA, are shown in Figures 12.20 and 12.21, respectively. A small hysteresis effect is observed in both USDS01 and USDS02 similar to the DC charge tests. Figure 12.22 shows a comparison between run numbers 155 and 243. In USDS01, the displacement of run number 155 is about 0.2 mm larger than that of run number 243, and in USDS02, the displacement of run number 155 is about 0.5 mm larger than that of run number 243.

#### 12.4.1.3 Relation between displacement and current squared

The displacements plotted as a function of current squared are shown in Figure 12.23. The data obtained from the XT charts between run numbers 84 and 251 are used in this figure. The curves obtained from the AC tests agree well with those from the DC tests, if a measurement error is taken into account (compare Figures 12.13 and 12.23). The maximum average value at 30 kA was about 0.5 mm.

#### 12.4.2 Series-coil tests (U1+U2+US)

#### 12.4.2.1 XY recorder charts

The XY chart of run number 270 is shown in Figure 12.24, which shows the displacement curves corresponding to the current pattern.

#### 12.4.2.2 Relation between displacement and current squared

The displacement plotted as a function of current squared is shown in Figure 12.25. The data obtained from the XT charts between run number 258 and 278 is used in this figure. The curves obtained from the series AC tests agree with the data from the DC tests, (compare Figures 12.15 and 12.25). As in the single-coil tests, the maximum average value at 30 kA was about 0.5 mm.



Figure 12.16 -The plots of radial displacement and current are shown for run number 124.







135



Figure 12.19 - The plots of radial displacement and current are shown for run number 243.










Figure 12.22 - A comparison of the radial displacements of run numbers 155 and 243 show that the measured displacements of run number 155 are larger than the measured displacements of run number 243 for both USDS01 and USDS02.







141



US-DPC Test Report

### 12.5. Strain measurements during DC charge tests

#### 12.5.1 Single-coil tests

Figure 12.26 shows measured bolt strains plotted against current squared. In this figure negative values show that the bolts contract. Solid lines are least square regression lines for average values and are in proportion to current squared. The maximum strains of the outside and inside bolts are about 10, -60 ppm, respectively. It is interesting that small positive values were measured in spite of pretensile forces applied to the bolts.

Note that data errors depend on the locations of the bolts. Considering the strain of the same bolt, the data are reproducible and there are few apparent errors as shown in Figure 12.27, which plots bolt strains of STSS13 (outside) and STSS01 (inside) located in the no. 1 structure (see Figure 12.2). Figure 12.28 shows the distribution of bolt strain in the circumferential direction as current increases, with location defined by number as shown in Figure 12.2. It is clear that the scatter shown in Figure 12.26 depends on location.

Figure 12.29 shows the distribution of bolt strain at 30 kA in the circumferential direction. This figure indicates good reproducibility in strain measurements.

### 12.5.2 Series-coil tests (U1+U2+US)

Figure 12.30 shows measured bolt strains plotted against current squared in series-coil tests, where negative values show that the bolts contract. Solid lines are least square regression lines for average values and are in proportion to current squared. The maximum strains of the outside and inside bolts are about -200, -380 ppm, respectively. The inside value is larger than the outside one. This corresponds to the magnetic force distribution.

As in single-coil tests, data errors depend on the locations of the bolts. Noticing the strain of the same bolt, there are few errors as shown in Figure 12.31, which shows the bolt strains of STSS13 and STSS01.

Figures 12.32 and 12.33 show the distribution of bolt strains in the circumferential direction as current increases. Location is given by sensor number (STSS) as shown in Figure 12.2. Figure 12.34, which plots the bolt strain of STSS01 at 15 kA and 25 kA, shows there was good reproducibility in strain measurements during series-coil tests.



(mqq) NIAAT2



Figure 12.27 - A plot of the measured strain versus current squared during single-coil DC tests for STSS13 and STSS01 show that the strain measurements are reproducible.





(mqq) NIAAT2







January 1992



Figure 12.32 - A plot of the inside bolt strain averages versus bolt location as the current increases.

January 1992



Figure 12.33 - A plot of the outside bolt strain averages versus bolt location as the current increases.



Figure 12.34 - A plot of the measured strain of Bolt STSSO1 at 15 kA and 25 kA shows good reproducibility of strain measurements during series-coil tests.

## 12.6 Summary

The following items summarize the mechanical behavior of the US-DPC during the experiment.

- 1. Displacements of the coil showed unstable behavior when the coil was charged the first time. Occasional discontinuous displacements that correlated with balance-voltage spikes were observed. However, displacements were stable during all subsequent charges.
- 2. A small hysteresis effect was observed in the displacement measurements.
- Measured average displacements were in proportion to current squared up to about 300 kA² in single-coil and 200 kA² in series-coil tests. Displacements saturated at about 0.45 mm in single-coil and 0.6 mm in series-coil tests.
- 4. The results of the displacement measurements did not depend on operating mode (DC, AC, single or series) if data scatter was taken into account. The measured average displacements had a scatter within about 0.2 mm. Measured average displacements at 30 kA are shown in Table 12.2.

Mode	Displacement	~
DC Single	0.45 mm	
DC Series	0.6 mm	
AC Single	0.5 mm	
AC Series	0.5 mm	

Table 12.2 -Average displacement at 30 kA as a function of mode.

5. Measured bolt strains were proportional to current squared, with scatter in data from bolt to bolt. In single-coil tests, positive strains were measured in spite of the existence of an applied pretension force on the bolts. A summary of strain measurements is shown in Table 12.3.

Mode	Strai	n
	Outside	Inside
Single	10 ppm	-60 ppm
Series	-200 ppm	-380 ppm

Table 12.3 - Average bolt strain at 30 kA as a function of mode.

6. Stable mechanical properties of the US-DPC were demonstrated by good reproducibility of the measured data.

## 13. Recommendations for future work

Recommendations for future work are as follows:

#### 1. Ramp-rate limitation

The physical mechanism of the ramp-rate limitation and its relationship to limiting current should be clarified and understood. The trigger mechanism of the limitation needs to be identified (flux jumps? wire motion?).

#### 2. Calibration of mass flow meters

All mass flow meters should be calibrated throughout their entire measurement ranges in future large-coil tests. The accuracy of mass flow measurements directly determines the accuracy of AC loss measurements.

#### 3. Joints

A study of the benefits of cooling joints with supercritical versus liquid helium should be made to determine which is the superior choice for poloidal coils. Also, efforts should be directed toward the fabrication of low resistance, low-AC-loss joints.

#### 4. Flow choking

Flow choking and flow unbalances in parallel paths in large coils should be studied. The effects of uneven nuclear and AC loss heating should considered.

### 5. Current transfer voltages

The perennial question of current transfer between strands of cable-in-conduit conductors should be studied further. The study of current distribution among strands in the cable should be continued.

#### 6. Dual-flow cooling

Dual-flow cooling, in which steady-state heat loads are removed by helium in channels with relatively large hydraulic diameters, should be explored further.

#### 7. Manufacturing process evaluation

Study of the relationship of choices made during coil manufacture to resulting coil performance should continue.

#### 8. AC losses

Studies of the AC losses of superconductors, especially during operation with complex waveforms, should continue.

#### 9. <u>RRR</u>

Studies of the effect of chrome plating on RRR should continue.

## Appendix A. Publications associated with the US-DPC

## A.1 Annex V

1. John F. Clarke and Yoshinori Ihara, "Annex V to the Implementing Arrangement between the Japan Atomic Energy Research Institute and the United States Department of Energy on Cooperation in Fusion Research and Development for the DOE-JAERI Collaborative Program in the Development of Poloidal Coil Technology," Tokyo, May 19, 1988, available from DOE or the PFC.

## A.2 Coil fabrication

2. M.M. Steeves, M.O. Hoenig, J.V. Minervini, C.R. Gibson, M.M. Morra, J. L. Martin, R.G. Ballinger, S. Autler, T. Ichihara, R.Randall, M. Takayasu, and J.R. Hale, "The US-DPC, a Poloidal Coil Test Insert for the Japanese Demonstration Poloidal Coil Test Facility," IEEE Trans. Mag., MAG-24, No. 2, 1307-1310, 1988.

3. M.M. Steeves, M.O. Hoenig, M. Takayasu, R.N. Randall, J.E. Tracey, J.R. Hale, M.M. Morra, I. Hwang, and P. Marti, "Progress in the Manufacture of the US-DPC Test Coil," IEEE Trans. Mag., MAG-25, No. 2, 1738-1741, 1989.

4. M.M. Steeves, T.A. Painter, J.E. Tracey, M.O. Hoenig, M. Takayasu, R.N. Randall, M.M. Morra, I.S. Hwang, and P. Marti, "Further Progress in the Manufacture of the US-DPC Test Coil," MT-II, 1989.

5. M.M. Steeves, T.A. Painter, M. Takayasu, R.N. Randall, J.E. Tracey, I.S. Hwang and M.O. Hoenig, "The US Demonstration Poloidal Coil," IEEE Trans. Mag. 27, 1991.

#### A.3 Conductor critical current

6. M. Takayasu, C.Y. Gung, M.M. Steeves, M.O. Hoenig, J.R. Hale and D.B. Smathers, "Critical Currents of Nb3Sn Wires for the US-DPC Coil," IEEE Trans. Mag. 27, 1991.

7. M. Takayasu, M.M.Steeves, T.A.Painter, C.Y.Gung, M.O.Hoenig, "Critical currents of Nb3Sn Wires of the US-DPC Coil," CEC-ICMC conf., Huntsville, AL, June 1991.

#### A.4 Conductor AC losses

8. M. Takayasu, C.Y. Gung, M.M. Steeves, B. Oliver, D. Reisner and M.O. Hoenig, "Calorimetric Measurement of AC Loss in Nb3Sn Superconductors," MT-11, 1989.

9. C.Y. Gung, M. Takayasu, M.M. Steeves and M.O. Hoenig, "AC Loss Measurements of Nb3Sn Wire Carrying Transport Current," IEEE Trans. Mag. 27, 1991.

10. C.Y. Gung, M.Takayasu, M.M.Steeves, T.A.Painter, B.Oliver, D.Reisner, M.O.Hoenig, "Comparisons of AC losses of Nb3Sn Single Strands and US-DPC Conductor," CEC-ICMC conf., Huntsville, AL, June 1991.

#### A.5 Low AC loss Nb₃Sn wire development

11. D.B. Smathers, M.B. Siddall, M.M. Steeves, M. Takayasu, and M.O. Hoenig, "Manufacture and Evaluation of Tin Core Modified Jelly Roll Cables for the US-DPC Coil," Adv. in Cryo. Eng, Vol.36 A, Plenum, N.Y., (1990), p. 131.

12. D.B. Smathers, P.M. O'Larey, M.M. Steeves, and M.O. Hoenig, "Production of Tin Core Modified Jelly Roll Cable for the MIT Multipurpose Coil," IEEE Trans. Mag.24, No. 2, 1131-1133, 1988.

#### A.6 Incoloy 908 development

13. I.S. Hwang, R.G. Ballinger, M.M. Morra, M.M. Steeves and M.O. Hoenig, "Mechanical Properties of Incoloy 908 - An Update," CEC-ICMC conf., Huntsville, AL, June 1991.

14. M.M. Morra, I.S. Hwang, R.G. Ballinger, M.M. Steeves, and M.O. Hoenig, "Effect of Cold Work and Heat Treatment on the 4K Tensile, Fatigue and Fracture Toughness Properties of Incoloy 908," MT-11, 1989.

15. M.M. Morra, R.G. Ballinger, J.L. Martin, M.O. Hoenig, and M.M. Steeves, "Incoloy 908, a New Low Coefficient of Thermal Expansion Sheathing Alloy for Use in ICCS Magnets," Adv.Cryo. Eng., 34, 157-164, 1988.

16. J.L. Martin, M.M. Morra, R.G. Ballinger, M.O. Hoenig, and M.M. Steeves, "Tensile, Fatigue, and Fracture Toughness Properties of a New Low Coefficient of Expansion Cryogenic Structural Alloy, 9XA," Adv.Cryo. Eng., 34., 149-156, 1988.

# A.7 Superconducting poloidal coil design

17. M.O.Hoenig and M.M. Steeves,"The Design of a High Field Ohmic Heating Coil for a Superconducting Tokamak based on the US-DPC Test Coil.," IEEE Trans. Mag. 25, 1481-1483, 1989.

18. M.O. Hoenig, M.M. Steeves, and C.R. Gibson, "The Selection of a 30 kA Ohmic Heating Coil Conductor," IEEE Trans. Mag. 24., 1452-1454, 1988.

# Appendix B. AC loss measurement technique

#### **B.1** Assumptions

The assumptions made for the AC loss measurement model were as follows:

- 1. <u>Mass flow was constant at all times.</u> Mass flow did fluctuate for a few seconds during and after a current pulse. However, the integration time in the loss analysis was more than three minutes, and the resultant change in loss energy due to flow fluctuations was negligible.
- 2. There were no kinetic or potential energy changes.
- 3. Helium flow was incompressible.
- 4. All of the heat energy resulting from the current pulse is transported from the coil within times approximately equal to the transit time of the SHe through the CICC. Said more formally, the state throughout the control volume was the same at any two points in time  $\tau 1$  and  $\tau 2$ , if (a) the inlet and outlet conditions at  $\tau 1$  are the same as at  $\tau 2$ , and (b) no current pulse was applied for a time before  $\tau 1$  or  $\tau 2$  longer than the transit time of the SHe through the CICC.
- 5. <u>The temperature of inlet supercritical helium (SHe) was constant</u>. This assumption was verified by continuous monitoring of the inlet temperature.
- 6. <u>Exit SHe temperatures were steady at pre-current-pulse levels approximately one helium</u> <u>transit time after a current pulse.</u> The helium transit time through the 75-meter-long flow passages of the US-DPC was approximately three minutes, corresponding to the time after a current pulse at which the exit temperatures returned to pre-current-pulse levels
- 7. <u>Pressure was constant at the inlet and outlet at all times.</u> This assumption simplifies the calculation of enthalpy. In reality, the pressure increased to a slightly higher value after a current pulse, but the resultant enthalpy variation was less than 3%.
- 8. <u>Frictional losses due to short-lived flow fluctuations were negligible</u>. The measurement model accounts for steady-state frictional losses.

#### **B.2** Measurement model

To measure the AC losses, a thermodynamic model of a cable-in-conduit conductor (CICC) was used. The model, shown in Figure B.1, is a single path CICC cooled by supercritical helium and charged with a rapid high-current pulse to induce AC losses. A pump creates SHe flow through the CICC, and return piping passes a heat exchanger cooled by liquid helium, maintaining a constant SHe temperature at the inlet. A control volume is fixed around the following components:

- 1. Supercritical helium from the CICC inlet to the temperature sensor located at the outlet.
- 2. The superconducting cable of the CICC.
- 3. Material other than helium or cable which can conduct away AC loss energy.





After applying Assumptions 1 - 3, the first law for the control volume reduces to Equation B.1, shown being integrated from a time  $\tau_1$  just before a current pulse to  $\tau_2$  such that  $(\tau_2 - \tau_1)$  is greater than the transit time of SHe through the CICC and the temperature at  $\tau_2$  has returned to a steady value equal to the temperature at  $\tau_1$ . The left-hand side of Equation B.1 is the total AC loss

$$\int_{\tau_1}^{\tau_2} \dot{Q}_{AC} dt = (E_2 - E_1) + \dot{m} \int_{\tau_1}^{\tau_2} (h_e^t - h_i^t) dt + \dot{m} \int_{\tau_1}^{\tau_2} \dot{W}^t dt$$
(B.1)

energy created by pulsing the superconductor. The first term on the right-hand side is the difference in energy content of the control volume at  $\tau_1$  and  $\tau_2$ , and due to the choice of integration time, equals zero (see Assumptions 4 - 7). The second term on the right-hand side is the energy flowing into and out of the CICC, and the third term on the right-hand side is the work being done on the control volume. The t superscript is used to denote that the terms apply to a transient period of integration during and after a current pulse.

In order to eliminate the work term in Equation B.1, the First Law is solved for the same control volume during steady state conditions as shown in Equation B.2, where the ss superscript

$$\dot{W}^{ss} = -(h_e^{ss} - h_i^{ss})$$
 (B.2)

denotes steady state conditions. The work done to overcome frictional effects is the same during steady state as the work during and after a current pulse (Assumption 8), and as a result Equation

B.2 can be substituted for the work term in Equation B.1.

After applying Assumptions 4 - 8 and substituting Equation B.2, Equation B.1 becomes

$$\int_{\tau_1}^{\tau_2} \dot{Q}_{AC} dt = \dot{m} \int_{\tau_1}^{\tau_2} (h_e^t - h_i^t) dt - \dot{m} \int_{\tau_1}^{\tau_2} (h_e^{ss} - h_i^{ss}) dt$$
(B.3)

Finally, the helium enthalpy at the inlet of the CICC is always constant (due to Assumptions 5 and 7), and therefore  $h_i^t$  and  $h_i^{ss}$  are equal and cancel each other. The reduced equation for the First Law is then given by Equation B.4, which allows the AC loss to be found by measuring only pressure, mass flow and temperature of the outlet SHe between  $\tau_1$  and  $\tau_2$ .

$$\int_{\tau_1}^{\tau_2} \dot{Q}_{AC} dt = \dot{m} \int_{\tau_1}^{\tau_2} (h_e^t - h_e^{ss}) dt$$
(B.4)

## **B.3** Typical AC loss measurement

By applying the model in Section B.1 to any given flow channel of the US-DPC, we can find the AC loss energy exiting the channel. (Figure 5.9 shows a schematic of the SHe flow channels and sensor locations.) This section presents for run number 122 a typical AC loss measurement performed on the corner flow channel of pancake 3.

As derived in the previous section, the AC loss energy exiting the CICC can be found from Equation B.4. The temperature measurement resulting from the current pulse of Figure B.2 is shown in Figure B.3. (Note that the trigger times for the data in Figures B.2 and B.3 are not the same.) From the measurement of the outlet temperature and pressure (constant at 5.2 atmospheres absolute), the enthalpy in Equation B.4 can be found from thermodynamic tables.

Figure B.4 shows the exit enthalpy calculated by computer at each temperature data point. Part (a) of Figure B.4 shows the total outlet enthalpy as a function of time, and part (b) subtracts the steady state enthalpy from the total enthalpy to find the AC loss energy as a function of time. Part (b) is then integrated by computer and multiplied by the mass flow to find the AC loss exiting the channel. The same procedure is used on the remaining flow channels of the US-DPC and summed to find the total AC loss of each run.



Figure B.2 - The current pulse applied to the US-DPC for run number 122 is shown. The parameters of the current pulse are as follows.

Flat top current = 25 kA (corresponding to a maximum field of 4.73 Tesla) Ramp-up time = 1.75 seconds Ramp-down time = 1.75 seconds Flat top time = 3.0 seconds







(a) total enthalpy  $(h_e^t)$  exiting the corner flow channel of pancake 3 for run number 122.



(b) AC loss portion  $(h_e^t - h_e^{ss})$  of the enthalpy shown in part (a)

Figure B.4 - The enthalpy of the exit SHe is found from the temperature profile and pressure of the exit SHe. Part (a) shows the total enthalpy as a function of time ( $h_e^t$ ) exiting the corner flow channel of pancake 3, and part (b) shows the AC loss portion ( $h_e^t$  -  $h_e^{ss}$ ) of the enthalpy shown in part (a).

# **B.4** Pressure and mass flow measurements of example

This section provides the inlet and outlet pressures and mass flows of the corner flow channel of pancake 3 for run 122 (Figures B.5 - B.8) for the reader's reference. The inlet temperature measurements during the run were constant. Also, the pressures, mass flows and temperatures were monitored continuously at long times before and after each run to insure that the conditions remained steady in accordance with the assumptions. The trigger times for the data in Figures B.2, B.7 and B.8 are the same. However, the trigger times for the data in Figures B.5 and B.6 differ from the other graphs.



Figure B.5 - The pressure at the inlet of double pancake B shows the slight rise that results from the current pulse of run 122. The current pulse begins at about the 19 second mark (1 kg/cm² = 0.968 atmosphere).



Figure B.6 - The pressure at the outlet of the corner flow channel of pancake 3 shows the slight rise resulting from the current pulse of run 122. The current pulse begins at about the 19 second mark (1 kg/cm² = 0.968 atmosphere).



Figure B.7 - The mass flow at the inlet of double pancake B reveals the choking reaction to the current pulse of run 122. The equation for converting  $\Delta P$  to mass flow is  $m(g/s) = 2.36 \sqrt{\rho(g/cm^3) \times \Delta P (mmAQ)}$ Helium density is approximately 0.140 g/cm³.



Figure B.8 - The mass flow at the outlet of the corner channel of pancake 3 reveals the choking reaction to the current pulse of run 122. The equation for converting  $\Delta P$  to mass flow is  $\dot{m} (g/s) = 1.18 \sqrt{\rho(g/cm^3) \times \Delta P (mmAQ)}$ Helium density is approximately 0.140 g/cm³.

Appendix C. Table of losses of AC test	runs
----------------------------------------	------

	AC Loss	es of Do	uble Panc	ake B (sing	le-coil te	sts) part 1	l of 3	
Run	Charging	Imax	Bmax	Tm	AC	inlet	inlet	inlet press.
No.	Pattern	(kA)	(TT)	<b>(S)</b>	Loss	flow	temp.	(absolute)
		(	(-)	(0)	(kJ)	$(\alpha/s)$	$(\mathbf{K})$	(atm.)
74	trianala	15	0.284	5	<u>, /</u>	(8/3)		5.020
75	triangle	1.5	0.284	5			1 75	5.929
77	triangle	1.5	0.284	5			4.75	5.001
78	triangle	1.5	0.284	ถ ร			A 75	6.050
79	triangle	1.5	0.284	0.5			4.75	6.050
80	triangle	6	1.134	0.5	247	12.36	4.74	6.098
81	triangle	6	1.134	0.5	234	12.37	4.74	6.118
82	triangle	12	2.268	0.5	548	12.34	4.75	6.142
83	triangle	18	3.402	0.5	897	12.36	4.75	6.142
84	triangle	18	3.402	0.5		12.34	4.75	6.074
85	triangle	24	4.536	0.5	1389	12.42	4.74	6.074
86	triangle	24	4.536	0.5	1388	12.37	4.74	6.118
87	triangle	27	5.103	0.5	1833	12.44	4.75	6.098
88	triangle	30	5.670	0.5	3680	13.94	4.75	6.118
89	triangle	28.5	5.387	0.5	2240	12.32	4.74	6.074
90	triangle	1.5	0.284	5			4.74	6.239
91	triangle	1.5	0.284	5			4.74	6.287
92	triangle	29	5.481	0.5	2290	12.61	4.74	6.331
93	triangle	29	5.481	0.5	2550	12.66	4.74	6.287
96	triangle	29	5.481	0.5	2310	12.64	4.73	6.239
97	trapezoid	12	2.208	0.5	200	12.60	4.73	0.287
100	trapezoid	18	3.402	0.5	985	12.01	4.74	6.333
100	trapezoid	15	2,909	0.5	1524	12.05	4.74	6 221
102	trapezoid	15	2.855	2	570 618	12.55	4.73	6 3 5 5
102	trapezoid	15	2.055	15	636	12.50	4.73	6 3 5 5
104	trapezoid	15	2.835	1.5	671	12.03	4.73	6 3 5 5
105	trapezoid	15	2 835	0.75	701	12.50	4 73	6 403
106	trapezoid	15	2.835	0.5	754	12.65	4 73	6 287
107	trapezoid	15	2.835	0.3	865	12.64	4.73	6.311
108	trapezoid	20	3.780	1.5	1029	12.49	4.73	6.331
109	trapezoid	20	3.780	5	790	12.57	4.73	6.331
110	trapezoid	20	3.780	2	848	12.57	4.73	6.331
111	trapezoid	20	3.780	1	975	12.63	4.73	6.287
112	triangle	1.5	0.284	5			4.73	6.142
113	triangle	1.5	0.284	5			4.73	6.166
114	trapezoid	20	3.780	0.75	1213	13.01	4.72	6.190
115	trapezoid	20	3.780	0.5	1359	13.05	4.73	6.190
116	trapezoid	20	3.780	0.3	1652	13.07	4.73	6.190
117	trapezoid	25	4.725	6			4.73	6.166
118	trapezoid	25	4.725	6		12.80	4.73	6.166
119	trapezoid	25	4.725	3	1185	12.80	4.73	6.166
120	trapezoid	23	4.725	1 75	120/	13.05	4./5	6.142
122	trapezoid	20	4.725	1./5	1540	13.03	4.15	0.142
123	trapezoid	20 20	5.0/0		2280	12.28	4.14	0.142
124	trapezoid	20	J.070 A 150	0	1340	12.01	4.14	0.100
128	trapezoid	22	4.130	1	1529	13.13	4.13	6 524
120	trapezoid	2.3 3.1	5 850	11	1000	12.10	4.10	6.026
132	trapezoid	23	4 347	1		13 53	4.15	6 166
134	trapezoid	32	6.048	11	2500	12.40	4.26	6.142
136	trapezoid	27.5	5.197	5		4.43	4.27	6.074
137	trapezoid	18	3.402	0.2	1456	13.20	4.27	6.074
138	trapezoid	19	3.591	0.2	1624	13.19	4.27	6.098

[	AC Losse	es of Do	uble Panc	ake B (sing	le-coil tes	sts) part 2	2 of 3	
Run	Charging	Imax	Bmax	Tm	AC	inlet	inlet	inlet press.
No.	Pattern	(kA)	ന	(\$)	Loss	flow	temp.	(absolute)
	-	(	(-)		(kJ)	$(\sigma/s)$	(K)	(atm.)
120	tranagoid	20	2 780	0.2	1870	13 25	1 26	6.074
139	triangle	20	5.700	0.2	10/9	15.25	4.20	5 010
140	triangle	1.5	0.284	5		*****	4.50	5.885
141	trangie	1.5	4 158	5	057	12 41	4.50	5.885
142	trapezoid	22	4.150	2	1025	12.41	4.50	5.000
143	trapezoid	22	4.150	15	11025	12.41	4.30	5.929
144	trapezoid	22	4.150	1.5	1499	12.45	4.57	6.050
145	trapezoid	22	4.150	0.75	1400	12.55	4.57	6.074
140	trapezoid	15	4.130	0.5	1022	12.40	4.57	6.074
149	aten transmid	13	5 102	0.2	1520	11.45	4.57	6.074
150	2-step trapezoid	22/21	5.105	1/1/1	1930	12.50	4.37	6.050
155	2-step trapezoid	22/30	5.670	2/3/0.75	1772	12.50	4.57	5 8 8 5
157	z-step trapezoid	22/30	5 202	2/5/0.15	1220	12.49	4.35	5.885
159	trapezoid	20	5 202	5	1100	12.17	4.30	6.050
160	trapezoid	20	5 481	9	1750	11.36	4.37	5 077
162	double trapezoid	12	2 268	0.5	1071	12 /8	4.30	5 053
163	double trapezoid	18	3 402	0.5	2000	12.40	4.50 A 37	6 002
164	double trapezoid	20	3 780	0.5	2550	12.41	4.37	6.026
166	triple trapezoid	12	2 268	0.5	2550	12.53	4.38	6.026
167	triple trapezoid	18	3 402	0.5	3220	12.55	4.30	6 074
169	triangle	15	0.284	5	5220	12.00	4 40	5 953
170	triangle	1.5	0.284	5			4.40	6 098
171	quadrunle tran	1.5	2 268	ด้ร			4 40	6 1 1 8
172	quadruple trap.	12	2 268	0.5	2070	13 10	4 40	6 118
174	quadruple trap.	18	3.402	1.75	2930	12.95	4.40	6.142
175	quadruple trap.	20	3.780	1.75	3540	12.90	4.40	6.166
176	quadruple trap.	22	4.158	1.75	4170	12.95	4.40	6.166
177	round-edge trap.	20	3.780	2.8	1156	13.05	4.40	6.118
178	round-edge trap.	25	4.725	3.5	1578	13.10	4.40	6.166
179	round-edge trap.	28	5.292	3.9		13.13	4.40	6.166
180	round-edge trap.	30	5.670	4.2	2180	13.08	4.40	6.190
183	trapezoid	30.5	5.764	10	1910	12.18	4.40	6.074
184	trapezoid	30.5	5.764	9	1909	12.01	4.40	6.118
185	trapezoid	30.5	5.764	8	1930	11.96	4.40	6.142
187	trapezoid	29.5	5.575	9	1780	12.05	4.41	6.074
188	trapezoid	31	5.859	9	1993	12.00	4.40	6.098
190	round-edge trap.	33	6.237	12	2280	12.58	4.38	5.552
192	round-edge trap.	34	6.426	14	2360	13.16	4.40	5.247
194	round-edge trap.	35	6.615	14	2530	11.92	4.41	5.527
195	2-step trapezoid	20/25	4.725	4/3/1	1204	12.29	4.39	5.673

	AC Loss	es of Do	uble Panc	ake B (sing	le-coil te	sts) part 3	3 of 3	
Run	Charging	Imax	Bmax	Tm	AC	inlet	inlet	inlet press.
No.	Pattern	(kA)	(T)	(S)	Loss	flow	temp.	(absolute)
					(kJ)	(g/s)	(K)	(atm.)
196	2-step trapezoid	20/25	4.725	1.6/3/0.4	1264	12.27	4.39	5,740
197	2-step trapezoid	20/25	4.725	0.8/3/0.2	1520	12.24	4.39	5.764
198	2-step trapezoid	20/25	4.725	0.4/3/0.1	1983	12.39	4.39	5.789
199	triangle	1.5	0.284	5			4.36	2.812
200	triangle	1.5	0.284	5			4.37	2.763
202	trapezoid	22	4.158	1	1421	12.83	4.36	2.763
205	trapezoid	20	3.780	1	1238	12.67	4.35	2.787
206	rippled trapezoid	20	3.780	1	1530	12.64	4.35	2.787
207	rippled trapezoid	20	3.780	1	3910	12.70	4.35	2.787
208	trapezoid	23	4.347	1	1338	12.78	4.37	6.026
210	trapezoid	20	3.780	5		8.30	4.36	6.098
211	trapezoid	20	3.780	1		8.38	4.36	6.098
212	trapezoid	20	3.780	0.5		8.49	4.36	6.098
213	trapezoid	20	3.780	0.3		8.37	4.36	6.074
214	trapezoid	23	4.347	1		8.40	4.37	6.098
215 ·	trapezoid	20	3.780	0.3		10.00	4.36	6.098
216	trapezoid	23	4.347	1		9.88	4.37	6.050
219	2-step trapezoid	22/27	5.103	1/1/1	1672	12.741	4.38	5.929
221	2-step trapezoid	22/30	5.670	1/1/1.6	1965	12.74	4.37	5.910
222	2-step trapezoid	22/30	5.670	1/1/1/6	2020	12.57	4.37	5.977
224	2-step + ripple	22/29	5.481	1/1/1.6	2070	12.27	4.37	5.929
225	2-step + ripple	22/29	5.481	1/1/1.6	2420	11.54	4.37	5.953
227	triangle	1.5	0.284	5			4.71	5.600
228	triangle	1.5	0.284	5			4.71	5.624
229	trapezoid	20	3.780	1		7.56	4.70	5.624
230	trapezoid	23	4.347	1	1395	7.64	4.70	5.648
231	trapezoid	· 24	4.536	1	1513	7.58	4.70	5.789
233	trapezoid	25	4.725	1.5	1314	7.47		5.837
235	rippled trapezoid	25	4.725	1.5	1887	7.47	4.69	5.789
236	rippled trapezoid	26	4.914	1.5			4.69	5.789
241	trapezoid	30	5.670	11	1997	6.78	4.68	5.740
242	trapezoid	30	5.670	10			4.67	5.837
243	rippled trapezoid	30	5.670	9	3210	7.68	4.67	5.861
244	rippled trapezoid	30	5.670	8	3130	7.67	4.67	5.861
246	trapezoid	20	3.780	5	1414	7.72	6.22	6.002
247	trapezoid	20	3.780	1.5	1630	7.72	6.25	6.050
248	trapezoid	20	3.780	0.75	1475	7.72	6.25	6.190
249	trapezoid	20	3.780	0.3	2495	4.80	6.24	5.910
250	round-edge trap.	30	5.670	6/3/1.9/3/1			4.70	6.215
251	rippled trapezoid	30	5.670	7	3280	12.92	4.69	6.142

	AC	Losses of	of Double	Pancake B	(series-c	oil tests)		
Run	Charging	Imax	Bmax	Tm	AC	inlet	inlet	inlet press.
No.	Pattern	(kA)	(T)	<b>(S</b> )	Loss	flow	temp.	(absolute)
		, ,			(kJ)	(g/s)	(K)	(atm.)
254	triangle	1.5	0.461	5			4.32	6.026
255	triangle	1.5	0.461	5			4.32	6.026
256	triangle	6	1.844	0.75		12.77	4.33	6.002
257	triangle	12	3.688	0.75		12.82	4.32	6.026
258	triangle	18	5.532	0.75	322?	12.84	4.32	5.977
259	triangle	24	7.376	0.75	674?	12.90	4.33	5.977
261	trapezoid	12	3.688	1	·	12.88	4.34	5.813
262	trapezoid	18	5.532	1	747	12.94	4.33	5.861
265	trapezoid	21	6.454	1	935	13.06	4.34	5.953
267	round-edge trap.	12	3.688	1.7	431	12.08	4.36	5.764
268	round-edge trap.	15	4.610	2.1		12.08	4.36	5.837
269	round-edge trap.	18	5.532	2.5		12.01	4.38	5.552
270	round-edge trap.	20	6.147	2.8	2140?	11.75	4.40	5.503
271	round-edge trap.	22	6.761	3			4.40	
272	trapezoid	18	5.532	0.75	877	12.02	4.35	5.977
273	trapezoid	18	5.532	1.5	624	12.05	4.36	5.953
274	trapezoid	18	5.532	5			4.36	5.910
277	rippled trapezoid	22	6.761	1	1189	12.62	4.37	5.861

		_		_		_	_	_	-	_	-				_	_		_									_	_			_	and the second s
Comment	Ramp, hold, down. Debug instruments.	Ramp, hold, down. Debug instruments.	4 min hold. Accidental manual dump. ok	Ramp, hold, 1000 A/min down.	Ramp, hold. Manual dump. ok	Ramp, hold. Manual dump by valve V1 (MC01). ok	Ramp, hold. Manual dump. ok	System check: 5% charge, manual dump. ok	Ramp, hold 15 min, 500 A/min down.	Ramp, hold, 2 kA/min down.	Ramp. Dump from dbl. pancake C (5/6) balance circuit.	Two-step ramp. Hold at 3 kA for 10 min.	Manual dump. ok	Ramp, hold, 1 kA/min down. Voltage spikes.	Ramp, hold, 2 kA/min down. 400 μV pancake 1?	Two-step ramp, hold, 5 kA/min down.	Hold. ok	[Two-step ramp, hold. Increased mass flow.	Dump from USMC01 upper flow threshold.	Two-step ramp, hold, manual dump. ok	Hold. ok	Ramp and hold for five steps.	Hold. ok	Voltage spikes.	Hold. ok	Hold. ok	System check: 5% charge, manual dump. ok	Ramp and hold in several steps.	Hold. ok ·	Hold. ok	Hold. ok	Hold. ok
4 DN	_					38	39	40				41					<u> </u>		0 34		1 35						36					
0			5		9	∞					_				_				11		1						T					
Ramp Rate	<b>[0.5 kA/mi</b>	500	500	500	5	2	2	2 kA/min	0.5	1	5	2	S	0.5	1	2	s	2	5	2	5	2	S	0.5	0.5	0.5	<b> 0.5 kA/mi</b>	5	2	1	0.5	0.2
Current Level	0.350 kA	0.346	1.5	1.5	1.5	1.5	1.5	1.5 kA	3	3		1	e,	6	6	1	6	-1	6	1	6		6	15	18	21	1.5 kA	6	15	18	21	24
Purpose	5% Charge	5%	5%	5%	5%	5%	5%	5% Charge	10%	10%	10%	10%		30%	30%	30%		30%		30%		20%					5% Charge	100%				
Time	3 15:37	15:56	15:56	16:25	16:33	16:53	17:08	4 10:50	11:15	11:36	11:44	13:17		13:49	14:24	14:52		15:07		15:59		17:05					5 11:18	11:41				
Date	11/1							Ш																			III					
Run No.	1	2	3	4	S	0	4	8	6	01	11	12		13	14	15		16	,	17		18					19	20				

Comment	Hold. ok	Noise (?) - crossover turn of double pancake A.	Hold. ok	Heating at TC10.	Hold, ok	Dump due to power supply overheat. Coil ok.	Immediate dump. USFC01. Broken compensation coil in	double pancake A. (Go to three point balance method.)	System check: 5% charge, manual dump. ok	Ramp and hold in several steps.	Noise.	Hold. ok	Hold, ok	Hold, ok	Voltage signal.	Hold. ok	Hold. ok. Ramp down in steps.	[Ramp and hold: no flow in corners of B. Noise (?) 13.3 kA.	Hold. ok	Hold. ok	Hold. ok	Hold. ok	Hold. 40 $\mu$ V on B crossover? Ramp down in steps.	Ramp and hold: no flow in cable space of B.	Hold. ok	Hold. ok	Hold. ok	Hold. ok	Hold. 40 μV on B crossover? Ramp down in steps.	Check. Quench 1.2 kA. TC10. Heat leak: positive lead.	System check: 5% charge, manual dump. ok	Current-sharing temperature.
Mali						37			42																					43	4	
Q					<u> </u>	13	14		23																					26	29	
Ramp Rate	0.2	0.2	0.2 down	0.2	0.2 down	0.2	5		0.5	2	S	5	2		0.5	0.5	0.2	5	S	5	2	1	0.5	2 kA/min	5	2	1	0.5	0.2	0.5	0.5	7
Current Level	27	28?	27	29.2	28.6	29.9	<2		1.5		10.6	15	21	24	26.2	27	30	13.3	16.5	21	24	27	30	1 kA	15	21	24	27	30	1.5	1.5	-
Purpose							100%		5% Charge	100%								100%						100% Charge						2%	5%	Tcs (33%)
te Time			-				15:55		16 15:01	15:18								17:18						16 18:14						20 11:02	15:24	15:42
o. Da	┞	<u> </u>	_		<u> </u>		<b> </b>	<b> </b>	E					<u> </u>			<b>[</b>							111/				<u> </u>		/111		
Sun N						.	21		22	23								24						25						26	27	28

M[DM] Comment	T _{CS} (TC01) = 13.6 K; B = 1.89 T; I = 10 kA.	Current-sharing temperature. Nonstop. Hold.	Tcs (TC01) = 12.5 K; B = 2.83 T; I = 15 kA.	30   Quench going down: 11.7 kA. (VB-34)	Current-sharing temperature. Nonstop. Hold.	Tcs (TC01) = $11.55$ K; B = $3.79$ T; I = $20.1$ kA.	31 45 Quench going down: 16.1 kA. (VB-34)	32   46   System check: 5% charge, manual dump. ok	Intermediate ramp rate test. Nonstop.	Hold. ok. 5 kA/min down.	Intermediate ramp rate test. Nonstop.	33   Hold. ok. 10 kA/min down. Dump at ~ 1kA. Incoloy 908?	Intermediate ramp rate test. Nonstop.	Hold. ok. 15 kA/min down to 2 kA, then 2 kA/min down.	Intermediate ramp rate test. Nonstop.	Hold. ok. 20 kA/min down to 2 kA, then 2 kA/min down.	Intermediate ramp rate test. Nonstop.	Hold. ok. 25 kA/min down to 2 kA, then 1.25 kA/min down	Intermediate ramp rate test. Nonstop.	Hold. ok. 28 kA/min down to 2 kA, then 1.5 kA/min down.	Intermediate ramp rate test. Nonstop. Repeat of run 37.	47 Hold. ok. 28 kA/min down to 2 kA, then 1.5 kA/min down.	Simulated nuclear heating in B. Inlet: 4.5 K, 6.5 atm, 60 g/s	Hold. Heater power = 84.2 W.	Hold. Heater power = 82.1 W.	Simulated nuclear heating in B. Inlet: 4.5 K, 6.5 atm, 60 g/s	48 Hold. 100 W, 152 W	49 208 W	34 50 Manual dump from 30 kA (second full current dump).	System check: 5% charge, manual dump. ok	51 System check: 5% charge, manual dump. ok	I ICurrent-sharing temperature. Nonstop. Hold.
Ramp Rate C	5	2	5		2	5		0.5	2	5	2	10	2	15	2	20	1.25	25	1.5	28	1.5	28	1.5 kA/min	10	10	2	10			0.5	0.5	2
Current Level	10		15		74	20		1.5	1	30	1	30	1	30	1	30		30	1	30	1	30	1 kA	20	30	1	30			1.5	1.5	I
Purpose		Tcs (50%)			Tcs (67%)			5%	100%		100%		100%		100%		100%		100%		100%		100%			100%				5%	5%	Tcs (83%)
Date Time		17:53			20:13			11/21 10:16	10:42		11:07		11:32		11:46		13:16		13:35		13:41		15:08		15:30	16:45				17:49	11/22 10:15	10:35
Run No.		29			30			31	32		33		34		35		36		37		38		39			40				41	42	43
M Comment	2 [Tcs (TC01) = 10.5 K; B = 4.74 T; I = 25.1 kA. Ramp down]	Current-sharing temperature. Nonstop. Hold.	Tcs (TC01) = 9.3 K; B = 5.66 T; I = 30 kA. Ramp down.	Critical current measurement. Two ramp rates.	Ic = 19.02  kA; T = 11.75  K; B = 3.59  T	3 Critical current measurement. Fixed ramp rate.	Ic = 22.94  kA; T = 10.96  K; B = 4.33  T	U1+U2+US System check: 5% charge, manual dump. ok	Check. Manual dump. ok. Broke fiber optic cable.	5 Check under current setting on quench detector.			Hold. 2 kA/min down.	Hold. 5 kA/min down.	Nonstop	Hold	Nonstop	Hold	Nonstop	Hold	Hold	6 Quench of U1 at 13.65 kA	Nonstop	Hold	Nonstop	Nonstop	Nonstop	Hold	Nonstop	Hold 30 min	Hold	7 [Joint quench of US-DPC at 17.25 kA; insufficient LHe flow
---------------	-------------------------------------------------------------	---------------------------------------------	-------------------------------------------------------	-----------------------------------------------	-------------------------------------------	--------------------------------------------------	-------------------------------------------	---------------------------------------------------	--------------------------------------------------	---------------------------------------------------	-------	-------	----------------------	----------------------	------------	------	---------	------	---------	------	------	----------------------------	---------	------	---------	---------	---------	------	---------	-------------	----------	--------------------------------------------------------------
MD	15		_			2		┝		55 8						┝						57 8		_	_						•	8 6
Ramp Rate C	10	2	10	2	0.2	0.5		0.5 kA/min		1	2	S	1	5	5	1	5	2	5	5		0.5 [ :	5	1	2	2	· 5	5	5	5	50 A/min	50 A/min   5
Current Level	25	1	30	17	19.02	22.94		1.5 kA	1.5	1.5	1.5	1.5	S	5	5	10	3	10	3	10	12	14	10	13	8	13	8	13	8	13	15	19
Purpose		Tcs (100%)		Ic (11 K)		l (11 K)		5% Series	5% Series	5% Series			16.7% Series	16.7% Series	30% Series								Charge									
Time		13:16		15:25		15:59		14:01	14:22	15:05	15:11	15:17	15:23	15:35	15:42								16:32									
Date								12/4																								
Run No.		44		45		46		47	48	49-1	49-2	49-3	50	51	52								53									

