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Abstract

The development of trapped structures in decaying and saturated drift wave turbulence is
studied via computer simulation. A two-dimensional electrostatic fluid model is used. The
turbulence which evolves in the pure decay runs (no nonadiabatic electrons) is characterized
by tightly bound monopole vortices and a very narrow frequency spectrum. These results are
qualitatively similar to results found in two dimensional Navier-Stokes simulations. For the
studies of saturated turbulence, rather than simply introducing the linear growth rate, a new
nonadiabatic electron model is used. This model takes into account the effects of broadening
and shifting of the frequency spectrum which results from the strongly nonlinear character of
the problem-effects which are found to be very important in the turbulent states which are
studied. These states are characterized by broadened frequency spectra, with strong damping
on the nonadiabatic electrons at high-k and along the k.-axis. Trapped structures are observed
in many of the saturated simulations, even in the presence of moderately broad frequency
spectra. The extent of the trapping varied dramatically, becoming a much stronger effect as
the RMS electric field increased.
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Chapter 1

Introduction

1.1 Goals

Do coherent "trapped" structures exist in saturated drift wave turbulence? Or is the

turbulence more properly characterized as a collection of waves with random phases?

In this thesis, I will try to address this question via direct numerical simulation of a

two dimensional model equation.

Several other authors (Hasegawa and Mima[1, 2], Terry and Horton [3, 4, 5, 6], and

Waltz [7]) have studied two dimensional drift wave turbulence using equations similar

to the one used in this work. This thesis has a somewhat different focus, however, in

its concentration on trapped structures in fully developed turbulence. Furthermore,

a new model for the nonadiabatic electron response is used, which is necessary to

correctly simulate the interaction of the electrons with a coherent structure. The

effects of this new model are studied in some detail.

1.2 Motivation

The most pressing problem in fusion plasma physics today is that of anomalous trans-

port of particles and energy in tokamak confinement experiments. The goal of the

fusion program is to confine a plasma at a sufficient density and for an adequate

time such that a significant number of particles will fuse. Early estimates indicated

that there should have been no problem in attaining the necessary confinement con-

ditions. Experiments, however, have been plagued by anomalous transport processes,

drastically reducing the energy and particle confinement time. The electron heat

10



1.3. TURBULENCE THEORY

transport, for instance, is measured to be a factor of 10-100 above the expected

value. The particle transport is also found to be anomalously high, although not to

the same degree [8].
Anomalous transport processes are believed to be primarily due to low frequency

turbulence driven by the density and temperature gradients necessary to have a con-

fined plasma. Experimental measurements of the the density and potential indicate

that there is a continuous spectrum of fluctuations characterized by an average scale

size k- ~ p,, and an average frequency w ~ e., [8]. Here p, is the ion Larmor ra-

dius at the electron temperature, and w., is the electron diamagnetic drift frequency.

These scale sizes are consistent with various types of drift waves, all of which have

frequencies of approximately w.,, and whose linear growth rates peak at kp, ~ 1.

The density and potential fluctuations are found to have spectral characteristics

which indicate that the system is in a strongly turbulent state: The frequency and

wave number spectra are found to be continuous. The frequency spectrum is charac-

terized by a broad width, Aw ~ w, and the wave number spectrum is observed to be

nearly isotropic perpendicular to the magnetic field. The fluctuation levels are a few

percent:

e> _ p,-~-~-3-5%.
Te no L

We shall see in Chapter 2 that these fluctuation levels are sufficiently large to make

our model equation strongly nonlinear.

1.3 Turbulence Theory

Turbulence, by its very nature, is not predictable. Rather one must form a theory

for the statistical properties of the turbulence, which ultimately would lead to an

estimate of the average transport. For such a theory to be believable, it must be

consistent with the underlying dynamical equations.

The usual approach to these statistical theories is to derive moment equations

for the various correlation functions from the original dynamical equation. Due to

the nonlinearity, this process results in an infinite hierarchy of moment equations,

with the evolution equation for each moment depending on moments of a higher

order. This is exactly analogous to the B.B.G.K.Y. hierarchy in plasma physics. The

11



CHAPTER 1. INTRODUCTION

question, then, is how to truncate this hierarchy and obtain a finite set of equations

which give a good approximation to reality. Unlike the familiar closure problems in

plasma transport theory, there is no good expansion parameter in a strongly turbulent

system-the very definition of strong turbulence implies that the nonlinear terms are

just as big as, or bigger than, the linear terms.

If this is the case, then regular perturbation theory, or weak turbulence theory,

makes no sense at all. Indeed, these expansions contain time secularities which cause

them to diverge with time, leading to nonphysical results.

Weak turbulence theory has been extended to give resonance broadening theory

[9, 10], the Direct Interaction Approximation (DIA) [11, 12], and clump theory [13, 14,

15, 16, 17]. These theories result from summing an infinite subset of the perturbation

expansion in an attempt to remove the worst secularities, a technique known as

renormalized perturbation theory.

The resonance broadening theory may be derived by adding a random, diffusive

perturbation to the particle's linear orbit, which essentially renormalizes the linear

propagator. Thus it has a simple and elegant physical interpretation. Unfortunately,

in certain cases (including the drift wave problem) this theory has some serious flaws in

that it fails to conserve energy and does not reduce to the weak turbulence equations

in the limit of small fluctuations [15, 18].

In contrast, the equations of the DIA are complicated in the extreme, and are very

hard to understand from a physical point of view. They consist of coupled nonlin-

ear integro-differential (non-Markovian) equations for the spectrum and the response

function. The full equations have never been solved for the plasma problem, although

several simplified versions have been studied [7, 18]. The theory does, however, pos-

sess an interesting property: it can be shown to be an exact statistical description

of a certain contrived model problem [19, 20, 21]. Thus it satisfies all the necessary

realizability conditions and, in essence, must be well behaved. Many people have

taken this fact as implying that the DIA must also be a good approximation. This

is not necessarily the case. In spite of all the wonderful renormalization, the DIA is

still a perturbation theory. If the fluctuations are truly large, then the non-secular

terms which the DIA has neglected are not small.

When is the plasma turbulence too strong for the DIA? There is no easy an-

swer to this question since the DIA always gives a well behaved result. But from a

physical point of view, the perturbation theory will break down completely when the

12



1.4. OUTLINE

turbulence gets sufficiently strong to trap particles. In the fluid model of drift wave

turbulence this means that the fluctuations are sufficiently strong that the E x B drift

of the particles is larger than the diamagnetic drift, which results in the formation of

eddies whose lifetimes are longer than a drift wave period. Once these coherent struc-

tures form, the orbits of the fluid particles can no longer be described by perturbation

theory, invalidating the assumptions of the DIA.

The clump theory is a physically motivated turbulence theory which concentrates

on the formation and dynamics of semi-coherent blobs of charge (13, 14, 151. It

incorporates in a readily understandable way the ideas of mixing and orbit instability.

The clump theory may be derived via a renormalization procedure [16, 17], although

this derivation, as with the DIA's, is without foundation if the clump lifetime becomes

on the order of, or larger than, the trapping time. In this case, the clump becomes a

phase space density hole, and a more phenomenological approach is needed in order

to make the clump picture fit.

Thus we are led to our problem: Do trapped structures form in saturated drift

wave turbulence? We will try to answer this question by solving the dynamical

equation for the potential fluctuations. We shall see that trapped structures can form

and last for many drift periods, even in driven turbulence with a moderately broad

frequency spectrum.

1.4 Outline

Some fairly drastic assumptions have been made in deriving our model equation. The

ions are treated as cold, so there are no finite Larmor radius effects. The electrons

are treated as being nearly adiabatic with a constant temperature. The equilibrium

density profile is taken to be exponential so that diamagnetic drift speed is a constant.

The ion dynamics are treated in two dimensions (perpendicular to the magnetic field),

and there is no magnetic shear. These assumptions neglect a great deal of impor-

tant physics. However they maintain the main nonlinearity in the problem, and are

sufficiently simple that we can afford to solve them many times with a fairly high

resolution.

The model equation based on these assumptions is derived in Chapter 2. To

lowest order, this equation is just the Hasegawa-Mima equation [1]. Terry and Horton

[3, 4, 5], and Waltz [7] have also studied extensions to this equation. However they

13



CHAPTER 1. INTRODUCTION

made use of rather ad hoc expressions for the nonadiabatic electron response which

are plainly wrong in the presence of coherent structures. We derive a form for the

nonadiabatic response which approximates the correct behavior of the electrons in

the limit of coherent structures, and which also reduces to the linear growth rate in

the limit of small amplitude fluctuations.

Chapter 3 contains a discussion of the numerical technique used to solve the

equations derived in Chapter 2. We employ a spectral approximation for the spatial

derivatives, with all the aliasing terms removed. A high order Runge-Kutta algo-

rithm is used to advance the equations in time. The resulting code is free of aliasing

instabilities, and is found to give accurate solutions to an exact test problem.

Chapters 4 and 5 deal with solutions to the Hasegawa-Mima equation. This

equation is essentially correct on a short time scale, and is about a factor of 5 less

expensive to simulate. We try to learn as much as possible about its solutions before

moving on to our more complicated model. In Chapter 4 we look at the simulation

of isolated trapped structures. The Hasegawa-Mima equation possesses a family of

exact solutions. We derive the simplest member of this family, the modon or dipole

vortex, and study its properties. Several reasons are given as to why it is unlikely

that such structures would actually evolve in a turbulent system. Next we look at

the evolution of isolated monopole vortices. These are not exact solutions to the

equations, but it is shown that they can have very long lifetimes and that they are

generally more robust than the modon.

The turbulence of the Hasegawa-Mima equation is studied in Chapter 5. Here

we attempt to understand how trapped structures might evolve in a turbulent sys-

tem. Like the two-dimensional Navier-Stokes equations, this equation exhibits a dual

cascade-energy tends to flow to long wavelengths, and enstrophy, to short wave-

lengths. In the presence of viscous damping, the dual cascade results in a quick

decay of the total enstrophy relative to the decay of the energy. This leads us to

the selective decay model, in which we derive an equation for the final state of the

system by minimizing the enstrophy with the constraint of fixed energy. It is shown

that another variational principle, which may be interpreted as maximizing the local

entropy, leads us back to the equation for an isolated structure, derived in Chapter 4.

Simulations of the Hasegawa-Mima equation show that the system relaxes quickly

to a state consisting of many monopole structures with sizes on the order of a few p,.

This quick relaxation is followed by a quasistationary state in which the average scale

14



1.4. OUTLINE

length slowly increases as monopoles slowly merge and grow larger. These structures

are seen to have extremely long lifetimes, and the turbulence is observed to have a

very narrow frequency spectrum. It is conjectured that these structures are somehow

local solutions to the variational principle described above.

A comparison is made with a similar model in which no density gradient is present.

The spectral evolution of the two systems is found to be similar. However the tendency

to form isolated monopole vortices is much stronger in the zero-gradient case, where

monopole structures are exact isolated solutions.

Finally, in Chapter 6, we look at the changes which occur when our nonadiabatic

electron model is included. The resulting turbulence has a broadened frequency

spectrum, which causes the nonadiabatic electrons to act as a sink, as well as a

source, of energy. We calculate a nonlinear growth rate due to the nonadiabatic

electrons. It is found to be strongly negative at high-k and along the k.-axis. In

spite of the broadened spectrum, we still find that trapped structures tend to form.

Their behavior is modified significantly, however. Their motion is now much more

dynamic. They tend to wander about in the x direction and to undergo strong shape

changes on a time scale somewhat longer than the eddie turnover time. The extent

of their dominance-the number of vortices and the fraction of the fluid which is

trapped-depends on the input parameters to the problem.

15



Chapter 2

The Model

Several related model equations for describing drift waves are derived in the following

sections. We are primarily interested in obtaining a simple model equation that

contains the essential nonlinear dynamics. Thus we will consider only the case of the

electrostatic universal mode in an unsheared slab. This simplification neglects a great

deal of very important physics: magnetic shear, ion kinetic and gyrokinetic effects,

electron and ion motions along the field lines (although these will be touched upon

during the derivation), trapped electrons, the effects of temperature and magnetic

field fluctuations, etc. Certainly we cannot expect to make accurate predictions of

tokamak transport using our model! But there is still a great deal to be learned from

the simpler turbulent systems, and the simulations are much more practical, given

todays level of computers.

2.1 General Assumptions

2.1.1 Geometry

We consider a slab plasma as shown in Fig. 2.1, where the magnetic field is constant

and in the i direction, and the density gradient is in the -x direction.

2.1.2 Length and Time Scales

The plasma will be treated in the low frequency, long wavelength regime:

W >1, (2.1)
k,1Vth.

16



2.1. GENERAL ASSUMPTIONS 17

y

Vn0

x

B Bi

z

Figure 2.1: Coordinate system for our slab plasma.

<o 1, (2.2)
kjjVthe

and

Debye < 1, (2.3)

where o is a characteristic frequency for the turbulence, k = k1 + k, is a character-

istic wave vector, k is its magnitude, Vth, and Vth, are the ion and electron thermal

velocities, and ADebye is the Debye length. These assumptions allow us to treat the

ions as a fluid, to treat the electrons as being nearly adiabatic, and to treat the plasma

as being quasineutral. This is still a fairly complex system. We further restrict the

problem with an ordering that is appropriate for drift waves and ion acoustic waves:

W < P , (2.4)
Qj L,,

k Lp, ~ 1, (2.5)

and

~ e, (2.6)

where f; is the ion gyrofrequency, p, is the ion gyroradius at the electron temperature,

L, is the density scale length, and k, = 1k±j. This ordering allows us to greatly

simplify the ion fluid equations. The ordering for kj1 given in Eq. (2.6) will later be

changed to k1l < ck, allowing us to handle the ion dynamics in two dimensions.
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2.1.3 Field Amplitudes

Experimental measurements of the electric potential fluctuations in tokamak plasmas

show that [22, 23, 8]

~o 5%,
Te'

where 0 is the potential, e is the magnitude of the electron charge, and T is the

electron temperature. To a good approximation the fluctuation levels scale as p,/La.

We shall assume all fluctuating quantities to be of this order:

e - -n l ' _Os (2.7)
T n. c. Ln'

where nj is the ion density fluctuation, vjj is the parallel component of the ion velocity,

no is the equilibrium density, and c. = pQi is the ion sound speed.

2.2 The Ion Fluid Equations

Under the assumptions stated in Eqs. (2.1)-(2.3), the ions obey the following conti-

nuity and momentum equations:

+ V - (nivi) = 0, (2.8)
at

ni mi (a + vi - Vv = -Vpi + VV2v, +niq E+-v x B). (2.9)

where ni is the ion density, mi, the mass, qj, the charge, vi, the fluid velocity, pi,

the ion pressure, and v = viip/Q?, the viscosity [24], vii being the ion-ion collision

frequency.

