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ABSTRACT

Vertically elongated tokamak plasmas are intrinsically susceptible to vertical ax-
isymmetric instabilities as a result of the quadrupole field which must be applied
to produce the elongation. The present work analyzes the axisymmetric control

necessary to stabilize elongated equilibria, with special application to the Alcator
C-MOD tokamak. A rigid current-conserving filamentary plasma model is applied
to Alcator C-MOD stability analysis, and limitations of the model are addressed.
A more physically accurate nonrigid plasma model is developed using a perturbed
equilibrium approach to estimate linearized plasma response to conductor current
variations. This model includes novel flux conservation and vacuum vessel stabiliza-
tion effects. It is found that the nonrigid model predicts significantly higher growth
rates than predicted by the rigid model applied to the same equilibria.

The nonrigid model is then applied to active control system design. Multi-
variable pole placement techniques are used to determine performance optimized
control laws. Formalisms are developed for implementing and improving nominal
feedback laws using the C-MOD digital-analog hybrid control system architecture.
A proportional-derivative output observer which does not require solution of the
nonlinear Ricatti equation is developed to help accomplish this implementation.

The nonrigid flux conserving perturbed equilibrium plasma model indicates
that equilibria with separatrix elongation of at least K8 , = 1.85 can be stabilized
robustly with the present control architecture and conductor/sensor configuration.

Thesis Supervisor: Ian H. Hutchinson
Title: Professor of Nuclear Engineering
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Chapter 1

Introduction

It has long been recognized that tokamak plasmas with noncircular poloidal cross-

sections can exhibit significant performance improvements over plasmas with cir-

cular cross-sections. Vertical elongation allows higher plasma betas and higher

toroidal current densities to be stably achieved than would be possible in a circular

poloidal geometry [1]. For this reason, present generation tokamaks built by fu-

sion programs around the world are typically highly shaped and often possess very

complex coil and vacuum vessel geometries which do not lend themselves readily

to exact analysis. In particular, most machines confine highly elongated D-shaped

plasmas using a relatively small number of equilibrium field (EF) coils in order to

reduce cost and afford diagnostic access to the machine. The highly discrete nature

of EF coil arrays strongly constrains the number of control degrees of freedom in

shaping, and significantly complicates the stability analysis. EF coils cannot be lo-

cated arbitrarily, in areas which are convenient for analytic modeling, for they must

satisfy engineering and diagnostic access constraints while still providing sufficient

shaping and stabilizing influence to produce the desired range of plasmas. Vacuum

vessels as well cannot be configured so as to oblige the stability analyst, for example

in such a way as to be conformal to all plasmas. Moreover, walls and EF coils are
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typically highly conductive and closely coupled to the plasma, thus strongly influ-

encing plasma stability. In addition, modern tokamaks such as these tend to be

high performance devices, supporting very high currents at high temperatures [2].

All of these characteristics make the problem of control of axisymmetric plasma

properties a challenging one. Evolving and maintaining plasma shape throughout

a shot while controlling axisymmetric instabilities becomes much more demanding

under such conditions than with less strongly shaped devices. The passive growth

rate of the well known vertical instability, intrinsic to vertically elongated tokamaks,

can become very large for some otherwise desirable plasmas [3]. In this case, the

technical and economic feasibility of fast power supplies can be stretched to the

limit. Furthermore, due to the energies involved, insufficiency or failure of the

equilibrium control system can result in significant damage to a machine [4].

The problem of analysis of magnetohydrodynamic (MHD) stability also be-

comes much more difficult in such complex machine geometries. Vacuum vessels

are frequently allowed to provide significantly conductive toroidal current paths,

precisely because such currents can aid in the passive stabilization of MHD insta-

bilities. This significant vacuum vessel contribution to plasma dynamic response

makes an accurate vessel model necessary for a realistic stability analysis. Unfortu-

nately, irregularities in vacuum vessel shape can make analytic calculations difficult

or impossible. The toroidally conductive structures surrounding a plasma, including

discrete EF coils, necessary coil support structures, and the often irregular vacuum

vessel itself, are unlikely to be conformal to flux surfaces, or possess any otherwise

fortuitous configuration with regard to analytic calculation of plasma modes.

Experimental devices must also perform a great deal of equilibrium modifica-

tion (e.g. with pellet injection or RF heating), often changing plasma characteristics

in unpredictable ways. So called "soft disruptions" can also change the plasma cur-

rent profile dramatically, while not destroying plasma confinement. It would be

unacceptable for the shaping and stability control system not to be tolerant of such
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strong but not intrinsically destructive perturbations.

It is therefore critical to have a sophisticated control system which can extract

as much performance as possible from a highly shaped tokamak, while providing

some measure of safety in the presence of significant equilibrium modification. Ide-

ally such a system would be generally robust, tolerant of some variation in plasma

characteristics, and able to compensate as much as possible for the lack of passive

stability margin with some degree of active control margin.

One of the most limiting aspects of plasma control analysis is the difficulty in

deriving a satisfactory plasma model. In the regime of interest for most equilibrium

and stability control of tokamaks, the plasma equilibrium is well described by the

MHD model. In particular, plasma equilibrium in a tokamak is well described

by the Grad-Shafranov equation, a nonlinear, elliptic partial differential equation

requiring the specification of two free functions to allow solution. The difficulty of

solving this equation for realistic geometries has frequently caused tokamak control

designers to use simpler plasma models of various types. Arguably the simplest and

most popular model for the analysis of axisymmetric modes has been the filament-

circuit model [5,6].

1.1 Rigid Filament-Circuit Model

The filament-circuit model comes in many varieties, but in general includes a fila-

mentary model of the plasma and a toroidal conductor model (including the vacuum

vessel and EF coils) consisting of an array of conducting loops. The geometry and

resistances of these loops are chosen to preserve general circuit characteristics of

the vacuum vessel. That is, such things as the local resistance and overall mutual

inductive coupling between regions are accurately preserved. Self inductances are

typically calculated from the geometry of the loop cross-sections chosen. Such a
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model has the virtue of extendability to convergence: in principle the array can be

made as fine as desired until the dominant mode decay rates converge sufficiently.

It can therefore provide a good estimate of vessel modes and decay rates in the

absence of a plasma.

While this approach provides a good vacuum vessel model, the corresponding

plasma model is relatively inaccurate. Several simplifying assumptions are com-

monly made. An array of filaments or even a single filament alone is used to

represent the plasma, and mutual couplings with the vacuum vessel elements are

calculated from this abstraction of the plasma. The plasma mass is usually taken to

be negligible, and plasma motion is taken to be rigid and purely vertical, although

sometimes radial motion is included as well (7]. Because it is a natural assumption

for a circuit approach and is consistent with a single-filament plasma model, plasma

current is usually kept constant, rather than the flux linkage which would be fixed

in an ideal MHD fluid.

For a truly filamentary plasma, the self inductance is infinite, and in such

a case the assumption of conserved flux is equivalent to conserved current. In

addition, owing to the purely vertical field on the midplane, vertical motion of

a single filament does not cut any field lines. But neither of these is a priori

justified in a multifilament plasma model. In principle, a multifilament plasma can

compress flux significantly enough to affect the instability, even when free to move

only vertically, mostly along the primarily vertical field lines. A multifilament model

is attractive despite the inconsistency in the way flux conservation is treated. Most

importantly, it allows sampling of the field curvature across the entire plasma, and

thus a more accurate calculation of the destabilizing force.

Fortunately it has been demonstrated that the growth rate associated with a

current conserving rigid perturbation is closer to the true MHD value than that due

to a rigid flux conserving perturbation [8]. In this reference, "rigid flux conserving

perturbation" means rigid vertical motion of the internal plasma flux surfaces, to
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be distinguished from rigid motion of the plasma current. Furthermore, for purely

elliptical plasmas the two models are the same [12]. There is also evidence to suggest

that current conservation is roughly obeyed experimentally in vertical instabilities

[9].

For vertical motion alone, the complete system of plasma and conducting coils

is described by a coupled set of Kirchoff's voltage law equations along with a force

balance equation for rigid motion. These can then be cast in the form of an ordinary

eigenvalue problem (Ax = Ax) if the plasma is taken to be massless. If plasma mass

is included, a generalized eigenvalue problem (A, = AA 2X) will result. Solution of

these eigenvalue problems yields "passive" growth rates for the vertical instability,

by which we mean growth rates in the absence of "active" feedback.

With the realization that elongated plasmas could provide significant improve-

ment in performance over circular cross-section machines came a serious effort to

understand the vertical axisymmetric instability which accompanies vertical elon-

gation. Many different rigid plasma displacement models have been used since

the beginning of this effort in order to better understand the fundamentals of the

vertical instability.

Analytic models using simplified plasma geometries, typically including a dis-

tributed continuous current profile and flux conserving rigid plasma displacement,

have revealed much about the essential nature of the mode [10,11,12]. Key results of

such studies include the observations that elongation is generally destabilizing, more

peaked current profiles (corresponding to higher internal inductance, 1i) are less sta-

ble than flat current profiles, and that the proximity, conformality, and resistivity of

surrounding conductors determine whether an elongated plasma is stable, unstable

on an ideal MHD timescale, or unstable on a resistive wall diffusive timescale.

Rigid filamentary plasma models have been used primarily to emphasize de-

tailed aspects of a conductor model, typically at the expense of accuracy in plasma
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dynamics [7,6]. Many of these analyses have proved to model the instability and

the plasma-conductor interaction sufficiently well to allow design of experimentally

satisfactory control systems for elongated plasmas [7,13]. The success of such a

simple, easily implemented and understood model has made it an almost universal

method for designing vertical stability control systems [14,15]. However, the de-

sign resulting from the simple model is usually checked with a more complicated

simulation before implementation.

The rigid filament-circuit approach is, of course, fundamentally inaccurate in

many ways. For example, a physical plasma does not conserve current, and the

correct energy minimizing perturbation does not in general consist of rigid vertical

motion. This is not necessarily a fatal problem, since there are distinct advantages

to using an inaccurate model whose inaccuracies are relatively easy to understand,

instead of a potentially highly accurate model whose internal complexities are great

and mysterious. But abuse of the simple model can lead to grossly incorrect results.

For example, a single filament placed at the magnetic axis may yield a very different

growth rate from one placed at the current centroid. Furthermore, growth rate

predictions of a rigid single filament or multifilament model applied in regimes of

marginal MHD stability are highly suspect, particularly if plasma mass is taken

to be zero. However, this approach possesses the virtues of physical simplicity

and relative ease of calculation. Even in the most elaborate of such models, only

a single equilibrium need be calculated for each equilibrium to be analyzed, and

only the resulting current profile need be used in the analysis. The same function

can be performed by elaborate time-dependent simulation codes, but the cost in

complexity and execution time can make these approaches very unattractive for the

design process.

What is needed is an approach which provides a middle ground between anal-

yses which are highly accurate although complex and costly, and approaches which

are relatively inaccurate although simple, readily understood, and fast. One such
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approach, due to Haney and Freidberg [16] and now being applied to the design of

ITER (the International Thermonuclear Experimental Reactor), is that of a varia-

tional equilibrium coupled with somewhat general perturbation trial functions. This

method is extremely fast and provides a better plasma model than that assumed in

a rigid filament-circuit analysis, but falls slightly short of an exact MHD solution

due to the variational nature of the equilibrium.

1.2 Perturbed Equilibrium Model

The approach of the present work, which seeks to come closer to true MHD-

consistent plasma behavior, uses equilibrium perturbation to determine the plasma

response to toroidal currents. This technique depends on the validity of the mass-

less plasma approximation. Because the modes under analysis are assumed to be

strongly affected by the presence of resistive structures, the growth times are con-

sidered to be much longer than characteristic ideal MHD times (typically of the

order of microseconds). The inertial term in the ideal momentum equation can

then be neglected, and the plasma can be taken to be in quasi-equilibrium at all

times. This is equivalent to the massless plasma approximation frequently assumed

in the expression of force balance in the rigid filament-circuit model. Given the

assumption of quasi-equilibrium, the plasma response can be estimated in a linear

sense by perturbing a base equilibrium with sufficiently small coil current variations.

This approach is similar to that taken by Albanese et al [17], addressing the

simple case of vertical motion due to EF coil current variation alone, while keeping

all plasma profile shapes and total plasma current constant. These analyses neglect

the stabilizing effects of the vacuum vessel as well as internal dynamic variation

in toroidal current, pressure, and poloidal current profiles. These models therefore

cannot even approximately conserve magnetic flux. Moreover, they have lacked a

practical method for evaluating vacuum vessel effects.

25



Another similar approach has been taken by Hoffmann et al [18], who used an

equilibrium code in flux-conserving mode to model plasma response with a quasi-

equilibrium assumption and determine stability boundaries. However, no attempt

was made to couple plasma dynamics to conducting structures in order to calculate

growth rates for resistive wall modes.

The present work introduces a mapping of vacuum vessel effect to approxi-

mately equivalent EF coil effect, allowing determination of the stabilizing influence

of a vacuum vessel. The presence of vacuum vessel stabilization is often crucial

in maintaining plasma stability on an MHD timescale. We further allow plasma

profiles to vary, providing sufficient internal degrees of freedom to approximately

conserve flux in the plasma. Ideally, a perturbational approach using an equilibrium

solver which exactly conserves flux everywhere would be preferred. However, the

lack of ready availability of a free boundary flux-conserving equilibrium solver was

prohibitive. As will be seen, the approximate approach provides quite a reasonable

measure of flux conservation, and preserves many degrees of freedom in plasma

shape variation, consistent with the degree of control and influence afforded by the

EF coil configuration.

Once a satisfactory plasma model has been obtained, the difficult problem

of determining a sufficiently robust control algorithm remains. Tokamaks with

highly elongated plasmas can possess vacuum vessel and EF coil configurations

which do not provide sufficient stabilization to passively increase vertical instability

growth times to much greater than 2 ms. In such an instance, it is desirable to

maximize the efficiency of the active system to extract as much performance and

disturbance tolerance from the system as possible. In the present work we apply a

variety of novel control analysis and design techniques to the problem of shaping

and stability control in high performance tokamaks with a relatively low degree of

passive stabilization. In particular, the analysis is applied to the Alcator C-MOD

tokamak, now under construction at MIT, for a range of equilibria expected to be
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achievable when the machine begins operation in 1991.

1.3 The Alcator C-MOD Tokamak

Alcator C-MOD [22] is a high performance, high field, compact tokamak which was

designed to be somewhat prototypical of the Compact Ignition Tokamak, (CIT).

This latter is an igniting design currently (1990) under consideration as a possible

intermediate step before the construction of ITER (referred to above). It is then

envisioned that ITER will provide the physics knowledge and proof-of-principle to

allow the construction of a true power reactor sometime in the next century.

Alcator C-MOD is the latest in a series of machines in the toroidal confinement

program of the MIT Plasma Fusion Center. The name given to the devices, Alcator,

is an acronym for the Italian terms "ALto CAmpo TORus", meaning High Field

Torus. This reflects a fundamental approach common to toroidal confinement de-

vices in this series built at MIT, all of them being compact, high field tokamaks. As

a test bed for technologies and physics issues expected to be critical to an ignition

machine, Alcator C-MOD provides a highly shaped plasma with a high toroidal

field (Bt = 9 T) in a low aspect ratio geometry, requiring great structural integrity.

As the EF coils are located within the toroidal field (TF) coil structure, much of

the EF coil magnetic stress is supported by a thick vacuum vessel. Such a vacuum

vessel requires a relatively long time for magnetic field penetration at startup, but

by virtue of its low resistance can provide a great deal of passive stabilization of

MHD instabilities. The machine also provides a high degree of diagnostic access,

resulting in many interruptions in the toroidal current paths at top and bottom as

well as around the outboard wall. The poloidal cross-section of the C-MOD vacuum

vessel is to a large extent a rectangular picture frame, chosen in order to reduce

machining and construction costs, with some distortion to provide for stabilization

and increased diagnostic access.

27



Because of this highly nonconformal wall shape, the degree of passive stabiliza-

tion afforded by the C-MOD vacuum vessel is relatively low. To some extent this

is compensated for by the location of EF coils within the TF coil structure. This

design brings the highly conductive copper equilibrium field coils quite close to the

plasma, allowing their stabilizing properties to strongly influence axisymmetric sta-

bility. However, if the nearest conducting surfaces in the form of the vacuum vessel

axe not sufficient to stabilize the plasma on an MHD timescale, then no amount of

added conductor further away can make up for this lack [12]. The vacuum vessel

and internal conductors therefore provide a fundamental limit to achievable, ideal

MHD stable equilibria. Nevertheless, the nearness of the EF coils can serve to sig-

nificantly slow modes which are already MHD stabilized by the vacuum vessel, and

this will prove to be of great benefit in achieving machine goals.

1.4 Axisymmetric Control in Tokamaks

This thesis will address the problem of axisymmetric control analysis and design

in tokamaks using several approaches, and discuss the limitations and advantages

of such methods. These techniques are then applied to the design of the Alcator

C-MOD analog-digital hybrid integrated equilibrium and stability control system.

Chapter 2 presents an overview of tokamak physics. Topics covered include

basic tokamak geometry, equilibrium principles, and stability physics. Chapter 3

describes the rigid filament plasma model and its application to passive vertical

stability analysis. Advantages and disadvantages are elucidated, and results of its

application to C-MOD equilibria are presented. Chapter 4 develops the perturbed

equilibrium approach to passive analysis of plasma-vessel modes. The general algo-

rithm is described, and methods for mapping vessel effects through coil effects and

conserving flux are derived. Passive results for C-MOD equilibria are presented

and the approach is compared with the rigid model. Chapter 5 deals with the
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use of the rigid and perturbed equilibrium models in the analysis of equilibrium

and stability control. The basic nature of and issues involved in this active anal-

ysis are addressed. Chapter 6 presents methods for designing and evaluating the

performance of equilibrium control systems. Pole placement algorithms with full

state feedback, proportional-derivative (PD) output feedback, and involving several

forms of observer are derived, Multivariable root-locus analysis and "Bode plots"

are employed in the design process. Time domain performance criteria are also

used, along with systematic error robustness analyses. Specific application is made

to the Alcator C-MOD analog-digital hybrid control system architecture. Chapter

7 consists of conclusions and suggestions for further work.
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Chapter 2

Tokamak Physics

Two general approaches are available for terrestrial confinement of the extremely

high temperature plasmas necessary for commercial production of fusion energy.

The first of these, inertial confinement, involves the use of lasers or particle beams

to compress and heat a fuel capsule to high density and temperature. The goal in

this approach is to produce enough fusion reactions before the plasma flies apart

to yield a sufficient gain in energy and satisfy economic constraints. The plasma in

this case is thus "confined" by its own inertia.

The second approach to plasma confinement involves the use of magnetic fields

to impede energy and particle loss. Charged particles in a magnetic field tend to gy-

rate in closed orbits about field lines, thereby experiencing greatly restricted motion

perpendicular to the field. However, motion parallel to field lines is not restricted

in this way. In fact, the parallel thermal conductivity is calculated (classically, ig-

noring "neoclassical" transport due to toroidal effects and "anomalous" transport

enhancement due to plasma microinstabilities) to be on the order of 1012 times

greater than the perpendicular thermal conductivity [1]. It is therefore extremely

desirable to cause field lines to close upon themselves entirely inside a fusion reactor.

A cylindrical device with field lines which stream out of the ends of the machine
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loses energy at a rate dominated by transport along field lines. By contrast, a

toroidal device with field lines which close upon themselves inside the machine will

lose energy only through the much slower transport perpendicular to field lines.

The most promising device of this latter type has been the tokamak. This

chapter will review the geometry and essential physics of tokamak operation. Im-

portant features of tokamak equilibrium and stability will be described, leading up

to the axisymmetric instabilities which are the central focus of the remainder of this

work.

2.1 Basic Description and Terms

The tokamak is a toroidal device which confines high temperature plasmas with a

magnetic field [35]. The geometry of a tokamak is shown in Fig. 2.1. By convention

the 4 direction is termed the "toroidal" direction, and the B direction is referred to as

the "poloidal" direction. The cylindrical coordinates are (R,4,Z), and the toroidal

coordinate system is usually defined to be (r,6,4). Note that with this convention the

toroidal coordinates define a "left-hand" system. Tokamak equilibrium geometry is

essentially axisymmetric, by which we mean that equilibrium plasma quantities are

independent of the toroidal angle, 4.

The magnetic field of a tokamak can be separated into two orthogonal compo-

nents. The toroidal field, Bt, is the stronger of these two. It is typically primarily

responsible for providing stability. The poloidal field, B,,, although weaker than

the toroidal field, is primarily responsible for equilibrium maintenance. The sum of

these two fields produces total magnetic field lines which wrap helically around the

tokamak.

The vacuum toroidal field is produced by current flowing in the poloidal di-

rection through a set of toroidal field (TF) coils which link the plasma column.
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Integrating Ampere's law along a circular path in the toroidal direction and ex-

ploiting the axisymmetry of the toroidal field, we find

S= Bo ( R(2.1)

where BO is the toroidal field at R = RO, the machine major radius. The region

defined by R < RO is known as the "inboard" side of the plasma or machine, and

R > R0 defines the "outboard" side.

The poloidal field arises from toroidal current flowing within the plasma and

from toroidal currents in axisymmetric coils external to the plasma. These ax-

isymmetric coils are known as "equilibrium field" (EF) coils. The toroidal plasma

current serves to ohmically heat the plasma, as well as to help confine it through

the poloidal field. The plasma current is driven inductively by varying the current

in an "ohmic heating" (OH) coil whose flux is linked by the plasma.

Several quantities are conventionally used to characterize a tokamak plasma.

The "aspect ratio" is the ratio of machine (or plasma) major radius, R0 , to plasma

minor radius, a. The "inverse aspect ratio", e, defined by

= a (2.2)

is a more commonly used quantity. The inverse aspect ratio is a measure of the

effect of toroidicity on tokamak physics. A value of e much less than unity means

that the local plasma physics is described well by a cylindrical model. Conversely,

an e value comparable to unity indicates that in general toroidal effects cannot be

ignored.

The plasma ",3" is the ratio of kinetic pressure, p, to magnetic pressure:

2Aop .(2.3)

The toroidal and poloidal 3-values, 3t and 8,, are calculated using the toroidal

and poloidal magnetic fields respectively. Plasma 1 is a measure of confinement

efficiency and economic efficiency.
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The "safety factor", q, is the change in toroidal angle of a field line as it makes

one poloidal circuit:

q =A - . (2.4)

A sufficiently high q-value at the plasma edge confers a measure of "safety" from

a class of instabilities known as "kinks", to be discussed later. For a high aspect

ratio plasma, the edge safety factor is the same as a quantity known as the "kink

safety factor", q., and is given by

aB0
q.: a O ,(2.5)

RoBo'

where BO is the toroidal field at R = Ro, and BO is the edge poloidal field. The

value of q. at which a machine can operate stably is an important figure of merit,

since high current (and consequently low q.) is important for high ohmic heating

and confinement, yet stability requirements establish a lower limit on q.. Machines

typically operate with q. > 2.

For an ohmically heated conventional (low /) tokamak, the following general

scalings are used: B,/B ~ e, t ~ e 2, ,p - 1, and q ~ 1 [1]. In actual operation,

present ohmic tokamak experiments do not generally achieve such large 3 values as

this. More typical values are 3t - e4 and O , ~ e [2].
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Figure 2.1: Basic tokamak geometry.
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2.2 Tokamak Equilibrium

2.2.1 Ideal Magnetohydrodynamics

Many aspects of the equilibrium and stability of a high temperature tokamak plasma

are well described by the equations of ideal magnetohydrodynamics (MHD) [1].

These consist of 7 equations describing the dynamics of a perfectly conducting fluid

in the presence of electromagnetic fields. The first two equations are the continuity

and state equations for an unmagnetized fluid:

Op
S+ V - (p) = 0, (2.6)

and
d
d(Pp-) = 0. (2.7)

Three of Maxwell's equations are included, Faraday's law

V x E= (2.8)

Ampere's law

V x B =poJ, (2.9)

and Gauss' law of magnetism

V - B= 0. (2.10)

The last two equations connect the two unmagnetized fluid equations with Maxwell's

equations. These are the conservation of momentum equation

dvp.. = -Vp +j x B, (2.11)

and the ideal Ohm's law

E + M X R = 0. (2.12)

The latter reflects the fact that in a perfectly conducting ideal MHD fluid, the

magnetic field lines are tied to or "frozen-in" to the fluid elements. This equation
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Figure 2.2: Quadrupole field addition for plasma elongation.
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is therefore also known as the "frozen-in" law. The conservation of momentum

equation, Eq. 2.11, shows that in an MHD fluid, forces arise either from pressure

gradients or magnetic I x B effects.

In these equations, p is the fluid mass density, v is the fluid velocity, p is the

pressure, r = 5/3 is the ratio of specific heats, E is the electric field, B is the

magnetic field, J is the current density, and d/dt = 8/& + v - V is the convective

derivative.

2.2.2 Equilibrium

The static equilibrium condition is obtained by setting d/dt = 0 in the momentum

conservation equation, Eq. 2.11, and choosing zero flow velocity, v = 0. This results

in

Vp = x , (2.13)

V x = PO, (2.14)

and

V - =0. (2.15)

The force balance equation, Eq. 2.13, implies several important physical fea-

tures of MHD equilibria. Dotting this equation with B, we obtain

B - Vp = 0. (2.16)

It follows that magnetic field lines lie in surfaces of constant pressure, and these

surfaces comprise a set of closed nested tori. Similarly, dotting Eq. 2.13 with J, we

find

-Vp = 0, (2.17)

indicating that current density lines also lie in surfaces of constant pressure.
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The poloidal field can be written as [1]

,= VPx 4 (2.18)

where the stream function, b, is related to the toroidal component of the vector

potential, AO, through

= RA4. (2.19)

The stream function is simply related to the poloidal magnetic flux, O,, through

op =27rfp (2.20)

and the terms are sometimes used interchangeably. We shall define the poloidal flux

after examining the surfaces of constant pressure somewhat further.

Dotting the poloidal field with Eq. 2.13, we find

1
B, - Vp = (V x )-Vp = 0. (2.21)

This is satisfied if p = p(O), so that

(V7 x ) p = (VO x )(VO) = 0. (2.22)dtb

The poloidal flux and stream function are thus constant on a constant pressure sur-

face. The flux function is usually taken to be the independent variable in equilibrium

descriptions, and the constant flux and pressure surfaces in which the magnetic field

lines and current stream lines lie are known as "flux surfaces". Any quantity which

is constant on a flux surface is termed a "surface quantity". The poloidal flux on

a flux surface can now be defined to be the total magnetic flux passing through a

disk-shaped surface, S,, lying in the Z = 0 plane and extending out to the flux

surface in question:

Op f R, -h dS. (2.23)

The point near the center of the plasma where pressure and flux reach extrema is

termed the "magnetic axis". The horizontal plane cutting through the magnetic
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axis is referred to as the "plasma midplane". Usually this plane coincides with the

machine midplane, defined by Z = 0, and we shall use the term "midplane" to refer

to both except where necessary to distinguish between them.

2.2.3 The Grad-Shafranov Equation

For toroidal geometry, the static equilibrium equation, Eq. 2.13, can be expressed

in terms of the magnetic stream function. The resulting form is known as the

Grad-Shafranov equation:

WO = -poR2p' - FF', (2.24)

where

oRJ, = -*Ok, (2.25)

and

A0 = JR2V -,(2.26)

dp

dF
dO

The function F(?k) is related to the poloidal plasma current, I., and the magnitude

of the toroidal field through

F(O) = RBt = - .I( (2.27)
27r

The poloidal current is evidently a surface quantity, and is defined in a manner

similar to the poloidal magnetic flux:

I, = f J,- i dS,. (2.28)

Two free functions must be specified to permit solution of the Grad-Shafranov

equation. Typically p(b) and F(O) are given, and the flux function is solved for.
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For a circular tokamak, the force balance is of two general types: minor radial

force balance (in the i- direction), and major radial force balance (in the A direction).

For the usual ohmic tokamak scaling (in particular O, ~ 1), equilibrium of the minor

radial forces essentially represents a balance between the pressure gradient and the

4 x R force. For O, ~ 1 the J x DO force is negligible.

The plasma 8-values provide a measure of plasma diamagnetism. In fact, for

, < 1, an ohmic tokamak plasma is paramagnetic. Thus, the actual toroidal B-field

across the plasma is greater than the vacuum toroidal B-field. This is the usual case

for present tokamak experimental devices. For , > 1, an ohmic tokamak plasma is

diamagnetic. The actual toroidal B-field across the plasma is less than the vacuum

toroidal B-field in this case.

A tokamak plasma experiences three different mechanisms which give rise to

expansion forces in the major radial direction. Because they arise as a result of the

toroidal geometry, these are often referred to as "toroidal forces". They include the

"hoop" force, the "tire-tube" force, and the "1/R" force. The hoop force is present

in any current carrying loop. The poloidal field lines on the inboard side created

by the toroidal current are of a higher density due to the bend than those on the

outboard side. The field strength is therefore higher on the inboard side. Since the

magnetic field pressure on the plasma is proportional to B2, the magnetic pressure

is also greater on the inboard side. Although the inboard surface area is somewhat

smaller than the outboard surface area, the quadratic dependence on field strength

dominates, and the net effect is to produce an expansion force in the outward radial

direction.