			ıg.																													
Comment	U1+U2+US System check: 5% charge. ok	U1+U2+US System check: 5% charge. ok	Stop at 8.3 kA. Ramp down. US-DPC joint heati	Hold	Quench of U1 at 12.8 kA	Hold	Nonstop	Nonstop	Nonstop	Nonstop	Nonstop	30 min hold	Hold	Nonstop	Nonstop	Nonstop .	Nonstop	Nonstop	30 min hold	Hold	Nonstop	Nonstop	Down, hold. Temperature increase B/C lap joint.	Nonstop	Nonstop	30 min hold	Hold at 18.4 kA for U1 balance. Stop at 19.09 kA	Nonstop	Nonstop	Hold ?	Nonstop	Nonstop
MOIN		2			4 88																											
e l O		n 6			9								-					_	<u> </u>	-			-									
Ramp Rat		0.5 kA/mi	5 kA/mir	1	1	1	2 ·	2	S	S	5	S	100 A/mi	200	200	500	500	500	500	100	200	200	500	500	500	500	50	100	100	200	200	500
Current Level	1.5	1.5 kA	10	5	13	12	∞	12	8	12	×	12	15	12	15	12	15	12	15	17	15	17	15	17	15	17	19	17	19	17	19	17
Purpose	5% Check	5% Check	Charge	Charge		Charge																										
Time	19:53	8:35	9:30	9:55		10:24							11:18							13:11							14:47					
Date		12/5																														
Run No.	54	55	56	57		58																										

175

and the second second		_	and the second second				-			_							_		_	_				-	The state of the second se	_	_				-	
Comment	30 min hold	Hold at 21.1 kA.	Nonstop	Nonstop	Nonstop	Nonstop	Nonstop	30 min hold	Hold at 21.8 kA. U2 flowmeter U2MC03	Hold at 23.1 kA.	Nonstop	Nonstop	Nonstop	Nonstop	Nonstop	30 min hold	Hold 23.9 kA	Hold 24.8 kA	Hold	Nonstop	Nonstop	Nonstop	Nonstop	Nonstop	30 min hold	Quench of U1 at 25.89 kA. U1VB-AB	Hold, down. ok	Hold. Manual dump. ok	Hold. 2 kA/min down. Quench detector balance calibration.	Hold. 5 kA/min down. Quench detector balance calibration.	Hold. 10 kA/min down. Quench detector balance calibration.	Hold. 20 kA/min down. Quench detector balance calibration.
Maly																										5 89		06				
0		-						_						_	-	<u> </u>										90		1	_			
Ramp Rate	500	50	100	100	200	200	500	500	50	50	100	100	200	200	500	500	50	50	50	100	100	200	200	500	500	50	1 kA/min	500 A/mii	1 kA/min	2	5	10
Current Level	19	21	19	21	19	21	19	21	23	23	21	23	21	23	21	23	25	25	25	23	25	23	25	23	25	27	1.5 kA	1.5	5	7	10	20
Purpose																											5% Check	5% Check	17%	23%	33%	66%
Time		17:11							16:91								21:56									0:22	0:56	10:04	10:15	10:26	10:32	10:40
Date																										12/6	12/6	121				
Run No.				Γ																							59	09	19	62	63	64

[ DM  Comment	Hold. 30 kA/min down. Quench detector balance calibration.	Hold. 30 kA/min down. Quench detector balance calibration.	Hold. 30 kA/min down. Quench detector balance calibration.	Hold. 15 kA/min down. Incoloy 908 magnetization signal.	Hold. 30 kA/min down. Incoloy 908 magnetization signal.	Triangular wave. 1908 magnetization signal measurement.	Hold. 15 kA/min down. Incoloy 908 magnetization signal.	91 [Ic = 26.65 kA at 10µV/m and T = 10.17 K.	Tcs = 14.8 K at 5 kA.	
Q									89	
Ramp Rate	20	30	30	30	15	15	15	1	5	
Current Level	30	30	30	30	30	16	15	27.2	5	
Purpose	100%	100%	100%	100%	100%	53%	53%	Ic at 10 K	Tcs at 5 kA	
Time	10:49	11:03	11:15	11:25	11:34	11:47	11:54	15:41	16:30	
Date										
Run No.	65	99	67	89	69	70	71	72	73	

ţ

Run number	74	DM Sh	ot number			Date	12/10	/90	Time <u>11:32</u>		
Connection Mode Description	Single c AC Single tr	oil iangle		Total Inle: Inlet ter	inlet flow t pressure nperature	<u>5.929</u> X	g/s atm K	Bm Tm Bm/Tm 1/Tm	0.284 T 5 s 0.057 T/s 0.200 1/s	Im Flat top Im/Tm	1.5 kA <u>s</u> 0.30 kA/s
Waveform Im COLKE COLKE U		\			T1 = Im =	5 s 1.5 kA		Quench ?	<u>No</u>		
<b>A</b>	TIME (s)				Tm = 1	<b>F1</b>		Quench tir	ne	<u>s</u>	
PANCAKE	MASS F	LOW [g/s] OUTLET	INLET	IEMPERA INITIAL	TURE (K) OUTLET PEAK	ΔΤ	-	ACLO	[1]		
1	х			x x				x x			
3 cable 3 corner 4 corner 4 cable	x	X X X X	х	X X X X				K K K			
5	x		x	X X				x x		_	

Run number		DM Sh	ot number	92		Date	12/10	0/90	Time	11:44		
Connection Mode Description	Single c AC Single tr	oil iangle		Total Inle Inlet ter	inlet flow t pressure mperature	<u>5.861</u> 4.752	g/s atm K	Bm Tm Bm/Tm 1/Tm	0.28 0.05 0.20	<u>5 s</u> 57 T/s 00 1/s	Im Flat top Im/Tm	<u>1.5 kA</u> <u>s</u> 0.30 kA/s
Waveform Im CORRENT O		<u>}</u>			T1 = Im =	5 s 1.5 kA		Quench?	<u>Nc</u>			
	TIME (s)	)			Tm = 1	Г1		Quench ti	me		<u>s</u>	
PANCAKE	MASS F	LOW [g/s] OUTLET	INLET	TEMPERA'	TURE (K. OUTLET PEAK	] ΔT		ACLO	SS [1]			
1	x							X				
2				4.715	4.75	0.04		<u> </u>				
3 cable		X	4.752	4.805	4.83	0.03		x		,		
3 corner	x	X		4.626	4.66	0.03		X				
4 corner		<u>X</u>		4.713	4.75	0.03		x				
4 cable		X		4.753	4.78	0.03		<u>x  </u>				
5	х		4.584	4.629	4.67	0.04	ļ	<u>X</u>			_	
6				6.513	l	<u> </u>		X				

Run number	76	DM She	ot number			Date			Time	13:25		
Connection Mode Description	Single c AC Miss sh	oil 		Total Inic Inict ter	inlet flow t pressure mperature	4.745	g/s atm K	Bm Tm Bm/Tm		<u>T</u> <u>s</u> <u>T/s</u>	Im Flat top Im/Tm	<u>kA</u> <u>s</u> <u>kA/s</u>
·					-			1/Tm -		<u>1/s</u>		
Waveform												
								Quench?	No	,		
								Quench tin	ne		5	
	MASS F	LOW [g/s]		TEMPERA	TURE (K)						7	
PANCAKE	INLET	OUTLET	INLET	INITIAL	PEAK	ΔΤ		ACLU	20 [1]			
1	х			x								
2 3 cable				x	ļ			X				
3 corner		X	4.745	X				ĸ				
4 corner	x	X		x				x				
4 cable		X		x				ĸ				
5	x		4.571	x				X				
6				X								

Connection Single coil Total inlet flow Y a/ Bm 0.284 T	
ModeACInlet pressure5.977 atmTm5 sDescriptionSingle triangleInlet temperature4.735 KI/Tm0.057 T/s	Im <u>1.5 kA</u> Flat top <u>s</u> Im/Tm <u>0.30 kA/s</u>
Waveform T1 = 5 s Im = 1.5 kA Quench? <u>No</u> T1 = 5 s Im = 1.5 kA	
TIME (s) $Tm = T1$ Quench time	8
MASS FLOW [g/s]     TEMPERATURE [K]     AC LOSS [J]       PANCAKE     INLET     OUTLET     NILET       INLET     OUTLET     INITIAL     PEAK $\Delta T$	
1         X            2         X            4.709         4.75         0.05         X	
3 cable X 4.735 4.792 4.83 0.04 X	
3 corner X X 4.614 4.66 0.04 X	
4 corner X 4.707 4.74 0.04 X	
4 cable X 4.742 4.78 0.04 X	
4.566 4.010 4.07 0.05 X	

Run number	78	DM Sho	t number	117		Date	12/10	)/90	Time 14:	15	
Connection Mode Description	Single or AC Single tr	iangle		Total i Inlet Inlet ten	nlet flow pressure aperature	X 6.050 4.745	g/s atm K	Bm Tm Bm/Tm 1/Tm	0.284 T .5 s 0.568 T/ 2.000 1/s	Im Flat top Im/Tm	1.5 kA 
Waveform Im COLKEN COLKEN		\			T1 = Im =	0.5 s 1.5 kA		Quench ?	<u>No</u>		
	TIME (s)				Tm = 1	F1		Quench ti	ne	<u>s</u>	
PANCAKE	MASS F	LOW [g/s] OUTLET	INLET	TEMPERAT	TURE [K] DUTLET PEAK	ΔT		ACLO	SS [1]		
1 2	x			X 4.709	4.73	0.02		x			
3 cable 3 corner 4 corner 4 cable	x	X X X X	4.745	4.8 4.621 4.708 4.748	4.81 4.64 4.72 4.76	0.01 0.01 0.01 0.01		x x x x x			
5	x		4.573	4.622 5.084	4.64 5.10	0.02		X			

Run number	79	DM Sho	t number	<u>x</u>		Date	12/10	0/90	Time	14:32		
Connection Mode Description	Single or AC Single tr	oil iangle		Total i Inlet Inlet ter	inlet flow pressure nperature	<u> </u>	g/s atm K	Bm Tm Bm/Tm 1/Tm	0.284	4 T 5 s 8 T/s 0 1/s	Im Flat top Im/Tm	1.5 kA s 3.00 kA/s
Waveform Im - LIN - COLKER		\			T1 = Im =	0.5 s 1.5 kA		Quench?	<u>No</u>		<u>a 14 1 1 10 1 10 10 10 10 10 10 10 10 10 10 </u>	
	TIME (s)				Tm = '	Т1		Quench ti	me		<u>s</u>	
PANCAKE	MASS FI	LOW [g/s] OUTLET	INLET	TEMPERAT	TURE (K DUTLET PEAK	] [	-	ACLO	SS []]			
12	х			X X				x				
3 cable 3 corner 4 corner 4 cable	x	X X X X	4.745	X X X X				x x x x x				
5	x		4.573	X X				X				

Run number	80	DM Sho	t number	118		Date	12/10	/90	Time	14:43		
Connection Mode Description	Single or AC Single tri	angle		Total i Inlet Inlet ten	niet flow pressure aperature	<u>43.3</u> <u>6.098</u> <u>4.737</u>	<u>g/s</u> atm K	Bm Tm Bm/Tm 1/Tm	<u> </u>	<u>34 T</u> .5 s 68 T/s 00 1/s	Im Fiat top Im/Tm	<u>6 kA</u> <u>s</u> 12.00 kA/s
Waveform m CNIKEENI CONKEENI		\	,	<u></u>	T1 = Im =	0.5 s 1.5 kA		Quench 7	<u> N</u>	0		
×	TIME (s)				Tm = 1	71		Quench	ime		5	
PANCAKE	MASS F	OW [g/s]	INLET	IEMPERAT	TURE [K] DUTLET PEAK	ΔT		ACL	DSS []	]		
1	11.47			Х								
2	11.47			4.704	4.78	0.08		218.9				
3 cable		1.932	4.737	4.795	4.86	0.06	49	0.86 1	11.14			
3 corner	12 36	2.705		4.616	4.68	0.07	61	.28		763.8	7	
4 corner	14.50	3.296		4.703	4.78	0.07	84	1.21	35.73			
4 cable		2.107		4.744	4.80	0.06	51	.52				
5	19.47		4.566	4.618	4.69	0.08	<b>_</b>	298.1				
6				5.077	5.15	0.07						

Run number	81	DM Sho	ot number	119		Date	12/10	/90	Time	14:54		
Connection Mode Description	Single $\propto$ AC Single tr	oil 		Total i Inlet Inlet ten	nlet flow pressure nperature	<u>43.49</u> <u>6.118</u> <u>4.737</u>	g/s atm K	Bm Tm Bm/Tm 1/Tm	<u>1.1</u> 2.2 2.0	34 T .5 s 68 T/s 00 1/s	Im Flat top Im/Tm	<u>6 kA</u> <u>s</u> 12.00 kA/s
Waveform - m CCIKKEHNI 0		\			T1 = Im =	0.5 s 6 kA		Quench 7	, <u>N</u>	lo		
	TIME (s)	▶			Tm = 1	<b>[1</b> ]		Quench t	ime _		<u> </u>	
PANCAKE	MASS F	LOW [g/s] OUTLET	INLET	TEMPERA'	TURE (K DUTLET PEAK	ΔT	-	ACLO	L] 22C	]		
1	11 55			x								
2				4.706	4.78	0.07	<u> </u>	211				
3 cable		1.925	4.737	4.805	4.85	0.05	3	9.5	00.8			
3 corner	12.37	2.71		4.616	4.68	0.06	6	1.3		711.4	+	
4 corner		3.31		4.703	4.77	0.07		4.1	33.6			
4 cable		2.17	ļ	4.749	4.80	0.05	4-4	<u>y.</u>				
5	19.57		4.567	4.023	4.69	0.07		200				
6			l	5.091	5.15	0.06				L		

Run number	82	DM Sho	t number	120		Date	12/10	/90	Time	15:35		
Connection Mode Description	Single co AC Single tri	angle		Total in Inlet Inlet ten	niet flow pressure sperature	<u>43.31</u> <u>6.142</u> <u>4.747</u>	g/s atm K	Bm Tm Bm/Tm 1/Tm	<u>2.2</u> <u>4.5</u> <u>2.0</u>	68 T .5 s 36 T/s 00 1/s	Im Flat top Im/Tm	12 kA s 24.00 kA/s
Waveform m CURRENT CURRENT		\			T1 = Im =	0.5 s 12 kA		Quench ?	<u>N</u>	o		
	TIME (s)			Tm = 1	<b>Г1</b>		Quench ti	me _		5	-	
PANCAKE	TIME (s)           MASS FLOW [g/s]           PANCAKE         INLET         OUTLET         II			TEMPERAT	TURE [K DUTLET PEAK	]   <u> </u> _ T		ACLO	DSS []	]		
	11.5			X		1						
2	11.5			4.709	4.85	0.14		441				
3 cable	ie 1.94 4.7		A 747	4.8	4.92	0.12	10	9.6 2	46.2			
3 corner	mer 12.34 2.71 4.74			4.62	4.75	0.13	13	6.6	<del></del>	1615.	2	
4 corner	12.34 3.31			4.708	4.85	0.14		52.4	302			
4 cable		2.17		4.747	4.87	0.12	1.1	19.6				
5	19.47		4.573	4.624	4.76	0.13		626			{	
6				5.085	5.22	0.13						

Run number	83	DM Sho	t number	121		Date	12/10	/90	Time	15:46		
Connection Mode Description	Single or AC Single tr	oil iangle		Total i Iniet Iniet ten	nlet flow pressure nperature	<u>43.3</u> <u>6.142</u> <u>4.745</u>	g/s atm K	Bm Tm Bm/Tm 1/Tm	<u>3.4</u> <u>6.8</u> <u>2.0</u>	02 T .5 s 04 T/s 00 1/s	Im Flat top Im/Tm	18 kA s 36.00 kA/s
Waveform Im U U U U U U U		<u>\</u>			T1 = Im =	0.5 s 18 kA		Quench ?	<u>N</u>	0	<del></del>	
					Tm = '	Т1		Quench	ime _		<u>s</u>	
PANCAKE	TIME (s)           MASS FLOW [g/s]           PANCAKE         INLET         INLET			TEMPERA'	TURE (K DUTLET PEAK	]   AT		ACL	t] 22C	]		
				X			+					
	11.48			4.709	4.95	0.24	1	692.2			-1	
3 cable		1.939	1716	4.8	5.00	0.20	18	33.4 4	05.6			
3 corner	10.26	2.732	4.743	4.621	4.83	0.21	22	22.2		2572.	5	
4 corner	12.30	3.312		4.709	4.94	0.23	29	93.6	491			
4 cable		2.172		4.749	4.94	0.19	19	97.4	-/.			
5	19.46		4.574	4.624	4.86	0.23		983.7				
6	17.40			5.086	5.27	0.18						

Run number	84	DM Sha	ot number	126		Date _	12/10	)/90	Time	15:56		
Connection Mode Description	Single co AC Single tr	jangle		Total i Inlet Inlet ter	inlet flow pressure nperature	<u>43.32</u> <u>6.074</u> <u>4.745</u>	g/s atm K	Bm Tm Bm/Tm 1/Tm	3.4 6.8 2.0	02 T .5 s 04 T/s 00 1/s	Im Flat top Im/Tm	<u>18 kA</u> <u>s</u> 36.00 kA/s
Waveform Im CIKKENI C		<u>\</u>			T1 = Im =	0.5 s 18 kA		Quench?	<u>N</u>	0		
					Tm = 7	٢1		Quench tir	ne		<u>s</u>	
PANCAKE	TIME (s) MASS FLOW [g/s] PANCAKE INLET OUTLET INLE			IEMPERAT	FURE [K] OUTLET PEAK	ΤΔΤ	4	AC LO	SS []	]		
12	11.49			X 4.709	4.95	0.24		694.6				
3 cable 3 corner	2			4.801 4.62	5.00 4.83	0.19	18	39 17.4	9.2	1382	6	
4 corner 4 cable	12.34	3.313 2.172		4.709 X	4.94	0.23	28	28	8.8	1.00.		
5	19.49		4.574	4.626 5.086		-4.63 -5.09	$\overline{-}$					

Run number	85	DM She	ot number	127		Date	12/10	)/90	Time	16:06	<u>.</u>	
Connection Mode Description	Single co AC Single tr	oil iangle		Total i Inlet Inlet ter	nlet flow pressure nperature	<u>43.59</u> <u>6.074</u> <u>4.741</u>	g/s atm K	Bm Tm Bm/Tm 1/Tm	4.5 9.0 2.0	36 T .5 s 72 T/s 00 1/s	Im Flat top Im/Tm	24 kA s 48.00 kA/s
Waveform					T1 = Im =	0.5 s 24 kA		Quench?	<u>N</u>	o		
CURRI		<u>,</u>	,		Tm = 1	Г1		Quench tir	me		<u>s</u>	
	TIME (s) 			TEMPERA	TURE [K	]		ACLO	SS []	1		
PANCAKE	INLET	OUTLET	INLET	INITIAL	PEAK	ΔΤ	1			, 		
1	11.62			X								
2			ĺ	4.706	5.07	0.36		1064				
3 cable	ļ	1.949	4,741	4.798	5.10	0.30	30	63	7.4			
3 corner	12.42	2.748		4.618	4.94	0.32	33	6.5		4000.	5	
4 corner		3.322	<b>i</b> '	4.706	5.05	0.34	44	4.6 75	· · ·			
4 cable		2.179	L	4.746	5.04	0.29	30	6.5	<u></u>			
5	19.55		4 571	4.621	4.97	0.35		1548				
6	17.55		4.5.1	5.08	5.35	0.27						

Run number	86	DM Sho	ot number	122		Date	12/10	/90	Time	16:19		
Connection Mode Description	Single o AC Single tr	bil iangle		Total i Iniet Iniet ter	inlet flow t pressure nperature	<u>43.3</u> <u>6.118</u> <u>4.739</u>	g/s atm K	Bm Tm Bm/Tm 1/Tm	<u>4.5</u> 9.0 2.0	36 T .5 s 72 T/s 00 1/s	Im Flat top Im/Tm	24 kA s 48.00 kA/s
Waveform Im U U U U U U U U U U U		<u>}</u>			T1 = Im =	0.5 s 24 kA		Quench ?	<u>N</u>	0		
					Tm = 1	<b>F1</b>		Quench ti	me		5	
PANCAKE	PANCAKE MASS FLOW [g/s] INLET OUTLET INLE			TEMPERA'	TURE (K OUTLET PEAK	ΔT	$\frac{1}{1}$	ACLO	L] 28	]		
1	11 41			X								
2	11.51			4.708	5.07	0.36		1073				
3 cable		1.919	4.739	4.8	5.10	0.30	2	96 6	29			
3 corner	12.37	2.72		4.617	4.94	0.32	3	33		4035		
4 corner		3.3		4.706	5.05	0.34	4	39 7	59			
4 cable		2.16		4.747	5.04	0.29	3	20				
5	19.42		4.57	4.62	4.97	0.35	<u> </u>	1574				
6				5.086	5.35	0.27	<u> </u>					

Run number		DM Sho	st number	123		Date	12/10	/90	Time	16:29		
Connection Mode Description	Single of AC Single tr	bil iangle		Total Inlet Inlet ter	inlet flow t pressure nperature	<u>43.49</u> <u>6.098</u> <u>4.745</u>	g/s atm K	Bm Tm Bm/Tm 1/Tm	<u>5.1</u> <u>10.2</u> <u>2.0</u>	03 T .5 s 06 T/s 00 1/s	Im Flat top Im/Tm	27 kA 0 s 54.00 kA/s
Waveform Im LU BU U		\ \			T1 = Im =	0.5 s 27 kA		Quench?	<u>N</u>	<u>o</u>		
of		<u>}</u>			Tm = 1	1		Quench ti	ime		5	
	TIME (s) 				TURE [K]		-	ACIO	11 220	7		
PANCAKE	INLET	OUTLET	INLET	INITIAL	PEAK	ΔT		ACL		1		
1	11.58			x		<u> </u>	<b>_</b>					
2				4.705	5.15	0.45	<u> </u>	1360				
3 cable		1.987	4.745	4.803	5.18	0.38	4	37 8	351			
3 corner	12.44	2.76		4.623	5.02	0.39	4	14		5180		
4 corner		3.34		4.705	5.14	0.43	5	39	82			
4 cable		2.18		4.75	5.11	0.36	4	43				
5	19.47		4.574	4.623	5.05	0.43		1987			_	
6				5.086	5.41	0.32						

Run number	88	DM She	ot number	124		Date	12/10	/90	Time	16:39		
Connection Mode Description	Single c AC Single tr	oil iangle		Total i Inlet Inlet ter	inlet flow pressure nperature	<u>45.79</u> <u>6.118</u> <u>4.745</u>	g/s atm K	Bm Tm Bm/Tm 1/Tm	<u>5.6</u> <u>11.34</u> 2.00	70 T .5 s 40 T/s 20 1/s	Im Flat top Im/Tm	<u>30 kA</u> <u>s</u> <u>60.00 kA/s</u>
Waveform m CURKENT CURKENT		<u>\</u>			T1 = Im =	0.5 s 30 kA		Quench ?	<u>N</u>	<u>.</u>		
	TIME (s)				Tm = 1	F1		Quench tin	ne		<u>s</u>	
PANCAKE	TIME (s) MASS FLOW [g/s] INCAKE INLET OUTLET INLE				TURE (K) DUTLET PEAK		-	ACLO	SS [1]	]		
1	11.47			X 4.712	5.29	0.57		1853				
3 cable		2	4.745	4.808	5.65	0.84	88	1.9 165	50.9			
3 corner	2.575 2.575 2.575			4.622	5.50	0.88	10	69		8851.	7	
4 cable		2.164		4.742	5.59	0.85	94	9.8 202	3.8			
5	20.38		4.573	4.626	5.36	0.73		3324				
6	20.30			5.089	5.60	0.51						

Run number		DM Sh	ot number	125		Date	12/10	/90	Time	16:55	<u> </u>	•
Connection Mode Description	Single c AC Single tr	oil iangle		Total : Inici Inici ter	inlet flow t pressure nperature	<u>43.65</u> <u>6.074</u> <u>4.743</u>	g/s atm K	Bm Tm Bm/Tm 1/Tm	<u>5.3</u> <u>10.7</u> <u>2.0</u>	87 T .5 s 74 T/s 00 1/s	Im Flat top Im/Tm	28.5 kA s 57.00 kA/s
Waveform Im COKKEI UL		\			T1 = ( Im = 2	0.5 s 8.5 kA		Quench ?	<u>N</u>	0		
×	TIME (s)				Tm = T	1		Quench tir	ne		<u> </u>	
PANCAKE	PANCAKE MASS FLOW [g/s]				TURE [K] OUTLET PEAK	ΔΤ		ACLO	SS []	]		
1	E INLET OUTLET INLET			X 4.709	5.20	0.49		1579			7	
3 cable		2.03	4.743	4.806	5.23	0.42	5	77 10	48			
4 corner	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			4.708	5.21	0.50	6	30 11	96	6540		
4 cable 5	19.93	2.15	4.746         5.17           4.573         4.624         5.23           5.086         5.51			0.42		66 2717				
6				5.086	5.51	0.42	<u> </u>					

Run number	90	DM Sho	ot number	204		Date	12/11	/90	Time 10:04	<u> </u>	
Connection Mode Description	Single or AC Single tr	iangle		Total i Inlet Inlet ten	nlet flow pressure mperature	<u> </u>	g/s atm K	Bm Tm Bm/Tm 1/Tm	0.284 T 5 s 0.057 T/s 0.200 1/s	Im Flat top Im/Tm	<u>1.5 kA</u> <u>s</u> 0.30 kA/s
Waveform Im CONKRENIL		<b>N</b>			T1 = Im =	5 s 1.5 kA		Quench?	No		
					1 <b>m</b> = 1	11		Quench ti	me	<u></u>	
PANCAKE	MASS F	INLET	TEMPERAT	TURE (K XUTLET PEAK			ACLO	SS [1]			
1 2	CAKE INLET OUTLET INLE X			X 4.706	4.76	0.05		x			
3 cable 3 corner	cable X corner X 4.735			4.808 4.616	4.84 4.66	0.03		x x			
4 corner 4 cable	ler X X le X			4.706 4.748	4.75 4.78	0.04		x x			
5	x		4.566	4.62 5.098	4.67 5.15	0.05		X			

Run number	91	DM She	ot number	205		Dete	12/11	/90	Time	10:19	)	
Connection Mode Description	Single c AC Single tr	oil iangle		Total i Inlet Inlet ter	inlet flow pressure nperature	<u> </u>	g/s atm K	Bm Tm Bm/Tm 1/Tm	0.2 0.0 0.2	84 T 5 s 57 T/s 00 1/s	Im Flat top Im/Tm	<u>1.5 kA</u> <u>s</u> 0.30 kA/s
Waveform Im L U U U U U U U U U U U U U U U					T1 = Im =	5 s 1.5 kA		Quench ?	<u>N</u>	0	999 (44 - 44 - 44 - 44 - 44 - 44 - 44 -	
	TIME (s)				Tm = 7	71		Quench t	ime		<u>s</u>	
PANCAKE	MASS F	LOW [g/s] OUTLET	INLET	TEMPERA'	TURE [K] OUTLET PEAK	ΔT		ACLO	1] 220	]		
1	x			X 4.707	4.74	0.03		x				
3 cable		X	4.735	4.809	4.83	0.02		x				
3 corner 4 corner	x	X X		4.018	4.64	0.02		x				
4 cable		X		4.75	4.77	0.02		x				
5	X		4.566	4.621 5.097	4.65	0.03	+	<u> </u>				

Run number	92	DM Sho	t number	206		Date	12/11	/90	Time	10:43		
Connection Mode Description	Single co AC Single tri	il angle		Total i Inlet Inlet ten	nlet flow pressure sperature	<u>44.2</u> <u>6.331</u> <u>4.741</u>	g/s atm K	Bm Tm Bm/Tm 1/Tm	<u>5.4</u> <u>10.9</u> <u>2.0</u>	81 T .5 s 62 T/s 00 1/s	Im Flat top Im/Tm	29 kA <u>s</u> 58.00 kA/s
Waveform Im COLKRENT					T1 = Im =	0.5 s 29 kA		Quench ?	<u>N</u>	0		
					Tm = 1	1		Quench t	ime		8	
PANCAKE	TIME (s) PANCAKE INLET OUTLET			TEMPERAT	URE [K] SUTLET PEAK	ΔT		ACLO	t] 220	1		
1 2	11.39			4.694 4.709	5.10 5.22	0.40 0.51		1634				
3 cable 3 corner		1.956 2.72	4.741	4.812 4.621	5.25 5.09	0.44	5	83 1 76	059	6351		
4 corner 4 cable	12.61	3.37 2.15		4.71 4.751	5.22 5.18	0.51 0.43	6	37 191 1	228			
5	20.2		4.571	4.623 5.098	5.12 5.47	0.50 0.37		2430				

Run number	93	DM Sho	st number	207		Date	12/11	/90	Time	<u>11:12</u>			
Connection Mode Description	Single a AC Single tr	bil iangle		Total i Inlet Inlet ten	nlet flow pressure nperature	<u>44.67</u> <u>6.287</u> <u>4.737</u>	_g/s atm _K	Bn Tn Bm/Tn 1/Tn	<u>5.4</u> <u>10.9</u> <u>2.0</u>	81 T .5 s 62 T/s 00 1/s	Im Flat top Im/Tm	<u>29</u> 58.00	kA s kA/s
Waveform Im WH WH WH WH O		<u>\</u>			T1 = Im =	0.5 s 29 kA		Quench	<u>n</u>	<u>o</u>	yn y saturk am dit fe		
1					Tm = 1	71		Quench	time	<u></u>	5		
PANCAKE	TIME (s) MASS FLOW [g/s] PANCAKE INLET OUTLET INLET				TURE [K] DUTLET PEAK	ΔT	$\overline{\frac{1}{1}}$	ACL	055 []	]			
	11.46		·	4.685	5.08	0.40							
2	11.40			4.708	5.21	0.50		1639					
3 cable		2.951	4.737	4.807	5.24	0.43	87	4.6 1	341.9				
3 corner	corner 12.66 2.698 4.737			4.617	5.08	0.46	40	57.3		6782	.7		
4 corner	er 3.35			4.706	5.21	0.50	63	2.3	207.8				
4 cable	2.119			4.747	5.18	0.43	57	75.5					
5	20.55		4.566	4.619	5.16	0.54		2594					
6				12.091	5.52	0.43				L			

Run number	94	DM Sho	x number	208		Date	12/11	/90	Time	11:33		
Connection Mode Description	Single of AC Single tr	bil iangle		Total i Inlet Inlet ten	inlet flow pressure nperature	<u>41.685</u> <u>5.452</u> <u>4.737</u>	a/s ≋m K	Bar Trr Ban/Trr 1/Trr	<u>5.6</u> <u>5.6</u> <u>1.0</u>	570 T 1 s 570 T/s 500 1/s	Im Flat top Im/Tm	30 kA s 30.00 kA/s
Waveform Im					T1 = Im =	1 s 30 kA		Quench 2	Ye Ye	s- Coil C	crossove	tum.
CURRI		<b>,</b>			Tm = T	1		Quench	Quenc VB#3	4,56	s	
	MASS F	.OW [g/s]		TEMPERA	TURE [K]		I T	ACI	288 []			
PANCAKE	INLET	OUTLET	INLET	INITIAL	PEAK	ΔΤ	1	ACD	200 [ J	' 1		
1	13,304			4.691	5.24	0.55						
2				4.704	5.52	0.82		3468				
3 cable	ble 1.993 4.73			4.805	5.78	0.98	92	9.8 1	972.8			
3 corner	corner 13.595 2.698 4.7.			4.618	5.63	1.01		043		16255	.8	
4 corner	Is.593         3.207           ble         2.526			4.708	6.35	1.04			3480	l		
4 cable		2.526		4./52	0.10	1.35		7725				
5	14.786		4.564	4.018	6.38	1.28		1333				
PANCAKE 1 2 3 cable 3 comer 4 comer 4 cable 5 6	MASS FI INLET 13.304 14.786	LOW [g/s] OUTLET 1.993 2.698 3.207 2.526	INLET 4.737 4.564	TEMPERAT INITIAL 4.691 4.704 4.805 4.618 4.708 4.752 4.618 5.092	T1 = Im = Tm = T TURE [K] SUTLET PEAK 5.24 5.52 5.78 5.63 6.35 6.10 6.82 6.38	1 s 30 kA 1 1 ΔT 0.55 0.82 0.98 1.01 1.64 1.35 2.20 1.28	92 10 19	Quench 2 Quench 2 Quench 2 AC L0 3468 99.8 12 954 2 526 2 7335	y Ye Quenc VB#3 ime OSS [] 072.8	s- Coil C ction sequer 4,56 0.9	s s s s s s s s s s s s s s s s s s s	<u>. tum.</u>

Run number	95	DM She	st number	209	-	Date	12/11	/90	Time	11:45		
Connection Mode Description	Single co AC Single tr	oil iangle		Total i Inlet Inlet ter	inlet flow t pressure nperature	<u>40.49</u> <u>5.452</u> <u>4.741</u>	g/s atm K	I Bm/2 1/2	8m <u>5.4</u> Fm Fm <u>5.4</u> Fm <u>1.(</u>	81 T 1 s 81 T/s 00 1/s	Im Flat top Im/Tm	29 kA s 29.00 kA/s
Waveform					T1 =	1 s						
CURRENT					Im =	29 kA		Quenc Qu	h? <u>Ye</u> ench dete Quenc VB#3	s- Coil C part. ction sequent h sequent 4,56	crossover uence nce ?	turn and other
				·	Tm = 7	<b>F1</b>		Quenc	h time _	0.93	<u> </u>	
	MASS F	OW [9/8]		TEMPERA	TURE [K]		Τ					
PANCAKE	INLET	OUTLET	INLET	INTITAL	OUTLET		7	AC	LOSS []	]	1	
1				4.695	5.22	0.52	+					
2	12.408			4.708	5.49	0.78	1	310	2		-1	
3 cable		2.007	A 7A1	4.807	5.75	0.94	90	2.7	1930.7		1	
3 corner	13 685	2.735	4.741	4.621	5.61	0.99	10	28		15038	.7	
4 corner	19.005	3.226		4.708	6.33	1.62	19	02	3372			
4 cable		2.529		4.752	6.08	1.32	14	170				
5	14.397		4.568	4.623	6.75	2.13	<b> </b>	663	4			
6				5.097	6.38	1.28				L		

Run number	- 96	DM Sho	t number	210		Date	12/11	/90	Time	13:20	)	
Connection Mode Description	Single or AC Single tr	bil iangle		Total i Inlet Inlet ten	nlet flow pressure nperature	<u>43.53</u> <u>6.239</u> <u>4.733</u>	g/s atm K	Bm Tm Bm/Tm 1/Tm	<u>5.4</u> <u>10.9</u> <u>2.0</u>	81 T .5 s 62 T/s 00 1/s	Im Flat top Im/Tm	29 kA s 58.00 kA/s
Waveform m CURRENT CURRENT		\			T1 = Im =	0.5 s 29 kA		Quench ?	<u>N</u>	0		
					<b>Tm =</b> 7	<b>F1</b>		Quench ti	me		<u>s</u>	
PANCAKE	TIME (s) MASS FLOW [g/s] ANCAKE INLET OUTLET IN			TEMPERAT	TURE (K OUTLET PEAK	] 		ACLO	es []	]		
1				4.677	5.08	0.40						
2	10.39			4.692	5.20	0.51	1	1662				
3 cable		2.01		4.8	5.25	0.45	5	95 1	75	•		
3 corner		2.73	4.733	4.629	5.09	0.46	4	80	,,,,	6791		
4 corner	12.64	3.36		4.703	5.23	0.53	6	47	224	0.91		
4 cable		2.15		4.746	5.19	0.44	5	87	ယ <del>4</del>			
5	20 E		4.561	4.616	5.25	0.63		2820				
6	20.5		4,301	5.09	5.52	0.43						

Run number	97	DM Sho	ot number	211		Date	12/11	/90	Time	13:32			
Connection Mode Description	Single of AC Single tr	apezoid		Total i Inlet Inlet ter	inlet flow pressure nperature	<u>42.88</u> <u>6.287</u> <u>4.733</u>	g/s atm K	Bm Tm Bm/Tm 1/Tm	<u>2.2</u> 4.5 2.0	68 T .5 s 36 T/s 00 1/s	Im Flat top Im/Tm	<u>12</u> <u>3</u> 24.00	kA s kA/s
Waveform - m CURRENT - M - M - M - M - M - M - M - M		۸ ۱ ۱ ۱ ۱			T1 = T2 = Im =	0.5 s 3 s 29 kA		Quench î	• <u> </u>	<u>o</u>		<u></u>	
H#1					Tm = 1	<b>F1</b>		Quench	ime		<u>s</u>		
PANCAKE	MASS F	LOW [g/s] OUTLET	INLET	TEMPERA'	TURE (K) OUTLET PEAK	ΔΤ	4	ACL	1] 280	]			
	······			4.675	4.82	0.15							
	10.28			4.689	4.86	0.17	1	480					
3 cable		1.86		4.801	4.94	0.13	11	2.9	54 0				
3 corner		2.67	4./33	4.617	4.76	0.15	1	42 2	54.9	1730	2		
4 corner	12.6	3.34		4.704	4.86	0.16	1	89	11.2	1750.	~		
4 cable		2.13		4.748	4.88	0.13	12	22.3	11.5				
5	20		4 561	4.618	4.78	0.16		684					
6	20		4.301	5.095	5.23	0.14							

Run number	98	DM Sho	t number	212		Date _	12/11	/90	Time	13:45		
Connection Mode Description	Single co AC Single tra	il apezoid		Total in Inlet Inlet terr	nlet flow pressure perature	<u>42.85</u> <u>6.355</u> <u>4.735</u>	i <u>g/s</u> iatm iK	Bm Tm Bm/Tm 1/Tm	<u>3.4</u> <u>6.8</u> <u>2.0</u>	02 T .5 s 04 T/s 00 1/s	Im Flat top Im/Tm	<u>18 kA</u> <u>3 s</u> <u>36.00 kA/s</u>
Waveform Im CILKHENL					T1 = T2 = Im =	0.5 s 3 s 18 kA		Quench ?	<u> </u>	o		
14	$T_1 = T_2 = T_1 = T_1$ TIME (s)				Tm = 1	'1		Quench t	ime _		<u> </u>	
PANCAKE	MASS FI	OW [g/s]	, INLET	TEMPERAT	TURE (K) SUTLET PEAK	ΔΤ	-	ACLO	DSS []	]		
1				4.655	4.90	0.25						
	10.24			4.691	4.97	0.28		795			7	
3 cable		1.895	1 705	4.802	5.03	0.22	2	.05	449			
3 corner		2.73	4./55	4.619	4.86	0.24	2	.44		288	,	
4 corner	12.61	3.36		4.707	4.96	0.25	3	20	531			
4 cable		2.11		4.75	4.97	0.22	2	214				
5	20		A 566	4.621	4.88	0.26		1109		ļ		
6	20		4.300	5.094	5.30	0.21						

Run number	- 99	DM Sho	t number	213	_	Date	12/11	<u>/90</u>	Time	13:57			
Connection Mode Description	Single cc AC Single tra	apezoid		Total is Inlet Inlet terr	nlet flow pressure iperature	42.55 5.47 4.737	<u>5 g/s</u> 7 atm 7 K	Bm Tm Bm/Tm 1/Tm	<u>4.5</u> <u>9.0</u> <u>2.0</u>	36 T .5 s 72 T/s 00 1/s	Im Flat top Im/Tm	<u>24</u> <u>3</u> 48.00	kA s kA/s
Waveform Im Im UN UN UN UN UN UN UN					T1 = T2 = Im =	0.5 s 3 s 24 kA		Quench? Quenc	<u>Yes</u> h detec Quenci VB34,	<u>- Quenc</u> tion sequer b sequer 56	<u>h informat</u> uence nce ?	ion ?	
H.				Tm = 1	[1		Quench ti	me	. <u>.</u>	<u> </u>			
PANCAKE	NCAKE NLET OUTLET INL		INLET	TEMPERAT	TURE [K] SUTLET PEAK	ΔΤ		ACLO	NSS []	]			
				4.679	5.13	0.45							
	9.674			4.691	5.28	0.59		1685					
4 3 cable		2.242		4.803	5.30	0.50	65	59.3 12	14.8				
3 comer		2.796	4.737	4.62	5.14	0.52	55	\$5.5	.14.0	60588	6		
4 corner	12.764	3.229	1	4.709	5.27	0.56	67	17.4	11.0	00000			
4 cable		2.391	1	4.75	5.24	0.49	7:	34.4	11.0				
5	00.117		1.000	4.612		• :		56277					
6	20.117		4.300	5.094	5.50	0.40							

Run number	100	DM Sh	ot number	222		Date	12/11	/90	Time	14:17		
Connection Mode Description	Single c AC Single tr	apezoid		Total Inle Inlet ter	inlet flow t pressure nperature	<u>42.62</u> <u>6.239</u> <u>4.735</u>	g/s atm K	Bm Tm Bm/Tm 1/Tm	<u>3.9</u> 7.9 2.0	069 T .5 s 038 T/s 000 1/s	Im Flat top Im/Tm	21 kA 3 s 42.00 kA/s
Waveform Im CURRENT	/:	N 1 1 1 1 1 1 1 1 1			T1 = T2 = Im =	0.5 s 3 s 21 kA		Quench ?	<u>N</u>	0		
<b>M</b>	TI 🗲	-T2	■T1 ►1		Tm = T	1		Quench ti	ne	-	<u>s</u>	-
PANCAKE	MASS F	LOW [g/s] OUTLET	INLET	IEMPERA'	TURE [K] OUTLET PEAK	ΔT		ACLO	SS []	]		
1	9.77			4.666	4.95	0.28						
2				4.685	5.04	0.35		1026				
3 cable		2	4.735	4.801	5.09	0.28	3	07 6	22			
3 corner	12.65	2.75		4.617	4.92	0.30	3	15		3785		
4 corner		3.39		4.703	5.03	0.33	4	12 7	02			
4 cable		2.19		4.751	5.02	0.27	2	90 '				
5	20.2		4.563	4.619	4.94	0.32		1435				
6				5.093	5.35	0.26						