2.2.1 The Parallel Velocity Equation

We proceed by separating the ion continuity equation into its parallel and perpendic-

ular components. The parallel component of Eq. (2.9) is simply

nim; av + vi. Vv) = -p + vV 2V1 - a; (2.10)
( t ) z Oz'

18
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2.2.2 The Perpendicular Velocity Equation

The perpendicular component of Eq. (2.9) is found by taking the cross product of z

with Eq. (2.9), and then solving for v,:

e c
V = z x 1Vp; + - i x V<

nqB B

+-- I V2xv_ +I +xva. (2.11)
nm Pi Q; at

We recognize that v, is composed of the diamagnetic drift, E x B drift, and the inertial

and viscous drifts. The latter are down by w/;, and so they may be calculated

perturbatively. This leads to

V 1  V. + VF + V, + Vm, (2.12)

where

V. nqB

- P x 1 Vlog n, (2.13)

VE X V, (2.14)

V1 V x72iV
nm £2

Vi3V2 Ieo
Caps _ _ T (2.15)

and

Vm =+ ((vIoi + v. + vE).V) x (v. + v),

a + (V. + VE) - V X (V. + V) , (2.16)
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and where 7 = Te/Ti is the ratio of the electron to ion temperatures. The parallel

convective derivative has been neglected in Eq. (2.16) since it is down by an order in

magnitude.

Throughout this thesis the temperature profile shall be taken to be flat and inde-

pendent of time. For now we will also assume that Te - Ti, although we will later

only consider cold ions. With T constant, the diamagnetic and E x B velocities may

be combined by defining

v = V. + VE,

= pcaixV 7r-logn+ -),

=p~c.,x V, (2.17)

where

1 eq5
= -log n + . (2.18)

7 T

In terms of v.0, we have

Vmn = + v-V x v, (2.19)

but

-p~c.V'0,

so that Eq. (2.19) becomes

Vm .- + v0. V) VjP. (2.20)
atJ

20
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2.2.3 The Continuity Equation

The perpendicular component of the velocity was found above explicitly in terms of

, (, og, and n 1 . We now eliminate it from the continuity equation in terms of of

these variables. To do this, we rewrite Eq. (2.8) as

+v* -V logn + + V - (Vm + v') = 0 (2.21)

where use has been made of the fact that V - vk = 0. Then using Eq. (2.20) in

Eq. (2.21) we get

( + v, -v) (log n - p V,20) + VJ+ viAp (e

- (vm + v,) - V log n, (2.22)

where again we have ignored the parallel convective derivative.

2.2.4 Applying the Amplitude Ordering

To further simplify the equations we must separate the equilibrium from the fluc-

tuations so that we may apply the ordering presented in Section 2.1.3. Thus we

write

log n = log (n. + ni) ~ log n, + , (2.23)
no

and

- = 0 + ±1, (2.24)

where

1
'ko - log n., (2.25)

n1 + e. (2.26)
T n Te
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Assuming only that V2?bo < V2,0 1 (it is identically zero for the exponential density

profile) we can, after a bit more algebra, write Eq. (2.22) as

(at+ x +P.C., 1 - ( - pVV±)(n1) + viipV2 (T
p loga no a eO 1 2( ! +v

x ay Te r ' az

- (vm + v) -V log n. (2.27)

Up to this point nothing has been said about the ordering of the viscous terms

in these equations. Rigorously, these terms are quite small in the collisionless regime

and should be neglected. However some damping in necessary to properly simulate

saturated turbulence. In a real plasma this damping would come from both collisional

effects and from Landau damping on the ions. The latter effect is neglected entirely in

this model as it would require a three dimensional kinetic simulation of the ions, which

is not feasible. So, in somewhat of an ad hoc manner, we will keep linear damping

term but will neglect the nonlinear term on the right hand side of Eq. (2.27). We

shall find later that our results are not very sensitive to the value of vii, which to

some extent justifies our cavalier handling of this term.

The remaining term on the right hand side of Eq. (2.27) scales as OaR. The terms

on the left hand side all are of order e2Q . Keeping only these second order terms, we

obtain

+p a } x a )o 1  V20 1

P-pc - + P + 0. (2.28)

Similarly, the parallel momentum equation, Eq. (2.10), may be written as:

a p,c., a log no a 2  0+ + -P'C 8 2XV"i/'w ' J+C az 0 (2.29)

22
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2.3 The Electrons

2.3.1 The Drift-kinetic Equation

The extreme smallness of the electron gyroradius and the low frequency of the drift

wave allow us to treat the electrons using the drift-kinetic equation. In our slab

plasma this equation may be written as:

__ Wfe e 848fe (.0
O + VI + vE Vfe 0 30)at az m az avil

Note that the electron polarization drift is down by a mass ratio from the ion

polarization drift, and thus is negligible. We break f, into an equilibrium piece, an

adiabatic piece, and a nonadiabatic piece:

f+ fo(1+ +f, (2.31)

where

o e fMB, (2.32)

fAIB being a Maxwellian. Using Eqs. (2.31)-(2.32) in Eq. (2.30) we get the following

equation

foa+ + ANv az T, 0 v z

+ (1 + vEl) .Vf E.vj

- (o _ ( fo = 0. (2.33)
f av1 T- T. &z Te,

The leading order terms cancel, leaving

A 0 (eO) ±+ vjjf Of ViF

+ (1 + vE . Lfo O (e o
T. TL 0z T.

23
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2.3.2 The Nonadiabatic Electron Response

We assume that the nonadiabatic part of the distribution function, f, is of the same

order as that given by the linear theory:

Linear = kllVth. hi1  ) Tfo,

k______k v$ . TeVthVt TT
Vr(Ld- W.e) el-fo; W < ,

klleth. T. kjjVth,

e ,k (2.35)
kjVth, Te

where Z is the plasma dispersion function dispersion function [25], and We is the

electron drift frequency, given by

W.e = kYPGi. (2.36)

Recall that

« = < 1, (2.37)
k11Vth

and thus we order Sfo. Using this assumption, and Eqs. (2.4)-(2.6), to leading

order Eq. (2.34) becomes

&(e42 8f p. ___/4 e
fo- a + ± + foc.-- ) = -- (e ) Vf (2.38)at Te Oz L, a y T T, 9z T,

The terms on the left hand side of Eq. (2.38) are all ~ e20fo. These terms alone

give the usual low frequency, linear result expressed above. The term on the right

hand side is ~ 8-' 3f'fo, which typically is about the same size. Thus it would appear

that the electrons also must be treated nonlinearly. Fortunately, the nonlinear term

is odd in vI and we only need the density moment, fe, which will be exactly that

given by the linear theory:

iiek no (w - W*e) edk. (2.39)
k. kjoth. TL
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This can be transformed back to the time domain, giving

fl()= -no kV + zwe) e . (2.40)

The total electron density fluctuation is

ek no + nek(t). (2.41)

2.4 Dimensionless Variables

The final part of the manipulation of these equations is to simply rescale them. We

define the following dimensionless variables

t' = , t,Cs

/ x

Ps

z
z' (2.42)

Leq

,. L e
ps Te'

L,

Ps

p. no

In terms of these, Eqs. (2.28) and (2.29) become

( +± 2x V± )(ni- i) + vV4

( 0+ 1 )0(.
+Vd(X) 7' - , -72 19 Z (2.43)

and
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+Vd( x) V -VX V + -0 (2.44)
(9t r 8y '9z

where v = v;;/R and

Vd(x) L & log n, (2.45)

L, being an average (constant) scale length. Note that for the exponential density

profile, Vd(x) = 1. From now on the primes will be dropped unless it is necessary to

distinguish dimensionless and dimensional variables.

The plasma is quasineutral, fii = fi,, and so we may write the ion density fluctu-

ation as

n' = 0' +fl', (2.46)

where n' and 4' are the dimensionless variables defined earlier, and i' is the dimen-

sionless nonadiabatic electron density. The latter may be written as

n =- -S( + a ', (2.47)
p., no 19t '9y

where

60 = V(2.48)
( k, L.) ("'O)

Written in this form, we can gauge the size of So. In a typical tokamak with minor

radius a and major radius R we would have

a a 1

R R 4'

and

Vth 2m _C, me_
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so that 80 ~ 1.77/15 ~ 0.12. Thus 6o is typically somewhat larger than our expansion

parameter c.

Although the nonadiabatic electron response derived above is correct, it must be

handled with special care: substituting Eq. (2.47) into Eq. (2.43) gives a second order

equation in time which is singular in the sense that it becomes first order as 6o -+ 0.

For now we shall treat h' as a separate variable and worry about the proper treatment

later. This leads to the following form for our equations:

+ ) if (0 +h _ V 201) + VV 40

a 0 1 V Vi +'10

+Vd(X) (+ ;V /1 + = 0, (2.49)
9y 'r az

and

a Vda 19,01 =+ X Vi - Vil + 0, (2.50)
at -rOy Oz

where we now have

1
S= - (4+ )+h . (2.51)

2.5 Simplifications

2.5.1 Cold Ions

The ions will be treated as cold for the remainder of this work: r ~- 1 . Actually, this

is the only regime in which our derivation is truly valid. Under the assumption that

khp, ~ 1, T = T implies that kip ~ 1 which would lead to strong ion gyrokinetic

effects. These effects cannot be treated with a simple fluid model.

For cold ions, 01 = q, and Eqs. (2.49)-(2.50) reduce to the following equations,

similar to those studied by Meiss, et al.[26].

(+ ixV& -v) ( ,V20 + i) + Vd(X) + V140 + = 0, (2.52)

and

27
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/ a4
+ XV10- V11 + -- = 0. (2.53)at 0z

Note that these equations are not really all that much simpler than with the

temperatures equal. In fact, since the nonlinearities are basically of the same form as

before, Eqs. (2.49)-(2.50) would not be much more work to integrate than Eqs. (2.52)-

(2.53) would be.

2.5.2 The Two-Dimensional Limit

Equations (2.52)-(2.53) describe the drift wave coupled to the ion-acoustic wave.

This coupling may be removed, along with all the complexity involved in doing a 3-d

simulation, by assuming k11 < fk 1 .

We cannot let kv become too small, however, since we are limited to k 1Vth. > W. In

fact this constraint makes the neglect of the parallel ion dynamics inconsistent since

the coupling term is roughly the same size as the contribution from the nonadiabatic

electrons. Recall that

at

and

~ ek c
a~jj kllth W.

W £1, Vth.

and so

ai av, 2 .me (2.54)
at az 2mi
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If S ~ 12%, as estimated earlier (Section 2.4) for a tokamak (kj1 ~ eAek,; 6A = a/R),

then this ratio is very close to one. Thus, in a tokamak plasma, the parallel dynamics

of the ions may be as important to the nonlinear evolution of the collisionless drift

wave as the parallel dynamics of the electrons.

For practical and pedagogical reasons, however, we will live with this inconsistency

and allow Eq. (2.52) to become

( + 0xV - V) (0 - v,2 +h) + v(x) + v.=. (2.55)
at Oy

2.6 Treatment of the Nonadiabatic Electrons

As mentioned above, our model for the nonadiabatic electron term requires some

special care. Using Eq. (2.47) directly in our ion continuity equation, Eq. (2.55),

gives an equation singular in time:

( + 2x V14 - V) (aVfq$-(8 +)q (2.56)

+ aO- + vV 40 = 0.+Vd(X) ay

If we look at the linear dispersion relation for Eq. (2.56) we see that we are in trouble

right away. There are two roots: One is the unstable drift wave and the other has

a dimensionless frequency of order 8 1, i.e. w - kiIVthe, violating our assumptions

used in deriving the nonadiabatic electron response. This second root is completely

artificial and we must take special care to avoid it. We will take a look at three

methods of doing this in the following three sections.

2.6.1 The Hasegawa-Mima Equation

The simplest method of treating the nonadiabatic electron response is to ignore it. If

we set So = 0 we get the well known Hasegawa-Mima Equation [1, 2]:

a+ z 24 7,20- f ) + Vd(X) ao+ VVL40 0. (2.57)

If the density profile is exponential, and thus vd 1, then Eq. (2.57) can be

Fourier transformed in both x and y to yield the following mode coupling equation:1

'See Appendix A for an explanation of our Fourier transform conventions
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80k -ik'k - Vkq$O + Z VkkI,kI 41k41, (2.58)
atk+k"=k

where wk is the linear frequency, given by

ok = - k(2.59)1 + k2

and IVkI,k' is the mode coupling coefficient, given by

1 i - k' x k" 0" // 2

Vk,k, 1k" -2 . (2.60)
2 1 + k 2

While neglecting the nonadiabatic response might seem like a perfectly valid and

consistent thing to do, it is not. This assumption fundamentally changes the nature

of the problem by removing the linear instability.

2.6.2 The Terry-Horton Equation

Terry and Horton [3, 4, 5] corrected this deficiency of the Hasegawa-Mima model in

the following way: they assumed that a ~ -iwo in the expression for the nonadia-

batic electron response, where wo is the mode frequency neglecting the nonadiabatic

electrons (i.e. Eq. (2.59)). Making this substitution into Eq. (2.47) leads to the

following approximate form for the nonadiabatic electron response:

n ~ ik , (2.61)

where2

8k = - .k2  (2.62)
± k2

This may be transformed back to physical space to give

0 ~ .54v±2P-14 (2.63)

2Terry and Horton get a somewhat different expression since they include other effects, such as
finite temperature and trapped electrons (in the banana sense). The comments I make regarding

Eq. (2.62) apply equally well to their expressions.
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where P =1 - V_2. Substituting Eq. (2.63) into Eq. (2.55) then gives

(t+ ayxV1 - _+ (2.64)

+Vda) + vV40 = 0.

Transforming Eq. (2.64) to Fourier k-space gives the following mode coupling

equation:

at = (-iCk + k - vk ) Ok + Z Vk,k,k lk'4 k. (2.65)
k'+k"=k

The linear frequency and growth rate, Uk and k, are given by

-k kV(1 + k2 ) (2.66)
(1 + k2) 2 + 82

and

(1 + kyok (2.67)
(I + k2) 2 + Sk

The modified mode coupling coefficient is given by

1k,k I k' x V (Xk" - Xk') (2.68)
2 1 + Xk

where

Xk = k2 + i 6k (2.69)

If we ignore the terms of order 2 in Eqs. (2.66) and (2.67) we get back the usual

expressions for the mode frequency and the linear growth rate of the polarization

destabilized drift wave. Still, the physics behind the above assumption is all wrong.

It is basically a weak turbulence assumption. If the system is strongly turbulent, as

is observed experimentally, then there is no reason to set w = wk. We will study this

question closely with our code.
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2.6.3 A New Method

The Terry-Horton equation was arrived at by doing a perturbation theory on the

linear part of the equation. What I do is along the same track but I carry it one step

further. First rewrite Eq. (2.55) as

(8 8 88zxV1 0 V, 9 ~~V4 v~4 (2.70)

at 09YB

The right hand side of Eq. (2.70) is assumed small compared to the left hand side,

which is recognized as the Hasegawa-Mima equation. The procedure is to approximate

the a operators on the right hand side using the Hasegawa-Mima equation.

