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or Ions from Doppler-broadened Spectral Line Profiles

Abstract

Analysis of the doppler-broadened profiles of spectral lines radiated

by atoms or ions in plasmas yields information about their velocity

distributions. Researchers have analysed profiles of lines radiated by

atoms in isotropic velocity distributions in several ways, one being the

inversion of the integral equation which relates the velocity distribution

to the line profile. This inversion formula was derived for a separate

application and was given to within an arbitrary multiplicative constant.

This paper presents a new derivation which obtains the inversion exactly,

using a method which is easily generalized for determination of anisotropic

velocity distribution functions. The technique to obtain an anisotropic

veloctiy distribution function from line profiles measured at different

angles is outlined.



Introduction

High resolution spectroscopy of lines radiated by atoms or ions in

plasmas reveals information about their velocity, or energy, distributions.

Researchers have obtained highly resolved spectra of line radiation to

determine the presence of atoms arising from molecular dissociation or

charge exchange in plasma discharges. McNeil et.al. 1-3 have measured the

Ha line profile under high resolution in the PDX tokamak and in ion source

discharges and noted the departure of those profiles from those which would

result from a thermal velocity distribution. They proposed distributions

consisting of linear combinations of isotropic thermal and non-thermal

component distributions functions and fit the coefficients multiplying these

functions to match the measured spectrum. Freund, Shiavone and Brader4

measured the Ha, Hp, HA, and H6 line profiles of excited atoms dissociated

from H2 by an electron beam. These line shapes had a central "cold" peak on

top of a broad, flat profile radiated by the "hot" component. The relative

areas under these two profiles were compared to give the proportion of "hot"

to "cold" atoms. Higo, Ogawa and Kamata and Higo and Ogawa6-8 measured the

line profiles of Ha and Hp from excited atoms produced by controlled

electron impact on H2 and HCL. They assumed the atoms were in an isotropic

velocity distribution and applied the formula derived by Durop and Heitz9 to

obtain the relative energy distribution of the emitting atoms.

This formula was derived as a special case of the general problem of

measuring the isotropic velocity distribution of ions coming from a volume

of dissociating atoms and having velocities directed into a given solid
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angle. The experiment measured f(v')dv', the probability of finding a

particle with velocity between v' and v' +dv' within the solid angle of

collection. When the area of collection becomes an infinite plane, the

problem is identical to the one of inferring the velocity distribution of

atoms or ions from a measurement of the doppler-broadened line profile.

Since the mathematical apparatus used in deriving this inversion was

developed for use in solving a more general problem, the treatment is more

complicated than is needed to solve the problem addressed here, and

furthermore, it leaves an undetermined multiplicative constant. This paper

presents a more staightforward derivation of the inversion which obtains it

exactly. The inversion is demonstrated on a sample distribution.

When the velocity distribution is not isotropic the above mentioned

inversion cannot be used. In that case, one may obtain enough information

to determine the velocity distribution by viewing the emitting volume from

several angles and measuring the profiles of spectral lines radiated by the

atoms or ions. This data could then be used to obtain the three dimensional

velocity distribution using a technique the author calls "doppler-shift

velocity-space tomography". This method is outlined in section III.

II. Derivation

A photon radiated by an non-relativistic atom moving with velocity v

and radiating into a direction which makes an angle 6 with respect to its

velocity will be doppler-shifted by an amount AX = A v/c cose where A is

the wavelength radiated by the atom at rest and c is the speed of light. If

photons are observed from only one direction, z, and vz is the component of
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velocity in that direction, then A = A vz/c. Then, if f(v z)dvz is the

number of radiating atoms in the emitting volume with z-components of

velocity between vz and vz+ dvz'

f (vz)dvz = H(4A)d(A) (1)

where H(A)d(A) is the number of radiated photons with wavelength shifts

between W and W + d(W). Since W-A v zc. d(4A) = A/c dvz and

f(vz) = H(4) A/c (2)