Run number	101	DM Sh	ot number	223		Date	12/11	/90	Time	14:25		
Connection Mode Description	Single c AC Single tr	oil apezoid		Total Inlet Inlet ter	inlet flow t pressure nperature	<u>42.25</u> <u>6.331</u> <u>4.73</u>	_g/s _atm _K	Bm Tm Bm/Tm 1/Tm	<u>2.8</u>	35 T 5 s 67 T/s 00 1/s	Im Flat top Im/Tm	15 kA 3 s 3.00 kA/s
Waveform m CIURRENT 0 CURRENT	/				T1 = T2 = Im =	5 s 3 s 15 kA		Quench?	<u>N</u>	2		
					Tm = 1	Г1		Quench tir	ne	······	5	
PANCAKE	MASS F	LOW [g/s] OUTLET	INLET	TEMPERAT	FURE [K] OUTLET PEAK	]   <u>     </u>	1	ACLO	SS []			
	0.7			4.67	4.81	0.14	1					
2	9.7			4.682	4.85	0.17	1	476				
3 cable	,	1.888	172	4.797	4.94	0.14	11	9.1 27	0.8			
3 corner	12.55	2.68	4.75	4.613	4.76	0.15	15	1.7		1786.	7	
4 corner	24.55	3.31		4.702	4.86	0.16	19	9.6 32	< 0		Í I	
4 cable		2.14		4.747	4.88	0.13	12	7.3	0.9		1	I
5	20		4.558	4.615	4.78	0.17		713				
6			1.000	5.094	5.24	0.14						I

Run number	102	DM Sh	ot number	214		Date	12/11	/90	Time	14:37		
Connection Mode Description	Single c AC Single tr	apezoid		Total i Inlet Inlet ter	inlet flow t pressure nperature	42.25 6.355 4.73	g/s atm K	Bm Tm Bm/Tm 1/Tm	<u>2.8</u> <u>1.4</u> <u>0.4</u>	<u>35 T</u> <u>2 s</u> <u>18 T/s</u> 500 1/s	Im Flat top Im/Tm	<u>15 kA</u> <u>s</u> 7.50 kA/s
Waveform Im CILIKEENI COLIKEENI O		, , , , , , , ,			T1 = T2 = Im =	2 s 3 s 15 kA		Quench ?	N	lo		
•					• Tm = 1	71		Quench ti	me _		5	
PANCAKE	MASS F	LOW [g/s]		TEMPERA	FURE [K] DUTLET		]	ACLO	uss []	.]		
	INLET	OUTLET	INLEI	INITIAL	PEAK	ΔΤ						
1	9 69			4.672	4.82	0.15						
2	2.09			4.681	4.86	0.18		491				
3 cable		1.885	4 73	4.798	4.94	0.14	12	1.6 27	8.5			
3 corner	12 56	2.7	4.75	4.614	4.77	0.15	15	6.9		1837	7	
4 corner	12.30	3.36		4.703	4.87	0.17	2	09	0.0	1057.		
4 cable		2.12		4.748	4.89	0.14	13	0.2	9.2			
5	20		1 86	4.616	4.79	0.17	<b>I</b>	729				
6	20		4.30	5.095	5.24	0.15						

Run number	103	DM She	ot number	215		Date _	12/11	/90	Time	14:50	<b></b>	
Connection Mode Description	Single c AC Single tr	oil  apezoid		Total Inlet Inlet ter	inlet flow t pressure nperature	<u>42.54</u> <u>6.355</u> <u>4.733</u>	g/s atm K	Bn Tn Bm/Tn 1/Tn	$\frac{2.6}{1}$	335 T 1.5 s 390 T/s 567 1/s	Im Flat top Im/Tm	15 kA 3 s 10.00 kA/s
Waveform Im CURRENT		N         			T1 = T2 = Im =	1.5 s 3 s 15 kA		Quench '	? <u> </u>	Io		
	ri <b>&gt;&gt;</b>	-12	¶T1 🏲		Tm = 1	11		Quench	ime _		8	
PANCAKE	MASS F	LOW [g/s] OUTLET	INLET	TEMPERA'	FURE (K) OUTLET PEAK	ΔΤ		ACL	DSS []	]		
1	9 79			4.669	4.52	- and the	•					
2				4.681	4.86	0.18		516				
3 cable		1.905	4.733	4.798	4.95	0.15	12	26.9 2	89.2			
3 corner	12.65	2.71		4.615	4.76	0.15	16	2.3		1903.	2	
4 corner		3.37		4.703	4.87	0.17	$\frac{2}{1}$	13	347			
4 cable		2.14		4.747	4.89	0.14	+	34				
5	20.1		4.56	5.092	4.79 5.24	0.18		/51				

Run number	104	DM Sho	st number	216		Date	12/11	/90	Time	15:35		
Connection Mode Description	Single of AC Single tr	apezoid		Total i Inlet Inlet ten	nlet flow pressure nperature	<u>42.31</u> <u>6.355</u> <u>4.73</u>	g/s atm K	Bm Tm Bm/Tm 1/Tm	<u>2.8</u> <u>2.8</u> <u>1.0</u>	1 s 1 s 1 s 1 35 T/s 100 1/s	Im Flat top Im/Tm	15 kA 3 s 15.00 kA/s
Waveform Im COLKEHNI	/				T1 = T2 = Im =	1 s 3 s 15 kA		Quench ?	<u>_N</u>	lo		
					Tm = 1	71		Quench t	ime		<u>s</u>	
PANCAKE	MASS F	LOW [g/s] OUTLET	INLET	IEMPERAT	TURE [K] DUTLET PEAK	ΔΤ		ACLO	DSS []	]		
1	9.73			4.665 4.678	4.83 4.87	0.16		543				
3 cable 3 corner		1.9 2.7	4.73	4.796 4.61	4.95 4.78	0.16	13	3.8 69	02.8	1004		
4 corner 4 cable	12.58	3.37 2.13		4.701 4.744	4.88 4.90	0.18	22	5.8 3	67.7	1774		
5	20		4.557	4.613 5.09	4.80 5.25	0.19		781			_	

Run number	105	DM She	ot number	217		Date	12/11	/90	Time	15:47		
Connection Mode Description	Single c AC Single tu	oil apezoid		Total i Inlet Inlet ter	inlet flow pressure nperature	<u>42.73</u> <u>6.403</u> <u>4.73</u>	g/s atm K	Bm Tm Bm/Tm 1/Tm	<u>2.8</u> <u>3.7</u> <u>1.3</u>	35 T 75 s 80 T/s 33 1/s	Im Flat top Im/Tm	<u>15 kA</u> <u>3 s</u> 20.00 kA/s
Waveform Im COUREN	/	A 1 1 1 1 1 1			T1 = 0 T2 = Im =	.75 s 3 s 15 kA		Quench ?	<u>N</u>	0		
-	ri <b>&gt; d</b>	-T2	<b>≪</b> T1 ►		Tm = T	'1		Quench t	ime		<u>s</u>	
PANCAKE	MASS F	LOW [g/s] OUTLET	INLET	TEMPERA INITIAL	TURE [K] OUTLET PEAK	ΔΤ		ACLO	uss []	]		
1	0.96			4.668	4.84	0.17					_	
2	9.00			4.68	4.89	0.21		578				
3 cable		1.878	4 73	4.798	4.96	0.16	13	9.9 3	16.9			
3 corner	12 67	2.69	/5	4.612	4.79	0.18	1	77		2101.	1	
4 corner	14.01	3.35		4.702	4.89	0.19	2	34 2	84.2			
4 cable		2.13		4.745	4.91	0.16	15	0.2				
5	20.2		4 558	4.614	4.81	0.19		822				
6	24.2			5.09	5.25	0.16				L		

Run number	106	DM Sho	ot number	218		Date	12/11	/90	Time	15:58			
Connection Mode Description	Single co AC Single tr	bil apezoid		Total i Inlet Inlet ten	inlet flow pressure nperature	<u>42.68</u> <u>6.287</u> <u>4.728</u>	g/s atm K	Bm Tm Bm/Tm 1/Tm	<u>2.8</u> <u>5.6</u> <u>2.0</u>	35 T .5 s 70 T/s 00 1/s	Im Flat top Im/Tm	<u>15</u> <u>3</u> <u>30.00</u>	<u>kA</u> <u>s</u> <u>kA/s</u>
Waveform Im CURRENT CURRENT	/	A 1 1 1 1 1 1			T1 = T2 = Im =	0.5 s 3 s 15 kA		Quench 7	<u>N</u>	ío			
14	$\frac{0}{1}$				Tm = 1	<b>[1</b>		Quench t	ime _		5		
PANCAKE	ANCAKE MASS FLOW [g/s]				TURE [K] DUTLET PEAK	ΔΤ		ACLO	SSS []	]			
1	0.00			4.659	4.85	0.19	1						
2	9.83			4.679	4.90	0.22	T	625					
3 cable		1.879	4 728	4.796	4.97	0.18	15	i3.5 ₃	42.6				
3 corner	12.65	2.69	4.720	4.611	4.80	0.19	18	9.1		2255.	8		
4 corner	12.05	3.35		4.7	4.90	0.20	2	50 4	112				
4 cable		2.13		4.743	4.91	0.17	16	51.2 <b>T</b>					
5	20.2		4.557	4.613	4.82	0.21	<u> </u>	877					
6	A.V. A			5.086	5.26	0.17	<u> </u>						

Run number	107	DM She	ot number	219		Date	12/11	/90	Time	16:11		
Connection Mode Description	Single c AC Single tr	oil apezoid		Total Inlet Inlet ter	inlet flow t pressure nperature	<u>42.52</u> <u>6.311</u> <u>4.728</u>	g/s atm K	Bri Tri Brin/Tri 1/Tri	n <u>2.8</u> n <u>9.4</u> n <u>3.3</u>	335 T .3 s 150 T/s 133 1/s	Im Flat top Im/Tm	<u>15 kA</u> <u>3 s</u> 50.00 kA/s
Waveform Im CNKR		A 1 1 1 1 1 1			T1 = T2 = Im =	0.3 s 3 s 15 kA		Quench	7 Y	lo		
	$0 = T_1 = T_2 = T_1 = $				Tm = 7	F1		Quench	time		<u>s</u>	
PANCAKE	MASS FLOW [g/s]			TEMPERA	TURE [K] OUTLET	1 4 77		ACL	055 []	]		
	INLEST	COLLEI		INITIAL	1 07					r		
	9.78			4.004	4.07	0.21		709				
2		10		4.078	4.93	0.25	+ ,,	100				
3 cable		1.9	4.728	4.193	3.00	0.20	$+\frac{1}{2}$	1	94.2			
3 corner	12.64	<u>4.11</u>		4.009	4.82	0.22	$\frac{1}{2}$	10		2544	·	
4 corner		3.30		4.099	4.93	0.23	$+\frac{2}{10}$		70.8			
4 cable		2.15		4.142	4.94	0.20	1 18	8.8				
5	. 20.1		4.553	4.011	4.84	0.23	+	9/1				
6				5.089	5.28	0.19	<u> </u>					

Run number	108	DM Sho	st number	224		Date	12/11	/90	Time	16:23		
Connection Mode Description	Single or AC Single tr	apezoid		Total i Inlet Inlet ten	nlet flow pressure nperature	<u>41.35</u> <u>6.331</u> <u>4.728</u>	g/s atm K	Bm Tm Bm/Tm 1/Tm	<u>3.7</u> 2.5 0.6	80 T 1.5 s 20 T/s 67 1/s	Im Flat top Im/Tm	20 kA 3 s 13.33 kA/s
Waveform Im CONKREWI	Waveform Im Im Im Im Im Im Im Im Im I				T1 = T2 = Im =	1.5 s 3 s 20 kA	-	Quench ?	<u>N</u>	o		
<b>N</b>	$\frac{1}{12} = \frac{1}{12} $				Tm = T	'1		Quench ti	me _		8	
PANCAKE				TEMPERAT	TURE (K) SUTLET			ACLO	SS []	]		
	INLEI	OUILEI		INITIAL	PEAK		—					
1	9.23			4.003	4.91	0.24		760				
2				4.079	4.97	0.29	<u> </u>	40/				
3 cable		1.926	4.728	4.796	5.02	0.22	$\frac{2}{1}$	4	65			
3 corner	corner 12.49 2.77			4.611	4.85	0.24		62		2951	L L	
4 corner		3.44		4.7	4.96	0.26	3	45 5	64			
4 cable		2.18		4.743	4.96	0.22	2	.19				
5	19.63		4 555	4.612	4.88	0.27	_	1153				
6	17.05		225	5.09	5.33	0.24						

Run number	109	DM Sho	t number	225		Date	12/11	/90	Time	16:36		
Connection Mode Description	Single $\propto$ AC Single tr	apezoid		Total i Inlet Inlet ten	inlet flow pressure nperature	<u>42.54</u> <u>6.331</u> <u>4.73</u>	g/s atm K	Bm Tm Bm/Tm 1/Tm	<u>3.7</u> <u>0.7</u>	80 T 5 s 56 T/s 00 1/s	Im Flat top Im/Tm	20 kA 3 s 4.00 kA/s
Waveform Im CURRENT					T1 = T2 = Im =	5 s 3 s 20 kA		Quench 7	<u> </u>	0		
H.					Tm = T	71		Quench	ime _		<u> </u>	
PANCAKE	PANCAKE NLET OUTLET INLE			TEMPERA'	TURE [K] DUTLET PEAK	ΔΤ	-	ACL	DSS []	]		
1				4.667	4.84	0.18						
2	9.77			4.68	4.90	0.22	1	615				
3 cable		1.879	. 50	4.798	4.97	0.18	1	55	356			
3 corner	10.00	2.71	4.73	4.612	4.80	0.19	2	01		2331	6	
4 corner	12.57	3.37		4.701	4.90	0.20	2	68	22.6			
4 cable		2.11		4.745	4.92	0.17	16	i5.6	33.0		-	
5	20.2		A 557	4.614	4.83	0.21		927				
6	£0.2		4.537	5.091	5.27	0.18						

Run number	110	DM Sho	st number	220		Date	12/11	/90	Time	16:46		
Connection Mode Description	Single or AC Single tr	bil apezoid		Total i Inlet Inlet ten	inlet flow pressure nperature	<u>42.54</u> <u>6.331</u> <u>4.73</u>	g/s atm K	Bm Tm Bm/Tm 1/Tm	<u>3.7</u> <u>1.8</u> 0.5	80 T 2 s 90 T/s 00 1/s	Im Flat top Im/Tm	20 kA 3 s 10.00 kA/s
Waveform m CORRENT		N 1 1 1 1 1 1			T1 = T2 = Im =	2 s 3 s 20 kA		Quench ?	<u>_N</u>	0		
p.					Tm = 1	<b>M</b>		Quench ti	me		<u> </u>	
PANCAKE	TIME (s) MASS FLOW [g/s] ANCAKE INLET OUTLET INLE				TURE [K] OUTLET PEAK	ΔΤ		ACLO	SS []	]		
1	0.77			4.666	4.86	0.19						
2	9.77			4.681	4.92	0.24		672				
3 cable		1.879	4.73	4.799	4.99	0.19	1	68 3	83			
3 corner	12.57	2.71	40.5	4.614	4.82	0.21	2	15		2508		
4 corner	iomer 3.37			4.701	4.92	0.22	2	86 4	65			
4 cable		2.11		4.746	4.93	0.19	1	79				
5	20.2		4.558	4.615	4.84	0.23		988			_	
6				5.091	5.27	0.18						

×

Run number	111	DM Sh	ot number	221		Date _	12/11	/90	Time	16:58	<u> </u>		
Connection Mode Description	Single of AC Single tr	oil apezoid		Total i Inlet Inlet ter	inlet flow pressure nperature	<u>42.57</u> <u>6.287</u> <u>4.728</u>	g/s atm K	Ba Ti Ban/Ti 1/Ti	n <u>3.7</u> n n <u>3.7</u> n <u>1.0</u>	780 T 1 s 780 T/s 000 1/s	Im Flat top Im/Tm	20 3 20.00	kA s kA/s
Waveform m CNKKEWL		۸ ۱ ۱ ۱			T1 = T2 = Im =	1 s 3 s 20 kA		Quench	? <u>N</u>	lo			
-					Tm = 1	<b>F1</b>		Quench	time _		<u> </u>		
	MASS F	LOW [g/s]		TEMPERA	fure (K		]				1		
PANCAKE	INLET	OUTLET	INLET	INITITAL	DUTLET	LAT	-	ACL	055 []	1			
╏┝╤╼╼╾┽				4.66	4.88	0.22							
	9.84			4.68	4.95	0.27		779					
3 cable		1.895	4 700	4.796	5.02	0.22	1	98	442				
3 corner	12 63	2.71	4.725	4.612	4.85	0.24	2	44	112	2850			
4 corner	12.03	3.38		4.701	4.96	0.25	3	23	533				
4 cable		2.14		4.744	4.96	0.21	2	10					
5	20.1 4.55			4.613	4.87	0.26		1096					
6				5.087	5.29	0.21				<u> </u>			

Run number		DM She	ot number	256		Date	12/12	2/90	Time <u>9:57</u>		
Connection Mode Description	Single c AC Single tr	oil iangle		Total i Inlet Inlet ten	nlet flow pressure nperature	<u>X</u> <u>6.142</u> <u>4.728</u>	g/s atm K	Bm Tm Bm/Tm 1/Tm.	0.284 T 5 s 0.057 T/s 0.200 1/s	Im Flat top Im/Tm	<u>1.5 kA</u> <u>0 s</u> <u>0.30 kA/s</u>
Waveform Im CURRENT CORRENT 0		\			T1 = Im =	5 s 1.5 kA		Quench ?	<u>No</u>		
					Tm = 1	<b>Г1</b>		Quench tir	ne	5	
PANCAKE	PANCAKE NLET OUTLET INLE				TURE (K DUTLET PEAK			ACLO	SS [J]		
1 2	ANCAKE INLET OUTLET INLE			4.662 4.681	4.68	0.00		x		7	
3 cable 3 corner 4 corner 4 cable	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			4.801 4.61 4.702 4.747	4.74	0.03		x x x x			
5	x		4.555	4.614 5.1				x			

Run number	113	DM She	ot number	257		Date	12/12	2/90	Time 10:07		
Connection Mode Description	Single of AC AC Single tr	oil iangle		Total i Inlet Inlet ten	inlet flow pressure nperature	<u>6.16</u> 4.72	K g/s 6 atm 3 K	Bm Tm Bm/Tm 1/Tm	0.284 T 5 s 0.057 T/s 0.200 1/s	Im Flat top Im/Tm	1.5 kA 0 s 0.30 kA/s
Waveform Im U U U U U U U U U U U		\			T1 = Im =	5 s 1.5 kA		Quench ?	No		
14					Tm = 7	Г1		Quench ti	me	<u>s</u>	
PANCAKE	PANCAKE MASS FLOW [g/s] INLET OUTLET INLET				FURE [K DUTLET PEAK	]   <u>\</u>		ACLO	ss [1]		
12	x			4.66 4.68		<u> </u>		x		_	
3 cable 3 corner 4 corner	x	X X X	4.728	4.801 4.61 4.702	4.73	0.03		x x x			
4 cable 5 6	x	x 	4.553	4.746 4.613 5.095		12		x   x		_	

Run number	114	DM Sho	t number	258		Date	12/12	/90	Time	10:17		
Connection Mode Description	Single or AC Single tr	pil apezoid		Total i Inlet Inlet ten	nlet flow pressure nperature	44.04 6.190 4.724	g/s atm K	Bm Tm Bm/Tm 1/Tm	<u>3.7</u> <u>5.0</u> <u>1.3</u>	/80 T .75 s .040 T/s .33 1/s	Im Flat top Im/Tm	20 kA 3 s 26.67 kA/s
Waveform m CONKRENI	/				T1 = 0. T2 = Im =	75 s 3 s 20 kA		Quench ?	<u>N</u>	lo		
<b>A</b>					Tm = T	1		Quench t	ime		<u>s</u>	
PANCAKE	TIME (s)			TEMPERA	TURE [K]	AT	-	ACLO	) ss	[]		
				4 667	4.91	0.24				<b></b>	{	
	10.13			4.68	4.98	0.30	+	875				
2 3 cable		2 23		4.801	5.04	0.24	2	64		1		•
3 corner	3 cable 2.23 4.724			4.612	4.86	0.25	3	06	570	2214		
4 corner	comer 13.01 3.59			4.702	4.98	0.27	3	69		3514		
4 cable	ble 2.52			4.748	4.98	0.23	2	.74	643		ł	
5			1 661	4.613	4.89	0.27	1	1226		1		
6	20.9		4.334	5.101	5.32	0.22						

Run number	115	DM Sho	x number	259		Date	12/12	/90	Time	10:28			
Connection Mode Description	Single o AC Single tr	oil apezoid		Total i Inlet Inlet ten	inlet flow pressure aperature	<u>44.09</u> <u>6.190</u> <u>4.73</u>	g/s atm K	Bm Tm Bm/Tm 1/Tm	<u>3.71</u> 7.56 2.00	30 T .5 s 50 T/s 10 1/s	Im Flat top Im/Tm	<u>20</u> <u>3</u> 40.00	kA s kA/s
Waveform - m CONKREMI	/			T1 = T2 = Im =	0.5 s 3 s 20 kA		Quench?	<u>N</u>	<u>&gt;</u>				
<b>•</b>					Tm =	T1		Quench ti	me		<u>s</u>		
PANCAKE	MASS FLOW [g/s]			TEMPERA'	TURE (K DUTLET PEAK	[] ΤΔ	1	ACLO	ISS []	]			
	h		t	4.669	4.94	0.27	1						
	10.14			4.691	5.01	0.32	T	979					
3 cable	<b> </b>	2.27	1 . 72	4.801	5.07	0.27	3	12 6	44				
3 corner	12.06	3.15	1 4.73	4.615	4.90	0.28	3	132		3678	1		
4 corner	13.03	3.6	1	4.702	5.01	0.30	4	105 7	15				
4 cable		2.53	L	4.748	5.01	0.26	3	10 '					
5	20.0		4.558	4.618	4.92	0.30		1340					
6	20.3			5.099	5.34	0.24							

Run number	116	DM Sho	t number	260		Date	12/12	/90	Time	10:39		
Connection Mode Description	Single co AC Single tra	apezoid		Total i Inlet Inlet ten	nlet flow pressure nperature	<u>44.07</u> <u>6.190</u> <u>4.73</u>	g/s atm K	Bm Tm Bm/Tm 1/Tm	<u>3.7</u> <u>12.6</u> <u>3.3</u>	80 T .3 s 00 T/s 33 1/s	Im Flat top Im/Tm	20 kA 3 s 66.67 kA/s
Waveform - ml CURKENU COLKENU					T1 = T2 = Im =	0.3 s 3 s 20 kA		Quench 7	<u> </u>	lo		
					Tm = 1	'1		Quench	ime _		5	
PANCAKE	IME (S)			TEMPERAT	TURE (K) SUTLET PEAK	ΙΔΤ	4	ACL	DSS []	]	7	
1				4.668	4.98	0.31	1					
2	10.1			4.682	5.07	0.39	1	1160				
3 cable		2.38		4.801	5.12	0.31	4	00	701			
3 corner		3.17	4.73	4.616	4.95	0.33	3	91		4383		
4 corner	13.07	3.6		4.703	5.06	0.36	4	72	961			
4 cable		2.59		4.75	5.05	0.30	3	89	001			
5	20.0		1 56	4.617	4.96	0.35		1571		l		
6	∠0.9		4.00	5.099	5.37	0.27						

Run number	117	DM Sho	ot number	<u>x</u>		Date	12/12	/90	Time	10:50		
Connection Mode Description	Single or AC Single tr	apezoid		Total i Inlet Inlet ten	niet flow pressure nperature	<u> </u>	g/s atm K	Bm Tm Bm/Tm 1/Tm	<u>4.72</u> 0.78 0.16	<u>5 T</u> <u>6 s</u> 8 T/s 57 1/s	Im Fiat top Im/Tm	25 kA 3 s 4.17 kA/s
Waveform Im CRKKENL		A 1 1 1			T1 = T2 = Im =	6 s 3 s 25 kA		Quench ?	<u>Nc</u>			
<b> </b> ₩1  -					Tm = 7	<b>Г</b> 1		Quench ti	me		<u> </u>	
PANCAKE	MASS F	LOW [g/s] OUTLET	INLET	TEMPERAT	TURE (K DUTLET PEAK	] 		ACLO	[1] 22			
	x			X X			-	х				
3 cable 3 corner 4 corner 4 cable	x	X X X X	4.728	X X X X				x x x x x				
5	х		4.557	X X				<u> </u>				

Run number	118	DM Sh	ot number	261		Date	12/12	/90	Tan	e <u>10:58</u>		
Connection Mode Description	Single c AC Single u	oil apezoid		Total Inle Inlet ter	inlet flow t pressure mperature	<u>43.74</u> <u>6.166</u> <u>4.73</u>	g/s atm K	Ba Tr Ban/Tr 1/Tr	n <u>4.</u> n <u>0.</u> n <u>0.</u>	725 T 6 s 788 T/s 167 1/s	Im Flat top Im/Tm	25 kA 33 s 4.17 kA/s
Waveform Int CURRHNI	/	1 1 1 1 1 1			T1 = T2 = Im =	6 s 3 s 25 kA		Quench	? _1	<u>No</u>		
1	FI DI	-T2			Tm = 1	1		Quench	time _		5	
PANCAKE	MASS FLOW [g/s]				TURE (K) DUTLET		I	ACL	OSS [	1]		
	INLET	OUTLET		INITIAL	PEAK	ΔΤ	<b></b>					
	10.04			4.68	4.89	0.21	<b> </b>			Ļ		
2				4.671	4.95	0.27		785		1		
3 cable		2.24	4.73	4.801	5.01	0.21	2	28	516			
3 corner	3 corner 12.8 3.14 4.73			4.615	4.84	0.23	2	88		3055		
4 corner	comer 3.56			4.704	4.95	0.24	3	49	505			
4 cable	able 2.53			4.748	4.96	0.21	2	46				
5	20.9		4 56	4.615	4.87	0.26		1159				
6	200.7		4.50	5.098	5.31	0.21						

Run number	119	DM Sh	ot number	262		Date	12/12	2/90	Time	11:09		
Connection Mode Description	Single c AC Single u	oil  rapezoid		Total Inic Inict ter	inlet flow t pressure nperature	<u>43.74</u> <u>6.166</u> <u>4.733</u>	g/s atm K	Bm Tm Bm/Tm 1/Tm	<u>4.7</u> <u>1.5</u> <u>0.3</u>	25 T 3 s 75 T/s 33 1/s	Im Flat top Im/Tm	25 kA 3 s 8.33 kA/s
Waveform Im COKKHUL	/	۴ ۱ ۱ ۱			T1 = T2 = Im =	3 s 3 s 25 kA		Quench ?	<u>N</u>	0		
H.					Tm = 1	51		Quench tir	ne		<u>s</u>	
	MASS F	LOW [g/s]	······	TEMPERA	TURE [K]		1	ACIO	11 22	1	7	
PANCAKE	INLET	OUTLET	INLET	INITIAL	PEAK	ΔΤ	1	ACDO		1		
1	10.04			4.669	4.90	0.23	1		Т		-	
2	10.04			4.684	4.97	0.29	T	836				
3 cable		2.24	1 732	4.803	5.04	0.23	2	46 5	52			
3 corner	12.8	3.14	4.733	4.618	4.87	0.25	3	06		3747		
4 corner	14.0	3.56		4.707	4.97	0.27	3	69		5241		
4 cable		2.53		4.75	4.98	0.23	2	64 0.	"			
5	20.9		4.561	4.619	4.89	0.27		1226				
6	<u> </u>		7.501	5.099	5.32	0.22						

Run number	120	DM Sho	st number	277		Date _	12/12	/90	Time	11:21		
Connection Mode Description	Single of AC	oil apezoid		Total i Inlet Inlet ter	inlet flow t pressure nperature	<u>43.96</u> <u>6.142</u> <u>4.732</u>	g/s atm K	Bm Tm Bm/Tm 1/Tm	<u>4.7</u> <u>2.3</u> 0.5	25 T 2 s 63 T/s 00 1/s	Im Flat top Im/Tm	25 kA 3 s 12.50 kA/s
Waveform Im CURRENT					T1 = T2 = Im =	2 s 3 s 25 kA		Quench ?	<u>N</u>	0		
-					Tm = 1	'1		Quench tir	ne		5	
PANCAKE	TIME (3)           MASS FLOW [g/s]           ANCAKE           INLET           OUTLET			TEMPERA'	TURE (K) OUTLET PEAK	ΔT		ACLO	SS []	]		
1	10.01			4.663	4.92	0.25						
2	10.01			4.681	5.00	0.31		901				
3 cable		2.25	4 732	4.801	5.05	0.25	2	66 5	91			
3 corner	13.05	3.14	4.1.52	4.615	4.88	0.27	3	25		3463		
4 corner		3.57		4.705	5.00	0.29	3	92 6	76			:
4 cable		2.54		4.75	4.99	0.24	2	84				
5	20.9		4.558	4.617	4.91	0.29		1295				
6				5.095	5.33	0.24						

Run number	121	DM Sh	ot number	274		Date	12/12	2/90	Time	11:31		
Connection Mode Description	Single c AC Single tr	oil apezoid		Total i Inlet Inlet ter	inlet flow pressure nperature	<u> </u>	g/s atm K	Bn Tn Bm/Tn 1/Tn	4.725 1.5 3.150 0.667	T s T/s 1/s	Im Flat top Im/Tm	25 kA 3 s 16.67 kA/s
Waveform Im COKKHUL	/	, , , , , , , , , , , , ,			T1 = T2 = Im =	1.5 s 3 s 25 kA		Quench 7 Quer	Yes- ch detectio Quench MC03, V	<u>Coil C</u> on sequ sequen 7B5-6,	crossover ence ce? VB3-4, N	<u>tum.</u> ICO1
<b>M</b> 1	n <b>&gt; 1</b>	T2 ME (s)	€T1 ►1		Tm = 1	71		Quench	ime <u>1.4</u>	58	<u>s</u>	
PANCAKE	TIME (s)           MASS FLOW [g/s]           PANCAKE         INLET         OUTLET         INLET				TURE (K) DUTLET PEAK	ΔΤ		ACL	[1] 220			
1 2	x			4.669 4.682	5.15 5.33	0.48 0.65	-	x			-	
3 cable	2 3 cable X 4.73			4.8	5.40	0.60		x				
4 corner	corner X X			4.013	5.24	0.83		X				
4 cable	able X			4.748	5.41	0.66		x				
<u>5</u> 6	x		4.555	4.618 5.116	6.50 6.30	1.88 1.18		<u> </u>				

Run number	r <u>122</u>	DM Sh	ot number	275		Date _	12/12	2/90	Time	11:43		
Connection Mode Description	Single of AC Single tr	oil apezoid		Total i Inlet Inlet ter	inlet flow t pressure nperature	<u>43.58</u> <u>6.142</u> <u>4.733</u>	g/s atm K	Br Tr Brm/Tr 1/Ti	n <u>4.7</u> n <u>1.</u> n <u>2.7</u> n <u>0.4</u>	75 T 75 s 700 T/s 71 1/s	Im Flat top Im/Tm	25 kA 3 s 14.29 kA/s
Waveform Im COKKHUL					T1 = 1. T2 = Im =	.75 s 3 s 25 kA		Quench	? <u>N</u>	<u>lo</u>		
14	TI TI	-T2	TI N		Tm = T	1		Quench	time _		<u>s</u>	
PANCAKE	TIME (s) MASS FLOW [g/s] PANCAKE IN FT LOUTHET INLE				TURE (K)		4	ACL	.OSS []	]		
				4.674	4.94	0.26	+					
2	9.75		l !	4.688	5.01	0.32	+	953			-	
3 cable		2.24	4 700	4.806	5.07	0.26	1 2	86	621		1	
3 corner	3 cable 2.24 4.733 3 corner 13.03 3.14			4.62	4.90	0.28	3	45	031	3669		
4 corner	13.03 3.56		l !	4.709	5.01	0.30	4	12	715	5002		
4 cable	2.54		4.755	5.01	0.25	3	03	/15		I		
5	20.8		4.564	4.622	4.93	0.30	T	1370				
6			1.001	5.104	5.35	0.25						

Run number	123	DM She	ot number	276		Dete	12/12	490	Time	13:19		
Connection Mode Description	Single c AC Slow-ra	oil mp trapezoid		Total Inle Inlet tea	inlet flow t pressure mperature	<u>40.472</u> <u>6.142</u> <u>4.741</u>	g/s atm K	Brr Trr Brn/Trr 1/Trr	<u>5.6</u> 0.5	70 T 11 s 15 T/s 91 1/s	Im Flat top Im/Tm	30 kA 3 s 2.73 kA/s
		TIME (s)	T2-DIA T		T1 = T2 = T3 = Im =	11 s 3 s 0.5 s 30 kA		Quench 7 Quench 1	' <u>N</u>		5	
	MASS F	LOW [g/s]	1	TEMPERA	TURE (K)		]					
PANCAKE	INLET	OUTLET	INLET	INITIAL	OUTLET PEAK	ΔΤ	1	ACLO	722 []	1		
				4.664	5.06	0.40	†				-1	
2	8.402			4.688	5.19	0.50	1	1327				
3 cable		2.505	A 77A1	4.807	5.22	0.41	52	1.5	080			
3 corner	12 28	3.276	4.741	4.624	5.06	0.44	55	8.5	000	5569.8	8	
4 corner	12.20	3.689		4.713	5.19	0.47	66	2.2	04.9	0000		
4 cable		2.861		4.758	5.15	0.40	54	2.6	.04.0			
5	19.79		4.571	4.625	5.07	0.45		1958				
6				5.1	5.46	0.36	<u> </u>					

2

Run number	124	DM Sho	ot number	283		Date	12/12	490	Time	13:31		
Connection Mode Description	Single co AC Slow-ran	np trapezoid		Total i Inici Inici ter	inlet flow a pressure aperature	39.085 6.166 4.741	g/s atm K	Bm Tm Bm/Tm 1/Tm	<u>5.6</u> 0.7 0.1	70 T 8 s 09 T/s 25 1/s	Im Flat top Im/Tm	30 kA 3 s 3.75 kA/s
Waveform In CONKRENT	/				T1 = T2 = T3 = Im =	8 s 3 s 0.5 s kA		Quench ?	<u>N</u>	ō		
	T1-	TIME (s)	12-21313	i- <b>₽</b> 4	Tm = 1	<u>.</u> 1		Quench ti	me		5	
PANCAKE	MASS F	LOW [g/s]		TEMPERA	TURE (K) OUTLET			ACLO	uss []	]	1	
in a contract	INLET	OUTLET	INLET	INITIAL	PEAK	ΔΤ	]					
1	7615			4.675	5.08	0.40	ŀ					
2	1.015			4.687	5.20	0.51		1244				
3 cable		2.607	A 741	4.81	5.22	0.41	55	5.7 11	35.9			
3 corner	12.01	3.356	4./41	4.625	5.07	0.44	58	80.2		5591.	6	
4 corner	corner 12.01 3.75				5.20	0.48	68	32.8	867			
4 cable		2.941		4.76	5.17	0.41	57	13.9	30.7			
5	10.46		4 669	4.625	5.09	0.46		1955				
6	19.40		4.308	5.106	5.47	0.36						

Run number	125	DM She	ot number	263		Date	12/12	2/90	Time	13:42		-
Connection Mode Description	Single of AC Single tr	oil apezoid		Total Inlet Inlet ter	inlet flow pressure nperature	<u>37.51</u> <u>5.25</u> <u>4.74</u>	8 g/s 1 atm 3 K	Ba Tr Ban/Tr 1/Tr	n <u>5.0</u> n <u>0.9</u> n <u>0.9</u>	570 T 6 s 945 T/s 167 1/s	Im Flat top Im/Tm	30 kA 3 s 5.00 kA/s
Waveform Im COUKHNI COUKHNI		A 1 1 1 1 1 1			T1 = T2 = Im =	6 s 3 s 30 kA		Quench Que	? <u>Ye</u> nch dete VB5-	<u>es- Coil C</u> ction seq 6,MC03,	<u>crossover</u> uence VB1-2,MC	- tum C01
	$\begin{array}{c} 0 \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$				<b>Tm =</b> ]	<b>71</b>		Quench	time _	5.86	<u>s</u>	
PANCAKE	TIME (s)           MASS FLOW [g/s]           PANCAKE         INLET         OUTLET         INL			TEMPERA'	TURE [K] OUTLET PEAK	ΔΤ		ACL	oss (:	[]		
				4.679	5.27	0.59				1		
$\frac{1}{2}$	6.87			4.69	5.52	0.83		2101		1	7	
3 cable		2.779		4.814	5.65	0.84	12	214	2470	1		
3 corner		3.422	4./43	4.625	5.50	0.88	12	256	2470	1980		
4 corner	11./15	3.814		4.718	5.83	1.11	ľ	719	3160	]		
4 cable		3.089		4.762	5.70	0.94	14	443	5102			
5	19 022		A 57A	4.633	7.26	2.63		12070				
6	10.933		4.3/4	5.112	6.68	1.57						

Run number	126	DM Sh	ot number	278		Dete	12/12	2/90	Time	13:53		
Connection Mode Description	Single c AC Slow-ran	oil mp trapezoid		Total Inici Inici ter	inlet flow t pressure nperature	<u>37.427</u> <u>5.124</u> <u>4.747</u>	g/s atm K	] Bm/ 1/	Bm <u>5.6</u> Tm Tm <u>0.8</u> Tm <u>0.1</u>	70 T 7 s 310 T/s 43 1/s	Im Flat top Im/Tm	<u>30 kA</u> <u>3 s</u> <u>4.29 kA/s</u>
Waveform Im Im Im Im Im Im T1 = 7 s T2 = 3 s T3 = 0.5 s Im = 30 kA VB5-6,MC03,VB1-2,MC0 VB5-6,MC03,VB1-2,MC0 VB5-6,MC03,VB1-2,MC0												<u>tum.</u> 201
-	T1-	TIME (s)	12-12-13		Tm = T	1		Quena	zh time	6.85	5	
PANCAKE	MASS F	LOW [g/s] OUTLET	INLET	IEMPERA'	TURE [K] OUTLET PEAK	ΔΤ	-	AC	LOSS []	]		
1	6 304			4.665	5.26	0.60						
2	0.504			4.685	5.53	0.84		199	2			
3 cable		2.725	4.747	4.819	5.67	0.85	12	229	2531			
3 corner	11.914	3.395		4.632	5.53	0.90	1:	302		22365		
4 corner		3.789		4.722	5.89	1.17	11	334	3341			
4 cable		3.053		4.765	5.75	0.98	1:	507				
5	19.209		4.577	4.636	7.65	3.01	<u>  </u>	1450	11		_	
6				5.114	6.84	1.73	<u> </u>					

Run number	127	DM She	ot number	279		Date	12/12	/90	Time	14:04		
Connection Mode Description	Single c AC Single tr	apezoid		Total i Inlet Inlet ter	inlet flow t pressure mperature	<u>42.57</u> <u>6.098</u> <u>4.745</u>	g/s atm K	Bm Tm Bm/Tm 1/Tm	4.1 4.1 1.0	58 T 1 s 58 T/s 00 1/s	Im Flat top Im/Tm	22 kA 3 s 22.00 kA/s
Waveform Im COLKEN COLKEN	/	A 1 1 1 1			T1 = T2 = Im =	1 s 3 s 22 kA		Quench ?	<u>N</u>	0		
<b>M</b>					Tm = 7	71		Quench ti	ne		<u>s</u>	
PANCAKE	TIME (s) MASS FLOW [g/s] ANCAKE INLET OUTLET INLE			TEMPERAT	TURE (K) OUTLET PEAK	ΔΤ		ACLO	SS []	]		
1	8.52			4.679	4.92	0.25						
2				4.686	5.00	0.31		946				
3 cable		2.29	4.745	4.818	5.07	0.25	3	⁰² 6	47			
3 corner	13.15	3.16		4.63	4.90	0.27		45		3665		
4 corner		3.58		4.72	5.02	0.30	4	7	13			
4 cable		2.33		4.705	3.01	0.25	+3	1350				
5 6	20.9		4.574	5.119	4.35	0.50		1337				

Run number	128	DM Sho	t number	280		Date	12/12	/90	Time	14:15		
Connection Mode Description	Single or AC Single tr	vil apezoid		Total i Inlet Inlet ten	nlet flow pressure aperature	<u>42.38</u> <u>6.524</u> <u>4.775</u>	g/s atm K	Bm Tm Bm/Tm 1/Tm	<u>4.3</u> <u>4.3</u> <u>1.0</u>	47 T 1 s 47 T/s 00 1/s	Im Flat top Im/Tm	23 kA 3 s 23.00 kA/s
Waveform m CURKERN CORKERN					T1 = T2 = Im =	1 s 3 s 23 kA		Quench ?	<u>N</u>	0		
					Tm = 1	.1		Quench ti	me		5	
PANCAKE	TIME (s) MASS FLOW [g/s] ANCAKE INLET OUTLET INLE			TEMPERAT	TURE (K) SUTLET PEAK	T AT		ACLO	L] 29	]		
				4.695	4.97	0.27	1					
2	8.48			4.719	5.06	0.34		1050				
3 cable		2.22	1775	4.85	5.13	0.28	3	37 7	27			
3 corner	omer 13.1 3.12 4.775		4.775	4.668	4.96	0.29	3	90		4110		
4 corner	er 13.1 3.59			4.761	5.08	0.32	4	67	11			
4 cable	2.46		4.8	5.07	0.27	3	44					
5	20.8		4.61	4.675	4.99	0.32		1522				
6	2.0.0			5.142	4.40	<u> </u>				L		