The tire-tube force is similar to the force which causes a bicycle tire inner

tube to hold its shape as a result of the kinetic pressure of the gas confined within.

The kinetic pressure can be viewed as approximately uniform around the edge of

the plasma, but the surface area on the outboard side is greater than that on the

inboard side. The net force due to kinetic pressure is therefore also in the outward
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radial direction.

The 1/R force arises from the toroidal field's 1/R dependence. Since the

toroidal field is higher on the inboard side of the plasma than the outboard, the

magnetic field pressure is higher as well. By the same argument used in the case of

the hoop force, the net force is in the outward radial direction.

One method of countering this net expansive toroidal force is to surround the

plasma with a highly conductive wall. The image currents induced in such a wall

would keep the plasma confined within the conducting shell. This approach fails

if the lifetime of the plasma discharge is expected to be longer than the magnetic

field diffusion time through the wall. For such plasmas the net toroidal expansive

force must be balanced by an externally applied uniform vertical field.

2.2.4 Shaped Plasmas

Plasmas whose poloidal cross-sections are significantly different from a circle are

known as "shaped" plasmas. Extreme variations from a circular cross-section are

described as "highly shaped". To produce such a plasma requires the addition of

fields with higher order variation in poloidal angle. In particular, to produce a

vertically elongated plasma such as that shown in Fig. 2.3 requires the addition

of a quadrupole field. The simplest realization of a quadrupole field arises from

coils placed above and below the plasma carrying current in the same direction as

the plasma current, as well as coils inboard and outboard, each carrying current

opposite to the plasma current. This coil configuration, the form of the quadrupole

field, and the result of adding it to the vertical field is shown in Fig. 2.2. Physically,

the upper and lower coils attract the plasma, stretching it vertically, while the

inboard and outboard coils repel the plasma, compressing it horizontally. The net

effect is to create vertical elongation. The definition of plasma elongation, x = b/a,

is demonstrated in Fig. 2.3.
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2.3 Tokamak Stability

The sources of energy to drive MHD instabilities in a tokaxnak plasma are pressure

gradients and current/field gradients. In the present section we shall only address

current driven instabilities. These are typically the most destructive, and we shall

be principally concerned with one particular kind of current driven instability in

the remainder of this work.

There are three principal physical effects which tend to stabilize MHD modes.

The first of these is magnetic field compression. This consists of motion of magnetic

field lines towards each other in directions perpendicular to the B-field, correspond-

ing to a field perturbation which is parallel to the equilibrium field. The second

stabilizing effect is magnetic field line bending, corresponding to the appearance

of a perturbed field perpendicular to the equilibrium field. Finally, magnetic field

curvature which is convex toward increasing plasma pressure is stabilizing. This

kind of field configuration relative to the pressure gradient is known as "good field

curvature".

For the toroidal geometry of a tokamak, the MHD modes are taken to consist

of a plasma displacement function of the form:

( J dt = (r)e" (2.29)

where m and n are the poloidal and toroidal mode numbers, and w is the mode

frequency. Flux surfaces on which q = m/n are known as "mode rational" surfaces.

Line bending stabilization is minimized on these surfaces, so that an m/n instability

can grow when localized to the corresponding mode rational surface. The physical

origin of this minimization of line bending stabilization is that the helical pitch of

the magnetic field matches the pitch of the mode.
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2.3.1 Kink Modes

Low mode number modes axe in general not localized, but rather consist of unstable

displacement of the bulk of the plasma. An important class of low m-number mode

is referred to as "external kink" modes. These result in a helical perturbation or

"kink" of the entire plasma, including the plasma surface. The physical driving

force of the instability is readily understood by considering a single bend of the

helical kink. Just as in the case of the toroidally expansive hoop force, the inside of

the bend will experience an increase in field line density and therefore an increase

in the magnetic pressure. This tends to increase the severity of the bend, thus

continuing the growth of the instability.

The stability of an m/n external kink mode constrains safety factor values at

the edge and magnetic axis. Roughly, stability requires that (for low #) q, > 1 and

q,/qo > 2-3. Here q, is the edge q (usually denoted q.), and qo is the magnetic axis

q. These limits correspond to a sufficiently peaked current profile being required

for stability. It is of interest to note that the stability of internal kink modes

(kink modes causing displacement inside the plasma without disturbing the plasma

surface) further constrains safety factors. In particular, the stability of the m=1

internal kink requires that qo > 1.

The satisfaction of such safety factor constraints is sufficient to provide stability

to the kink modes described only when the plasma 0 is sufficiently low. At some

higher value of 3 the plasma will suddenly become unstable to a class of instabilities

known as "ballooning" modes. The value of 0 for which ballooning modes are

marginally stable (with the q(r) profile adjusted to provide marginal kink stability)

is the "Troyon / limit", /Lm. This quantity is given approximately by [1]

iim, : 2.8(AP) . (2.30)

Here the quantities are defined in MKS units, and Oum is expressed in %.
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2.3.2 MHD Growth Rates

The typical growth rate of ideal MHD instabilities (in the absence of stabilizing

conductors) can be estimated with a simple scaling argument using the momentum

conservation equation, Eq. 2.11, and the continuity equation, Eq. 2.6. We choose

the zero 0 limit so that pressure can be ignored, and focus on magnetic forces alone.

The characteristic scale distance of plasma density and field variation is the minor

radius, a. The dominant current-field interaction, as indicated in the equilibrium

description above, is that of the poloidal field with toroidal current. With these

physical considerations, we find the following scaling of the momentum equation:

dv 1 B 2

P-=~, i=-xE x ~ ?. (.31)

The inertial term is scaled as

dv v a
p-~ P- P (2.32)

where rA is the characteristic time scale of the instability, known as the "Alfv6n

time". We have therefore that
2 2

T ~ (2.33)
A2

where VA B is the poloidal Alfv&n velocity. The Alfv& time is on the order

of 0.1-1.0 pisec for a typical tokamak.

When there are conducting structures in proximity to the plasma the growth

rate of ideal MHD modes can be significantly reduced. This principle allows the

active control of certain unavoidable instabilities with feedback systems having re-

sponse times significantly longer than a microsecond.

The most potentially damaging of these unavoidable unstable modes is an m=1,

n=0 axisymmetric mode [4]. For a vertically elongated plasma, this mode consists

essentially of an unstable bulk plasma motion in the vertical direction. For this

reason it is often referred to as the "vertical instability". The succeeding chapters
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of this work will be primarily concerned with this mode in noncircular tokamaks.

It is intrinsic to vertically elongated plasmas, but can be actively controlled when

surrounding conductors are able to slow its growth rate sufficiently.

2.4 The Vertical Instability

The Troyon 0 limit discussed above can be expressed in a different form which

shows its dependence on elongation [1]:

, 14 e (2.34)
q.

where

q. =.. o, .(2.35)

An elongated plasma can therefore be expected to have a higher #-limit than a

circular plasma with the same aspect ratio and q.. Higher plasma current densities

can also be achieved stably with elongated plasmas [35]. Because economic efficiency

is directly related to the plasma /3, and heating and confinement depend on plasma

current, the advantages of producing stable elongated plasmas are significant.

2.4.1 Physical Origin: Decay Index

The necessity of a quadrupole field in order to produce an elongated plasma equi-

librium was demonstrated above. Now we examine the consequences of such a field.

Consider a plasma model consisting of a toroidal, current-carrying, filamentary loop

located on the midplane. When this plasma is displaced upward by a small amount

z, it will experience a vertical force, F,, given by

8BR
F, = -27rRIp ,z z (2.36)

where 1?, is the major radius of the filament, I, is the toroidal plasma current, and

BR is the vacuum radial field. The gradient of BR is taken at the location of the



filament. The signs are chosen so that in equilibrium, I > 0, B, < 0, and thus

"A < 0. Therefore F, > 0 for a positive z displacement of the plasma, and the

motion is unstable. This unstable mode is known as the "vertical axisymmetric

instability". It consists of an unstable n=0, m=1 bulk motion of the plasma in the

vertical direction.

The criterion for stability can be expressed in terms of field curvature. As

shown in Fig. 2.2, when the vacuum field curvature is concave on the outboard

side and the vertical field has the correct sign to provide toroidal equilibrium, the

plasma is unstable to vertical perturbations. Conversely, a vacuum field concave

to the inboard side is stabilizing. This field curvature is described by the "decay

index", n, which is related to the destabilizing force, F.. Consider Eq. 2.36 rewritten

in the following form:

F, = 27rIpnB~oz, (2.37)

where the decay index, n, is defined as

R 9B, R OBR
n =- - - - (2.38)

~ B- R B.o az

Here the vertical field Bo is evaluated at the filament location, and we have made

use of Ampere's law to determine that for a vacuum field

-B _ OBR (2.39)
OR z

A positive decay index corresponds to a concave outboard field, and a negative decay

index corresponds to a concave inboard field. The general condition for stability in

the absence of conducting structures is therefore given by:

n > 0. (2.40)

Since producing an elongated plasma requires the application of a quadrupole

field as in Fig. 2.2, some regions of negative decay index must necessarily be formed.

For a realistic plasma equilibrium, the decay index will vary widely across the
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plasma, and the net destabilizing effect is a result of the destabilizing force sampled

by the current profile over the entire plasma. It should be emphasized that decay

index is only a measure of curvature, not of destabilizing force. To compare net

destabilizing forces in different equilibria, care must be taken to sum over the ap-

propriate local field gradient force quantities, not over the local decay indices (see

Section 3.1). The local decay index is effectively the gradient force term normal-

ized by the local B., so the "average" (current density weighted) destabilizing force

cannot be simply related to the "average" (current density weighted) decay index.

2.4.2 Conductor Effects

In the absence of stabilizing conductors, an equilibrium with net destabilizing decay

index will be unstable on a poloidal Alfven time, as described above for general

MHD instabilities. In the presence of a conducting wall which is sufficiently close

to the plasma in some average sense (implying some degree of conformality), the

mode will grow much more slowly, roughly on the wall L/R time scale. By "L/R",

we mean the inductive/resistive decay time of the conducting wall. It is then said

to be "stable on the ideal (MHD) time scale". Insufficiently close or insufficiently

surrounding conductors will fail to slow the mode from the ideal MHD growth

rate [12]. A perfectly conducting wall which satisfies proximity and conformality

conditions would completely stabilize the mode.

The wall L/R time is the same as the penetration time for magnetic diffusion

through the wall. For a circular wall of radius a, and thickness 5, this characteristic

time is given by

TD = ,' (2.41)

where i is the resistivity of the wall. Thus, a thick, highly conductive wall which

is very close to the plasma provides the best stability. However, vacuum vessels are

limited in their allowable proximity to the plasma by such requirements as the need
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to minimize impurity contamination of the plasma. Furthermore, a very thick wall

makes it difficult to drive flux through the vessel during startup.

For a tokamak surrounded by a stainless steel vacuum vessel, the field pene-

tration time is typically much greater than the ideal MHD growth time by at least

3 orders of magnitude. More accurate calculation depends on the actual geometry.

2.5 Remarks

In this chapter we have presented the salient physical principles of tokamaks as

necessary preparation for the rather specialized stability analysis to follow. The

basic geometry and figures of merit for high temperature plasmas which obey ideal

MHD in general, and tokamak plasmas in particular, were described. Essential

results from ideal MHD theory were presented or derived. Tokamak equilibrium

characteristics and requirements were described in detail, and the particular nature

of elongated equilibria was addressed. The physical mechanisms of tokamak MHD

instabilities were then described, with particular emphasis on the physics of the

vertical axisymmetric mode.

The vertical instability will be the primary focus of the remainder of this work.

Because elongated plasmas are intrinsically unstable to vertical modes of the type

described here, some degree of stabilization must be applied to prevent disruption

of the plasma and damage to the machine. Since conducting walls can at best slow

the mode down, an active feedback system must be used to provide the necessary

control.

In order to better understand the nature of this mode and its interaction with

conductors such as the vacuum vessel, a tractable model of the plasma-conductor

system must be derived. An acceptable model must retain the important physics

aspects of the system, while still being simple enough to understand and to allow
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reasonably swift calculation of solutions.

In the next chapter, we shall derive and apply a simple rigid filament plasma

model to the analysis of axisymmetric plasma-conductor mode physics. Forms of

this model have been used with great success in the analysis of vertical instability

for many tokamak experiments. However, several important aspects of the plasma

physics are treated incorrectly in the rigid filament model. For this reason, a more

physically accurate model is developed in later chapters of this work and applied to

the problem of Alcator C-MOD vertical stability analysis.
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Chapter 3

Rigid Plasma Modeling for

Vertical Stability Analysis

The simplest and historically most common plasma model used in the analysis of

vertical stability is the rigid filament-circuit model. Already mentioned in Chapter

1, the rigid filamentary plasma model has certain advantages over more accurate

but more complex models. Because the plasma is assumed to move rigidly, the

field influence of plasma to conductors is extremely easy to calculate. Dynamic

plasma response is reduced to one or two degrees of freedom of motion (in Z and

R), although it may sometimes also include artificial inductance variation to ap-

proximately model flux conservation. For vertical motion, the plasma is usually

taken to be current-conserving, a limit which is consistent with a plasma made up

of infinite-inductance filaments, but which breaks down when plasma motion must

be in a direction perpendicular to field lines. In particular, for an air-core tokamak

radial motion is incorrectly described by a current-conserving model. In fact, in a

current-conserving plasma the radial "hoop force" acts in a direction opposite to

that in which it acts in a flux-conserving one. One must therefore choose the mix of

representations carefully in order to describe plasma response in an approximately
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physical way when using the rigid filamentary approach.

This chapter deals with the general vertical stability problem and the sim-

ple models traditionally used to assess passive growth rates in a resistive walled

tokamak. Despite its physical limitations, the rigid model provides an excellent

tool for understanding the qualitative nature of the vertical mode, and for roughly

determining stability characteristics for actual machines.

3.1 Rigid Filament Plasma Model

The rigid filament-circuit approach combines physical simplicity and rapid compu-

tation of solutions with the potential for a high degree of accuracy in the conductor

model. Unfortunately, an inherent weakness of the model is that the plasma itself

is not treated correctly. In this model, the plasma is represented by a set of discrete

filaments, which are only allowed to move rigidly in the vertical direction.

A plasma model consisting of a single filament alone will lose current profile

effects, except as they are reflected in the equilibrium field gradient at the chosen

location for the filament. Even if many filaments are used, the rigid shift is not

necessarily the correct energy minimizing displacement. At best, without allowing

filament currents to vary, a multifilament plasma model will simply give a better

estimate of the net destabilizing field gradient force across the entire plasma. How-

ever, this is reason enough to use a multifilament rather than single filament model,

since a priori it is far from clear where a single filament should be located to produce

the most accurate results.

In the following we shall describe the circuit model form which is appropriate

for a uniform rigid vertical shift. We shall retain finite plasma mass [5,6], and modify

the model to include a multifilament plasma specification. The coils representing

stabilizing conductors can be driven according to control laws modeling a feedback
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response due to plasma motion, but in the present chapter we will only address

passive results. Plasma filament currents are kept fixed, so that all plasma-coil

induction is due to the motion of the plasma. The filament self inductances are

thus effectively infinite.

This circuit model yields a set of NC voltage equations for the NC resistive

loops representing the conductors external to the plasma. These are of the form:

dh + dh, +F I Mp 38z = (3.1)

* Where:

- 4 are the perturbed coil currents (j = 1, NC),

- Mg, is the inter-coil mutual inductance matrix,

- Mi is the coil-filament mutual inductance matrix,

- r1 is the resistance of coil j,

- L, is the inductance of coil j,

- NF is the number of plasma filaments,

- V'""* is the voltage applied to coil j.

- NC is the number of conducting loops.

If the coil in question is a driven control coil, the applied voltage is given by

a control law depending on the plasma displacement. For passive (undriven) coils

this voltage is simply zero.

The system of equations is closed by including the equation of motion of the

plasma for vertical displacements. This is simply the force balance including the

force due to non-zero decay index and the damping force due to eddy currents

induced in surrounding conductors. These are denoted Ff' and Ff'dy respectively,
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and the resulting force equation is:

M =i2 " + Ff (3.2)

NC NF NC

F!' =8I z I E SA (3.3)

Ffl = -Z 2rRIP, -Z SZ (3.4)

* Where:

- Ip, are the plasma filament currents (i = 1, NF),

- BRj is the radial vacuum field at filament i,

We now look for normal mode solutions of the form:

z -+ zef, 1; --+ 1,e (etc...)

Arranging Eqs. 3.1 and 3.2 in matrix form, a generalized eigenvalue problem

is obtained:

AIS = -yA 2X (3.5)

where the state vector S contains the perturbed quantities z, = i, and the iy. The

rows of the matrices A1 and A 2 consist of the circuit and force equations, along

with the definition of C. This definition allows the expression of the second order

force equation in terms of two first order differential equations. The solution of the

system thus gives us the normal modes and associated growth or damping rates.

This collection of normal modes includes many modes which do not contribute to

plasma motions of interest. These represent decay modes of the conductor array

with essentially no plasma motion. In addition, if the plasma mass is non-zero, two

high frequency oscillatory roots appear which are highly damped on the slow time

scale of the instability. These therefore represent transients which can be ignored
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given sufficient wall stabilization. This is accomplished by assuming the plasma to

be in quasi-equilibrium at all times, effectively setting the mass to zero. In this

case, the components of the state vector are only the perturbed coil currents, and

the system can be expressed as an ordinary eigenvalue problem:

Ai = yi. (3.6)

3.2 Analysis of Simplifying Approaches

Once one has chosen the rigid filament-circuit model approach to analyze the ver-

tical stability problem, there are still many possible model variations from which to

choose. A single filament (or many filaments) can be used to represent the plasma.

The plasma mass can be included or neglected. The plasma can be taken to be cur-

rent conserving or flux conserving. Many considerations contribute to the validity

and desirability of such assumptions, and we shall discuss some of these in detail.

3.2.1 Massless Approximation

To address the massless approximation, consider the case of a single resistive coil

in the vicinity of a plasma represented by an array of filaments which are taken

to conserve current, so that the circuit equations given in the previous section are

applicable:

Mi = ScI + SBZ (3.7)

L +Sei+ r.. = 0 (3.8)

After Laplace transforming, we obtain a third order characteristic equation

3a + 2e + (v -' 2i)5 2.s -VB v = VB (3.9)

where v,, = r,/L., v2 a S.2/Lem, vB2 SB/m. v,, is thus the characteristic decay

time of the coil, v4 is proportional to the destabilizing field gradient force term,
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and v. reflects the eddy current stabilization effect.

The zero-mass limit of this equation yields one root, which is unstable and con-

sists of the characteristic decay frequency with a modification due to eddy current

stabilization.

+ L" (3.10)
(/v)- 1

In this limit the divergence corresponding to the ideal MHD stability boundary

occurs when v.2 = v29. This also defines the "critical decay index", nc:

-I,,M,,
2

n . ,ipBo2 (3.11)

describing the limit to curvature which can be stabilized on an ideal timescale. Since

nc < 0, decay indexes below this value will be unstable on an Alfvan timescale.

In general when mass is retained the roots of Eq. 3.9 consist of a stable complex

conjugate pair with imaginary parts on the order of the Alfvin frequency, and one

real unstable root whose magnitude depends on the degree of stabilization. In

this case the ideal stability boundary is somewhat more difficult to define. If we

transform the characteristic equation into a dimensionless form by dividing through

by 'B, defining x = s/iB, e =_ vg/V, 17 = v 2 /,i, we obtain

X3 + ex2 + (7 - 1) _C- = 0 (3.12)

e is the normalized natural decay frequency, and 77 can be thought of as a measure of

wall stabilization. If we now plot the unstable real root as a function of 7, we find a

family of curves as e varies (Fig. 3.1). The figure shows growth rates normalized to

the characteristic Alfvin frequency (z a/i'v, where s is the actual growth rate), as

a function of the stabilization factor, 7 =_ vi.,/zv. The curves represent: a) e = 10-,

b) e = 0.1, c) e = 0.55, where e = v/z6. e is typically less than 10-.

The figure shows that although 7 1 is no longer such a hard ideal stability

boundary as in the massless case, it is still a good approximate boundary for typical

cases of interest (10-6 < C < 10-4). In such a case we see the growth rate change
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from resistive frequencies (x < 1) for 77 Z 1 to Alfven frequencies (x ~ 1) for

77 5 1. 7 > 1 is thus also the approximate boundary for validity of the massless

approximation. That is, if 7 is sufficiently greater than 1, the system is significantly

well stabilized on the Alfven timescale, and the massless approximation will be

quite good. Of course, if it should become important to follow the transition to

ideal instability, for example in analyzing highly elongated equilibria, mass must

be retained. The numerical consequence of neglecting plasma mass is that for ideal

unstable cases, the eigenvalue corresponding to the previously unstable eigenmode

becomes negative. When restricting the study to passive cases this is fine, since

such a result is unphysical and immediately recognizable. However, active cases

which are driven into ideal instability will masquerade as stable cases. Care must

therefore be taken to sweep gains from zero across the gain in question for near-

MHD unstable cases. The growth rate divergence and discontinuity will then be

apparent.

3.2.2 Plasma Filaments

Now consider the case of a number of filaments representing the plasma. Historically,

the most common form of rigid filament plasma model has used a single filament

to represent the plasma current, and much success has been ascribed to such an

approach [13]. The reasoning is that although a true plasma has a current profile

with a characteristic width comparable to the width of the vacuum vessel itself, the

magnetic flux at the wall due to the plasma is not significantly different from that

due to a single judiciously placed filament. Thus the coupling of the plasma to the

wall is thought to be modeled satisfactorily by a single filament. There are several

difficulties with this approach. The first is that the accuracy with which a filament

approximates the plasma coupling to the wall is dependent on the shape of the wall,

and to a lesser extent on the shape of the plasma current profile. This is primarily
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due to the form of the "coupling". In both the force balance and circuit equations

(Eqs. 3.2 and 3.1), the wall coupling terms are proportional to BR, a quantity which

can differ significantly over crucially stabilizing regions of the vacuum vessel, even

though the flux pattern may appear to be qualitatively close in the two cases.

Figures 3.2 and 3.3 show the difference between actual plasma flux and that

simulated by a filament at the magnetic axis for a typical C-MOD equilibrium

along with the C-MOD vacuum vessel. Although the flux patterns appear to be

quite similar, the resulting calculated growth rates are very different.

To illustrate, consider the single filament growth rate results summarized in

Table 3.1 for two example equilibria, denoted exl and ex2. Notation for this table is

as follows: MF = multifilament, F.,, = current weighted destabilizing force gradient

averaged over plasma, F,. = local destabilizing force gradient evaluated at magnetic

axis, F, = local destabilizing force gradient evaluated at current centroid, (MA) =

plasma-vessel coupling calculated with filament at magnetic axis, (CC) = plasma-

vessel coupling calculated with filament at current centroid.

The first case, exl, is that shown in Figs. 3.2 and 3.3, a fairly well stabilized

equilibrium despite its rather high elongation (K = 1.6, S., = .35): its multifila-

ment growth rate is only 147 sec'. Applying a force gradient equal to the current

weighted average over the entire plasma to the single filament located at the mag-

netic axis for coupling purposes, we find a growth rate of 117 sec'. Placing the

filament at the current centroid for calculation of plasma-vessel coupling yields 135

sec-, a growth rate much closer to the multifilament value. Using the local force

gradient measured at the filament location, both magnetic axis and current centroid

give values quite different from the multifilament result.

From these results one might be tempted to conclude that a single filament

located at the current centroid is sufficient to calculate the effective plasma-vessel

coupling. However, the case just examined represents a quite well-stabilized equi-
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Quantity exI ex2
r- 5  1.6 1.7
695 .35 .38
MF -y+ 147. 751.
F.,,(MA)'i+ 117. 419.
F.,,(CC)f+ 135. 426.
F,.(MA)+ 56. 41.
F,(CC)-y+ 98. 43.

Table 3.1: Summary of single filament growth rate comparisons for 2 example equi-
libria. See text for notation.

librium. The situation is worse for highly elongated equilibria with growth rates

significantly greater than the conductor L/R time (which we shall refer to as "highly

unstable"). Consider the second example shown in the table, ex2, an equilibrium

with xr = 1.7, we note in particular the difference between the multifilament growth

rate of 751 sec' and the two single filament results using the average force gradient

while located at the magnetic axis (419 sec 1 ) or current centroid (426 sec'). This

clearly constitutes an unacceptable discrepancy.

Thus, despite the use of the "correct" destabilizing force, the growth rate can

be significantly different, even when the flux pattern due to the plasma appears to

be approximately the same. We must emphasize that the only difference in these

cases described above is in the plasma-vacuum vessel inductive coupling.

Table 3.1 has also demonstrated the serious difficulty involving the effects of

vacuum fields on the plasma. There is no guarantee that a filament placed at an

arbitrary location (such as the magnetic axis or current centroid) for purposes of

calculating the decay index will see the correct net destabilizing force, and will thus

find the correct growth rate. This problem is illustrated dramatically in Figs. 3.4

and 3.5, which show growth rates as a function of radial position of a single filament

along the plane at the Z-position of the current centroids for two highly unstable

example C-MOD equilibria. Current centroids are denoted by R& in the figures,
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and in both cases the magnetic axis is located at 66.0 cm. Fig. 3.4 corresponds

to a typical example equilibrium with r. = 1.8, 6 = .35, and multifilament rigid

growth rate of 390. sec-. and Fig. 3.5 corresponds to a typical example equilibrium

with r, = 2.0, 6 = .32, and multifilament rigid growth rate of 950. sec'.

In the case shown in Fig. 3.4, the major radial position which would yield the

correct (multifilament) growth rate is quite distant from both the current centroid

and the magnetic axis. The situation is particularly bad for equilibria such as that

represented by Fig. 3.5, since in this case there is no apparent location for which a

single filament will yield the same growth rate as the multifilament model.

We note in passing that active analyses also tend to be very sensitive to choice

of filament model, since using a single filament is essentially the same as drastically

increasing the peakedness of an equilibrium which may not originally have been

highly peaked. In particular, this can significantly decrease the coupling between

control coil and plasma, even when the vacuum vessel coupling may not be as

strongly affected (since the vacuum vessel effectively surrounds the plasma).

Having argued that some degree of spatial distribution is important in a fila-

mentary model of a plasma used in rigid models, it is reasonable to ask how many

filaments are sufficient. Figs. 3.6 and 3.7 show convergence of growth rate values cal-

culated with increasing numbers of filaments modeling the plasma for the equilibria

used in Figs. 3.4 and 3.5 respectively.

The figures show that for both of these typical C-MOD cases, only about 5

filaments need be used for the calculated growth rate to come within 10%, and

roughly 20 filaments or more should be used to come within 1% of the converged

growth rate. To perform this convergence study, for each choice of filament num-

ber the plasma was divided into a rectangular grid having the desired number of

elements, and the filament corresponding to each grid element was located at the

current centroid of that element.
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That roughly 5 filaments are so effective reflects both the low order of significant

multipole moments in the vacuum magnetic field, and the low order of significant

toroidal current moments in the plasma current distribution.
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Figure 3.1: Growth rates normalized to the characteristic Alfvin frequency (x
s/B, where s is the actual growth rate), as a function of the stabilization factor,
77 = V./ 2.
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Figure 3.4: Growth rates for single filament plasma as a function of filament radial
position on the midplane (eq6). Ro denotes the current centroid, at R = 0.65m,
while the magnetic axis is located at R = 0.665m.
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Figure 3.5: Growth rates for single filament plasma as a function of filament radial
position on the rmidplane (eq7). Ro denotes the current centroid, at R = 0.65m,
while the magnetic axis is located at R = 0.665m.
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3.3 Marginal Wall Position Studies

Several alternative methods of analysis are available with which to benchmark the

rigid plasma-circuit model. Analytic solutions exist for simplified geometries, in

particular for marginal wall positions. Full MHD analysis codes (such as GATO)

can provide marginal wall positions with more realistic geometries and complex

displacement profiles. To benchmark resistive growth rates, either actual machine

data or a more detailed tokamak simulation must be used. Here we shall con-

sider marginal wall position comparisons with analytic cases for rough qualitative

benchmarking.

Haas [12] has demonstrated that there is a maximum distance at which a

perfectly conducting wall will stabilize the vertical mode for an elliptical plasma.

This provides a rough test of the general reliability of the rigid model: if a resistive

wall is used we would expect to see a similar critical distance manifest itself. This

would be the point at which the mode becomes ideal MHD unstable rather than

unstable on the slow resistive time scale. For low 3 cases to be stable on the ideal

timescale this criterion requires that:

rp) > (:-11/2 (3.13)

Here r, is the characteristic plasma minor radius, r, is the characteristic con-

ducting wall minor radius, both measured from the magnetic axis along the mid-

plane in the outboard direction, and r = b/a is the plasma elongation. For an

elliptical equilibrium with . of 1.8, this criterion for ideal MHD stability is:

( 1.97 (3.14)

Expecting rough agreement even for the unusual case of an Alcator C-MOD

equilibrium, the rigid filament plasma-circuit model was used to predict the critical

distance for onset of ideal MHD instability for two vacuum vessel wall shapes.
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Figures 3.8, 3.9, and 3.10 show the real parts of all of the system eigenvalues,

plotted on an Alfven-like frequency scale to reveal the transition to ideal instability.