So, a measurement of H(CA) gives f(vZ). f(vz) is related to the three

dimensional velocity distribution function F(vx'vy vz) by the equation

f(vz) f I F(vx.vy .vz)dvxdvy (3)

where F(v ,vy 'vz )dvxdv dvz is the number of particles with velocities

between vx and v + dvx. vy and v *dv , and vz and vz + dvz, and the

integration is over all v and vy for which F(v x.vyvz) > 0. If the

distribution is isotropic in velocity space, then F(v xvy vz) = F(v) where

v2a v + v + V . The distribution is then spherically symmetric in

velocity space with a probability density which depends only on the

magnitude v, and which has a maximum radius vm corresponding to the maximum

AX for which H(W) is non-zero. XM'
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vm * Ac/A (4)

(See figure 1). The integral f(v') for a particular v' extends over the
z

"disk" marked a, which is centered at (0,0,v') and is in a plane parallel toz

the v x v plane. For each vz then. f(vz) is the integral of F(v) over a

"slice" through the velocity space sphere . Thus, a measurement of f(v z) at

n different vz's is equivalent to measuring the integral of F(v) over n

"slices", each in a plane parallel to the vxvy plane. This is analogous to

measuring the integral of the electron density or spectral brightness over a

slab in a spherically symmetric "real space" plasma and inferring the radial

distribution of these quantities from measurements made over many slabs,

ie. , the three dimensional equivalent of the Abel inversion. This analysis

can be generalized to the case where the distribution function is not

Bpherically symmetric as will be shown in section III.

For the case of a spherically symmetric distribution function, the

inversion formula relating F(v) to f(v ) can be simply obtained. Let V2
z±

v + v . Then, from equation (3)

y 2 v2)1/2

m z

f(vz) = F(v)2v Idv . (5)

0
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Since va v I+ V , vdvm v dv for fixed v . Then,

v
m

f(vz)= 2r J F(v)vdv

z

(6)

Now define a function g(v) where g(v)dv equals the number of particles with

speeds between v and v + dv. Then

g(v)dv - 4rv2F(v)dv

and

F(v) -

Vaa

f (v) 1/2 f LWdv

Vz

(7)

(8)

(9)

Inspection of this equation shows that f(vz ) will be a monotonically

decreasing function for any g(v).

If g(v) represented a monoenergetic particle distribution. ie.

g(v) - A6(v-v0 ), then

f (v A
z 2v

f (v ) =0

(10)ifz < v

if vz o
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The measured line profile H(A) will then be a step function, constant for

-v0A /c < Ax < vA /c and zero elsewhere.

Differentiating both sides of equation (9) and evaluating at vz = v

gives

df ()= -1/2 )dv v

g(v) = -2v .

(11)

(12)

Applying this inversion on the step function, equation (10). then gives g(v)

= AS(v-v ), the monoenergetic distribution function.

In terms of H(A).

g(v) = -2AI dHW
c d(A) (13)

The kinetic energy distribution G(E) where G(E)dE is the number of radiating

particles with energies between E and E + dE is given by

Therefore,

G(E)dE = g(v)dv .

G(E) = _2 dH(AA)
mc 2 dC4A)
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where a is the mass of the radiating particle.

So. a measurement of H(AA) can be differentiated to obtain G(E). the

kinetic energy distribution.

As mentioned, the above derived inversion technique applies only to

line profiles which are radiated by particles in an isotropic velocity

distribution and for which the broadening is due only to doppler shifts.

The line may be broadened by Zeeman splitting, Stark broadening, fine

structure, or finite instrumental resolution. Higo and Ogawa presented the

results of a relative measurement of G(E) vs. E, inferred from a measurement

of the Ho line profile 6-8 made under conditions in which the line

broadening was almost all kinetic in origin, and using the inversion derived

in ref.9, which is the same as eq.15 except for the multiplicative constant.

The data were presented with an energy resolution of approximately .15 ev,

which is the best resolution which could be obtained in this case, owing to

the fine structure splitting of the Ha spectral line.

III. Inversion of Anisotropic Distributions

A hydrogen atom in a plasma can charge-exchange with a plasma proton.