Run number	129	DM Sho	st number	264		Date	12/12	/90	Time	14:25		
Connection Mode Description	Single or AC Single tr	apezoid		Total i Inlet Inlet ten	nlet flow pressure nperature	35.341 5.763 4.801	g/s 3 atm K	Bm Tm Bm/Tm 1/Tm	<u>4.5</u> <u>4.5</u> <u>1.0</u>	36 T 1 s 36 T/s 00 1/s	Im Flat top Im/Tm	24 kA 3 s 24.00 kA/s
Waveform Im Im UH UH UH UH		N 1 1 1 1			T1 = T2 = Im =	1 s 3 s 24 kA		Quench 7 Quen	Ye ch detea MC03	s- Coil C xion seq ,VB5-6,	<u>C crossover</u> uence VB1-2, VB	- tum. 3-4,MC01
<b>H</b>		-T2			Tm = 1	1		Quench	ime	1.1	5	
PANCAKE	TIME (s)           MASS FLOW [g/s]           PANCAKE         INLET         OUTLET         INL				TURE [K] OUTLET PEAK	ΔΤ	-	ACL	DSS []	]		
				4.718	5.15	0.43						
	8.681			4.742	5.33	0.59		1879				
2 3 cable		2.545		4.869	5.42	0.55	73	9.6	184 1			
3 corner		3.263	4.801	4.685	5.26	0.58	74	4.5	1.404	8958	0	
4 corner	13.574	3.692		4.779	5.50	0.72	97	5.9	770.9	0,00		
4 cable		2.754		4.819	5.42	0.60	79	4.9	110.0			
5	12 006		4 622	4.578	6.35	1.77		3825				
6	15.080		4.055	4.694	6.18	1.49						

Run number	130	DM Sho	t number	265		Date <u>12/12/90</u> Time <u>14:36</u>							
Connection Mode Description	Single co AC Single tra	Total inlet flow     X g/s       Inlet pressure     5.215 atm       Inlet temperature     4.741 K			Bm Tm Bm/Tm 1/Tm	4.347 T <u>1 s</u> <u>4.347 T/s</u> <u>1.000 1/s</u>	Im Flat top Im/Im	23 kA 13 s 23.00 kA/s					
Waveform Im CORRENT 0		T1 = T2 = Im =	1 s 13 s 23 kA		Quench? <u>Yes- Coil C crossover turn.</u> Quench detection sequence VB5-6,MC03,MC01								
M.	TI	-T2	¶T1 🏲	Tm = T1				Quench time <u>1.3</u> s					
PANCAKE	MASS F	LOW [g/s] OUTLET	INLET	TEMPERATURE [K]				ACLOSS [J]					
12	<b>X</b> .			4.677 4.686	5.09 5.25	0.41 0.56		x					
3 cable 3 corner 4 corner 4 cable	х	X X X X	4.741	4.814 4.625 4.714 4.761	5.36 5.20 5.48 5.40	0.54 0.57 0.77 0.64		x x x x x					
5	х		4.574	4.629 5.112	6.95 6.56	2.32 1.45		X					



Run number	132	DM Sho	t number	281		Date	12/12	/90	Time	15:33			
Connection Mode Description	Single co AC Single tr	apezoid	Total inlet flow43.666 g/sInlet pressure6.166 atmInlet temperature4.336 K			g/s atm K	Bm Tm Bm/Tm 1/Tm	<u>4.3</u> <u>4.3</u> <u>1.0</u>	47 T 1 s 47 T/s 00 1/s	Im. Flat top Im/Tm	23 kA 3 s 23.00 kA/s		
Waveform Im COLKHUI			T1 = T2 = Im =	l = 1 s $2 = 3 s$ $n = 23 kA$ Quench? <u>No</u>									
<b>*</b>	$T1 \rightarrow T2 \rightarrow T1 \rightarrow TIME (s)$				Tm = T1				Quench times				
PANCAKE	MASS F	LOW [g/s] OUTLET	INLET	TEMPERATURE [K]				ACLOSS [J]					
1				4.369	4.63	0.26							
2	8.656			4.316	4.64	0.33	T	1549			7		
	· · · · ·	2.353	1.000	4.499	4.76	0.26	9	03	173				
3 corner	10.50	3.308	4.330	4.282	4.57	0.29	2	70	1,3	7874			
4 corner	13.55	3.71		4.355	4.67	0.32	2	386	M2				
4 cable		2.596		4.429	4.69	0.26	10	656	~~~				
5	21.49		4 152	4.26	4.58	0.32		1110					
6	21.48		4.133	4.814	5.05	0.24							

Run number	133	DM Sho	st number	267		Date	12/12	/90	Time	15:45	,		
Connection Mode Description	Single coil           Mode         AC           Description         Single trapezoid				nlet flow pressure nperature	<u>42.28</u> <u>5.11</u> <u>4.271</u>	g/s atm K	Bm Tm Bm/Tm 1/Tm	<u>4.5</u> <u>4.5</u> <u>1.0</u>	36 T 1 s 36 T/s 00 1/s	Im Flat top Im/Tm	24 3 24.00	kA s kA/s
Waveform Im COLKENT COLKENT		Å			Quench? <u>Yes- Coil C crossover turn.</u> Quench detection sequence MC03,VB5-6,VB1-2,VB3-4,MC01					)1			
•	TI 🛏 TI	-T2	€T1 ►1	Tm = T1				Quench time <u>1.13</u> s					
PANCAKE	MASS F	LOW [g/s] OUTLET	INLET	TEMPERATURE [K]				ACLOSS [J]					
1	9.79			4.301	4.80	0.49							
2	0.40			4.244	4.92	0.67	_ <b>_</b>	1925					
3 cable		2.35	4.271	4.433	5.07	0.63	7	53 1	524				
3 corner	13.2	3.23		4.213	4.90	0.68	7	71		8411			
4 corner	13.2	3.62	3.62	4.277	5.18	0.90		1	912				
4 cable		2.58		4.361	5.11	0.74	1 8	50					
5	20.8		4.086	4.187	6:49	2.30	+	3050					
6				4.749	6.22	1.47							

Run number	134	DM Sho	t number	268		Date	12/12	/90	Time	16:02		
Connection Mode Description	Total i Inlet Inlet ten	niet flow pressure nperature	<u>39.268 g/s</u> <u>6.142 atm</u> <u>4.258 K</u>		E 7 Bm/1 1/1	8m <u>6.(</u> 1m 1m <u>0.4</u> 1m <u>0.(</u>	048 T 11 s 550 T/s 091 1/s	Im Flat top Im/Tm	32 kA 3 s 2.91 kA/s			
Waveform m CORKENT O				T1 = 11 s T2 = 3 s T3 = 0.5 s Im = 32 kA			Quenci	h? <u>N</u>	lo			
	T1-	TIME (s)	12-14-15	Tm = T1				Quench times				
PANCAKE	MASS F	LOW [g/s]	INLET	TEMPERATURE [K]				ACLOSS [J]				
		001		4.281	4.79	0.51				<b>1</b>		
	6.908			4 223	4.88	0.66	+	132	5			
2 2 apple		2 553		4.419	4.96	0.54	57	3.4	-	1		
3 cable		3 331	4.258	4 199	4.78	0.58	62	8.8	1202.2			
5 comer	12.4	3 712		A 262	4.70	0.63	77	21.3		5999	.5	
4 corner		2 866		4 349	4.87	0.52	+	81	1302.3			
4 cable		2.000		A 182	4.07	0.60	+	2169		1		
6	19.96		4.073	4.731	5.20	0.46			-			

Run number	135	DM Sho	ot number	269		Date	12/12	/90	Time	16:14			
Connection Mode Description	Single a AC Single tr	oil apezoid	Total inlet flow     X g/s       Inlet pressure     5.135 atm       Inlet temperature     4.261 K				B T Bm/T 1/T	m <u>5.1</u> m m <u>1.3</u> m <u>0.2</u>	98 T 4 s 00 T/s 50 1/s	Im Flat top Im/Tm	<u>27.5</u> <u>3</u> <u>6.88</u>	kA s kA/s	
Waveform Im CCIKKH	/	A t 1 1 1 1		 	Quench? <u>Yes- Coil C crossover tum.</u> Quench detection sequence VB5-6,MC03,VB3-4,MC01								
<b>!</b> €1	ri <b>&gt;+4</b> Ti	-T2	≤Ti►	Tm = T1				Quench time <u>4.04</u> s					
PANCAKE	MASS F	LOW [g/s] OUTLET	INLET	TEMPERA'	TURE (K) OUTLET PEAK	ΔT	-	ACLOSS [J]					•
1	х			4.309 4.227	4.90 5.08	0.59	1	x					
2 3 cable		x		4.423	5.24	0.82	+	x					
3 corner	v	X	4.261	4.202	5.08	0.88		x					
4 corner	A	X	]	4.264	5.39	1.13		X					
4 cable		X	<u> </u>	4.352	5.30	0.94		X L					
5	X		4.076	4.185 4.735	6.76 6.40	2.58 1.67		<u> </u>					

Run number	136	DM Sho	x number	282		Date	12/12	/90	Time	16:25		
Connection Mode Description	Single co AC Single tr	apezoid	Total inlet flow     24.279 g/s       Inlet pressure     6.074 atm       Inlet temperature     4.268 K			Bm Tm Bm/Tm 1/Tm	<u>5.1</u> <u>1.0</u> <u>0.2</u>	98 T 5 s 40 T/s 00 1/s	Im Flat top Im/Tm	27.5 kA 3 s 5.50 kA/s		
Waveform - ml CURRENT 0	/		Quench ?	<u>N</u>	0							
•	TI 🗖 TI	-T2	TI PI	Tm = T1				Quench times				
PANCAKE	MASS F	LOW [g/s] OUTLET	INLET	IEMPERATURE (K) OUTLET				ACLOSS [J]				
1	6.221			4.301	4.57	0.27		615				
2 3 cable		1.036	4.268	4.429	4.71	0.28	1	14	03			
3 corner	4.426	1.86 2.013		4.208	4.51	0.30	1 2	89 12		2147	,	
4 cable		1.781		4.359	4.64	0.28	1	85	97			
5	13.632		4.083	4.194 4.746	4.54 5.02	0.35		5.52				

Run number	137	_ DM She	ot number	270	•	Date	12/12	2/90	Time	16:38			
Connection Mode Description	nection Single coil Mode <u>AC</u> cription Single trapezoid				inlet flow pressure mperature	<u>42.28 g/s</u> <u>6.074 atm</u> <u>4.267 K</u>		Bm Tm Bm/Tm 1/Tm	<u>3.4</u> <u>17.0</u> <u>5.0</u>	02 T .2 s 010 T/s 000 1/s	Im Flat top Im/Tm	<u>18</u> <u>3</u> 90.00	kA s kA/s
Waveform Im CCUKKEN	/	۸ ۱ ۱ ۱		T1 = 0.2 s $T2 = 3 s$ $Im = 18 kA$ Quench ? <u>No</u>					<u>lo</u>				
	ri 🛏 Ti	-T2	€TI ►	Tm = T1				Quench times					
PANCAKE	MASS F	LOW [g/s] OUTLET	INLET	TEMPERATURE (K)				ACLOSS [J]					
				4.294	4.63	0.33	+				-		
	8.28			4.23	4.66	0.43	1	1014					
3 cable		2.35		4.428	4.77	0.34	3	31	702				
3 corner	12.0	3.23	4.267	4.205	4.58	0.38	3	71		3865			
4 corner	13.2	3.62		4.269	4.68	0.41	4	29	754				
4 cable		2.58		4.355	4.70	0.34	3	25	1.34				
5	20.8		4 081	4.19	4.58	0.39		1398					
6	20.0		4.001	4.736	5.04	0.30							
Run number	138	DM Sh	ot number	271		Date _	12/12	2/90	Time	16:49			
-----------------------------------	-------------------------------------------------------------------------------	-----------------------	------------	----------------------------	---------------------------------------	----------------------------------------------	-----------------	---------------------------	----------------------------------	----------------------------------	-------------------------	------------------------------------------	
Connection Mode Description	Single c AC Single tr	apezoid		Total Inie Iniet ter	inlet flow t pressure mperature	<u>41.99</u> <u>6.098</u> <u>4.266</u>	g/s atm K	Bm Tm Bm/Tm 1/Tm	<u>3.5</u> <u>17.9</u> 5.0	91 T .2 s 55 T/s 00 1/s	Im Fiat top Im/Tm	<u>19 kA</u> <u>3 s</u> 95.00 kA/s	
Waveform Im CURRENT O	/	, , , , ,			T1 = T2 = Im =	0.2 s 3 s 19 kA		Quench ?	<u>N</u>	0			
14	Ti <b>Þr</b>	ME (s)	<b>T</b> 1		Tm = T	'1		Quench tir	ne		<u>s</u>		
PANCAKE	TIME (s)           MASS FLOW [g/s]           INLET         OUTLET         INL				TURE (K) OUTLET PEAK	ΔΤ		ACLO	SS []	]			
1				4.287	4.65	0.36	1				-		
2	8.2			4.229	4.70	0.47		1109					
3 cable		2.39	1.766	4.425	4.80	0.38	3	86 7	80				
3 corner	13 10	3.2	4.200	4.205	4.62	0.41	4	03	<i></i>	4254			
4 corner	13.13	3.63		4.268	4.72	0.45	4	71	25				
4 cable		2.58		4.355	4.73	0.37	3	64 ^{°.}					
5	20.6		4.08	4.189	4.61	0.42		1521			_		
6	2010		1.00	4.735	5.06	0.32							

Run number	139	DM She	st number	272		Date	12/12	2/90	Time	16:59			
Connection Mode Description	Single c AC Single tr	oil apezoid		Total Inle Inlet ter	inlet flow t pressure mperature	<u>42.46</u> <u>6.074</u> <u>4.262</u>	g/s atm K	Bm Tm Bm/Tm 1/Tm	<u>3.7</u> 18.90	80 T .2 s 00 T/s 00 1/s	Im Flat top Im/Tm	<u>20</u> <u>3</u> 100.00	kA s kA/s
Waveform Im CURRHNT	/-	۸ ۱ ۱ ۱			T1 = T2 = Im =	0.2 s 3 s 20 kA		Quench ?	<u>N</u>	<u>.</u>			
*	ri <b>&gt;&gt;4</b> Ti	-T2	€T1 ►1		Tm = 1	<b>F1</b>		Quench ti	me		<u>s</u>		
PANCAKE	MASS F	LOW [g/s] OUTLET	INLET	IEMPERA'	TURE [K] OUTLET PEAK	ΔΤ		ACLO	<b>SS [1</b> ]	1			
1	8 31			4.292	4.69	0.40							
2	0.51			4.228	4.75	0.52		1280					
3 cable		2.45	4.262	4.423	4.84	0.42	4	59 9	11				
3 corner	13.25	3.2	1.202	4.204	4.66	0.46	4	52		4901			
4 corner		3.63		4.267	4.76	0.49	5	28 0	68				
4 cable		2.64		4.353	4.76	0.41	4	40					
5	20.9		4.077	4.188	4.66	0.47	ļ	1742			_		
6				4.736	5.09	0.36	<u> </u>						

Run number	140	DM Sho	t number	273		Detc	12/13	/90	Time 10:20		
Connection Mode Description	Single or AC Single tr	angle		Total ir Inlet Inlet tem	niet flow pressure perature	<u> </u>	<u>( g/s</u> ) atm 7 <u>K</u>	Bm Tm Bm/Tm 1/Tm	0.284 T 5 s 0.057 T/s 0.200 1/s	Im Flat top Im/Tm	1.5 kA 0 s 0.30 kA/s
Waveform Im CONKREMI		\	,	<u>, , , , , , , , , , , , , , , , , , , </u>	T1 = Im =	5 s 1.5 kA		Quench ?	No		
	TIME (s)				Tm = '	T1		Quench tir	me	5	
PANCAKE	TIME (s) MASS FLOW [g/s] PANCAKE INLET OUTLET INLE				URE [K NITLET PEAK	] [ T		ACLO	SS [J]		
12	AKE INLET OUTLET INLET			4.384 4.35				x			
3 cable 3 corner	2			4.495 4.277 4.346	4 38	0.04		x x x			
4 comer 4 cable	x x 4.176		4.42 4.264	7.20			x x				
6	^		4.170	4.799							

Run number	141	DM Sho	ot number	284		Date	12/13	/90	Time 1	0:28		
Connection Mode Description	Single or AC Single tri	angle		Total i Inlet Inlet ten	nlet flow pressure aperature	X 5.885 4.358	g/s atm K	Bm Tm Bm/Tm 1/Tm	0.284 5 0.057 0.200 1	<u>F</u> s Flat <u>T/s</u> Im	Im <u>1</u> . 1 top /Tm <u>0.3</u>	5 kA 0 s 0 kA/s
Waveform Im CURKERNI CO		\		<u></u>	T1 = Im =	5 s 1.5 kA		Quench ?				
	TIME (s)	<b>▶1</b>		-	Tm =	T1		Quench ti	me	<u> </u>		
PANCAKE	MASS FI	LOW [g/s] OUTLET	INLET	INITIAL	TURE [K DUTLET PEAK	.] . ΔT		ACLO	SS [1]			
1	x			4.385 4.351		یہ ہے۔ جنوبی		x				
3 cable 3 corner 4 corner	x	X X X	4.358	4.495 4.278 4.346				x x x				
4 cable 5 6	х		4.176	4.421 4.265 4.8				x   x				

•

Run number	142	DM Sho	st number	285		Date	12/13	/90	Time	10:38		
Connection Mode Description	Single of AC Single tr	apezoid		Total i Inlet Inlet ter	inlet flow pressure nperature	<u>43.56</u> <u>5.885</u> <u>4.361</u>	g/s atm K	Br Tr Bm/Tr 1/Tr	n <u>4.1</u> n n <u>0.8</u> n <u>0.2</u>	58 T 5 s 32 T/s 200 1/s	Im Flat top Im/Tm	22 kA 3 s 4.40 kA/s
Waveform Im COLKENU	/	N     			T1 = T2 = Im =	5 s 3 s 22 kA		Quench	? <u>N</u>	<u>lo</u>		
	TI M	-T2	T1 🏲		Tm = 1	<b>11</b>		Quench	time _		<u></u>	
PANCAKE	TIME (s)			TEMPERA	TURE (K) DUTLET			ACL	OSS []	]	7	
	INLET	OUILEI		INITIAL	PEAK		<u> </u>			r		
	11.17			4.393	4.02	0.22		(7)			_	
2				4.353	4.02	0.20	+	6/1				
3 cable		2.15	4.361	4.495	4.71	0.21		94	443			
3 corner	12.41	3.02	i	4.279	4.52	0.24		49		2643		
4 corner		3.41		4.347	4.60	0.25	6	04	514			
4 cable		2.42		4.422	4.64	0.22	<u>2</u>	10				
5	19.98		4.178	4.255	4.52	0.26	<b>_</b>	1015				
6				4.8	5.01	0.21						

Run number	143	DM Sh	ot number	286		Date	12/13	<u>/90</u>	Time	10:49	) 	
Connection Mode Description	Single c AC Single t	oil apezoid		Total Inici Inict ter	inlet flow t pressure nperature	<u>43.56</u> <u>5.929</u> <u>4.364</u>	g/s atm K	Br Tr Brn/Tr 1/Tr	n <u>4.1</u> n n <u>2.0</u> n <u>0.4</u>	<u>2 s</u> <u>79 T/s</u> 500 1/s	Im Flat top Im/Tm	22 kA 3 s 11.00 kA/s
Waveform - ml CURKHUI - c	/	A 1 1 1 1 1			T1 = T2 = Im =	2 s 3 s 22 kA		Quench	?	lo		
					Tm = 1	<b>1</b> 1		Quench	time		<u>s</u>	
PANCAKE	TIME (s)           MASS FLOW [g/s]           PANCAKE           INI ET				TURE [K] DUTLET		-	ACL	OSS []	r ]		
				4.393	4.64	0.25	+			<b></b>		
	11.17			4.36	4.66	0.30	+	731				
3 cable		2.15		4.5	4.74	0.24	2	09	176			
3 corner		3.02	4.364	4.285	4.55	0.26	2	67	4/0		,	
4 corner	12.41	3.41		4.353	4.64	0.28	3	23	<u> </u>	2837		
4 cable		2.42		4.428	4.67	0.24	2	26	549			
5	10.09		A 181	4.26	4.55	0.29	T	1081	· <u>······</u> ····			
6	17.70		4.101	4.803	5.03	0.23						

Run number	144	DM Sho	t number	291		Date	12/13	/90	Time	11:01		
Connection Mode Description	Single co AC Single tra	apezoid		Total i Inlet Inlet ten	nlet flow pressure aperature	<u>43.71</u> <u>6.002</u> <u>4.367</u>	g/s atm K	Bm Tm Bm/Tm 1/Tm	4.158 1.5 2.772 0.667	T s T/s 1/s	Im Flat top Im/Tm	22 kA 3 s 14.67 kA/s
Waveform mi CINKRENT	/				T1 = T2 = Im =	1.5 s 3 s 22 kA		Quench ?	<u>No</u>	<u></u>		
14	TI	-T2	Ti 🏞		Tm = 1	1		Quench tir	ne		5	
PANCAKE	TIME (s) MASS FLOW [g/s] NLET   OUTLET   NLE				TURE (K) DUTLET PEAK	ΙΔΤ	-	AC LO	SS []]			
				4.401	4.67	0.27	1		T			
	11.23			4.361	4.68	0.32		792			-	
² 3 cable		2.14		4.501	4.76	0.26	2	26	12			
3 corner		3.04	4.367	4.288	4.57	0.28	2	86	12	2012		
4 corner	20mer 12.45 3.44			4.355	4.66	0.30	3	47		3042		
4 cable		2.39		4.431	4.69	0.26	2	42 3	69			
5	00.00		4 105	4.264	4.57	0.30		1149				
6	20.03		4.185	4.808	5.05	0.24						

Run number 145	DM Sh	ot number	292		Date	12/13	/90	Time	11:12		
Connection Single Mode <u>AC</u> Description <u>Single</u>	coil trapezoid		Total i Inlet Inlet ten	inlet flow pressure nperature	<u>43.93</u> <u>6.050</u> <u>4.37</u>	g/s atm K	Bn Tn Bm/Tn 1/Tn	4.1 4.1 5.5 1 <u>1.3</u>	58 T 75 s 644 T/s 133 1/s	Im Flat top Im/Tm	22 kA 3 s 29.33 kA/s
Waveform Im In In In In In In In In In In In In In				T1 = 0. T2 = Im =	75 s 3 s 22 kA		Quench	? <u>N</u>	lo		
in€T1 ≥in€	TIME (s)	<b>≤</b> T1 ►1		Tm = T	1		Quench	time _		8	
PANCAKE MASS	FLOW [g/s]	INLET	TEMPERA'	TURE (K) OUTLET PEAK	ΔΤ		ACL	oss []	[]		
		†	4,404	4.71	0.31						
			4.366	4.74	0.38	1	958				
3 cable	2.16	1	4.505	4.81	0.31	2	95	672	1		
3 corner	3 cable 2.15 4.37			4.62	0.33	3	27	~	3783		
4 corner 12.5	3.43	1	4.36	4.72	0.36	5	72	966			
4 cable	2.39	1	4.434	4.73	0.30	2	94	000			
5		4 190	4.268	4.62	0.35		1337				
6 20.1		4.109	4.81	5.08	0.27						

Run number	146	DM She	ot number	293		Date	12/13	/90	Time	11:22		
Connection Mode Description	Single c AC Single tr	apezoid		Total i Inlet Inlet ter	inlet flow t pressure nperature	<u>43.85</u> <u>6.074</u> <u>4.371</u>	g/s atm K	Bm Tm Bm/Tm 1/Tm	<u>4.1</u> <u>8.3</u> <u>2.0</u>	58 T .5 s 16 T/s 00 1/s	Im Flat top Im/Tm	22 kA 3 s 44.00 kA/s
Waveform Int CURRENT	/:	)           			T1 = T2 = Im =	0.5 s 3 s 22 kA		Quench ?	<u>N</u>	<u>o</u>		
<b>*</b>	TI M	-12	■T1 ►1		Tm = 1	<b>F1</b>		Quench ti	me		5	
PANCAKE	TIME (s) MASS FLOW [g/s] ANCAKE INLET OUTLET INLE				TURE (K) OUTLET PEAK	ΔΤ	-	ACLO	NSS []	]		
1	11.27			4.404	4.75	0.35		1117			$\square$	
2 3 cable		2 22		4.300	4.80	0.45	- 3	64				
3 corner	3 cable         2.22         4.37           3 corner         2.98         4.37			4.292	4.67	0.38	3	67 7	31	1160		
4 corner	omer 12.48 3.42			4.36	4.77	0.41	4	47	21	4407		
4 cable		2.46		4.435	4.78	0.34	3	74		•		
5	20.1		4.191	4.269	4.66	0.39	<b>_</b>	1800			<b></b>	
6				4.81	5.11	0.30						

Run number	147	DM Sh	ot number	294		Dete	12/13	3/90	Time <u>11:</u>	33	
Connection Mode Description	Single c AC Single tr	oil apezoid		Total Inlet Inlet ter	inlet flow t pressure nperature	<u> </u>	g/s atm K	Bm Tm Bm/Tm 1/Tm	<u>4.158 T</u> <u>.3 s</u> <u>13.860 T/</u> <u>3.333 1/s</u>	Im Flat top /s Im/Tm	22 kA 3 s 73.33 kA/s
Waveform Im CURRENT CURRENT		, , , , , ,			T1 = T2 = Im =	0.3 s 3 s 22 kA		Quench ? Quenc	<u>Yes- Coi</u> th detection s VB3-4,MC0	l C initiated f equence 2,MC01	rom joint.
	ri 🍽 Ti	-12 <b>&gt;</b> IME (s)	TIP		Tm = 1	'1		Quench ti	me	<u> </u>	
PANCAKE	MASS F	LOW [g/s] OUTLET	INLET	IEMPERA'	TURE (K) DUTLET PEAK	ΔT		ACLO	SS [1]		
1	x			4.401 4.368	4.90 5.01	0.50 0.64		x			
3 cable 3 corner	v	X X	4.372	4.521 4.31	33.20 14.15	28.68 9.84		x x			
4 corner 4 cable	Λ	X X		4.361 4.435	4.99 4.96	0.63 0.53		x x			
5 6	x		4.191	4.27 4.806	4.85 5.22	0.58 0.42		x			

Run number	148	DM Sho	t number	287		Detc	12/13	/90	Time	11:48		
Connection Mode Description	Single or AC Single tr	apezoid		Total i Inlet Inlet ten	nlet flow pressure nperature	X 5.124 4.375	g/s atm K	Br Tr Brn/Tr 1/Tr	n <u>3.9</u> n <u>19.8</u> n <u>5.0</u>	69 T .2 s 45 T/s 00 1/s	Im Flat top Im/Tm	21 kA 3 s 105.00 kA/s
Waveform Im CUKKENUL	/				T1 = ( T2 = Im =	0.2 s 3 s 21 kA		Quench Que	? <u>Ye</u> nch deter VB3-4	s- <u>Coil C</u> zion seq ,VB1-2,	initiated f uence MC02,MC	rom joint
14		-T2 ME (s)	TI		Tm = T	1		Quench	time		5	
PANCAKE	MASS F	LOW [g/s] OUTLET	INLET		TURE [K] DUTLET PEAK	ΔΤ		ACL	055 []	]		
1				4.403	4.91	0.51						
2	х			4.368	5.02	0.65		Х				
3 cable		X	1 375	4.519	37.00	32.48		X				
3 corner	corner X 4.3.				15.35	11.04	:	x				
4 corner	4	X		4.358	4.98	0.62		x				
4 cable		X		4.437	4.96	0.52		x j				
5	x		4.193	4.27	4.85	0.58	<u> </u>	<u>X</u>				
6			L	4.009	3.23	0.42	<u> </u>			L		

Run number	149	DM Sho	x number	288		Date	12/13	/90	Time	13:16		
Connection Mode Description	Single of AC Single tr	apezoid		Total i Inlet Inlet ter	inlet flow pressure mperature	<u>43.5</u> <u>6.05</u> <u>4.37</u>	7 <u>g/s</u> 0_aatm 1_K	Bn Tn Bm/Tn 1/Tn	$\frac{2.8}{14.1}$	<u>335 T</u> .2 s 175 T/s 000 1/s	Im Flat top Im/Tm	<u>15 kA</u> <u>3 s</u> 75.00 kA/s
Waveform Im CULKEN	/	۸ ۱ ۱ ۱			T1 = T2 = Im =	0.2 s 3 s 15 kA		Quench	? <u> </u>	ło		
	ri <b>&gt; d</b> Ti	-T2	€T1 ►1		Tm = 1	71		Quench	time		<u>s</u>	
PANCAKE	MASS F	LOW [g/s] OUTLET	INLET	TEMPERA'	TURE [K] OUTLET PEAK	ΔT		ACL	oss [:	]		
				4.396	4.67	0.27						
2	11.21			4.363	4.68	0.32		779.1				
3 cable		2.09	4 271	4.505	4.76	0.26	2	.18	78.3	1		
3 corner	17 46	2.96	4.3/1	4.292	4.57	0.28	26	60.3		2857.	8	
4 corner	12.43	3.371		4.359	4.66	0.30	31	6.9	42 A	]	-	
4 cable		2.351		4.435	4.68	0.25	22	26.5	43.4	J	1	
5	10.01		4 101	4.268	4.56	0.29		1057				
6	17.71		4.171	4.803	5.03	0.23				<u> </u>		

Run number	150	DM Sho	t number	289		Date	12/13/	90	Time	13:27		
Connection Mode Description	Two-ste	o trapezoid		Total i Inlet Inlet ten	inlet flow pressure nperature	40.864 6.074 4.369	g/s atm K	Bm Tm Bm/Tm 1/Tm	<u>5.1</u> <u>1.7</u> <u>0.3</u>	03 T 3 s 01 T/s 33 1/s	Im Flat top Im/Tm	27 kA 3 s 9.00 kA/s
Waveform . mi . omI NJ . criticular . critic	/:				T1 = T2 = T3 = T4 = T5 = Im = Imo =	1 s 1 s 1 s 3 s 1 s 22 kA 27 kA		Quench ?	<u>N</u>	0		
	T1 12	TIME (s	)	15	Tm = 1	T1+T2+T3		Quench ti	me		8	
PANCAKE	MASS F	LOW [g/s]		TEMPERA	TURE (K) OUTLET			ACLO	ss []	]	1	
	INLET	OUILET	UNLEST	INITIAL	PEAK	ΔT						
1	9.504			4.401	4.77	0.37	<u> </u>					
2	7.504			4.365	4.81	0.45		968.9				
3 cable		2.179	4 369	4.506	4.87	0.36	34	5.3 74	4.7		I	
3 corner	11.26	3.012	4.509	4.29	4.69	0.40	39	9.4		4141.4	•	
4 corner	11.50	3.399		4.358	4.78	0.42	47	9.7	4.9			
4 cable		2.409		4.435	4.79	0.36	35	5.1	4.0			
5	20		4 190	4.266	4.68	0.41		1593				
6	20		4.189	4.805	5.13	0.32						



## January 1992

Run numbe	r <u>152</u>	DM Sh	ot number	295		Date	12/13	/90	Time	13:49		
Connectior Mod Description	Single c AC Two-ste	oil  p trapezoid		Total Inle Inlet ter	inlet flow t pressure mperature	<u>22.917</u> <u>5.184</u> <u>4.374</u>	g/s atm K	Bm Tm Bm/Tm 1/Tm	<u>5.0</u>	570 T 2 s 335 T/s 500 1/s	Im Flat top Im/Tm	30 kA 3 s 15.00 kA/s
Waveform Im omI NL CCKKE NL O CCK CCK CCK CC CCK CC CC CC CC CC CC CC			T4-DI	TS	T1 = 0 T2 = T3 = 0 T4 = T5 = Im = Imo =	.73 s 1 s .27 s 3 s 1 s 22 kA 30 kA		Quench ? Quen	' <u>Ye</u> ch dete VB5-4	<u>es- Coil C</u> ction sequ 5,MC03, V	ence VB3-4,MC	tum. 202,MC01
		TIME (s	)		111-1	1712713		Quench t	ime _	1.97	<u></u>	
	MASS F	LOW [g/s]		TEMPERA	TURE [K]			4010			7	
PANCAKE	INLET	OUTLET	INLET	INITIAL	PEAK	ΔΤ		ACIX	72 (1	1		
1	9.25			4.4	5.20	0.80						
2				4.37	5.63	1.26		3020				
3 cable		3.166	4.374	4.501	6.57	2.07	33	73 6	828			
3 corner	corner 5.641 3.63 4.574			4.3	6.44	2.14	34	55		31373		
4 corner	orner 3.763			4.364	7.43	3.07	57	86 10	600			
4 cable	le 3.635			4.445	6.87	2.43	49	13				
5	8.026 4.194			4.27	9.70	5.43		10826				
6				4.7	7.32	2.62						



Run number	154	DM Sho	t number	297		Date	12/13/9	<u>xo</u>	Time	14:15		
Connection Mode Description	Single co AC Two-ster	vil o trapezoid		Total i Inlet Inlet ten	nlet flow pressure nperature	27.288 5.038 4.382	g/s stm K	Bm Tm Bm/Tm 1/Tm	<u>5.6</u> <u>4.</u> <u>1.2</u> 0.2	70 T 47 s 68 T/s 24 1/s	Im Flat top Im/I'm	30 kA 3 s 6.71 kA/s
Waveform Im - om COKKENU - om C	121 T1		-T4-	T5 🕶	T1 = 0. T2 = T3 = 0. T4 = T5 = Im = Imo = Tm = T	73 s 3 s 75 s 3 s 1 s 22 kA 30 kA 1+T2+T3		Quench 7 Quen	Yes ch detec VB5-6	s- Coils ] ction sequ i,VB3-4, 4.42	B and C c ience MC02, M	rossover turns. C03
		I LIVIE (S	,					<u> </u>	-			
	MASS F	LOW [g/s]		TEMPERA	TURE [K]				000 ( 7	1	7	
PANCAKE	INLET	OUTLET	INLET	INITIAL.	PEAK	AT		ACL	722 [1	1		
				4.421	5.22	0.79	<u> </u>					
2	11.759			4.379	5.83	1.45	1	4768				
3 cable		3.185	4 2 0 2	4.523	8.22	3.70	100	41 2	1494		· ·	
3 corner	1.640	3.455	4.382	4.306	8.97	4.66	114	53		5918	4	
4 corner	4.549 3.502			4.368	9.90	5.53	122	.00	2031			
4 cable		3.572			7.52	3.08	98	31 4				
5	10.98		4.201	4.281	7.82	3.54	<u> </u>	10891				
6	10.70		4.201	4.827	6.69	1.86				l		



Run number	156	DM Sho	ot number	299		Date	12/13	/90	Time	14:42	·	
Connection Mode Description	Single co AC Single tr	apezoid		Total i Inlet Inlet ter	inlet flow pressure nperature	<u>35.064</u> <u>5.106</u> <u>4.375</u>	g/s atm K	Bm Tm Bm/Tm 1/Tm	<u>5.2</u> <u>1.1</u> <u>0.2</u>	92 T 1.5 s 76 T/s 22 1/s	Im Flat top Im/Tm	28 kA 3 s 6.22 kA/s
					T1 = T2 = Im =	4.5 s 3 s 28 kA		Quench ? Quenc	<u>Ye</u> h detec MC03	<u>r Coil C</u> tion sequ ,VB5-6,	erossover ience VB1-2,MC	- turn
					Tm = 1	'1		Quench tir	ne	4.56	5	
PANCAKE	MASS F	LOW [g/s]	•	IEMPERA	TURE [K]		-	ACLO	ss []	]		
(ALICARL)	INLET	OUTLET	INLET	INITIAL	PEAK	ΔΤ			-	_		
1	12.48			4.4	5.04	0.64						
2	14.70			4.369	5.27	0.90		2800				
3 cable		2.298	1 275	4.51	5.35	0.84	87	1.3 182	29.9			
3 corner	14 163	3	575	4.296	5.19	0.89	95	8.6		11904.	.9	
4 corner	14.103	3.493		4.364	5.49	1.13	14	104	64		-	
4 cable		2.593		4.441	5.38	0.94	10	24	KV4			
5	8 421		A 10A	4.27	6.86	2.59		4811				
6	0.421		4.174	4.812	6.43	1.62						

Run number	157	DM She	ot number	300		Date	12/13	/90	Time	15:53		
Connection Mode Description	Single c AC Single tr	oil apezoid		Total Inici Inict ter	inlet flow t pressure nperature	<u>41.8</u> <u>6.002</u> <u>4.375</u>	g/s atm K	Br Tr Brn/Tr 1/Tr	n <u>5.2</u> n n <u>0.8</u> n <u>0.1</u>	292 T 6 s 382 T/s 167 1/s	Im Flat top Im/Tm	28 kA 3 s 4.67 kA/s
Waveform m CCIKRENT	/	A 1 1 1 1			T1 = T2 = Im =	6 s 3 s 28 kA		Quench	?	10		
1					Tm = 1	<u>-1</u>		Quench	time		<u>s</u>	
	MASS F			TEMPERA	TURE [K]						-	
PANCAKE	INT ET		INLET		OUTLET		7	ACL	OSS []	[]		
	INLOI	COLLEI		INITIAL	PEAK		<u> </u>			r		
	10.5			4.407	4.05	0.27		002 •				
$\frac{2}{2}$				4.51	4.70	0.33	╇	503.1		1		
3 cable		2.265	4.375	4.514	4.79	0.27	$\frac{2}{1}$	5/	576		1	
3 corner	12.17	3.048		4.298	4.59	0.30	<u>  3</u>	19		3240.	1	
4 corner		3.404		4.362	4.68	0.32	3	78	644			
4 cable		2.423		4.442	4.71	0.27	2	66		1		
5	19.13		4.196	4.275	4.60	0.33	Į	1217		L		
6				4.818	5.08	0.26	1			<u> </u>		

Run number	158	DM Sho	ot number	301		Date	12/13	/90	Time	15:04		
Connection Mode Description	Single of AC Single tr	bil apezoid		Total i Inlet Inlet ten	inlet flow pressure nperature	42.95 6.050 4.371	g/s atm K	Bo Tn Bon/Tn 1/To	<u>5.2</u> <u>1.0</u> <u>0.2</u>	92 T 5 s 58 T/s 00 1/s	Im Flat top Im/Tm	28 kA 3 s 5.60 kA/s
Waveform Im COLKEENT	/	N 1 1 1			T1 = T2 = Im =	5 s 3 s 28 kA		Quench '	<u> </u>	<u>o</u>		
14					Tm = 1	'1		Quench	ime		<u>s</u>	
PANCAKE	MASS F	INLET		TURE (K) DUTLET PEAK	ΙΔΤ		ACL	USS []	]			
				4.401	4.68	0.28	1				-1	
2	10.9			4.364	4.70	0.34	1	835.4			-1	
3 cable		2.222		4.507	4.78	0.28	2	50	561			
3 corner	10.05	2.987	4.371	4.292	4.59	0.30	3	11	501	3267	4	
4 corner	iomer 12.35 3.334			4.358	4.68	0.32	3	72	620	5201.	·	
4 cable		2.354		4.437	4.71	0.27	2	57	029			
5	19.7		A 10	4.268	4.60	0.33		1242				
6	17.7		4.13	4.808	5.07	0.26						

Run number	159	DM Sho	x number	302		Date	12/13	/90	Time	15:25			
Connection Mode Description	Single of AC Single tr	apezoid		Total i Inlet Inlet ter	inlet flow pressure nperature	38.851 5.239 4.368	g/s atm K	Bm/ 1/	Bm <u>5.4</u> Tm Tm <u>0.8</u> Tm <u>0.1</u>	181 T 6.5 s 343 T/s 154 1/s	Im Flat top Im/Tm	<u>29</u> <u>3</u> <u>4.46</u>	kA s kA/s
Waveform Im COLKRENT					T1 = T2 = Im =	6.5 s 3 s 29 kA		Queno	ch? <u>Ye</u> uench dete VB5-1	s- Coil C ction seq 5,MC03,1	<u>crossover</u> uence MC01	turn.	
	$0 \xrightarrow{T_1 \rightarrow - T_2} T_2 \rightarrow - T_1 \rightarrow - T$				Tm = 1	'1		Quen	ch time	6.61	<u> </u>		
PANCAKE	TIME (s) MASS FLOW [g/s] ANCAKE INLET OUTLET INL			TEMPERAT	TURE (K) OUTLET PEAK	ΔΤ	-	AC	LOSS []	]			
1	0.207			4.4	5.08	0.68							:
2	9.201			4.358	5.33	0.97		221	.7				
3 cable		2.529	4 368	4.504	5.42	0.91	10	)43	2160				
3 corner	11 280	3.139	4.500	4.29	5.26	0.97	11	17		2368	1		
4 corner	11.207	3.558		4.352	5.65	1.30	17	700	3063				
4 cable		2.829		4.433	5.52	1.09	13	363					
5	18.355		4.186	4.267	7.80	3.53	<b>_</b>	162	41				
6				4.805	6.84	2.04	L			l			

Run number	160	DM Sh	ot number	303		Date _	12/13	/90	Time	15:36			
Connection Mode Description	Single c AC Single tr	oil apezoid		Totai Inle Inlet tea	inlet flow t pressure nperature	<u>39.394</u> <u>5.977</u> <u>4.379</u>	g/s atm K	Bm Tm Bm/Tm 1/Tm	<u>5.4</u> <u>0.6</u> 0.1	81 T 8 s 85 T/s 25 1/s	Im Flat top Im/Tm	29 3 3.63	kA s kA/s
Waveform - ml COLKENT	Waveform				T1 = T2 = Im =	8 s 3 s 29 kA		Quench ?	<u>N</u>	0			
r t					Tm = 1	<b>.</b>		Quench tir	ne		5		
PANCAKE	TIME (s) MASS FLOW [g/s]			TEMPERA'	TURE (K) OUTLET	LAT		ACLO	t] 22	]			
1				4.409	4.78	0.37	+		T				
2	9.504			4.372	4.83	0.46	1	996.5					
3 cable		2.448		4.516	4.89	0.37	38	4.7			1		
3 corner	11.26	3.138	4.379	4.3	4.71	0.41	43	5.4 82	0.1	1267.	,		
4 corner	11.36	3.544		4.367	4.80	0.43	52	4.8		4207.	´		
4 cable		2.729		4.443	4.81	0.37	40	5.3 93	0.1				
5	18 53		4.2	4.278	4.70	0.42		1521					
6	10.22		*.2	4.822	5.15	0.33					]		