This technique is an extension of the perturbation technique that is usually applied

to solve the linear dispersion relation. In the linear case this technique can be iterated

and the solution can be shown to always converge to the real drift wave root. Multiple

iterations could also be done in this nonlinear case, but it is not obvious that this

would be worth the rather large computational expense which it would incur.

To this end we define

P- P-1 {f, Po} (2.71)
60=0

where P 1 - V1 , and {., .} is the Poisson bracket, defined to be

{f UV}= au - - -u - -(2.72)
ax ay ay 19X

Now differentiate Eq. (2.71) with respect to time, and use Eq. (2.71) as necessary:

(1 P-1) - P-1 {Pf0 P l
at ( y t

1 - P-1-1 4 , Pol - P-1 10, P41

- P-12 (1 - P-1) -P 1 - {4 PO}
ay2 ay

(2.73)-P-1 f, Pol - P-1 f 0, P41

32
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and thus we have the following equation:

+ ) id-V (0 - V 20) + V,(X) a

-60 P-1 (+ - P-' +P (i - p ) {0 P} (2.74)

+P 1 {4, Pok + P 1 {4,PN } - 4+

The right hand side of Eq. (2.74) is only a function of q and spatial operators on q.

The first term is exactly the linear growth term discussed above.

Transforming Eq. (2.74) to Fourier k-space gives the following mode coupling

equation:

(-iwk + + 1 + k 2 Zik) Vk,kI,k" 41k4k"
&t I +) k k'+k"=k

+ 1 + 2  k,k,k"I (4k" + 4k4k,) (2.75)
1+k' k+k,=k

-_ 1 +.x k - 4lk'l k" + i (k" - k') Ok'kl)
k'+k=k + k)

where

-iWk'k + Vk,k,,k1 (k, 4 k. (2.76)
k'+kl#=k

The mode coupling coefficient, Vks,k, above is the same as that for the Hasegawa-

Mima equation, Eq. (2.60).

2.7 Conservation Properties

2.7.1 Conservative Form of the Equations

Observe that, in the inviscid limit, Eq. (2.55) may immediately be written in a con-

servative form
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a+ zx L,,- log n,, + 0 - V20+ ii= 0.

For an exponential density profile this becomes

which is a statement that the quantity x-q7+V42-ii is conserved along the trajectory

of a fluid element. In the remainder of this thesis, we will refer to this quantity as

the density, and denote it by p. Since p depends monotonically on x, it imposes a

fundamental restriction on the motion of a fluid element: a fluid element can only

move far from its equilibrium position by creating a large fluctuation, which in turn

requires a great deal of energy. Conversely, assuming that the system only has a finite

amount of energy available, a fluid element can only move a finite distance from its

equilibrium position.

This conservation property may be expressed as an infinite number of integral

constants of the form

If [ J] = (p) dx dy (2.78)

where f is any function and D(t) is any closed region of the x - y plane whose

boundary moves with the E x B drift velocity.

2.7.2 The Hasegawa-Mima Equation

For localized solutions on an infinite domain, several moments of Eq. (2.57) annihi-

late the nonlinearity. This leads to the following set of integral constants when the

viscosity is neglected[27]:

E[O] = (2 + V4- ) dx dy (2.79)

0] J((V,20)'+V±v4)-V, dxdy (2.80)

N[4] = J dx dy (2.81)
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X[0] = x4dxdy (2.82)

Y[] = y dx dy - tN[0] (2.83)

M[0] = ((y t)2 + x2) 0 dx dy (2.84)

Equation (2.78) also applies here, naturally, but with h = 0.

Of these constraints, the energy, E, and generalized enstrophy, Q, are the most

useful. Only these two (along with the N moment, which is somewhat trivial) survive

in the periodic, turbulent system which we will be studying. They play a role in the

statistical equilibrium of the turbulence as well as the cascade process, to be discussed

in Chapter 5.

Effect of Viscosity

Viscosity destroys all the exact invariants mentioned above except N. Since the

nonlinearity is still annihilated by these moments, however, we can obtain simple

equations for their evolution. For the energy and enstrophy these equations may be

written in terms of the Fourier spectrum as

dE

dt = Tvk Ek (2.85)
k

and

dQd- = _ k2 vkEk (2.86)
dt k

where

Ek (1 + k2) Ioh12, (2.87)

E I E E, (2.88)
2k

and vk = k.
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2.7.3 Energy and Enstrophy Conservation in General

When we introduce the nonadiabatic electron density, there are no longer any ex-

act constants of motion other than N. Nor can simple equations of the form of

Eqs. (2.85)-(2.86) be written. However we can write simple equations which are valid

on a slow time scale, 7 > W .

We start by writing our general equation, Eq. (2.55), in terms of the fluctuating

part of the density:

= 2-V 4 + ii. (2.89)

Then Eq. (2.55) may be written as

a8b a0+0'} _V4+ - + {1,9Y} = -vV1
4  (2.90)

at ay

For any sufficiently differentiable functions f and g on a periodic domain (or an

infinite one, provided f, g vanish sufficiently quickly) it is easy to show that

If f{f,g}dxdy = 0. (2.91)

Thus the 0 and 4 moments of Eq. (2.90) will annihilate the nonlinearity. Taking

these moments leads to the following equations:

J -v k V± 4 (2.92)

and

J t+ J = -vJ# 4. (2.93)

Note that the term f O2 vanishes since the integrand is an exact differential. In

terms of the Fourier coefficients, these equations become

Re E4{ k = -v Y k 4  k 2  (2.94)
k k

and
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A 12 + Re Z V*iky4= -v12 k 4 k| 2

k k k

Using the definition of 0, and introducing the energy E and mode energy Ek as

defined in Eqs. (2.87)-(2.88), Eq. (2.94) may be written as

(2.96)E - vkEk - Rey 4k 'at k k

Similarly, if we define

(2.97)

and

C =Z Ck,
k

we may rewrite Eq. (2.95) as

ac
at - (i + k 2) vEk - Re E (vk + ik,) fi4k

k k

In the limit as h-+ 0, C - E - 0, the generalized enstrophy defined in Eq. (2.79).

We make this the general definition of the enstrophy:

0 = C - E. (2.100)

Then Q obeys the following equation:

an = -Y k k2vkEk + Re (ftkk))
k

+ Re E
k

- ikviik4) 4Ok-
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Slow Time Scale Equations

Equations (2.96)-(2.99) are completely general, but are complicated in that they

involve the nonadiabatic electron density and its time derivative. Let us assume that

we can separate the time behavior into a slow time scale, r, such that w.,j >> 1. If

most of the energy in the fluctuations is at frequencies on the order of W.,, then we

can expand the fast time scale in a Fourier series:

00~) 1:0.T=-~ (2.102)

and

Z nk.(r)ei (2.103)

Substituting these into Eqs. (2.96)-(2.101) we get

-E v Ek - Re > iw'fi,4k e0 ( (2.104)
atk k 1 k'

and

- k2 uEk - Re E h*k 0ke
k k,w,w'

+ Re E (iw' - ik) i*k,(k e'-'I).
k,w w'

Finally, averaging over the short time scale picks out only the frequency w = ',

giving us the following equations:

dE
=i - >3 v4 Ex - Re > iw4ik4 (2.105)

k k,w

and

= -k 3l 2 vkEk - Re E fi4* + Re E (iw - iku)nh* Ok. (2.106)
dT k k,W k,w

For our specific problem, the nonadiabatic electron response is given by Eq. (2.47),

or
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2.7. CONSERVATION PROPERTIES

k = io (w - ky) Ok..

Using this expression in Eqs. (2.105)-(2.106) gives the final form for our slow time

scale equations:

dE E
d = -TE vEk - 6o E L (w - k) 0k 2  (2.107)

k kw

and

dQ
=r - o k2 EvEk + &c (w - k,) 2  k12. (2.108)
dr k k,w

The first equation is fairly straight forward, just being an obvious balance between

energy going to the nonadiabatic electrons and energy being dissipated via viscosity.

Since Q has no clear physical meaning, however, it is difficult to interpret the second

equation. It could, however, be a source of trouble: the term due to the nonadiabatic

electrons is positive, so if the viscosity is not sufficiently large, the system might never

settle into a steady state.

2.7.4 The Terry-Horton Equation

The Terry-Horton equation is somewhat special in that the equation for C takes on a

pleasingly simple form without having to resort to the fast time average. In this case

we have

Ch = E1+ k2 + i8kl k2. (2.109)
k

and

aC
=a-t (1+ k2) _- ik) E (2.110)

k

where k is just their linear growth rate, as given by Eq. (2.67).

2.7.5 Our Model Equation

Examination of Poisson brackets in Eq. (2.74) shows that there is no single moment

of that equation which will simultaneously annihilate all of the nonlinearities. Thus

Eqs. (2.107)-(2.108) are only approximations for our model, even on the long time

scale.
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Chapter 3

The Numerical Method

I have written a Fourier spectral/pseudospectral code [28, 29, 30, 31] for solving

the two dimensional mode coupling equations derived in Chapter 1. This type of

numerical method was chosen for a variety of reasons: First, Fourier methods are

a natural choice for homogeneous turbulence simulations. Much of the theoretical

analysis of these problems is done using Fourier analysis [32, 33]. Second, spectral

methods have been used a great deal in simulating homogeneous fluid turbulence,

where they have been found to be both efficient and accurate [34, 29, 28, 35, 36].

In the following sections I give a derivation of the spectral and pseudospectral

methods for a simple one-dimensional equation (Burger's equation) and describe the

straight-forward extension to our problem. I'll explain subtle differences between

spectral and pseudospectral methods for nonlinear problems such as these. Finally I

give some numerical results from an accuracy test, the simulation of the dipole vortex

solution to the Hasegawa-Mima equation.

3.1 Spectral and Pseudospectral Methods

Spectral and pseudospectral methods are a subset of a more general class of methods

known as the Method of Weighted Residuals (MWR) [37]. These methods approxi-

mate the solutions to an equation, say L(u) = 0, by a finite series expansion using a

suitable set of basis functions, {4 j}:

N

n = Uo + a q4 (3.1)
j=1
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3.1. SPECTRAL AND PSEUDOSPECTRAL METHODS

where uo is generally chosen to satisfy the boundary conditions so that the expansion

functions only have to satisfy homogeneous boundary conditions. The residual, L(i2),

is then required to be orthogonal to the space spanned by a set of weight functions,

{wj}. This gives the following set of N equations for the N coefficients aj:

(L(ii), w,) = 0, j = 1, 2,..., N, (3.2)

where (., -) is an appropriate inner product.

The spectral and pseudospectral methods differ in the choice of the weight func-

tions, {w 3}. The spectral method takes {w 3 } = {q 1}. The pseudospectral method

takes {w,} = {27r8(x - xj)}, where the {xj} are called the collocation points, and

are usually chosen to bring out certain properties of the basis functions. The coeffi-

cients for the pseudospectral method are thus found by requiring that the differential

equation be satisfied at the collocation points, L(ii) = 0.

If { 0} = {e'k''}, the spectral method is immediately recognized as a truncated

Fourier series:

N

= Uo + E ajeikjx, (3.3)
j=1

which can be inverted to give

aj = J e-kia" (u - uo) dx. (3.4)

The pseudospectral expansion, on the other hand, corresponds to the Discrete Fourier

Transform (DFT):

N

ii = i(Xi) = uO + E aje ikix (3.5)
j=1

which has the inversion formula

N

a= (7i; - uo) e-ikmi (3.6)

which corresponds to using the trapezoidal rule for the integral in Eq. (3.3). The

difference between these equations is important since Eqs. (3.5)-(3.6) may be ac-

complished directly via the Fast Fourier Transform (FFT) [38, 39, 40, 411 whereas

Eqs. (3.3)-(3.4) may not.
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CHAPTER 3. THE NUMERICAL METHOD

3.2 An Example: Burger's Equation

Burger's equation is the the one-dimensional analog of the Navier-Stokes equation.

Let u be the fluid velocity. Then Burger's equation may be written as

&u au &2U
+ u-- V=_ (3.7)

at 0x ax2

As with our treatment of the drift wave problem, we'll assume periodic boundary

conditions. We'll use 2N Fourier modes and we'll set the period to 27r.

3.2.1 The Spectral Method

First we'll take a look at the spectral method. We define the following inner product

1 fx
(f,g) = - f(x)g*(x) dx, (3.8)

27r -

where g* denotes the complex conjugate of g. The expansion functions are chosen to

be the Fourier modes {e"} where1 -N + 1 < k < N. These eigenmodes obey the

following orthogonality condition

(0j, Ok) = 6jk (3.9)

where 63,k is the Kronecker 6-function. Then we let2

N

i(x, t) = =N ak(t)e ". (3.10)
k= -N

Substituting Eq. (3.10) into the linear terms in Eq. (3.7) gives the results

K , ea6 = a'(t), (3.11)
at

S&d, ea = -vk 2ak(t). (3.12)

'It may seem somewhat odd at first to use this asymmetric transform space. For efficient eval-
uation of the transform, however, it is necessary to use an even number of modes. Note that the
k = N mode must be real and is referred to as the phase-less mode.

2 For notational convenience I will write the sums as though there were really 2N + 1 modes.
This may either be interpreted by remembering that a-N = 0 or by adopting the more symmetric
convention that a-N = aN where both must be real (so there is only one mode's worth of information

in the two modes).
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3.2. AN EXAMPLE: BURGER'S EQUATION 43

The nonlinear term is less trivial. Differentiating Eq. (3.10) with respect to x

gives

N

ax ipap(t)e"Px,
ax p=-N

and thus

9- N N ipqx

u- = 1 ipap(t)aq(t)e+). (3.13)
ax p=-N q=-N

Taking the inner product of this with e1ik gives

1N N
(2 , e* 7  

2 7pN=Nipay(t)ag(t) J ~~ek) dx

E EZ ipap(t)a(t)8 p+q,k
p=-N q=-N

-pap(t)aq(t). (3.14)
jpj,IqI<N
p+q=k

Thus, the spectral coefficients obey the following mode coupling equation

ak + vk 2 ak(t) = 1 ipap(t)aq(t). (3.15)
at jpj,jqj<;N

p+q=k

Energy Conservation

Suppose we define a measure of the energy in the system by the integral

E J u2 (x, t) dx. (3.16)

If we take the partial derivative of Eq. (3.16) with respect to time, and make use of

Eq. (3.7), we get the following energy conservation equation:

_= -V 2 dx. (3.17)
at f
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The nonlinearity is annihilated by this integral since it is a total derivative and the

domain is periodic. Using Parseval's Theorem for Fourier series, we can also write

the above equation as

OE 0 00

- - 1: |akj - k2  ak 2. (3.18)

A very important property of the spectral method is that it retains the same

conservation law, even though the Fourier series has been truncated. To see this we

multiply the mode coupling equation, Eq. (3.14), by a* and sum over all k. Consider

the nonlinear term:

k=N {IpIk< ~Pta~)-a*Z ipap(t)a,(t)
k=-N |p,,|9< N

-+q=k

- ipap(t)aq(t)a-k(t)

jPj,jqj,jk I N
p+q=A-k

Eipap(t )aq(t )a,(t )

- : (p + q + k) ap(t)aq(t)ak(t)
jpjqjkj<N 3

0,

where we have used the property that a* = a-, since 22 must be real. Thus, even if we

truncate the Fourier series, we still get an energy conservation equation very similar

to the one given above:

0E 9 N N
ak| _v ( k2|ak| 2. (3.19)

k=N k=N

Why is this an important feature? The fact that Eq. (3.19) holds guarantees us

that we haven't introduced any strange, nonlinear instabilities into the problem via

our approximation of the spatial operators. As we shall see, this property does not

hold for the pseudospectral approximation.
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3.2. AN EXAMPLE: BURGER'S EQUATION 45

3.2.2 The Pseudospectral Method

As with the spectral method above, we use the exponential eigenfunctions {ekx"}.