An array of conductors modeling a given wall shape is enlarged conformally from

an initial position at the plasma surface. At a critical value of r./r,, the real parts

of two of the modes go rapidly from the resistive frequency regime to an Alfven

growth/damping rate. One of these is the unstable root, and this is the critical

point we wish to compare with the Haas result.

Because the Haas criterion was calculated for a conformal (elliptical) wall, the

first vacuum vessel shape chosen was a D-shaped array of conductors approximately

conformal to the plasma surface for a typical Alcator C-MOD equilibrium. Using the

multifilament plasma model, this array was enlarged from an initial configuration

lying on the plasma surface (Fig. 3.8). The ideal instability onset point was found

to occur at:

(r) = 2.00. (3.15)

Still using a multifilamentary plasma, the critical distance was also determined

for the actual C-Mod vessel, sweeping its size using the same algorithm as in the

conformal case (Fig. 3.9). As expected, the resulting value,

= 1.80, (3.16)

indicates that such a highly non-conformal wall must be closer to the plasma than

the conformal wall must be. Nevertheless, even this critical distance is encouragingly

close to the Haas prediction.

The conformal shell case was repeated using a single filament located at the

current profile centroid (Fig. 3.10). In this case the result is significantly more

optimistic, yielding a critical distance of

(r ) = 2.28 (3.17)
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This greater optimism for the case of a single filament at the current centroid is

consistently observed and emphasizes the need for a multifilament model. Note

that as the magnetic axis is further out than the current profile centroid, placing

the single filament on the magnetic axis yields even more optimistic results (due to

the more favorable decay index with increasing major radius).
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Figure 3.8: Growth rates as a function of wall distance, illustrating the critical dis-
tance for onset of ideal instability for a conformal D-shaped wall and a multifilament
rigid plasma model.
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Figure 3.9: Growth rates as a function of wall distance, illustrating the critical
distance for onset of ideal instability for a C-MOD vacuum vessel model and a
multifilament rigid plasma model.
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Major Radius RO .665 m
Minor Radius a 0.21 m
Toroidal Field BT 9 T
Plasma Current I, 3 MA
Elongation K 1.8 (typ)
Triangularity 6 0.4 (typ)
Flat-top Duration (@ 9 T) 1 sec
Flat-top Duration (@ 5 T) 7 sec

Table 3.2: Essential Machine Parameters for Alcator C-MOD.

3.4 Alcator C-MOD Vertical Stability Analysis

Using the Rigid Model

3.4.1 Machine Description and General Discussion

Alcator C-MOD is a high performance tokamak intended to be somewhat proto-

typical of the Compact Ignition Tokamak (CIT). As such it will provide a test bed

for many of the critical issues to be faced in the design and operation of CIT. The

essential machine parameters are summarized in Table 3.2.

Figure 3.11 shows the physical geometry of the Alcator C-MOD poloidal cross-

section, while Fig. 3.12 shows the vacuum vessel and EF coil discretization for

stability analysis. Referring to the physical drawing, Fig. 3.11, notice that there is

a total of 13 EF coils. These include a novel "notched" OH stack, consisting of 3

separate current-carrying elements. OH1 extends the entire height of the vacuum

vessel and typically carries the bulk of the induction current which produces the loop

voltage and thus drives the ohmic current in the plasma. OH2-Upper and OH2-

Lower (which we denote by OH2U/L) carry independently controllable currents

to assist in producing up-down nonsymmetric plasmas. The vertical control coils,

labeled EFC in Fig. 3.11, are driven by a fast, chopping power supply with response

time of less than 1 ms. All of the other coils are driven by slower 12 phase supplies.
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C-MOD will confine a strongly shaped, diverted plasma, with maximum elon-

gation n 2 1.8. It is the great complexity of the resulting system geometry which

originally motivated intense study of the vertical control problem in C-MOD. These

complex features include D-shaped single and double null plasmas and a roughly

rectangular vacuum vessel with a high degree of diagnostic access, producing many

interruptions in toroidal current paths, In particular, the poor stabilization resulting

from this combination of characteristics necessitates a highly sophisticated control

system. To gain some feel for the stabilization effects of the resistive elements, it is

of interest to examine some characteristic resistive decay times of the system.

The diffusive penetration time of the vacuum vessel, rD [1], is defined as:

TrD -ioa7 (3.18)

where a is a rough equivalent radius for a circular model of the vacuum vessel wall,

d is the thickness of the vacuum vessel wall, and 77 is the resistivity of the vacuum

vessel. For Alcator C-MOD, we take a = 50 cm, d = 1.27 cm (.5 in), and 77 = 70 pA2-

cm (the resistivity of stainless steel at room temperature), and we obtain -rD ~ 11

ms. For the EFC control coils, characteristic of copper elements in the system in

general, the L/R time (coil inductance over coil resistance at room temperature) is

i = o ms. (3.19)

The vacuum vessel model itself has many possible decay modes due to the large

number of coils used to represent it. The dominant stable midplane-antisymmetric

mode of the vacuum vessel alone (i.e. with no plasma and no EF coils included) is of

particular interest. This is the lowest order mode which couples to vertical plasma

motion. The current distribution in surrounding conductors for this mode is shown

in Fig. 3.13. The radius of each circle in the figure is proportional to the current in

that element, and positive or negative currents are denoted by "+" or "." symbols

respectively. As one would expect, the dominant antisymmetric mode has a roughly
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sinG dependence of current distribution on poloidal angle. The corresponding decay

time is

L 8.9 Ms. (3.20)

For completeness we include the dominant midplane-symmetric mode, which

is the slowest eigenmode of the vacuum vessel. The current distribution of this

mode is shown in Fig. 3.14, and its decay time is

( s. = 15 ms. (3.21)

If we now include EFCU/L together with the vacuum vessel and examine the

resulting. dominant asymmetric and symmetric modes, we find the current distri-

butions shown in Figs. 3.15 and 3.16 respectively. Their corresponding decay times

are
L. VV+EFC

85 ms, (3.22)

and

(L)VV+E C= 100 Ms. (3.23)

Notice the strong current component in the EFC coils for these modes. Note also

that for illustrative purposes the EFC coils have been allowed to assume independent

currents in this example. In operation these coils are connected in antiseries and

are driven by the same power supply ("antiseries" connnected coils carry the same

magnitude of current, but the current flowing in one coil is oppositely directed from

the current flowing in the other).

Considering these modes and their decay times, it is clear that despite the

discreteness of the EF coils, they can in fact contribute quite significantly to stabi-

lization.
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Figure 3.11: Alcator C-MOD machine geometry. Arrows indicate EF coils and the
OH stack. EFC denotes the vertical control coil pair. Note the "notched" OH coil
design, consisting of the single large OHi segment and two independently driven
OH2 coils.
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Figure 3.12: Discretized conductor model of the Alcator C-MOD machine geometry.
Solid squares denote vacuum vessel elements, and EF coils are represented by open
squares marked with "X". Diamonds denote flux loops, and triangles, B, coils.
Current contours of a typical equilibrium are shown.
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Figure 3.13: Current distribution for the dominant asymmetric pure vacuum vessel
mode; the plasma and EF coils are absent.
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Figure 3.14: Current distribution for the dominant symmetric pure vacuum vessel
mode; the plasma and EF coils are absent.
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Figure 3.15: Current distribution for the dominant asymmetric mode with vacuum
vessel and EFCU/L included; the plasma is absent.
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3.5 Passive Results

Calculation of passive growth rates alone for the vertical instability can provide a

great deal of valuable information to the control designer. Comparison of the insta-

bility growth rates calculated under various conditions can serve as a "zero-order"

test of the possibility of stabilization under those circumstances. Comparing the

growth rates for different stabilizer geometries, for example, provides a method for

discriminating between candidate conductor configurations. Comparing the typi-

cal response time of feedback power supplies to the growth rate aids in the rough

estimation of the achievability of equilibria. Identifying the point of onset of ideal

MHD instability supplies an important limit in machine operation.

In this section we shall explore the application of passive analysis with rigid

filament models to tokamak design. We describe a set of sample equilibria, and

discuss the actual design process for Alcator C-MOD. In this regard, we examine

the appropriate use of passive data in the analysis of wall and EF coil design, and

discuss other aspects of the stability analysis which are well addressed by the simple

model.

3.5.1 C-MOD Equilibria

To illustrate the use of the rigid filament model in passive stability evaluation stud-

ies, we present a set of typical Alcator C-MOD equilibria, which represent a range of

elongations and triangularities. This set comprises a range of theoretically achiev-

able equilibria used in the early design of the machine, and yielded results which

had a major impact on the final vacuum vessel and EF coil configurations. All of

these equilibria are characterized by qO ~ 1, R,,. ~ 67 cm, and Z,. = 0. Here

the subscript "ma" denotes magnetic axis quantities. The corresponding separatrix

elongations and triangularities of this "original design set" are summarized in Table
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Equilibrium n, 5, 17. A
eqi 1.65 .33 25. 57.
eq2 1.81 .33 466. 484.
eq3 1.97 .30 894. 902.
eq4 1.80 .56 446. 463.
eq5 1.80 .28 424. 442.
eq6 1.80 .35 388. -
eq7 2.00 .32 945. -

Table 3.3: Separatrix elongations, and triangularities, and growth rates for the
"Original Design Set" of equilibria, used in the early vacuum vessel and EF coil
design of Alcator C-MOD. The -y subscripts refer to passively stabilizing EF coil
pairs.

3.3. For reference purposes the equilibria are denoted by the labels "eqi" through

"eq7".

The Alcator C-MOD experimental mission entails high flexibility of shaping

and the stable achievement of maximum elongations on the order of ,,, - 1.8 - 2,

hence the range of shaping evident in Table 3.3. An example of the discretized

model for one of these (eq7) is shown in Fig. 3.19. Notice the asymmetry in filament

distribution arising from the single null plasma configuration, despite the fact that

both magnetic axis and current centroid are located on the midplane. The plasma

discretization algorithm used here is the same as that described in Sec. 3.2.2.

The original equilibrium data was calculated on a 65 x 65 grid, so this procedure

actually constitutes a "rediscretization" of the equilibrium solution, in order to

reduce the number of calculations necessary. The nominal number of elements used

is approximately 100 in all the cases shown. Filaments with zero-current resulting

from this process are not included in the calculation and are not shown in Fig. 3.19.
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Elongation Rect.VV Int.Cond. Ext.VV Ext.VV/EFC
n,,, = 1.85 1273. 396. 460. 306.
rs, = 2.00 1.4 x 106 2465. 1238. 1076.

Table 3.4: Passive growth rates for stabilizing conductor configuration studies.

3.5.2 Vacuum Vessel Studies

To understand the use and practical impact of this particular rigid filament model

implementation, it is of interest to examine the history of the Alcator C-MOD

vacuum vessel design. As previously noted, the original vacuum vessel design was

essentially a rectangular "picture-frame", a geometry chosen to minimize machin-

ing costs, simplifying much of the construction while still maintaining structural

strength. This early geometry is schematically illustrated in Fig. 3.17. The dis-

cretized vessel (and filament) model used for the vertical stability analysis is shown

in Fig. 3.18. A range of highly elongated C-MOD equilibria were tested with this

vacuum vessel for a variety of stabilizing conductor configurations. Some selected

results of this procedure are shown in Table 3.4 for two highly elongated equilibria.

In this table, "Rect.VV" refers to the original rectangular picture frame vacuum

vessel design, "Int.Cond." refers to a Cu conductor inside the rectangular vacuum

vessel, "Ext.VV" refers to an extended vacuum vessel wall in the upper and lower

outboard region (see Fig. 3.11), and "EFC" refers as always to the EFC coil pair

(also as shown in Fig. 3.11). Hence "Ext.VV/EFC" represents the actual final

design.

Note that because for many of the configurations studied the plasma was MHD

unstable, the mass was retained in the calculations according to the procedure

described in Section 3.1. This results in calculated growth rates in excess of 106 sec-'

with the onset of ideal MHD instability.

From these passive results alone, it is clear that the rectangular vessel could

not satisfactorily stabilize the kinds of equilibria desired for C-MOD. A variety
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of alternative configurations which attempted to minimize the modification of the

basic rectangular shape of the vacuum vessel were analyzed. These included several

different designs of additional stabilizer suspended within the original vessel, passive

conductors mounted on already existing hardware within the original vessel, and

the somewhat extensive redesign of the vessel wall indicated in Table 3.4 as the

final design. Some of the results of these comparisons are shown in the table.

These passive results, along with active simulation confirming the feasibility of

feedback stabilization, led to the decision to undertake a major modification of the

vacuum vessel design. This modification changed the vessel design from the original

rectangular picture frame to that shown in Fig. 3.11. Rigid analysis thus predicts

that the final design configuration will succeed in passively stabilizing the nominal

KM = 2 case sufficiently well to allow stable control of the vertical instability with

the available power supplies.
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Figure 3.17: Original rectangular "picture-frame" vacuum vessel configuration.

88



3.5.3 Stabilizing EF Coils

A fast circuit model code is ideal for studying the relative passive stabilization

effects of various control coil placements during the design process. The coils can

be repositioned easily in the model, and the effect of the new configuration on

stability can be rapidly assessed. These coils will typically be the closest copper

coils which are well-coupled to the plasma vertical motion, and should therefore

have a strong influence on passive stability properties.

In discussing the vacuum vessel redesign we have alluded to the addition of the

EFC control coils, but the competing EF coil stabilization analysis also deserves

brief mention. In fact, many control coil positioning options were investigated

during the design of C-MOD, but we shall address the passive stability for two

cases alone. They correspond to control on the OH2 portions of the "notched" OH

stack, or on the EFC coils.

Passive growth rates corresponding to these cases were shown in Table 3.3

for the original design set of equilibria. Comparing the growth rate columns, it'is

clear that for passive purposes the stabilizing effects of these two choices for control

coil are in general comparable for C-MOD. This reflects a similar coupling to the

plasma for the two coil sets. In light of this, the EFC coils were in fact added to

the design to be used for active control and contribute to passive stabilization. This

modification was done as part of the vacuum vessel redesign mentioned above. The

decision to add the EFC coils also took into account active results to be considered

in Chapter 5, and acknowledged the difficulty of engineering a fast control power

supply operating in parallel with the OH2 equilibrium supplies.
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3.6 Remarks

Passive analysis can provide a sense of the difficulty of stabilizing given equilibria,

and to some extent provide a measure of the relative quality of various stabilizing

configurations. Indeed, primarily as a result of the passive growth rate analysis,

an assemblage of alternative conductor configurations could be readily compared in

the design of Alcator C-MOD, allowing swift optimization. However, on the basis

of passive growth rate data alone nothing reliable can be said about such active

details as power supply response time and power requirements. Active simulations

are required to determine actual limits on the control system. In particular, while

the passive growth rate may not be very sensitive to exact control coil location, the

calculated tolerable delay time may depend more strongly on it.

The use of the rigid filament model itself is intrinsically limitation in the anal-

ysis of fusion plasmas. It fails to conserve flux, keeping plasma current constant ev-

erywhere instead. What is desired, even in performing passive stability calculations,

is a plasma model which provides a more realistic account of the degrees of free-

dom available to the plasma, and provides some approximation to ideal MHD flux

conservation. Therefore, before addressing the active control issues in Chapter 5,

we first turn our attention to passive analysis using the equilibrium perturbation

plasma response model.
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Figure 3.18: Discretized model of rectangular "picture-frarme" vacuum vessel.
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Chapter 4

Perturbational Equilibrium

Plasma Response Model

As we have seen, the rigid filament plasma approach to vertical stability analysis has

several drawbacks, all related to the inaccuracy of the plasma model. In particular,

it fails to account properly for flux conservation, and it cannot in general exhibit the

correct energy minimizing eigenmode. What is needed is a method for calculating

approximate plasma responses to coil and vacuum vessel current perturbations,

while conserving flux and allowing sufficient degrees of freedom to the plasma itself

so that a reasonable approximation of the energy minimizing perturbation can be

found. Several algorithms which accomplish this were briefly discussed in Chapter

1. In the present work we explore a method based on perturbing coil currents

from those currents which yield a given base equilibrium, thereby determining a

complete basis for linearized plasma response (while maintaining equilibrium) due

to coil current variations. The general approach is similar to that of Albanese

et al [17], but we take a unique approach to the method in two important ways.

First, the effect of a resistive vacuum vessel is estimated by mapping the effect of

vessel element current variations through approximately equivalent EF coil current

93



variations. Second, by allowing plasma internal dynamics to vary, we approximately

conserve flux. While this falls slightly short of an actual flux conserving perturbation

calculation, it does manage to conserve to a high degree of accuracy the poloidal

flux profile as a function of toroidal flux.

In this chapter we shall examine the perturbational equilibrium approach to

plasma modeling for vertical stability analysis, and apply it to passive studies.

Active control analysis and design will be addressed in Chapters 5 and 6.

4.1 Modeling Plasma Response with Perturbed

Equilibria

4.1.1 Quasi-equilibrium Assumption

As described previously, we exploit the quasi-equilibrium assumption, which al-

lows us to use perturbed equilibrium solutions to determine the linearized plasma

response to axisymmetric currents. The first step in this procedure is to assume

stability on the ideal time scale. If the resistive stabilization of all instabilities (and

in particular the vertical instability ) is sufficient to slow the growth rate of the

mode to a value significantly below the Alfven frequency, then the inertial term can

be neglected in the MHD momentum equation (see Chapter 2):

dv
p-= -Vp + x . (4.1)

dt

This is easily seen by comparing the scaling of the inertial term with the J x B

driving term:
1Ba 2 1 2 2x Ba WA, (4.2)

pa popa 2

where VA is the familiar Alfven velocity, a is a characteristic scale length of the

plasma, and wA is thus a corresponding Alfvin frequency. This is to be compared
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with the corresponding scaling of the inertial term:

1 dv 2

~ ̂ 7 t'a, (4.3)

the characteristic instability growth rate. For Alcator C-MOD, this characteristic

Alfvin frequency is wA - 6 x 10'sec- 1 , while the vertical instability growth rate is

typically less than 1000 sec- 1. In fact, a growth rate much above this value would

exceed safety margins on the fast power supply response capability, thus rendering

the mode uncontrollable regardless of plasma inertia effects.

From the above argument we can see that stability on the ideal MHD time

scale is equivalent to setting the plasma mass to zero. The momentum equation thus

becomes the equilibrium equation (Eq. 2.13). For the purposes of plasma response,

then, the plasma can be assumed to satisfy the Grad-Shafranov equation (Eq. 2.24)

at all times. We next choose a base equilibrium about which to determine the

linearized response to perturbed EF coil currents. Perturbing each EF coil current

in turn from its base equilibrium value produces a new equilibrium, with one caveat

concerning numerical stability. Because the equilibria of interest are intrinsically

unstable (to vertical displacements), a separate coil current must be allowed to vary

in order to allow stable numerical convergence. This means that each perturbed

equilibrium has folded into it both the effects of the "primary" perturbed coil as

well as the vertically stabilizing effect of the chosen numerical feedback coil(s).

This complicating additional perturbation on each perturbed equilibrium can be

unfolded by performing another perturbation for each feedback coil. For these

cases, the plasma is moved vertically by a small amount using only the current of

the numerical feedback coil(s), while keeping all other EF coil currents fixed at the

base equilibrium values. This procedure evaluates the effect of the feedback coil

current(s) separately. This effect can then be removed from the other perturbed

equilibrium results.
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4.1.2 Alternative Approaches

Before continuing with the description of the approach taken in the present work,

certain alternative approaches deserve mention. As described above, the equilibrium

solutions in this process are necessarily free boundary, since the plasma response

must be determined from the fixed set of coil currents (and the varying numerical

feedback coils), and not the other way around. However, one can imagine perform-

ing a similar operation with a fixed boundary approach, by perturbing in turn each

of a set of properly chosen plasma shape and position parameters. The correct

perturbed EF coil currents for each resulting perturbed equilibrium must then be

calculated self consistently, in such a way as to accurately reflect the small perturba-

tion from the base which each equilibrium should represent. This is rather difficult,

since the set of coil currents which produce a given equilibrium (to within a chosen

accuracy) is not unique. The fixed boundary perturbed equilibrium approach thus

requires an additional degree of sophistication in calculating coil currents. Many

of the tools required for this method already exist. In particular, the variational

equilibrium algorithm [16] mentioned in Chapter 1 holds the promise of providing

an extremely swift alternative to the relatively laborious calculations required by

the free boundary approach. However, as yet the algorithms needed to calculate

correct perturbed coil currents have not been developed.

Another possible approach is that of time-dependent, combined MHD and

transport models such as the Tokamak Simulation Code (TSC) [19] or DINA [20].

These methods evolve a plasma through an entire shot, including full resistive effects

of walls and PF coils, while performing self-consistent transport calculations. This

provides a great deal of detail in the modeling of a plasma discharge, and allows

investigation of almost every aspect of tokamak operation. However, although TSC,

for example, is an extremely powerful tokamak analysis tool and represents a major

achievement in numerical modeling of plasma phenomena, its use in control studies
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is hampered by complexity and execution time. The process of design for any

control system necessarily involves the testing of candidate control laws and some

degree of iteration in order to arrive at acceptable performance. With present

supercomputer technology, a single tokamak shot simulation to this high degree

of detail and completeness can easily consume 4 hours of cpu time. This makes

iteration extremely difficult.

Moreover, the necessary complexity of the various models incorporated in such

a simulation means that uncertainty always remains regarding the nature and ac-

curacy of those models for a given machine. When a machine is in operation and

producing experimental data against which to benchmark the code, the free param-

eters of the transport, heating, fueling, and other models can be modified appro-

priately to reproduce the behavior of the actual experiment. In the absence of such

a running experiment, for example during the initial design process, the number of

assumptions which must be made can cast doubt on the reliability of conclusions

drawn from the computer simulation. To be sure, this can be equally applied to any

theoretical model and computer simulation of a physical system, but the usefulness

of a model increases when the complexity of assumptions made is minimized.

Although TSC is generally too slow to be an ideal iterating tool for control

design, it must be said that it has certainly been employed successfully for such

design by researchers who have become expert in its use. The code has in fact

taken on a crucial role as a tool for the confirmation of control laws derived through

other methods, and as a means of demonstrating feasibility of stabilization in various

scenarios. In modern tokamak stability analysis, it has no peer in this role. Later

in this chapter we shall use a TSC simulation carried out by Ramos [21] to help

benchmark the predictions of the perturbational equilibrium approach.

Given the difficulty of iterating with a large system such as TSC, and the

presently unsolved problem of using a fixed-boundary approach to estimate plasma

response, the free-boundary equilibrium perturbation method seems to fall into a
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useful middle ground. It shares many of the good aspects of the rigid filament

approach, while improving on the deficits of that method. While we must pay a

penalty in the time required to calculate several equilibria in order to analyze only

one, once this initial calculation is completed the iteration process is essentially as

fast as that used for a rigid filamentary plasma model. It is thus of great interest

in solving the control design problem.

4.2 Current-Conserving Algorithm

What results from the free boundary analysis is a set of perturbed equilibria equal

in number to the number of EF coils. These provide a complete description of the

possible variation in plasma shape and position which can arise (in a linearized

sense) from perturbational changes in any EF coil currents. Ideally these pertur-

bations would be performed using a flux conserving model. That is, to obey ideal

MHD, the plasma must conserve poloidal and toroidal flux at every corresponding

fluid element from the base equilibrium to each perturbed equilibrium. If each of

the perturbed equilibria conserved flux throughout the plasma, a flux conserving

plasma response would automatically result.

The present study made use of a variant of the PEST (Princeton Equilibrium,

Stability and Transport) code [23], called ASEQ, for free boundary equilibrium

solution. Although PEST does not include any transport, the original intent of the

designers to do so seems to have persisted in the name of the code [24]. While a flux

conserving operating mode apparently exists in some of the progeny of PEST, this

option was not available in the present work. The perturbed equilibria are therefore

calculated at constant plasma current, and an algorithm for achieving approximate

flux conservation must be used.

The circuit equation, expressing plasma-conductor coupling, appears much the
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same as for the rigid formulation (Eq. 3.1):

M,., + R.I. + X.. = ., (4.4)

where we now and henceforth express the problem in matrix rather than tensor

terms, in preparation for the state space formulation we shall exploit in succeeding

chapters. In general, we shall use bold face upper case Roman letters to signify ma-

trices, and plain letters to signify vectors. An explicit vector symbol may, however,

be used sometimes to disambiguate. In this equation, the subscripts "s" and "ss"

refer to generic stabilizing conductors, which we will understand to mean such ob-

jects as PF coils, circuits consisting of coupled PF coils, or vacuum vessel elements.

They are not to be construed as tensor indices. In future, subscripts "c" and "v"

will specifically refer to PF coils and vacuum vessel elements respectively. M,, is

the inductance matrix (including mutual and self inductances), R. is the diagonal

resistance matrix for the conductors, and V -is the vector of voltages applied to

conductors. X,, represents the plasma response and coupling from plasma to con-

ductors for constant plasma current, defined as the partial derivative of the flux at

the conductors due to plasma alone with respect to conductor currents:

X,, (4.5)

Calculation of this matrix using the perturbation data is relatively straightfor-

ward. Constructing the perturbed coil current matrix IEF, whose columns are the

vectors of EF coil currents for each of the perturbed equilibria, I.F, minus the base

equilibrium EF coil vector, EF we obta

IEF =. (TWEQ -EFb, E(~4.6")F~EF *

NEQ is the number of perturbed equilibria. The inverse of the perturbed equilib-

rium coil current matrix, Ij', can now operate on equilibrium data (from the right,

in the convention used here) to provide a predictor for that data given perturbed
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EF currents. We ensure conventional invertibility by creating NEQ=13 perturbed

equilibria for the 11 shaping coils plus 2 small vertical displacement cases in which

EFCU/L are fed back upon separately to move the equilibrium to the perturbed

vertical position demanded. In this way the influence of EFCU/L in the shap-

ing perturbations is evaluated and can be unfolded from the total response. We

illustrate with the predictor needed to complete Eq. 4.5.

The current conserving plasma response matrix for EF coil currents, X,, maps

EF coil currents to flux changes due to the plasma current alone measured at EF

coils. Constructing the corresponding equilibrium data set matrix, whose columns

are these perturbed fluxes at the EF coils:

E I EF ~ )F) NEF ~ OF ".. (EF ~E

the plasma response matrix is easily found to be

X. - 1EFIEF (4.8)

Note that this is the sense in which "operating from the right" with I-} yields the

predictor of interest.

Provided we are only concerned with the effect of EF coils on plasma stability,

the matrix just calculated completes the circuit equation. This was the extent of

the analysis of Albanese et al [17]. However, for the case of Alcator C-MOD, the

vacuum vessel provides a significant amount of stabilization. In fact, most plasmas

of interest for the intended mission of C-MOD would be ideal unstable in the absence

of the vacuum vessel. The influence of this large and highly conductive structure

close and well-coupled to the plasma must therefore be assessed in the formalism

of the perturbed equilibrium algorithm. Unfortunately, the obvious approach of

calculating equilibrium solutions for individually perturbed vacuum vessel element

currents (effectively treating vessel elements like EF coils) is not reasonable with the

ASEQ implementation considered here. Significant modification of the code would
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be necessary in order to operate in this mode. Moreover, since there axe nearly

100 discrete conductors in the vacuum vessel model and EF coil set, the number of

perturbed equilibria needed would require a significantly longer amount of time to

calculate.

Instead, we choose to approximate the influence of the vacuum vessel on the

plasma in terms of the influence of the EF coil set. Since the only data available

through the EF coil current perturbation approach reflects only these degrees of

freedom, this represents no change in information. It does, however, mean that any

vacuum vessel current distributions whose effect on the plasma cannot be sufficiently

well approximated with EF coil currents will not be accurately dealt with. There

is a vast nullspace consisting of NV-NC - 63 vessel current vectors for which the

plasma will be largely unaffected. This is not unreasonable, however, since the

number of modes which essentially do not couple to plasma motion in the passive

problem is in fact greater than this. This issue will be addressed later in the chapter.

First, however, we describe the method for assessing the influence of the vacuum

vessel on the plasma.

4.3 Vacuum Vessel Effects

The influence of any set of conductor currents on the plasma is determined by

the vacuum field over the plasma region due to those currents. Since the vacuum

magnetic flux satisfies Laplace's equation and the system is axisymmetric, specifying

the flux everywhere on a closed contour determines its value everywhere within that

contour. Thus, if a contour is circumscribed around the plasma in the poloidal plane

and the flux on this surface is determined, the vacuum field over the plasma region

will also be determined. The approximation of EF coil current influence using vessel

element currents is therefore equivalent to approximating the flux pattern on such

a contour due to vessel currents by using coil currents. Operationally, we choose

101



some sufficiently large number NE of grid points which are those NE points with

flux values nearest to the edge flux, defining a locus, E, which roughly surrounds

the plasma.