Run number	161	DM Sh	ot number	304		Date	12/13	3/90	Tim	e <u>15:46</u>	i <u> </u>	
Connection Mode Description	Single c AC Single to	oil  apezoid	••••••••••••••••••••••••••••••••••••••	Total Inle Inlet ter	inlet flow t pressure mperature	<u>39.025</u> <u>5.117</u> <u>4.374</u>	i <u>g/s</u> / <u>atm</u> K	Ba Ti Ban/Ti 1/Ti	n <u>5.</u> n <u>0.</u> n <u>0.</u>	481 T 7 s 783 T/s 143 1/s	Im Flat top Im/Tm	29 kA 3 s 4.14 kA/s
Waveform Im COKKHUL	TIME (s)				T1 = T2 = Im =	7 s 3 s 29 kA		Quench Que	? <u>Y</u> nch dete VB5-	es- Coil C ection seq 6,MC03,1	C crossover uence MC01	<u>tum.</u>
					Tm = 1	71		Quench	time _	7.16	5	
PANCAKE	NCAKE MASS FLOW [g/s] INLET OUTLET INL		INLET	IEMPERA'	TURE (K) OUTLET PEAK	ΔT		ACL	OSS [	1]		
1	9.326			4.398	5.09	0.69						
2				4.364	5.34	0.98		2304		4		
3 capie		2.48/	4.374	4.309	5.43	0.92	1	145	2161			
4 corner	11.36	3.533		4.362	5.66	1.30	17	34		24494	•	
4 cable		2.796		4.432	5.54	1.10	13	75	3109			
5	10 220		4 100	4.268	7.98	3.71	+	16920		1		
6	18.339		4.193	4.806	6.82	2.01	T					

Run number	162	DM Sho	st number	305		Date	12/13	/90	Time	15:57		
Connection Mode Description	Single of AC Two trap	bil Dezoid		Total i Inlet Inlet ter	inlet flow pressure nperature	<u>43.42</u> <u>5.953</u> <u>4.376</u>	g/s BE	Bm Tm Bm/Tm 1/Tm	<u>2.2</u> <u>4.5</u> <u>2.0</u>	<u>.5 s</u> <u>.36 T/s</u> 00 1/s	Im Flat top Im/Tm	12 kA 3 s 24.00 kA/s
					T1 = 1 T2 = Im = Iu =	0.5 s 3 s 12 kA 1 kA		Quench ?	<u>N</u>	0		3
		TIME (s)			1 m = 1	1		Quench ti	me _		<u>s</u>	
PANCAKE	MASS F	LOW [g/s] OUTLET	INLET	TEMPERA'	TURE (K) DUTLET PEAK	ΔΤ		ACLO	ISS []	]		
1				4.402	4.69	0.29						
2	11.14			4.37	4.70	0.33		846				
3 cable		2.13	A 376	4.514	4.78	0.26	22	25.2 40	98.4			
3 corner	17 48	2.929	4.570	4.299	4.59	0.29	27	3.2		3091.	6	
4 corner	12.40	3.364		4.366	4.68	0.31	33	7.3	12.2			
4 cable		2.356		4.444	4.70	0.26	23	4.9	2.2			
5	19.8		4,198	4.275	4.60	0.32		1175				
6	17.0			4.822	5.08	0.26						

Run number	163	DM Sh	ot number	306		Date	12/13	/90	Time	16:08		
Connection Mode Description	Single c AC Double t	oil rapezoid		Total i Inlet Inlet ter	inlet flow pressure nperature	<u>43.18</u> <u>6.002</u> <u>4.369</u>	g/s atm K	Bm Tm Bm/Tm 1/Tm	<u>3.4</u> 6.8 2.0	02 T .5 s 04 T/s 00 1/s	Im Flat top Im/Tm	18 kA 3 s 36.00 kA/s
Waveform Im U U U U U U U U					T1 = T2 = Im = Iu =	0.5 s 3 s 18 kA 1 kA		Quench 7	• <u> </u>	<u>o</u>		
		TIME (s)			1m – 1	*		Quench	ine		<u> </u>	
PANCAKE	MASS F	LOW [g/s] OUTLET	INLET	TEMPERA'	TURE [K] DUTLET PEAK	·		ACLO	U3 22C	3		
1	10.90			4.397	4.85	0.46						
2	10.69			4.361	4.92	0.56		1483				
3 cable		2.18	1 360	4.509	4.97	0.46	45	4.8	947			
3 comer	12 41	2.931	7.303	4.291	4.79	0.50	49	2.2		5533.	8	
4 corner	12.41	3.383		4.36	4.89	0.53	60	0.3	156.8		-	
4 cable		2.376		4.437	4.88	0.44	45	6.5			l	
5	19.88		4 189	4.268	4.79	0.52		2047				
6	17.00	<u> </u>	7.107	4.808	5.21	0.40						

•

Run number	164	DM She	x number	307		Datc	12/13	/90	Time	16:18		
Connection Mode Description	Single of AC	oil rapezoid		Total i Inici Inict ter	inlet flow pressure nperature	<u>43.32</u> <u>6.026</u> <u>4.37</u>	g/s atm K	Ban/Ti Ban/Ti 1/Ti	m <u>3.7</u> m m <u>7.4</u> m <u>2.(</u>	/80 T .5 s 660 T/s 100 1/s	Im Flat top Im/Tm	20 kA 3 s 40.00 kA/s
Waveform Im CINKK UI UI C					T1 = ( T2 = Im = Iu =	0.5 s 3 s 20 kA 1 kA		Quench	? <u>r</u>	lo		
	1	TIME (s)		11	Tm = T	1		Quench	time		<u>s</u>	
PANCAKE	MASS F	LOW [g/s] OUTLET	INLET	IEMPERA'	TURE (K) OUTLET PEAK	ΔŤ		ACI	.oss [1	]		
1	10.05			4.403	4.92	0.52						
2	10.95			4.365	5.03	0.66		1857				×.
3 cable		2.326	4 37	4.51	5.05	0.54	62	8.9	215.9			
3 corner	12 42	2.935	4.27	4.293	4.88	0.58	5	87		6865.9		
4 corner	14.74	3.389		4.361	4.99	0.62	7	24	1337			
4 cable		2.473		4.439	4.96	0.52	6	13				
5	19.95		4,192	4.269	4.87	0.60	ļ	2456				
6				4.81	5.27	0.46						

Run number	165	DM Sho	ot number	308		Date	12/13	/90	Time	16:29		
Connection Mode Description	Single of AC Double t	oil rapezoid		Total Inlet Inlet ter	inlet flow pressure nperature	40.162 5.191 4.375	g/s atm K	Bm Tm Bm/Tm 1/Tm	<u>4.1</u> <u>8.3</u> <u>2.0</u>	<u>.5 s</u> <u>.5 s</u> <u>16 T/s</u> 000 1/s	Im Flat top Im/Tm	22 kA 3 s 44.00 kA/s
Waveform Im CILIKIENI					T1 = T2 = Im = Iu =	0.5 s 3 s 22 kA 1 kA		Quench ? Quen	<u>Ye</u> ch dete Quenc VB5-0	<u>s- Coils ]</u> joints. ction sequer b, sequer 5, VB1-2	B and C ini uence nce? , MC02, M	tiated from
T	12	TI TI TIME (s)	12	T1	Tm = 1	71		Quench t	ime _	<u></u>	<u>s</u>	
PANCAKE	MASS F	LOW [g/s] OUTLET	INLET	TEMPERA'	TURE (K) OUTLET PEAK	ΔΤ		ACLO	oss []	[]		
				4.395	5.12	0.73	1			[		
2	10.209			4.363	5.30	0.94	1	2668			-1	
3 cable		2.58	4.275	4.502	5.29	0.79	11	72 20	39.4			
3 corner	11 040	2.943	4.373	4.295	5.12	0.83	86	7.4	w7.17	58166	4	
4 corner	11.848	3.279		4.361	5.25	0.88	10	31	120	50100		
4 cable		2.601		4.44	5.19	0.75	10	89 4	140		[	
5	18 105		4 195	4.264				51339				
6	10.105			4.809	5.42	0.61	<u> </u>					

Run number	166	DM Sho	st number	309		Date	12/13	/90	Time	16:39		
Connection Mode Description	Single or AC Triple tr	pezoid		Total i Inlet Inlet ter	inlet flow pressure nperature	<u>43.35</u> <u>6.026</u> <u>4.381</u>	g/s atm K	B T Bm/T 1/T	m <u>2.2</u> m <u> </u>	<u>68 T</u> .5 s 36 T/s 00 1/s	Im Flat top Im/Tm	12 kA 3 s 24.00 kA/s
Waveform Im Ju Ju Ti				Tit	T1 = T2 = Im = Iu = Tm = T	0.5 s 3 s 12 kA 1 kA		Quench	? <u>N</u>	o	5	
				TEMPERA			l					
PANCAKE	MASS F	.OW [g/s]	DUTET		OUTLET		1	ACI	loss []	]		
	INLET	OUTLET	INLEI	INITIAL	PEAK	ΔΤ	<u> </u>					
1	10.82			4.413	4,79	0.38	<u> </u>					
2				4.369	4.83	0.46	ļ	1182				
3 cable		2.15	4.381	4.517	4.89	0.37	3	25	724		1	
3 corner	12.53	3		4.3	4.70	0.40	3	99		2389		
4 comer		3.4		4.369	4.80	0.43	4	83	483		1	
4 cable		2.35		X		· · · ·		x L				
5	20		4.2	4.283	4.72	0.44		X				
6	20		7.4	4.818	5.17	0.35						

Run number	167	DM She	ot number	310		Detc_	12/13	/90	Time	16:50		
Connection Mode Description	Single c AC Triple tr	apezoid		Total : Inlet Inlet ter	iniet flow t pressure nperature	<u>43.5</u> <u>6.074</u> <u>4.372</u>	g/s atm K	Br Tr Brn/Tr . 1/Tr	n <u>3.4</u> n n <u>6.8</u> n <u>2.0</u>	102 T .5 s 304 T/s 200 1/s	Im Flat top Im/Tm	18 kA 3 s 36.00 kA/s
Waveform Im LN U U U U U U U U U U U U				TII	T1 = T2 = Im = Iu =	0.5 s 3 s 18 kA 1 kA		Quench	? <u> </u>	lo		
•	T2	T2 TIME (s)	T2		Tm = T	'1		Quench	time _		<u>s</u>	
PANCAKE	MASS F	LOW [g/s] OUTLET	INLET	TEMPERA	TURE (K) OUTLET PEAK	ΔT		ACL	OSS []	[]		
				4.4	5.03	0.63	1					
$\frac{1}{2}$	10.9			4.363	5.16	0.80	1	2269			-1	
3 cable		2.35	4.959	4.509	5.16	0.65	7	45	1525			
3 corner	10.6	3.15	4.372	4.294	4.99	0.69	7	80		8510		
4 corner	12.5	3.47		4.362	5.11	0.74	9	17	1601			
4 cable		2.6		4.438	5.07	0.63	7	74	1091			
5	20.1		4 102	4.27	5.00	0.73		3025				
6	20.1		4,172	4.809	5.37	0.56						

Run number	168	_ DM She	ot number	311		Date	12/13	/90	Time	17:00	) 		
Connection Mode Description	Single of AC Triple tr	apezoid		Total Inici Inici ter	inlet flow pressure nperature	X 5.178 4.375	g/s atm K	Bi Ti Bm/Ti 1/Ti	m <u>3.7</u> m <u>7.9</u> m <u>7.9</u>	/80 T .5 s i60 T/s i00 1/s	Im Flat top Im/Tm	<u>20</u> 3 40.00	kA s kA/s
Waveform Im U U U U U U U U U U U U U U U U U U				TI	T1 = T2 = Im = Iu =	0.5 s 3 s 20 kA 1 kA		Quench Que	? <u>Ye</u> nch dete VB5-0	<u>s- Coils</u> joints. ction seq 5, VB3-4	B and C in uence ,VB1-2,M	itiated fro	<u>a_</u>
		TIME (s)	1		1m=1	1		Quench	time _		<u>s</u>		
PANCAKE	MASS F	LOW [g/s] OUTLET	INLET	TEMPERA'	TURE (K) OUTLET PEAK	ΔT		ACI	.OSS []	]			
1	x			4.405	5.21	0.80							
2				4.364	5.39	1.02	ļ	<u>X</u>					
3 cable		X	4.375	4.496	6.00	0.00		X					
3 comer	х	A X		4.250	5.20	0.96		<u>}</u>					
4 cable		X		4.442	5.26	0.82		x					
5	v		4 104	4.286			<u> </u>	X					
6	X		4.194	4.816	5.50	0.68							

Run number	169	DM Sh	ot number	312		Date	12/14	/90	Time 10:07	,	
Connection Mode Description	Single c AC Single tr	oil iangle		Total i Inlet Inlet ten	niet flow pressure nperature	X 	g/s atm K	Bm Tm Bm/Tm 1/Tm	0.284 T 5 s 0.057 T/s 0.200 1/s	Im Flat top Im/Tm	1.5 kA 0 s 0.30 kA/s
Waveform Im Lu C C C C					T1 = Im =	5 s 1.5 kA		Quench?	No		
		<b>►</b>			Tm = 1	<b>71</b>		Quench ti	me	<u> </u>	
PANCAKE	MASS F	LOW [g/s] OUTLET	INLET	TEMPERAT	TURE [K] DUTLET PEAK	ΔT		ACLO	SS [1]		
12	x			4.42 4.386		and a second sec	-	x			
3 cable 3 corner 4 corner	x	X X X	4.395	4.534 4.319 4.392	4.43	0.04		x x x			
4 cable 5 6	х		4.215	4.403 4.299 4.845				x   X			

Run number	170	DM Sho	t number	313		Detc	12/14	/90	Time	10:14		
Connection Mode Description	Single co AC Single tri	il angle		Total in Inlet Inlet ten	nlet flow pressure aperature	<u> </u>	g/s atm K	Bm Tm Bm/Tm 1/Tm	0.28 0.05 0.20	4 T 5 s 7 T/s 0 1/s	Im Flat top Im/Tm	<u>    1.5  kA                                  </u>
Waveform m CNKRENT		\	,		T1 = Im =	5 s 1.5 kA		Quench ?	<u>No</u>			
					<b>Tm =</b> 1	Г1		Quench	ime		<u> </u>	
PANCAKE	MASS FI	LOW [g/s] OUTLET	INLET	TEMPERAT	TURE [K SUTLET PEAK	] 	4	ACL	OSS []]			
1 2	х			4.426 4.39				x				
3 cable 3 corner 4 corner 4 cable	x	X X X X	4.398	4.539 4.324 4.397 4.468				x x x x x				<i>.</i> .
5	х		4.219	4.304 4.847				X				

Run number	171	DM Sho	t number	<u>x</u>		Date	12/14	/90	Time 10:22	2	
Connection Mode Description	Single $\propto$ AC Quadrup	bil le trapezoid		Total i Inlet Inlet ten	niet flow pressure aperature	<u> </u>	g/s atm K	Bm Tm Bm/Tm 1/Tm	2.268 T .5 s 4.536 T/s 2.000 1/s	Im Flat top Im/Tm	12 kA 2 s 24.00 kA/s
Waveform Im Im Iu U U U U U U U U U U U U U U U U U U		172 173714		1 1 1 1 1 1 1 1 1 1 1 1	T1 = T2 = Im = Iu =	0.5 s 2 s 12 kA 1 kA		Quench ?	<u>No</u>		
		TIME (s	5)		1111	11		Quench	me		
PANCAKE-	MASS F	LOW [g/s] OUTLET	INLET	IEMPERA'	TURE (K DUTLET PEAK	] 		ACLO	SS [1]		
1	x			X X			$\left  - \right $	x			
3 cable 3 corner 4 corner	x	X X X	4.397	X X X				x x x x			
4 cable 5 6	x		4.218	X X				<u>x</u>			

Run number	172	DM Sh	ot number	314		Date	12/14	/90	Time	10:28		
Connection Mode Description	Single co AC Quadrup	oil de trapezoid		Total Inici Inict ter	inlet flow t pressure mperature	45.3 6.118 4.397	g/s atm K	Bm Tm Bm/Tm 1/Tm	<u>2.2</u> <u>4.4</u> <u>2.0</u>	268 T .5 s 536 T/s 000 1/s	Im Flat top Im/Tm	12 kA 2 s 24.00 kA/s
Waveform m In U U U U U U U U U						Quench ?	<u>_N</u>	īo				
		TIME (s	1)		Tm = 1	1		Quench ti	me _		5	
PANCAKE	MASS FI	LOW [g/s] OUTLET	INLET		TURE (K) OUTLET		4	ACLO	I 22	]		
	10.0			4.446	4.91	0.46	┼──					
2	10.8		l .'	4.387	4.97	0.58	1	1547			-	
3 cable		2.23	4 397	4.539	5.07	0.53	4	34 9	62			•
3 corner	13.1	3.16	4.37	4.323	4.81	0.49	5	28	-	5825		
4 corner		3.61	1 !	4.396	4.92	0.52	6	43 1	104			
4 cable		2.54	'	4.468	4.92	0.45	4	61	.04			
5	21.4		4.218	4.302	4.85	0.55		2212				
6				4.846	5.29	0.44						

Run number	173	DM Sh	ot number	315	•	Date	12/14	1/90	Time	10:39			
Connection Mode Description	Single co AC Quadrur	oil 		Total Inlet Inlet ter	inlet flow t pressure mperature	<u>X</u> 5.178 4.398	g/s atm K	Bm Tm Bm/Tm 1/Tm	3.402 .5 6.804 2.000	T s T/s 1/s	Im Flat top Im/Tm	18 2 36.00	kA s kA/s
					T1 = T2 = Im = Iu =	0.5 s 2 s 18 kA 1 kA		Quench ?	<u> </u>	All mos initiated	st OK, but I from joir	<u>Coil C</u> r.	
		TIME (	5)		T <b>m =</b> T	.1		Quench ti	me		<u>s</u>		•
PANCAKE	MASS FI	LOW [g/s] OUTLET	INLET	TEMPERA'	TURE (K) OUTLET PEAK	ΔT	4	ACLO	SS [1]				
1 2	х			4.426 4.389	5.21 5.38	0.78 0.99		x					
3 cable 3 corner	v	X X	4.398	4.538 4.324	5.36 5.18	0.82 0.86		x x					
4 corner 4 cable	^	X X		4.397 4.468	5.32 5.25	0.92 0.78		x x					
5	x		4.219	4.301 4.842	5.20 5.54	0.90 0.70		x	·····		_		

Run number	174	DM Sho	x number	316		Date	12/14	/90	Time	10:51		
Connection Mode Description	Single of AC	bil le trapezoid		Total i Inlet Inlet ten	inlet flow pressure nperature	44.65 6.142 4.402	g/s atm K	Ba Th Ban/Th 1/Th	$\frac{3.4}{1}$	102 T .75 s 044 T/s 571 1/s	Im Fiat top Im/Tm	18 kA 0.5 s 10.29 kA/s
Waveform In CUKKE VI U U U U				12 TI	T1 = 1. T2 = ( Im = Iu = Tm = T	75 s ).5 s 18 kA 1 kA		Quench	? <u> </u>	lo	5	
	MASS F	LOW [g/s]		TEMPERA'	TURE [K]			401		r 1		
PANCAKE	INLET	OUTLET	INLET	INITIAL	PEAK	ΔΤ		ACL	000 [1	1		
1				4.43	5.01	0.58						
2	10.7				5.13	0.74		2118				
3 cable		2.25	4 402	4.543	5.16	0.61	6	32	1371	1		
3 corner	3 corner 12.95 3.1 4.40				4.98	0.65	7	39		8110		
4 corner	comer 12.95 3.59				5.10	0.70	9	16	1558			
4 cable		2.44		4.472	5.06	0.59	6	42		ļ	1	
5	21		4.223	4.307	5.02	0.71		3063		L		
6				4.846	5.41	0.56				L		

Run number	175	DM She	x number	341		Date	12/14	/90	Time	11:05		
Connection Mode Description	Single co AC Quadrup	oil le trapezoid		Totai i Inlet Inlet ter	inlet flow pressure nperature	<u>44.4</u> <u>6.166</u> <u>4.401</u>	g/s atm K	] Bm/ 1/	Bm         3.7           Tm         1           Tm         2.1           Tm         0.5	780 T .75 s 160 T/s 571 1/s	Im Flat top Im/Tm	20 kA 0.5 s 11.43 kA/s
Waveform In COLKEN U U U U U U U				1 1 1 1 1 1 1 1 1 1 1 1 1	T1 = 1 $T2 =$ $Im =$ $Iu =$	.75 s 0.5 s 20 kA 1 kA		Quenc	ah? <u></u> !	ło		
		TIME (	5)		1 <b>m</b> =1	1		Quena	sh time		<u>s</u>	
PANCAKE	MASS F	LOW [g/s] OUTLET	INLET	TEMPERA'	TURE [K] OUTLET PEAK	ΔΤ		AC	LOSS []	[]		
1				4.427	5.10	0.67	1					
2	10.6			4.389	5.22	0.83		245	9	1	_	
3 cable		2.25		4.539	5.23	0.69	7	63	1647	1		
3 corner		3.2	4.401	4.325	5.06	0.73	8	84	1047	9507		
4 corner	12.9	3.62		4.396	5.19	0.79	10	)64	1900	1		
4 cable		2.6		4.47	5.14	0.67	8	28	1072	]		
5	20.0		4 222	4.304	5.10	0.79		350	9	]		
6	20.7		7.222	4.844	5.47	0.62						

Run number	176	DM Sh	ot number	342		Date	12/14	/90	Time	<u>11:16</u>		
Connection Mode Description	Single c AC Quadrup	oil le trapezoid		Total i Inici Inici ter	inlet flow t pressure nperature	<u>44.65</u> <u>6.166</u> <u>4.403</u>	g/s atm K	Ba Ti Ban/Ti 1/Ti	n _4.1 n _1 n _2.3 n _0.4	58 T .75 s .76 T/s .71 1/s	Im Flat top Im/Tm	22 kA 0.5 s 12.57 kA/s
Waveform m m CUKRENT Lu U U U U				12 (T1)	T1 = 1. T2 = 0 Im = Iu =	.75 s 0.5 s 22 kA 1 kA		Quench	? <u> </u>	lo		
		TIME (	5)		Tm = T	1		Quench	time		<u>s</u>	
PANCAKE	MASS F	LOW [g/s] OUTLET	INLET	IEMPERA'	TURE (K) OUTLET PEAK	ΔΤ		ACL	oss []	]		
1	10.7			4.426	5.17	0.74						
2	10.7			4.392	5.33	0.93		2939				
3 cable		2.25	4.403	4.54	5.32	0.78	9	35	1948			
3 corner	12.95	3.2		4.327	5.15	0.82	10	013		11192	2	
4 corner		3.61		4.398	5.28	0.88	12	216	2218			
4 cable		2.58		4.471	5.22	0.75	10	002				
5	21		4.225	4.306	5.18	0.88		4087				
6				4.842	5.53	0.69						

Run number		DM She	ot number	321		Date	12/14	/90	Time	11:27			
Connection Mode Description	Single c AC Round-e	oil adged pulse		Total i Inici Inici ter	inlet flow t pressure nperature	<u>45.09</u> <u>6.118</u> <u>4.402</u>	g/s atm K	Bm Tm Bm/Tm 1/Tm	<u>3.7</u>  	780 T 2.8 s 350 T/s 357 1/s	Im Flat top Im/Tm	3 7.14	s kA/s
Waveform Im COLKENI COLKENI O	(Im/T1)	t + 0.28 Im s	in(180t/Tr	n)	T1 = T2 = T3 = Im =	2.8 s 3 s 0.5 s 20 kA		Quench ? Quench t	ime	ło	<u></u>		
	MASS F	LOW [g/s]		TEMPERA	TURE [K	]		ACLO	oss ru	1			
PANCARE	INLET	OUTLET	INLET	INITIAL	PEAK	ΔΤ	1		•	-			
1	10.82			4.431	4.71	0.27							
2	10.03			4.392	4.73	0.33		840.6					
3 cable		2.264	4 402	4.543	4.81	0.27	24	5.3 5	41.5				
3 corner	12.05	3.163	4.402	4.327	4.61	0.29	29	6.2		3158	8		
4 comer	13.03	3.569		4.398	4.71	0.31	35	4.9	147		-		
4 cable		2.57		4.473	4.73	0.26	25	9.8	14./				
5	21.21		4 222	4.307	4.61	0.30		1162					
6	£1.£1		4.225	4.844	5.09	0.24							

Run number	178	DM Sh	ot number	322		Date _	12/14	/90	Time	11:37		
Connection Mode Description	Single c AC Round-e	oil adged pulse		Total Inle Inlet te	inket flow t pressure mperature	<u>45.12</u> <u>6.166</u> <u>4.398</u>	g/s atm K	Bm Tm Bm/Tm 1/Tm	<u>4.7</u> <u>3</u> <u>1.3</u> <u>0.2</u>	25 T 1.5 s 50 T/s 86 1/s	Im Flat top Im/Tm	25 kA 3 s 7.14 kA/s
Waveform In CONKRENT	(Im/T1	)t + 0.28km s		»	T1 = T2 = T3 = Im =	3.5 s 3 s 0.5 s 25 kA		Quench ?	<u>N</u>	0		
	11	TIME t (	s)	<b>.</b>	<b>Tm</b> = <b>T</b>	1		Quench tir	ne		<u>s</u>	
PANCAKE	MASS F	LOW [g/s] OUTLET	INLET	TEMPERA'	TURE [K] OUTLET PEAK	ΤΔ		ACLO	SS []	]		
1	10.04			4.421	4.78	0.36	1		T		-	
2	10.04			4.389	4.85	0.46	T	1157	T			
3 cable		2.22	4 308	4.537	4.91	0.37	33	6.9 73	78			
3 corner	13.1	3.141	4.370	4.324	4.72	0.39	40	0.9		4289.8	2	
4 corner	1	3.584		4.395	4.82	0.42	48	4.7	10			
4 cable		2.542		4.467	4.82	0.35	35	5.3	••			
5	21.18		4.218	4.303	4.70	0.40		1555				
6				4.837	5.15	0.31						

Run number	179	DM Sh	ot number	323		Date	12/14	/90	Time	11:47		
Connection Mode Description	Single c AC Round-	oil  zdged pulse		Total Inle Iniet te	inlet flow t pressure mperature	<u>45.35</u> <u>6.166</u> <u>4.398</u>	g/s atm K	Bm Tm Bm/Tm 1/Tm	<u>5.</u> <u>1.3</u> 0.2	292 T 3.9 s 57 T/s 256 1/s	Im Flat top Im/Tm	28 kA 3 s 7.18 kA/s
Waveform Im COLKEENT	(Im/T1	)t + 0.28Im :	sin(180t/T	1)	T1 = T2 = T3 = Im = Tm = T	3.9 s 3 s 0.5 s 28 kA		Quench ? Ouench ti	N	lo	s	
-												
	MASS F	LOW [g/s]		TEMPERA	TURE [K]		1	4010		1		
PANCAKE	INLET	OUTLET	INLET	INITIAL	PEAK	ΔΤ	1	ACL	70 J L 1	1		
1	10.00			4.428	4.85	0.43	+					
2	10.93			4.39	4.94	0.55	1	1425				
3 cable		2.308	4 209	4.54	4.99	0.45	43	8.8	26			
3 corner	13 13	3.203	4.370	4.325	4.80	0.47	49	7.2	50	2948		
4 corner	er 13.13 3.584			4.397	4.91	0.51	58	7.9	7.0	47 <del>4</del> 0.		
4 cable		2.598		4.47	4.89	0.42	2	K 3	91.9			
5	21 29		4 221	4.306	4.78	0.48		X				
6	203.40J		7.221	4.842	5.20	0.36						

January 1992

Run number		DM She	ot number	324		Date	12/14	/90	Time	13:18	•	
Connection Mode Description	Single c AC Round-e	oil		Total i Inlet Inlet ter	inlet flow pressure nperature	<u>45.2</u> <u>6.190</u> <u>4.396</u>	g/s atm K	Bm Tm Bm/Tm 1/Tm	<u>5.6</u> <u>4</u> <u>1.3</u> <u>0.2</u>	70 T 1.2 s 50 T/s 38 1/s	Im Flat top Im/Tm	30 kA s 7.14 kA/s
Waveform CURRENT		)t + 0.28Im s	in(180t/T1	•	T1 = T2 = T3 = Im =	4.2 s 3 s 0.5 s 30 kA		Quench ? Quench tir	<u>N</u>	0	5	
	MASS F	LOW [g/s]		TEMPERA	TURE [K]		4	ACIO	55 F T	1		
PANCAKE	INLET	OUTLET	INLET	INITIAL	PEAK	ΔT	1			1		
1	11.00			4.414	4.89	0.48	1				-	
2	11.05			4.385	4.99	0.61	1	1593				
3 cable		2.33	4 206	4.534	5.04	0.51	49	9.9 10	42			
3 corner	12.09	3.179	4.390	4.322	4.85	0.53	52	4.3		5835 1	7	
4 corner	13.00	3.584		4.394	4.97	0.57	65	4.2		20221		
4 cable		2.581		4.465	4.94	0.48	50	2.3	0.5			
5	21.00		A 217	4.301	4.83	0.53		2062				
6	41.07		4.217	4.831	5.24	0.41						

Run number	181	DM Sha	ot number	325		Date _	12/14	1/90	Time	13:29		
Connection Mode Description	Single c AC Round-	oil adged pulse		Total Inic Inict ter	inlet flow t pressure nperature	<u>35.74</u> <u>5.206</u> <u>4.395</u>	g/s atm K	Ba Tr Bm/Tn 1/Tr	n <u>5.6</u> n <u>2.0</u> n <u>0.3</u>	570 T 2.8 s 25 T/s 357 1/s	Im Flat top Im/Tm	30 kA 3 s 10.71 kA/s
Waveform m CONKRENT CONKRENT	(Im/T1	)t + 0.28Im s	in(180t/T)	l) ▶	T1 = T2 = T3 = Im = Tm = T	2.8 s 3 s 0.5 s 30 kA		Quench Quer Quench	? <u>Ye</u> nch dete MC03	s- Coil C ction sequ , VB5-6, 1.78	erossover Jence MC01	tum
	MASS F			TEMPERA	TURE [K]		T				-	
PANCAKE	INLET	OUTLET	INLET	ThIFTY AT	OUTLET	AT	7	ACL	OSS []	]		
1		Joinal		4.424	5.10	0.68	+			[		
	12.426			4.386	5.34	0.96	+	3046				
3 cable		2.511		4.533	5.42	0.89	10	20	3003			
3 corner	3 corner 11 con 3.261 4.395				5.25	0.93	10	073	0093	12793		
4 corner	14.608 3.705			4.393	5.57	1.18	15	514	7744	12/83	, I	
4 cable	ole 2.842			4.466	5.45	0.98	12	230	6144			
5	9 706		A 217	4.3	6.94	2.64		4900				
6	0.700		4.41/	4.835	6.47	1.64						

Run number	182	DM Sho	st number	326		Date	12/14	/90	Time	13:39		
Connection Mode Description	Single co AC Slow-rat	oil mp trapezoid		Total i Inici Inici Inici ter	inlet flow pressure nperature	40.49 5.208 4.402	g/s atm K	B T Bm/T 1/T	m <u>5.5</u> m m <u>0.6</u> m <u>0.1</u>	576 T 8 s 597 T/s 125 1/s	Im Flat top Im/Tm	29.5 kA 3 s 3.69 kA/s
Waveform Im CONKRENT					T1 = T2 = T3 = Im = 2	8 s 3 s 1 s 9.5 kA		Quench Qui	e? <u>Ye</u> ench dete VB5-0	<u>s- Coil C</u> ction sequ 5,MC03,1	erossover nence MC01	<u>tum.</u>
-	T1-	TIME (s)	12-1413		Tm = T	1		Quench	time	7.98	5	
PANCAKE	MASS F	LOW [g/s] OUTLET	INLET	IEMPERA'	TURE [K] OUTLET PEAK	ΔΤ		ACI	LOSS []	וי		
1	9.046			4.426	5.12	0.70						
2				4.394	5.36	0.97		2260		]		
3 cable		2.627	4.402	4.541	5.44	0.90	10	57	2170	ļ		
3 corner	11.998	3.248		4.327	5.28	0.95	1	113		18931	L	
4 corner		3.691		4.4	5.60	1.20		578	2860			
4 cable		2.956		4.4/1	5.48	1.01		282	•	ł	ŀ	
5 6	19.446		4.223	4.311 4.846	6.51	1.66		1104	L			

Run number		DM She	st number	343		Date	12/14	/90	Time	13:50	-	
Connection Mode Description	Single c AC Slow-ran	oil mp trapezoid		Total i Inlet Inlet ter	inlet flow t pressure nperature	<u>41.801</u> <u>6.074</u> <u>4.404</u>	g/s atm K	B T Bm/T I/T	m <u>5.7</u> m m <u>0.4</u> m <u>0.1</u>	765 T 10 s 577 T/s 00 1/s	Im Flat top Im/Tm	30.5 kA 3 s 3.05 kA/s
Waveform m 0 CURRENT					T1 = T2 = T3 = Im = 3	10 s 3 s 1 s 0.5 kA		Quench	? <u>N</u>	lo	999 497	
:*	••	TIME (s)			Tm = T	1		Quench	time _		<u>s</u>	
PANCAKE	MASS F	LOW [g/s] OUTLET	INLET	TEMPERAT	TURE (K) OUTLET PEAK	ΔΤ	1	ACI	.0ss []	]		
1	0.001			4.434	4.83	0.39	†				-1	
2	9.551			4.397	4.90	0.50	1	1129			-1	
3 cable		2.485	4.404	4.546	4.95	0.40	41	5.5	889 8			
3 corner	17 19	3.253	4.404	4.331	4.76	0.43	47	4.3	007.0	4733	3	
4 corner	12.10	3.694		4.402	4.87	0.47	57	4.5	1020 5	-,	-	
4 cable		2.838		4.475	4.87	0.39	4	46	1020.3			
5	20.07		4 228	4.311	4.76	0.45		1694				
6	20.07		7.220	4.851	5.20	0.35						

Run number		DM She	st number	344		Date	12/14	/90	Time	14:00		
Connection Mode Description	Single or AC Slow-rat	np trapezoid		Total i Inlet Inlet ter	iniet flow t pressure nperature	<u>41.20</u> <u>6.111</u> <u>4.40</u>	<u>8 g/s</u> <u>8 atm</u> 2 K	Bm Tm Bm/Tm 1/Tm	<u>5.7</u> 0.6 0.1	65 T 9 s 41 T/s 11 1/s	Im Flat top Im/Tm	<u>30.5 kA</u> <u>3 s</u> <u>3.39 kA/s</u>
Waveform m COLKRENT - 0				<u>\</u>	T1 = T2 = T3 = Im = 3	9 s 3 s 1 s 0.5 kA	-	Quench ?	<u>N</u>	<u>.</u>		
	T1-	TIME (s)	T2- <b>P14</b> 13	/ <b>-&gt;1</b>	Tm = T	'1		Quench ti	me		5	
PANCAKE	MASS FI	LOW [g/s] OUTLET	INLET	INITIAL	FURE [K] OUTLET PEAK	ΔΤ	-	ACLO	SS []	]		
1	0.36			4.42	4.82	0.40						1
2	7.30		i '	4.391	4.89	0.50		1126				
3 cable		2.509	4.402	4.539	4.94	0.40	41	6.7 89	4.2			
3 corner	12.01	3.293	111-2	4.326	4.76	0.43	47	7.5		4680.	7	
4 corner		3.71		4.397	4.87	0.47	56	6.8	14.5			
4 cable		2.87		4.47	4.86	0.39	44	7.7		1		
5	19.91	[	4.223	4.305	4.75	0.45		1646				
6	1/1/4		4.000	4.838	5.19	0.35						

Run number	185	DM She	ot number	327		Date	12/14	/90	Time	14:11		
Connection Mode Description	Single co AC Slow-ran	np trapezoid		Total Inlet Inlet ter	inlet flow pressure nperature	<u>40.297</u> <u>6.142</u> <u>4.397</u>	g/s atm K	Bm Tm Bm/Tm 1/Tm	<u>5.7</u> 0.7 0.1	<u>65 T</u> <u>8 s</u> 21 T/s 25 1/s	Im Flat top Im/Tm	30.5 kA 3 s 3.81 kA/s
Waveform ml CURRENT 0					T1 = T2 = T3 = Im = 3	8 s 3 s 1 s 0.5 kA		Quench ?	<u>N</u>	io		
	T1-	TIME (s)	T2- <b>D</b> -4T3	3- <b>8</b> -1	Tm = T	1		Quench ti	me		<u>s</u>	
PANCAKE	MASS FLOW [g/s]				TURE (K) DUTLET PEAK	ΔT		ACLO	uss []	]		
1	8.667			4.422	4.82	0.40						
2				4.384	4.89	0.51		1044				
3 cable		2.511	4.397	4.537	4.94	0.40	41	7.3 89	98.5			
3 corner	11.96	3.311		4.323	4.76	0.44	48	1.2		4606.:	5	
4 corner		3.70		4.395	4.87	0.47	1 37	0./	032			
4 cable		2.900		4.40/	4.80	0.39	+ 43	1622				
6	19.67		4.217	4.838	5.19	0.45	+	1052			-	

Run numbe	r <u>186</u>	DM Sh	ot number	328		Date	12/14	/90	Time	: 14:22		
Connection Mod Description	Single c AC Slow-ra	oil mp trapezoid		Total Inle Inlet ter	inlet flow t pressure mperature	40.189 5.215 4.397	<u>g/s</u>  	Bm, 1/	Bm <u>5.</u> Tm	765 T 7.5 s 769 T/s 133 1/s	Im Flat top Im/Tm	30.5 kA 3 s 4.07 kA/s
	TI				T1 = 7 T2 = T3 = Im = 30	7.5 s 3 s 1 s 0.5 kA		Quen Q	ch? <u>Ya</u> uench dete VB5-	<u>es- Coil C</u> action sequ 6, MC03,	crossover lence VB3-4,M	<u>tum.</u> C01
	••	TIME (s)			Tm = T	1		Quen	ch time	7.22	5	
PANCAKE	MASS F	LOW [g/s] OUTLET	INLET	IEMPERA'	TURE [K] OUTLET PEAK	ΔΤ		AC	LOSS [	[]		
1	8,668			4.422	5.15	0.73						
2				4.386	5.43	1.04		239	4			
3 cable		2.474	4.397	4.537	5.54	1.00	11	21	2335			
3 corner	12.109	3.118		4.324	5.38	1.06	12	14		30043		
4 corner		3.654		4.399	5.83	1.43	19	81	3571			
4 cable		2.908		4.454	5.69	1.24	15	90				
5	19.412		4.218	4.3	8.95	4.65	ļ	217	43		_	
6		L <u></u>		4.839	7.20	2.36	l					



Run number	188	DM Sho	st number	330		Dete	12/14	/90	Time	14:43		
Connection Mode Description	Single of AC	np trapezoid		Total i Inlet Inlet ten	inlet flow pressure nperature	40.607 6.098 4.395	g/s atm K	Bm Tm Bm/Tm 1/Tm	<u>5.8</u> <u>0.6</u> 0.1	<u>59 T</u> 9 s 51 T/s 11 1/s	Im Flat top Im/Tm	31 kA 3 s 3.44 kA/s
Waveform Im COLKEENI					T1 = T2 = T3 = Im =	9 s 3 s 1 s 31 kA		Quench ?	<u>N</u>	io		
<b>*</b>	T1	12-2413		Tm = 1	<b>71</b>		Quench ti	ime _		<u>s</u>		
PANCAKE	MASS F	LOW [g/s] OUTLET	INLET	IEMPERAT	TURE [K] DUTLET PEAK	ΔΤ		ACLO	USS []	]		·
				4.42	4.83	0.41	1				-	
2	8.847			4.385	4.91	0.52	1	1123				
3 cable		2.469	4 305	4.536	4.96	0.42	43	1.9 9	29.1			
3 corner	10	3.244	4.393	4.323	4.78	0.45	49	7.2		4821.	1	
4 corner	14	3.722		4.392	4.88	0.49	59	5.3	064			
4 cable		2.855		4.468	4.88	0.41	46	8.7				
5	19.76		4 216	4.302	4.76	0.46		1705				
6	19.70		7.210	4.84	5.20	0.36						

Run number		DM She	st number	331		Date	12/14	/90	Time	14:54		
Connection Mode Description	Single or AC Slow-ran	np trapezoid		Total i Inlet Inlet ter	inlet flow pressure nperature	<u>40.348</u> <u>5.302</u> <u>4.396</u>	g/s atm K	Ba Ti Ban/Ti 1/Ti	m <u>5.8</u> m m <u>0.7</u> m <u>0.1</u>	859 T 8 s 732 T/s 125 1/s	Im Flat top Im/Tm	31 kA 3 s 3.88 kA/s
Waveform Im 0 CURRENT					T1 = T2 = T3 = Im =	8 s 3 s 1 s 31 kA		Quench Que	? <u>Ye</u> nch dete VB5-0	<u>es- Coil C</u> ction seq 6, MC03,	C crossover uence , VB3-4, V	: tum B1-2
		TIME (s)	12		Tm = T	'1		Quench	time _	7.58	5	
PANCAKE	MASS F	LOW [g/s] OUTLET	INLET	TEMPERA'	TURE [K] OUTLET PEAK	ΔT	1	ACI	.oss []	[]		
1	9 672			4.417	5.16	0.75						
2	0.072			4.386	5.44	1.05		2401				
3 cable		2.505	4.396	4.536	5.56	1.02	1	147	2386	]		
3 corner	12.147	3.148	4.575	4.325	5.40	1.08	Ľ	239		2941	6	
4 corner	- det 4 'T /	3.68		4.399	5.84	1.44	19	995	3575			
4 cable		2.911		4.454	5.68	1.23	1	580		1		
5	19.529		4.217	4.299	8.82	4.52	<u> </u>	21054	<u> </u>	ļ		
6				4.835	7.22	2.39						