Now, however, we also choose a grid in real space on which to evaluate these eigen-

functions. The appropriate grid is a uniformly spaced grid of 2N + 1 points, given

by

S=N, j = -N,..., -1,0,1,..., N. (3.20)

The discrete Fourier transform (DFT) defines a map between quantities defined on

this grid and quantities defined in the transform space, as illustrated in Eqs. (3.5)-

(3.6).

The appropriate inner product is

1 N

(f,g) = 2fN (3.21)
2N=-N+l 9

With this inner product, the orthogonality condition is

( 1 ifj =k mod 2N
5kmod2N = 0 otherwise. (3.22)

As we did for the spectral method, we write out our expansion as

N

nj = (x,t) = E ak(t)e k, (3.23)
k=-N

where the coefficients are advanced with the following equations:

afj+u -Y = V a2, j = -N + 1,..., 1,10,1, ...,I N. (3.24)
It 5X . 9X2

The pseudospectral philosophy is to do everything where it is easiest: Evaluate

the spatial derivatives in the transform space (where they are local operators) and

evaluate the nonlinearities and inhomogeneities on the physical grid (where they are

local). This is an attractive philosophy for two reasons: First, it is extremely simple

to implement and understand. We just use the DFT in the same manner we would
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use the Fourier transform as an analytic tool. Second, it is very efficient because the

DFT can be performed in O(N log 2 N) operations using the FFT [38], rather than

the 0(N 2 ) operations required to perform the convolution sum in Eq. (3.15).

The relation between Eq. (3.24) and Eq. (3.15) is illuminated by transforming

Eq. (3.24) to Fourier space. The linear terms transform in a straightforward manner.

Let us examine the nonlinear term. Differentiating Eq. (3.23) with respect to x gives

Ofj N

=~ - i: pak(t)e'P'.
p=-N

Multiplying this by it gives

(3.25)n2 [~] = K: E ipap(t)a(t)eP+')es.
OX p=-N q=-N

So far this looks exactly like Eq. (3.13). Now we take the inner product with ekxi:

N N

= ipap(t)a(t)
p=-N q=-N

E e N p++-k)x

j=-N+l

N N

=Z E ipap(t)a(t8p+q,kmod2N
p=-N q=-N

pjjqk<N
P-iq=kmod2N

ipap(t)a,(t).

The mode coupling equation corresponding to Eq. (3.15) is then

S+vk2 ak(t)= E:
Ip,jq<N

p+q=kmod2N

ipap(t)aq(t),

or, more explicitly

+ vk 2 ak(t)= E ipap(t)aq(t)
at IpjdqIk

+ 1: ipap(t)aq(t) +
pjjqjk+N

p+q=k+2N

E
p+q=k-2N

ipap(t)aq(t).

(3.26)

(3.27)
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3.2. AN EXAMPLE: BURGER'S EQUATION

The last two terms in Eq. (3.27) are called the aliasing terms [39, 29, 42]. They

arise from the fact that, if two quantities have wavenumbers as high as N, then their

product will have wavenumbers as high as 2N. However wavenumbers k > N cannot

be interpreted correctly when sampled on our 2N-point grid. When such a high mode

is sampled on this grid, the beat-mode energy gets misplaced into the mode k - 2N

rather than k (this is why they are called aliases--they cannot be distinguished when

sampling on our fixed grid).

Are these terms errors? Not necessarily [28]. The above scheme is consistent

with the original differential equation. Thus if it were stable, it would converge. But

there is a possible source of trouble here. If we try to derive an energy conservation

equation for Eq. (3.27) we quickly learn that the last two terms cannot be annihilated.

The lack of energy conservation opens the door to a nonlinear numerical instability

known as the aliasing instability [28, 42]. The aliasing instability usually disappears

if the dissipation spectrum is very well resolved, i.e. as N gets very large for fixed v

[36]. However if v = 0 then there is no finite dissipation region and instability does

not go away with increasing N.

3.2.3 A Fast Spectral Method

For our purposes, we have found that the aliasing instability is very difficult and

expensive to remove, if not impossible. Thus we wish to implement the spectral

method in an efficient fashion. This can be done as follows [29]: Suppose that a = 0

for Iki ;> N. Then it is impossible to write k + 2N = p + q. To see this suppose we

can find k,p, q satisfying these conditions. Then we may write

2N = p + q - k <|p| + q + Ik|< 3( N) = 2N

which is a contradiction. A similar result holds true for k - 2N = p + q. Thus the

two aliasing sums vanish. Only the first term survives, and it is just the spectral

mode coupling sum. However, after one iteration there will be modes excited with

N < Ikl < N. The trick is to just set those modes equal to zero. If we only consider

the modes with k < N and continually set the rest of the modes to zero (this

process is known as dealiasing, for the obvious reason), we find that the coefficients
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CHAPTER 3. THE NUMERICAL METHOD

satisfy the same equation as the spectral coefficients for a spectral approximation

with only 2/3 as many points.

The above scheme is often referred to as a dealiased pseudospectral method. Ac-

tually this is just a fancy term for a spectral method, as we have shown above that

they are one and the same. Note that there is some overhead incurred in that we

no longer have use of the full resolution of the grid. The work that must be done

still scales like Nlog 2 N even though we're only getting 2/3 the resolution. But for

N large this is still vastly superior to the (2N/3) 2 work that would be required to

directly evaluate the convolution sum on the same effective grid.

There are more efficient methods to implement a spectral method [29, 28]. They

all use the FFT and their operation counts all scale like N log 2 N, but with a smaller

coefficient in front. The disadvantages of these schemes stem from their complexity.

They usually involve shifted grids and much more coding. The scheme we use is fairly

simple and has the advantage that it can be used as a pseudospectral code just by

eliminating the dealiasing part of the algorithm.

3.3 The Drift Wave Code

The code which I have written uses a fast spectral method similar to that described

above. It can be used as a pseudospectral code, though I have not had much success

in doing so. The style of a pseudospectral code, however, makes the code very easy to

modify. The code could easily be modified to solve any similar (quadratically nonlin-

ear) equation with periodic boundary conditions-the 2-D Navier-Stokes equations,

for instance. Also, the nonadiabatic electron piece is somewhat generic in its W - W.e

form, and could probably be adapted to other low frequency plasma problems.

3.3.1 Testing the Code

One of the difficulties in solving a set of model equations such as ours is: how do you

know the code is working right? Although there is no way to prove that a code as

complex as this is correct, there are a few tests which give us some confidence that

nothing major is wrong.
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3.3. THE DRIFT WAVE CODE

Energy and Enstrophy Conservation

The first test is to see how well energy and enstrophy are conserved when there is no

dissipation. As in the case of Burger's equation, these moments are exact constants

even after the truncation of the Fourier series. Thus the only variation we should see

would be due to the time-discretization, and we should be able to make this variation

small.

The code passes this test with flying colors. Many runs have been made without

dissipation while studying isolated monopoles and dipoles (see Chapter 4), and the

relaxation to the equipartition spectrum. In these runs, energy and enstrophy are

typically conserved to 6-8 decimal places.

Incidentally, if the code is run as a pseudospectral code in these cases, it is violently

unstable.

Convergence of the Dipole Vortex Solution

The Hasegawa-Mima equation possesses a family of exact solutions which are of the

form of localized dipole vortices, or modons, traveling at a constant velocity in the

diamagnetic direction: 4 (x, y - ct) (43, 26]. Since they are highly localized, it should

be possible to do a good job of simulating their motion using our code, with its finite,

periodic grid.

Table 3.1 summarizes the initial conditions for the dipole vortex test. Here c is

the vortex speed and ro is the radial size of the inner solution for the vortex (again,

see Chapter 4). These are sufficient to specify the initial potential profile for the

solution. H. and H, are the x and y dimensions of the domain, and T is the length

of time for which the solution was integrated. Since cT = Hy, the final profile should

be equal to the initial condition.

Figure 3.1 shows the L 2 error, 62, in the solution at time T, which is define to be:

2 _ . (q(x, T) - 4(x, 0))2 (3.28)2 -X 0 2 (x, 0)
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Table 3.1: Standard Dipole Vortex

Input Parameter Value
c 2.0
ro 6.0

H. 207r

HU 207r
T 107r

16

2*1d 102
NX, NY

Figure 3.1: L2 error in calculating the trajectory of the standard dipole vortex.

The fluctuations of 62 as N increases are inexplicable. However, the general trend

has approximately a N 3 slope. This is the best that can be expected since the exact

solution has a discontinuous third derivative. This implies that the error can go to

zero no faster than N . In fact the L, error, or maximum error, cannot go to zero

faster than N-3 . I've calculated both the L 2 and L,. errors, and they decrease at the

same rate. Thus I believe that the code is converging at the expected rate, though I

do not understand the large fluctuations.

S S

. S

*16[
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3.3. THE DRIFT WAVE CODE

Conservation of Density

The truncated system is not guaranteed to conserve the density, p(x, t), along the fluid

element trajectory. How well this quantity is conserved gives a measure of how well

our solution is tracking the correct solution. Runs have been made in which marker

particles, moving at the E x B velocity, were tracked. To a good approximation, these

particles are observed to move along the lines of constant p, which is a qualitative

indication that density is being conserved.

When trapped structures form in the system, lines of constant p form closed

curves. Conservation of density implies that the area enclosed in such curves must

remain constant so long as the curve remains closed. This is also observed to hold

true so long as the wavelength of the fluctuations is not too small.

The Nonadiabatic Response

The qualitative checks mentioned in the above section have also been checked in the

case when the nonadiabatic electrons are included. Marker particles still tend to move

primarily along the lines of constant p, and trapped structures still do a fairly good

job of preserving their area. However the performance in this case is not as good as

it is when the nonadiabatic electrons are neglected.

Unfortunately, there seems to be no good quantitative test for the nonadiabatic

electron response calculations. The code has been carefully checked on numerous

occasions, and I believe it to be correct. This uncertainty is complicated by the fact

that the model itself is only approximate.
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Chapter 4

Isolated Trapped Structures

If an isolated potential fluctuation is sufficiently large, the resulting electric field

may trap elements (or "particles") of fluid, causing them to move in a coherent fash-

ion along with the fluctuation. For this trapping to occur, two conditions must be

satisfied: First, the electric field must be sufficiently large to overcome the natural

tendency for the fluctuation to move away from the particle at the diamagnetic drift

speed. Second, the fluctuation must be coherent, with a lifetime long compared with

the diamagnetic drift time scale.

We shall see in Chapters 5 and 6 that trapped structures often arise naturally in

the turbulent evolution of the plasma. In this chapter we look at isolated trapped

structures to see if we can discern anything about their behavior which might give

us some insight into their role in the turbulent system. We begin this discussion by

looking at the well known dipole vortex solutions to the Hasegawa-Mima equation.

Then we will look at the behavior of monopole vortices.

Note that the simulations presented in this chapter were done by solving the

Hasegawa-Mima equation. The assumption made in deriving our model equation,

Eq. (2.74), is essentially this: on the fast time scale, the nonadiabatic electron re-

sponse has only a small perturbative effect; the "fast" scale being on the order of

o , or the eddy turnover time. On this time scale the Hasegawa-Mima equation is

essentially correct. Since it is considerably less complex than our model, and also less

expensive to simulate, I will deal only with it in this chapter and the next.
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4.1. DIPOLE VORTICES

4.1 Dipole Vortices

Certain classes of nonlinear initial value problems possess exact solutions called soli-

tons. These are highly localized traveling wave solutions with the property that

soliton-soliton interactions leave the individual solitons intact. The independence of

these particle-like structures allows one to use them to build up general solutions to

the corresponding nonlinear problem [44, 45, 46].

The inviscid Hasegawa-Mima equation also possesses a family of exact traveling

wave solutions. The simplest member of this family is a dipole vortex type solution,

usually called a modon. Modons are not solitons, as modon-modon collisions are not

elastic. However many types of collisions between modons are nearly elastic [47, 48].

Also, antisymmetric initial conditions which are vaguely shaped like a modon will

tend to relax to a modon plus some noise. This apparent robustness has lead to a

hope that studying modons might help in our understanding of drift wave turbulence.

Indeed, theories for the turbulent spectrum have even been proposed which are based

on a weakly interacting "gas" of modons [26, 49, 50, 6].

In this section we shall derive the modon solution, and then go on to discuss some

of its properties. The derivation closely follows that of Meiss, et al. [26]. (See also

[43, 51].) Several reasons shall be given as to why modons might not be an important

feature in a fully turbulent system.

4.1.1 Derivation of the Modon Solution

If the Hasegawa-Mima equation is to have any exact, coherent, trapped solutions, then

they must either be stationary, or move in the poloidal (y) direction. The reason for

this is the constraint of conservation of the density function. This conservation law

would have to be violated for the solution to move with, say, a constant x velocity.

Thus we are lead to look for solutions to this equation of the form O(x, y - ct).

Substituting this into Eq. (2.57) gives:

Ix - 4 + V , 4 - cX} = 0, (4.1)

which is equivalent to saying that

V,' - 0+ x = F (0 - cx),
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where F is some function. Now, if we assume that the solution is localized, i.e. that

0 -+ 0 as x,y -+ oo, then we see that by fixing x and making y very large, F must

be linear:

1
F(z) -- z, (4.3)

c

leading to the equation

17,0 ( + - 1) 0 = 0. (4.4)

Equation (4.4) can only have isolated (non-oscillating) solutions if c(c - 1) > 0,

requiring that either c > 1 or c < 0.

The above analysis breaks down in the region where fluid elements are trapped.

According to Eq. (2.77), a fluid element moves along lines of constant density; i.e. the

streaklines are the contours of constant p. Trapping implies closed streaklines, and

thus closed contours of constant p. Since these contours do not extend to infinity,

the asymptotic analysis used above to determine the form of F is incorrect. In the

trapped region, F is arbitrary. In order to get an analytical solution for the potential,

we will assume the simplest case:

F(z) = -(1 + s 2 )z,

where s must be determined from the boundary conditions. Then the trapped solution

must obey the following equation:

V 2 4 + S24 = (I + 2) c- 1) x. (4.5)

This equation will have a bounded solution near the origin since s2 > 0, which is why

we chose this particular form for F.

