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ABSTRACT

A derivation and approximate solution of renormalized mode coupling equations de-

scribing the turbulent drift wave spectrum is presented. Arguments are given which in-

dicate that a weak turbulence formulation of the spectrum equations fails for a system

with negative dissipation. The inadequacy of the weak turbulence theory is circumvented

by utilizing a renormalized formulation. An analytic moment method is developed to ap-

proximate the solution of the nonlinear spectrum integral equations. The solution method

employs trial functions to reduce the integral equations t algebraic equations in basic

parameters describing the spectrum. An approximate solution of the spectrum equations

is first obtained for a model dissipation with known solution, and second for an electron

dissipation in the NSA.
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I. Introduction

The low frequency drift wave induced turbulence in tokamaks is thought to be one
of the dominant mechanisms driving the anomalous transport in tokamak devices. One
of the fundamental ingredients of a complete turbulence transport theory is the difficult
problem of developing a theory for the turbulence spectrum. The basic mechanism which
we consider here that allows a steady state spectrum is nonlinear mode coupling. The
negative electron drift wave dissipation drives the unstable modes, which then transfer
energy to the stable modes through nonlinear mode coupling. Physically, the lowest order
mode coupling process is a triplet interaction where two fluctuations beat together to
produce a third fluctuation. Mathematically, this process is represented as a quadratic
nonlinearity in the potential fluctuation equation.

In this article we treat two dimensional (kr, ky) stationary homogeneous electrostatic
drift wave turbulence which obeys a potential fluctuation equation of the form,

Here, Okw, is the frequency and wave number fourier transformed potential, and dX E

dk'dw'dk"dw"b(k - k' - k")6(w - w' - w"). It is convenient to isolate the linear dielectric

term proportional to the frequency, w, so that the dynamical mode coupling equation for
the potential fluctuation is in general,

-i(w - fk,)0k dXC,;k,;kI,,f,4kw,4i,,,,,, (2)

where -i(w - f2k,,) = wDk,/[ia/ow(wD'), the dielectric is D = DR + iDI, and the
coupling coefficient is C EM/[id/w(wD,)]. For the case of density gradient driven drift
waves, with nonlinear polarization drift mode coupling dominant, the coupling coefficient
is [1),

1 e
Ck,k,kI, = e (k' k' - k' k")(k - -k2)/[1 + (kp,) 2], (3)

and the complex frequency, fkw, is

w- -LDI
9k,w = Wk + ilk,w, k = 1 + 2-k, kwD(

_ +_k__)__ kw)
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The diamagnetic drift frequency is w* f2(p,/L.)(pky), the ion gyrofrequency is fl

eB/mic, the ion inertial scale length is p, = c, /[i, and the ion sound speed is c,

(Te/mi)1/2

In Sec. II, two statistical closure schemes are analyzed in connection with the deriva-

tion of the spectrum equations. The mode coupling equation for the potential fluctuations,

Eq. (2), is used as a starting point. Arguments are given which indicate that a weak tur-

bulence formulation of the spectrum equations fails for a system with negative dissipation,

such as the drift wave problem. The failure of the weak turbulence theory is shown to be

directly related to the linear instability of the triplet correlation function. The nonlinear

feedback effect from higher order correlations on the evolution of the triplet correlation is

obtained by formulating a renormalized theory for the spectrum, using a scheme equiva-

lent to the Direct Interaction Approximation, or DIA [2]. A set of renormalized nonlinear

coupled integral equations for the wave number and frequency spectrum and nonlinear

complex frequency are derived.

In Sec. III, an analytic moment method is developed to approximate the solution of the

nonliner spectrum integral equations. The spectrum equations are reduced to wave number

space by using either a Lorentzian or a Gaussian frequency trial function, and integrating

out the frequency dependence. The wave number dependent nonlinear coupled integral

equations which result are expressed in terms of a wave number spectrum, a nonlinear real

frequency shift, and a nonlinear frequency width. It is noted that the Lorentzian frequency

function is not applicable for frequency dependent growth rates, since the wave number

reduced growth rate is a frequency averaged quantity, where the spectrum is a weighting

function, and most moments of a Lorentzian do not exist. The wave number spectrum

problem is solved to first order by using trial functions for the wave number spectrum and

frequency width. The trial functions are dependent on physically relevant parameters, the

total integrated amplitude, the spectral wave number width, and the spectral frequency

width. Using the trial functions in the nonlinear integral equations, and taking select wave

number moments, a corresponding set of nonlinear algebraic moment equations for the

parameters are determined. The parameters are obtained by solving the nonlinear coupled

algebraic equations, which is done in part numerically. Equations which determine the

next order correction of the parameters are presented.