Run number	190	DM She	ot number	332		Date	12/14	/90	Time	15:25		
Connection Mode Description	Single c AC Round-e	oil 		Total Inlet Inlet ter	inlet flow t pressure nperature	42.635 5.552 4.379	g/s atm K	Bn Tn Bm/Tn 1/Tn	<u>6.2</u> <u>0.5</u> 0.0	37 T 12 s 20 T/s 83 1/s	Im Flat top Im/Tm	<u>33 kA</u> <u>1 s</u> <u>2.75 kA/s</u>
Waveform Im COKKERN O O		)t + 0.28Im s	in(180t/T)	<b>.</b> )	T1 = T2 = T3 = Im =	12 s 1 s 1 s 33 kA		Quench	<u>N</u>	0	5	
PANCAKE	MASS F	LOW [g/s]		TEMPERA'	TURE [K] OUTLET			ACL	L] SSC	1	7	
TAILARD	INLET	OUTLET	INLET	INITIAL	PEAK	ΔΤ	1					
1	0.525			4.4	4.86	0.46						
2	7.333			4.366	4.94	0.57		1312			1	
3 cable		2.638	1 370	4.517	4.98	0.46	51	1.3	081.9		ŀ	
3 corner	12 50	3.464	4.319	4.304	4.79	0.49	57	0.6		5553.3		
4 corner	12.36	3.83		4.375	4.90	0.53	66	9.3	100 4		-	
4 cable		2.943		4.449	4.89	0.44	53	0.1	177.4			
5	20 52		4 100	4.281	4.79	0.51		1960				
6	40.52		4.199	4.818	5.23	0.41						

Run number	191	DM She	ot number	333		Date	12/14	/90	Time	15:36		
Connection Mode Description	Single c AC Slow-ra	oil  mp trapezoid		Total Inlet Inlet ter	inlet flow pressure nperature	<u>14.117</u> <u>4.368</u> <u>4.387</u>	g/s atm K	Br Tr Brn/Tr 1/Tr	n <u>6.0</u> n n <u>0.0</u> n <u>0.1</u>	048 T 9 s 572 T/s 111 1/s	Im Flat top Im/Tm	32 kA 3 s 3.56 kA/s
Waveform Im 0 CURRENT			-T2T		T1 = T2 = Im =	9 s 3 s 1 kA		Quench Que	? <u>Ye</u> xch dete VB5-4	<u>s- Coil C</u> ction seq 5,MC03,	<u>: crossover</u> Jence VB3-4,VB	tum
•		TIME (s)			Tm = T	1		Quench	time	8.26	5	
PANCAKE	MASS F	LOW [g/s] OUTLET	INLET	TEMPERA INITIAL	fure (K) Sutlet Peak	ΔT		ACL	oss [:	]		
1	2.723			4.404	5.14	0.74	ļ					
2				4.373	5.40	1.03		709.8				
3 cable		.727	4.387	4.525	5.51	0.99	31	4.5	616.4			
3 corner	3.13	.816		4.312	5.34	1.03	30	1.9		10637	.7	
4 corner		.858		4.385	5.75	1.37	43	8.4	31.5			
4 cable		.764		4.457	5.61	1.15	39	3.1			·	
5	8.264		4,209	4.29	8.80	4.51	ļ	8480				
6				4.826	7.00	2.17				L		

Run number	192	DM Sho	t number	334		Detc	12/14	/90	Time	15:49		
Connection Mode Description	Single of AC Round-e	oil dged pulse		Total i Inlet Inlet ten	nlet flow pressure nperature	44.69 5.247 4.397	g/s atm K	Ba Ta Ban/Ta 1/Ta	n <u>6.4</u> n <u>0.4</u> n <u>0.0</u>	26 T 14 s 59 T/s 71 1/s	Im Flat top Im/Tm	<u>34 kA</u> <u>1 s</u> <u>2.43 kA/s</u>
Waveform and CURRENT CURRENT 0		t + 0.28Im s	in(180t/T1	»	T1 = T2 = T3 = Im =	14 s 1 s 1 s 34 kA		Quench Quench	? <u>N</u>	ō	<u>s</u>	
	MASS		-,	TEMPERA'	TURE [K]							
PANCAKE	MASS C		INLET		OUTLET	1 47	1	ACL	OSS []	]		
	INLEI	OUILEI		INTITAL	A QO	0.48						
	10.24			4.389	4.98	0.59	┼───	1506				
2 3 cable		2.513		4.538	5.01	0.47	52	24.8				
3 corner		3.346	4.397	4.325	4.83	0.50	58	31.7	100.2	5097		
4 corner	13.16	3.749		4.397	4.94	0.54	69	5.4	0.10.0	3707.		
4 cable		2.855		4.471	4.93	0.46	55	53.4	248.8			
5	21.20		4.916	4.304	4.82	0.52		2126				
6	21.29		4.210	4.84	5.26	0.42						



January 1992

Run number	194	DM Sho	t number	336		Date	12/14	/90	Time	16:10		
Connection Mode Description	Single co AC Round-e	dged pulse		Total i Inlet Inlet ten	niet flow pressure sperature	<u>39.385</u> <u>5.527</u> <u>4.408</u>	g/s atm K	I Bm/ 1/	3m <u>6.6</u> Im Im <u>0.4</u> Im <u>0.0</u>	15 T 14 s 73 T/s 71 1/s	Im Flat top Im/Tm	35 kA 1 s 2.50 kA/s
Waveform Im COKKENL		st + 0.28Im s	in(180t/T1	> 	T1 = T2 = T3 = Im =	14 s 1 s 1 s 35 kA		Quenc	h? <u>N</u>	0		
		TIME t (	s)	-	Tm = 1	<b>F1</b>		Quena	ch time		5	
PANCAKE	MASS FI	LOW [g/s] OUTLET	INLET	IEMPERAT	TURE [K] DUTLET PEAK	ΔT		AC	LOSS []	]		
				4.429	4.92	0.49						
$\frac{1}{2}$	8.245			4.381	5.02	0.64	1	148	9			
3 cable		2.377		4.542	5.06	0.52	5	<b>9</b> 1	12175			
3 corner		3.066	4.408	4.323	4.88	0.56	62	26.5		6230	.8	
4 corner	11.92	3.431		4.393	4.99	0.60	74	41.4	1010 0	04,50	~	
4 cable		2.594		4.484	4.98	0.50	5	71.9	1313.3			
5			4.00	4.3	4.87	0.57		221	1			
6	19.22		4.23	4.843	5.28	0.44						

Run number	195	DM Sho	x number	337		Date	12/14	/90	Time	16:22			
Connection Mode Description	Single $\propto$ AC Two-ste	p trapezoid		Total i Inlet Inlet ten	inlet flow pressure nperature	41.601 5.673 4.39	g/s atm K	Bm Tm Bm/Tm 1/Tm	<u>4.7</u> <u>0.9</u> <u>0.2</u>	25 T 5 s 15 T/s 20 1/s	Im Flat top Im/Tm	<u>25</u> <u>3</u> <u>5.00</u>	kA s kA/s
Waveform Im L M Im Im Im Im Im Im Im Im Im Im Im Im Im	/:			$\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{$	T1 = T2 = T3 = T4 = T5 = Im = Imo =	4 s 3 s 1 s 3 s 5 s 25 kA 20 kA		Quench ?	<u>N</u>	0			
<b>A</b>	T1 T2	TIME (s	-T4- <b>&gt;&gt;</b>	T5 🍽	Tm = 1	[1+T2+T3		Quench t	ime		<u> </u>		
	MASS F	LOW [g/s]		TEMPERA'	TURE [K]		Ţ		71 226	1			
PANCAKE	INLET	OUTLET	INLET	INITIAL	PEAK	ΔΤ	1	ACD	200 [1	1			
	0.504			4.403	4.64	0.24							
2	9.591			4.375	4.67	0.29		773					
3 cable		2.482	4 30	4.518	4.76	0.24	2	64	579				
3 corner	12 20	3.222	],	4.305	4.57	0.27	3	15		3114	۱ I		
4 corner	12.27	3.504	]	4.374	4.66	0.29	3	63	625				
4 cable		2.548	L	4.463	4.70	0.24	$\frac{1}{2}$	62					
5	19.72		4.211	4.27	4.57	0.30	<b>_</b>	1137					
6				4.823	5.05	0.23							

Run number	196	DM Sho	et number	338		Date	12/14	/90	Time	16:33			
Connection Mode Description	Single or AC Two-ste	bil b trapezoid		Total i Inlet Inlet ten	nlet flow pressure nperature	<u>41.498</u> <u>5.740</u> <u>4.385</u>	g/s atm K	Bm Tm Bm/Tm 1/Tm	<u>4.7</u> <u>2.3</u> 0.5	25 T 2 s 63 T/s 00 1/s	Im Flat top Im/Tm	25 3 12.50	kA s kA/s
Waveform mi omi cnrr Hu Cnrr Hu Conrr Hu Conrr Hu Conrr Hu Conrr Hu Conrr Hu Conrr Hu Conrr Hu Conrr Hu Conrr Hu Conrr Hu Conrr Hu Conrr Hu Conrr Hu Conrr Hu Conrr Hu Conrr Hu Conrr Hu Conrr Hu Conrr Hu Conrr Hu Conrr Hu Conrr Hu Conrr Hu Conrr Hu Conrr Hu Conrr Hu Conrr Hu Conrr Hu Conrr Hu Conrr Hu Conrr Hu Conrr Hu Conrr Hu Conrr Hu Conrr Hu Conrr Hu Conrr Hu Conrr Hu Conrr Hu Conrr Hu Conrr Hu Conrr Hu Hu Hu Hu Hu Hu Hu Hu Hu Hu Hu Hu Hu	1 1 1 1 1 1 1 1 1 1 1 1 1 1		-T4-	TS	T1 = T2 = T3 = T4 = T5 = Im = Imo =	1.6 s 3 s 0.4 s 3 s 2 s 25 kA 20 kA		Quench?	<u>N</u>	0			
		TIME (s	)		1111 = 1	. 1712713		Quench tu	ne				
	MASS F	LOW [g/s]		TEMPERA	fure (K)		1	4010	ee f 1	1	7		
PANCAKE	INLET	OUTLET	INLET	INITIAL	PEAK	ΔΤ	1	ACLO	00 [3	1			
1	0.629			4.396	4.68	0.28							
2	9.330			4.358	4.72	0.36		894.1					
3 cable		2.176	4 385	4.511	4.80	0.29	2	<u>66</u> 5	95				
3 corner	12 27	2.976	4.505	4.3	4.61	0.31	3	29		3424.	1		
4 corner	12.27	3.351		4.369	4.71	0.34	3	93 6	69				
4 cable		2.371		4.459	4.74	0.28	2	.76			1		
5	19.69		4.207	4.275	4.61	0.33	<b>_</b>	1266					
6	17.07			4.813	5.08	0.26							



Run number	198	DM Sho	t number	340		Detc	12/14	/90	Time	16:54		
Connection Mode Description	Single or AC Two-ste	bil Dirapezoid		Total i Inlet Inlet ten	nlet flow pressure aperature	<u>41.792</u> <u>5.789</u> <u>4.386</u>	g/s atm K	Bm Tm Bm/Tm 1/Tm	4.7 	25 T 50 T/s 86 1/s	Im Flat top Im/Tm	25 kA 3 s 7.14 kA/s
Waveform In Luna CONKKE O O O		TIME (s	T4-	15	T1 = T2 = T3 = T4 = T5 = Im = Imo = Tm = T	0.4 s 3 s 0.1 s 3 s 0.5 s 25 kA 20 kA 1+T2+T3		Quench ? Quench t	<u>N</u>	0	<u>s</u>	
PANCAKE	MASS F	LOW [g/s]	INLET	TEMPERAT	TURE (K) SUTLET	I AT		ACLO	L] 220	]		<u></u>
1	INLEI	OUILEI		4.393	4.81	0.41						
2	9.612			4.355	4.90	0.55		1422				
3 cable		2.25	4 386	4.511	4.95	0.44	4	67	947		ľ	
3 corner	12 39	2.969	4.500	4.3	4.77	0.47	4	80		5230		
4 corner	1.40.37	3.347		4.369	4.88	0.51	5	73	036			
4 cable		2.428		4.459	4.88	0.42	4	63			1	
5	19.79		4.207	4.277	4.75	0.47	<b> </b>	1825			<b></b>	
. 6				4.81	5.16	0.35						

Run number	199	DM Sho	t number	29		Date	12/17	/90	Time	10:05			
Connection Mode Description	Single or AC Single tr	oil iangle		Total i Inlet Inlet ten	niet flow pressure sperature	X 2.812 4.357	g/s atm K	Bar Tu Ban/Tu 1/Tu	0.2 0.0 0.2	84 T 5 s 57 T/s 00 1/s	Im Flat top Im/Tm	<u>1.5</u> 0 0.30	kA s kA/s
Waveform - m CONKER CONKER - 0		\			T1 = Im =	5 s 1.5 kA		Quench	? <u>N</u>	o			
	TIME (s)	<b>&gt;</b> 1			Tm = 1	71		Quench	time		5		
PANCAKE	MASS F	LOW [g/s] OUTLET	INLET	TEMPERAT	TURE [K] DUTLET PEAK	ΔТ		ACL	OSS [J	]			
1	x			X X	4.34	4.34		x					
3 cable 3 corner 4 corner 4 cable	x	X X X X	4.357	X X X X				x x x x x					
5 6	x		4.177	X X	5.27	5.27		X					

240

Run number	200	_ DM Sł	ot number	30		Date	12/1	7/90	Time 1	0:15		
Connection Mode Description	Single of AC	bil iangle		Total i Inlet Inlet ten	nlet flow pressure perature	<u>45</u> 2.763 4.365	g/s atm K	Bm Tm Bm/Tm 1/Tm	0.284 · 5 0.057 · 0.200 j	<u>F</u> Fla <u>T/s</u> L/s	Im it top n/Tm	1.5 kA 
Waveform m CURRENT		<u>\</u>			T1 = Im =	5 s 1.5 kA		Quench ?	No			
ſ	TIME (s)				Tm = T	1		Quench ti	me		<u>s</u>	
PANCAKE	MASS F	LOW [g/s] OUTLET	INLET	TEMPERAT	URE [K] WILET PEAK	ΔT		ACLO	SS [1]			
1 2 3 cable			4.365	x x x	4.349 4.307	4.349 4.307						•
3 corner 4 corner 4 cable				X X X X	4.342	4.342						
5 6			4.185	x								

Run number	201	DM Sł	ot number	31		Date _	12/1	7/90	Tim	e <u>10:24</u>		
Connection Mode Description	Single c AC Single tr	apezoid	·····	Total : Inlet Inlet ter	inlet flow pressure nperature	<u>49.87</u> <u>1.852</u> <u>4.357</u>	g/s atm K	Ba Ti Bm/Ti 1/Ti	n <u>4.3</u> n n <u>4.3</u> n <u>1.(</u>	<u>1 s</u> <u>347 T/s</u> 000 1/s	Im Flat top Im/Tm	23 kA 3 s 23.00 kA/s
Waveform Im CURKER					T1 = T2 = Im =	1 s 3 s 23 kA		Quench Que	? <u>Ye</u> nch dete MC03	<u>s- Coil C</u> ction seq 9, VB3-4	<u>C crossove</u> uence , MC01	· turn
	TI	ME (s)			Tm = T	'1		Quencl	n time	1.09	<u>s</u>	
PANCAKE	MASS F	LOW [g/s] OUTLET	INLET	TEMPERA'	TURE (K) DUTLET PEAK	ΔΤ		ACI	. <b>oss</b> [1	[]		
1	10.32			4.342	4.771	0.429						
2				4.301	4.850	0.549	<b></b>	2082				
3 cable		2.3	4.357	4.453	4.927	0.474	76	8.7	441.9			
3 corner	14.26	3		4.237	4.736	0.499	67	3.2		9066.	4	
4 corner		3.03		4.304	4.800	0.550	19	0.2	461.5			
4 cable		4.33		4.370	4.002	0.400	00	4081				
6	25.29		4.177	4.763	5.217	0.454						

Run number	202	DM Sh	ot number	32		Date	12/17	7/90	Tim	<b>e</b> <u>10:36</u>		
Connection Mode Description	Single or AC Single tr	bil apezoid		Total i Inlet Inlet ten	nlet flow pressure nperature	<u>43.358</u> <u>2.763</u> <u>4.361</u>	g/s atm K	Bm/ 1/	Bm <u>4.</u> Tm <u>–</u> Tm <u>4.</u> Tm <u>1.</u>	<u>158 T</u> <u>1 s</u> <u>158 T/s</u> .000 1/s	Im Flat top Im/Tm	22 kA 3 s 22.00 kA/s
Waveform Im CURRENT					T1 = T2 = Im =	1 s 3 s 22 kA		Quenc	zh?	No		
-					<b>Tm = 1</b>	'1		Quer	nch time		5	
PANCAKE	CAKE NLET OUTLET INLE			IEMPERA'	TURE [K] DUTLET PEAK	ΔΤ		AC	LOSS [	[1]		
1	0.640			4.347	4.605	0.258						
2	9.048			4.3	4.607	0.307		987	.4			
3 cable		2.331	4 361	4.454	4.698	0.244	34	7.8	702.8			
3 corner	12.83	3.227	4.301	4.238	4.500	0.262	3	55		3762.	3	
4 corner	12.05	3.338		4.305	4.587	0.282	4	02	718.1			
4 cable		2.434		4.398	4.634	0.236	31	6.1		4		
5	20.88		4.181	4.211	4.488	0.277		135	54			
6	20.00			4.765	4.992	0.227	l					

Run number	203	DM Sł	ot number	33		Date	12/1	7/90	Time	10:46		
Connection Mode Description	Single co AC Single tr	apezoid		Total i Inlet Inlet ten	nlet flow pressure nperature	<u>41.85</u> <u>1.858</u> <u>4.357</u>	g/s atm K	Bri Tri Brin/Tri 1/Tri	a <u>4.3</u> a <u>4.3</u> a <u>1.0</u>	47 T 1 s 47 T/s 00 1/s	Im Flat top Im/Tm	23 kA 3 s 23.00 kA/s
Waveform Im - LN LN COLKKH	aveform La U U U U U U U U U U U U U				T1 = T2 = Im =	1 s 3 s 23 kA		Quench Que	? <u>Ye</u> nch dete MC03	s- Coil C ction seq ,VB3-4,	crossove uence MC01	r turn.
<b>.</b>	$0 \xrightarrow{I}_{T_1} \xrightarrow{T_2}_{T_1} \xrightarrow{T_1} $				Tm = T	'1		Quench	time _	1.09	8	
PANCAKE	MASS FLOW [g/s]			IEMPERA'	TURE [K] OUTLET PEAK	<b>Δ</b> Τ		ACL	055 []	]		
	10.004			4.331	4.772	0.441						
2	12.384			4.291	4.860	0.569		2623				
3 cable		2.288	4 257	4.45	4.950	0.500	80	8.7	543.9			
3 corner	16614	3.063	4.337	4.233	4.757	0.524	73	5.2		9306	5	
4 corner	10.014	3.167		4.299	4.885	0.586	88	9.9	695 6			
4 cable		2.585		4.391	4.890	0.499	79	5.7	002.0		1	
5	17057		A 177	4.206	4.997	0.791		3454				
6	14.832		4.177	4.758	5.305	0.547						

Run number	204	_ DM Sh	ot number	34		Date	12/1	7/90	Tim	e <u>11:02</u>		
Connection Mode	Single co	xil		Total i Iniet	nlet flow pressure	42.833	g/s atm	<b>B</b>	Bm Tm	<u>T</u> <u>s</u>	Im Flat top	<u>kA</u> <u>s</u>
Description	Miss sho	x.		Inlet ter	nperature	4.355	<u>K</u>	1 1	/Im /Tm	1/8 1/8	<u>an</u> /1m	<u></u>
								-				
Waveform												
								Quen	ch?	No		
								Que	nch time		S	
				TEMPERA'			l					
PANCAKE	MASS F	LOW [g/s]			OUTLET		1	AC	LOSS [	1]		
Intronat	INLET	OUTLET	INLET	INITIAL	PEAK	ΔT	]					
1	0.422			4.348	4.535	0.187						
2	9.433			4.298	4.526	0.228		68	6			
3 cable		2.249	1 355	4.45	4.632	0.182	2	29	489	1		
3 corner	10.67	3.19	4.333	4.233	4.430	0.197	2	60		2726		
4 corner	12.07	3.293		4.298	4.511	0.213	2	93	<b>€</b> 20	7		
4 cable		2.662		4.393	4.570	0.177	2	45	338			
5	20.72		4 175	4.204	4.417	0.213		10	13	1		
6	20.73		4.175	4.761	4.932	0.171						

/

Run number	205	DM St	ot number	35		Date	12/1	7/90	Time	11:24			1
Connection Mode Description	Single or AC Single tr	ngle coil C ngle trapezoid			Total inlet flow42.991 g/sInlet pressure2.787 atmInlet temperature4.352 K			Bn Tn Bm/Tn 1/Tn	n <u>3.7</u> n <u>3.7</u> n <u>3.7</u> n <u>1.(</u>	<u>1 s</u> <u>1 s</u> <u>80 T/s</u> 00 1/s	Im Flat top Im/Tm	20 13 20.00	kA s kA/s
Waveform Im CILIKHEINI					T1 = T2 = Im =	1 s 13 s 20 kA		Quench	? <u> </u>	0			
	TI	ME (s)	-11-1	Tm = T1				Quench times					
PANCAKE	MASS F	LOW [g/s] OUTLET	INLET	IEMPERATURE [K] OUTLET INITIAL PEAK AT			ACLOSS [J]						
				4.332	4.580	0.248							
$\frac{1}{2}$	9.521			4.292	4.571	0.279		870					
3 cable		2.282	1.000	4.447	4.664	0.217	2	83	506				
3 corner	10.77	3.165	4.352	4.23	4.464	0.234	3	13	370	3315			
4 corner	12.07	3.282		4.295	4.549	0.254	3	55	<i></i>	5510	´		
4 cable		2.655		4.39	4.601	0.211	2	87	042				
5	20.8		A 172	4.203	4.452	0.249		1210					
6	20.0		4.172	4.752	4.965	0.213							

Run number	r <u>206</u>	DM Sh	ot number	36		Date	12/17	/90	Time	11:35		
Connection Mode Description	Single or AC Trapezoi	d with ripple	on flat top	Total i Inlet Inlet ten	inlet flow pressure nperature	42.65 2.787 4.351	g/s atm K	Bm Tm Bm/Tm 1/Tm	<u>3.7</u> <u>3.7</u> <u>1.0</u>	80 T <u>1 s</u> 80 T/s 00 1/s	Im Flat top Im/Tm	20 kA <u>s</u> 20.00 kA/s
Waveform Im CCINKRENT		f Hz Sinu (Ampli	soidal ripp inde Ia)		T1 = T2 = T3 = Im = Ia = 3 f = (	1 s 1 s 11 s 20 kA 600 A 5.5 Hz		Quench ?	<u>N</u>	<u>o</u>		
Ĩ	-T1-		T2	-TI- <b>&gt;</b>	Tm = T	1		Quench ti	ime _		<u>s</u>	
PANCAKE	MASS F	LOW [g/s] OUTLET	INLET	TEMPERAT	TURE [K] OUTLET PEAK	ΔΤ		ACLO	62 []	]		
1	0.6			4.338	4.635	0.297						
2	9.0			4.294	4.650	0.356		1088				
3 cable		2.1	4 351	4.448	4.728	0.280	32	4 7	18			
3 corner	12.64	3.22	4.331	4.231	4.532	0.301	39	4		4073	,	
4 corner	12.04	3.34		4.295	4.622	0.327	44	9	12			
4 cable		2.62		4.391	4.663	0.272	36	3				
5	20.41		4.168	4.201	4.521	0.320		1455				
6				4.755	5.008	0.253						

Run number	207	DM Sł	ot number	37		Date	12/1	7/90	Time	11:46	<u>;</u>	
Connection Mode Description	Single of AC AC Trapezo	oil id with ripple	on flat top	Total i Inlet D Inlet ter	inlet flow t pressure nperature	<u>42.75</u> <u>2.787</u> <u>4.348</u>	g/s atm K	Bm Tm Bm/Tm 1/Tm	<u>3.7</u> <u>3.7</u> <u>1.0</u>	<u>/80 T</u> <u>1 s</u> /80 T/s /00 1/s	Im Flat top Im/Tm	20 kA s 20.00 kA/s
Waveform Im COLKRENT		f Hz Sinus (Ampli	widal rippl nude Ia)		T1 = T2 = T3 = Im = Ia = f =	1 s 1 s 11 s 20 kA 700 A 6.5 Hz		Quench 7	<u>N</u>	<u>lo</u>	<u>.</u>	
<b>م</b> '	-T1- T2	TIME (8)	T2	-T1- <b>&gt;</b>	Tm = T	1		Quench	time		<u> </u>	
PANCAKE	MASS F	LOW [g/s] OUTLET	INLET	TEMPERA'	TURE [K] OUTLET PEAK	ΔΤ		ACLO	1 220	]		
1	9.6			4.332	4.905	0.573						
2	9.0			4.288	4.992	0.704		2534				
3 cable		2.15	4.348	4.445	5.025	0.580	11	43 2	027			
3 corner	12.7	3.22 3.33		4.228	4.840	0.612	8	84		9566	5	
4 corner				4.291	4.960	0.669	10	42 1	1884			
4 cable		2.63		4.388	4.945	0.557	8	42				
5	20.45		4.167	4.199	4.840	0.641	ļ	3121				
6				4.752	5.250	0.498	<u> </u>			L		

January 1992

Run number	208	DM Sh	ot number	38		Date	12/1	7/90	Tim	e <u>13:18</u>		
Connection Mode Description	Single $\propto$ AC Single tra	il apezoid		Total i Inlet Inlet ten	nlet flow pressure operature	43.268 6.026 4.368	g/s atm K	E 1 Bm/l 1/l	m <u>4.</u> m <u> </u>	<u>347 T</u> <u>1 s</u> <u>347 T/s</u> 000 1/s	Im Flat top Im/Tm	23 kA 3 s 23.00 kA/s
Waveform - ml CILKRENT	/				T1 = T2 = Im =	1 s 3 s 23 kA		Quenci	1? <u>]</u>	No		
$\begin{array}{c} 0 \\ \hline \\$			∎T1 <b>⊅</b> ¦		Quench times							
PANCAKE	PANCAKE NI ET OUTLET INLET			TEMPERATURE [K]				AC	LOSS [			
1	9,728			4.376	4.670	0.294				ļ		
2			•	4.343	4.735	0.392		966.	4	4		•
3 cable		2.193	4.368	4.305	4.81/	0.312	20	9.1	628			
3 corner	12.78	3.041		4.291	4.030	0.359		181		3661.	2	
4 corner		3.472 2 479		4.30	4.751	0.300	1 30	1.7	709.8		1	
4 CAUNE		20.717		4.269	4.620	0.351	<u> </u>	135	7	1		
6	20.76		4.189	4.804	5.077	0.273						

Run number	209	DM Sh	ot number	39	•	Date	12/1	7/90	Time	13:28		
Connection Mode Description	Single of AC Single tr	apezoid		Total inlet flow     43.28 g/s       Inlet pressure     5.106 atm       Inlet temperature     4.367 K			B T Bm/T 1/T	im <u>4.5</u> im <u> </u>	36 T 1 s 36 T/s 00 1/s	Im Flat top Im/Tm	24 kA 3 s 24.00 kA/s	
Waveform - ml - ml - cnrkk	/		T1 = 1 s T2 = 3 s Im = 24 kA				Quench ? <u>Yes- Coil C crossover turn.</u> Quench detection sequence MC03, VB5-6,MC01					
	TI	-12	TIP	Tm = T1				Quench time 1.09 s				
PANCAKE	MASS F	LOW [g/s] OUTLET	INLET	TEMPERATURE [K]				ACLOSS [J]				
				4.384	4.910	0.526						
$\frac{1}{2}$	10.04			4.337	5.065	0.728		1936	5		7	
3 cable		2.353	1.267	4.505	5.150	0.645	69	5.2	1401.7			
3 corner		3.049	4.30/	4.289	4.980	0.691	70	6.5		9940	5	
4 corner	12.93	3.521	1	4.358	5.175	0.817	94	0.8	1670.9		-	
4 cable		2.595		4.45	5.123	0.673	7	39	10/9.0			
5	20.31		4 187	4.268	5.800	1.532		4923	3			
6	20.51		4,10/	4.805	5.710	0.905						
•

Run number	210	DM Sh	ot number	40		Date	12/1	7/90	Time 13:41		
Connection Mode Description	Single a AC Single tr	oil apezoid		Total i Inlet Inlet ten	nlet flow pressure nperature	40.3 6.098 4.363	g/s atm K	Bm Tm Bm/Tm 1/Tm	3.780 T 5 s 0.756 T/s 0.200 1/s	Im Flat top Im/Tm	20 kA 3 s 4.00 kA/s
Waveform Im COLKENU	/				T1 = T2 = Im =	5 s 3 s 20 kA		Quench ?	<u>No</u>		
<b>*</b>	$0 \xrightarrow{T_1} T_2 \xrightarrow{T_2} T_1 \xrightarrow{T_1} T_1$ TIME (s)				Tm = 7	1		Quench ti	me	<u>s</u>	
PANCAKE	PANCAKE NLET OUTLET INLET			TEMPERA INITIAL	TURE [K] DUTLET PEAK	ΔΤ		ACLO	SS []]		
1	10.4			4.392 4.357	4.587 4.590	0.195					
3 cable 3 corner 4 corner	2            3 cable        9           3 corner         3.32           4 corner         3.8           4 cable        35			* 4.311 4.383	4.690 4.489 4.572 4.628	4.690 0.178 0.189 4.628					
4 Cable 5 6	21.6		4.184	4.271 4.816	4.506	0.235					

Run number	211	DM Sh	ot number	69		Date	12/1	7/90	Time	13:51			
Connection Mode Description	Single of AC Single tr	apezoid		Total i Inlet Inlet ter	inlet flow pressure nperature	<u>40.542</u> <u>6.098</u> <u>4.362</u>	g/s stm K	Bn Tn Bm/Tn 1/Tn	<u>3.7</u> <u>3.7</u> <u>3.7</u> <u>1.0</u>	80 T 1 s 80 T/s 00 1/s	Im Flat top Im/Tm	20 3 20.00	kA s kA/s
Waveform Im CONKRENT	Waveform Im 0 0 TIME (s)				T1 = T2 = Im =	1 s 3 s 20 kA		Quench	? <u>N</u>	0			
					Tm = 7	51		Quench	time _		\$		
PANCAKE	TIME (s)           MASS FLOW [g/s]           PANCAKE         INLET         OUTLET         INL			IEMPERA INITIAL	TURE [K] OUTLET PEAK	ΔT	ł	ACL	1] 220	]			
1	10.44			4.383	4.635	0.252							
2	10.44			4.352	4.660	0.308		761.2					
3 cable		54	4.362	*	4.740	4.740		?	46.8				
3 corner	8.382	3.349		4.31	4.546	0.236	24	6.8		2380.	2		
4 corner		3.798		4.38	4.633	0.253	29	4.2	94.2				
4 cable		•.3		*	4.677	4.677		7					
5	21.72		4.182	4.277	4.554	0.277	<b>_</b>	10/8					
6				4.811	5.036	0.225							

Run number	212	_ DM Sł	ot number	70		Date	12/1	7/90	Tim	14:02	· · · · · · · · · · · · · · · · · · ·		
Connection Mode Description	Single of AC Single tr	apezoid		Total i Inlet Inlet ter	inlet flow pressure nperature	40.91 6.098 4.361	g/s stm K	B T Bm/T 1/T	m <u>3.7</u> m m <u>7.4</u> m <u>2.0</u>	/80 T .5 s 560 T/s 000 1/s	Im Flat top Im/Tm	<u>20</u> <u>3</u> 40.00	kA s kA/s
Waveform - ml cnrkent	/				T1 = T2 = Im =	0.5 s 3 s 20 kA		Quench	7 <u>ř</u>	lo		<u>.</u>	
<b>*</b>	ri <b>bi d</b> Ti	ME (s)	€T1		Tm = T	1		Quenc	h time		\$		
	MASS F	LOW [g/s]		IEMPERA'	FURE (K)								
PANCAKE	INFET	THIN	INLET	TATIVAT	DUTLET	AT		ACI	.088 [ ]	[]			
1		GOILLOI		4.383	4.692	0.309				[			
2	10.57			4.35	4.730	0.380		967.6					
3 cable		58		*	4.795	4.795		?	212 2				
3 corner	3 corner 8.40 3.315 4.361				4.605	0.296	31	2.2	i Linda	2067	8		
4 corner	corner 8.49 3.796			4.38	4.696	0.316	3	71	271	2,07.	~		
4 cable		38		*	4.728	4.728		?	371				
5	21.85		4.18	4.274	4.606	0.332		1317					
6	21.00			4.812	5.076	0.264							

Run number	213	DM SI	ot number	71		Date	12/1	7/90	Tim	e <u>14:12</u>		
Connection Mode Description	Single of AC Single tr	apezoid		Total Inlei Inlei ter	inlet flow t pressure nperature	40.656 6.074 4.361	g/s atm K	I Bm/2 1/2	3m <u>3.</u> Tm Tm <u>12.0</u> Tm <u>3.1</u>	780 T .3 s 600 T/s 333 1/s	Im Flat top Im/Tm	20 kA 3 s 66.67 kA/s
Waveform Im COLKERNI COLKERNI COLKERNI					T1 = T2 = Im =	0.3 s 3 s 20 kA		Quenc	h? <u> </u>	¥o		-
					Tm = 1	<b>F1</b>		Quen	ch time		<u> </u>	
PANCAKE	MASS F	LOW [g/s]		TEMPERA'	TURE [K]			AC	LOSS []	J]		
	INLET	OUTLET	INLET	INITIAL	PEAK	ΔΤ	]					
1	10.50			4.389	4.755	0.366						
2	10.32			4.353	4.808	0.455	Ι	118	1			
3 cable		46	4 361	*	4.860	4.860	1	?	387.3	1		
3 corner	9 966	3.367	4.301	4.309	4.675	0.366	38	7.3	20112	3671	1	
4 corner	0.000	3.821		4.381	4.772	0.391	54	6.8	546 9	] -0	-	
4 cable		21		*	4.790	4.790		?	.,40.8			
5	21.77 4.181		4.276	4.669	0.393		155	6	]			
6	£1.//		4.101	4.815	5.120	0.305						

•

Run number	214	DM Sh	ot number	72		Detc _	12/17	7/90	Time	14:23		
Connection Mode Description	Single co AC Single tr	apezoid		Total i Inlet Inlet ten	nlet flow pressure nperature	40.632 6.098 4.365	g/s atm K	E 7 Bm/1 1/1	km <u>4.3</u> Sm <u>4.3</u> Sm <u>4.3</u> Sm <u>1.0</u>	947 T 1 s 947 T/s 900 1/s	Im Flat top Im/Im	23 kA 3 s 23.00 kA/s
Waveform Im CONKRENT					T1 = T2 = Im =	1 s 3 s 23 kA		Quenci	h? <u>ř</u>	lo		
		ME (s)	TI P		Tm = 1	'1		Queno	ch time		<u>s</u>	
	MASS F	OW [g/s]	,	TEMPERA'	TURE [K]						7	
PANCAKE	INLET	OUTLET	INLET	INTERAL	DUTLET			AC	LOSS []	[]		
1				4.388	4.691	0.303					-	
2	10.48			4.354	4.736	0.382		970.	3		7	
3 cable		4	4 365	*	4.801	4.801	1	2	324.1	1		
3 corner	0 400	3.372	4.303	4.31	4.614	0.304	32	4.1		3021.0	5	
4 corner	0.402	3.824		4.381	4.705	0.324	38	4.2	384.2			
4 cable		31		*	4.738	4.738		?		Į		
5	21.75		4,185	4.279	4.617	0.338		134	3	ļ		
6	21			4.815	5.083	0.268				L		

Run number	215	DM Sł	ot number	73	<b>*</b> .	Date	12/1	7/90	Time	14:38		
Connection Mode Description	Single of AC Single tr	apezoid		Total i Inket Inlet ter	inlet flow pressure nperature	<u>41.62</u> <u>6.098</u> <u>4.362</u>	g/s atm K	Bm Tm Bm/Tm 1/Tm	<u>3.7</u> <u>12.6</u> <u>3.3</u>	/80 T .3 s 600 T/s 33 1/s	Im Flat top Im/Tm	20 kA 3 s 66.67 kA/s
Waveform Im COLKRENT	/				T1 = T2 = Im =	0.3 s 3 s 20 kA		Quench ?	<u> </u>	lo		
<b>1</b>					<b>Tm =</b> 1	F1		Quench	time _		<u> </u>	
PANCAKE	PANCAKE INLET OUTLET INLE				TURE [K] OUTLET PEAK	ΔΤ		ACLO	DSS []	]		
				4.385	4.750	0.365	1					
	10.28			4.348	4.810	0.462		1192				
3 cable		2.461	4.969	4.508	4.875	0.367	40	1.1 8	11.8			
3 corner		3.227	4.302	4.296	4.695	0.399	41	0.7		3962	5	
4 corner	10	0		*	4.779	4.779		?	01 7		~	
4 cable		2.689		4.456	4.795	0.339	39	)1.7 3	71.7			
5	21.34 4 186			4.273	4.669	0.396		1567				
6	61.34		4.100	4.81	5.117	0.307						

Run number	216	DM Sł	ot number			Date	12/1	7/90	Tim	e <u>14:49</u>		
Connection Mode Description	Single co AC Single tr	apezoid		Total i Inlet Inlet ten	inlet flow pressure nperature	41.379 6.050 4.365	g/s stm K	Bm/ 1/	Bm <u>4.</u> Tm <u></u> Tm <u>4.</u> Tm <u>1.</u>	<u>347 T</u> <u>1 s</u> <u>347 T/s</u> 000 1/s	Im Flat top Im/Tm	23 kA 3 s 23.00 kA/s
Waveform mi COURRENT					T1 = T2 = Im =	1 s 3 s 23 kA		Quen	ch ? <u>1</u>	<u>No</u>		
° <b>⊨</b>					Tm = 7	<b>F1</b>		Quer	nch time		5	
	MASS F	OW [9/s]	· · · · ·	TEMPERA	FURE [K]							
PANCAKE	INI FT	OUTTET	INLET		OUTLET	L AT		AC	CLOSS [	1]	1	
1				4.383	4.686	0.303				T		
2	10.24			4.35	4.735	0.385		970	.8	1	-1	
3 cable		2.316	1268	4.509	4.810	0.301	29	3.2	634.3	1		
3 corner	0 970	3.193	4.303	4.297	4.626	0.329	34	1.1	054.5	3242.	1	
4 corner	7.0/7	.098		*	4.710	4.710		?	297	]		
4 cable		2.605		4.462	4.740	0.278	2	97		<b>.</b> .		
5	21.26		4.187	4.274	4.613	0.339	L	134	40	<b></b>		
6				4.809	5.078	0.269	I					

Run number	217	DM Sł	ot number	75		Date	12/17/	90	Time	14:59		
Connection Mode Description	Single c AC Two-ste	oil p trapezoid		Total i Inlet Inlet ter	niet flow pressure nperature	41.95 5.096 4.364	g/s atm K	Bm Tm Bm/Tm 1/Tm	5.6 1.1 0.2	70 T 5 s 34 T/s 00 1/s	Im Flat top Im/Tm	30 kA 3 s 6.00 kA/s
Waveform m m m m m m m m m m m m m m m m m m		TIME (s			T1 = 3. T2 = 1. T3 = 1. T4 = 1. T5 = 1. Tm = 1. Tm = 1.	33 s 3 s 67 s 3 s 5 s 30 kA 20 kA 1+T2+T3		Quench ? Quenc Quench ti	<u>Ye</u> h detec VB5-6	tion sequ ,MC03, 7.86	<u>crossover</u> vence VB3-4,VB	<u>- turn.</u> 1-2
								-				
	MASS F	LOW [g/s]		TEMPERA	TURE [K]			ACTO	T1 22	1		
PANCAKE	INLET	OUTLET	INLET	INITIAL	PEAK	ΔΤ		AC LO	00 [3	1		
				4.375	5.100	0.725						
$\frac{1}{2}$	9.33			4.341	5.360	1.019		2668				
3 cable		2.2	1.00	4.5	5.479	0.979	986.	1 21	28.1			
3 corner	10.10	3	4.304	4.288	5.315	1.027	114	2 2	-0.1	21700	,	
4 corner	12.19 3.47				5.650	1.378	166	1	0.50	21100	·•	
4 cable	cable 2.46				5.530	1.083	119	7 2	929			
5	20.42		A 186	4.265	7.220	2.955		14046				
6	20.43		4.100	4.801	6.570	1.769						

Run number	218	DM Sh	ot number	84		Date _	12/1	7/90	. Tim	e <u>15:26</u>	,	
Connection Mode Description	Single a	o trapezoid		Total i Inlet Inlet ten	nlet flow pressure nperature	42.4 5.13 4.365	<u>g/s</u> atm K	Bar 1	Bm <u>5.</u> Tm /Tm <u>1.</u> /Tm <u>0.</u>	670 T 5 s 134 T/s 200 1/s	Im Flat top Im/Tm	30 kA 3 s 6.00 kA/s
Waveform In - CILKEHUL			-T4- <b>D</b>	15	67 s 3 s 33 s 3 s 5 s 30 kA 22 kA		Quer (	ach ? <u>Y</u> Quench det VB5	es- Coil C ection seq -6,MC03,	C crossove uence VB3-4,V	<del>ar turn.</del> B1-2	
		TIME (s	)		$\mathbf{Im} = \mathbf{I}$	1+12+13		Que	nch time	7.96	\$	
PANCAKE	MASS F		INLET	TEMPERAT	TURE (K) OUTLET	۸Ť		A	CLOSS (	1]		
1		COTTACT		4.377	5.117	0.740				1		
2	9.33			4.341	5.380	1.039	<u> </u>	27	34	1		
3 cable		2.25		4.5	5.500	1.000	10	)39	2256	1		
3 corner	10.50	3.08	4.303	4.29	5.340	1.050	12	217	2000	2550	8	
4 corner	12.52	3.49		4.357	5.725	1.368	17	796	3001	7	~	
4 cable		2.49		4.447	5.598	1.151	12	295	5051	1		
5	20.55		4.186	4.265	7.770	3.505		17	427			
6	20.23		71100	4.804	6.750	1.946						