Mathematically, we must solve the problem as a two region problem which has an

outer solution obeying Eq. (4.4) and an inner solution obeying Eq. (4.5). The matched

solution is required to be continuous and twice differentiable across the boundary

between these two regions. This is the only way to obtain a general solution which is

bounded near the origin and which decays rapidly away from the origin.

For simplicity, we assume that the boundary between the trapped and untrapped

regions, which must itself be a streakline, is a circle of radius a. We introduce the

cylindrical coordinates:
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4.1. DIPOLE VORTICES 55

r 2 22 + (y - Ct)2 (4.6)

cos 0 9 x/r. (4.7)

Under these conditions, Eqs. (4.4)-(4.5) have solutions which are a linear superposi-

tion of Bessel functions of r, multiplied by cos(mO) for integral m. The simplest such

solution is the m = 1 solution, given by the expression:

q = AKI(or/a) cos 8, r > a, (4.8)

and

Br
- cos(0) + CJ(yr/a) cos(0), r < a (4.9)

a

where

,8 a (1 - 1/c) (4.10)

and where y is defined as a solution to the equation

K2 (/3) Ji(-) (4.11)
,3K,1(0) -yJ,()

and is related to s by

a
2

The coefficients A, B, and C are found to be

A = (c (4.12)
K, (8)'

B ac I + (4.13)

C = -(4.14)

In these equations, J, is the n-th order Bessel function of the first kind, and K, is

the modified n-th order Bessel function of the first kind.

Figure 4.1 shows a snapshot of the solution derived above, where c = 2 and a = 6

(c.f. Table 3.1). Figure 4.2 illustrates the evolution of this solution in time via a

sequence of contour plots of the potential.
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Figure 4.1: Snapshot of the potential
above with c = 2 and a = 6.

t = 0.00 t = 7.54
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t = 15.1 t = 22.6 t = 30.2

Figure 4.2: Evolution of the dipole vortex shown in Figure 4.1.
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4.1. DIPOLE VORTICES

4.1.2 Modon Problems

While the modon is an academically interesting structure, being an exact trapped

solution to a nonlinear partial differential equation, we do not feel that it is an im-

portant element in the evolution of turbulence. This conjecture is based on several

facts: the modon is energetically unfavorable in the presence of nonadiabatic elec-

trons, its energy density and electric field are too large, and it does not appear to be

stable to certain types of perturbations. This conjecture seems to be supported by

the absence of dipole vortices in our turbulent simulations, as well as those of others

[54].

Nonadiabatic Electrons

That dipoles are energetically unfavorable can be seen by examining the response

of the nonadiabatic electrons to a structure moving with a constant velocity in the

y-direction: 4(x,y - ct). In this case, the frequency spectrum is simply 14okJ-

100'6(w - ck.), so that our energy balance equation becomes

dE2 2= - _ Zvk.Ek-60oJc(-1)k,0k2 .
k k

The structure is damped, even in the absence of viscosity, if c(c - 1) > 0. This is

exactly the velocity constraint which must be satisfied for a modon to exist.

Note that in this respect, the approximations made in the Terry-Horton equation

are qualitatively wrong. In their model, all modes grow with the linear growth rate.

Thus a dipole would also grow. Unfortunately our model cannot properly handle the

damping of the modon either. Modons do damp, but they have such a high electric

field that the perturbation expansion in 6o breaks down very quickly. This results in

a numerical problem in which much energy is transferred to large k where it is very

quickly damped.

Anyway, in a system in which the nonadiabatic electrons play a role, the dipole

vortex solutions are energetically unfavorable. This does not, however, explain the

fact that dipoles are not frequently seen in simulations in which the electrons are

adiabatic.
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High Energy

The most obvious problem which I have found with the modon is that it is a very

high energy state. The model has a strong tendency to propagate fluctuations along

at the diamagnetic drift velocity. The modon overcomes this tendency because it has

a very strong electric field, resulting in a very large E x B velocity. One may think

of the modon as two monopoles, each convecting the other forward with this high

velocity.

In fact, the energy contained in a single dipole, such as the one shown in Figure 4.2,

is higher than in many of the saturated turbulence runs which we'll look at in Chapter

6; and all of that energy is tied up in one trapped structure that is significantly

smaller than the size of the domain. Were the domain filled with such structures,

the RMS potential and electric fields would be much higher than those measured

experimentally.

Instability

Because of the modon's perceived importance, a fair amount of research into the

modon's behavior and stability has been done. Several people have attempted to

prove that the modon solution is a particularly stable one. They have only had

limited success. Laedke and Spatschek proved that the c < 0 vortex is linearly stable

[55]. They also derived some more general linear and nonlinear stability criteria in

[56], but were unable to draw any specific conclusions. Gordin and Petviashvili also

prove a stability result [57], but again only for c < 0, and they qualify their result

with the statement that it only applies to the shape of the modon, and not too its

velocity vector.

We have found experimentally that the c > 1 modon is very unstable (most

likely linearly unstable) to perturbations in its velocity vector. If we start one of

these modons off with just a slight perturbation, the perturbation will quickly grow.

Figure 4.3 shows part of the evolution of such a vortex.

The instability can be understood in terms of conservation of the density. The

dipole initially moves an increment to the left. Since the density must be conserved

during this motion, the left lobe must grow and the right lobe must shrink. But

the size of the lobe is related to its circulation. Thus the left lobe now has greater

circulation than the right lobe, and will begin to pull it around, increasing the angle
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t=.00 t=6.28 t =12.6 t=18.9
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Figure 4.3: Instability of the c > 1 modon.
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t =0.00 t =15.7 t= 31.4 t =47.1

. .. . . . . . . . . . .

t = 62.8 t = 78.5 t = 94.2 t = 125.6

Figure 4.4: Instability of the c < 0 modon.

the velocity vector makes with the y-axis. This positive feedback will cause a linear

instability.

On the other hand, this same argument would predict that there is negative feed-

back to such a perturbation to a c < 0 vortex. Indeed, Figure 4.4 shows that initially

the vortex continues in the -y direction, with an oscillating x-velocity. But there is

a constant strain on the vortex that weakens the interaction between the two lobes

until the electric field between the lobes is no longer strong enough and they begin

to be convected "downstream". Thus it appears that this modon is linearly stable,

in agreement with theory, but probably nonlinearly unstable. (Makino, et al., made

observations similar to these in [47], but gave only passing mention of the c > 1

modon, and did not discuss the implications of these observations on the role of the

modon in a turbulent system.)

S
0
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McWilliams, et al. [58] studied the problem of modon interactions with various

scales of perturbations. Their observation was that modons were fairly stable to small

scale (high k) perturbations, but were quickly destroyed by large scale perturbations,

even if they were small in amplitude. (Their model, a barotropic -plane model, is

somewhat different from the Hasegawa-Mima equation, but does have some of the

same general features in that the dominant nonlinearity is the same vector nonlin-

earity, and the system supports linear waves.) This is in agreement with the above

observations, since a shift in the dipole's direction corresponds to a perturbation

who's size is of the order of the dipole radius.

Other Problems

A further problem is that of birth. How would a dipole evolve from nothing? A c > 0

vortex can be formed by the coalescing of two opposing monopoles, with the negative

lobe to the right and the positive lobe to the left [59]. They will drift together and

form the dipole. In practice, a true dipole is extremely unlikely to result from this.

There will always be some slight asymmetry, and the dipole will quickly fall apart as

described above.

On the other hand, such a simple mechanism cannot even work for the c < 0

dipole. If we reverse the monopoles described above, giving them the polarity required

to form a c < 0 monopole, they will drift apart. There has to be a strong force to

push them together, and this seems very unlikely since nearly all of the energy in the

system will have to end up in the resulting dipole.

One other problem has to do with the frequency spectrum. Due to the high energy

content of individual modons, and their instability, a scenario in which the turbulence

is composed of closely packed, strongly interacting modons is impossible. Rather

one could only get experimentally acceptable energy levels by having a very rarefied

gas of weakly interacting dipoles. What is wrong with this picture? Two things:

First, it would be a very intermittent system and there seems to be no experimental

evidence for such. But more importantly, this system would have a nearly discrete

frequency spectrum, with delta functions at w = cik., where i indicates a particular

modon. Experimentally, the frequency spectrum is found to be continuous with a

width Aw ~ we.
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4.2 Monopole Vortices

The above discussion gave several reasons why dipole vortices are not likely to evolve

in turbulent flows. Certainly it seems unlikely that a structure more complicated

than the dipole could be any more robust. Thus, in this section, we examine the

simplest type of trapped structure: a monopole vortex. In later chapters we shall see

that such structures can indeed evolve in a turbulent setting.

We note that there are monopole perturbations to the modon solutions which

produce stable traveling wave solutions. These "rider" perturbations may be very

large and can mask the underlying dipole nature of the modon [51]. The resulting

solution, however, still has all the properties and problems of the modon. In fact, it

has even more energy. Thus we do not consider this type of "monopole" as being an

important possibility.

4.2.1 Theory

There are no exact monopole solutions of the form 4(x, y - ct). The problem is that

the linear modes in the system have phase velocities in the range 0 < w/ky < 1.

The modon did not interact with these waves because its velocity complemented this

range. This was made possible by the very strong interaction between the two lobes

of the dipole.

An isolated monopole has no such mechanism. Thus one expects that an isolated

monopole will move with 0 < cy < 1. This will cause it to be resonant with the linear

modes in the system and thus to lose energy to them. Losing energy, in turn, implies

that the structure must move in x in order to conserve the density in the trapped

interior region.

The question, then, is how long would such a structure last. How fast does it give

up energy to the linear waves, and move in x? Although it seems like this would be a

analytically tractable problem, assuming the velocity c, was small, it has not, to my

knowledge, been solved. The fact that the solution in the outer region is an outgoing

wave solution complicates the problem a great deal.

The only qualitative statement that is fairly obvious is this: As the radius of the

structure increases, its lifetime should increase. Why? The process of losing energy to

the waves must occur through dispersion. In fact, were it not for the dispersive term
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in the equation, any symmetric structure would be an exact solution to the equation

since a symmetric function trivially annihilates the equation's vector nonlinearity.

Making the structure large makes the dispersive term small.

4.2.2 Simulation

Figure 4.5 illustrates the evolution of an initially symmetric monopole fluctuation.

Figure 4.6 illustrates the trajectories of a fluid particle trapped in that monopole.

Initially there is a short relaxation period. During this time the monopole gains a

small asymmetric component and its x and y velocities change slightly from their

initial values (these velocities are given roughly by the average slopes of the curves

in the x-t and y-t plots in Figure 4.6). After this quick adjustment, the monopole

seems to settle into a quasistationary state moving with a constant x and y velocity

with, in this case, 0 < C. << c < 1. There is also a trailing wake created behind the

monopole as it gives up energy to the waves in a Cerenkov emission type of process.

I have simulated dozens of such monopoles, varying the monopole radius and

average electric field. So long as their radius is not too small, in which case dispersion

can quickly destroy them, they behave in a manner similar to that described above.

I've used both Gaussian profiles and polynomial profiles for initial conditions, and

found that initial conditions with roughly the same size and electric field lead to very

similar histories. The x velocity is usually fairly small, and the y velocity is usually

in the range 0.5 < c, < 1.0. The fact that the x velocity is quite small means that

the monopole lifetime, though not infinite, will be very long (roughly 4max/ca,).

After awhile the box, due to the periodic boundary conditions, begins to fill up

with waves excited by the monopole. When these waves get sufficiently large they

will, of course, interfere with the monopole's evolution.

There are a couple of general trends: The monopole lifetime increases (i.e. c.,

decreases) as its radius increases, and as the average electric field increases. These

trends are illustrated in Figure 4.7 and Figure 4.8. The first trend was hypothesized

above. The second is not so easy to understand, except to note that this means that

the inner particles are trapped more strongly.

(Similar long lived monopoles were studied by McWilliams and Flierl [60] for a

two-zone quasi-geostrophic /-plane model. This model is considerably different from

the Hasegawa-Mima equation, but does have some of the same general features in that
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Figure 4.5: Evolution of a monopole perturbation.
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Figure 4.6: Trapped particle trajectory for a fluid particle trapped in the monopole
shown in Figure 4.5.
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Figure 4.7: Effect of the initial radius on the monopole evolution.
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Figure 4.8: Effect of the average electric field on the monopole evolution
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the dominant nonlinearity is the same vector nonlinearity, and the system supports

linear waves.)

In summary, the monopole solution can be very long lived and appears to be quite

robust. I have studied various perturbations such as viscosity, nonadiabatic electrons,

and various levels of random noise. The isolated monopole is only weakly affected by

these various perturbations.



Chapter 5

Turbulence of the
Hasegawa-Mima Equation

In Chapter 4 we studied some of the properties of isolated trapped structures. There

we showed that the lifetime of an isolated monopole vortex could be much longer

than the diamagnetic drift time scale (w-'). How might such vortices arise in a

turbulent flow? In this chapter we'll attempt to understand this question via the

Hasegawa-Mima equation.

It was shown in Chapter 2 that the Hasegawa-Mima equation possesses two

quadratic constants of motion: the energy, E, and the generalized enstrophy, Q. Fur-

thermore, it was shown in Chapter 3 that these constants are rugged in the sense that

they survive the truncation of the system to a finite number of degrees of freedom.

Hasegawa reviewed several nonlinear systems having multiple rugged invariants, and

found that these have a tendency to evolve towards self-organized states [54]. If the

energy in the system is sufficiently large, these self-organized states will be trapped

structures.

5.1 Equilibrium Turbulence

5.1.1 Theory

The first implication of the existence of two constants of motion is the tendency of

energy to be transferred to longer wavelengths. This may be simply demonstrated as

follows. First recall that the energy and enstrophy are defined as
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E =: Ek
k

and

= k2 Ek
k

where E= (1 + k 2 ) 10k12 . We define an average k vector as

(k) E-1  kEk.
k

Now, suppose we start the system off with some narrow spectrum. Intuitively we

expect that the spectrum will be broadened by the nonlinear coupling. Thus we may

write

(k - (k) )2) > 0.

However

((k - (k)) 2 ) E- (k - (k)) 2 Ek

SE-1 (k2 - 2k (k)+(k) 2) Ek

- (k) 2

E

Now, since Q and E are constant, this means that

a ))2) = (k)2 > 0,

or

a(k)2 <0.
at

If the energy spectrum broadens, its average wave number must decrease.

This behavior may be put on a firmer foundation using the powerful tool of equi-

librium statistical mechanics. This theory has been discussed at length in Kraichnan

and Montgomery's review paper on two-dimensional turbulence [61], and applications
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to various two dimensional systems may be found in [54, 62, 63, 64, 65, 66, 67] and

others. Here we will only summarize its predictions without attempting to give a

rigorous derivation of the results.

Two factors make the statistical mechanics treatment possible: First, as mentioned

above, the energy and enstrophy moments remain exact constants of motion for the

system even after the Fourier space has been truncated to a finite number of modes.

Second, one may define a phase space whose coordinates are the real and imaginary

parts of the potential and it may be shown that this phase space is incompressible

(see the reviews by Orszag and by Kraichnan [21, 61], and references therein).