The flux at E due to an arbitrary set of EF coil currents, I., is given by

Nc)=Me.,I. (4.9)

Similarly, the flux due to a vector of vessel currents, I, is

3L(,) = MI, (4.10)

where Mec and Me, are the appropriate mutual inductance matrices. We now

attempt to set these two flux vectors equal to each other. This can only be accom-

plished approximately, minimizing some norm of choice in the E space:

MrI, = Mee. (4.11)

Choosing a least-squares norm, the problem can be solved directly with a sin-

gular value decomposition (SVD) inverse [25]. For the usual least-squares problem

Ax = b (4.12)

an SVD inversion of A, yielding the solution

i = A~1 9 (4.13)

minimizes the quantity

(I - A-'b) T (; - A~1 b). (4.14)

Defining the SVD of a matrix A as

A = UEVT, (4.15)

the SVD inverse is given by

A-' = VE-1UT. (4.16)
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As a matter of notation, whenever a rectangular matrix is being inverted in the

present work, the superscript "-1" will be understood to indicate the SVD (gener-

alized) inverse.

Before performing the simple operation to produce the least-squares solution,

the question of which vector is being solved for must be addressed. At first glance,

it may appear that what is needed is an approximation to the coil current vector,

1, in terms of the vessel current vector, I,,. One might therefore suppose that the

correct solution to be found is

I= MC Me.,e. (4.17)

However, since the number of vessel elements, NV, greatly exceeds the number

of coil elements, NC, determining , in this way from I. represents an ill-posed

problem.

The correct problem to be solved is to find the coil current vector which best

approximates the effect of vessel element currents. Posed in this way the problem is

overdetermined, and can thus be appropriately solved in least-squares as described.

The result is the current mapping matrix

DC = MeIjMe, (4.18)

which maps I, vectors to f. vectors which have an approximately equivalent effect

on the plasma. This operation, of course, makes explicit the existence of the large

vessel current nullspace mentioned above.

The circuit equation can now be modified to express the plasma-vessel inductive

coupling alone, using a different plasma response matrix X.e, defined by

X., =_ Ik I' (4.19)

This matrix describes the flux change at vessel elements due to plasma response

to EF coil currents. '., here is the equilibrium set of flux vectors due to plasma
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current alone at the vessel elements. X,, is then operated upon from the right by

the current mapping matrix, D,,, to give the new vessel-vessel plasma response

matrix,

X.. = X -.D. = , (4.20)

and the complete vessel circuit equation,

M.A + R.L + Xj = V. (4.21)

From Eqs. 4.20 and 4.21 it is now clear that the indicated inversion for the solution

of Eq. 4.11 is the correct one. The adequacy of this mapping will be addressed in

Sec. 4.7.

The extension of these equations for combined sets of conductors, including

both EF coils and vacuum vessel elements, is immediate once the various plasma

response matrices, X.,, X,,, X.,, and X,, have been calculated. We emphasize

that these matrices have been calculated with the constraint that plasma current

and profile shape parameters have been kept constant. In order to approximately

conserve flux in the plasma, these parameters must be allowed to vary. In the next

section we introduce the current/profile-varying plasma response matrix and the

additional constraint equation needed to accomplish approximate flux conservation.

4.4 Flux Conservation

Equilibria calculated with the form of ASEQ used here cannot be forced to con-

serve q proffle or poloidal and toroidal flux throughout the plasma from one run to

the next. Although it is in principle possible to iterate over the equilibrium code

itself in order to obtain, say, a set of q profile conserving cases, such an iteration

would require prohibitively large amounts of computation. However, since the code

requires the specification of total plasma current, it is natural to keep the toroidal

current constant from one run to the next. Varying the plasma current provides
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one control degree of freedom for approximately conserving flux. The effect on the

plasma and surrounding conductors due to changing plasma current can then be

determined by finding the solution for a current value slightly perturbed from the

base equilibrium value, while keeping all coil currents (again excepting the EFC

pair) fixed.

As must be done in all methods of Grad-Shafranov equation solution, ASEQ

must make some assumptions regarding the form of two of the three unknowns in

that equation. As part of this procedure, the form of the P' and FF' profiles as

functions of normalized flux are specified. For all of the solutions in the present

work, P' and FF' are taken to be proportional to the "Strickler profile" shape

function, given by:
e-4; - e-'I

h'(N, a) = (4.22)

where the normalized flux is

9 -(4.23)

and a is a shape parameter related to the profile width. P' and FF' depend on two

different shape parameters, a,, and a1 :

P' oc h'(4, a,) and FF' xc h'(b, a1 ). (4.24)

Greater positive values of these profile parameters corresponds to more peaked

profiles, and more negative values, to flatter profiles. Varying one or both of these

shape parameters for the two profiles provides one or two more degrees of freedom

for flux conservation.

Allowing plasma current and a profile shape parameter such as af to vary adds

another matrix term to the circuit equation. If we define a parameter vector, fp, as

a vector containing the perturbed plasma current and perturbed shape parameter,

the new term is

p = Y.,I, (4.25)
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We must now find constraint equations to specify the parameter vector, , in terms

of coil currents, permitting the definition of Y.a. Forcing toroidal and poloidal flux

to be constant at discrete plasma locations provides the necessary constraints.

The goal is to provide some approximation to overall flux conservation by forc-

ing the flux at certain locations to be constant in the coupled circuit and force

problem. A common approach to approximating q profile conservation in theoret-

ical models is to conserve q values at certain discrete locations alone, for example

keeping qo and q. constant [1]. However, there is a practical limitation to keep-

ing these particular values constant using the results of ASEQ calculations. The

problem arises when one asks where the edge of the plasma is to be found from

one equilibrium to the next. Although the equilibrium solution treats the edge as

a well-defined locus of points, it establishes this locus by self-consistently defining

a particular flux surface as the contour upon which plasma current falls identically

to zero. For all of the equilibria dealt with in this study that surface is the "95%

surface", the surface having a flux value which is 95% of the separatrix flux value.

Attempting to conserve poloidal and toroidal flux on this surface therefore places

an unrealistic constraint on the plasma and on the separatrix at the same time. A

truly flux-conserving plasma would expand or contract with radial motion in or-

der to conserve flux, but perturbational ASEQ solutions tend to largely conserve

poloidal plasma area instead.

A more realistic approximation to flux conservation given the nature of the

equilibrium solutions, is to conserve the poloidal flux profile as a function of toroidal

flux. If plasma current and one profile shape parameter such as cf are allowed to

vary, two values can be constrained. The magnetic axis is one endpoint of the

profile which is especially easy to constrain. Toroidal flux is, by definition, zero

on axis, but the poloidal flux varies among the perturbation set of equilibria. The

constraint equation for the perturbed axis flux which relates the set of perturbed

coil currents, ih, to the internal parameter vector, 1 (whose elements are taken to
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be the perturbed plasma current and the change in af), is simply

= = 0. (4.26)

Throughout this section we use the subscript "a" to refer to the magnetic axis, "e"

to refer to the plasma edge, "0" to refer to the unperturbed base equilibrium, and

"1" to refer to an equilibrium perturbed from the base.

Flux conservation at the edge requires a slightly more subtle argument. Refer-

ring to Fig. 4.1, consider the @,(7t) profile for the base equilibrium (keo, O.O), and

that of an equilibrium perturbed from this base (7.1, i.1). Since the 95% surface

toroidal flux calculated for the perturbed solution is different from that of the base,

the perturbed edge cannot be identified with the base edge. Instead, in order to

constrain the O,(ot) profile to be as unchanged as possible, the edge poloidal flux

is forced to be the appropriate value which will extrapolate to a fixed i,.(7P.).

Fig. 4.1 illustrates this more clearly. We therefore require

10.1 = 7'ko + (' ( - 1ko). (4.27)

Since the sign convention used in ASEQ requires that

-= - , (4.28)
lp qCG

we find that
1

.= -A~ . (4.29)
qco

The edge constraint equation is therefore

07 + **F= 0, (4.30)1. +

where

-- :r M .-: + . , (4.31)
air L9Ir qo aI,

and

- --+ . (4.32)
07 ag q.0 af
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The quantity 0b. is the total change in poloidal flux from the base equilibrium edge

to the perturbed equilibrium edge. The quantity V, has the meaning indicated in

Fig. 4.1.

The expanded form of the constraint appears as:

--. + .. O I + --L + I =o 0. (4.33)
aI. q.o aI. p .f -q;O

We now construct the plasma flux vector:

(4.34)

Recalling the definition of the internal plasma parameter vector

- ,p (4.35)
Qf

Eqs. 4.26 and 4.33 combine to yield the desired relation between and 1.
i -1 i -.

O= - - - - -. ( 4 .3 6 )

and are calculated according to the definitions in Eqs. 4.31 and 4.32

above, and by applying the same kind of inversion of the equilibrium dataset internal

parameter and current matrices respectively. A modified perturbed equilibrium

dataset matrix similar to %P, must be constructed which includes the , entries as

well as the 4.. This is then operated upon from the right with the inverted dataset

internal parameter and current matrices to produce Eq. 4.36.

Inserting Eq. 4.36 into Eq. 4.25 yields the flux conserving circuit equation:

M.,I, + Rl* + X.I, + Y,,I, = V, (4.37)

where

Y - - -(438)8op() '9k ___ I
4.
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4.5 Computational Tools and Accuracy

Before describing the passive results from stability analysis using the perturbational

equilibrium plasma response, it is worth noting some accuracy limitations intrinsic

in the calculation and the sources of these limitations.

The principal constraint on the accuracy implied by- the equilibrium perturba-

tion procedure as implemented in the present work is that of data significant figure

limitation. One of the tools evolved for the Alcator C-MOD MHD effort is the C-

MOD Relational Database (RDB). This system allows the storage and referencing of

equilibrium data, found by the running of an equilibrium code such as ASEQ, or by

actual reconstruction of machine operating data. Once the tokamak is in operation,

it is envisioned that actual shot data can be stored in RDB and readily accessed

for analysis and use in achieving desirable equilibria in later shots. This database

is the medium through which the perturbed equilibrium solutions used in this work

are stored and extracted. It provides an extremely broad range of MHD data, and

a means of constructing "streams" of information for a sequence of equilibria. As

of this writing, more than 4000 C-MOD equilibria have been created with ASEQ

and stored in RDB, encompassing a very large range of shapes, currents, 0-values,

etc...

At present, equilibrium data stored in RDB is limited to 5 significant figures

(4 decimal places) by virtue of the data writing formats of ASEQ. Thus database

quantities are only safely reliable to about one part in 104. This was chosen as a

reasonable limit to the accuracy of the equilibrium solutions themselves. Although

machine precision for the VAX computer used for the equilibrium calculations is

e,, ~ 2 x 10-7, the large number of grid points and arithmetic operations required

results in a significant amplification of this intrinsic error appearing in the final solu-

tion [25]. If we choose the number of grid points, (65 x 65), as a rough conservative

estimate of the number of independent operations, N, then the cumulative error,
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given by v Ne,, is e., ~ 1 x 10-. The 4 decimal place format of the database

data storage was therefore roughly appropriate.

Unfortunately, this degree of accuracy severely constrains the size of pertur-

bation for which equilibrium solutions will reliably reflect that perturbation. We

expect this accuracy limit to mask the perturbation for quantities perturbed to

roughly 1 - 5 x 10' or less.

As perturbation size decreases in the perturbed equilibrium calculation, the

growth rate is observed to decrease, eventually converging to the linear value for suf-

ficiently small perturbation. The procedure for determining convergence of plasma

response is simply to reduce the perturbation sizes until succeeding passive growth

rates converge to within 5% or less of each other (see Sec. 4.7.1).

4.6 Passive Analysis

A set of three equilibria is examined now using the equilibrium perturbation ap-

proach just described. These cases consist of a range of elongations and degrees of

vertical instability which are of interest to the mission of Alcator C-MOD. Their

essential characteristics are shown in Table 4.1. In the table, "ma" refers to mag-

netic axis, "95" refers to values at the 95% flux surface, and "av" refers to the

average of upper and lower values. The minor radius "a" is defined here as the

midplane half width of the plasma. All 3 equilibria are 9 T toroidal field, and

lower single null diverted. These equilibria range in elongation from xS5 = 1.4

to rcss = 1.7, nep = 1.5 to nM, = 1.8. Various growth rates are shown in Ta-

ble 4.2. The first row of this table shows rigid model growth rates with vacuum

vessel alone for passive stabilization, as a standard for comparison. Rows 2, 3,

and 4 use the perturbational flux conserving approach. Rows 1 and 2 show the

growth rate for vacuum vessel stabilization alone, row 3 shows the growth rate for
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Quantity eq8 eq9 eqlO units

I, 1.30 3.01 3.01 MA
R. 67.8 67.5 67.9 cm
Z,. -2.00 0.00 2.00 cm
a 21.1 21.1 21.3 cm
Kg5  1.41 1.58 1.70
*,, 1.55 1.69 1.85

595o,,) .300 .271 .379
qo 1.05 1.01 .973
qg 4.16 2.08 2.53
l .313 .197 .101 

Table 4.1: Essential characteristics of the perturbed equilibrium example set. See
text for notation details.

Case eq8 eq9 eqlO
VV(Rigid) 277. 464. 745.
VV(pert) 372. 622. 1390.
VV+EFC 281. 512. 1170.
VV+EFC+0H2 170. 349. 1050.

Table 4.2: Dominant unstable mode growth rates for the perturbed equilibrium
example set of equilibria. Growth rates are given in sec-'.

vacuum vessel + EFCU/L(antiseries), and row 4 shows the rate for vacuum vessel

+ EFCU/L(antiseries) + OH2U/L(independent). For all of these cases the vacuum

vessel is present as a passive stabilizer at room temperature. In actual operation

the vacuum vessel will be at an average temperature of approximately 213 Kelvin

(-60* C) due to the cryogenic cooling of the machine with liquid nitrogen (LN).

The EF coils will experience an average temperature closer to the LN temperature

of 77 Kelvin, but this is likely to fluctuate rather widely over the shot-to-shot cycle.

The room temperature assumption for the conductor array is therefore a pessimistic

one.

Flux contours for the base equilibria are shown in Figs. 4.2, 4.3, and 4.4. Note

that they are all diverted plasmas with a single lower X-point (single null). The

initial construction of Alcator C-MOD will be equipped with divertor hardware on
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the bottom of the machine alone, and thus will run lower single null discharges when

diverted. The design will be upgraded at a later date to allow double null operation

as well.

From the passive data alone, we would expect to be able to control the two

lower elongation cases satisfactorily, since the growth rates for these cases are well

below a kilohertz. They should therefore be readily controllable with the EFC power

supply, which has a response time below 0.25 ms. The highest elongation/growth

rate case, denoted eqlO, reveals a minimum growth rate of about 1300 sec'. Active

analysis is necessary to establish the controllability of this equilibrium, and of course

to confirm the intuitive expectations regarding the controllability of eq8 and eq9 as

well. Such active modeling will be addressed in the succeeding chapters.

The modes corresponding to the unstable roots for eq8-eqlO are shown in

Figs. 4.5 through 4.10. These are the vacuum vessel + EFC modes, showing con-

ductor current distributions and vacuum flux due to the conductor currents. The

plasma contours shown represent toroidal current density contours, and are in-

cluded only to indicate the plasma equilibrium location and shape. The current

contours are labeled in units of Amperes/m 2 . In these figures, the "+" symbol

stands for positive current (in the same direction as the plasma toroidal current),

and "." represents negative current. The radius of circles drawn around conductor

elements represents the magnitude of the corresponding currents. Refer to Fig. 3.12

for locations of EF coils and vacuum vessel elements.

The general midplane antisymmetry of the current modes reflects the bulk

vertical motion of the plasma. This is clearly the dominant motion involved in

the modes. The flux patterns generated by the current distribution confirm this

intuition. Primarily horizontal flux lines correspond to a radial field, which acts

to resist the vertical plasma motion. Although for all of these cases the unstable

mode is essentially vertical and midplane symmetric (antisymmetric wall currents;

symmetric displacement vector), the force is not purely vertical across the plasma.
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There are regions where the force due to the modal conductor currents has a radial

component. These regions tend to be primarily localized near the plasma edge, an

area which it has been speculated may play an important role in experimental ax-

isymmetric instability. Notice also the pronounced midplane asymmetry (especially

in the cases of eq8 and eq1) which arises from the magnetic axis being displaced

slightly from the midplane in those equilibria (see Table 4.1). Asymmetry in the

base equilibrium results in asymmetry in the mode.
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Figure 4.1: Illustration of approximate edge flux conservation.
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Figure 4.2: Poloidal flux contours for base equilibrium eq8.
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Figure 4.3: Poloidal flax contours for base equilibrium eq9.
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Figure 4.4: Poloidal flux contours for base equilibrium eq1O.

117

L
.03- -

- -0

7

3612

7004aa



0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

-0.1

-0.2

0.4 0.5 0.6 0.7 0.8 0.9 1

R[m]

1.1 1.2 1.3 1.4 1.5 1.6

Figure 4.5: Unstable vertical mode conductor current distribution for equilibrium
eq8 with vacuum vessel + EFCU/L(antiseries) stabilization. See text for symbol
interpretation.
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Figure 4.6: Unstable vertical mode vacuum flux distribution for equilibrium eq8
with vacuum vessel + EFCU/L(antiseries) stabilization. See text for symbol inter-
pretation.
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Figure 4.7: Unstable vertical mode conductor current distribution for equilibrium
eq9 with vacuum vessel + EFCU/L(antiseries) stabilization. See text for symbol
interpretation.

120



0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.4 0.5 0.6 0.7 0.6 0.9 1

R [m]

1.1 1.2 1.3 1.4 1.5 1.6

Figure 4.8: Unstable vertical mode vacuum flux distribution for equilibrium eq9
with vacuum vessel + EFCU/L(antiseries) stabilization. See text for symbol inter-
pretation.
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Figure 4.9: Unstable vertical mode conductor current distribution for equilibrium
eq1O with vacuum vessel + EFCU/L(antiseries) stabilization. See text for symbol
interpretation.
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4.7 Testing of the Model

In this section we investigate the nature and reliability of the equilibrium perturba-

tion plasma response model. It must be shown that the model converges properly

and adequately describes vacuum vessel modes with the EF current mapping algo-

rithm. It is important to demonstrate the convergence of growth rate results with

decreasing perturbation amplitude in order to establish that the linear growth rate

region has been found. The fundamental number of degrees of freedom in the per-

turbation set and the accuracy of the vacuum vessel to EF coil current mapping is

also addressed. Finally, we benchmark the algorithm with a comparison between

the perturbation result and a TSC simulation of the axisymmetric instability for a

C-MOD equilibrium. We begin by examining the convergence of growth rates for

varying perturbations.

4.7.1 Passive Growth Rate Convergence Studies

As the size of the perturbation is reduced, the passive growth rate predicted by the

equilibrium perturbation algorithm tends to decrease as well. This is consistent with

the increasing decay index encountered by the plasma as it moves away from the

midplane, as shown in Figs. 4.11 and 4.12. For the purposes of the present study, we

consider two perturbations which differ by a factor of 2 to be converged if the growth

rates resulting from the two cases differ by no more than 5%. Table 4.3 shows the

last three steps of the convergence sequence for eq8-10. The current perturbation

shown ("aI,") is the fixed amount of current added to the base equilibrum EF coil

currents to produce the 11 perturbed current cases, and the vertical displacement

perturbation ("AZ.") is the amount by which the magnetic axis is moved vertically

for the 2 cases which assess the influence of the EFCU/L coils.

A current perturbation on the order of 1-2 kA and a vertical displacement of
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AI,_ AZ. -f % Diff
step 1 .02 .5 391. -

eq8 step 2 .01 .25 387. 1.0
step 3 .002 .05 372. 3.9
step 1 .01 .25 845. -

eq9 step 2 .005 .10 637. 25.
step 3 .002 .05 622. 2.4
step 1 .005 .10 2111. -

eq1O step 2 .002 .05 1338. 37.
step 3 .001 .02 1388. 3.7

Units MA cm sec- 1 %

Table 4.3: Convergence sequence for eq8-10. Last 3 steps in convergence process.
Step 3 represents the converged growth rate. "% Diff" is the difference from the
previous step.

about .02-.05 cm are typically sufficiently small to achieve convergence to the linear

growth rate region. These current and displacement perturbations correspond to

roughly the same average flux change at vacuum vessel elements, AO = 10-' Wb.
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Figure 4.10: Unstable vertical mode vacuum flux distribution for equilibrium eq1O
with vacuum vessel + EFCU/L(antiseries) stabilization. See text for symbol inter-
pretation.
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Figure 4.11: Decay index as a function of AZ = Z - Z,. along the line R = R,..
The decay index becomes increasingly destabilizing as IAZI increases.
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4.7.2 EF Coil to Vessel Current Mapping

As described previously, the effect of vacuum vessel currents on the plasma is es-

timated by approximating flux values on a contour, E, due to vessel currents, by

using currents in the EF coil set. Clearly this approximation cannot be very good for

high order vacuum vessel modes (i.e. with high frequency of variation with poloidal

angle). Indeed, since the vessel model used in this work contains 76 elements, and

there are 13 independent elements in the EF coil model, there exists a large null

space of 63 vessel modes whose influence on the plasma cannot be modeled at all

by EF currents.

However, the value of the approach depends on the space of vessel current

vectors which strongly affect the plasma being well approximated by EF current

vectors. If it can be demonstrated that the number of degrees of freedom in plasma

variation is significantly lower than the number of EF coils, this can be satisfied.

It is also important that the space of flux modes due to plasma current alone be of

low rank, so that plasma modes which affect the vessel are also well approximated

by less than 13 vectors. This does indeed turn out to be the case.

The actual degrees of freedom, the number of basis vectors needed to span

the significant subspace of a multivariate system, can be determined by finding

the SVD of the appropriate mapping matrices [25]. In particular, the coupling

between plasma degrees of freedom and the vessel is described by the equilibrium

perturbation set matrix %,,, (defined in Sec. 4.3). Performing the decomposition

on %P, we obtain

.= U.E T. (4.39)

For the coil and vessel configurations we have defined throughout, these matrices

have dimensions: %P,(76 x 15), U.(76 x 76), E,(76 x 15), and V,.,(15 x 15). The 15

non-zero singular values of 'I,, are plotted in Fig. 4.13 for case eq9. Notice that the

singular values are plotted on a logarithmic scale. The figure shows that the fifth
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singular value is down by a factor of about 10-' from the maximum, indicating that

4 or 5 flux modes should be quite sufficient to describe the influence of the plasma

on the vessel, and that the attendent plasma variation consists of far fewer than 13

degrees of freedom. It is therefore to be expected that the vessel to EF coil current

mapping will be sufficient to describe the plasma response for the significant modes

of the system.

We now turn our attention to the plasma surface mapping locus, E, defined

in Sec. 4.3. This is the locus of points at which the difference between fluxes due

to EF currents and fluxes due to vessel currents is minimized. The resulting locus

for the case of eq9 is plotted in Fig. 4.14. The dense contours surrounding the

current density contours represent the mapping locus, which in this case consists

of the NE=76 points which are closest in flux value to the edge flux (i.e. the flux

at the 95% surface). Although there are gaps in the set which are noticeable on

the scale of this contour plot, this set of mapping points surrounds the plasma very

effectively. A single large gap here subtends a poloidal angle of about 25 deg (.44

radian), but the largest gap below this subtends only a few degrees.

The proof of the mapping lies in the error between flux measurements at these

mapping points due to vessel currents and due to "equivalent" EF coil currents.

Figures 4.15 through 4.18 show various cases of the vessel current-derived flux values

plotted against the EF coil current-derived fluxes calculated using the mapping

matrix, D,, defined in Eq. 4.18. For each of these cases, the vessel mode vectors

have been normalized to unity. Figure 4.15 shows the result for the unstable mode

with the vessel alone acting as passive stabilizer. For this case the root difference

squared (RDS) between the two predicted flux vectors, is

RDS ik _(1) -= .051 Wb, (4.40)

while the mean value of the vessel current derived fluxes is .065 Wb, and the root

mean squared (RMS) deviation from this mean is 1.36 Wb. Here we use
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to refer to the flux value at element i of the mapping locus due to the vessel and

EF coil currents respectively. These statistical quantities provide a measure of the

quality of the mapping. For a good approximation of the vessel current derived

fluxes using the EF coil currents, the RDS should be a small fraction of the RMS

deviation. For the unstable mode, this ratio is about 4%.

For comparison, we show two pathological modes of relatively high order which

are not well modelled by this procedure. Figure 4.16 shows the result for a ran-

domly generated mode, with current values uniformly distributed between -1 and

1. The resulting mode, shown in Fig. 4.17, is normalized before mapping to the

approximately equivalent EF coil current set. For this case the RDS is .015 Wb,

the mean value of the vessel current derived fluxes is .092, and the RMS deviation

of the vessel derived fluxes is .270. Thus the RDS is only about 6% of the RMS

deviation. The overall effect of this mode, although of very high order in poloidal

angle variation, is therefore fairly well modeled by the EF current representation.

Figure 4.18 shows the result for a worst case vessel mode, shown in Fig. 4.19,

in which each element is the opposite of its adjacent elements. Thus the variation

in poloidal angle (more properly, in distance traveled along the vacuum vessel) is

close to the maximum possible for our vessel discretization model. In this case the

RDS is 4.36 x 10-3 Wb, the mean of the vessel current derived fluxes is .0186, and

the RMS deviation is .030. The RDS is only about 15% of the RMS deviation even

for this outlandish case.

We see, therefore, that the low order modes which dominate the behavior

of the plasma are quite well modeled by the mapping algorithm. The quality of

the mapping drops off with increasing current variation with poloidal angle, but

remains remarkably good even for the worst possible case. This is a reflection of

the distance from the conductors to the plasma. High order flux variation due to

higher order vessel modes decays more rapidly than lower order variation. Since we

measure the mapping effect at a plasma surface removed from the current locations,
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the quality of the mapping effect at this surface is actually better than one would

expect considering the rank deficiency of the EF coil set alone. This is a fortuitous

result similar to that observed in approximating a distributed plasma with a small

number of filaments (discussed in Chapter 3).
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Figure 4.12: Decay index as a function of AZ = Z - Z,, along the line R =

R,,. + 5cm. The decay index becomes increasingly destabilizing as JAZI increases.
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2 W-EF Current Mapping: eq9 Unstable Mode
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Figure 4.15: Vacuum vessel current derived fluxes at the mapping locus E vs. flux
due to "equivalent" EF coil currents for the passive unstable mode of equilibrium
eq9 (stabilized by vessel only).
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W-EF Current Mapping: Random W Mode
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Figure 4.16: Vacuum vessel current derived fluxes at the mapping locus E vs. flux
due to "equivalent" EF coil currents for a random distribution of vessel currents.
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Figure 4.17: A random distribution of vessel currents used as an example for as-
sessment of the accuracy of the mapping from vessel currents to "equivalent" EF
coil currents.
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W-EF Current Mapping: Worst Case
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Figure 4.18: Vacuum vessel current derived fluxes at the mapping locus E vs. flux
due to "equivalent" EF coil currents for a "worst case" distribution of vessel cur-
rents.
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4.7.3 Comparison with TSC

After a tokamak has been designed and constructed, the designers are in the envi-

able position of being able to benchmark their systems analyses against the actual

operating device. This allows control designers, for example, to determine such

things as the actual time constants of coils and vessels, and the true effectiveness

of their control law predictions. This in turn allows the control theories to be mod-

ified and improved. In this way, an actual machine is the ultimate arbiter of the

correctness of a stability approach.

Before the machine begins operation, however, there are essentially two avenues

of comparison available: other tokamaks already in operation, and other computer

simulations. Because of the highly machine-specific nature of the stability and

control analysis evolved in the present work, a very large additional effort would be

required in order to compare predictions for other tokamak geometries and equilibria

to available experimental data. However, the Tokamak Simulation Code, TSC [19],

provides an ideal computer simulation benchmarking tool for design comparison. As

already described, it possesses certain limitations for actual design, but admirably

fills the need to check the predictions of a simpler model such as the perturbational

equilibrium approach.

Fortunately, Alcator C-MOD has been extensively simulated with TSC in the

work of Ramos [21]. This work includes a study of axisymmetric stability and con-

trol for a plasma representative of a flattop point in the middle of a shot. It is

strictly incorrect to describe this point as an "equilibrium", since it was arrived

at in the TSC run by evolving the plasma through a time-dependent shot simula-

tion. The code run was then interrupted at some point mid-shot, and the resulting

plasma studied for axisymmetric stability. That said, however, we shall continue

to refer to this case as an equlibrium, since for the purposes of this comparison,

the results of Ramos' study treats the initial plasma in the same way that the per-
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Quantity Value units

I, 3.00 MA
Bo 9.0 T
R. 67.5 cm
Ro 66.5 cm
Zio 0.00 cm
a 21.0 cm
K95  1.6
K,,, 1.75
69s(,,) .30
5,., 1 .40

Table 4.4: Essential characteristics of TSC simulation benchmarking equilibrium to
be compared with eq9.

turbational approach treats the base equilibrium. Essential characteristics of this

initial "equilibrium" state are given in Table 4.4. Notice that all of the fundamen-

tal features are well matched by equilibrium eq9 (see Table 4.1). Case eq9 was in

fact chosen to match the available TSC benchmarking case, since this equilibrium

represents a standard Kg5 = 1.6 single null scenario for C-MOD operation. The

primary differences between the two cases are the triangularity, a difference which

is small enough not to have an important effect on the vertical instability in this

case [26], and the profile forms, a potentially large difference. Since TSC uses an

actual transport simulation to evolve plasma current and pressure profiles, it would

be the most fortuitous of events for the Strickler profiles of ASEQ and the TSC

profiles to resemble one another at all. In fact, the profiles of eq9 are qualitatively

rather peaked compared to those of the TSC case [271. But details regarding the

profiles would require a more involved examination of the TSC data, which was not

readily available from [21].