The selection of the wave number moments mentioned above can be formalized using a

least squares method. The nonlinear integral equations are cast into a squared functional

form which is then minimized with respect to the unknown spectrum parameters. The
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"best" wave number moment algebraic equations are thus obtained in a least squares sense.

Preliminary calculations using the least squares moment method which give little deviation

from the results presented here have been done. A complete least squares calculation of

the solution for the spectrum equations will be presented in a subsequent article.

The analytic moment method is tested by approximately solving the spectrum equa-

tions for a model dissipation proposed and numerically studied by Waltz [3]. This model

wave number dependent growth rate exhibits damping for low and high wave numbers,

with a narrow band of marginally positive growth rates between. The agreement between

our approximate analytic moment method solution and the numerical solution of Waltz

is excellent, both quantitatively and qualitatively. The average frequency width for this

model problem is quite small, being much less than the average frequency. The analytic

moment method is finally applied to the spectrum equations with a renormalized electron

dissipation in the Normal Stochastic Approximation, or NSA [4]. The root mean square

potential is found to be approximately, eqfm/Te ; 10', and the radial diffusion coeffi-

cient is found to be approximately, D ; 1.8fli(p,/L.)p'. The results also indicate a large

average spectral frequency width which is approximately equal to the average frequency.

The saturation amplitude and large frequency widths are then in rough agreement with

experimental observations in tokamaks. The two models indicate a large difference in fre-

quency width solutions. In order to understand what causes the large frequency width

for the electron dissipation in the NSA, we analyze the differences in dissipation for the

two models. A comparison between the model problem growth rate and the growth rate

derived from the electron dissipation in the NSA is then presented, with emphasis on the

resultant spectral widths. A growth rate rescaling analysis is used to verify that such a

trivial adjustment in the drive cannot account for the difference in frequency width to

frequency ratio for the two spectrum solutions. The spectrum solution found after rescal-

ing the growth rate derived in the NSA can be used to show that the frequency width

as well as the frequency itself are roughly linearly proportional to the rescalings. Conse-

quently, the ratio of the frequency width to the frequency is approximately independent

of the rescaling. A characteristic of the model problem growth rate is that there are few

unstable triplets to drive up the noneigenmode frequency spectrum which result in a small

frequency width. However, the electron dissipation in the NSA results in large spectral

frequency widths, since there are many unstable triplets which drive up and populate the

noneigenmode frequency spectrum.
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I. Derivation of Spectrum Equations: Renormalization

A renormalized nonlinear integral equation for the turbulent spectrum is derived in

this section. The fluid-like (frequency independent) limit is taken in order to clearly

demonstrate the failure of the weak turbulence formulation in a dissipative regime. The

shortcoming of the weak turbulence theory is due to the associated linear instability of

the triplet potential correlation function. The time asymptotic response of the linear

propagator for the triplet correlation function is unbounded, when the sum of the three

linear growth rates of the potential fluctuations interacting in the triplet is greater than

zero. To resolve the inadequacy of the weak turbulence (linear propagator) treatment,

one must include the effect of higher order correlations on the response of the triplet

correlation. To this end, a renormalized theory is developed where the propagator obeys a

nonlinear equation. The nonlinear feedback mechanism produces a damping which inhibits

the divergence of the propagator found in the weak turbulence theory approach. This

section ends with a detailed derivation of the renormalized nonlinear frequency and wa4
number spectrum integral equations for a general frequency and wave number dependent

dissipation.

The usual derivation of the mode coupling equation follows from an expansion about

the linear eigenfunction with a slow time separation employed [5]. The eigenmode expan-

sion implies a narrow frequency spectral width of the form Sk,, : Skb(w - Wk). If the

theory is extended to a noneigenmode expansion, while keeping a slow time expansion,

the spectral quantity Sk,,(t) =(kw(t)4,(t)) would appear, where the frequency, W,

is the Fourier transform of the fast time dependence while the explicit time dependence,

t, is the slow time. Using this formulation the identification of the frequency width is

difficult since a part is attributed to the explicit frequency dependence, W, and another

part to the time dependence, t. Also, a slow time expansion would be suspect in a chaotic

regime. Consequently, the validity of the usual mode coupling theory is doubtful for the

drift wave problem in tokamaks where there is some experimental evidence suggesting

that the plasma is in a highly turbulent state exhibiting a broad frequency, as well as wave

number, spectrum [6].
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A. Spectrum Integral Equation - Frequency Independent Dissipation