Once the system has evolved to its equilibrium state, it may be described by a

macrocanonical ensemble [68]. We denoting the state of the system by a set Fourier

coefficients: = {=f(kj), 0(k 2 ),.. .}. The density distribution may be written as

P(c) = ce-(aE+00)

= cexp (- I (i + k2) (a + Ok2) 14(k)12). (5.1)

where c is a normalizing constant, and a and 8 are the inverse temperatures corre-

sponding to the energy and enstrophy constants.

Using Eq. (5.1), various ensemble averages may be calculated. The average of the

k-spectrum is

1
(14 1|) = . (5.2)

(1 + k2)(a + Ok 2 )(

The average isotropic energy spectrum is then given by

E(k) 27rk (5.3)
a +/k 2

Similarly, the average isotropic enstrophy spectrum is

Q(k) = 2k 3  (5.4)
a+ 2

These isotropic spectra are defined such that the total energy and enstrophy are given

by
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E = E(k)dk

and

Q = J (k)dk.

Given the total energy and enstrophy of a given system, these expressions may be

solved for a and 3.

If the energy and enstrophy are such that k 2 = Q/E << 1, which is frequently

the case (as will be discussed in the next section), then the energy temperature,

a, will be negative and most of the energy in the system will reside in the longest

wavelength possible [63]. Also note that for large k, the enstrophy spectrum increases

linearly with k. Thus we see that the system has an apparent tendency to transfer the

energy to the longest wavelengths in the system while simultaneously transferring the

enstrophy to the shortest. This is the dual cascade phenomenon of two-dimensional

turbulence.

We should also note that these spectra are completely non-physical. Indeed, they

are not integrable in the limit as kma., -* oo. They serve only as an indication of the

direction in which the system would like to evolve.

5.1.2 Simulation

In Figure 5.1 we show a comparison of the spectra predicted above and that calculated

by our code. The initial conditions for this case were

k(t =) = 0 otherwise.

where a(k) is a uniformly distributed random number in the range 0 < a(k) < 27r.

The various parameters describing this run, which we shall refer to as Run 5.1, are

summarized in Table 5.1. In the table, H., and Hy are the x and y dimensions of

the domain, and kma. is the maximum component of the k-vector along either axis

(i.e. the kma, =ir/Ax). At high-k, we observe that the spectrum does approach the

equilibrium prediction. It may also be approaching the predicted value at low-k, but

if it is, it is proceeding at a very slow rate.
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Table 5.1: Equilibrium Turbulence, Run 5.1

Input Parameter Value
H. = Hy 207r

kmax 6.3
0o 0.2
ki 0.0
k. 0.8
E 4.35

1.56
-0.84

8.4

5.2 Decaying Turbulence

5.2.1 Course Grained Entropy and Selective Decay

How are these results modified by viscosity? Since the viscosity is small for small k,
it will have little effect in the region where the bulk of the energy is being transferred.

Thus we might expect that there would still be a tendency for energy to accumulate

in the longest wavelengths. However at high k the very strong viscosity will quickly

damp the enstrophy which the system is putting there. This leads us to the so-called

selective decay model-that the system tends to a state in which the energy remains

basically constant but the enstrophy is minimized.

One can calculate the approximate final state of the system via a variational

principle based on the selective decay model. Minimizing the enstrophy while fixing

the energy may be accomplished via the following variational principle:

6L = 80 - ASE = 0. (5.5)

Viscosity is necessary for this arguement to hold in our truncated Fourier space.

The resulting variational principle, however, is independent of the viscosity. In fact,

the selective decay arguement is just a special case of a much more general arguement

(which is independent of the viscosity): that the course grained entropy of the system

will be maximized. This arguement has been used in the Vlasov problem to predict

the existence of phase space density holes [69].
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Let us consider, for the moment, the inviscid Hasegawa-Mima equation in an

infinite domain. In this case, enstrophy will continue to flow out to infinite k-the

reflection which led to the equilibrium solution predicted above will never occur.

Rather the turbulence will create ever finer scales since, in the absence of viscosity,

the density must be conserved along the particles' chaotic orbits. No information

is lost-it is just mixed to finer and finer scales. These scales will quickly become

so small that they are impossible to resolve. The real observable quantity which we

should calculate, then, is a course grained average of the density.

The conservation of the actual density gave rise to an infinite family of integral

invariants:

IF[p] = F(p) d2

for any function F. Let us define

where p is the course grained average of the density. These functionals will not

be conserved. We will make this quantity stationary subject to the constraints of

conservation of energy and of the average x position. This leads to the following

variational principle:

A
SL =SIF + -SE - AcSX = 0. (5.6)

2

Using the expressions in Eq. (2.79) for the energy and X moment gives

6L = F'( p)Sp + A(2 8 + 2V, . V,8 ) - \cx6&

or, using the facts that

JXV±2f =0,

IV.4vs



6.2. FREQUENCY SPECTRUM AND ENERGY SATURATION

Table 6.2: Effect of input parameters on saturation energy, enstrophy, and electric field

V4 . I E 0 V0
0.05 0.04 oo 10.0 2.3 1.5
0.05 0.04 1.0 11.0 5.7 2.4
0.05 0.04 0.4 18.0 7.8 3.2
0.05 0.040 oo 10.0 2.3 1.50
0.05 0.075 o 3.6 2.2 1.55

1 0.05 0.100 00 2.4 1.9 1.35
0.05 0.025 1.0 17.5 5.5 2.7
0.05 0.040 1.0 11.0 5.7 2.4
0.05 0.075 1.0 6.1 4.5 2.2

2 0.05 0.100 1.0 4.7 4.1 2.0

0.05 0.025 0.4 25.0 9.0 3.4
0.05 0.040 0.4 18.0 7.8 3.2
0.05 0.075 0.4 15.0 8.0 3.1

0.025 0.04 oo 7.0 2.2 1.8
0.050 0.04 oo 10.0 2.3 1.5
0.075 0.04 oo 13.0 2.0 1.8
0.100 0.04 oo 14.0 1.6 1.7
0.010 0.04 1.0 9.2 6.7 2.6
0.025 0.04 1.0 10.5 6.2 2.6
0.050 0.04 1.0 11.0 5.7 2.4

3 0.075 0.04 1.0 11.0 4.7 2.4
0.100 0.04 1.0 11.5 4.5 2.4
0.010 0.04 0.4 19.0 11.0 3.3
0.025 0.04 0.4 18.0 8.8 3.0
0.050 0.04 0.4 18.0 7.8 3.2

4 0.075 0.04 0.4 17.5 6.8 3.2
0.100 0.04 0.4 17.0 6.7 3.0

1-4 See Tables 6.4-6.7, respectively
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and

we get

8L=J8P [F' (P)- A kcx)] (5.7)

Thus the equilibrium solution must satisfy the following Euler equation:

F'(p) = A ( - cX) ,

or, defining G( ) = F'-'(A )

p = G(q - cx). (5.8)

This is precisely the equation derived in Chapter 4 for a steady state traveling wave

solution, Eq. (4.2)! Exactly the same type of result obtained by Dupree in calculating

the relaxation of a Vlasov plasma to a phase space density hole [69]. There it was

shown that the course grained average of the phase space density would relax to

a steady state solution of the Vlasov equation-a Bernstein-Green-Kruskal (BGK)

mode. In fact, Dupree has shown that JF[p] may be thought of as a generalized

entropy functional [70].

In the case that F(p) ~ p2, one gets the result

P = '\( - cX).

This is the equation which we solved for the dipole modon. Note that this is also

the Euler equation that comes from the selective decay arguement if we add the

constraint of conservation of the x moment. This might seem to support the position

that dipole modons should be important since they are the only localized solutions

to the above equations. The key word here is localized. In a turbulent system the

fluctuations are not necessarily localized. For instance, if we take a linear function

for G: G( ) = -a/c, then we get Eq. (4.4):

V + I- 1 =O.

75



76 CHAPTER 5. TURBULENCE OF THE HASEGAWA-MIMA EQUATION

This can have monopole solutions with speed c < 1, but the solutions won't vanish at

infinity. An isolated monopole with c < 1 is not a solution. However a finite number

of such monopoles might very well be. In this case the boundary condition for each

individual monopole involves connecting on to the other monopoles and this is not

something that is analytically tractable except in very special cases. For instance, in

a box with sides of length L, the function

Z=4>ocos cos

is an exact solution traveling with speed

1
C =

1 + K 2

where the wavenumber . = 27rL 1 . This solution consists of four monopoles in

equilibrium with each other.

We shall see that, in the simulations, the system will relax quickly to semi-localized

monopole trapped structures. We conjecture that these are actually near-stationary

states of the Hasegawa-Mima equation. This conjecture is supported by Dupree's

entropy arguements. In fact, it can be shown that the initial quick relaxation will be

to structures having size k - 1. After that, the driving force towards the ultimate

equilibrium state becomes much weaker [70]. This is also in agreement with our

observations.

5.2.2 Inertial Range

The three dimensional Navier-Stokes equations have only a single rugged invariant,

the energy, which is cascaded to high h where it is dissipated by viscosity. In 1941,

Kolmorogov postulated that at very high Reynold's numbers there would be a range

of scales small compared to the energy containing scales, but large compared to the

dissipation scales, which could be considered to be in equilibrium with each other.

He proposed that the energy spectrum in this regime would be independent of the

viscosity, v, and depend only on the scale size, k, and the total energy dissipation

rate. Based on dimensional arguments, the form of this relation must be [32]

E(k) ~ k-/ 3. (5.9)
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This conjecture has been shown to be basically true in many experiments and numer-

ical simulations, and it is considered an acid test for any turbulence theory proposing

to explain high Reynold's number fluid turbulence.

In two dimensional fluid turbulence, similar arguments may be made as well,

although it is not so clear when they should apply. There are now two invariants to

deal with, however, which leads to a second inertial range:

E(k) ~ k- 3 . (5.10)

Computer experiments have shown that under certain circumstances these two laws

can indeed be observed [64]. The usual setup is to force the equations in some narrow

band of wave numbers k ~ ko. Then, when the viscosity is sufficiently small, an energy -

inertial range will be set up for k << ko (according to Eq. (5.9)), and an enstrophy

inertial range will be set up for k >> ko (according to Eq. (5.10)). Kraichnan gives

an detailed account of this phenomenon for two-dimensional fluid turbulence in [62].

The evidence for the dual inertial range is not, however, conclusive. A high resolu-

tion, high Reynold's number simulation of two-dimensional isotropic fluid turbulence

done by McWilliams indicated that the high-k energy spectrum went more like k- 5

[71]. They also observed that the enstrophy evolved to a very intermittent state,

composed of a small number of monopole vortices whose sizes were small compared

to the domain. They suggested that the steepening of the energy spectrum at high-k

is related to this intermittent state. However they also note that there was significant

enstrophy dissipation in moderate scale sizes and that this might be responsible for

the steepening of the k spectrum (i.e. their Reynold's number was not high enough).

Although there are some theories for the steepening of the k- 3 spectrum, the sub-

ject is not well understood, and numerical experiments have not, to date, provided

conclusive evidence against the k-3 spectrum [61].
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5.2.3 Artificial Viscosity

One other important question is what happens as the viscosity is decreased (i.e. the

viscous Reynold's number is increased). As far as solutions to the exact equation are

concerned, this is still an unanswered question [21].

For the truncated mode system, however, there is a smooth transition to the

equilibrium solution. The first evidence of trouble is that the edge of the enstrophy

spectrum will start to peak up, going linearly with k, as predicted above. This effect

can only be eliminated by either increasing km., or increasing v. Thus we see that a

large viscosity may be necessary to get meaningful numerical solutions, even though

this is not consistent with the actual problem.

In this spirit, we have done most of our simulations using a hyper-viscosity, with

the damping rate going like k' rather than k4 . This raises the effective viscous

Reynold's number over the regular viscosity without requiring more modes [71].

5.2.4 Simulation

Run 5.2, described by Table 5.2, is a typical decay run. The initial conditions were

again given by Eq. (5.1.2). Figure 5.2 shows the energy and enstrophy histories for

this run. We see exactly what we expect from the above discussion. The energy drops

by a moderate fraction of its initial value while the enstrophy drops nearly to zero.

Table 5.2: Input Parameters, Runs 5.2-5.3

Input Parameter Value

H. = Hy 207r
kmax 6.3
00 0.15
ki 2.0
k,, 2.5

V4 0.003

Figure 5.3 illustrates the evolution of the energy spectrum for Run 5.2. First of all,

we can clearly see that there was a rapid transfer of energy from the original high-k

annulus to very low k. Second, we observe that the slope of the energy spectrum is
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Figure 5.2: Energy and enstrophy relaxation for Run 5.2.

steeper than k- 3 , in fact, a bit steeper than k-'. The low k spectrum never reaches

a steady shape. Energy continues to build up at the lowest wavenumbers while the

remaining modes are slowly being diminished.

Figure 5.4 shows contours of constant p at several times during this run. Regions

of closed contours may be seen in these plots. These regions represent prospective

trapped structures. Their coherence is checked by placing marker particles, which

move with the fluid velocity, in these regions and integrating the particle trajectories

simultaneously with the fields. Figure 5.5 shows the evolution of the density contours

and the positions of 6 marker particles, indicated by the *'s. Figure 5.6 illustrates

the trajectories of two of these particles. Note that several of the stronger trapped

structures can easily be traced through most of Fig. 5.4, and thus have lifetimes on

the order of 100w..

The Effect of the Density Gradient

The existence of the density gradient places some important constraints on the so-

lutions of the Hasegawa-Mima equation, such as the conservation of the average x

and the lack of exact isolated monopole solutions. It is thus of interest to compare

the above decay run with an identical run, Run 5.3, in which there was no density

gradient. The Hasegawa-Mima equation then becomes
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Figure 5.6: Trajectories of a two trapped marker particles.

(+ i x VO -- 1) (0 - V 2) + vV 4 = 0. (5.11)

Figure 5.7 shows the evolution of the energy and enstrophy for Run 5.3. Com-

paring it to Figure 5.2 we see that the runs are virtually identical in this regard.

Figure 5.8 shows the isotropic energy spectrum. Here there is a difference-the en-

ergy spectrum for Run 5.3, being slightly steeper than k-', falls off even more quickly

than it did in Run 5.2.

An important statistic in studying possibly intermittent fluctuations is the kur-

tosis. The kurtosis for the potential and for the true vorticity, V.q, are defined to

be:

-L
2fq $4d2x

L 0 2 ,

(f q2d2X 
)2 '

L2 f V24( d2X

(f (V20 
2 dX)2

(5.12)

(5.13)
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Figure 5.9: Potential and vorticity kurtosis for Run 5.3.

where L2 is the area of the domain. If the spatial scale of the fluctuations had a

Gaussian distribution, then the kurtosis would be equal to three. The kurtosis is

greater than three if the distribution of fluctuations has a long tail, which results in

a larger than Gaussian probability of seeing a very large structure. For instance, an

intermittent field with a few widely separated, large fluctuations will have a kurtosis

much larger than three.