After the shot evolution is interrupted in the TSC simulation, there follows a

brief transient phase, during which vacuum vessel currents are allowed to decay and

provide the perturbation needed to initiate the growth of the unstable "vertical"

axisymmetric mode. With feedback disabled and EF coil currents maintained at
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their original equilibrium values, the plasma is allowed to evolve in accordance with

the growth of the instability.

The operation of TSC requires the specification of several non-physical, but

computationally required quantities which contribute to the interpretation of re-

sults. The two quantities which affect the growth rate results in the present work

are the artificial Alfvbn speed scaling factor, FFAC, and the artificial "viscosity",

v., a numerical damping introduced to provide for iterative computational sta-

bility.

Since TSC models both MHD and transport phenomena simultaneously, and

the characteristic timescales of these phenomena differ by a factor of about 108,

practical numerical solution of the fluid equations requires an artificial scaling of

one of these timescales. For a typical shot simulation, the fast MHD phenomena

do not significantly affect the plasma, so ions can be taken to have very large

mass, effectively lengthening the MHD timescale to be nearer to that of diffusive

transport phenomena. TSC therefore takes the ion mass to be FFAC2 mi, resulting

in an Alfvin speed of FFACvA. By running a shot with a large FFAC, fast MHD

physics is suppressed, with the compensation that the time-dependent problem

is computationally tractable. However, while these effects are unimportant in a

plasma being successfully maintained in equilibrium, they must be restored in order

to correctly simulate the axisymmetric instability. FFAC must be reduced to 1,

or at least enough points must be calculated with decreasing FFAC to establish a

convincing extrapolation to FFAC=1. In addition to FFAC, the numerical viscosity,

, must also be varied to establish its effect on results. The relative magnitude

of the influence of varied v,., decreases with decreasing FFAC.

In the work of Ramos, both FFAC and v,.,, were varied sufficiently to achieve

reasonable extrapolation to FFAC=1 and demonstrate the approximate uncertainty

introduced by the use of numerical viscosity. For the equilibrium described in Ta-

ble 4.4, comparable to eq9, a careful reanalysis of the data given in [21] yields an
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FFAC=1 extrapolated growth rate of -y = 940 ± 60 sec'. The error bars are es-

timated from the extrapolations for the two values of . used (an ad hoc value

vo, and 2vo). This is to be compared with the perturbed equilibrium growth rate

prediction of 622 ± 32 sec 1 , where a 5% error bar has been used to reflect the

convergence criterion for that procedure. While the respective error bars exclude

agreement between the two predictions, the perturbed equilibrium result is signifi-

cantly closer to the TSC result than is the rigid model (see Table 4.2). While the

perturbational result differs from the TSC result by 50%, the rigid growth rate is

more than 100% off. Considering the great difference in vacuum vessel models and

plasma profiles between the two cases, the agreement is relatively good.

4.8 Discussion

This chapter has developed and demonstrated the perturbational equilibrium ap-

proach to estimating an approximately flux conserving plasma response in the pres-

ence of conductors other than those used to perform the original perturbations.

Using this algorithm, the inductive coupling between the plasma and both EF coil

set and vacuum vessel elements can be modeled, and a plasma response to cur-

rents induced in these arrays can be approximated. The resulting plasma model,

although lacking some degrees of freedom present in a physical plasma, contains the

most important degrees of freedom controllable by the given coil set with which the

initial perturbations were performed. The number of modes of the plasma which

significantly couple to a conductor array such as the vessel model used here is actu-

ally quite small, on the order of 4 or 5. The 13-dimensional space spanned by the

EF coil current perturbations (and the vertical displacement perturbations) thus

provides more than enough information to allow the approximate modeling of the

plasma response under these conditions.

Comparison has been made with a full nonlinear simulation of the growth of the
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axisymmetric instability for a typical Alcator C-MOD equilibrium using the Toka-

mak Simulation Code. This comparison demonstrates that while the perturbational

approach does not exactly match the predictions of TSC, it comes significantly closer

to the TSC result than does the rigid plasma model. The perturbational method

differs from the TSC result by about 50% in passive growth rate, while the rigid

model prediction differs by more than 100%.

Passive growth rates for a set of typical C-MOD equilibria of varying elonga-

tions and degree of vertical stability were calculated using both the perturbational

and rigid models. While the rigid model indicates that the growth time for the most

unstable equilibrium (eq10, i,,, = 1.85) is significantly longer than the response

time of the C-MOD fast power supplies, the perturbational model finds the insta-

bility growth time comparable to the nominal 1 ms limit for marginal power supply

response. However, to properly assess the controllability of these cases, a full active

simulation is necessary. The fundamental active control predictions of the rigid

and perturbational equilibrium models must be compared, and the implications for

power supply sufficiency and equilibrium achievability determined. Of course, the

rigid vertical simulation cannot model radial or shape plasma perturbations, which

are implicitly included in the perturbational model. Only the latter approach allows

integrated analysis of the entire equilibrium and stability control problem.

In the next chapter we therefore turn our attention to the issues both of ba-

sic active control for the comparison of rigid and perturbational predictions, and

analysis of the integrated control problem using perturbed equilibria.
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Chapter 5

Stability Control Analysis

As a tokamak plasma is evolved through a typical discharge, it passes through sev-

eral broadly different kinds of equilibria. It may begin as a small, cold, circular

plasma carrying little current and lying at the bottom of the vacuum vessel, before

becoming more elongated and beginning to fill the machine's poloidal cross-section.

As the shot progresses, the PF coil currents follow their preprogrammed trajectories

to develop the plasma into the shape planned for the flattop portion of the current

evolution. During the current flattop, when in general the plasma is intended to

be held in some particular shape, it may still experience a variety of changes and

disturbances. For example, heating experiments may change temperature and cur-

rent profiles, pellet injection may strongly perturb the plasma density as well, and

internal plasma modes can cyclically alter the nature of the equilibrium. It is crucial

that the nominal evolution of the plasma be controlled to follow the preprogrammed

path of the shot, and highly desirable for the resulting control to be robust enough

to tolerate a certain degree of perturbation along the way.

With this chapter we begin the examination of the axisymmetric control prob-

lem. We shall examine the general features of the active control problem for equi-

librium and vertical stability maintainance. We shall also construct the state space
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formalism for this problem and describe the accomodation of power supply dynam-

ics using that formalism. This will provide the necessary preparation for the control

design description of the next chapter.

5.1 General Characteristics of Vertical Active

Control

The passive modes of a rigid model describing vertical motion consist of a set of

highly damped modes which do not significantly couple to plasma motion, and a

few modes which do include plasma response, one of which is unstable for elongated

equilibria. The modes which do not involve plasma motion are termed "quasicon-

stant roots" (QR) in this work, since as feedback gain is increased, these roots are

not strongly affected. Their eigenvalues do not change significantly compared to

those which do couple to plasma motion. Roots such as these latter, which do vary

significantly as gain is swept, are termed "feedback roots" (FR). We shall also use

this terminology in discussing other plasma models. The number and behavior of

FR's will differ depending on such factors as whether or not mass is included, the

order of power supply models used, and the relative coupling of the control coils

and the vacuum vessel to the plasma.

In the case of a massless plasma model, the FR's typically include the (domi-

nant) vertical instability mode and one or more passively stable modes which couple

to this one through the driven coil current. If a power supply model containing in-

ternal dynamics is used, the poles representing a demand on the power supply may

also couple to the vertical mode when the control loop is closed. Varying the closed

loop gain will then modify the eigenvalues of all of these modes.

When finite plasma mass is retained, a complex pole pair of highly damped

oscillatory modes is introduced in the passive system. These can be affected by
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sufficiently high gain or driving frequency, and so for these limits are also "feedback

roots". Under such circumstances, this pole pair can be driven unstable even as the

vertical mode is stabilized. However, since these modes depend on plasma inertia,

the power supply driving frequency required to destabilize them approaches the

Alfv~i frequency. Since this is well beyond any reasonable power supply capability,

this limit can be discounted. Later sections of this chapter will discuss appropriate

poles in a power supply model reflecting the frequency response limit.

Many of the general principles of active control can be found in simplified

second order models. We begin by investigating some of the limits to controllability

which are intrinsic to the tokamak stabilization problem. We employ a massless

plasma model with two stabilizing coils, one of which is considered to be actively

driven.

5.2 Simple Analytic Limits to Controllability

Consider a system consisting of two stabilizing resistive coils and a massless plasma

free to move rigidly in the Z-direction only. This system is represented schematically

in Fig. 5.1. The equation of motion from Chapter 3, Eq. 3.2, is then a force balance

equation:

0 = SII + S212 + SBZ. (5.1)

The corresponding circuit equations are

L 1 1 + M12 2 + riI + S 1 i = V (5.2)

L 212 + MI12  + r22 + S2i =0 (5.3)

where coil 1 is the active control coil, to which control voltage V, is applied, I, is the

current in coil 1, 12 is the current in coil 2, and z is the plasma vertical displacement.

S1, S2, and SB are defined as in Eqs. 3.3 and 3.4. The remaining terms are defined
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as in Eq. 3.1. S and S2 are measures of plasma-coil coupling and SB is a measure

of destabilizing force due to unfavorable decay index.

Laplace transforming the circuit equations and expressing the plasma displace-

ment, z, in terms of the voltage, 1, applied to coil 1, we obtain:

z(s) = A ± B+ C11 (s), (5.4)

where the exact forms of the non-zero quantities A, B, and C are not important for

the purposes of the present investigation. We shall extract physical insight without

addressing the details of these quantities. The variable a is the Laplace transform

frequency variable defined by a a + iw, where o- and w are the real and imaginary

components of the frequency.

We define the "transfer function", G(s), as:

Gs) =z(s) _ r~s + (5.5)
G () AS = , (+.C)

' V(.s) -As2+BS+C'

which describes the frequency domain response of the plasma displacement, z, to

input voltage, V1. This is referred to as the "passive" transfer function, since it

describes the plasma response in the absence of any "active" feedback. Inspection

reveals that there exists one driving frequency a for which the plasma displacement

is not affected, and two frequencies for which the plasma displacement becomes

infinite. That is, it contains one zero and two poles. As in the single coil case

studied in Chapter 3, one of these poles is unstable. We describe this as a "right

half-plane" pole, referring to the complex s-plane. The other pole is a stable, or

"left half-plane" pole [5]. We shall address the location of the zero presently.

We now express the passive transfer function in a more physically suggestive

form:
Go(r~a + 1)

G(s) G + )( + 1) (5.6)
(718 + 1)(728 - 1)

where r7i is the unstable pole. We can now create a feedback law causing a volt-

age to be applied to coil 1 which is proportional to a sum containing the vertical
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displacement, z, and the vertical velocity, i. The voltage is then described by a

differential equation:
dz (t)

V,(t) = -Ko(r. dz- ) + z(t)), (5.7)

where KO is the feedback gain and T- is the derivative feedback time constant.

Laplace transforming this equation we obtain

V1(s) = -Ko(r.s + 1)z(s). (5.8)

This form of feedback is known as proportional-derivative (PD) feedback. The

system now appears as in Fig. 5.2, in which H(s) = Ko(r.a + 1). Applying this

feedback law as illustrated in the figure, the displacement is related to the driving

voltage through
z(s) G(s)

V,(j) 1 + G()H(s)(

The poles of this equation are the solutions of the equation:

G(s)H(s) = a(T~s +1)(r.s +1) - , (5.10)
(ri' + 1)(-r2 - 1)

where a _ GOKO.

The corresponding root-locus equation whose solution gives the location of

system poles as the gain, a, varies is

(a.r. + rr 2).2 + ([-. + r.] - 1 + r2)+(a- 1) = 0 (5.11)

For typical values of the various time constants, the solutions for s will have no

positive real part if a is made sufficiently large, even if r. = 0. The system will thus

be stabilizable without derivative feedback. The necessary condition for stability is

a > 1 and a[r. + r.] > 71 - -2, assuming that the system zero, -1/-r, is a left-half

plane zero (i.e. r. > 0). However, this is not necessarily the case. Expansion of the

full solution shows that the intrinsic system zero is given by

1 r
- - = - (5.12)

7Z L2 - S M
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Now, since 1 = I, ", we have

S2 M;, R2Ba (-3
S1 Mf, RlBal

where "'" has been used to indicate the derivative with respect to z, and Bai is the

radial B-field at coil i due to the plasma. Clearly this can be arbitrarily large as the

BR-coupling between coil 1 (the control coil) and the plasma is reduced. An extreme

example is placement of coil 1 near the same z-location as the plasma filament,

where BR is equal to or nearly zero. In particular, if the coupling between the

passive stabilizing structure (represented here by coil 2) and the plasma sufficiently

exceeds that between the control coil and the plasma, a right-half plane system

zero will result. For the case of r < 0, defining t. = ,r1, we find for the new

characteristic equation

(-at-.r. + ri r 2 )8 2 + (a[r. - t.] - r1 + r2)s + (a - 1) = 0 (5.14)

Then, for T1 > -2, true for a system which is not extremely well passively

stabilized, this system cannot now be stabilized without derivative feedback (i.e.

if r. = 0). Since vacuum vessels are in general better coupled to the plasma than

control coils are, there is usually a maximum elongation which a given machine can

stabilize without derivative feedback. This phenomenon is seen in Alcator C-MOD,

and has also been demonstrated with a more involved second order model for the

case of D-IIID [13].

5.3 Rigid Model with Displacement Feedback

The simplest form of control for the vertical instability is perfect displacement

feedback. In this case, the actual vertical displacement of the plasma, z, is assumed

to be directly available to the feedback loop. This is especially appropriate for the

rigid model, in which the vertical displacement provides an exact description of the
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unstable mode. Voltage signals which are functions of time integrals and derivatives

of z can then be applied to the control coils. In this section we shall use a simple

single zero, single pole control law:

dV dz
Vi + tb !E = -Cti(z + t. )z (5.15)

describing the voltage Vi applied to coil i as a function of displacement z and velocity

i. This yields a transfer function of the form:

(a) _ -ag(1 + t.9)
Z(a) (1+ tbl)

This form is especially useful in analyzing the constraints of a realistic pulsed power

supply. Such supplies possess an inherent time delay in their response to a control

signal. For a finite time period following the application of a demand signal, the

power supply output will be completely unchanged. After the delay time interval

has passed, the power supply begins to respond to the demand signal. If this

response delay time is too long relative to the growth time of the phenomenon

being controlled, the power supply will not be able to stabilize that mode.

The control law form above allows us to model this intrinsic delay with a single

pole, tb, and then to determine the maximum possible tb for which the system can

be stabilized. The physical nature of this model is illustrated in Fig. 5.3. The

figure shows the actual step demand input to the power supply, the exponential rise

associated with the single pole model, and the time delayed response of a realistic

power supply. The single pole is necessarily an optimistic model, since it exhibits

a finite response for an arbitrarily small time interval following excitation, whereas

a true delay has no response until after the delay time. A single pole represents a

linear phase lag, rather than the highly nonlinear pure delay. Nevertheless, a mere

phase lag is sufficient to exhibit the phenomenon of uncontrollability if the "delay

time", tb, is too great.

In general, elongated C-MOD equilibria have been found to require derivative

feedback in order to be stabilized at all, even with zero delay. This is the same
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Equilibrium Min. t. Max. t4 Max. tb Units

N(t = 0;Mf) (t. = 50;mf) (t. = 50;sf) msec
eq6 0.1 < t, < 0.5 3.0 5.0 msec
eq7 0.1 < t, < 0.5 1.0 3.0 msec

Table 5.1: Maximum tolerable "delay time", tb, for equilibria eq6 and eq7.

phenomenon as that illustrated in the discussion of analytical models above, and

has been noted by other authors [13]. Figure 5.4 for example, shows the result

of sweeping gain in eq6 of the original design set (see Chapter 3) using direct

displacement feedback with no derivative term. The unstable root has a growth rate

of 388 sec' at zero gain, but becomes more and more stable as gain is increased.

In the absence of derivative feedback, however, this root never becomes stable.

Figure 5.5 shows the result of adding derivative feedback. For this case the modes

are stabilized.

As one would expect, addition of a single pole modeling power supply delay

makes the system more difficult to stabilize, and in fact a given equilibrium will ex-

hibit a maximum tolerable delay for which stability can be achieved at all. Stability

boundary results showing maximum tolerable delays and necessary zero values for

eq6 and eq7 are shown in Table 5.1. In the table, "Min. t." refers to the minimum

required lead (derivative feedback) time constant for zero delay, "Max. tb" refers to

the maximum tolerable delay time constant, and "mf","sf" refer to multifilament

and single filament plasma models respectively. The optimal lead time constant,

t., allowing achievement of the maximum delay, is shown in the second row of the

table. Using this crude delay model, the maximum tolerable delay time for the

maximum elongation equilibrium (eq7; passive growth rate = 945) is found to be

approximately t" ' 1 msec using a lead value of 50 msec.

The actual fast power supply will have a response time on the order of 0.2

msec, providing a significant safety margin for this result. It is of interest to note

that a previous EFC location yielded a passive growth rate for this equilibrium of
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980 sec- 1 and maximum tolerable delay of approximately t'"" ~ 0.4 msec with the

same lead value. Thus the passive growth rate was affected relatively little by this

design change, but the acceptable delay was roughly doubled.

The table also includes tolerable delay predictions resulting from a single fila-

ment plasma model located at the current centroid. From these two comparisons,

it is clear that a single filament model can differ significantly from a multifilament

model in its maximum tolerable delay time prediction. For the case of the highly

unstable eq7, this difference amounts to a factor of three in tolerable delay time

prediction. This could represent the difference between accepting a 12-phase power

supply as adequate for vertical stability control or not. As suggested in Chapter 3,

active as well as passive results are unreliable when only a single filament is used

to represent the plasma.
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Figure 5.2: Block diagram of closed loop feedback system.
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5.4 State Space Formalism

Multivariable dynamic systems do not lend themselves readily to description and

analysis in terms of single-input single-output Laplace transform transfer function.

It is more appropriate to exploit the vector nature of the multivariable dynamics,

and employ linear algebra methods to represent the system using the "state space"

formalism. This approach, pioneered by the Soviet Union during the 1960's, has

become the standard method for analyzing multivariable control systems, and de-

fines the so-called "modern" era of control. This formalism has proven extremely

powerful, and has given rise to entire subfields of study in multivariable control

theory, including the areas of linear quadratic optimal control and observer design

[28,291. In this section we shall describe the state space equations, and show how

the tokamak axisymmetric control problem is cast into that form.

5.4.1 State Space Equations and Terminology

In general, multivariable linear dynamic system equations of arbitrary order can be

written in the form of two first order linear differential matrix equations. The first

of these equations is known as the "state equation":

i = Ax + Bu. (5.17)

This describes the time evolution of the state vector, Z, as a function of the present

state and control inputs, m. The second equation, known as the "output equation":

= C + Du, (5.18)

gives the sensor signals, y, as a function of the state and control variables. It is

most often the case that the control-to-sensor matrix, D, is zero, and this matrix is

usually neglected in derivations [29].
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By convention we refer to the "system matrix", A, the "control", or "input

matrix", B, and the "sensor", or "output matrix", C.

Feedback in a state space system is described by

M = f G, Y), (5.19)

where f() represents a differential matrix function of the state and output variables.

The control vector can thus be a function of the state and output vectors and

their higher order derivatives. "Full state feedback" refers to the case where u is a

function of _ alone, and "output feedback" refers to the case where u is a function

of y alone.

From the structure of the state equation, it is apparent that the passive eigen-

values and eigenvectors are the eigenvalues and eigenvectors of the state matrix,

A. Denoting the eigenvalues by >, and the eigenvectors by X4, we can construct

the usual (right) eigenvector matrix, V, whose columns consist of the v vectors,

and the diagonal eigenvalue matrix, A, whose diagonal entries are the eigenvalues.

Hence the usual (left) eigenmode equation:

AV = VA. (5.20)

The left eigenvector matrix, W, is similarly defined by

WA = AW, (5.21)

whose ith row we denote by w;. It is also common to denote the it column of the

control matrix by kj.

Using the above notation, the general time response of the state vector for a

given initial state vector x(0) 4 , and a given control vector as a function of time,

u(t), is described by [28]:

NX NXNJU
ja(t)= (w )uje'' + ( )J eA-()uk(r)dr. (5.22)

1 i=1 k=1 0
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The inner product, (w&Tb), is a measure of the controllability of mode i using control

k. If any of these pairs of vectors are orthogonal, this quantity will be zero, and the

corresponding mode will be uncontrollable with that control. This controllability

measure can be used to compare competing control coil configurations to aid in the

optimization of EF coil placement during the early design of a tokamak.

The output time response is simply the state time response operated on by

the sensor matrix, C. We denote the I' row vector of C by J. Because of the ap-

pearance of the right eigenvector, yi, in the state vector time response, the quantity

(cTv.) is a measure of the observability of mode i using sensor 1. As in the case

of controllability, if any of these pairs of vectors are orthogonal, this quantity will

be zero, and the corresponding mode will be unobservable using that sensor. In

the same way as described above for controllability, this observability measure can

be used to compare competing sensor configurations to aid in the optimization of

sensor design.

The state space approach has been used to evolve a large array of techniques

for control system analysis and design. We shall use some of these methods and

extensions of them in the design of the C-MOD control system, described in the

next chapter.

5.4.2 Tokamak Axisymmetric Control Problem

The discretized conductor model we have described to analyze plasma response

in the presence of resistive walls and EF coils lends itself readily to a state space

formulation. The perturbed equilibrium plasma model itself reveals several degrees

of freedom, and thus also requires a multivariable representation of some form in

order to correctly describe the dynamics of the system. Since the plasma response

has been mapped to conductor currents, and the number of degrees of freedom

available in the conductor array far exceeds those of the plasma alone, the natural
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state variables for the system are either conductor element currents or fluxes at

those conductors. The state space can be formulated in either way. We choose

currents to be the state variables somewhat arbitrarily, although with the belief

that currents allow a more intuitive grasp of a mode. A current mode also possesses

the virtue of allowing easy separation of flux due to currents and flux due to plasma

alone.

The axisymmetric control problem is straightforward to cast into state space

form. The circuit equation including flux conserving plasma response, expressed in

terms of the stabilizing conductor current vector, is given by (see Eq. 4.37)

ML + D.,Z + R, 1 = Y, (5.23)

where the matrix D,. contains the complete plasma response.

Only certain EF coil circuits are actively driven, leaving the vessel elements

and undriven EF circuits with zero applied voltage. The applied voltage vector V,,

can therefore be expressed as

V, Biy (5.24)

where the new control vector, v, contains entries for only the actual driven coils,

and B1 contains ones in the appropriate entries to influence only the driven coils,

and zeros elsewhere. B1 is thus in general a rectangular matrix.

Manipulating the circuit equation, we obtain

L, = -(M., + D..)~'R.L + (M.. + D,.)~1 Bim (5.25)

which has the desired form,

i= Ax + Bu. (5.26)

The following identifications result:

A = -(M,, + Da.)~ 1 R, (5.27)

B = (M., + D.)~'B 1 (5.28)
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and of course the state vector, x, is identified with I., and the input vector, U, is

identified with the driven coil applied voltage vector, v.

The sensor signals available to the control system include poloidal fluxes at flux

loops, poloidal field values at B, coils, and possibly EF coil currents from Rogowski

coils. Clearly this system represents one of the cases in which the output vector

does not depend on the controls. Thus the D matrix is zero. The sensor matrix

is simply constructed from the appropriate Green's functions and plasma response

matrices, using the perturbed equilibrium data and vessel-coil mapping matrix as

demonstrated in Chapter 4. All of the sensor data available expressed in an output

vector yields

Y = B, (5.29)

1EF

5.5 Modeling Power Supply Dynamics

The state space formalism makes it particularly easy to extend the number of dy-

namic variables in order to accomodate subsystems not included in the original state

equation. This provides a way of incorporating the power supply dynamics without

recalculating the basic state matrices. Consider a set of power supplies, each of

which receives one input demand signal, and drives one EF circuit with an actual

output voltage signal. The internal dynamics of the i' power supply is assumed

to be reasonably well approximated by a single-input-single-output (SISO) transfer

function of order ni (that is, with fN poles). By inverse Laplace transforming these

transfer functions, the differential equations describing the power supply models can

be recovered, and a state space representation can be constructed. Let this space

be described by the state equation

' = A'' + B', (5.30)
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and output equation

= C'm'. (5.31)

The output vector, m, for this space is the actual driving voltage for the active EF

circuits, and the input vector, M, is the set of demand voltages fed to the power

supplies. This will become the input vector for the combined state space including

the conductors, plasma, and power supply models (hence the unprimed u).

For reference purposes, let a subscript "1" denote the state space matrices

before the power supply dynamics addition. Thus we take

:i= AIX, + Biy1  (5.32)

and

y= C111 + DIvj. (5.33)

to describe the state space of Eqs. 5.25 through 5.29.

Construction of the new, combined state space is relatively straightforward.

The combined state vector is defined by

(5.34)

while the output vector is unchanged: y = yi. As mentioned above, the new

input vector, M, represents demand signals applied to the power supply. The new,

combined state matrix is defined by

A, BIC'
A A B (5.35)

the new, combined control matrix is defined by

B BID , (5.36)
B'
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and the new output matrix is given by

C = [ C, 0 1 . (5.37)

If the dimension of the power supply state space is NPS, so that A' is [NPS x

NPS], and the lengths of the original state space vectors are NX, NY, and NU, then

the dimensions of the new, combined state space vectors are: x(NX+NPS), y(NY),

and u(NU).

5.6 Discussion

This chapter has addressed the general analysis and formulation of the equilibrium

and stability control problem. General characteristics and limitations to this control

were discussed and results of simple rigid model control with direct displacement

feedback were presented.

The application of proportional-derivative feedback to vertical stability was

discussed in the context of a rigid plasma model. Stabilization of Alcator C-MOD

equilibria was shown to require derivative feedback control in addition to propor-

tional gain feedback. This requirement is common to all systems in which the

plasma is better coupled to the vacuum vessel than to the driven conductors.

A single-pole transfer function was used to simulate power supply delay in order

to investigate the maximum tolerable delay and corresponding derivative feedback

necessary for stabilization. For the highest elongation example equilibrium in the

Original Design Set (eq7; i,,, = 2.0), having a passive rigid vertical growth time

of about 1.0 msec, the maximum tolerable power supply delay time was found to

be about the same as the growth time, 1.0 msec. Similarly, the growth time for

eq6 of the Original Design Set (n.., = 1.8) was roughly the same as the maximum

tolerable delay time for this case, about 3 msec. To achieve stability with these

delays, a derivative feedback time constant of about 50 msec was required. This is
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in contrast to a derivative feedback time constant of only about 0.3 msec required

for stabilization in the absence of any power supply delay model.

It was also noted that the maximum tolerable delay time constant for a single

filament plasma model was found to be 2 to 3 times as long as for the corresponding

equilibrium multifilament plasma model. This reinforces our previous argument that

single filament models can lead to significantly different results than more accurate

multifilament models. Moreover, we have seen that such single filament calculations

tend to be optimistic from the point of view of the control design, and thus could

result in less safety margin, or even a lack of adequate stability.

Recognizing the intrinsic multivariable 'nature of the axisymmetric control

problem, the state space representation was introduced and the tokamak plasma-

conductor system was cast into this form. This formalism naturally accomodates

both multivariable internal dynamics, and systems with multivariable input and

output arrays. Since the vacuum vessel model consists of a discretized array of

conducting loops, the internal state of the system is inherently multivariable. The

sensor array, consisting of up to 89 measured quantities, and the driven coil set, in

principle a total of 10 independently controlled circuits, together comprise a multi-

variable input-output system of very large size. Single variable techniques cannot

reasonably be used to analyze a system with such large dimensionality. Further-

more, even 2 or 3 degrees of freedom in sensor and control arrays is more efficiently

analyzed using multivariable methods.

Following the state space approach, equations describing the internal dynamics

of the set of power supplies can be combined with the plasma-conductor circuit

equations. The algorithm for combining these two systems was described and the

resulting synthesis was constructed.

Casting the system into state space form allows many well-developed tech-

niques -to be brought to bear on the problem. In addition, methods developed in
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the mature field of multivariate control can be extended to provide solutions ap-

propriate to the unique needs of the C-MOD control system. This, along with the

incorporation of power supply models directly into the state space representation,

sets the stage for the design analysis of the next chapter.
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Chapter 6

Design of Tokamak Equilibrium

Control Systems

Once a satisfactory plant model has been derived for a system which must be

controlled, several algorithms are available for feedback design. If few degrees of

freedom exist in control elements and feedback parameters, an exhaustive approach

is frequently both tractable and sufficient to find a satisfactory control law. This

was the approach taken in Chapter 5, made possible because only a single feedback

variable was used.

When a system exceeds one or two control inputs and sensor outputs, the

dimension of the resulting search space makes such an approach completely in-

tractable. Under these circumstances, when the input-output characteristics of a

system are inherently multivariable, state space methods provide extremely pow-

erful tools for control design. The natural way in which the state space formalism

accomodates not only multivariable input-output systems, but also systems with

high order internal dynamics, makes this approach virtually universal in modern

control theory [28].