The majority of research on the drift wave spectrum problem has dealt with a fluid-

like version of the mode coupling equation where the growth rate, Ykw, is independent

of frequency, w. In these treatments the linear frequency, wk, is derived from the fluid

equations while the growth rate, -yk, is usually modeled after the electron-ion dissipation

found from a complete plasma kinetic theory derivation. In order to make contact with

this fluid-like treatment of the spectrum problem in this section, the limit of the general

mode coupling equation, Eq. (2), to frequency independent parameters, ,w -* fGi and

Ck,w;k,,w,;kI,,,W, - Ck,k,,k,,, is used to characterize the fluid limit. This limit produces a

mode coupling equation formally equivalent to the mode coupling equation derived by a

fluid mechanics approach. In the following section, Sec. B, the spectrum integral equation

is derived with the complete plasma kinetic theory mode coupling equation, where the

complex frequency, lk,,, is a general function of wave number and frequency.

The fluid limit of the mode coupling equation in the wave number, k, time, t, domaig

is

+ iQk) O (t) = dXCk,kI,k11k'(t)Okk, (t). (5)

For a homogeneous system the wave number selection rule is,

(4k (t)'k,(t')) = 6(k - k')Sk(t, t'), (6)

so that,

(qg (t)4 j (t')) = Sk(t, t'),

where, < >, is an ensemble average and the infinite normalization is deleted for simplicity

of presentation. Multiplying Eq. (5) by Oj(t') and using Eq. (6) results in the equation

for the wave number spectral two time correlation function, Sk(t, t'),

( t+ I 'k Sk (t, t') = fdXCk,k',,, (A' (t')Ok, (t)Ok,, (t)), (7)

while the equation for the one time or energy wave number spectrum, Sk(t,t), is

- 2k ) Sk(t, t) = dXCk,k,kn,(4(t)kk,(t)kk,(t)) + c.c.. (8)
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In order to obtain a completely closed equation for the spectrum, a relation for the

triplet correlation function, (0*04), in terms of the spectrum must be obtained. Two

closure schemes will be discussed. First, the closure scheme will be achieved using a

weak turbulence theory [71 which employs the random phase approximation, or RPA [8].

The weak turbulence theory is then shown to be inadequate for systems with negative

dissipation since the triplet correlation is linearly unstable in this theory, so that the time

asymptotic limit of the triplet propagator is infinite. The need for renormalization is

then motivated, so that higher order correlations can nonlinearly feedback on the response

of the triplet correlation. The feature of the renormalized equations for the spectrum,

which eliminates the linear instability associated with the weak turbulence theory, is the

inclusion of nonlinear damping in the propagator of potential fluctuations. Second, closure

will be derived using the Direct Interaction Approximation, or DIA [2]. A resolution of the

problem found with weak turbulence theory is achieved since the final equations are a set

of fully nonlinear coupled equations for the spectrum as well as the propagator. The DIA

renormalization of the fluid-like mode coupling equation is derived in order to demonstraOI
its equivalence with the renormalization scheme used in Sec. B on the complete plasma

kinetic theory mode coupling equation taken in the fluid limit.

1. Weak Turbulence Formulation

Using the potential fluctuation equation, Eq. (5), an equation for the triplet,

(ki(t)4k,(t)kk,,(t)), is found by differentiation and averaging,

at I(9kj - fl '- lfkD)] ( N ov~kk (t k"())

J dkidk2 [6(k - k I - k2)Ck,k,,1 2(0j, (t)O ;(t)Ok(t)Ok,(t))

+ 6(k' - k1 - k2)Ck',ki,k 2 ((t)4Ok (t)4kg (t)k" (t))

+ 6(k" - k1 - k2)Ck",,k ,k2 (4 (t) 00k(t)4k (t)4 (t)) . (9)

In a highly turbulent (random) state the ensemble average potential fluctuation is zero,

(0) = 0, and the quartic correlation can be exactly expressed as a sum of all possible

products of paired correlations plus an irreducible correlation, Q,

(' 1020244) = (K102)(0304) + (0103)(K204) + (14)(01 243) + Q. (10)
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In this cumulant expansion it is postulated that the irreducible correlation, Q, is much

smaller than the product of paired correlations, Q/ (44) (0) < 1. The leading order quar-

tic expansion is obtained by setting the irreducible correlation to zero, Q --+ 0. This can be

motivated by considering the relevant stochastic regime, where it is physically reasonable

to treat the potential fluctuations as normally distributed. In fact, this is equivalent to

the RPA where only the lowest order (paired) terms in the cumulant expansion are kept,
while dropping the irreducible correlation, Q.