Run numbe	r <u>220</u>	DM SI	not number	· <u>77</u>		Date	12/1	7/90	Tim	e <u>15:48</u>		
Connection Mode Description	Single c AC Two-ste	oil  p trapezoid		Total : Iniet Iniet ter	inlet flow pressure nperature	12.58 5.086 4.367	× ==== ≤∕s	Br Tr Brn/Tr 1/Tr	n <u>5.0</u> n n <u>2.1</u> n <u>0.1</u>	570 T 2 s 335 T/s 500 1/s	Im Flat top Im/Tm	30 kA 3 s 15.00 kA/s
Waveform nal onl CCIKKENT CCIKKENT		TIME (s		T3	T1 = T2 = T3 = T4 = T5 = Im = Imo = Tm = T	1 s 1 s 1 s 3 s 1 s 30 kA 22 kA 71+T2+T3		Quench Que Quenct	? <u>Ye</u> nch dete MC03	s- Coil C ction seq 3, VB5-6, 2.91	crossove vence VB1-2, VI	<u>r turn.</u> 33-4,MC01
PANCAKE	MASS F	LOW [g/s] OUTLET	INLET	IEMPERA INITIAL	TURE [K] DUTLET PEAK	ΔΤ		ACL	oss [:	[]		
1	2 01			4.381	5.137	0.756						
2	2.71			4.343	5.400	1.057		898.6				:
3 cable		.68	4.367	4.502	5.530	1.028	33	5.2	538.7			
3 corner	3.54	.75		4.29	5.364	1.074	30	3.5		8294.	2	
4 corner	4 corner .81				5.775	1.415	43	4.8	836.9			
4 cable	cable .71				5.640	1.190	40	2.1		Į		
5	6.13		4.189	4.266	8.130	3.864	ļ	5920				
6				4.804	6.870	2.066				L		



Run number	222	DM Sh	ot number	<u>79</u>		Date	12/1	7/90	Time	16:10		
Connection Mode Description	Single $\propto$ AC Two-ste	oil 		Total i Inlet Inlet ter	inlet flow pressure nperature	42.604 5.977 4.367	g/s atm K	Bm Tm Bm/Tm 1/Tm	<u>5.6</u> 2.1 0.3	070 T 2.6 s 81 T/s 085 1/s	Im Flat top Im/Tm	30 kA 11 s 11.54 kA/s
Waveform and oml CONKKE oml CONKKE O CONKKE O CONKKE O CONKKE O CONKKE O CONKKE O CONKKE O CONKKE O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CONK O CON CONK O CON CONK O CONK O CONK O CON CO			-T4-	13	T1 = T2 = T3 = T4 = T5 = Im = Imo =	1 s 1 s 1.6 s 11 s 1 s 30 kA 22 kA		Quench ?	<u></u> N	lo		
		THATE (S	,		1111 - 1	1712713		Quench t	ime _		\$	
PANCAKE	MASS F	LOW [g/s]		TEMPERA	TURE (K) OUTLET			ACLO	ISS []	]		
	INLET	OUTLET	INLEI	INITIAL	PEAK	ΔΤ	ļ					
1	9.454			4.387	4.832	0.445	L					
2	2			4.343	4.907	0.564		1410				
3 cable		2.267	4.367	4.503	4.952	0.449	4	50 9	51			
3 corner	12 57	2.984	4.507	4.291	4.775	0.484	5	01		5391.	3	
4 corner	1.4	3.433		4.359	4.878	0.519	60	4.9	673			
4 cable		2.502		4.45	4.881	0.431	46	2.4	07.3			
5	20 59		4 199	4.267	4.757	0.490		1963				
6	20.36		4.100	4.809	5.190	0.381						

Run number	223	DM SI	ot number	<u>80</u>		Date	12/1	7/90	Tim	16:22		
Connection Mode Description	Single c AC Two-ste flat top	p trapezoid w	vith ripple	Total : Inies on Iniet ter	inlet flow pressure nperature	37.88 5.078 4.368	g/s atm K	] Bm/ 1/	Bm <u>5.4</u> Tm Tm <u>2.1</u> Tm <u>0.3</u>	81 T 2.6 s 08 T/s 85 1/s	Im Flat top Im/Tm	29 kA 11 s 11.15 kA/s
Waveform Im OTHER OTHER OTHER OTHER Imo		f Hz Si (An (An TS TIME	nusoidal ri pplitude Ia ti ti ti ti ti ti ti ti ti ti ti ti ti	ipple	T1 = T2 = T3 = T4 = T5 = Im = Im 0 = Ia = 4f = Tm = T	1 s 1 s 1 s 1 s 9 s 29 kA 22 kA 400 A 10 Hz 1+T2+T3		Quenc Qu Quen	h? <u>Ye</u> rench dete MC03	s- Coil C ction seq VB5-6, 3.64	C crossover uence VB1-2,MC	<u>: turn.</u> 201
r	MASS F	(OW [g/s]		TEMPERA	TURE [K]						7	
PANCAKE	INI FT	OUTTET	INLET	THEFT	OUTLET	AT		AC	LOSS []	]		
				4.385	5.102	0.717						
	12.39			4.343	5.355	1.012		362	2			
3 cable		2.46	4.269	4.503	5.460	0.957	11	26	2265			
3 corner	16.40	3.03	4.308	4.291	5.300	1.009	11	39	2203	1659	n	
4 corner	13.49	3.49	4.36	5.650	1.290	16	77	3047				
4 cable		2.72	5.530	1.080	13	70						
5	10		4,189	4.263	7.440	3.177		765	6			
6	<u>.</u>			4.806	6.620	1.814				<u> </u>		

Run number	224	DM SI	ot number	81		Date _	12/1	7/90	Tim	e <u>16:34</u>		
Connection Mode Description	Single c AC Two-ste flat top	oil  p trapezoid v	vith ripple	Total Inie on Iniet ter	inlet flow t pressure nperature	<u>41.27</u> <u>5.929</u> <u>4.371</u>	g/s atm K	Bin Tm Bm/Tm 1/Tm	<u>5.4</u> 2.1 0.3	481 T 2.6 s 108 T/s 385 1/s	Im Flat top Im/Tm	29 kA 9 s 11.15 kA/s
Waveform Ent omLUR O CURRENT omL O		f Hz Si (An	nusoidal ri aplitude Ia 	ppie	T1 = T2 = T3 = T4 = T5 = Im = Im 0 = Ia = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 1000 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100 = 100	1 s 1 s 1.6 s 3 s 5 s 29 kA 22 kA 400 A 10 Hz		Quench ?		<u>ło</u>		
I	11, <b>45</b> 13. 12 1	TIME	(s) T.	1 ^{T1} 1	Tm = 1	F1+T2+T3		Quench	ime _		<u>s</u>	
PANCAKE	MASS F	LOW [g/s] OUTLET	INLET	IEMPERA'	FURE (K) OUTLET PEAK	ΔΤ		ACLO	uss []	1]		
1	0 04			4.384	4.846	0.462					-	
2	0.04			4.348	4.942	0.594		1364				
3 cable		2.232	4 371	4.508	4.985	0.477	45	4.2	70			
3 corner	12 27	2.971	4.571	4.296	4.802	0.506	51	5.8		5427.	3	
4 corner	1.4.14.1	3.472		4.362	4.910	0.548	63	3.5	053			
4 cable		2.523		4.451	4.907	0.456	46	1.8	,,,,			
5	20.16		4.19	4.27	4.793	0.523		1998				
6	~~···		7.17	4.81	5.210	0.400						

Run numbe	225	DM SI	ot numbe	r <u>82 -</u>		Date	12/1	7/90	_ Tim	e <u>16:47</u>		
Connection Mode Description	Single c AC Two-ste flat top	oil  p trapezoid v	vith ripple	Total Inle on Inlet te	inlet flow t pressure mperature	<u>38.179</u> <u>5.953</u> <u>4.365</u>	g/s atm K	Brr 1	Bm <u>5.</u> Tm n/Tm <u>2.</u> 1/Tm <u>0.</u>	481 T 2.6 s 108 T/s 385 1/s	Im Flat top Im/Tm	29 kA 9 s 11.15 kA/s
Waveform Im OTUKENU		f Hz Si (An	nusoidal r iplitude Ia		T1 = T2 = T3 = T4 = T5 = Imo = Ia = G = G = T5	1 s 1 s 1.6 s 3 s 5 s 29 kA 22 kA 500 A 10 Hz		Quer	nch ?	<u>vo</u>		
	<b>T2</b>	TIME	(s) T.	2***	Tm = T	1+12+13		Que	nch time		5	
PANCAKE	MASS F	LOW [g/s] OUTLET	INLET	TEMPERA'	TURE (K) OUTLET PEAK	ΔΤ		A	CLOSS [:	1]		
1	7 529			4.383	4.900	0.517						
2	1.527			4.342	5.080	0.738		13	01			
3 cable		2.364	4 365	4.503	5.050	0.547	51	4.1	1111	]		
3 corner	11 54	3.052	7.505	4.29	4.875	0.585	59	6.9		5803.	2	
4 corner	11.04	3.553		4.358	4.990	0.632	73	6.1	1200.2	]	-	
4 cable		2.701		4.446	4.968	0.522	57	3.1	1309.2			
5	10 11		A 197	4.265	4.850	0.585		20	82	]		
6	17.11		4.10/	4.807	5.248	0.441						

Run number	226	DM Sh	ot number	83		Date	12/1	7/90	Time <u>16:57</u>		
Connection Mode Description	Single of AC Two-ster flat top	o trapezoid w	rith ripple (	Total i Inlet on Inlet ten	nlet flow pressure nperature	<u>5.056</u> <u>4.365</u>	g/s atm K	Bm Tm Bm/Tm 1/Tm	5.481 T 2.6 s 2.108 T/s 0.385 1/s	Im Flat top Im/Tm	29 kA 9 s 11.15 kA/s
Waveform mi cnrkke oml ke control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control control con		f Hz Sin (Am	nusoidal ri plitude Ia VVVV	ppie	T1 = T2 = T3 = T4 = T5 = Im = Im = In = f = T5	1 s 1 s 1.6 s 3 s 5 s 29 kA 22 kA 800 A 10 Hz		Quench ? Quenc	<u>Yes-Quenc</u> h detection seq VB5-6,MC03,	<u>h informat</u> nence MC01	ion ?
1	T1 T2 T3. T2 T	4 TIME	(s) T2	TI	Tm = 1	`1+T2+T3		Quench ti	me <u>-</u>	<u> </u>	
PANCAKE	MASS F	LOW [g/s] OUTLET	INLET	TEMPERA'	TURE [K] DUTLET PEAK	ΔΤ		ACLO	SS [1]		
1				4.383	5.100	0.717	1				
2				4.341	5.360	1.019					
3 cable			4.268	4.502	5.475	0.973					
3 corner			4.303	4.291	5.315	1.024					
4 corner				4.359	5.675	1.316					
4 cable				4.434	5.550	1.116					
5			4 188	4.267	7.450	3.183					
6			4.100	4.804	6.660	1.856					

Run number	227	DM Sh	ot number	·		Date	12/1	8/90	Time _10:01	L	
Connection Mode Description	Single co AC Single tri	bil iangle		Total i Inlet Inlet ter	iniet flow pressure nperature	<u>5.600</u> 4.711	g/s atm K	Bm Tm Bm/Tm 1/Tm	0.284 T 5 s 0.057 T/s 0.200 1/s	Im Flat top Im/Tm	1.5 kA 0 s 0.30 kA/s
Waveform m m CILK HU U CILK HU U CILK HU U		<u>\</u>			T1 = Im =	5 s 1.5 kA		Quench ?	<u>No</u>		
<b>1</b>					Tm =	<b>T</b> 1		Quench ti	ime	<u>s</u>	
PANCAKE	TIME (s) MASS FLOW [g/s] CAKE NILET OUTLET INLET				TURE (K OUTLET PEAK	.] . ΔT	-	ACLO	[I] 22		
1				x							
2				X		_ <b>_</b>	<u> </u>				
3 cable			4.711	x	ļ						
3 corner				X							
4 corner				×	<b></b>						
4 cable				^ 				l			
			4.543	x			+				

Run number	228	DM Sh	ot number	274		Date	12/1	8/90	Time 10:08	}	
Connection Mode Description	Single of AC Single tr	oil iangle		Total i Inlet Inlet ten	inlet flow pressure nperature	<u>5.624</u> 4.706	g/s atm K	Bm Tm Bm/Tm 1/Tm	0.284 T 5 s 0.057 T/s 0.200 1/s	Im Fiat top Im/Tm	1.5 kA 0 s 0.30 kA/s
Waveform Im CORKENT CORKENT		<u></u>			T1 = Im =	5 s 1.5 kA		Quench ?	<u>No</u>		
					Tm =	T1		Quench ti	me	<u>s</u>	
PANCAKE	ANCAKE NLET OUTLET INLET			IEMPERA'	TURE (K OUTLET PEAK	] : <b>  \Delta T</b>		ACLO	SS [J]		
1 2 3 cable 3 corner	INLET         OUTLET         INLE1           1			4.644 4.622 4.734 4.544							
4 corner 4 cable 5 6			4.537	4.672 4.513 *							

Run number	229	DM Sł	ot number	275		Date	12/1	8/90	Time 10:1	7	
Connection Mode Description	Single co AC Single tr	apezoid		Total i Inlet Inlet ter	inlet flow pressure nperature	<u>25.81</u> <u>5.624</u> <u>4.704</u>	g/s atm K	Bm Tm Bm/Tm 1/Tm	3.780 T 1 s 3.780 T/s 1.000 1/s	Im Fiat top Im/Tm	20 kA 3 s 20.00 kA/s
Waveform Im CINKRENT					T1 = T2 = Im =	1 s 3 s 20 kA		Quench?	<u>No</u>		
	Т	IME (s)	1		Tm = 7	<b>[1</b>		Quench t	ime	5	
PANCAKE	MASS F	LOW [g/s] OUTLET	INLET	TEMPERA INITIAL	TURE [K] OUTLET PEAK	ΔT		ACLO	SS [1]		
12	5.3			4.642	4.814 4.927	0.172 4.927					
3 cable 3 corner	7 56	.92 1.63	4.704	*	4.985 4.819	4.985 4.819					
4 corner 4 cable	1.00	1.81 1.22		*	4.910 4.918	4.910 4.918					
5 6	12.95		4.534	*	4.796 5.226	4.796 5.226					

Run number	230	DM Sh	ot number	276		Date	12/1	B/90	Time	10:29		
Connection Mode Description	Single of AC Single tr	bil apezoid		Total i Inlet Inlet ter	inlet flow pressure nperature	25.99 5.648 4.7	g/s atm K	Bm Tm Bm/Tm 1/Tm	<u>4.3</u> <u>4.3</u> <u>1.0</u>	47 T 1 s 47 T/s 00 1/s	Im Flat top Im/Tm	23 kA 3 s 23.00 kA/s
Waveform - ml CINKKENI - ml - ml - ml					T1 = T2 = Im =	1 s 3 s 23 kA		Quench ?	<u>N</u>	lo		
					Tm = T	1		Quench	ime _		\$	
	MASS F	OW [g/s]	,	TEMPERA'	FURE [K]						7	
PANCAKE	THE IT		INLET		OUTLET			ACLO	SS []	]		
	INLEI	OUILEI		INITIAL	PEAK		ļ				{	
	5.318			4.017	4.630	0.239		1004				
2				4.010	4.992	0.370		1024				
3 cable		1.009	4.7	4.132	5.045	0.313	21	6	57.8			-
3 corner	7.642	1.693		4.54	4.880	0.340	38	7.7		4068		
4 corner		1.879		4.619	4.973	0.354	44	6.9	37.2			
4 cable		1.22		4.669	4.973	0.304	29	0.3				
5	13.03		4.532	4.509	4.847	0.338		1649		L		
6				5.019	5.251	0.232						

Run number	231	DM Sh	ot number	277		Date	12/1	8/90	Tim	= <u>10:40</u>		
Connection Mode Description	Single of AC Single tr	apezoid		Total i Inlet Inlet ter	inlet flow pressure nperature	25.698 5.789 4.697	g/s stm K	H 1 Bm/1 1/1	3m <u>4.:</u> Im <u> </u>	536 T 1 s 536 T/s 500 1/s	Im Flat top Im/Tm	24 kA 3 s 24.00 kA/s
Waveform Im - Lm CONKRENU	TIME (s)				T1 = T2 = Im =	1 s 3 s 24 kA		Quenc	h?! VB5- 03	ło 6,VB3-4,	VB1-2,M0	C02,MC01,MC
<b>•</b> •				•	Tm = 1	'1		Quen	ch time	•	<u>s</u>	
PANCAKE	MASS F	TIME (s)		IEMPERA INITIAL	TURE [K] OUTLET PEAK	ΔT		AC	LOSS [.	[]		
1				4.63	4.875	0.245				1		
2	5.213			4.616	5.020	0.404		1074	4	[		
3 cable		1.072	4 607	4.731	5.068	0.337	31	5.8	728.6	1		
3 corner	7 575	1.696	4.07/	4.541	4.907	0.366	41	2.8		4340.	8	
4 corner	1.373	1.869		4.619	5.000	0.381	47	0.9	784 2	]		
4 cable		1.22		4.668	4.995	0.327	31	3.3	104.2			
5	12.91		4.528	4.509	4.870	0.361		175	4		_	
6	14.71		7.520	5.019	4.262	<u> </u>						

Run number	232	DM Sh	ot number	278		Date	12/1	8/90	Tim	e <u>10:51</u>		
Connection Mode Description	Single $\propto$ AC Single tra	apezoid		Total in Inlet Inlet ten	nict flow pressure operature	23.25 5.646 4.693	g/s stm K	Bm/ 1/	Bm <u>4.'</u> Tm Tm <u>4.'</u> Tm <u>1.</u>	725 T 1 s 725 T/s 200 1/s	Im Flat top Im/Tm	25 kA 3 s 25.00 kA/s
Waveform - ml CORRENT		1			T1 = T2 = Im =	1 s 3 s 25 kA		Quen Q	ch? <u>Ye</u> uench dete VB5- MC0:	s- Coils joints cction seq 6,VB3-4,	B and C ir uence ,VB1-2,M	nitiated from
	n 🚽 TI	T2 ME (s)	TI		Tm = 1	-1		Que	nch time		<u> </u>	
	MASS F	LOW [g/s]	,	TEMPERAT	URE (K)		[		01.069.f	* 1	_	
PANCAKE	INLET	OUTLET	INLET	INITIAL	PEAK	ΔΤ		A	1000 [	3]		
1	4.00			4.652	5.075	0.423						
2	4.98			4.61	5.330	0.720		193	38			
3 cable		.79	4 603	4.721	5.400	0.679	2	734	3394.7			
3 corner	7 07	1.39	4.075	4.532	5.180	0.648	66	0.7		51247	1.1	
4 corner	1.01	1.67		4.61	5.301	0.691	7	52	1405.4			
4 cable		1.15		4.662	5.255	0.593	65	53.4	200	4		
5	11.2		4.588	4.505	6 406	0.296		445	209	┨────		
6				5.019	5.405	0.380				1		

Run number	233	DM Sh	ot number	279		Date	12/1	8/90	Time	11:03		
Connection Mode Description	Single a AC Single tr	apezoid		Total i Inlet Inlet ten	nlet flow pressure nperature	25.706 5.837 X	g/s atm K	Bm Tm Bm/Tm 1/Tm	4.7 3.1 0.6	25 T .5 s 50 T/s 67 1/s	Im Flat top Im/Tm	25 kA 3 s 16.67 kA/s
Waveform - mi - mi CCKKH	/				T1 = T2 = Im =	1.5 s 3 s 25 kA		Quench ?	<u>N</u>	0		
<b>i</b> *	rı <b>bid</b> TI	TIP		Tm = T	1		Quench t	ime _		<u> </u>		
PANCAKE	MASS F	LOW [g/s] OUTLET	INLET	TEMPERA	TURE [K] DUTLET PEAK	ΔΤ		ACLO	L] 28	]		_
				4.637	4.853	0.216	1					
	5.273			4.601	4.987	0.386	1	1017				
3 cable		.644		4.736	5.040	0.304	1	69	14 3			
3 corner		1.696		4.527	4.868	0.341	40	5.3		3085		
4 corner	7.473	1.862		4.608	4.966	0.358	45	60.6	10.1			
4 cable		1.207		4.66	4.967	0.307	28	9.5	<del>W</del> .1			
5	12.06			4.5	4.844	0.344		1654				
6	12.90	<u> </u>		5.019	5.247	0.228						

Run number	234	DM Sh	ot number	280		Date _	12/1	8/90	Tim	e <u>11:14</u>		
Connection Mode Description	Single α AC Single tr	bil apezoid		Total in Inlet Inlet ten	nlet flow pressure nperature	5.444 4.693	g/s atm K	Br Tr Brm/Tr 1/Tr	m <u>4.</u> m <u>3.</u> m <u>0.</u>	914 T 1.5 s 276 T/s 667 1/s	Im Flat top Im/Im	26 kA 3 s 17.33 kA/s
Waveform m COLKENT COLKENT					T1 = T2 = Im =	1.5 s 3 s 26 kA		Quench Que	? <u>Y</u> nch det MC0	es- Coil C ection seq 3, VB1-2,	<u>crossove</u> uence MC01,MC	: turn
	rı <b>- T</b> I	€TI►		<b>Tm =</b> 7	F1	-	Quenci	h time	1.58	8		
PANCAKE	MASS F	LOW [g/s] OUTLET	INLET	TEMPERAT	TURE [K] DUTLET PEAK	ΔΤ		ACI	JOSS [	1]		
				4.631	5.088	0.457						
2				4.602	5.385	0.783						
3 cable			4 602	4.722	5.437	0.715				]	ľ	
3 corner			4.095	4.526	5.296	0.770				]		
4 corner				4.606	5.465	0.859				].		
4 cable				4.656	5.400	0.744				1		
5			4 521	4.496	5.620	1.124				<u> </u>		
6			7.521	5.005	5.602	0.597						

Run number	235	_ DM Sh	ot number	281		Date	12/1	8/90	Time	11:31			
Connection Mode Description	Single of AC Trapezoi ripple	bil id with super	imposed	Total i Inlet Inlet ter	inlet flow pressure nperature	<u>25.777</u> <u>5.789</u> <u>4.688</u>	g/s atm K	] Bm/ 1/	Bm <u>4.7</u> Tm <u></u> Tm <u>3.1</u> Tm <u>0.6</u>	25 T 1.5 s 50 T/s 667 1/s	Im Flat top Im/Tm	25 k 3 16.67 k	<u>cA</u> s <u>;A/s</u>
Waveform Im CURRENT		f Hz Sinusoi (Amplitux	dal ripple de la)		T1 = T2 = T3 = T4 = T5 = Im = Ia = f =	1.5 s 3 s 1 s 0.4 s 3 s 25 kA 800 A 10 Hz		Quenc	±h? <u>N</u>	io			
14 - 🎮	T1	TIME (s)		13 -	Tm =1	1		Quen	ch time		<u>s</u>		
PANCAKE	MASS F	LOW [g/s] OUTLET	INLET	TEMPERA'	TURE (K OUTLET PEAK	] ΔT		AC	LOSS []	ני			
1	E 222			4.606	4.952	0.346							
2	5.333			4.609	5.160	0.551		143	0				
3 cable		.715	1 600	4.722	5.181	0.459	26	8.3	827.9				
3 corner	7 474	1.688	4.000	4.531	5.032	0.501	55	9.6		5589	5		
4 corner	1.4/4	1.854		4.611	5.144	0.533	63	5.6	1059 6				
4 cable		1.249		4.666	5.123	0.457	4	23	1020.0				
5	12.07		4 510	4.5	4.994	0.494		227	73				
6	12.97		4.319	5.012	5.330	0.318							

•

Run number	236	DM Sh	ot number	<u>x</u>		Date	12/1	8/90	Time 11:43		
Connection Mode Description	Single co AC Trapezoi ripple	bil id with super	imposed	Total i Inlet Inlet ten	niet flow pressure nperature	<u>5.789</u> <u>4.691</u>	g/s stm K	Brn Tm Brn/Tm 1/Tm	4.914 T 1.5 s 3.276 T/s 0.667 1/s	Im Flat top Im/Tm	26 kA 3 s 17.33 kA/s
Waveform an CORRENT	/	f Hz Sinusoi (Amplitux	dal ripple le Ia)		T1 = T2 = T3 = T4 = T5 = In = I	1.5 s 3 s 1 s 0.4 s 3 s 26 kA 800 A		Quench ?	No		
T4 T4		TIME (s)		13	Tm =	Г1 Г1		Quench ti	me	<u> </u>	
PANCAKE	MASS F	LOW [g/s] OUTLET	INLET	IEMPERA INITIAL	TURE (K DUTLET PEAN	.] . ΔT		ACLO	SS [1]		
1			:	x x							
3 cable 3 corner			4.691	x x							
4 corner 4 cable				X X							
5			4.521	x x							

Run number	237	DM Sh	ot number	282		Date	12/1	8/90	Time	11:50			
Connection Mode Description	Single a AC Trapezoi ripple	id with superi	imposed	Total i Inlet Inlet ten	inlet flow pressure nperature	<u>24.279</u> <u>5.462</u> <u>4.686</u>	g/s atm K	Bm Tm Bm/Tm 1/Tm	<u>5.1(</u> <u>1</u> <u>3.4(</u> <u>0.66</u>	03 T .5 s 02 T/s i7 1/s	Im Flat top Im/Tm	27 kA 3 s 18.00 kA	<u>↓</u>
Waveform In COURRENT		f Hz Sinusoi (Amplitus MWWWW	dal ripple de Ia)		T1 = T2 = T3 = T4 = T5 = Im = Ia = f = Tm = T	1.5 s 3 s 1 s 0.4 s 3 s 26 kA 800 A 10 Hz '1		Quench ? Quenc Quench t	<u>Yes</u> h detec MC02,	- Quenc tion sequ VB3-4, V	<u>h informat</u> rence VB1-2,MC	<u>ion ?</u> :01,MC03	
							<u>_</u>	L					
	MASS F	LOW [g/s]	ļ	TEMPERA	TUKE [K.	1	┥	ACLO	SS []	1			
PANCAKE	INLET	OUTLET	INLET	INITIAL	PEAK	ΔΤ	1			-			
1	6 001		[	*	5.138	5.138			I				
2	0.221		Į	4.604	5.548	0.944		2962					
3 cable		1.036	1 696	4.714	6.110	1.396	11	130 29	965				
3 corner	4 100	1.86	4.000	4.522	6.020	1.498	18	335 ~		14549	9		
4 corner	4.420	2.013	Į	4.6	6.370	1.770	2	305	245				
4 cable		1.781	1	4.656	6.160	1.504	19	740					
5	13.632 4.51		1 414	4.489	5.370	0.881		4377					
6	13.032		4.313	5.048	5.480	0.432							

Run number	238	DM Sh	ot number	286		Dute	12/18	3/90	Time	13:36		•
Connection Mode Description	Single co AC Slow-rar	np trapezoid		Total i Inlet Inlet ten	nlet flow pressure mperature	17.452 5.439 4.683	g/s atm K	Bm Tm Bm/Tm 1/Tm	5.6 0.8 0.1	70 T 7 s 10 T/s 43 1/s	Im Flat top Im/Tm	30 kA 3 s 4.29 kA/s
Waveform - ml COKKENI	/			<u>\</u>	T1 = T2 = T3 = Im =	7 s 3 s 1 s 30 kA		Quench ? Quenc	<u>Yes</u> h detec MC03,	<u>- Coil C</u> tion seq , VB5-6,	C crossove uence VB3-4,M	r turn. (C01,MC02
-	T1-	TIME (s)	T2- <b>D</b> - <b>4</b> T3	▶	Tm = T	'1		Quench ti	me <u>(</u>	5.81	5	
PANCAKE	MASS F	.OW [g/s]	' INI ET'	TEMPERA	TURE [K] DUTLET			ACLO	SS []	]	7	
	INLET	OUTER		INITIAL	PEAK	ΔΤ						
	3.83			4.585	5.640	1.040		2065				
2 3 cable		927		4.71	5.752	1.042	83	3.2				
3 comer		1.833	4.683	4.524	5.630	1.106	14	23	17.2	16676		
4 comer	4 corner 5.12 1.998				6.000	1.397	19	62		13033		
4 cable	able 1.405			4.647	5.870	1.223	13	33	31			
5	0.600		4 812	4.488	6.920	2.432		7922				
6	8.502		4.313	4.998	6.340	1.342						

Run number	239	DM Sh	ot number	285		Date	12/1	8/90	Time	13:47		
Connection Mode Description	Single or AC Slow-rar	oil		Total i Inlet Inlet ten	nlet flow pressure nperature	<u>18.348</u> <u>5.391</u> <u>4.679</u>	g/s atm K	Bn Tn Bm/Tn 1/Tn	n <u>5.6</u> n <u> </u>	70 T 8 s 09 T/s 25 1/s	Im Flat top Im/Tm	30 kA 
Waveform CURRENT 0 CURRENT				<u>\</u>	T1 = T2 = T3 = Im =	8 s 3 s 1 s 30 kA		Quench Ques	? <u>Ye</u> nch dete MC03	s- Coil C ction sequ , VB5-6,	crossove rence VB3-4,M	r turn
•	T1-	TIME (s)	T2- <b>bi</b> 4T3	*	Tm = 1	'1		Quench	time _	7.75	<u>s</u>	
PANCAKE	MASS F	LOW [g/s]		TEMPERA	FURE (K) DUTLET			ACL	OSS []	]	7	
	INLET	OUTLET	INLEI	INITIAL	PEAK	ΔΤ						
1	4.28			4.687	5 620	1.040	<b> </b>	7246				
2				4.381	5.050	1.049	02	2340				
3 cable		.931	4.679	4.1	5.720	1.020		2	268.9			
3 corner	5.375	1.787		4.507	5.610	1.103	14	133		13945.	.9	
4 corner		1.998		4.588	5.890	1.302	+	*/	3108			
4 cable	able 1.373			4.040	5.770	1.124		(001				
5	8.693		4.508	4.479	6.500	2.021	<b> </b>	6223				
6				5.067	6.125	1.058	I			I		

Run number	240	DM Sh	ot number	283		Date	12/18	8/90	Time	13:58		
Connection Mode Description	Single or AC Slow-rar	oil  np trapezoid		Total i Inlet Inlet ten	nlet flow pressure aperature	21.424 5.468 4.675	g/s atm K	Ban/Ti Ban/Ti 1/Ti	n <u>5.6</u> n n <u>0.6</u> n <u>0.1</u>	70 T 9 s 30 T/s 11 1/s	lm Flat top Im/Tm	30 kA 3 s 3.33 kA/s
Waveform Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im Im											<u>crossover</u> ence MC01,MC	<u>: turn.</u> 102
		TIME (S)			Tm = T	1		Quenci	n time	8.73	<u> </u>	
PANCAKE	MASS F	LOW [g/s] OUTLET	INLET	TEMPERAT	TURE [K] DUTLET PEAK	ΔT		ACI	.088 []	]		
1	3 382			4.675								
2	3.302			4.582	5.650	1.068		1860				
3 cable		1.063	4.675	4.7	5.780	1.080	97	5.7	2368.7			
3 corner	6.516	1.675		4.515	5.660	1.145	13	93		18319	.7	
4 corner		1.944		4.591	6.040	1.449	19	80	3330			
4 cable		1.393		4.044	0.875	2.231	13	1076				
5 6	11.526		4.507	4.479	6.340	1.311		10/01				



Run number	242	DM Sł	not number	<u>x</u>		Date	12/1	8/90	Time 14:20	)	
Connection Mode Description	Single c AC Slow-ran	oil  mp trapezoid		Total Inie Iniet ter	inlet flow t pressure mperature	<u>5.837</u> <u>4.672</u>	g/s atm K	Bm Tm Bm/Tm 1/Tm	5.670 T 10 s 0.567 T/s 0.100 1/s	Im Flat top Im/Tm	30 kA 
Waveform CURRENT 0 0					T1 = T2 = T3 = Im =	10 s 3 s 1 s 30 kA		Quench ?	No		
		TIME (s)	-	-	Tm = 1	<b>F1</b>		Quench ti	me	<u> </u>	
PANCAKE	MASS F	LOW [g/s] OUTLET	INLET	IEMPERA INITIAL	TURE (K) OUTLET PEAK	ΔΤ	ł	ACLO	SS [J]		
1				x							
2 3 cable				x			┼──				
3 corner			4.072	x							
4 corner				x							
4 cable				x			<u> </u>				
6			4.501	x							

Run number	243	DM SI	ot number	287		Date	12/18	3/90	Time	14:31		
Connection Mode Description	Single c AC Trapezo ripple	oil  id with super	imposed	Total Inle Inlet ter	iniet flow t pressure mperature	25.813 5.861 4.672	g/s atm K	Bm Tm Bm/Tm 1/Tm	<u>5.6</u> 0.6	570 T 9 s 530 T/s 11 1/s	Im Flat top Im/Tm	30 kA 3 s 3.33 kA/s
Waveform Im COLKE	Waveform Im Im T1 = T2 = T2 = T3 = T3 = T5 = T3 = T3 = T3 = T2 = T3 = T3 = T3 = T3							Quench ?	N	lo		
T4 📕	<u> </u>	TIME (s)	r3 🏲	Tm =T	1		Quench t	ime _		<u>\$</u>		
PANCAKE	MASS F	LOW [g/s] OUTLET	INLET	IEMPERA'	TURE [K] OUTLET PEAK	ΔΤ		ACLO	ss []	]		
1	5 453			4.62	5.128	0.508						
2	5.455			4.591	5.455	0.864		2249				
3 cable		1.018	4.672	4.697	5.450	0.753	570	).5 15	27.5			
3 corner	7.68	1.815		4.509	5.328	0.819	95	57		8869.	8	
4 corner		1.939		4.59	5.445	0.855	10	55 16	80.3			
4 cable		1.186		4.644	5.380	0.736	62	5.3				
5	12.68		4,501	4.477	5.250	0.773	ļ	3413				
6				4.989	5.482	0.493						

Run number	244	DM Sł	ot number	288		Date	12/18/	90	Time	14:43		
Connection Mode Description	Single of AC Trapezo ripple	oil id with super	imposed	Total i Iniet Iniet ter	iniet flow pressure nperature	25.698 5.861 4.672	g/s atm K	Bm Tm Bm/Tm 1/Tm	<u>5.6</u> 0.7 0.1	70 T 8 s 09 T/s 25 1/s	Im Flat top Im/Im	30 kA 3 s 3.75 kA/s
Waveform Im COLKE	K	f Hz Sinusoi (Amplitus	dal ripple de Ia)	$\mathbf{P}$	T1 = T2 = T3 = T4 = T5 = Im = Ia = 8f = 8	8 s 3 s 1 s 2 s 8 s 30 kA 300 A 10 Hz	1	Quench ?	<u>_N</u>	0		
T4	<u> </u>	TIME (s)		r3 <b>&gt;</b> 1	Tm =T1			Quench ti	ine _		<u>s</u>	
PANCAKE	MASS F	LOW [g/s] OUTLET	INLET	TEMPERA'	TURE [K] OUTLET PBAK	ΔΤ		ACLO	r] 28	1		
1				4.626	5.120	0.494						
2	5.401			4.586	5.440	0.854		2198				
3 cable		1.023	1 672	4.701	5.432	0.731	564.	.5 14	93.1			
3 corner	7 667	1.792	4.072	4.513	5.308	0.795	928.	.6		8656.	.9	
4 corner	7.007	1.908		4.592	5.428	0.836	101	8 16	37.8			
4 cable	ble 1.195			4.647	5.364	0.717	619	.8				
5	12.63		4.503	4.481	5.230	0.749		3328				
6	12.05			4.92	5.474	0.554						

Run number	245	DM Sh	ot number	289		Date	12/1	8/90	Time 14	:54		
Connection Mode Description	Single co AC Trapezoi ripple	id with super	imposed	Total i Inlet Inlet ten	inlet flow pressure nperature	<u>5.665</u> <u>4.672</u>	g/s atm K	Bm Tm Bm/Tm 1/Tm	5.670 T 7 s 0.810 T 0.143 1/	Inn Flat to //s Inn/Tu /s	m <u>30</u> 3 3 m <u>4.29</u>	kA s kA/s
Waveform Im CORRENT		f Hz Sinusoi (Amplitu	dal ripple de Ia)		T1 = T2 = T3 = T4 = T5 = Im = Ia = 8 $f = Tm = T1$	7 s 3 s 1 s 2 s 7 s 30 kA 300 A 10 Hz		Quench ? Quenc Quench ti	<u>Yes-Co</u> th detection s VB5-6,MC0 ime 6.811	il C crosso requence 03,MC02,N	ver turn. NC01	
PANCAKE	MASS F	LOW [g/s]		TEMPERA'	TURE [K]			ACLO	[1] 88			
	INLET	OUTLET	INLET	INITIAL	PEAK	ΔΤ						
	х			4.646	5.252	0.606	ļ	**				
2				4.586	5.670	1.084	<u> </u>	X				
3 cable		X	4.672	4.7	5.795	1.095		<u>}</u>				
3 corner	x	X		4.512	5.095	1.183						
4 corner		X V		4.391	0.160	1.309						
4 cable		<u>X</u>		4.048	7.000	1.372		<u>^                                    </u>				
5 6	x		4.502	4.994	6.740	1.746		A				

263

.

Run number	246	DM Sł	ot number	290		Date	12/1	8/90	Ti	me <u>15:29</u>		
Connection Mode Description	Single of AC Single tr	apezoid		Total i Iniet Iniet ter	inlet flow pressure nperature	26.1 6.002 6.224	g/s atm K	] Bm/ 1/	Ben _3 Tm Tm Tm	3.780 T 5 s 0.756 T/s 0.200 1/s	Im Flat top Im/Tm	20 kA 3 s 4.00 kA/s
Waveform - ml CCIKKENI	/				T1 = T2 = Im =	5 s 3 s 20 kA		Quenc	±h?			
	TI	-T2	<b>€</b> T1		Tm = 1	1		Quen	ch time		<u> </u>	
PANCAKE	PANCAKE INLET OTHER INLE				TURE (K) OUTLET PEAK	Ι ΔT		AC	LOSS	[1]		
1				5.689	5.840	0.151						
2	5.504			6.064	6.235	0.171	<b> </b>	970	)	1		
3 cable		1.001		6.068	6.220	0.152	2	63	651	-1		
3 corner	3 cable 1.001 6.224			5.94	6.094	0.154	3	88	031	5174		
4 corner	corner 7.716 1.936			6.087	6.245	0.158	4	69	760	<b>-</b> ^{- 31/4}		
4 cable		1.242	•	6.04	6.184	0.144	2	94	763			
5	12.00		6 0.91	5.952	6.108	0.156		279	0			
6	14.88		0.081	6.196	6.334	0.138				ł		

.