However, multivariable analysis provides many ways of discovering a nominally
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acceptable control law. Much of the research of the last 20 years has been directed

toward evolving and understanding linear quadratic regulator (LQR) methods, or

"optimal" control theory. In its broadest sense, this approach involves the specifica-

tion of some cost functional which is desirable to minimize in a control design. Such

quantities as power, monetary cost, or material stress all lend themselves readily to

expression in terms of a quadratic relation among state, control, and sensor vari-

ables. Solution of the nonlinear Ricatti equation then typically yields the desired

cost minimizing control law (28].

Unfortunately, it is very difficult (or impossible) to build system performance

itself into such a formulation. So, while the LQR solution is guaranteed to be stable,

it is by no means guaranteed to be robust. An approach which provides somewhat

more intuitive access to the performance tradeoffs involved in the nominal design is

to move the poles of the system explicitly to more reasonable locations than they

are passively found in. Pole placement algorithms which accomplish this have long

been studied in the state space formalism. Extensions of these methods comprise

the first step in the integrated design process for Alcator C-MOD.

6.1 Pole Placement

In a sense, the ability to control the locations of the poles of a system provides all

the power a control designer could ever want. In principle, this is all that is of im-

portance in modifying a system with passively undesirable dynamic characteristics.

However, there are practical limits to the usefulness of pole placement, since some-

what sophisticated intuition can be necessary to determine what new locations will

yield satisfactory system performance. In certain simple cases, such improved pole

placements are clear, but a multivariable system poses intrinsically more difficult

dynamics to challenge single variable intuition.
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The tokamak control problem we have formulated is fortuitous in this respect,

however, because even though the number of multivariate modes in the system is

quite large, only a few of these modes are important. Indeed, only a few of these

modes are significantly affected by EF coils at all. These are the modes which

couple to plasma variation, and which we have termed the "feedback roots" (FR)

previously. Furthermore, only one mode among these is unstable to begin with.

This is the only pole which must be moved from its passive location to create

a satisfactorily stable active system, although performance may be improved by

moving certain passively stable poles as well. By identifying the nature of the

dominant modes with the corresponding plasma motion, the designer can choose

which of these to place along with the unstable root.

6.1.1 Full State Feedback

In order to locate all desired poles reliably at new locations, access to the entire

system state is needed. If the vector of state variables is directly available to the

feedback system and all of the passive modes of the system are controllable by the

specified control-sensor set, then all roots can be placed as desired, within certain

basic constraints. For example, complex roots must appear as pole pairs, and in

general eigenmode vectors cannot be arbitrarily specified. This form of control is

known as "full state feedback" (FSFB) [29].

For many kinds of systems, FSFB is a natural possibility. That is, for such

systems the entire state is available, and all passive modes are controllable by design

or fortune. Robot manipulators, for example, lend themselves to such control, since

by design their positions, orientations, and velocities can be precisely monitored

and controlled, and these variables constitute the actual state of the manipulator.

If such a manipulator is forced to control another dynamic system with further

internal degrees of freedom and dynamics, the additional state variables may not
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be directly accessible or controllable. In this case FSFB is impossible, and other

strategies must be used.

This latter example is an analog of the tokamak situation. As described in

Chapter 5, the state variables for the plasma-conductor system consist of currents

induced in the conductor array. Since vacuum vessel currents in particular are not

directly measured in tokamaks, that frequently dominant portion of the state is not

available. It should be noted that for cases such as that studied by Albanese et al

[17], the induced EF coil currents are taken to be both dominant and sufficient to

stabilize the vertical mode on an ideal timescale.

Full state feedback is appropriate for this system, but for most tokamaks vessel

current information is unavailable for feedback. In fact, the Alcator C-MOD vessel

contributes overwhelmingly to stability, making this form of FSFB impossible even

in principle. Even in such cases, however, a full state analysis can provide the start-

ing point for a feedback strategy using an "observer" state estimator. If an observer

provides a sufficiently accurate estimate of the system state from sensor data alone,

this estimate can be used with the full state result to produce an acceptable nom-

inal control law. Performance analysis of the nominal result may then dictate the

necessity of further refinement. In preparation for choosing the observer approach

for the design of the C-MOD control system, we proceed to construct the FSFB

algorithm used here.

6.1.2 Full State Algorithm

The point of departure for the full state feedback approach is to make certain

assumptions regarding the nature of control signals. Given the state equation

(Eq. 5.17), reproduced here for convenience

i = Ax + Bu (6.1)
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we assume controls of the form

u = -Kx. (6.2)

This results in the closed loop equation

i = Adz (6.3)

where Ad = A - BK. Denoting the closed loop eigenvectors and control vectors

by

zi = pie" uj = qje- t  (6.4)

so that A; are the closed loop eigenvalues, and

Adp = Aipi. (6.5)

Equations 6.2 and 6.4 result in

9j = -Kp; (6.6)

and

pi = Api + Bqj. (6.7)

Note that A here is the open loop state matrix. Expressing Eq. 6.6 as the matrix

equation

QK = -KPK (6.8)

where the columns of the PK and QK matrices consist of the pi and q, vectors

respectively, we find

K = -QKPK. (6.9)

Thus, as long as we ensure that the closed loop eigenvectors and control vectors

satisfy

Pi = (yjI - A)-1 Bq;, (6.10)

170



then Eq. 6.9 represents the desired solution to place the closed loop poles at the 11

locations. To perform a FSFB pole placement then, one chooses the desired closed

loop poles, pA, and control vectors, i, such that Eq. 6.10 is satisfied. This determines

the closed loop eigenvectors, pi. Since the eigenvectors can in general be complex,

this process must in principle be conducted using full complex vectors and matrices.

However, the resulting state feedback matrix, K, must be real. Fortunately, because

the plasma-conductor system has no inertia, it will exhibit only pure real passive

poles. The pole placement is therefore accomplished by simply taking the real part

of the complex K resulting from Eq. 6.9.

It is worth emphasizing that the closed loop eigenvectors resulting from the full

state pole placement algorithm are not chosen freely. They are determined by the

choice of control vectors and must satisfy Eq. 6.10. For systems which are not fully

controllable, the uncontrollable modes will be unaffected by feedback. Poles which

we have previously identified as "quasiconstant roots" will be minimally affected.

Thus, in performing a pole placement, only the unstable mode and a small num-

ber of feedback-influenced stable modes need be addressed. For the axisymmetric

tokamak control problem using a discretized conductor array, almost all of the high

order poles in the system are stable and quasiconstant with feedback. It is therefore

in general natural to leave these unaffected by the pole placement algorithm. How-

ever, modes frequently exist which are quasiconstant and yet are closely coupled to

currents driven in control coils. Such modes can be excited by the control system

and may limit plasma response speed. It is therefore often desirable to relocate

such modes to a higher decay rate in order to achieve an acceptably fast plasma

response. This can be accomplished by providing the control system access to in-

formation regarding the coil currents which are the dominant components of such

modes. Such a case is described in succeeding sections, in which examples of the

full state approach and the use of explicit state predictors are described.
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6.1.3 Output Feedback

As we have noted, in the case of a tokamak equilibrium control system in which

vacuum vessel currents play an important role, the full state is not directly acces-

sible. The sensor signals must therefore be used to estimate the system state of

interest. Chapter 5 illustrated the use of estimating plasma vertical position using

flux loops in a relatively direct way. That approach assumed that the difference

between the signals from two flux loops equidistant from the midplane was close to

proportional to the vertical displacement of the plasma. In order for this signal to

allow control of an instability, it must reflect the magnitude of the unstable mode

sufficiently accurately. It was shown that in some cases that simple form of modal

estimation was insufficient to allow control of the vertical mode. Furthermore, the

use of only a single flux loop pair is extremely vulnerable to loss of or error in one

or both of the signals. There is no significant measure of redundancy in the sensor

system.

By comparison, use of a large array of flux loops (and B, coils) provides a large

measure of redundancy, and thus robustness to partial signal loss. The penalty for

this approach is the necessity of solving a problem with many more degrees of

freedom. Full state feedback provides a method for dealing with the large number

of unknowns, but requires the use of a sufficiently accurate estimator for the state

of the system, which in this formalism now includes all of the conductor currents.

In the following sections we describe the construction of such observers for arbitrary

sensor signal vectors. Because the C-MOD control system architecture (discussed

in Sec. 6.3 below) includes a proportional-integral-derivative (PID) gain module,

the observers derived here will make use of proportional and derivative forms of

sensor signals. An integral term is only needed to eliminate bias or long timescale

drift in the control loop [30].
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6.1.4 Output Observers

For the purposes of the present work, we define an output observer as a linear

function, f(y, y, f y), such that

Sa yyy) (6.11)

is a state vector estimate for a given time-varying sensor signal, and the quantity (-

x)2 is sufficiently minimized for modes of interest. Observer designs usually require

solution of the nonlinear Ricatti equation, or the calculation of the observability

matrix requiring NX - 80 multiplications of the output matrix, C [28] (recall from

the state space description of Chapter 5 that the output matrix, C, operates on the

state vector, z, to give the output (sensor measurement) vector, y). To avoid the

time-consuming difficulty of such calculations, we propose an alternative observer

form requiring relatively few calculations which are, moreover, only linear.

We propose to seek an observer which depends only on the output vector and

its derivative (PD output observer):

=i + bi. (6.12)

Using this equation along with the state equation, Eq. 6.1, and formally setting

(6.13)

results in

BCB&=Q (6.14)

and

AC = I - BCA. (6.15)

In order to exactly satisfy Eq. 6.14, we let the rows of B consist of weighted

sums of left null vectors of CB. Because some computational implementations of
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the SVD will not decompose CB in the likely event that B is a column vector, we

choose to calculate the SVD of (CB)T:

(CB)T = UEVT. (6.16)

The columns of the row-space matrix V which correspond to zero (or negligible)

singular values define V,.jLL, the left nullspace of CB. Therefore defining

§ =_ VTll, (6.17)

where W is a weighting matrix, Eq. 6.14 is automatically satisfied.

Eq. 6.15 then becomes

I = C + *VTa CA =_A C + WF, (6.18)

and hence

(6.19)
F

which determines A and E. If NN is the rank of the nulispace matrix, VTj, NX is

the usual state vector length, and NY the output vector length, then the solution

required is the left inverse of an ([NY + NN] x NX) matrix. For the geometry

used in the present work, this can be a well-posed problem if both flux loops and

B, coils are used in the sensor array. In this case NY+NN can be greater than

NX (since NY=46, NN ~ 46, and 76 < NX < 98). The estimator is then very

accurate in predicting current elements from sensor signals. However, when only

flux loop measurements are included in the sensor array, the problem is in general

no longer well-posed. The resulting estimator still does quite well for important

control modes such as the dominant vertical and radial motions, but higher order

modes fall off in accuracy rapidly.

A comparison of typical estimation for the dominant vertical and radial modes

using flux loops alone and flux loops and B, coils is shown in Figs. 6.1 through
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6.4. Fig. 6.1 plots the current elements of the predicted mode vs. the actual modal

currents for flux loops alone estimating the vertical unstable mode. This is to be

compared with Fig. 6.2, illustrating the same prediction for a sensor array consisting

of flux loops and B, coils. Although the flux loop array alone performs satisfactorily,

combining flux loop data with signals from the B, coils results in effectively perfect

prediction. Figs. 6.3 and 6.4 show the same comparison for the stable radial plasma

mode.

The figures show results for the case of eq9 (n = 1.6) passively stabilized by

EFCU/L (antiseries) along with the vacuum vessel. As the number of stabilizing

EF coils in the model is increased, the quality of the estimator can be expected

to degrade when the sensor array becomes "rank deficient". However, the flux

loops alone represent a worst case of rank deficiency, and still provide satisfactory

state estimation for the most important modes. In addition, explicit inclusion of

Rogowski coil EF current information can restore rank sufficiency, if necessary.

These results are another reflection of the intrinsic low order of the tokamak

control problem due to the small number of important plasma degrees of freedom.

For the purpose of control it is clear that a very small sensor space is sufficient

to allow observation of the important control modes. Indeed, most experiments

employ single differential flux loop or coil pairs for each control degree of freedom

[9,13].

Finally, we note also that a purely proportional observer, defined by

i = Ay, (6.20)

results from taking the limit of the PD observer case with B = 0. This yields

&C = I => A = C- 1, (6.21)

which is ill-posed due to the dimensions of C, and yet can provide fairly reasonable

results for very low order poles, for the same reason as described above in the PD

case.
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FL PD Output Observer Test: eq9 Unstable Mode
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Figure 6.1: Vertical unstable mode current elements for eq9 plotted against modal

current elements estimated using flux loop signals alone.
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FL+Bp PD Output Observer Test: eq9 Unstable Mode
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Figure 6.2: Vertical unstable mode current elements for eq9 plotted against modal
current elements estimated using flux loop and B, signals.
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FL PD Output Observer Test: eq9 Radial Mode
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Figure 6.3: Stable radial mode current elements for eq9 plotted against modal
current elements estimated using flux loop signals alone.
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Eigenvalue Passive FSFB PDOO
1 512. -20. -20.
2 -20. -74. -74.
3 -74. -193. -193.
4 -193. -198. -211.
5 -211. -211. -307.
6 -307. -307. -341.
7 -341. -341. -429.
8 -429. -429. -453.
9 -453. -453. -497.
10 -497. -497. -545.
11 -554. -554. -566.
12 -639. -639. -639.

Table 6.1: Comparison of dominant eigenvalues for passive system, FSFB, and PD
Output Observer FB (eq9). Boldface indicates "vertical" mode.

6.2 Applications of Pole Placement

We now apply the full state and PD output observer formalisms developed in the

preceding sections to C-MOD equilibria. The second column of Table 6.1 shows the

dominant eigenvalues for the case of equilibrium eq9 (K = 1.6) passively stabilized

by EFCU/L (antiseries) as well as the vacuum vessel. Choosing to stabilize the

vertical mode in such a way that its damping time is 5 ms (damping rate of -200

jec-') for the full state case, we obtain the set of dominant modes shown in the

third column of the table. The previously unstable pole has been placed at -198

sec-'. In this case only one pole has been assigned using the single EFCU/L control

circuit. Note that no attempt has been made to assign the pole at -20 sec-1, which

consists primarily of large EFC current with negligible vessel currents. This pole

couples strongly to any current driven in the control circuit, and can therefore limit

plasma response if not dealt with. We shall return to this issue presently.

The final column shows the result of using the FSFB K-matrix along with the

PD output observer described in Sec. 6.1.4. The vertical mode has been moved to a
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point even more highly damped than that required by the full state algorithm. This

is a consequence of the inexactness of the observer used. Although the poles are

placed accurately by FSFB, the observer [A, B] provides inadequate state prediction

to yield accurate pole placement.

6.3 Alcator C-MOD Control Architecture

The equilibrium shaping and stability control system architecture chosen for Alcator

C-MOD consists of a hybrid analog-digital configuration developed jointly with the

CRPP-Lausanne TCV (Tokamak i Configuration Variable) Group [31]. Because

in a broad sense the shaping demands and characteristic stability time scales of the

two tokamaks are similar, the collaboration is a natural one, and has been extremely

fruitful for both groups.

The choice of a hybrid control system is an effort to combine the advantages of

both analog and digital architectures while obviating their disadvantages. Purely

digital control allows extreme flexibility in algorithm definition, but requires sam-

pling of all signals. This discretization introduces a host of difficulties, including

aliasing and intrinsic delays, which must be kept in mind throughout any digital

design process. These phenomena can become quite significant and troublesome for

a system such as C-MOD, for which a rapid response time and minimized phase

lag is very important.

By contrast, completely analog control systems readily provide rapid response

and high bandwidth, but are extremely difficult to program. Given the high degree

of variation in equilibria to be achieved in both Alcator C-MOD and TCV, such a

lack of flexibility is unacceptable.

However, if the number of separate control laws which must be used during

a shot is small enough that the gain scheduling intervals are easily accessible by a
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digital programmer, then a hybrid system can be used. A hybrid architecture allows

an analog feedback system to be programmed digitally by an external controller. In

this way, gains can be changed readily as required by a predetermined gain schedule,

but all signal-gain multiplication is performed by analog circuitry. This retains all

of the speed of an analog controller, as well as the flexibility of a digital one.

6.3.1 The Hybrid Control System

The final realization of the hybrid feedback loop consists of a set of matrices which

can be digitally programmed, but perform purely analog multiplications. In addition

to pure gain multiplication, a PID array is included for calculation of derivative and

integral signals. This allows implementation of the PD algorithms discussed above.

The overall architecture showing the principal matrices included in present hardware

is given in Fig. 6.5. An interpretation of the architecture showing elements essential

for the purposes of this study is shown in Fig. 6.6.

In Fig. 6.5, sensor signals are multiplied by an interpretation matrix, A,,,d,

which in general is intended to consist of "predictors" for estimating various plasma

parameters deemed to be important. The PID array then operates on each of these

"predicted" signals to produce the signal itself multiplied by a gain, the derivative

of the signal multiplied by another gain, and the integral of the signal multiplied

by a third gain. As presently implemented, the PID array adds these scaled, PID-

operated signals internally, providing only a single output for each input signal.

If the A, output parameters have intuitive physical connections to plasma

degrees of freedom relating to important control modes, an operator will be able

to adjust appropriate PID control gains "by hand" in order to refine the control

algorithm between shots. For example, if one output of the A,,. matrix provides

a good prediction of the vertical displacement mode, the PID gains multiplying

this signal could be varied to improve vertical stability control. The PID output is
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then operated on by a mapping matrix, M, whose output in turn drives the power

supplies.

The feedback loop as shown in the figure relates the Laplace transforms of the

control vector, 11, and the sensor vector, y, via

1
u(s) = M(G, + sGd + -Gj)A,.d2(s), (6.22)

where the G matrices are understood to be diagonal, and a is the usual Laplace

transform complex frequency variable.

Figure 6.6 shows a reinterpreted version of the general hybrid architecture

shown in Fig. 6.5. The proportional and derivative portions of the control system

have been separated into two parallel loops, and the integral portion has been left

out. Integral feedback is only needed to eliminate long term drifts and errors.

Terms proportional to the integral of the interpreted sensor signals can be added as

necessary once satisfactory fast time scale control laws have been determined. In

the present work we shall ignore this added capability of the PID array.

Because we wish to approximate the P and Q matrices from the FSFB/PDOO

analysis of Sec. 6.1 using the hybrid architecture, it is natural to completely separate

the two loops, creating separate Ap,, PID ( i.e. G, and Gd), and M matrices for

the proportional and derivative segments. This allows, for example, the direct

implementation of the SVD of the P and Q matrices with the hybrid. The penalty

for this separation of loops is that only 8 channels are available in each of the G

matrices representing the gains in the PID (if no integral feedback is used). We

expect this to be acceptable, since as indicated before, the typical dimension of the

plasma response space is on the order of 4 or 5. Moreover, there is only one unstable

mode to be specifically stabilized.

The separated-loop reinterpretation relates the Laplace transforms of the con-

trol vector, , and the sensor vector, y, via

U(S) = (MGpA, + MdSGdAd)Y(3). (6.23)
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The frequency response of the hardware implementing the hybrid system has

been measured to provide a bandwidth of approximately 10 kHz with a precision

of 1 part in 10' of the signal amplitude. This holds for each digitally programmed

analog multiplication cell, which provides the gain for a single channel. Because

maximum expected instability growth rates for C-MOD are in the 1000-2000 sec'

range, this bandwidth is expected to be sufficient to allow satisfactory control.
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Figure 6.4: Stable radial mode current elements for eq9 plotted against modal
current elements estimated using flux loop and B, signals.
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Figure 6.5: Block diagram of general C-MOD hybrid control system architecture.
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6.3.2 Modeling PD Results with the Hybrid

The central remaining problem of control law determination for the C-MOD system

is that of implementing the "ideal" P and Q gain matrices calculated with the FSFB

and PDOO methods using the hybrid architecture. This implementation must be

accurate enough to provide satisfactory stability. One difficulty arises in principle

because, as can be seen in the block diagrams previously discussed, in order to

directly implement PD feedback the PID array must be divided into two separate

sets of gain channels. Each set consists therefore of only 8 channels, which falls

short of the 10 EF coil circuits which are to be driven in principle. However, this is

not a serious shortcoming in itself, since it has been demonstrated that the plasma

response rank is on the order of 4 or 5.

Another difficulty is that for purposes of between shot control diagnostics and

feedback law refinement, it is desirable to have the magnetic signal interpretation

matrix provide some measure of modal diagonalization within the control loop. By

constructing an A,,.. whose outputs are recognizable quantities which are physically

important for control of the various modes of interest, an operator can actively refine

the control law between shots by simply adjusting PID gains. Such a capability may

be crucial for achieving satisfactory performance, especially during initial operation

of the machine, when a database of actual shots is only beginning to be constructed

in order to characterize actual machine geometry and behavior. However, requiring

a particular form for A,,.d seriously restricts the implementation of a sufficiently

accurate approximation to the P and Q matrices using the remaining elements of

the hybrid system.

In the following sections we propose several implementation strategies which

address these difficulties, providing experimenters with a broad range of access to

and control over the modal physics.
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6.3.3 Direct SVD Implementation

The most obvious way to implement the P and Q matrices using the hybrid archi-

tecture is to perform the SVD on each, letting

P = UJPV~p (6.24)

=UEVTQ =Uq Q1g (6.25)

and identify each matrix in the SVD with a block of the control system. Thus

A, = V, G, Ep M, Up (6.26)

Ad= Vg GT Q MdUq. (6.27)

(6.28)

If the ranks of P and Q are less than 8 (the maximium number of inputs

to the G,d matrices), then this approach will provide an exact implementation,

and the closed loop poles will be located in precisely the locations which the PD

output observer afforded. Recall that in general these locations will not be the

exact FSFB pole placement locations. One limitation of the direct SVD approach

is that because the outputs of the Ad matrices are not simply related to obvious,

physically identifiable modes in this case, between-shot refinement of the control

law is not generally convenient.

Another potential problem with this approach is that of slow decay modes

consisting of large currents in EF coils which can limit system response. If slow

modes are not explicitly made more stable by pole placement, the only way to

improve system response is to include information about the EF currents involved.

This is more fully discussed in later sections.

One way of addressing both of these limitations is to define a state inter-

preter (also called a state "predictor"), A,,..i, which provides useful physical mode

information to the control loop. This allows both between-shot manual operator
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refinement and explicit inclusion of driven coil current information in the control

loop. With this information available to the system, it is also possible to improve

plasma response past the slow decay mode limits.

6.3.4 Implementing General State Interpreters

Before discussing various possible state interpreters (A;,, matrices), we first show

the method of implementation of a general estimator in the hybrid architecture.

This will turn out to require solution of effectively the same equation as that for-

mulated for the PD output observer problem. The same algorithm can be applied

to any chosen state interpretation matrix.

A chosen A,,. matrix in theory consists of a set of "predictors" providing

some reasonable interpretation of plasma state parameters which are thought to be

useful for control system refinement, and sufficient to control the desired modes.

The FSFB result from the pole placement approach is used, and the hybrid control

architecture along with the given state interpreter is used to implement an observer.

Similar to that formulated in Sec. 6.1.4 above, this observer is defined by

;i = AA,,A y + $A,,. (6.29)

The decision is thus made at the outset to use the same state interpreter for both

proportional and derivative loops in the hybrid control implementation. Of course,

enough flexibility exists in the architecture to use a separate predictor for each loop,

but this complicates the refinement task, since the number of "predicted state" gain

channels to be varied would be greater.

By analogy with the Sec. 6.1.4 formulation, the hybrid control observer equa-

tions become:

$A,,.ACBm = Q (6.30)
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and

AA,.C + $A,,CA = I = AA,C + VVVWA,CA. (6.31)

Choosing G, and Gd to be identity matrices, the M matrices are left to im-

plement the FSFB and observer:

M, a KkA (6.32)

Md K$. (6.33)

(6.34)

The quality of this combined FSFB and hybrid control observer solution clearly

depends on the degree to which the state interpreter spans the space of important

plasma modes. By allowing the observer implementation no longer to have access to

the entire sensor output vector, but only to a set of 8 or less modal interpretations

of the sensor signals, the degree of observability is drastically reduced. Again,

the small number of plasma modes which are important to control makes such

an approach possible. However, the modal interpretation becomes critical to the

system performance.

In the following sections, several forms of state interpreter are proposed which

are designed to span various different sensor, plasma, and conductor spaces (all

interpreted through sensor outputs alone, of course). These interpretation spaces

include plasma shape parameters, principal vectors of sensor outputs, sensor modes

arising from passive conductor current modes, and toroidal multipole moments of

fields due to plasma alone and driven conductors alone.

6.3.5 Shape Predictor Apd = A,

The shape predictor state interpreter, A,, provides predictions of plasma "shape"

parameters (R., Z,,, x, etc...) based upon the responses of the set of perturbed
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equilibria. It constitutes a "shape predictor" in the same sense that the vessel-

vessel plasma response matrix from Sec. 4.3, X,,, constitutes a predictor for flux

at the vessel due to plasma current only as a result of changes in vessel currents.

A, predicts shape variations in the plasma as a function of sensor outputs. It

is calculated in much the same way as X,,, using a generalized inverse of the

appropriate perturbed equilibrium dataset:

A, = SEQFQ, (6.35)

where SEQ is the (NSH x 15) matrix whose columns consist of the NSH shape

parameters for each of the 15 perturbed equilibria, and FEQ is the (NY x 15) matrix

whose columns consist of the NY magnetic signals for each of the 15 perturbed

equilibria. Magnetic signals can include flux loop and B,, coil measurements, as

well as Rogowski coil measurements of EF coil currents.

Thus, A, operating on a sensor signal vector provides a "prediction" of plasma

shape parameters, S:

A,y. (6.36)

6.3.6 Principal Vector Ap,.d = Ap,

As we have seen before, principal component analysis using the SVD provides an

extremely powerful way of finding the dominant modes of the input and output

space in a matrix mapping. In particular, it can supply a set of sensor signal

vectors which represent the "principal modes" of the plasma response. A state

interpreter whose rows are the dominant subset of these principal vectors provides

a highly efficient measure of the plasma response.. If this response is calculated

from the SVD of the perturbed equilibria, it is not guaranteed that this space

will be weighted in the appropriate way to optimally describe the principal modes

of the plasma stability response. However, the principal modes of the perturbed

equilibrium plasma response are guaranteed by construction to span the space of
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plasma responses allowed by the perturbational formalism. Furthermore, as we have

demonstrated previously, the number of significant plasma modes is less than the

eight channels provided by the PID array.

If the matrix of sensor signals for the 15 equilibria in the perturbed set is

denoted by FBQ, as in Sec. 6.3.5 above, then the principal vectors are found by

calculating the SVD,

FEQ = UF F ,- (6-37)

The desired principal sensor signal modes are those columns of Up which correspond

to the largest singular values. These then make up the rows of A,,.

6.3.7 Toroidal Multipole Ap,,d Atm

In recent years much attention has been given to the problem of tokamak equilib-

rium reconstruction from magnetic measurements. One of the most elegant and

direct methods to emerge for solving this problem is the use of toroidal multipolar

expansions [32,331. The toroidal multipole moments are coefficients of expansion

of the poloidal flux outside the plasma in terms of toroidal harmonics, solutions

to the homogeneous Grad-Shafranov equation in toroidal coordinates. Two sets of

multipole moments have been described, "internal" moments due to plasma cur-

rent alone, and "external" moments due to currents outside the plasma. It has

been shown that the internal moments can be related to plasma current moments,

which provide a relatively direct measure of physically meaningful objects [32]. The

current moments are spatial function-weighted integrals over the plasma current

density, and describe such things as vertical and radial displacement of the current

centroid, and vertical ellipticity and triangularity of the current distribution.

For the toroidal multipole predictor, we use a state interpretation matrix, At,

constructed by S. Home, which operates on the magnetics signals and produces

a vector of multipole flux moments [32]. An important feature to note in this
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process is the role of coil currents. The calculation is initially done so that the

moment amplitudes explicitly exclude the coil contributions to the flux. That is,

only plasma current contributions to the moments result from the operation upon

magnetics. This places At, on the same footing as the shape predictor, A,. Only

plasma state information is derived from the magnetics for the nominal toroidal

moment predictor.

6.3.8 Passive Eigenvector Apred = Aev

Perhaps the most direct way one might imagine interpreting the magnetic measure-

ments so as to provide control over certain plasma modes is to make the interpreted

signals proportional to these passive modes. To accomplish this, we create a state

interpreter, A,, whose rows are the magnetic signal vectors corresponding to a set

of normalized eigenmodes of interest. The outputs of this predictor are thus the

projections of sensor signal vectors onto the signal vectors corresponding to those

eigenmodes. If we define a matrix, V, whose NP columns are the NP normalized

modes to be "predicted", the state interpreter matrix is defined by

A". (CV)T. (6.38)

The passive eigenvectors are not necessarily orthogonal, since the state matrix,

A, is not in general Hermitian. The preceding definition of A,., will therefore yield

mixed signals. Each output channel will in general give a nonzero signal when A,,,

operates on one of the NP predicted modes. In order for an operator to more easily

improve control performance by adjusting the PID gains, it is useful to orthogonalize

the outputs of the A,,. 1-matrix, so that operating on any of the NP predicted

modes will produce a non-zero signal in only one of the output channels. This can

be accomplished by requiring that

A.,CV = I (6.39)
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where I is the (NP x NP) identity matrix, so that

A.,. = (CV)'. (6.40)

This definition adds no new information to the set of NP interpreted vectors,

so the resulting control law is unaffected. It merely reexpresses the set in a basis

which simplifies the task of control law refinement by machine operators.