After using the wave number selection rule, Eq. (6), and the RPA for the cumulant

expansion of the quartic in Eq. (9), the equation for the triplet correlation is

[at- i(llk - n - 2ku)]I (k(t)Ok'(t)Ok:'(t))

= 2[Ck,k',,, Ski (t, t)SkI, (t, t) + CkI,_k,,kSk(t,t)Sk,,(t, t)

+ Ck",-k,k Sk(t, t)Sk' (t,t)], (11)

where the symmetry Ck,,Ik,,k = Ck,,k,,k, and reality condition C = C* have been used.

The triplet equation can be solved formally in terms of a triplet propagator or Green's

function, GT(t, t'), as follows,

- iDi- O, - O,, G(t, t') = b(t -t'), (12)

so that

G T(t tt exp[i49j - flk' - flk'I)( - t%), t > t' 13Gi'(t, t') =_ i,( '] (13)

and the solution is

(4j(t)qg, (t)/,k , (t)) = ((0) Ok',(0)4k,, (0))G T(t, 0)

+ dt'G T(t, t')2[Ck,k',k, Ski (t', t')Sks, (t', t')

+ Ck',-k",kSk(t', t')Sk, (t', t')

+ Cks,k',k Sk(t', t')Sk' (t', t')1. (14)
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If the triplet propagator is well behaved in the time asymptotic limit, limt.x 0 Gk(t, 0) = 0,

then the initial triplet correlation will not contribute so that the final equation for the

spectrum, Sk (t, t), is obtained by substituting Eq. (14) in Eq. (8),

- 2yk Sk (tt) = JdX dt'Gijft,t') + -

- 2Ck,k',k" Ck',k",k Sk (t', t')Sk" (t', t')

where the symmetry Ck,,-k," = -Ck',k,,k was used.

The steady state spectrum, Sk, is obtained from Eq. (15) by taking the time asymp-

totic limit. With the resonance function defined by

-- e

1t
ReIk'k",, , i- li jm dt'G T(t,t') + C.C., (16)

27r t-oo If k

the nonlinear integral equation for the spectrum is

- 2 -YkSk J dX4lrReIk,k',k" [Ck',kI,kISkISk'I - 2 Ck,k',k"Ck',k",k Sk" Sk1. (17)

In the steady state d/dtSk = 0, and after doing the resonance function time integral

ReI k -,,k 1 T (18)

where

IT = Yk + Yk' + Ik, and ALWI Wk Wk' -WO". (19)

The major restriction on the above calculation is that the time asymptotic limit of the

linearly propagated initial triplet correlation must be zero, limt,-O erTt = 0. This is the

same restriction for the resonance function Eq. (16) to exist. In fact, for a system with

negative dissipation, -k > 0, there may be positive triplet growth rates, -YT > 0, so that

the three wave interaction time or resonance function is infinite due to the linear instability

of the triplet correlation.
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For the case of zero dissipation, yT -+ 0, the resonance function becomes a linear

eigenfunction selection rule in frequency,

lim ReIk,1,,k" = 6 (Wk - Wk, - wk"), (20)

so that the spectrum equation becomes the familiar nonlinear mode coupling spectral

evolution equation (introducing 9/tSk for slow time evolution) with an expansion about

eigenmodes [7],

at - 2-.vk) Sk = 47r f dk'dk"6(k - k' -k")6(k - Wk' - Wk,,)

x [Ck,, S,SkI - 2Ck,k,k"Ck',k",kSk'ISk]. (21)

The failure of the weak turbulence theory for systems enjoying negative dissipatio

(such as the drift wave problem) can be traced back to the inadequacy of the propagator.

In general, the spectrum problem is fully nonlinear; however, in weak turbulence theory

the propagator, GT, is determined by the linear frequency, wk, and growth rate, Yk. The

final spectrum equation found in weak turbulence theory is quadratically nonlinear in the

spectrum, S, but the resonance function has a linear character so that it is not valid for

positive linear growth rates. The resolution of this problem is to include the effect of

higher order correlations on the propagation of the triplet correlation, by renormalizing

the propagator so that it will behave nonlinearly. The renormalized spectrum problem

is formulated in terms of a set of coupled nonlinear equations for the spectrum, S, and

propagator, G. Physically a bare triplet correlation can interact with numerous higher

order correlations which contain a triplet character. By including this feedback from

higher order correlations, the triplet will respond nonlinearly and damp, so that the linear

instability of the triplet found in weak turbulence theory will be avoided.