Run number	247	DM Sł	iot number	291		Date _	12/1	8/90	Time	: 15:40	)		
Connection Mode Description	Single c AC Single tr	oil apezoid		Total i Inlet Inlet ter	inlet flow t pressure nperature	26.1 6.050 6.245	g/s atm K	Bn Tn Bm/Tn 1/Tn	a <u>3.7</u> a <u></u> a <u></u>	780 T 1.5 s 520 T/s 567 1/s	Im Flat top Im/Tm	20 3 13.33	kA s kA/s
Waveform Im COLKRENT					T1 = T2 = Im =	1.5 s 3 s 20 kA		Quench	? <u> </u>	<u>lo</u>			
					Tm = 7	<b>Г1</b> '		Quench	time		<u>s</u>		
PANCAKE	ANCAKE NASS FLOW [g/s]				TURE (K OUTLET PEAK	]   <u>at</u>		ACL	oss []	]			
1	5 504			5.729	5.882	0.153							
2	5.504			6.093	6.292	0.199		1136					
3 cable		1.001	6 245	6.095	6.271	0.176	2	92 7	45.7				
3 corner	7 716	1.731	0.245	5.967	6.153	0.186	45	3.7		4464.	4		
4 corner	1./10	1.936		6.114	6.302	0.188	53	9.9	94 7		-		
4 cable		1.242		6.063	6.235	0.172	34	4.8	04./				
5			61	5.979	6.152	0.173		1698					
6	12.00		0.1	6.22	6.370	0.150							

Run number	248	DM Sh	ot number	292		Date	12/1	8/90	Tim	15:51		
Connection Mode Description	Single c AC Single tr	apezoid		Total i Inlet Inlet ten	inlet flow pressure nperature	25.98 6.190 6.253	2/5 atm K	Bm Tm Bm/Tm 1/Tm	<u>3.7</u> 	75 s 75 s 40 T/s 33 1/s	Im Flat top Im/Tm	20 kA 3 s 26.67 kA/s
Waveform CURRENT 0 CURRENT		T2			T1 = 0. T2 = Im =	75 s 3 s 20 kA		Quench ?		lo		
7	T	ME (s)	1		T <b>m</b> = T	1		Quench	ime _		<u>s</u>	
PANCAKE	MASS FLOW [g/s]				TURE (K) OUTLET PEAK	ΔT		ACLO	DSS []	[]		
1				5.739	5.883	0.144					-	
2	5.474			6.1	6.295	0.195		1007			-	
3 cable		1.029		6.1	6.276	0.176	27	6.6	71 0			
3 corner	3 corner 7.716 1.78 6.253			5.973	6.155	0.182	39	5.2	/1.0	1010	6	
4 corner	/./10	1.978		6.115	6.304	0.189	48	1.2		4019.		
4 cable		1.288		6.067	6.236	0.169	32	1.6	02.8			
5	12 70		6 106	5.979	6.151	0.172		1538				
6	14.19		0.100	6.225	6.364	0.139						

Run number	249	DM Sł	ot number	293		Date	12/1	8/90	Tim	<u> </u>		
Connection Mode Description	Single c AC Single tr	apezoid	· · · · · · · · · · · · · · · · · · ·	Total Inlei Inlei ter	inlet flow t pressure nperature	23.287 5.910 6.238	g/s atm K	B T Bm/T 1/T	m <u>3.</u> m m <u>12.0</u> m <u>3.</u>	780 T .3 s 500 T/s 333 1/s	Im Flat top Im/Tm	20 kA 3 s 66.67 kA/s
Waveform Im Lung O O C	/				T1 = T2 = Im =	0.3 s 3 s 20 kA		Quench	1? <u>1</u>	ło		
					Tm = 7	<u>.</u>		Quenc	h time		<u>s</u>	
	MASS F	LOW [g/s]	,	TEMPERA	TURE [K]							
PANCAKE	INTER	OUTTET	INLET		OUTLET	1	]	ACI	LOSS []	[]		
	INLEI	COILEI		INITIAL	PEAK		ļ			<b></b>		
	5.6			5.112	3.930	0.238	<u> </u>	1707				
2				0.005	0.308	0.303		1/26		ł		
3 cable		1.163	6.238	6.072	0.339	0.267	33	9.0	1163.3		1	
3 corner	4.797	1.767		5.939	6.216	0.2/7	62	3.7		6586.	4	
4 corner	-	1.989		6.082	6.364	0.282	75	9.7	1332.1			
4 cable		1.357		6.039	6.293	0.254	57	2.4		1		
5	12.89		6.075	5.947	6.201	0.254		2365				
6				6.201	6.410	0.209				<u> </u>		

Run number	250	DM SI	ot number	294		Date	12/1	8/90	Tim	e <u>16:2</u> 7	, 	
Connection Mode Description	Single c AC Two-ste	oil  p-down puls	<u>e</u>	Total Inlet Inlet ter	inlet flow t pressure nperature	<u>6.215</u> 4.695	g/s atm K	Bn Tn Bnn/Tn 1/Tn	n <u>5.0</u> n <u>0.9</u> n <u>0.9</u>	670 T 6 s 945 T/s 167 1/s	Im Flat top Im/Tm	30 kA 3 s 5.00 kA/s
Waveform Im omI CC omI CC	Waveform $(Im/T1)t + 0.28Im sin(180t/T1)$ $T1$ T2 T3 T4 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5 T5							Quench	7 <u> </u>	ło		
		TIME t (	s)	21	Tm = 1	<u>1</u>		Quench	time		5	
PANCAKE	MASS F	LOW [g/s] OUTLET	INLET	IEMPERA	TURE (K) OUTLET PEAK	ΔT		ACL	oss [:	1]		
1	x			4.653 5.742	4.960	0.307		x				
3 cable		X	4.695	4.776	5.088	0.312		x				
4 corner	х	X		4.040 5.778	4.906	0.200		x				
4 cable 5	x	X	4 575	5.984 5.418				x   x				
6	<u>^</u>		7.323	5.75								



1

Run number	252	_ DM Sh	ot number	296		Date	12/1	8/90	Time	16:48		
Connection Mode Description	Single co AC Trapezoi ripple	oil 	imposed	Total i Inict Inict ter	inlet flow pressure nperature	41.22 5.598 5.586	g/s atm K	Bm/ 1/	Bm <u>5.6</u> Tm (Tm <u>0.9</u> (Tm <u>0.1</u>	70 T 6 s 45 T/s 67 1/s	Im Flat top Im/Tm	30 kA 3 s 5.00 kA/s
Waveform In CURRENT		f Hz Sinusoi (Amplitus (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus) (Amplitus)	dal ripple ie Ia)		T1 = T2 = T3 = T4 = T5 = 0 $Im = Ia = 16$ $f = Tm = T1$	6 s 3 s 1 s 1.5 s 6.5 s 30 kA 800 A 20 Hz		Quen Q Quer	ch? <u>Ye</u> wench deter MC03	<u>s- Coil C</u> ction seque ,VB5-6,V .71	crossove ence /B3-4,VE	<u>r turn.</u> 11-2
	24466 7			TEMPERA	TURE (K)						7	
PANCAKE	INI DT		INLET		JUTLET			AC	LOSS []	]		
	INLEI	UUILEI		INITIAL 4.64	S ASO	0.819						
	11.5			4.65	5.761	1.111		399	5		-	
2 3 cable		2.393		4.769	5.782	1.013	12	28	2590	•		
3 corner		3.117	5.586	4.582	5.640	1.058	13	61	2369	14721		
4 corner	15.53	3.554		4.667	5.840	1.173	17	31	31.41	14/31		
4 cable		2.763		4.728	5.760	1.032	14	10	5141			
5	14 10		16 31	4.561	6.325	1.764		500	)6			
6	14.17		10.51	5.064	6.220	1.156			,			

Run number	253	DM Sł	not number	297		Date _	12/1	8/90	Time	16:59		
Connection Mode Description	Single co AC Miss sho	oil 		Total Inlei Inlei ter	inlet flow t pressure nperature	<u>37.006</u> <u>5.131</u> <u>4.697</u>	g/s atm K	Bm Tm Bm/Tm 1/Tm		<u>T</u> <u>X s</u> <u>T/s</u> <u>1/s</u>	Im Flat top Im/Tm	<u>X kA</u> <u>s</u> kA/s
Waveform								Quench ? Quenc Quench t	<u>Yes</u> th detec NOT A	- Joint? tion sequ VAILA 59	s	
PANCAKE	MASS F	LOW [g/s] OUTLET	INLET	IEMPERA INITIAL	TURE (K) OUTLET PEAK	ΔT		ACLO	SS []	]		
	7.020			4.642	5.340	0.698						
2	7.039			4.653	5.620	0.967		2226				
3 cable		2.779	4 697	4.769	5.700	0.931	13	68 2	762			
3 corner	11 27	3.332	4.097	4.581	5.556	0.975	13	194		2313	,	
4 corner	11.401	3.725		4.671	5.925	1.254	19	986	\$60			
				4 724	5 705	1 061	14	(93	~ 1			
4 cable		3.078		4./34	3.793	1.001	10	05				
4 cable 5	18 697	3.078	4.526	4.754	7.610	3.043	10	14480				

Run number	254	DM SH	ot number	133		Date _	12/1	9/90	Time 10:12	<u>}</u>	
Connection Mode Description	Series w AC Single tr	ith U1 & U2 iangle	2 coils	Total in Inlet Inlet tem	nlet flow pressure perature	<u>6.026</u> <u>4.321</u>	g/s atm K	Bm Tm Bm/Tm 1/Tm	0.461 T 5 s 0.092 T/s 0.200 1/s	Im Flat top Im/Tm	<u>1.5 kA</u> <u>0 s</u> <u>0.30 kA/s</u>
Waveform Im CORKENT		<b>-</b>			T1 = Im =	5 s 1.5 kA		Quench ?	<u>No</u>		
•	TIMĖ (s)	3			Tm='	Г1		Quench ti	me	<u> </u>	
PANCAKE	MASS F	LOW [g/s]		TEMPERAT	URE (K UTLET	]		ACLO	[1] 22		
	INLET	OUTLET	INLESI	INITIAL	PEAK	ΔΤ					
1	X			4.341							
2				4.298			ļ	<u>X</u>			
3 cable		X	4.321	4.464		1		<u>×</u>			
3 corner	x	X		4.247				x			
4 corner		X		5.012				×		1	
4 cable		X		X				<u>x  </u>			
5	x		4.138	X				X			
6	**			x							

Run number	255	DM Sł	ot number	134		Date	12/1	9/90	Time _10:20	)	
Connection Mode Description	Series w AC Single tr	rith U1 & U2  iangle	coils	Total Inici Inici ter	inlet flow t pressure nperature	<u>6.026</u> <u>4.32</u>	g/s atm K	Bm Tm Bm/Tm 1/Tm	0.461 T 5 s 0.092 T/s 0.200 1/s	Im Flat top Im/Tm	1.5 kA 0 s 0.30 kA/s
Waveform Im CURRENT CURRENT		<u> </u>			T1 = Im =	5 s 1.5 kA		Quench ?	<u>No</u>	<u> </u>	
	TIMĖ (s	) ' 			Tm = '	T1		Quench ti	me	<u>s</u>	
PANCAKE	MASS F	LOW [g/s] OUTLET	INLET	IEMPERA'	TURE (K OUTLET PEAK	]   <u> </u>   <u> </u>		ACLO	SS [1]		
1	x			4.344 4.3				x			
3 cable 3 corner	x	X X	4.32	4.466 4.249				x x			
4 corner 4 cable		X		X X				x x			
6	x		4.14	X	•						

Run number	256	DM Sh	ot number	135		Date	12/19	9/90	Time	10:28		
Connection Mode Description	Series w AC Single tr	ith U1 & U2 iangle	coils	Total i Inlet Inlet ten	nlet flow pressure nperature	6.002 4.325	g/s atm K	Bm Tm Bm/Tm 1/Tm	<u> </u>	44 T 75 s 59 T/s 33 1/s	Im Flat top Im/Tm	6 kA 0 s 8.00 kA/s
Waveform I ml CURRENT					T1 = 0. Im =	75 s 6 kA		Quench ?	<u>N</u>	0		:
, ř					Tm = T	1		Quench ti	ime _		<u> </u>	
PANCAKE	MASS FLOW [g/s]				TURE (K) DUTLET PEAK	ΔT		ACLO	SS []	]		
1	x			4.346 4.304	4.419 4.412	0.073 0.108		x				
3 cable 3 corner	cable X 4.325			4.469 4.251	4.566 4.357	0.097 0.106	2	( (		231.5	5	
4 corner 4 cable		.536 .249		5.015 6.809	6.886	0.077	40	40 .05	.05		•	
5 6	3.792		4.144	X	3.710	0.004		1/1.5				

Run number	257	DM Sh	ot number	136		Date	12/1	9/90	Time	10:41		
Connection Mode Description	Series w AC Single tr	ith U1 & U2 iangle	coils	Total i Inlet Inlet ter	inlet flow pressure nperature	<u>17.673</u> <u>6.026</u> <u>4.324</u>	g/s stm K	Ba Tr Ban/Tr 1/Tr	n <u>3.6</u> n <u>4.9</u> n <u>1.3</u>	88 T 75 s 17 T/s 33 1/s	Im Flat top Im/Tm	12 kA 0 s 16.00 kA/s
Waveform					$T_1 = 0$	.75 .						
CURRENT		<u>\</u>			Im =	12 kA		Quench	? <u>N</u>	0		
1					<b>Tm = T</b>	'1		Quenci	time _		8	
	MASS F	OW [9/s]	,	TEMPERA	FURE [K]			•				
PANCAKE	INTET	OUTTET	INLET	DITIAL	DUTLET	AT		ACI	OSS []	]		
				4.351	4.507	0.156						
	.997			4.303	4.540	0.237		47.68			-1	
3 cable		.719	4 3 3 4	4.469	4.681	0.212	5	1.4	92.03			
3 corner	12.82	.601	4.324	4.251	4.483	0.232	40	.63		721.4	9	
4 corner	12.02	.509		5.019				x	54.58			
4 cable		.143		6.814	7.000	0.186	54	.58				
5	3.856		4.142	5.914	6.115	0.201	ļ	527.2				
6				X		1						

Run number	258	DM Sh	ot number	137		Date	12/1	9/90	Time	10:53		
Connection Mode Description	Series w AC Single tr	ith U1 & U2	coils	Total i Inlet Inlet ten	nlet flow pressure nperature	17.65 5.977 4.324	g/s atm K	Bm Tm Bm/Tm 1/Tm	_ <u>5.5</u> 	32 T 75 s 76 T/s 33 1/s	Im Fiat top Im/Tm	<u>18 kA</u> <u>0 s</u> 24.00 kA/s
Waveform Im CURRENT CURRENT		<u></u>			T1 = 0. Im =	75 s 18 kA		Quench 7	, <u> </u>	0		
1	TIME (s)				Tm = T	l		Quench	time _		5	
PANCAKE	MASS FLOW [g/s]				TURE [K] DUTLET PEAK	ΔT		ACL	DSS []	]		
1	997			4.351	4.619	0.268						
2	.772			4.303	4.730	0.427		86.93				
3 cable		.721	4.324	4.469	4.859	0.390	96	.79 1	1.73			
3 corner	12.84	.594		4.252	4.670	0.418	74	.94		1595.53	39	
4 corner	corner .504			5.024			3.0	579	9.879			
4 cable		.186		6.81	7.290	0.480	14	6.2				
5	3.818		4.143	5.93	6.430	0.500		1187				
6				Х		L						

Run number	259	DM Sł	ot number	138		Detc	12/1	9/90	Tim	11:04		
Connection Mode Description	Series w AC Single tr	ith U1 & U2 iangle	coils	Total i Inlet Inlet ter	niet flow pressure nperature	17.776 5.977 4.329	g/s atm K	Bn Tn Bm/Tn 1/Tn	n <u>7.3</u> n <u>9.8</u> n <u>1.3</u>	76 T 75 s 35 T/s 33 1/s	Im Flat top Im/Tm	24 kA 0 s 32.00 kA/s
Waveform m COLKENT COLKENT 0		<u>▶</u>			T1 = 0. Im =	75 s 24 kA		Quench	?	io		
	TIMĖ (s)	,			Tm = T	1		Quench	time _		5	
PANCAKE	ANCAKE INLET OUTLET INLE				TURE [K] SUTLET PEAK	ΔT		ACL	oss [J	1)		
1	1.00			4.359	4.791	0.432						
2	1.09			4.308	5.021	0.713		168.1				
3 cable		.711	4 320	4.473	5.159	0.686	17	4.6	03.3			
3 corner	12.0	.57	4.329	4.255	4.980	0.725	12	28.7		2869.0	34	
4 corner	14.7	.516		5.035	5.590	0.555	43	.94	70 64			
4 cable		.261		6.825	7.750	0.925	32	<b>26.7</b>	70.04			
5	3 786		. 4. 146	5.785	6.750	0.965		2027		<u> </u>	_	
6	5.700			X		<u> </u>						

Run number	260	DM Sh	ot number	139		Date _	12/1	9/90	Time _11:15	;	
Connection Mode Description	Series w AC Single tr	ith U1 & U2 	coils	Total i Inlet Inlet ten	nlet flow pressure nperature	<u>5.007</u> 4.33	g/s atm K	Bm Tm Bm/Tm 1/Tm	8.298 T .75 s 11.064 T/s 1.333 1/s	Im Flat top Im/Tm	27 kA 0 s 36.00 kA/s
Waveform m CURKENT CURKE		<u> </u>			T1 = 0. Im =	.75 s 27 kA		Quench ? Quenc	<u>Yes- Coil (</u> h detection seq USVB5-6,US) 2	<u>C, but not c</u> uence MC03,USI	<u>rossover turn</u> . MC01,USMC0
		<b>→</b> ¹			Tm = T	1		Quench ti	me <u>.822</u>	<u>s</u>	
	MASS F	LOW [g/s]		TEMPERA	FURE [K]			ACLO	SS [J]		
PANCAKE	INLET	OUTLET	INLET	INITIAL	PEAK	ΔΤ	1				
	v			4.368	5.640	1.272					
2	A			4.314	6.620	2.306		Х			
3 cable		X	4.32	4.479	6.800	2.321		x			
3 corner	v	X	4.33	4.262	6.680	2.418		x			
4 corner	X	X		5.036	6.140	1.104		x			
4 cable		X		6.838	8.340	1.502		x			
5	v		4 151	5.935	6.900	0.965		X			
6	л		4.131	X							

Run number	261	DM Sh	ot number	140		Date _	12/19	90	Time	11:27		
Connection Mode Description	Series w AC Single tr	ith U1 & U2 apezoid	coils	Total i Inlet Inlet ter	inlet flow pressure nperature	<u>17.703</u> <u>5.813</u> <u>4.341</u>	g/s atm K	Br Tr Bm/Tr 1/Tr	n <u>3.6</u> n n <u>3.6</u> n <u>1.0</u>	1 s 1 s 88 T/s 00 1/s	Im Flat top Im/Tm	12 kA 0.5 s 12.00 kA/s
Waveform Im - Im CICKERNI COLKERNI	/				T1 = T2 = Im =	1 s 0.5 s 12 kA		Quench	?	ĭo		
	n 🏹 Ti	-T2	¶T1₽į		Tm = T	1		Quench	time _		<u> </u>	
PANCAKE	PANCAKE NLET OUTLET INLE				TURE [K] OUTLET PEAK	ΔT		ACL	oss []	]		
				4.375	4.510	0.135	<b></b>					
	.902			4.32	4.550	0.230		44.95				
3 cable		.665	4.241	4.489	4.700	0.211	48.	.09	98.68			
3 corner	10.00	.736	4.341	4.345	4.500	0.155	50.	.59		832.5	3	
4 corner	12.00	.598		5.029			>	<	188		-	
4 cable		65		6.867	7.015	0.148	18	38	100			
5	3.921		4,158	5.971	6.142	0.171		500.9				
6	3.7 ML	<u> </u>		x		<u> </u>	L					

٠

4

Run number	262	DM Sł	ot number	141		Date	12/1	9/90	Tim	e <u>11:38</u>		
Connection Mode Description	Series w AC Single tr	ith U1 & U2  apezoid	coils	Total i Inlet Inlet ten	inlet flow pressure nperature	<u>17.93</u> <u>5.861</u> <u>4.333</u>	g/s atm K	Bin/Ti Bin/Ti 1/Ti	m <u>5.</u> m m <u>5.</u>	532 T <u>1 s</u> 532 T/s 500 1/s	Im Flat top Im/Tm	18 kA 0.5 s 18.00 kA/s
Waveform CURRENT 0 CURRENT					T1 = T2 = Im =	1 s 0.5 s 18 kA		Quench	?	<u>ło</u>		
					Tm = 1	1		Quenci	h time		<u>s</u>	:
PANCAKE	ANCAKE NILET OTH ET INLET			TEMPERA'	TURE [K]	l at		ACI	.088 [:	1]	7	
				4.351	4.606	0.255	<b> </b>			1	-	
	.992			4.303	4.712	0.409		91.98				
3 cable		.671		4.476	4.855	0.379	89	.79	102 07	1		
3 corner	3 corner 12.04 .747 4.333			4.259	4.670	0.411	94	.03	103.62	2205 6	<b>a</b>	·
4 corner	12.94 .606			5.03		1	4.1	866	CO 966	2275.00	~	
4 cable		68		6.84	7.370	0.530	5	58	02.800			
5	2 009	68			6.590	0.660		1457		1		
6	3.998		4.14/	X								

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Run number	263	DM Sł	ot number	143		Date	12/1	9/90	Tin	<b>e</b> <u>11:49</u>	) <u> </u>	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Connection Mode Description	Series w AC Single tr	ith U1 & U2	coils	Total i Inlet Inlet ter	inlet flow t pressure nperature	<u>4.995</u> <u>4.333</u>	g/s atm K	] Bm/ 1/	Bm <u>7</u> . Tm Tm <u>7</u> . Tm <u>1</u> .	.376 T 1 s .376 T/s .000 1/s	Im Flat top Im/Tm	24 kA 0.5 s 24.00 kA/s
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Waveform Im Lu U U U U U U U U	Vaveform Im 0 0 T1 TIME (s)				T1 = T2 = Im =	1 s 0.5 s 24 kA		Quenc	h? <u>Y</u> uench det USV USM	ection seq B5-6,USI IC02	C, but not c uence MC03,USN	rossover turn. /B3-4,
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						Tm = 7	1		Quen	ch time	<u>1.4</u>	<u> </u>	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	PANCAKE	MASS FLOW [g/s]			IEMPERA'	TURE [K] OUTLET PEAK	ΔΤ		AC	LOSS [	1]		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	х			4.357 4.261	4.984 5.725	0.627		x				
4 corner         X         X         5.036         5.930         0.894         X           4 cable         X         6.84         8.100         1.260         X           5         X          4.149         5.94         6.975         1.035         X	3 cable 3 corner	cable X 4.333			4.489 4.26	7.280	2.791 3.290		x x		]		
5 X 4.149 5.94 6.975 1.035 X	4 corner	er X X		5.036 6.84	5.930 8.100	0.894		x x					
	5	x	X 4.149		5.94 X	6.975	1.035		X		1		

Run numbe	r <u>264</u>	DM St	ot number	144		Date	12/1	9/90	Time <u>13:2</u>	1	
Connection Mode Description	Series w AC Single tr	ith U1 & U2	coils	Total i Inlet Inlet ten	niet flow pressure aperature	<u>17.974</u> <u>5.073</u> <u>4.322</u>	g/s atm K	Bm Tm Bm/Tm 1/Tm	6.761 T 1 s 6.761 T/s 1.000 1/s	Im Flat top Im/Tm	22 kA 0.5 s 22.00 kA/s
Waveform - ml CORKENT	/				T1 = T2 = ( Im =	1 s 0.5 s 22 kA		Quench ? Quenc	<u>Yes- Coil</u> part. h detection sea USMC03, US	<u>C crossove</u> juence iVB5-6,US	<u>r turn and othe</u> r MC01
4					Tm = T	1		Quench ti	me <u>1.11</u>	<u>s</u>	
PANCAKE	MASS FLOW [g/s]				TURE [K]	AT		ACLO	SS [1]		
1	AKE INLET OUTLET INLET .859			4.336 4.29	4.774 5.000	0.438		x			
3 cable 3 corner	cable .65 corner 13.37 .652 4.322			4.468 4.25	5.195 5.010	0.727 0.760		x x			
4 corner 4 cable	13.37 .643 623			5.021 6.801	5.493 8.050	0.472 1.249		x x			
5	3.745		4.137	5.91 X	6.880	0.970		X			

Run number	265	DM SI	ot number	145		Date	12/19	9/90	Time	13:32		
Connection Mode Description	Series w AC Single tr	ith U1 & U2 apezoid	coils	Total i Inici Inici ter	inlet flow pressure nperature	<u>17.729</u> <u>5.953</u> <u>4.337</u>	g/s atm K	Bm Tm Bm/Tm 1/Tm	6.4 6.4 1.(	54 T 1 s 54 T/s 100 1/s	Im Flat top Im/Tm	21 kA 0.5 s 21.00 kA/s
Waveform Im COLKENT					T1 = T2 = 4m =	1 s 0.5 s 21 kA		Quench 7	· ·	lo		
					Tm = T	1		Quench	time _		<u>s</u>	·
PANCAKE	MASS FLOW [g/s]			IEMPERA'	TURE [K] OUTLET PEAK	ΔT		ACLO	DSS []	]		
1	011			4.36	4.688	0.328						
2	.911			4.309	4.848	0.539		112.2				
3 cable		.584	4 337	4.479	4.990	0.511	10	4.2	211			
3 corner	13.06	.639		4.265	4.812	0.547	10	6.8		2915.9	95	
4 corner	13.00	.649		5.026	5.136	0.110	13.	.75 7	73.75			
4 cable		61		6.84	7.800	0.960	71	10 "				
5	3,758		4,153	5.94	6.790	0.850		1869				
6				X								

Run number	266	DM Sh	ot number	146		Date	12/1	9/90	Time	13:44		
Connection Mode Description	Series w AC Single tr	ith U1 & U2 apezoid	coils	Total i Inlet Inlet ten	nlet flow pressure perature	24.369 5.023 4.338	g/s atm K	Bm Tm Bm/Tm 1/Tm	<u>9.2</u> <u></u> <u>12.2</u> <u>1.3</u>	20 T 75 s 93 T/s 33 1/s	Im Flat top Im/Tm	30 kA 0.3 s 40.00 kA/s
Waveform - ml CORRENT					T1 = 0. T2 = 0 Im =	75 s ).3 s 30 kA		Quench ? Quen	ch detea USVB USVB	s- Coils tion seq 5-6,US 1-2,US	A, B and G uence /B3-4,US MC01,US	<u>с</u> MC02 MC03,
° <b>F</b>					Tm = T	1		Quench	time _	.933	<u> </u>	
PANCAKE	MASS FLOW [g/s]				TURE (K) DUTLET PEAK	ΔΤ		ACLO	USS []	]		
1	KE INLET OUTLET INLET .883			4.375 4.29	12.800 21.750	8.425 17.460		x				
3 cable 3 corner				4.45 4.256				x x				
4 corner 4 cable	19.001	19.661 605		5.035 6.847	6.060 12.975	1.025 6.128		x x				
5	3.825		4.152	5.93 X	10.520	4.590		X				

Run number	267	DM Sh	ot number	174		Date	12/19	/90	Time	14:18	- 	
Connection Mode Description	Series w AC Round-e	ith U1 & U2 dged pulse	coils	Total i Inlet Inlet ten	inlet flow pressure nperature	<u>16.013</u> <u>5.764</u> <u>4.356</u>	g/s atm K	Bm Tm Bm/Tm 1/Tm	3.6 1 2.1 0.5	88 T .7 s 69 T/s 88 1/s	Im Flat top Im/Tm	12 kA 3 s 7.06 kA/s
Waveform Im CCRKER UL CCRKER UL C	- [[m/T1]	)t + 0.28Im s	sin(180t/T1	)	T1 = T2 = T3 = Im =	1.7 s 3 s 0.5 s 12 kA		Quench ?	<u>_N</u>	<u>o</u>		
·		TIME t (	<b>(S)</b>		Tm = 1	<b>[1</b>		Quench t	ime _		<u> </u>	
PANCAKE	MASS F		INLET	TEMPERA'	TURE [K]			ACLO	uss []	]		
			┣	4.355	4.527	0.172	<b>†</b>			· · · · · · · · · · · · · · · · · · ·		
	1.035		Į	4.306	4.569	0.263	t	52.03		<b> </b>		
2 3 cable		.683		4.465	4.695	0.230	56.	16 10	3.62	ł		
3 corner	cable .683 4.356			4.229	4.490	0.261	47.	46	5.02	1161		
4 corner	mer 12.08 .686			5.037	5.042	0.005	3.0	76	7.05	1101.	**	
4 cable	68			6.775	7.015	0.240	32	4 32	,7,00	Į		
5	2 000	<u> </u>	A 116	5.874	6.350	0.476		678.7		L		
6	2.070		4.110	X						[		

.

Run number	268	DM Sh	ot number	175		Date	12/19	9/90	Time	14:29		
Connection Mode Description	Series w AC Round-e	ith U1 & U2 dged pulse	coils	Total i Inlet Inlet ten	inlet flow pressure mperature	16.969 5.837 4.361	g/s atm K	Ban Tm Ban/Tan 1/Tm	<u>4.6</u> 2.1 0.4	2.1 s 95 T/s 76 1/s	Im Flat top Im/Tm	<u>15 kA</u> <u>3 s</u> 7.14 kA/s
Waveform mi CUKKENUL CUKKENUL	Waveform $ \begin{array}{c} \text{Waveform} \\ \text{Waveform} \\ \text{Im} \\ $							Quench 7	<u>N</u>	<u>lo</u>		
·	• ••		Tm = T	1		Quench	time _		<u> </u>			
PANCAKE	MASS F	LOW [g/s] OUTLET	IEMPERA	TURE (K) OUTLET PEAK	ΔT		ACL	DSS []	[]			
1				4.342	4.555	0.213						
2	1.066			4.295	4.642	0.347	·	70.77			7	
3 cable		.608	1.00	4.442	4.760	0.318	67	.59	9.75	]		
3 corner	corner 12.08 .592 4.361				4.565	0.341	62	.16		2386.	52	
4 corner	ner 12.08 .589			5.034	[	·		x	711	]		
4 cable	67			6.75	7.930	1.180	7	11	/11			
5	2 932		4.12	5.854	6.750	0.896		1475				
6	3.843		4.12	X								

Run number	269	_ DM Sh	ot number	176		Date _	12/19	9/90	Time	14:40		
Connection Mode Description	Series w AC Round-e	rith U1 & U2	coils	Total i Inlet Inlet ten	inlet flow pressure nperature	<u>16.752</u> <u>5.552</u> <u>4.38</u>	<u>g/s</u> atm K	Bm Tm Bm/Tm 1/Tm	<u>5.5</u> 2.2 0.4	32 T 2.5 s 13 T/s 00 1/s	Im Flat top Im/Tm	18 kA 3 s 7.20 kA/s
Waveform - ml CINKRENT CURRENT - ml -	- (im/T1)	)t + 0.28Im s	in(180t/T1	)	T1 = T2 = T3 = Im =	2.5 s 3 s 0.5 s 18 kA		Quench 7	<u> </u>	lo		
	$0 \xrightarrow{T_1} T_2 \xrightarrow{T_2} T_3$ TIME t (s)				<b>Tm =</b> 1	<b>F1</b>		Quench	time		<u> </u>	
PANCAKE	TIME t (s) MASS FLOW [g/s] ICAKE INLET OUTLET INLET				TURE [K] OUTLET PEAK	ΔT		ACLO	USS []	]		
				4.356	4.650	0.294						
$\frac{1}{2}$	.866			4.317	4.781	0.464	Τ	82.5				
3 cable		.597	4.20	4.462	4.887	0.425	96	.94 1	32.73			
3 corner		.567	4.58	4.245	4.700	0.455	85	.79	and the second	4777.	23	
4 corner	12.01	.639		5.043		1. A. A.		x	271		-	
4 cable		73		6.558	9.330	2.772	13	21				
5	73		5.89	7.720	1.830		3191					
6	3.070			X			<u> </u>					

Run number	270	DM Sh	ot number	177	2	Date _	12/1	9/90	Time	14:51		
Connection Mode Description	Series w AC Round-e	ith U1 & U2	coils	Total i Iniet Iniet ten	inlet flow pressure nperature	16.42 5.503 4.401	g/s atm K	1 , Bm/ 1/	Bm <u>6.1</u> Tm <u>2.1</u> Tm <u>0.3</u>	47 T 2.8 s 95 T/s 57 1/s	Im Flat top Im/Tm	20 kA 3 s 7.14 kA/s
Waveform m COLKEENT COLKEENT	Waveform (Im/T1)t + 0.28Im sin(180t/T1) Im Im T1 T1 T2 T3 T1ME t (s)							Quenc	h? <u>N</u>	<u>o</u>		
	T1	TIME t (	Tm = T	1		Quen	ch time		<u>s</u>			
PANCAKE	MASS F	LOW [g/s] OUTLET	TEMPERA'	TURE [K] OUTLET PEAK	ΔT		AC	LOSS []	]			
1	975			4.375	4.720	0.345						
2	.075			4.338	4.900	0.562		<u> </u>			1	
3 cable	cable .695 4 401			4.48	5.005	0.525	15	52.2	271.7			
3 corner	3 corner 11.75 .586 4.401				4.825	0.564	11	9.5		7988.86	3	
4 corner	orner .619			5.045		1.1	5.	163	1866.163			
4 cable	ble67			6.84	11.380	4.540	18	861			1	
5	3 795		4.164	5.94	9.800	3.860	ļ	585	51			
6	3.775			X	l	L						

Run number	271	DM Sh	ot number	178		Date	12/1	9/90	Time 1	5:02		
Connection Mode Description	Series w AC Round-e	ith U1 & U2 dged pulse	coils	Total i Inlet Inlet ter	inlet flow t pressure nperature	<u>X</u> 4.403	g/s atm K	Bm Tm Bm/Tm 1/Tm	6.761 · 3 2.254 · 0.333 ·	T <u>s</u> Fla T/sIn 1/s	Im at top n/Tm	22 kA 3 s 7.33 kA/s
Waveform - ml unu CUKKHUU	- (im/T1)	)t + 0.28Im s	in(180t/T1	»	T1 = T2 = T3 = Im =	3 s 3 s 0.5 s 22 kA		Quench ?	No			
	$0 \longrightarrow T1 \longrightarrow T2 \longrightarrow T3$ TIME t (s)				T <b>m =</b> 1	1		Quench t	ime		<u>s</u>	
PANCAKE	TIME t (s) ANCAKE MASS FLOW [g/s] INLET OUTLET INLET				TURE (K) OUTLET PEAK	ΔT		ACLO	oss [1]			
1	x			4.383	4.817	0.434						
2	45			4.337	5.045	0.708	ļ	<u>X</u>				
3 cable		X	4.403	4.476	5.155	0.679		<u>~</u>				
3 corner	х	X		4.20	4.990	0.730		A Y				
4 corner		X X		6.862	13.650	6.788		x				
4 Cable				5.935	12.200	6.265	<u> </u>	<u> </u>				
6	X		4.164	X								

Run number	272	DM Sh	ot number	179		Date	12/19	9/90	Time	15:38		
Connection Mode Description	Series w AC Single tr	ith U1 & U2 apezoid	coils	Total i Inlet Inlet ter	inlet flow pressure nperature	16.919 5.977 4.353	g/s atm K	Bar Tri Ban/Tu 1/Tri	5.5 	532 T 75 s 76 T/s 333 1/s	Im Flat top Im/Tm	18 kA 0.5 s 24.00 kA/s
Waveform - mi CINKKENLI	/				T1 = 0. T2 = 0 Im =	75 s 0.5 s 18 kA		Quench '	? <u> </u>	<u>lo</u>		
-					Tm = T	1		Quench	time _		5	
	MASS F	LOW [g/s]		TEMPERA	TURE [K]							
PANCAKE	INTET	THIN	INLET	DIFINAL	OUTLET	AT		ACL	088 []	]		
	HALASI	COTLES		4.33	4.617	0.287				1		
	.98			4.293	4.753	0.460		83.81			-1	
3 cable		.068		4.439	4.869	0.430	98	8.5 ,	95 74		1	
3 corner	3 corner 10 00 .63 4.353			4.222	4.685	0.463	87	.24	04	2407	55	
4 corner	12.02 .624			5.012		. ·	1	2	601	[ <b>2</b> , <b>7</b> , <b>7</b> , <b>1</b>	~	
4 cable	le61			6.74	7.550	0.810	6	79	140	]		
5	61			5.85	6.515	0.665		1537				
6	3.919		7.111	X		•				L		

Run number	273	DM Sł	ot number	180		Date	12/1	9/90	Time	15:48			
Connection Mode Description	Series w AC Single tr	ith U1 & U2 apezoid	coils	Total i Inlet Inlet ten	nlet flow pressure nperature	16.951 5.953 4.362	g/s atm K	Bn Tn Bm/Tn 1/Tn	n <u>5.5</u> n <u> </u>	32 T 1.5 s 88 T/s 67 1/s	Im Flat top Im/Tm	18 5 12.00	s kA kA/s
Waveform Im - LM HAN CONKREN					T1 = T2 = Im =	1.5 s 0.5 s 18 kA		Quench	? <u>N</u>	io			
					Tm = 7	<b>F1</b>		Quench	time _		<u>s</u>		
PANCAKE	IAME (5)				TURE (K DUTLET			ACL	OSS []	]			
	INLET	OUILEI		INITIAL	PEAK		Į			[			
	1.023			4.54	4.3/3	0.233		70.22					
2				4.303	4.0/0	0.30/		/0.33					
3 cable	able .681 4.362		4.362	4.447	4.780	0.333		2 2	21.47				
3 corner	xormer 12.05 .633			4.231	4.599	0.368	14	1.2		1947.4	04		
4 corner	er .58			5.014			2.0	604 4	32.604				
4 cable		62			7.130	0.370	4	00					
5	3.878		4.121	5.87	6.508	0.638	<b> </b>	1253					
6				<u> </u>		<u> </u>				L			

Run number	274	DM Sh	ot number	181		Date	12/1	9/90	Time _16:00				
Connection Mode Description	Total inlet flow     g/s       Inlet pressure     5.910 atm       Inlet temperature     4.358 K				Bm Tm Bm/Tm 1/Tm	5.532 T 5 s 1.106 T/s 0.200 1/s	Im Flat top Im/Tm	<u>18 kA</u> 0.5 s 3.60 kA/s					
Waveform - ml CINKKENL	/		T1 = T2 = 0 Im =	5 s ).5 s 18 kA		Quench ?	No						
					Tm = T	1		Quench times					
PANCAKE	PANCAKE MASS FLOW [g/s] INLET OUTLET INLET				TEMPERATURE [K] OUTLET INΠΙΑL PEAK ΔT				ACLOSS [J]				
12	x			4.34 4.299	4.532 4.588	0.192 0.289		x		_			
3 cable		X	4 358	4.444	4.705	0.261		x					
3 corner	x	Х	4.550	4.228	4.512	0.284		x					
4 corner	~	X		5.016				x					
4 cable		<u>X</u>		6.76	7.920	1.160	ļ	X L					
<u>5</u> 6	x		4.118	3.807 X	0.207	0.340							

Run number	· _ 275	DM Sh	ot number	182		Date	12/1	9/90	Time 16:11		
Connection Mode Description	Series w AC Round-e	ith U1 & U2 dged pulse	coils	Total i Inlet Inlet ten	inlet flow pressure nperature	18.376 4.982 4.357	<u>g/s</u> atm <u>K</u>	Bm Tm Bm/Tm 1/Tm	6.761 T 1 s 6.761 T/s 1.000 1/s	Im Flat top Im/Tm	22 kA 0.5 s 22.00 kA/s
Waveform In In CONK	T1 = T2 = T3 = Im =	1 s 0.5 s 0.5 s 22 kA		Quench ? Quenci	Yes- Coil C part. h detection seq USMC03,USN	<u>C crossover</u> uence 4C02	turn and other				
	T1	TIME t (	s)		Tm = 1	Г1		Quench ti	me <u>.798</u>	<u> </u>	
RANGA	MASS F	LOW [g/s]		TEMPERA	TURE (K) SUTLET	1	Ī	ACLO	SS [J]		
FANCARE	INLET	OUTLET	INLET	INITIAL	PEAK	ΔΤ	1		-		
1	802			**				·			
2			Į	4.302	5.010	0.708	<u> </u>	<u> </u>			
3 cable		.719	4.357	4.438	5.380	0.942	<u> </u>	×			
3 corner	13.686	.636		4.231	5.200	0.969	<u> </u>	<u>×  </u>			
4 corner		.559	Į	5.02	5.745	0.725	<b></b>	×			
4 cable	ļ	613		6.755	7.820	1.065	<b>_</b>	x j			
5	3.798		4.118	5.865	6.725	0.860	<b></b>	<u>X</u>			
6	·	L			L		1				

Run number	276	DM Sh	ot number	183		Date	12/19	9/90	Time	16:38		
Connection         Series with U1 & U2 coils         Total inlet flow         17           Mode         AC         Inlet pressure         4           Description         Trapezoid with superimposed         Inlet temperature         4								Bm Tm Bm/Tm 1/Tm	6.761 6.761 1.000	L T L s L T/s D 1/s	Im Flat top Im/Tm	22 kA 0.5 s 22.00 kA/s
Waveform Im Im T1 = 1 s T2 = 0.5 s T3 = 0.5 s T4 = 0.25 s T5 = 1.25 s Im T4 = 0.25 s T5 = 1.25 s T5 = 20 Hz Tm = T1								Quench 7 Quen Quench	<u>Yes</u> - ch detecti USMC0	<u>Coil C</u> on sequ 3, USV	crossover pence VB5-6,US	<u>tum.</u> MC01
PANCAKE	MASS F	LOW [g/s]	INI FT	TEMPERA	TURE (K) DUTLET			ACL	DSS []]			
	INLET	OUILET		INITIAL	PEAK	ΔΤ					_	
	1.113			4.292	5.041	0.749		x				
3 cable		.705		4.439	5.195	0.756		x			1	
3 corner		.616	4.351	4.221	5.020	0.799		x				
4 corner	12.566	.534		5.019	5.520	0.501		x				
4 cable		65		6.739	7.910	1.171		x			·	
5	3 900		4 1 1 1	5.85	6.775	0.925		X	]_			
6	3.609			6.4								

Run number DM Shot number							12/19	/90	Time	<u>16:50</u>		
Connection Mode Description	Series w AC Trapezoi ripple	ith U1 & U2	coils imposed	Total i Inlet Inlet ten	nlet flow pressure nperature	<u>17.744</u> <u>5.861</u> <u>4.365</u>	g/s atm K	Bm Tm Bm/Tm 1/Tm	<u>6.7</u> <u>6.7</u> <u>1.0</u>	<u>61 T</u> <u>1 s</u> 61 T/s 00 1/s	Im Flat top Im/Tm	22 kA 0.5 s 22.00 kA/s
Waveform Im -	/	f Hz Sinusoi (Amplitux	dai ripple le Ia)		T1 = T2 = 0 T3 = 0 T4 = 0 T5 = 1 Im = 0	1 s 0.5 s 0.5 s .25 s .25 s 22 kA		Quench 2	<u> </u>	lo		
T4		TIME (s)			f = Tm =T	20 Hz		Quench	time		<u> </u>	
PANCAKE	MASS F		INLET	TEMPERA	TURE [K]	1 47		ACL	oss []	1		
	INTEL	OUILEI		INTIAL A 344	4 754	0.410						
	1.197			4.304	4.980	0.676	<b> </b>	154.6				
<u> </u>		.689		4.449	5.110	0.661	1:	59	320	1		
3 corner	10.00	.752	4.365	4.231	4.928	0.697	10	51	520	3498	.6	
4 corner	12.62	.533		5.014	5.512	0.498	5	1	260	] - 77		
4 cable		62		6.779	7.840	1.061	81	18		1		
5	3.927		4,125	5.882	6.770	0.888		2155		ļ		
6		<u> </u>		6.4		<u> </u>				I	<u> </u>	

Run numbe	r <u>278</u>	DM SI	ot number	185		Date	12/1	9/90	Tim	e <u>17:02</u>		
Connection         Series with U1 & U2 coils         Total inlet flow         17.428 g/s           Mode         AC         Inlet pressure         4.995 sam           Description         Trapezoid with superimposed ripple         Inlet temperature         4.365 K									<u>7.</u> <u>7.</u> <u>7.</u>	069 T 1 s 069 T/s 000 1/s	Im Flat top Im/Tm	23 kA 0.5 s 23.00 kA/s
Waveform f Hz Sinusoidal ripple (Amplitude Ia) T1 = 1 s T2 = 0.5 s T3 = 0.5 s T4 = 0.25 s T5 = 1.25 s Im = 23 kA Ia = 150 A f = 20 Hz Tm = T1									? <u>Y</u> ach deta USM	<u>es- Coil C</u> part. ection seq C03, US	crossover uence VB5-6,US	<u>turn and oth</u> er MC01
	MASS F	LOW [g/s]		TEMPERA	TURE [K]			ACL	DSS [			
PANCAKE	INLET	OUTLET	INLET	INITIAL	PEAK	ΔΤ	1		•	-		
1	1 192			4.353	4.826	0.473						
2				4.306	5.085	0.779		X				
3 cable		.681	4 365	4.452	5.225	0.773		X		1		
3 corner	12 402	.681	4.505	4.234	5.052	0.818		x				
4 corner	14.704	.611		5.021	5.750	0.729		×		1		
4 cable		567		6.775	8.110	1.335	2	x _		1	1	
5	3.843		4.126	5.889	6.820	0.931	L	<u> </u>		ļ		
6	5.045			X	<u> </u>	<u> </u>				<u> </u>		

Run number	279	DM Sł	ot number	201		Date	12/2	0/90	Time 1	0:08	~	
Connection Mode Description				Total i Inlet Inlet ten	nlet flow pressure nperature	<u> </u>	g/s atm K	Bm Tm Bm/Tm 1/Tm	X	<u>T</u> F <u>T/s</u> L/s	Im lat top im/Tm	X kA s kA/s
Waveform		9 ¹ 000 - 000 - 00 - 00 - 00 - 00 - 00 - 0	Anny	<u>, , , , , , , , , , , , , , , , , , , </u>				Quench ?				
								Quench ti	me		8	
PANCAKE	MASS F	LOW [g/s] OUTLET	INLET	TEMPERAT	TURE [K] DUTLET PEAK	ΔΤ		ACLO	SS [1]			
1 2	x			4.421 4.352				x			]	
3 cable 3 corner 4 corner	x	X X X	x	4.378 4.166 4.418				x x x				
4 cable 5 6	x	X	x	4.509 4.174 6.89								

Runs 279 through 305 were AC tests of the background field coils U1 and U2 with the US-DPC electrically disconnected. The intent of these tests was to collect AC loss data on the US-DPC with no transport current while the background field coils were undergoing a stability investigation by pulsing with various waveforms. However, the helium flow to the US-DPC was too low for the measurement range of the flow meters, and no AC loss data was obtained.