6.3.9 Application of State Interpreters and Hybrid Ob-

server

We turn now to comparison of the control laws resulting from the state interpreters

described above. For illustration purposes, we shall address the case of equilibrium

eq9, stabilized with only the EFCU/L (antiseries) circuit being driven. The unstable

pole was placed at the closed loop value of -y = -100 for FSFB. A single-pole power

supply model with time constant of 0.2 ms is included. Table 6.2 shows the dominant

twelve eigenvalues resulting from applying three kinds of state interpreter, as well as

the direct SVD implementation of the P and Q matrices, to this case. The direct

SVD implementation is exactly the same as the PDOO result, since in this case

only the EFCU/L (antiseries) circuit is used for control. There is therefore only one

nonzero singular value, and the hybrid architecture can exactly implement the SVD.

Each of the three state interpreters produces five output variables, so as to provide

some standard of comparison. The five shape interpreter channels are predicted

values of Z,., R,., I,, ngs, and R., - Ri,,., a measure of the minor radius. The

principal vector state interpreter consists of the sensor vectors corresponding to the

five largest singular values of the sensor response. The multipole moments used in

the toroidal multipole predictor are the first three non-zero odd internal moments,

and the first two non-zero even internal moments. The eigenvector predictor uses

the top five dominant modes.
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Eval PrincVec Multipole Shape EigMode SVD
1 -11.+275i -8.+383i +16.+456i -5.+306i -20.
2 -11.-275i -8.-383i +16.-4561 -5.-306i -74.
3 -73. -73. -73. -73. -193.
4 -205.+18i -199. -184. -198.+5i -211.
5 -205.-18i -207. -214. -198.-5i -307.
6 -317. -314. -297. -312. -341.
7 -347. -342. -345. -348. -429.
8 -429. -429. -429. -429. -453.
9 -464. -467. -463. -460. -497.
10 -499. -502. -487.+9i -501. -545.
11 -591. -505. -487.-9i -575. -566.
12 -618. -633. -649. -640. -640.

Table 6.2: Comparison of dominant eq9 closed loop eigenvalues for hybrid imple-
mentations of PDOO control law: principal vector AA, multipole moment Aped,
shape A,.d, eigenmode Ap,, and direct SVD.

Comparing the feedback roots for the various cases in Table 6.2 (in bold face),

we can identify the best and worst immediately. The shape predictor, A,, is obvi-

ously the worst, as it yields an unstable result. The shape predictor clearly provides

some measure of modal observation, since it is much more stable than the passive

mode. But the modal interpretation is insufficient, and much refinement will be

necessary to find a satisfactory closed loop response, if at all possible. The direct

SVD provides the exact solution found by the PD output observer, and as such

stabilizes the vertical mode most satisfactorily among the approaches shown. How-

ever, note that the slow decay mode at -y = -20. is still unaffected. It was, of

course, explicitly allowed to remain unaffected by the pole placement process. As

we shall see, the continued presence of this pole seriously limits the control system

performance for all of the hybrid implementations of the PD control law.

The principal vector, multipole, and eigenvector predictors provide very similar

responses. Each of them results in a dominant underdamped mode, with a decay

time of 100-200 ms, and a much higher frequency oscillatory component. Each of

these bases allow sufficiently good observation of the unstable mode to stabilize it.
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However, the nominal result is nowhere near the full state pole placement. This is

because the slow decay mode at -y = -20, representing EFC coil response, limits

the control system response. The mode essentially consists of large currents in the

EFC circuit with negligible vessel currents, and plasma velocity opposite to the

displacement. This motion corresponds to an offset plasma moving slowly back

to its equilibrium position, under the stabilizing influence of large EFC currents.

The motion is slow enough not to excite significant currents in the vacuum ves-

sel. The conductor currents for this mode are plotted in Fig. 6.7, illustrating the

overwhelmingly large EFC component.

The -y = -20. mode couples strongly to the unstable mode, and tends to be

excited whenever feedback is applied to the driven coils in such a way as to stabilize

the plasma. In order to avoid such excitation, and thus coil response limitation, one

must provide an observer which discriminates sufficiently between the two modes.

We can do this by placing the -y = -20. root at a more stable location.

The pole placement technology we have developed provides a way of addressing

just such a performance limiting problem as that posed by the slow decay mode.

By explicitly placing the pole at a more highly damped location with full state

feedback, the driven coil response is enhanced, and the control system will respond

more rapidly. The results of placing the unstable pole at a closed loop value of

-f = -120. and the slow decay root at -y = -100. with full state feedback are

shown in Table 6.3. In all other respects the system is the same as before. Again,

several A,,., matrix examples are compared. While the SVD result shows that the

PD output observer (and thus the direct SVD implementation as well) managed

to significantly improve the slow decay mode response to a closed loop value of

y = -46, none of the A,,.d implementations were able to improve performance

beyond a decay rate of - = -15 sec-. This is because even though the pole

placement algorithm implicitly provides sufficient observation of the two modes,

the state interpretation matrix implementation of that algorithm in general does
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Eval Shape Multipole PrincVec SVD
1 -12.+468i -14.+395i -14.+286i -46.
2 -12.-468i -14.-395i -14.-286i -74.
3 -73. -73. -73. -193.
4 -184. -199. -206.+18i -211.
5 -214. -207. -206.-18i -307.
6 -297. -314. -317. -341.
7 -345. -342. -347. -429.
8 -429. -429. -429. -453.
9 -463. -468. -464. -498.
10 -486.+8i -502.+3i -499. -537.
11 -486.-8i -502.-3i -596. -561.
12 -649. -633. -615. -640.

Table 6.3: Comparison of dominant eq9 closed loop eigenvalues for hybrid imple-
mentations of PDOO control law. Unstable and y = -20 roots simultaneously
placed at -120 and -100 respectively. No EFC current predictor.

not for the A',. matrices used here. In particular, they don't provide adequate

discrimination of the effect of the EFC current. Notice that the shape interpreter

A,,,, = As, now yields a dominant feedback root stabilized comparably to the

other predictors.

In the next section we demonstrate the augmentation of a state interpreter

to provide improved discrimination of EFC current, and its effect on closed loop

plasma response.
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6.3.10 Improving Coil Response

As is clear from the application results in the preceding section, use of the various

state interpreters used proved insufficient to move the unstable root beyond the

slow decay root at approximately y = -20. and failed to do even as well as the

PD output observer feedback case and its direct SVD implementation when the

slow mode was explicitly moved. This is because the A, matrices do not provide

a sufficient basis for interpreting the closed loop modes, and in particular, do not

provide sufficient information regarding EFC current.

To correct for this, we can augment a state interpreter so as to provide an

explicit channel for interpretation of magnetic signals from plasma and vacuum

field response due to EFC current variation alone. Because the toroidal multipole

predictor is independent of equilibrium and is known to provide a very good basis

for equilibrium representation with very few moments [33], and also allows the

complete separation of plasma variation signals from conductor current signals, we

choose to test out the theory with that predictor. We replace the fifth row of

all of the state interpreter A, matrices with a predictor for pure EFC currents

from magnetic measurements calculated using toroidal multipoles. The results are

shown in Table 6.4. As before, the feedback roots are shown in boldface. The

EFC current predictor greatly improves the dominant mode damping rate for the

shape and multipole moment state interpreters, and slightly improves the principal

vector interpreter result. In both the damping rate and oscillatory component

the multipole moment case yields the best result, demonstrating the relative high

quality of the plasma state, vessel mode, and EFC current observation of the toroidal

multipole approach.
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Eval PrincVec Multipole Shape
1 -18.+276i -77. -47.+3617
2 -18.-276i -95.+179i -47.-361i
3 -73. -95.-179i -73.
4 -205.+16i -146. -205.+5i
5 -205.-16i -214. -205.-5i
6 -318. -332.+13i -309.
7 -348. -332.-13i -346.
8 -429. -429. -429.
9 -465. -481.+4i -480.
10 -499. -481.-4i -490.+12i
11 -607.+31i -557. -490.-12i
12 -607.-31i -632. -634.

Table 6.4: Comparison of dominant eq9 closed loop eigenvalues for hybrid imple-
mentations of PDOO control law. Both unstable root and - = -20 root placed at
-100 and -120 respectively. All A,. augmented by EFC current predictor.

6.4 Time Domain Performance

Time domain performance characteristics are usually described in terms of the gen-

eral step response form illustrated in Fig. 6.9. The step response parameters which

concern us here include the rise time, maximum overshoot and undershoot, settling

time, and ring frequency. Rise time, t,, is usually defined as the time required for

a system's step response to go from 10% to 90% of the final value. However, in

the presence of undershoot (see below) this must sometimes be modified. If the

undershoot consumes an appreciable time, it makes more sense to define the rise

time as the time required to reach 90% of the final value from the initial excitation.

The maximum overshoot, PO, is the maximum value of the step response, sometimes

expressed as a fraction of the final value. Settling time, t,, is the time after which

the step response stays within 2% of the final value. The ring frequency, W,, is

related to the rise and settling times in a second order system, and is essentially

the frequency of oscillation during settling after the initial overshoot. For a high

order system, this can be assessed as the number of oscillations between the initial
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crossing of the final value and the "settled" point (at which the settling time is

measured) divided by that time interval (30].

Undershoot is a phenomenon which occurs in the presence of a right half-

plane or "non-minimum phase" zero [34]. As described in Chapter 5, such zeros

can be present in the plasma-conductor system, so this performance criterion must

be mentioned. However, the typical behavior of the closed loop systems under

examination here will not exhibit undershoot, and are well approximated by pure

second order response.

6.4.1 Step Response of Second Order System

The response of a dynamic system can often be approximated by ignoring all the

poles outside of a certain radius from the origin. In particular, high order systems

are often approximated as second order systems, retaining only the influence of a

dominant complex pole pair or a pair of real poles near the origin. As we have

seen above, the behavior of the closed loop system is dominated by the fate of the

feedback root, perhaps coupled to a slow decay root. The result was a dominant

complex pole pair, and a response very close to second order (see Table 6.2, for

example). We shall explicitly demonstrate this in the next section by calculating

the actual step response. In order to compare the characteristics of the true step

response to that of a second order system, it is useful to relate the performance

quantities to the complex pole pair directly. Accordingly, this section briefly reviews

the usual second order characteristic equation [30] and derives relations between the

equation parameters and the pole pair itself.

A second order characteristic equation is usually cast into a standard form

involving the natural frequency, w,, and the damping rutio, C. The physical relation

between these quantities and the real and imaginary parts of a complex pole pair

is shown in Fig. 6.8. The figure shows the underdamped case, in which C < 1. Two
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poles which are separated on the real axis describe an overdamped system (C > 1),

and a double pole (two poles coinciding) on the real axis constitutes a critically

damped system (C = 1).

The bandwidth, wh, is given by

wh = w,(1 - 2( 2 + 2 - 4C2 + 4(4)1/2, (6.41)

and is related approximately to the rise time, 4, through

t, ~ -.2 (6.42)
Wh

For a unit step input, the maximum overshoot, Po, is given by

Po = 1 + exp ,C (6.43)

and for completeness we include the time at which the maximum overshoot is

achieved, t,:

t = . (6.44)

The settling time, t,, is given approximately by

t, : -, (6.45)

and the ring frequency, w,., is given by

w,. = W, 1 -C 2 . (6.46)

Now, since a complex pole pair with poles at Pi = -z and p2 = -z* has the

characteristic equation

0 = (a + z)(3 + z') = 32 + 2Rez. + 1z12, (6.47)

we can readily identify

Rez
w =zl and C= --. (6.48)

IzI
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6.4.2 Time Domain Design

Time domain design is dominated by the tradeoff between the need for sufficiently

rapid system response (rise time) and the need for minimizing overshoot. An ex-

tremely fast response tends to overshoot more than a slower reponse in a system

which is approximately second order. Conversely, a system which is overdamped

will not tend to have as fast a rise time as one which is underdamped and over-

shoots. Settling time, which is connected to both rise time and overshoot, provides

another constraint on the two complementary requirements. It is frequently more

important to achieve a short settling time than to have merely a fast rise time.

The stable nominal closed loop systems achieved in Sec. 6.3.9 in general exhibit

extremely underdamped responses with rapid rise time, but slow settling time and

some overshoot. This is illustrated in Fig. 6.10, which shows the step response of

the closed loop system from Table 6.2 using a principal vector state interpreter,

Ar-pa = A,.

For the purpose of the step response calculation, a unit step voltage demand

is applied to the EFC power supply, and the passive unstable mode or a shape

predictor for plasma displacement is used to interpret the state response. Recall that

the feedback roots in this case consisted of the pole pair at y = -11. ± 275i. Using

the relations from the previous section, this predicts a second order response with

natural frequency of w, = 275, damping ratio of C = .04, bandwidth of WK = 427,

rise time of t, ~ 5 ms, overshoot of PO = 1.9, settling time of t, = 364 ms, ring

frequency of w,. = 275, and a time at which maximum overshoot occurs of t, = 11

Ms.

Referring to Fig. 6.10, it is clear that the second order characteristics do not

quite match the actual step response, although many of them are close. The rise

time is quite accurate (about 5 ms), but the overshoot is much better for the actual

step (about 1.13) than for the second order calculation (about 1.9). The difference
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is due to the presence of the other modes excited in the system with faster decay

rates. It is clearly important, therefore, to calculate the.actual step response rather

than relying on the second order approximation.

The improved coil response case using the multipole state interpreter resulted

in the dominant complex pole pair feedback root -y = -95. ± 179i. This can be

expected to be significantly better than the unimproved case just studied. The step

response for the improved case is shown in Fig. 6.11. The coil response improvement

has eliminated the overshoot, lengthened the rise time to about 10 ms, and reduced

the settling time to less than 50 ms, where before improvement the settling time

was in fact greater than 150 ms. To realistically compare the desirability of the

two control laws, decisions must be made regarding the relative importance of rise

time, overshoot, and settling time. Or one must consider other criteria to provide

additional arbitration. However, in the next two sections, we turn our attention

to other performance analysis approaches which may provide further reasons for

choosing one control law over another.

204



Im(s)

(On

le

Re(s) = -a -

i W

U ____

-- -1w

s =- + iW

', = cosm

Figure 6.8: Plot of complex pole pair showing relation to w,, and C.

205

Re(s)



General Dynamic System Step Reponse

Maximum overshoot, P

- Rise time, t,.
Settling time, t.

.----------

Undershoot

32

t (secs]

Figure 6.9: Illustration of general dynamic system step response.
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1.2. Step Response for PrIncVec Apred
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Figure 6.10: Step response of eq9 closed loop case using A,,..d =A.
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6.5 Frequency Domain Performance

Control theory from the time of the pioneering days of servomechanism analysis

at the MIT Radiation Laboratory in the mid-20th century has made great use of

the frequency domain, primarily via the Laplace transform [28,30]. The power of

frequency response methods carries over into the state space approach as well. In

this section we shall focus on the Bode Plot and its multivariable analog, which can

be used to provide evaluations of relative stability for a given control law. This can

also contribute to the ability to refine a nominal control law further by varying PID

gains.

6.5.1 Single Variable Bode Plots

To construct a Bode plot for a single input, single output system, we imagine

breaking the control loop at some point and injecting a test sinusoidal signal at

that point. The single variable Bode Plot is a plot of the magnitude and phase

of the output signal arising at the broken location output, as a function of the

injected signal frequency. This is illustrated in Fig. 6.13. The figure shows the

broken feedback loop block diagram with the input signal labeled V and the output

labeled V.. The loop transfer function, T, is defined as

T(s) = = G(s)H(s) (6.49)
V(s)

where . is the usual Laplace transform complex frequency variable, and for the

purposes of the Bode plot, s = jw. The Bode plot consists of the graphs of IGH(jw)I

and LGH(jw) as functions of frequency [303.

Aside from describing the bandwidth of a control system, some of the most

important kinds of information which can be extracted from the Bode plot are the

so-called gain and phase margins. These provide some measure of how far away the

system is from instability, and thus reflect the robustness of the control law. The
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margins are defined in terms of two frequencies: the "phase crossover" frequency,

w,,, at which the phase plot crosses 0 = -7r, and the "gain crossover" frequency,

wi, at which the gain plot crosses unity. The gain margin is defined as the inverse

of the magnitude of the loop transfer function at the phase crossover frequency:

1
gain margin = . (6.50)1 GH(jw.) I

The phase margin, often denoted $P,,, is defined as the phase angle of the loop

transfer function at unity gain, 01, plus -r radians (or 180 degrees). These quantities

are illustrated in Fig. 6.12, showing a simple generic Bode plot.

The relation between the margins and relative stability can be understood by

realizing that to be unstable, a system must undergo phase crossover before the loop

gain (magnitude Bode plot) falls below unity. In such a case, a signal injected at Vi

in Fig. 6.13 will result in a negative signal with gain greater than unity arising at

V.. When the loop is closed with an inverter at the summation point, as in the top

part of Fig. 6.13, this will become unstable positive feedback. Thus, the farther the

gain has fallen by the time the system experiences phase crossover, the farther away

from instability it is. This relates gain margin to relative stability. The inversion

seen in the gain margin formula is so as to make greater gain margin correspond to

greater relative stability.

Similarly, the farther away the system is in phase from the unity crossover

point by the time it experiences phase crossover, the greater the relative stability.

This is the explanation for phase margin. In a sense, perturbations due to model

or signal error required to destabilize the system are expected to be greater if the

gain and phase margins are large, because a smooth variation in these margins with

system error is assumed.
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6.5.2 Multivariable Bode Plots

For a multivariable system, the situation is rather different from the single variable

case described above. In the case of a multivariable input-output system, the loop

signals are in general vectors, and the intermediate matrix multiplications can shrink

or expand the spaces represented by those vectors as they travel around the control

loop. Furthermore, the signals in each channel will in general cross-couple to other

channels during this process. That is, a demand signal applied to one driven coil will

result in a response at the other driven coils after the signal has propagated through

the loop. It is also difficult to identify a single phase to allow characterization of a

phase margin. In the general case, one must use a multivariate analysis which yields

information about a multivariable system analogous to the information a Bode plot

yields about a single variable system. By taking the SVD of the loop transfer matrix

(or a variety of other matrices characterizing the system), one can treat the singular

values as one does the magnitude of the single variable loop transfer function. This

approach gives up phase information in order to be able to extract some form of

useful frequency response from a multidimensional space.

For the moment, we shall address the use of only the "decoupled loop" re-

sponses to provide criteria for relative stability. The loop transfer function matrix

calculated from the demand inputs to the power supplies, through the loop, and

back to the demand vector is given by:

T(jw) = (MpGA, + jwMdGdAd)G(jw) (6.51)

where

G(jw) = C(jwI - A)-1 B + D (6.52)

is the plant transfer function matrix.

The multivariable Bode plot for driven circuit i consists of the magnitude and

phase of the i"t element of the vector resulting from the T matrix operating on the
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vector with a one in the ii" location and zeros elsewhere, as a function of frequency.

Thus we plot the magnitude and phase of the diagonal entries of T.

For the case of eq9 controlled and passively stabilized with EFCU/L, the con-

trol loop consists of only a single variable, and T is a scalar. Figs. 6.14 and 6.15

show the magnitude and phase respectively as a function of frequency for the eq9

closed loop case using the multipole state interpreter along with the EFC current

predictor improvement (see Sec. 6.3.10). The figures reflect a system with very

large gain and phase margin. The phase margin is about 3.5 radians, or about 200

degrees. The phase crossover point is not shown in Fig. 6.15 since it occurs at such

high frequency, so it is impossible to determine the gain margin from these plots.

However, it is clear from the magnitude plot that the gain margin is greater than

300 (corresponding to about -50 dB). From these stability margin values, we expect

the system to be very robust to model and signal perturbations. As we shall see in

the next section, this is indeed the case.
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Figure 6.11: Step response of eq9 closed loop case using A,,.a = At, augmented

with multipole EFC current predictor.
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Figure 6.14: Magnitude Bode plot for eq9 with EFCU/L control using multipole
moment state interpreter improved by addition of EFC current predictor.
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6.6 Error Robustness

One of the most important features which a control system in general may have

is error robustness. This is particularly important in the case of the equilibrium

control problem, since only a small number of control laws can be used across a shot,

yet the plasma can evolve continuously. For this algorithm to work, it is necessary

that each control law be robust enough to cover the stability requirements of the

full range of evolution between the discrete operating points.

There are two broad areas of robustness which interest us in solving the equi-

librium control problem: model error and signal error robustness. Model error

robustness refers to how tolerant the stability produced by a control law is to errors

in the plant model itself. -Signal error robustness refers to how tolerant the stability

is to errors in sensor and control signals.

6.6.1 Model Error Robustness

One approach to model error robustness analysis is to perturb aspects of the system

randomly, and observe the variation in the closed loop response. This requires a

vast number of random matrix perturbations to build up enough statistics to be

meaningful. Given the computational constraints of the VAX/VMS system used in

this work, this approach is not practical. However, we are still able to examine the

impact of systematic error instead.

There are three kinds of matrices which contribute to the initial plant model:

the conductor resistance and inductance matrices, and the plasma response matrix.

In a general sense, increasing resistance, increasing inductance, and decreasing the

plasma response magnitude results in a less stable system. We choose, therefore, to

perturb all of the elements in each of these matrices uniformly in those destabilizing

directions. This explores a kind of "worst case" systematic error for each kind
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Case Passivey+ Active FR w/ IEFC Active FR w/out IEFC

R + 5% 537. -79. ± 185i -1.1 ± 400i
-5% 486. -112. ± 172i -27. ± 391i

M + 5% 624. -60. ± 209i +28. ± 427i
-5% 427. -124. i151i -44. ± 367i

D + 5% 410. -119. 172i -40. ± 352i
-5% 664. -60. 218i +30. ± 450i

Table 6.5: Passive and closed loop feedback roots for eq9 standard case with per-
turbations applied to various matrices describing the basic plant.

of information assumed known about the plant. Note, however, that it is not

necessarily the worst case with respect to actual eigenvalue calculations or closed

loop stability. One would have to calculate the error vectors which maximized

variation in passive unstable growth rate, for example, to find the actual worst

case.

Table 6.5 shows the passive and closed loop feedback roots for ±5% uniform

perturbation of each of the three matrices. The plant case for this study is the same

eq9 equilibrium as studied before with EFCU/L stabilization and the same .2 ms

single pole lag in the power supply model. For comparison purposes, recall that the

nominal passive growth rate for the case with unperturbed matrices was -y. = 512.

In the table, R, M, and D refer to the resistance, inductance, and plasma

response matrices respectively. ±5% represents the perturbation applied to these

matrices. For example, +5% indicates that the matrix was multiplied by 1.05 before

the state space was calculated. The columns entitled "Active FR" list closed loop

eigenvalues for the cases indicated. The notation "w/ IEFC" refers to the use of

the EFCU/L current predictor along with the multipole moment state interpretor

matrix. "w/out IEFC" refers to the use of the multipole moment A,.ed alone.

The table shows that the EFC current predictor case provides far greater ro-

bustness to this kind of model error than the case without such a predictor. When

the predictor is used, all of the plant matrix perturbations still result in quite sat-
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isfactory performance. By contrast, in the absence of the current predictor, two of

the perturbations result in closed loop instability, and the remaining one results in

an insufficiently well damped feedback root. Note that perturbation of each matrix

can either increase or decrease stability, depending on the direction of perturbation.

While increasing the magnitude of M or R entries decreases stability, increasing

the magnitude of D entries increases stability.

This kind of analysis can provide a strong form of arbitration when the time do-

main performance appears ambiguous. Robustness to model error is very important

for the reasons discussed above. However, it is also important to test the resilience

of the control system to signal error. It is to this topic we turn our attention next.

6.6.2 Signal Error Robustness

Inaccuracy of sensor or, to a less important degree, control signals, can lead to

failure of an insufficiently robust control system. From noise pickup to actual sensor

failure, there exists a range of unreliability which can occur. As in the case of model

error robustness, we examine a simple kind of "worst case" sensor error in order to

understand the degree to which the signals must be reliable for satisfactory stability.

For this performance test, we disable certain sensor array inputs one by one,

simulating complete failure of each of these chosen inputs. Referring to the sensors

in the geometry plot of Chapter 5, Fig. 3.12, we disable flux loops 0 through 10

individually. The sensors are counted starting from the outboard midplane, and

proceeding in a counterclockwise direction. This set therefore constitutes the entire

set of flux loops above the midplane. The resulting closed loop feedback root values

using the familiar multipole control law with EFCU/L circuit current predictor are

shown in Table 6.6.

This data indicates that any one of the flux loops may be lost, or its signal

compromised, and the system will be minimally affected. It is, of course, necessary
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Flux Loop Closed Loop FR
0 -94.± 179i
1 -95. ± 181i
2 -89.± 182i
3 -98. ± 187i
4 -86. ± 198i
5 -94. ± 179i
6 -96.± 180i
7 -93.± 180i
8 -96. ± 180i
9 -102. ±179i
10 -102. ± 178i

Table 6.6: Closed loop feedback roots for disabled flux loop sensors.

that any spurious signal appearing on the sensor channels be small enough in ampli-

tude for this to be true. An important question to address with this approach is the

effect of the set of flux loops on the outboard wall. Since these loops cannot extend

all of the way around the vacuum vessel in order to avoid blocking the horizontal

ports, they are necessarily saddle loops. Their signal-to-noise ratios are proportion-

ately poorer than those of the continuous loops, and their signals are therefore less

reliable.

In fact, for the eq9 case being used here for illustrative purposes, the closed

loop feedback root with the four outboard port region flux loops disabled is 'YFR =

-87. ± 179i. Thus, even the total failure of the set of saddle loops will affect the

closed loop stability very little.

6.7 The Design Process

Now that the preceding array of tools has been demonstrated, it remains to specify

what kinds of performance criteria a tokamak axisymmetric control system should

satisfy, and to describe how to go about applying these tools in the design process.
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6.7.1 Performance Criteria

We are, in fact, fortunate in that the axisymmetric control problem is not typically

very demanding of all aspects of performance. For example, since Alcator C-MOD

expects to run plasmas which do not fill the vertical dimension of the vacuum vessel

aperture, there is a great deal of room for vertical overshoot. The equilibrium which

has been used for illustration throughout this chapter, eq9 (Kgs = 1.6, z,. = 0),

has its top and bottom limits at about ±32 cm (see Fig, 4.3, for example). This

allows about 15 cm of motion above the plasma, although only 5 cm below before

it strikes the divertor hardware. This difference between top and bottom arises

as a result of the asymmetric divertor configuration. For initial operation of the

machine, only lower divertor hardware will be installed, and only lower single null

diverted equilibria will be formed. For an equilibrium such as eq9, the plasma could

still tolerate a 50% overshoot for a 2 cm displacement, leaving about a 40% safety

margin. A displacement approaching 5 cm would tolerate no overshoot at all.

Of course, in general one wishes to minimize overshoot, but we must consider

the other time domain parameters of rise and settling time as well. Typically if

overshoot is kept to zero, the rise time is longer than if some amount of overshoot is

tolerated. We must therefore determine how fast the plasma should respond. The

time scale of a C-MOD shot is several seconds. One would prefer therefore that

any control response be much shorter than this time. This requires a response time

no longer than a few tens of milliseconds. A reasonable ad hoc limit for this kind

of consideration we can take to be about 20 msec.

Radial overshoot is another criterion which must be addressed. Since the

plasma is generally much closer to the inboard wall in the radial direction than in

the vertical, the tolerable radial displacement is much less. For a limited plasma,

an inward disturbance displacement can result in current being scraped off, and

lead to a disruption [35]. Thus, corrective overshoot must be eliminated for these
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equilibria. In the case of a diverted plasma, there is a gap which provides some

margin for overshoot, but this gap is typically very small. For eq9, the inner gap

is about 1.5 cm, allowing less than 50% overshoot even for a displacement as small

as 1 cm. Even in the case of a diverted plasma, therefore, overshoot should be

eliminated for radial control. Fortunately, the passive radial mode is already stable

with a damping time of about 14 msec, exceeding the 20 msec limit. The mode has

no imaginary component, and thus no overshoot. This damping rate is generally

the case for the radial modes in C-MOD equilbria, regardless of elongation.

Most large plasma perturbations occur on a timescale much shorter than the

ad hoc 20 msec limit, in regimes for which no EF coil control system can hope to

follow the changes. Pellet injection in Alcator C, for example, typically modified

the density profile in less than 500 psec. The temperature profile adjusted even

more quickly, in less than 250 psec [36,37]. Plasma disruptions also occur on a com-

parable timescale, about 100 pssec for Alcator C [38). It must be assumed that such

disturbances are not severe enough to result in uncontrollably large instantaneous

growth rates or very large displacements. However, extremely fast changes in pro-

files do occur from such effects as pellet injection and soft disruptions, emphasizing

the need for control system robustness if these variations are to be tolerated.