Figure 5.9 shows the spatial kurtosis of the potential and the true vorticity, V24,

for Run 5.3. We see a trend similar to that noticed by McWilliams [71]-the kurtoti-

sis of the stream function (the potential, in our case) remain close to three, while the

kurtosis of the vorticity grows significantly larger than three. For comparison, Fig-

ure 5.10 shows the same quantities plotted for Run 5.2. The kurtosis of the potential

again remains near three throughout the simulation. The kurtosis of the vorticity

initially grows, similarly to the zero-gradient case. However it comes crashing back

down to around 4 after awhile, and seems to want to stay there.

Figure 5.11 shows the contours of the vorticity function at the end of these runs.

We see that they are, indeed, quite different. The vorticity for Run 5.3 is concen-

trated in localized vortex structures, while the vorticity for Run 5.2 is much less well

organized.
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The vorticity, however, is not the correct quantity to measure if we are seeking to

identify trapped structures. It is useful, as it gives us an indication of where energy

is being dissipated. But with regard to trapped structures, the density function, p, is

really the more meaningful quantity as its contours represent the actual streaklines

along which particles move. For the zero-gradient runs, this quantity is just

p= V1 04 - 0).

Figure 5.12 shows the contours of p for both runs. In neither case is the field terribly

intermittent. Indeed, the kurtosis for the function V'42 - 4, which in both cases

represents the fluctuation in the density, always tends to be very near three. This is

not surprising since the average k-vector tends to be relatively small, making V2) <<

4, so that the statistics of p will be very similar to those of 4. Thus we see that the

trapped structures in both cases tend to not be very isolated. However we definitely

see more trapped structures in Run 5.3. Perhaps this is due to the fact that, with a

finite gradient, trapped structures can become untrapped simply by moving in the x

direction, a degree of freedom which the zero-gradient model lacks.

Higher Resolution

Table 5.3 gives the input parameters describing Runs 5.4-5.5, which are basically

identical to Runs 5.2-5.3, except that the resolution is twice as high, and the viscosity

coefficient has been reduced by an order of magnitude. Fig. 5.13 shows the energy and

enstrophy for one of these runs (again, these come out virtually identical). Comparing

this figure to Fig. 5.2, we see that the lower viscosity has resulted in much less of

an energy drop during the initial stage of the turbulence. The enstrophy, however,

still drops by a substantial amount. Since the energy did not fall as far as it did in

Runs 5.2-5.3, the quasistationary state has a much higher energy, electric field, etc.

Figures 5.14 and 5.15 show the evolution of the isotropic energy and enstrophy

spectra for these runs. This time the two look quite similar, both having approxi-

mately k- 5 behavior at high-k. Figures 5.16 and 5.17 show the density contours for

each of these runs. This time, due to the much higher electric field, the two figures

look quite similar.
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Figure 5.12: Comparison of the density contours for Run 5.3 (left) and Run 5.2 (right).
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Figure 5.16: Density contours for Run 5.4.
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5.3. SUMMARY

Table 5.3: Input Parameters, Runs 5.4-5.5

Input Parameter Value

H. = HY 207r
km.. 12.7

0 0.15
ki 2.0
k,, 2.5
V4 0.0003

The Frequency Spectrum

Unfortunately the frequency spectrum cannot be quantatively measured for these

decay runs since the average quantities are changing much too quickly. (Actually, it

probably could be measured for a high Reynold's number run, like Runs 5.4-5.5. This

would be extremely expensive.) However we can make some qualitative comments.

Basically, the frequency spectrum appears to be quite narrow. As noted above, the

decay runs tend to be characterized by localized structures, slowly interacting, coa-

lescing, and moving to larger scales. During this slow evolution, the motion of the

various large vortices is very uniform. They all move with a y-velocity very near

E 1 1

E + Q 1 + Q/E 1+k

and with very little x motion. Except during a rare interaction, they remain basically

circular. This motion is extremely coherent, and deviations from this coherent motion

happen on a time scale much longer than w.. Qualitatively speaking, the width of

the frequency spectrum is much smaller than the frequency: Aw << w.

5.3 Summary

These simulations, and many other similar ones, give us the following picture of the

turbulent evolution of the system: First the system quickly relaxes from the initial

random phase state to a much more coherent state. During this relaxation there

is a quick change in the shape of the energy spectrum, with the average k vector
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decreasing rapidly. When the average k vector gets below one, the relaxation slows

dramatically. A quasisteady state is achieved, with smaller vortices slowly merging

to form larger vortices, moving the average k vector slowly towards ki.

In this quasisteady regime, the high k part of the spectrum basically is shape

preserving, with a slope of around kh--k- 6 . Although this shape, as well as the other

observations, does not seem to be tremendously sensitive to the magnitude of the

viscosity, our runs had a fairly low viscous Reynold's number and so it is not clear

proof that the k- spectrum is incorrect.

For k < 1 the spectrum does not really attain a steady shape. Energy continues

to build up at the lowest wave numbers while the rest of the spectrum slowly dies

away. This may be an indication of the low k spectrum trying to move towards the

equilibrium state. However it appears to be happening at a relatively slow rate.

We also observed that the fluctuation in the density function were qualitatively

similar to an identical run using a model with no density gradient. However there

were fewer trapped structures in the finite density gradient case, and the vorticity

field for these two cases was quite different. Our interpretation of this is that the

tendency of trapped structures to evolve is very similar to the fluid dynamics case.

However the constraints placed on the system by the existence of the density gradient

modify the manner in which these vortices can interact, giving them a new means by

which to be come untrapped, and modifying the way in which energy is dissipated.

Finally, the frequency spectrum, although not quantitatively measurable in this

decaying regime, appeared to be fairly narrow. This is a very important observation

because it is strongly at odds with the experimental facts. It is also somewhat at

odds with the intuitive feeling that a strongly nonlinear system, which we certainly

have here, will always be characterized by a broad frequency spectrum.

We shall see in the next chapter that the introduction of nonadiabatic electron

effects will modify this observation. It is not at all obvious that the trapped structures

which we have studied in this chapter and the last will survive this broadening of the

spectrum. We shall see that, in certain circumstances, they will.



Chapter 6

Saturated Turbulence

In the previous two chapters we have made a fairly detailed study into the behav-

ior of the Hasegawa-Mima equation, both in turbulent and non-turbulent situations.

Our motivation for studying this equation was that it was simple, relatively inexpen-

sive to simulate, and to lowest order, correct. We can expect that the short time

scale behavior will not be strongly affected by the introduction of the nonadiabatic

electrons.

These simulations led to some interesting observations: that very long lived

trapped structures could develop in decaying turbulence, and that the frequency spec-

trum of the fluctuations was quite narrow. Both of these observations are long time

scale observations, however, and thus we should expect the nonadiabatic electrons to

have a strong effect on them.

In this chapter we study the saturated turbulence which develops when the non-

adiabatic electrons are included in the problem. Our main focus will be to see if the

trapped structures which were so prominent earlier still play a role, and to see what

type of effect our nonadiabatic electron term has.

6.1 Modified Nonadiabatic Model

Recall that the nonadiabatic electron density, derived in Chapter 2, could be written

as

nik = io (o - kv) k ..
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Assuming that this term was small, we derived Eq. (2.74). This equation is quite

complex. In particular, the effect of the nonadiabatic electrons at high-k is not at

all clear. In order to expedite numerical solution of this model, I have introduced a

modified nonadiabatic electron response of the following form:

fik. (w - kv) Ok. (6.1)

where

k - oe 2/k. (6.2)

We can adjust k so that only the low-k modes contribute to the nonadiabatic re-

sponse, and the high-k modes are strongly damped. In this way we are assured that

the equations are well behaved as k increases. Lowering k, also lowers the value of

k at which the linear growth rate peaks, and thus we might expect that this would

make the simulation less expensive, since the k-spectrum ought to peak at a lower-k.

The latter prediction, however, will be seen to be only partially correct.

6.2 Frequency Spectrum and Energy Saturation

A slow time scale energy balance equation, Eq. (2.107), was derived in Chapter 2.

Taking into account our modified nonadiabatic electron response, this equation may

be written as

d E
dr - vkEk - ZSaZEw(w - k) Ik. 2 . (6.3)

k k O

This may also be written as follows

dE NL) E (6.4)
k

where _Yk is a nonlinear growth rate defined by

_YN 6k - LO (LO - ky) I O . 12.(.)NL L (6.5)

The frequency spectrum may be characterized by an average frequency, c, and a

frequency spread, Aw, defined by
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W;k 1 I k ' (6.6)

Awk 2 2 -k(w- Ik k2. (6.7)

In terms of these, the nonlinear growth rate may be written as

Lk [Iswk + (k - ky)]. (6.8)

In the linear and weak turbulence regimes, Cok P wk and AZw - 0, and _yk reduces

to the linear growth rate. The Terry-Horton description for the nonadiabatic electron

response is appropriate in these regimes. If the turbulence is strong, however, both

Awk and L4 may change significantly from their linear values. Equation (6.8) shows

how these changes will affect the energy balance: if the spectrum is broadened, or if

the Ok is shifted up past k., the nonadiabatic electrons will become a sink of energy,

rather than a source.

Although the above analysis is not exact for our model equation, these effects

are definitely included in an approximate way. This fact greatly complicates our

view of what is happening. In the Terry-Horton model, the picture is fairly clear-

there is a source of energy at low k due to the nonadiabatic electrons, and there is

a sink of energy at high k due to ion viscosity. This allowed Terry and Horton to

make a rather general prediction of the circumstances under which the system would

saturate. Arguing that if the energy grew large enough, the system would approach

equipartition, they showed [3, 4, 5] that the system would saturate if

t-~ k ~-
k

Thus as one increases 6o, approaching the critical value where yt = 0, the saturation

energy is expected to increase without bound.

Such a simple picture does not work for our model. Increasing So affects not only

the linear growth rate. It increases the strength of the nonadiabatic electron term in

general, which may be a sink as well as a source, and it also modifies the spectrum,

and thus 4 and Awk.
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Table 6.1 illustrates this point quite dramatically. This table compares four runs

whose only difference in input was the value of -y., the maximum linear growth

rate (which is directly proportional to 8o). There are two notable results: First, as

Y4ax was increased, the saturation energy decreased! Second, the RMS electric field

was relatively constant due to the fact that, as the energy went down, the average k

vector went up.

Table 6.1: Runs 6.1a-6.1d.

The relatively weak dependence of the electric field on 7L. is further explored

in Table 6.2. These runs are identical to those listed in Table 6.1 except for the

variations of -4a, v4 , and k, shown. We see that the electric field also depends only

weakly on the viscosity. The only input value upon which the saturated electric field

depends strongly is the nonadiabatic cutoff, k,.

The strong dependence of the saturation level on k, is understandable. The

high-k modes tend to have very broad frequency spectra, and thus to have negative

nonlinear growthrates. By limiting the effect of the nonadiabatic electrons to low-k,

we are removing a sink of energy.

Input Parameter Run 6.1a Run 6.1b Run 6.1c Run 6.1d

-Y. 0.025 0.04 0.075 0.10
H. = Hu 207r

kma0  3.9
V4  

0.05
k, 1.0
Output

E 17.5 11.0 6.1 4.7
5.5 5.7 4.5 4.1

k. = 0.56 0.72 0.85 0.92

(V4).m, 2.7 2.4 2.3 2.2
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In order to further study the effect of k,, we show more detailed spectral informa-

tion for four of these runs in Tables 6.4-6.7. These runs correspond to the footnoted

runs in Table 6.2. Their differences are summarized in Table 6.3. They are presented

in order of increasing average (RMS) electric field. Shown are the mode energy, Ek,

linear frequency, Wk, line width, Aw, frequency shift,

8W 6)k - Wk,

and a measure of the nonlinear growth rate,

_ k/Sk =A ++ C2DM+ (CD - k,)).I + k 2

The factor 6k is scaled out so that this is purely a measure of the frequency width and

shift, depending only on Sk through the changes it causes to the spectrum. Values

are given for a sampling of k-vectors in the energy containing part of the spectrum.

Table 6.3: Input differences for Runs 6.2a-6.2d

Run 6.2a had the lowest electric field of all those shown in Table 6.2. In this case

we see that the frequency spectrum is fairly narrow relative to the mode frequency.

For the strongest mode in the system, which is highlighted in Table 6.4, Aw/w < 10%.

Also, the spectral characteristics are quite anisotropic. The k-spectrum is much larger

along the k, -axis, which we might expect since the linear growth rate is largest there.

But the line widths tend to be broader near the k,-axis, even though the energy in

these modes is smaller. These observations are reflected in the nonlinear growth rate,

which is positive along the ky,-axis, and negative along the k2,-axis. The deviations

of this growth rate from the linear one are mostly due to the broadening term-the

shift Sw is not sufficiently large to have much of an effect. The average frequency, wk,

appears to drop off somewhat faster than the linear growth rate, but it is difficult to

Input Parameter Run 6.2a Run 6.2b Run 6.2c Run 6.2d

0.10 0.10 0.040 0.040
V4 0.05 0.05 0.075 0.075
k,, 00 1.00 1.000 0.400
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Table 6.4: Frequency Characteristics for Run 6.2a.

(k,, kv) Ek wk Aw S -YkL / 80

(0.0,0.1) .001 .10 .035 -0.0016 -0.0010
(0.0,0.3) .004 .28 .075 -0.0004 0.0011
(0.0,0.5) .030 .40 .055 0.021 0.024
(0.0,0.6) .076 .44 .042 0.030 0.043
(0.0,0.7) .038 .47 .070 0.021 0.066
(0.0,0.9) .015 .50 .129 -0.018 0.102
(0.0,1.1) .007 .50 .205 -0.097 0.108
(0.1,0.0) .006 0 .039 0.004 -0.0016
(0.3,0.0) .006 0 .098 -0.0008 -0.0088
(0.5,0.0) .008 0 .133 -0.004 -0.014
(0.6,0.0) .009 0 .144 0.009 -0.015
(0.7,0.0) .010 0 .156 -0.006 -0.016
(0.9,0.0) .006 0 .235 -0.011 -0.030
(1.1,0.0) .002 0 .343 0.001 -0.053
(0.2,0.5) .018 .39 .083 0.025 0.023
(0.4,0.4) .008 .30 .140 0.002 0.007
(0.5,0.2) .008 .16 .145 -0.012 -0.010
(0.6,0.6) .011 .35 .154 0.0005 0.037

draw any firm conclusions since the precise value of this average becomes difficult to-

determine when the spectrum is very broad.

Run 6.2b is identical to Run 6.2a except that k, was decreased to k,, = 1. We see

that the corresponding increase in the average electric field has resulted in broader

line widths, with the strongest mode now having Aw/w ~ 50%, and a more isotropic

k-spectrum. This is again reflected in the nonlinear growth rate, which is generally

smaller than before.