In that case, the new atom will have the velocity of the original ion. This

process can create a population of highly energetic atoms which has the

characteristics of the ion velocity distribution. If the ion velocity

distribution is anisotropic. such as the loss-cone distribution in a

magnetic mirror or a toroidally drifting distribution in a tokamak, the

highly energetic component of the neutral velocity distribution will be

anisotropic as well. The doppler-shifted light radiated by these atoms will
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show these anisotropies. Light from toroidally drifting hyrdrogen atoms has

been observed in tokamaks and used to determine drift velocity. 1 0

If the radiating atoms or ions are not isotropic in velocity space,

then the above derived inversion does not apply. In that case more than one

view is needed to determine F(v ,v Yv z). As in the case of the isotropic

inversion, a view along the z axis gives f (v ) where
z

f(v) = f F(v,v y v z ) dv dvy (16)

and f is defined as in section II and the area of integration is the same as

in equation (3). Again, dividing the vz axis into increments, f (v ) is the

integral of F(v y*v z) over the i'th slice centered at (0,0,v ) and

parallel to the v ,vy plane. If f(v ) is known at n different v' s, then

the integral of F(v ,v .vz) is known over n "slices" through the velocity

distribution, which can be thought of as an "object" of varying density in a

three dimensional velocity space. An example is shown in figure 2a. This

is analogous to spatial tomography in which measurements of emission or

absorption are made along chords through a plasmall or a human body12 and

from which the emission or absorption function is inferred.

The line profile can be measured along the x axis to yield f' (v ) where

f' (v) = ff F(v xvy vz) dvydvz (17)

For each v , f' (v, ) is the integeral of F(v ,v yv ) over the

"slice"centered at (0,0,v ) and parallel to the vz vy plane. (See figure
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2b). This could be done also for vy or any arbitrary velocity direction v.

Each measured line shape yields a set of equations. For example, a

measurement of H(CA) at n different AX's yields n equations.

f(vz ) = ffF(vx,vyvz I) dvxdvY (18)

f(vz2 ) = F(vx'vy'vz
2 ) dvXdvy

f(vwn ) F(vhvyv ) dXdy

where f(vz) oc H(A ) and A i A vz Ic. Likewise, measurments of the line

profile along different directions yield similar sets of equations. As in

"real space" tomography, these equations can be solved by proposing a form

for F which is a linear combination of the functions Pk'

k

F(v.vy~vz) B kP(vvv) (19)

k=O

Each integral for f(v ), for example, yields

k

f(vz ) O "'~v 1 B k (20)
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where

Ckvz -f Pk(vxvy vz) dvxdvy (21)

and the integration is over the area in the vxv plane for which F is > 0.

This area is determined by measuring the line profile in the x and y

directions and obtaining the maximum v and v of the distribution which

correspond to the maximum AX of the line profile measured along the x and y

directions respectively. If the number of equations of type (20) is greater

than kma, then the coefficients Bk may be determined by least squares

analysis. The form of the functions Pk chosen will depend upon the number

and angular distribution of the available views through the plasma. More

angular information about the distribtuion function will require more views

at different angles. Because of its similarity to real-space tomography,

this technique may be called "doppler-shift velocity-space tomography".

This differs from real-space tomography in that with real-space tomography

the absorption or emission function of the real-space object is- inferred

from measurents of the average emission or absorption along chord through

the "object", while with "doppler-shift velocity-space tomography" the

density of the velocity-space "object" is inferred from measurments of the

average density over plane= which slice through the velocity-space "object".

IV. Summary

The velocity, or energy, distributions of radiating atoms or ions which

are moving isotropically may be obtained by measuring the doppler-broadened

line emission wavelength profile and applying the mathematical inversion

derived here as long as the line broadening is essentialy kinetic in origin.
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The velocity distributions of radiating atoms or ions which are not moving

isotropically. and for which the broadening is kinetic in origin. may be

obtained by viewing the emitting plasma from multiple angles and employing

the "doppler-shift velocity-space tomography" technique outlined here.

Experiments to investigate the velocity-space distributions of radiating

hydrogen atoms in the Tara Tandem Mirror plasma confinement experiment using

these techniques have begun.
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figure Captions

Figure 1. -A spherical velocity-space distribution. The shaded disk a is

the area over which the integration of F(v) is carried out to obtain f(v').

Figure 2a. Anisotropic velocity distribution showing the "slices" through

the distribution function over which F(v ,v Yv z) is integrated to obtain

f(v ).

Figure 2b. Anisotropic velocity distribution showing the "slices" through

the distribution function over which F(v vy v ,vz) is integrated to obtain

f'(v ).
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