It is instructive to examine the acceptable performance characteristics of al-

ready operating tokamaks. Experimental evidence from very demanding elongated

devices reveals a fairly large tolerance for poor performance in the equlibrium con-

trol system. For example, the D-IIID tokamak operated by General Atomics has

achieved record stabilizable elongations of 2.5 as of this writing. Typical D-shaped

plasmas run in this machine fill the vessel aperture quite completely with the sepa-

ratrix often within a few centimeters of the vacuum vessel. Nevertheless, such cases

have been achieved with an actual vertical control response overshoot of about 50%,

a ring frequency of about 100 sec-, and a settling time on the order of 50 ms or

greater [39].
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The JET machine operated by the European Community has achieved full

aperture stable elongations in excess of 1.7 with an overshoot of 50%, a ring fre-

quency of about 100 sec 1 , and a settling time of greater than 150 ms [9].

From these experimental examples there is clearly a great deal of latitude in

acceptable control performance. However, to ensure satisfactory control of highly

unstable cases and provide sufficient robustness, the maximum amount of perfor-

mance should be extracted from a given nominal control solution. In order to further

refine the control response, we can iterate within the design loop, adjusting PID

gains as needed.

6.7.2 Design Iteration and Refinement

The design process which has been implicit in all of the preceding analysis descrip-

tion up to this point has involved calculation of a nominal control law and testing of

its performance. The explicit placement of poles in different locations and the addi-

tion of EF coil current predictors in the state interpreter were included as examples

of improvement strategies. We have envisioned iterating with techniques such as

these until the system exhibits acceptable step response, frequency response, and

robustness behavior. However, there is a more detailed refinement scheme which is

allowed by the hybrid geometry.

Because the individual channels of the PID do not cross-couple, one can sweep

the gain for each channel corresponding to an interpreted state variable (received as

an output of the Ap,.d matrix), and set the gains at their optimal values. To reduce

the search space to a tractably small number of sweeps, we order the interpreted

state variables in a hierarchy of expected importance, and optimize each one in turn

following this ordering. After each gain sweeping optimization, frequency and step

response performance can be tested and the iteration repeated. The general design

procedure is illustrated in the next section with the high elongation, high passive
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growth rate equilibrium, eq1O.

6.8 Control Design for Example Equilibrium

We now apply the design procedure described above to the equilibrium eq1O. Recall

that this case is an equilibrium with ic5 = 1.7 and n., = 1.85. It exhibits a passive

growth rate in the presence of the vacuum vessel alone of 1388 sec-1. By comparison,

the rigid vertical growth rate is calculated to be 745 sec-1 for vacuum vessel alone.

We consider the active case in which OH2U and OH2L are driven independently and

EFCU/L are connected as usual in antiseries. There are thus three independently

driven control circuits. The unstable passive mode in this case has a growth rate of

1052 sec- 1. The corresponding rigid result is 600 sec-1 .

The conductor current distribution for this (nonrigid, flux-conserving) mode is

shown in Fig. 6.16 and the flux contours arising from these currents are shown in

Fig. 6.17. It is particularly important to note that the net effect of the plasma's

unstable motion on the closely coupled inboard wall and OH2 coils is so as to

result in a positively induced current in the upper inboard wall and EFCU, but a

negatively induced current in OH2U. Roughly the opposite occurs in the conductors

below the midplane. This is entirely due to induction from the EFC coils. If only

OH2U/L were present, the sign of the OH2 currents would be the same as that of

the adjacent vessel wall. This will prove important in determining the form of the

control signal weighting vector for pole placement.

A more complete list of the passive eigenvalues in the presence of the three

stabilizing EF coil circuits is given in Table 6.7. The modes corresponding to the

three dominant stable modes are shown in Figs. 6.18 through 6.20 (modes numbered

2 through 4 in column 2 under "Passive"). These modes clearly couple strongly to

the driven coil currents, consisting as they do primarily of these currents. We shall
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Eigenvalue Passive FSFB PDOO
1 1052. -5.6 -5.6
2 -5.6 -7.0 -7.1
3 -7.0 -22. -22.
4 -22. -80. -80.
5 -80. -100. -140.+7631
6 -200. -200. -140.-763i

Table 6.7: Comparison of dominant eigenvalues for passive system, FSFB, and PD
Output Observer FB (eq10). Boldface indicates "vertical" mode.

therefore expect the system performance to be limited by their presence as the eq9

case above was.

We begin by using the full state feedback (FSFB) algorithm to place the unsta-

ble pole alone at -y = -100. The control signal weighting vector for full state pole

placement, denoted qi in Sec. 6.1, is defined to be qi = [VEFCU, VoH2U, VOH2LI =

[1, -1, 11, so that the unstable mode, having the same relative sign among coil cur-

rents, can be affected. This results in the the set of closed loop stable poles listed

in Table 6.7. The corresponding proportional-derivative output observer (PDOO)

result is also shown in the table. Notice that the feedback root (FR) has become a

pole pair with a very high frequency imaginary component and a real part which is

more damped than the FSFB result, just as in the eq9 PDOO case. As predicted,

the slow decay modes remain behind.

Before attempting to deal with the slow decay modes, it is interesting to exam-

ine the effects of the various hybrid control implementation schemes. We expect the

multipole moment A,,.d, which gave the best result in the case of eq9, to perform

much less well for eq10. This is because the coordinate origin used for calculation

of the multipole predictor was taken to be the machine centroid, at Ra = 66.5

cm on the midplane, Z = 0. The magnetic axis of the eq10 equilibrium is shifted

vertically by 2 cm, resulting in a less accurate modal reconstruction from the mul-

tipole state interpreter. In fact, all of the state interpreters used in the eq9 case
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Eigenvalue PDOO/SVD
1 -7.0.
2 -9.8
3 -22.
4 -80.
5 -136.+830i
6 -136.-830i

Table 6.8: Dominant closed loop eigenvalues for PDOO FB and SVD implementa-
tion of PDOO (eq10).

result in highly unstable closed loop systems. The multipole A,,.d yields an un-

stable roots of 7 = +149 ± 859i. The principal vector A,,.d results in unstable

roots of -Y = +109 ± 849i. The shape A,,.d yields the worst of all, unstable roots

of -y = +393 ± 981i. Of course, the direct SVD implementation results in exactly

the same roots as the PDOO case. We focus on this implementation.

The step response for the direct SVD implementation of PDOO FB is shown

in Fig. 6.21, and clearly shows the characteristic response time of the slow decay

mode at - = -5. More specific pole placement is called for. Returning to the pole

placement step in the precedure, we place the - = -5 passive pole at -75, and the

unstable mode at -100. After PDOO calculation and direct SVD implementation,

we find the set of dominant closed loop poles shown in Table 6.8.

As the table shows, both poles were successfully moved. The step response for

this case is given in Fig. 6.22. The figure shows that the system responds much

more swiftly now, with a roughly 65% rise time of about 20 ins, but a settling

time dominated by the slow decay mode at - = -7. Sweeping of G, and Gd

gains can improve performance somewhat beyond this. Fig. 6.23 shows the result

of sweeping the gain corresponding to the largest singular value in both G, and Gd

simultaneously. Thus the time constant for derivative feedback is kept fixed. The

plot shows that the feedback root becomes more and more stable with increasing

gain, but the slow decay mode at y = -7 is a quasiconstant mode for this form of
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Case Passive-yf Active FR Active Dom. Root
R + 5% 1105. -167. ± 897i -13.
M + 5% 1518. -92. ± 1020i -13.
D - 5% 1632. -152. ± 1212i -13.

Table 6.9: Closed loop roots (FR and dominant stable root) for eq10 case with
perturbations applied to various matrices describing the basic plant.

gain variation. Next we sweep the gains corresponding to the second singular value.

This produces the plot shown in Fig. 6.24. In this case, an optimum point is found

at a gain value of about 12000. The resulting dominant closed loop root is then

y = -13. The gain sweep of the third singular value is shown in Fig. 6.25 to yield

no improvement of the dominant mode.

The step response for the control law optimized by gain sweeping is shown in

Fig. 6.26. Clearly the performance has been significantly improved by removing the

performance limiting poles.

It remains to examine the robustness of this control law to model and signal

error. Following the same procedure as illustrated for eq9, we construct a table

showing the variation in closed loop poles for different perturbed plant matrices.

Table 6.9 shows the results. No appreciable degradation in performance is found.

The real part of the feedback root changes by as much as 35% from the nominal

closed loop value of Re(y) = -140, but this is insufficient to degrade response time

much below 10 ms. Since a response time of 20 ms with less than 50% overshoot

comprise the target performance criteria, the system is extremely robust to this

degree of error.

One control aspect which must be verified is the ability of the power supplies

to provide the necessary responses. The delay time and slew rate are embodied

in the power supply "lag" model. However, the voltage limits have not been built

into the models. These limits are highly nonlinear, so we must check a posteriori

whether the control system resulting from our design procedure will saturate at a

226



lower voltage than needed for some reasonable plasma displacement. We assume

a 1 cm vertical displacement, using the shape state interpreter row reflecting this

displacement. We then calculate the voltage demand resulting from that vector

of sensor measurements due to the final optimized eq1O control law. For a 1 cm

displacement with zero velocity, the demand is ±370 V to EFCU/L, OH2U, and

OH2L. This is quite acceptable for EFCU/L, with a power supply limit of ±500 V,

but not quite attainable by the OH2 supplies, with fully-loaded limits of ±100 V.

Response time will therefore be somewhat more sluggish than the ideal case, but

since the EFC driving signal dominates the system response, this effect should not

be sufficient to reduce the response time below 20 ms (note the small effect on time

constant in the second gain sweep plot).

It is of interest to ask whether the eq1O control law provides satisfactory control

for other equilibria. If so, the task of the control designer is substantially eased,

and the likelihood that satisfactory control will not extend between operating point

equilibria during a shot is much diminished. To explore this question, we apply

the eqlO control law to the eq9 case, with the same EF coil/circuit configuration

as that used in the eq1O design. This results in eq9 being driven unstable, with a

closed loop fastest growth rate of greater than 1000 sec-. This is likely the result

of the difference in state interpretation embodied in the SVD implementation of

the PDOO feedback law calculated for eqlO. The state interpreter is calculated for

the eq1O plasma, with magnetic axis offset from the midplane by 2 cm, more highly

elongated than eq9, with entirely different decay index and modal response. The

magnetic axis of equilibrium eq9 is on the machine midplane, Z=0. In order to

accomodate the high passive growth rate of eqlO, the control system must provide

a high gain, and thus a higher effective phase shift in coil driving signal than that

required to stabilize eq9 .

Despite the fact that these two equilibria both have 3 MA plasma currents,

similar magnetic axis radii and internal inductances, the same control law calculated
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for one of them cannot be used to stabilize the other.
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Figure 6.15: Phase Bode plot for eq9 with EFCU/L control using multipole moment
state interpreter improved by addition of EFC current predictor.
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Figure 6.16: Current mode for eq1O passive unstable mode in presence of EFCU/L,
OH2U, and OH2L as stabilizing EF coils.
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Figure 6.17: Current mode and flux contours for eq1O passive unstable mode in
presence of EFCU/L, OH2U, and OH2L as stabilizing EF coils.
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Figure 6.18: Current mode plot for passive stable mode numbered "2" in table of
eq1O passive modes (y = -5.6).
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LCATOR C-MOD
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Figure 6.19: Current mode plot for passive stable mode numbered "3" in table of
eq1O passive modes (-y = -7).
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Figure 6.20: Current mode plot for passive stable mode numbered "4" in table of
eq1O passive modes (-y = -22).
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Step Response for SVD Implementation eq1i
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Figure 6.21: Step response for the direct SVD implementation of PDOO FB for
eqiG with only the unstable pole placed.

235



Step Response for SVD Implementation 2 eq10
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Figure 6.22: Step response for the direct SVD implementation of PDOO FB for
eq1O with both -y = -5 and unstable pole placed.
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Figure 6.23: Gain sweep of largest singular value in Gp and Gd matrices to searchfor optimum gain value.

237

x200,

150

100

x

4'

50 L

0.0

x
x
x
x

x x x
x
x



ReRoots Gain Sweep
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Figure 6.24: Gain sweep of second singular value in Gp and Gd matrices to search
for optimum gain value.
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Figure 6.25: Gain sweep of third singular value in Gp and Gd matrices to search
for optimum gain value.
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6.9 Discussion

This chapter has addressed the problem of actual feedback law design for the toka-

mak axisymmetric control problem. Although exhaustive gain searches can result

in satisfactory control laws for systems with one or two control circuits, such an

approach becomes intractable for systems with more degrees of freedom. To allow

analysis of truly multivariable systems, a pole placement algorithm was introduced

for nominal control law calculation, and an observer design appropriate for the com-

putational constraints was derived. This approach was shown to be useful even for

a single control degree of freedom, as well as extremely powerful for the design of a

control law involving several coils.

The Alcator C-MOD analog-digital hybrid control architecture was described

and the general pole placement and observer approach was generalized to accomo-

date that system. An algorithm for directly implementing the PD output observer

on the hybrid system was derived, and examples of pole placement using this method

were given. The eq9 equilibrium was used to illustrate the application of various

control design tools as they were described.

The use of state interpreters was discussed, and a variety of candidate inter-

preters was considered. The multipole moment plasma state predictor was shown to

perform the best among these, in particular when used to calculate and incorporate

a predictor for driven coil current. It was demonstrated that performance could be

limited by the presence of slow decay modes, primarily involving large currents in

the low resistance driven EF coils. Performance was improved by both attempting

to place such poles at more well-damped locations, and by including a predictor for

driven coil current in the state interpretation matrix.

Control performance was analyzed by addressing both time domain, frequency

domain, and explicit experimental robustness criteria. Time domain quantities

were calculated using the response of the system to step voltage demands to the
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driven coil power supplies. Frequency performance was examined by calculating the

frequency response of individual decoupled signal loops passing through the system.

Robustness to plant model was investigated by perturbing the individual matrices

describing various physical aspects of the plant model. Robustness to signal error

was evaluated by eliminating certain sensors or groups of sensors and calculating

the effect on closed loop eigenvalues.

Finally, a complete control design for 3 driven EF circuits was shown for the

eqlO equilibrium. This design demonstrated that the presence of other EF coils can

limit performance even further than the EFCU/L circuit alone. In particular, the

OH2U/L coils each have L/R times of 213 ms, significantly longer than the L/R time

of each EFC coil, 89 ms. The 12-phase OH2 power supplies are also much slower

than the chopped EFC power supply. These two factors make it very difficult to

improve performance to the nominal target of a 20 ms response time, and to provide

sufficient robustness to tolerate 5% error in plant model or loss of individual flux

loops. However, using a combination of pole placement and gain space searching, an

overall response time under 10 ms was achieved. This value roughly characterizes

both rise and settling time with no overshoot. Error robustness calculations showed

that this final control law was extremely robust to model error.

Unfortunately, the optimized control law derived for eq1O was found to drive

the eq9 equilibrium highly unstable. This is what one would expect, given that

the passive growth rate being stabilized in eq1O is much higher than that of eq9,

resulting in a higher required feedback gain as well in the eq1O case. Furthermore,

the SVD implementation is necessarily very equilibrium-specific, since the "state

interpreter" implicit in the SVD formulation consists of the particular principal

vectors needed to implement PDOO control for eq1O. Control laws calculated for

one equilibrium using the PDOO algorithm and direct SVD hybrid implementation

are therefore not generally applicable to other equilibria.
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Chapter 7

Summary and Conclusions

This work has explored various methods of analysis and design of axisymmetric

control systems for tokamaks, with an emphasis on vertical stability control. The

nature and use of the rigid vertical plasma model was discussed and both passive

and control design results were presented. A novel linearized, flux conserving, per-

turbed equilibrium plasma stability model was also derived, and applied to the

problem of passive and active stability analysis. This model was then used in ex-

tensive control design calculations. The use of pole placement algorithms in solving

the axisymmetric plasma stability control problem was described, and appropriate

state observers were derived. The pole placement and output observer algorithms

were then reformulated to be implemented using the Alcator C-MOD digital-analog

hybrid control system. Finally, examples of applications of these formulations were

presented. These algorithms were discovered to yield satisfactorily high performance

and robustness control laws, but not to be generally applicable from one equilibrium

to another very different equilibrium.
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7.1 Rigid Plasma Models

Rigid models are generally simple to use and easy to understand. They provide

a quick estimation of relative plasma vertical stability, and allow rough design of

control systems. Control laws arising from such models have been shown by other

researchers to provide adequate performance to stabilize equilibria with vacuum field

curvature approaching the critical decay index [ref][LandL]. Rigid models exhibit

much of the essential physics of the vertical instability. Qualitative results such

as the form of the conductor current distribution due to the unstable mode and

the need for vertical velocity feedback are predicted fairly well using a rigid plasma.

However, quantitative vertical stability results appear to be quite sensitive to plasma

model, and can be poorly predicted with a rigid model.

In the present work, certain aspects of rigid modeling were analyzed and dis-

cussed. Basic difficulties concerning single filament plasma models were addressed,

including the problem of filament location and calculation of the proper destabi-

lizing force acting on the filament. The variation in and convergence of calculated

growth rates as a function of number of filaments was studied. It was found that for

typical C-MOD equilibria, a relatively small number of filaments, on the order of

5-10, was necessary to come within 10% of the converged growth rate. Only about

20 filaments were required to reach 1% of the converged value. Single filament mod-

els were found to yield low passive growth rates compared to those calculated with

multifilament models, giving rise to more optimistic predictions regarding control-

lability and power supply limits.

Multifilament rigid plasma model results proved sufficiently restrictive and

compelling in the case of certain C-MOD control coil configuration analyses to

cause a major redesign of the vacuum vessel and creation of a special fast power

supply-driven pair of control coils.

However, rigid models do not generally treat the plasma as flux conserving or
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account properly for the nonrigid degrees of freedom in a physical plasma. As a

result, the quantitative results of stability analysis, such as passive growth rates,
proper modal observers, and actual control law requirements, are predicted inaccu-

rately. The importance of this degree of inaccuracy varies greatly with equilibrium

characteristics. Satisfactory stabilization of equilibria which approach the limits of

machine performance will of course demand the most accuracy in modeling.

7.2 Perturbed Equilibrium Plasma Model

The present work has determined that even a simple nonrigid plasma model with

approximate flux conservation can result in passive growth rates which are signif-

icantly different from those calculated using a rigid model. Passive growth rates

differing by as much as a factor of 2 from the rigid values were calculated using

the perturbed equilibrium approach. Since passive growth rates were shown to be

related to the maximum tolerable delay time, such an error can result in a large

reduction in actual power supply response time safety margin.

Because the Alcator C-MOD vacuum vessel contributes very strongly to ver-

tical stabilization, vessel currents must be included in the plasma response model

in order to be able to analyze this machine correctly. To estimate the influence of

vessel currents on the plasma, a mapping function was calculated which expands

vessel current modes in effectively equivalent EF coil current modes. This approx-

imation was demonstrated to be very good for the vessel modes possessed of low

order variation in poloidal angle, which are the important modes in the problem.

Furthermore, the intrinsic number of degrees of freedom in the nonrigid plasma

model was investigated using singular value decomposition methods. The actual

dimensionality of the plasma response subspace was found to be about 4-5, since

the space of vectors of flux at the vessel due to plasma variations can be spanned

to an accuracy of better than 0.1% by a basis set of only 4-5 principal vectors. This
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indicates that the 13 degrees of freedom arising from the EF coil current and equi-

librium perturbation is likely to be sufficient to characterize the significant plasma

response coupling to the conductor array.

Using this vessel mapping with the flux conserving perturbed equilibrium

plasma model results in vertical modes which are qualitatively similar in form to

those calculated using a rigid model. However, the nonrigid model growth rates

differ significantly from the rigid model growth rates, and the plasma response,

conductor currents, and vacuum flux due to these modes are somewhat different,

reflecting the extra degrees of freedom available to the model.

The passive growth rate prediction for a standard C-MOD equilibrium was

compared to that derived from a similar equilibrium calculated using the Toka-

mak Simulation Code (TSC). Although certain aspects of the simulations differed

somewhat, including details of the vacuum vessel model and plasma profiles, the

predicted growth rates differed by about 50%. By contrast, the TSC prediction was

greater than the corresponding rigid result by a factor of 3.

7.3 Active Control Analysis

Active studies using the rigid model exhibited the need for velocity feedback, a

phenomenon which was demonstrated to arise as a result of the relative degree of

inductive coupling in the plasma-vessel and plasma-driven coil systems. A single

pole "lag" power supply model was used with single variable direct feedback on

actual plasma vertical position and velocity to explore delay tolerance. For the two

equilibria studied with this power supply delay model, the maximum tolerable "lag"

time constant was roughly equal to the inverse of the passive growth rate. Among

the rigid equilibria studied, the most unstable had an elongation of n,, = 2 and an

unstable growth rate of 1 ms, and could tolerate a maximum power supply delay
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of 1 ms as well. This was deemed to be the most unstable growth rate to be safely

attainable with the final EFC control coil design and fast power supply chosen. This

power supply has a response time of 200 psec, providing a safety margin of a factor

of 5 over the tolerable delay time.

By contrast, using the perturbed equilibrium plasma model, approximately

the same growth rate was found to occur in a standard C-MOD equilibrium with

MM = 1.85. This suggests that a n,,, = 2 equilibrium may not be attainable with

as large a safety margin as indicated by the rigid calculation, but that an elongation

of at least n,,, = 1.85 can be attained with that margin of safety. Actual control

design further substantiated the satisfactory performance of such an equilibrium.

7.4 Axisymmetric Control Design

General multivariable control system design was discussed, and the use of pole

placement algorithms described. A full state feedback approach coupled with a PD

output observer was derived for the case of feedback unconstrained by architecture.

The PD output observer solution was designed to be calculable using only linear

methods, avoiding the complexity and time demands of a nonlinear Ricatti solu-

tion. The linear observer was demonstrated to provide satisfactory reconstruction

of conductor modes when flux loops alone constitute the sensor array, and excellent

reconstruction when B, coils are used in addition to flux loops.

The C-MOD analog-digital hybrid control system was then described, and

the PD output feedback algorithm implemented using that architectural constraint.

Intermediate state interpreters were derived which could provide information to

system operators, facilitating between-shot manual refinement of control perfor-

mance. A direct SVD implementation of the exact PD output control law was also

demonstrated, and later tested for the case of the most demanding equilibrium pre-
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sented here. Use of the different state interpreters was illustrated using a standard

gs5 = 1.6, .,,, = 1.7 C-MOD equilibrium (eq9), controlled only by the EFCU/L

coils and power supply. This equilibrium was shown to be satisfactorily controlled

using a toroidal multipole moment state interpreter. The system performance was

then improved by the inclusion of an explicit predictor for control coil current in

the state interpreter. The final, improved control system exhibited a rise time of

about 10 ms, settling time of less than 50 ms, and zero overshoot. These parameters

were shown to compare favorably with performance characteristics for actual shots

in currently operating machines. The final control law was also demonstrated to be

robust enough to model error to provide satisfactory performance even when the re-

sistance, mutual inductance, and plasma response matrices were each independently

perturbed by ±5%.

Various performance testing approaches were described, including time domain

(step response), frequency domain (multivariable Bode plot), and systematic error

effect calculations. In addition, the use of gain sweeping (gain space searching) and

frequency sweeping (Bode plot construction), taking advantage of the form of the

hybrid architecture, was described for control law refinement purposes.

A Kes = 1.7, r.., = 1.85 equilibrium (eqlO) was used to illustrate the general

design strategy, including determination of a nominal control law, and testing and

refinement of system performance. The nominal control law for this case was chosen

to be the direct implementation of the SVD of the PD output observer. This case,

in which the OH2U and OH2L coils were used along with the EFCU/L control

circuit to stabilize the plasma, resulted in a nominal rise time of greater than 20

ms with zero overshoot, but an extremely long settling time greater than 140 ms.

After improvement by gain space searching, the rise time was reduced to less than

10 ms with no overshoot, and the settling time to also about 10 ms.
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7.5 Conclusions

Rigid plasma models, although easy to use and often sufficient to allow derivation

of satisfactory control algorithms, in general make significantly more optimistic pre-

dictions than more accurate nonrigid plasma models. The flux conserving perturbed

equilibrium approach derived here, for example, predicts a passive growth time of 1

ms for eq1O passively stabilized by EFCU/L, OH2U, and OH2L. The corresponding

rigid prediction was 1.7 ms. This latter is the characteristic delay time of a 12-

phase power supply. If one were to use the growth time as an estimate of maximum

tolerable delay time, such a difference could lead designers using a rigid model to

choose an inadequate supply to stabilize this case.

When discretized models of the stabilizing conductors are used, it is very nat-

ural and powerful to use a state space representation to analyze and design for

stability. This formalism allows the application of multivariable system analysis

techniques, which have been demonstrated here to be extremely useful in the de-

sign of control laws. The full state feedback pole placement approach coupled with

output observers enables designers to establish stable nominal control laws even

for many-variable systems. The performance and refinement methods we have de-

scribed allow further improvement to extract the maximum performance from the

control system.

The analog-digital hybrid control system architecture of both Alcator C-MOD

and TCV has been demonstrated to be sufficient to allow implementation of the

control laws derived using multivariable pole placement, as well as allowing oper-

ator refinement between shots. A choice of implementations and forms of state

interpreters was described. It was demonstrated that the multipole moment state

interpreter provided the best control for eq9, using an EFC current predictor to im-

prove performance. Using an explicit state interpreter allows an operator to refine

the control algorithm in a straightforward way between shots, since the variables of
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interest can be made available to the operator, and are intermediate elements of the

control loop. The operator can thus modify gains explicitly affecting the stability

of the variable in need of improvement between shots. A state interpreter approach

is generally preferable to a more equilibrium-specific approach such as the direct

SVD implementation if sufficient robustness and performance can be demonstrated

for the final design, since greater operator flexibility is usually desirable.

However, if high performance is required, a direct SVD implementation re-

fined with gain sweeping and Bode plot performance testing will likely result in the

maximum performance for a specific equilibrium. Extremely demanding equilib-

ria with passive growth rates approaching the safe limits of power supply response

may require an SVD implementation which is more specifically adjusted to fit that

particular case. Such specific control laws would best be reserved for the final,

relatively time invariant state of a highly elongated plasma during flattop, using

appropriate state interpreters for the rapidly changing plasmas during the rampup

and evolution preceding the final flattop state.

Finally, the present study using the flux conserving perturbed equilibrium

model indicates that equilibria having separatrix elongations of at least 1.85 can

be stabilized robustly with the present C-MOD control architecture and conduc-

tor/sensor configurations. Thus, the the nominal design specification for plasma

shaping can be met.

7.6 Suggestions for Further Study

There is a great deal of continuing work to be done along the lines of this study. To

a large extent, the designs analyzed here have been illustrative, but not complete.

Various aspects of the models have been simplified to facilitate explanation and

illustration of the approach. In order to apply these techniques in actual C-MOD
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shots, more explicitly detailed cases will have to be analyzed.

The machine model itself must be expanded in detail. For example, the effects

of cooling on the vacuum vessel and EF coils will have to be studied in some de-

tail to achieve the correct maximally efficient control laws. This can best be done

when some data have been amassed regarding the actual thermal behavior of the

machine, including such information as cool-down times between shots and temper-

ature variation of the vacuum vessel during a day of operation. The EF coil set

which is actually present in the machine includes at least two more coil pairs which

contribute to vertical stability. These are EF1U/L and EF2U/L, the upper and

lower coils in each pair driven independently of their mates on the other side of the

midplane. These were not modeled in this work in order to simplify illustration as

well as to take a conservative approach to stabilizability. Their presence is expected

to somewhat reduce passive growth rates, and create more performance-limiting

slow decay modes. The reduction in passive growth rate should be less than about

25%, since the effect of the better plasma-coupled OH2 and EFC pairs was to cause

about this degree of change.

Extensions of the plasma model would also be very interesting to undertake. In

particular, allowing pressure to vary in the perturbed equilibrium approach would

allow approximate modeling of adiabatic compression and the effects of phenomena

such as sawteeth which affect the pressure profile.

Another extremely important next step is to properly benchmark the perturbed

equilibrium plasma model predictions with a more accurate stability code. Of inter-

est in this regard would be both comparison with marginal wall position stability

boundaries predicted by an ideal MHD code, and comparison with a previously

benchmarked, more accurate, resistive wall stability code.

Essentially the only tokamak studies previous to this work which have em-

ployed state space methods have focused on optimal control analysis. Optimal
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control theory has many promising features, although it suffers from the limitations

mentioned earlier. However, it would be of great interest to compare the perfor-

mance of control laws obtained using various cost functionals to the performance of

control laws resulting from the pole placement and refinement algorithms presented

here.

Finally, the ultimate test of an analysis and resulting control law design is

the performance resulting when implemented on actual machines. It is hoped that

much of the preceding analysis will be used directly on Alcator C-MOD, very likely

revealing the important physics aspects which must be modified in the model. A

large part of the mission of Alcator C-MOD involves the study of shaped plasmas

and the general problem of axisymmetric control. The perturbed equilibrium plasma

model will also be applied to analysis of JT-60 Upgrade, and similar control designs

will hopefully be tested on that machine as well. Actual machine implementation

provides the final arbitration of control quality, and will inevitably lead to better

understanding of the axisymmetric control problem.
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