2. DIA Renormalized Formulation

A short derivation of Kraichnan's DIA [2,9] is presented here so that it can be com-

pared with the fluid limit of the renormalized spectrum equations for the plasma kinetic

theory drift wave problem, Sec. B.

The linear propagator, Gk(tt'), for the mode coupling equation, Eq. (5), is defined

by the expression

11



+ in], G (t, t') = 6(t - t'); Go(t, t') = 0, t < t'. (22)

The formal solution of the mode coupling equation is

kk(t) = 4(t) + fdt'G (t, t') J dXCki,,Ik4k,(t')eik"(t'), (23)

where the zeroth order solution is 0 (t) = 0,(0)G (t, 0). The infinitesimal response func-

tion, or propagator, is

Gk (t, t') = k(t), (24)
6fk(t')

where qk - 0 + 6 4k, and 6 fi is a forcing function added to the right hand side of the

mode coupling equation, Eq. (5). Making the above substitution and taking the variational

derivative with respect to bfk results in the equation for the propagator, G] (t,t'),

( + in]) G, (t, t') = 2 dXCk,k',k a(q,(t) bk (t)) + 6(t - t'). (25)
adt j fk(t')

The renormalization prescription is to expand the triplet, (0*00), in Eq. (7) and

(4(6/bf)) in Eq. (25), using the solution for ikk(t) in terms of the zeroth order quantities

40(t) and Go(t, t'), up to the lowest order, and renormalize the spectrum and propagator

by the substitution

SO (t, t'1) --+ Sk (t, t') and Go (t, t') -+ Gk (t, t'. (26)

The renormalization procedure is equivalent to an infinite summation of a particular class

of terms containing the zeroth order spectrum, S (t,t'), and propagator, G (t,t'). The

result of the above analysis is a set of coupled nonlinear equations for the two time spectral

correlation function, Sik(t, t'), and propagator, Gk(t, t'),

+ ink SI(t, t') = dX dt"2[C,ki,,k, Gj (t', t")Sk (t, t")Sik' (t, t")

- 2 Ck,kl,k" Ck',k,,k Gk' (t, t")S (t', t")Ski (t, t, (27)

and
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+ in Gk (t, t') = J dXf dt"4Ck,,,k Ck,,k Gk (t", t') Gk, (t, t") Sk" (t, t")

+ b(t - t'). (28)

For stationary turbulence, Sk(t, t') = Sk(t -t') = Sk(r) and Gk (t, =) Gk (t -t') = Gk(r),

the above equations become

+ il] S = f dX dr'2[C2,k,,G(r' - ),

- 2 Ck, ,,ks Ck',k",kSk(r - ')G, (r')Sk" (-'), (29)

and

+ irk Gk (r) - dX dr'4Ck,ki,k"Ck',k',kGk(r - r')Gk,(r')Sk (r')+t5(r). (30)

It is clear now that the propagator, G, is on equal ground with the spectrum, S, since

they both obey a coupled set of nonlinear equations in th is renormalized formulation of

the spectrum problem.

The derivation of the DIA equations can proceed by expanding to infinite order in

the zeroth order quantities and then resumming a particular set of infinite terms which

renormalize and close the set of equations for the spectrum, S, and the propagator,G [10].

Weak turbulence theory can also be derived as a renormalization of the spectrum, S, using

the initial statistical assumption of RPA on the zeroth order quantities, instead of applying

the RPA statistical assumption on the fourth order cumulant for all times. However, it is

clear that the propagator in weak turbulence theory is not renormalized, which leads to

the problem that the propagator and resonance function do not behave nonlinearly, which

results in a catastrophe for the negative dissipation regime of drift wave turbulence theory.