For Run 6.2c, the maximum linear growth rate was decreased to y,;a = 0.04

and the viscosity was increased slightly. This resulted in an average total energy of

over twice that in Run 6.2b. The electric field, however, changed only slightly. The

line width for the strongest mode has dropped back to around 20%. The higher-k

modes are still fairly broad. The k-spectrum is slightly more isotropic than it was

for Run 6.2b, but not much different. The narrowing of the frequency spectrum has

caused some of the nonlinear growth rate terms to increase.
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Table 6.5: Frequency Characteristics for Run 6.2b

(k., kv) Ek wk Aw L -Yk L/ 6k
(0.0,0.1) .004 .10 .062 -0.0060 -0.0031
(0.0,0.3) .010 .28 .137 -0.0009 -0.011
(0.0,0.5) .024 .40 .171 -0.0015 0.009
(0.0,0.6) .030 .44 .188 -0.0081 0.027
(0.0,0.7) .033 .47 .207 -0.031 0.048
(0.0,0.9) .034 .50 .235 -0.105 0.079
(0.0,1.1) .016 .50 .309 -0.167 0.072
(0.1,0.0) .011 0 .064 0.0001 -0.0040
(0.3,0.0) .010 0 .182 0.001 -0.030
(0.5,0.0) .012 0 .256 -0.009 -0.053
(0.6,0.0) .014 0 .268 0.012 -0.053
(0.7,0.0) .018 0 .271 0.003 -0.049
(0.9,0.0) .019 0 .284 -0.006 -0.045
(1.1,0.0) .010 0 .347 -0.011 -0.054
(0.2,0.5) .020 .39 .209 0.002 -0.0002
(0.4,0.4) .019 .30 .229 0.007 -0.019
(0.5,0.2) .015 .16 .248 -0.006 -0.042
(0.6,0.6) .028 .35 .242 -0.044 0.018

Finally, k was decreased to 0.4 for Run 6.2d, resulting in an average electric field

of over 3.0. The line width of the strongest mode is now slightly over 33%, and the

high-k modes are quite broad. The k-spectrum has become nearly isotropic.

The nonlinear growth rate is an excellent measurement of the characteristics of

the frequency spectrum since it ties in directly with the energy balance for the model.

Tables 6.4-6.7 gave measurements of the nonlinear growth rate for only a few modes

as it is very expensive to calculate the frequency spectrum. However we can use

Parseval's Theorem to calculate the nonlinear growth rate directly in the simulation

code:

NL 8kc
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Table 6.6: Frequency Characteristics for Run 6.2c

(k,, k,,) Ek wk AW Sw 'y NSk

(0.0,0.1) .018 .10 .031 -0.0009 -0.0008
(0.0,0.3) .085 .28 .065 -0.0007 0.0025
(0.0,0.5) .194 .40 .079 -0.0036 0.028
(0.0,0.6) .135 .44 .113 -0.024 0.047
(0.0,0.7) .095 .47 .146 -0.050 0.065
(0.0,0.9) .030 .50 .253 -0.120 0.074
(0.0,1.1) .007 .50 .400 -0.181 0.040
(0.1,0.0) .038 0 .03 0.001 -0.0009
(0.3,0.0) .052 0 .08 0.004 -0.007
(0.5,0.0) .112 0 .10 0.009 -0.009
(0.6,0.0) .096 0 .13 -0.002 -0.013
(0.7,0.0) .063 0 .17 -0.0003 -0.019
(0.9,0.0) .016 0 .30 -0.009 -0.048
(1.1,0.0) .004 0 .40 -0.003 -0.071
(0.2,0.5) .153 .39 .097 -0.012 0.029
(0.4,0.4) .136 .30 .106 -0.009 0.015
(0.5,0.2) .118 .16 .108 -0.004 -0.003
(0.6,0.6) .033 .35 .238 -0.082 0.019

(6.9)EkT + iky

(6.10)

Equation (6.9) is used in the code to calculate the nonlinear growth rate. Figs. 6.1-6.4

show the average nonlinear growth rate for Runs 6.2a-6.2d. Fig. 6.1 shows just how

strong a damping force the nonadiabatic electrons can be-the nonlinear growth rate

at the edge of the spectrum is so large (~ 5-20) that the details of the low-k growth

rate are completely invisible on the same scale. In Figs. 6.2-6.3, the peak growth rate

is not much different from the linear value. In Fig. 6.4 it is moderately lower than

the linear value. Another important feature of these plots is the large anisotropy at

small to moderate wave numbers, with strong damping at low-k along the k.-axis,

and a positive growth rate extending out to fairly high-k along the ky axis.
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Table 6.7: Frequency Characteristics for Run 6.2d

(k,,k,) Ek wk AW S '7 Jk
(0.0,0.1) .058 .10 .042 0.0026 -0.0020
(0.0,0.3) .152 .28 .115 0.012 -0.009
(0.0,0.5) .248 .40 .142 -0.021 0.020
(0.0,0.6) .252 .44 .158 -0.043 0.041
(0.0,0.7) .120 .47 .222 -0.046 0.046
(0.0,0.9) .028 .50 .465 -0.14 -0.013
(0.0,1.1) .008 .50 .603 -0.25 -0.068
(0.1,0.0) .062 0 .049 -0.0004 -0.002
(0.3,0.0) .077 0 .147 -0.007 -0.020
(0.5,0.0) .171 0 .163 -0.003 -0.021
(0.6,0.0) .194 0 .166 -0.006 -0.020
(0.7,0.0) .114 0 .205 0.003 -0.028
(0.9,0.0) .027 0 .325 -0.007 -0.059
(1.1,0.0) .007 0 .418 -0.001 -0.079
(0.2,0.5) .217 .39 .157 -0.025 0.019
(0.4,0.4) .198 .30 .162 -0.026 0.006
(0.5,0.2) .182 .155 .160 -0.017 -0.013
(0.6,0.6) .044 .35 .307 -0.020 -0.003
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Figure 6.1: Nonlinear growthrate, gYk, for Run 6.2a.
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Figure 6.2: Nonlinear growthrate, ,4 ik, for Run 6.2b.
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Figure 6.3: Nonlinear growthrate, y-j, for Run 6.2c.
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Figure 6.4: Nonlinear growthrate, -4 L, for Run 6.2d.
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6.2.1 Comparison with Experimental Observations

The spectral data reviewed in the last section indicated that the line widths for the

strongest modes were only moderately broad, with the width increasing as the electric

field and the linear growth rate were increased. These widths are not consistent

with experimental data taken from tokamaks where the frequency spectrum is often

characterized by Aw > w.

Such broad widths are not possible with this nonadiabatic electron model. Let us

calculate the frequency broadening required to stabilize a mode, assuming that the

shift is negligible (which is supported by the above data). We then have

k=k2 (Ak2+k( - kY)) = 0,

or, setting k = wk,

AUwk2 =-wk(wk k ,)

ky kv
= - k( k--ky

I+k2 (1 1+k2 Y)

k 2

Thus we see that a mode will be damped if Awk > kwk. Our simulations show that

the energy containing modes usually have 0.5 < k < 1.0. Some of these modes must

have a positive growth rate in order for the system to reach a saturated state. These

modes, then, cannot have the broad spectrum characteristic of the experiments.

It is important to note that the problem here lies with our model for the nonad-

iabatic electrons, not with our treatment of the ions. The results are, indeed, very

sensitive to changes in the nonadiabatic electron model, as is reflected by the strong

dependence of the saturated state on the value of k,. It is not difficult to imagine

that a completely different electron model might lead to the broad spectra observed

in the experiments.
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6.3 Trapped Structures

The frequency and wavenumber spectra tell us nothing explicit about whether or not

monopole trapped structures exist in the system. Both monopoles and waves have

dispersion relations which are very similar:

wk = kV/1 + k 2  linear waves

wk = ck, monopole vortices

where c - 1/(1 + I2), k being some kind of average wave vector for the mono-

pole (see Section 5.2.1). The w-spectrum of an isolated monopole is discrete, but

if the system has many monopoles, each having a different velocity and size, then

the frequency spectrum will be broadened. The broadening is further enhanced by

monopole-monopole interactions. The difference between a broad spectrum of waves

and a chaotic system of monopoles lies in the phase coherence of the modes. This

information is completely absent from the spectrum.

The moderately broad spectra observed in Runs 6.2a-6.2d thus do not preclude

the existence of trapped structures. One would expect, however, that the monopole

lifetime would decrease as the spectrum broadened.

Fig. 6.5 shows the evolution of the density, p, for Run 6.2a, over a short period of

time long after the turbulence has saturated. This run had an RMS electric field of

only 1.5, which is reflected by the near lack of closed contours. Clearly, the majority

of the fluid is not trapped in this case. Note, however, that there are also very large

nontrapped perturbations to the density (or at least there are no closed contours

visible at the resolution of our contour plot). Some of these perturbations seem

to last for a fairly long time, even if they don't trap a lot of particles. A clump

type turbulence theory might be well suited to this type of turbulence, although the

long coherence time of some of the fluctuations might invalidate the renormalized

calculation of the relative diffusion coefficient.

The * markers show positions of marker particles which are evolved (at great

computational expense) with the flow. Four of the particles were purposely placed

near closed contours, and the other two were placed away from closed contours. Three

of the particles remained trapped for the length of the run. Fig. 6.6 shows the

trajectory of two of the particles. Note that this is not indicative of the system in
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Figure 6.5: Density evolution with marker particles (*) for Run 6.2a.
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1.2..2

Figure 6.6: Trapped particle trajectory for Run 6.2a.

general-I have purposely set it up so that we'd see the trapped particles. It is obvious

from Fig. 6.5 that most of the fluid particles are not trapped.

Figures 6.7-6.12 show the same information for Runs 6.2b-6.2d. As the electric

field increases, the portion of the flow which is trapped obviously increases. Not only

are there more trapped structures, but they are also considerably larger. It is quite

clear that a renormalized turbulence theory would not be appropriate for the runs

with the strongest electric field.

In each of the four runs we have found trapped structures which lasted for the

full-length of the run (15.7 drift periods). The evolution of these structures is much

different from the purely damped case, however. The structures change shape, and

wander about in the x direction during the course of the run. Also, the trapped

particle orbits are much less regular than in the cases of an isolated monopole or

decaying turbulence. Certainly this is related to the increased line width in the

frequency spectrum. One is tempted to say that the structure lifetime should be

given byT -r,_ 27r/Awk. For the strongest modes in Runs 6.2a-6.2d -r, ;z: 26-150.

Unfortunately, our simulations did not run this long, and doing so would have been

impractical. Examination of Fig. 6.11 shows that the structures can be very robust,

however, surviving very strong interactions with other vortices. We have, in fact,
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observed particles trapped for more than 20 trapping times for a run very similar

to Run 6.2d. In these runs, where the electric field is quite strong, the width of the

frequency spectrum seems to be more related to the time scale over which the vortices

get perturbed than the vortex life time. However, longer runs, preferably with higher

resolution, are needed to confirm this hypothesis.

6.4 Conclusions

The addition of the nonadiabatic electron model developed in Chapter 2 has several

important effects on the evolution of the turbulence. The nonadiabatic electrons

contribute in an important way to the saturation of the turbulence. This saturated

state is characterized by a broader frequency spectrum than in the case of decaying

turbulence. In spite of this broader spectrum, however, long lived trapped structures

still evolve in the flow.

The most significant effect of the nonadiabatic electrons seems to be the strong

dissipation they provide for high-k modes and modes along the k.-axis. This dissi-

pation mechanism is quite complex and is responsible for the somewhat nonintuitive

result that increasing the strength of the nonadiabatic electron term, which is usually

thought of as a source term, results in a decrease in the saturation energy. This is

a good example of how our intuition based on linear theory can lead us far astray

when trying to understand a strongly nonlinear problem. Although I don't make any

pretense of trying to explain tokamak transport with this model, it could be just

such nonlinear effects as these which are responsible for certain nonintuitive obser-

vations about anomalous transport, such as the increase in the neo-Alcator energy

confinement time with density.

Although the frequency spectra were found to be quite broad at high-k, in the

energy containing region, k < 1, the spectral line widths were only narrow to mod-

erately broad. This result is qualitatively different from experimental observations

taken from tokamaks. It was shown that this result is an inherent shortcoming of the

model-a stationary state cannot be maintained with all the modes having Aw > w.

A few additional trends were noticed: The saturation levels depend only weakly

on the magnitude of the hyperviscosity coefficient, v4. This is a comforting result,

since the viscous models for this problem are really quite unjustifiable. Most of

the saturation values depended strongly on the maximum linear growthrate, l ,
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except for the RMS electric field. This quantity was found to depend only on the

nonadiabatic cutoff, k,. Thus, for a given kn, the system seems to have a critical

electric field that is very important in the saturation process.

In all cases, the saturated electric field was sufficiently high for trapping to occur

and, in spite of the broadened frequency spectrum, coherent trapped structures were

observed in many runs. This is counter to speculation by some authors that driving

the system in the energy containing region would destroy any coherent structures

that might otherwise develop [54, 71].

Although trapping occurred in all of the runs, it was not a dominant effect in all

cases-specifically, those with k, = oo. However the density contours still exhibited

very strong nontrapped perturbations. As the electric field increased, so did the dom-

inance of trapped structures. A clump type turbulence theory might be well suited

to the turbulence of the runs which had only a small amount of trapping, although

the long coherence time of some of the nontrapped fluctuations might invalidate the

renormalized calculation of the relative diffusion coefficient. For the runs with a

stronger electric field, and much more trapping, it is clear that the renormalization

should be invalid.

The observation that saturation occurs at a relatively constant electric field level,

independent of y and v4 , and large enough to support trapping, could indicate

that the formation of coherent structures plays an important role in the saturation

of the turbulence. However more work is required to support this hypothesis.

The fact that the nonadiabatic electron model plays such an important role in

the qualitative nature of the turbulence shows that close attention should be paid to

how such effects are included. In some ways this makes my model inconsistent, since

several effects were neglected which might be just as important as the nonadiabatic

electron terms which we have tried to simulate.

Simulation of a real system was not the goal of this thesis, though. Rather we were

interested in studying trapped structures in a driven-damped system with the most

realistic nonadiabatic electron model that we could derive in two dimensions. Our

model was perfectly suitable for this task. Indeed it would be interesting to compare

renormalized turbulence theories to this model, especially for runs such as Run 6.2d

which exhibited very strong trapping along with a fairly broad frequency spectrum.

We leave this problem to future work.
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Appendix A

Fourier Transform Conventions

The following conventions are used to in this thesis: The Fourier transform of a field

4(x, t) is given by

(,w) = O(x, t)e.-ik.x+iwt, (A. 1)
x,t

and the inverse transform is

O(x, t) = (k, v) ekx-s. (A.2)
k,w

Here E is shorthand for the appropriate set of integral/summations. For example, if

we are working on a square domain

-L < x,y < L

then

(mn,t) = ( (x, yt)e-i(kex+key-wt)dy dx) dt, (A.3)

where

kI = 27rj/L, j = -00, ... ,-1,O,1, ... , oo. (A.4)

Similarly the inverse is

4(xy,t) = 1 ( (m, nt)ei(k +k Y-wt) dt. (A.5)

For compactness we will often denote the Fourier transform of 4(x, t) by 4k,..
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