The above demonstration should be ample impetus to explore a renormalized theory for

the plasma drift wave frequency - wave number spectrum equations.
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B. Spectrum Integral Equations - General Dissipation

The derivation of the renormalized nonlinear spectrum equations presented here fol-
lows that of Kadomtsev [11]. This calculation begins by adding an as yet unknown complex
frequency shift, ?7k,,w, to both sides of the general mode coupling equation, Eq. (2),

-i(w - - b',)4k,w = ik, + J dXCk,ik, 4,,,w. (31)

At this point the introduction of the complex frequency shift, b77k,w, is exact. Physically,
the frequency shift, ?7]k,,, is isolated because the resultant spectrum equation will con-
tain a nonlinear complex frequency shift term proportional to SkL, which can then be
identified as b7ks. In effect, the propagator of potential fluctuations, Eq. (31), has been
renormalized at the start by giving it a nonlinear piece 6b1k,w,

1 1
G-., w= Qk,w + 677k,w- (3

By renormalizing the propagator and thus forcing it to have a nonlinear complex frequency
character it is expected that the problem of the weak turbulence theory linear propagator
will be corrected in this formulation of the spectrum equation.

Using the propagator, Eq. (32), the solution, Ok, of Eq. (31) is readily solved for,

k, = . I k,w -k,+ w -+ dXCk,k',k',w'k,,4x". (33)Z(W -- 77k ') - (W -- ?7kpL) f

For homogeneous stationary turbulence the spectrum is Sk, = 04k, 12), where, as

stated previously, the infinite normalization is deleted for simplicity of presentation. The
exact equation for the spectrum is obtained from Eq. (31), by multiplying it by 4j, and
ensemble averaging,

-i(W - JkW)Sk =ib7kSkw + dXCskI,kI,,Akwbi,wc,,, II). (34)

Following the procedure used in the weak turbulence section, it is necessary to derive
an equation for the triplet so that the spectrum equation, Eq. (34), can be written entirely
in terms of spectral quantities. Using the potential, Eq. (33), for each term in the triplet,
(K'00), results in an equation for the triplet,
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('t4,~kk',+ ib~")-?7k',w') + ib/7k" w

- i P 77k"] _____________

+ dX Ck,ki,k 2 [.( (lW k2,U)],, 4, W

" Ck',k1, 2 L[(W 1l'w) -] kIW 4,2O"L

+ Ck",kk,2 [ , ) I '' ,wi k2 ,w2) }. (35)

As was done during the derivation of the weak turbulence equations, for a highly

turbulent state, it is physically reasonable to treat the potential fluctuations as normally

distributed. The normality assumption is equivalent to the RPA, so that closure is obtained

by expressing the quartic correlations, on the right hand side of Eq. (35), as a sum of all

possible products of paired correlations, and dropping the triplet correlation term, which

corresponds to dropping the propagated initial triplet correlation in the time domain.

Using the wave number-frequency selection rules, the equation for the triplet expressed in

terms of spectral quantities is

-2 Ck,k',k" . ? kw '"

+ Ckik",k [ i (W' ], Sk,w Sk" ,,

+Ckl$,_kl,, . ,,t ' 7I)WI Sk,-Skl,-, (36)

Finally, using this expression for the triplet, Eq. (36), in the spectrum equation, Eq.

(34), while using the coupling coefficient symmetries, Ck ,k-,k = Ckj,k,k2, Ck,-k2,k3

-Ck,,k,,k., and C = C-, results in the spectrum equation,

-i7w - ?k,w)Sk,w = 5 ?7k,wSk,w + 2J dX C,k Skf~wISkit"?/ (W 77kw)

- 2Ck,k',k Ck,k",k Sk,w Sk",w" . ,}. (37)
-zo- ?lk,,w,)
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The complex frequency shift, b5 7k,w, in Eq. (37) appears to be arbitrary; however, it

was set up at the outset to represent the nonlinear complex frequency shift of the potential

fluctuation. In fact, the frequency shift is contained in the propagator, 1/27r[-i(w -qk,,)],

on the right hand side of Eq. (37). To the extent that the spectrum propagator is similar to

the fluctuation propagator, it is reasonable in Eq. (37) to equate the frequency shift term,

6b7k,,Sk,w, with the mode coupling term on the right hand side of Eq. (37) proportional

to the spectrum, Sk,w. The equation for the nonlinear complex frequency shift, 6b7k,,, is

then

k,,=-if dX4CkkI,,kICk,,k1' . Skit it (38)* 
- ' 'L.'')

The result of the above separation is a coupled set of nonlinear equations for the spectrum,

Sk,W, and the nonlinear complex frequency, 77k,w,

-i(W ?k,w)Sk,w f dX2Ck, k',f [k( 1Sk",lw",w (39)

and

?7 k,w =k,w - i dX4Ck,k',kiCk,kI,i ., kSi,wi. (40)

It should be realized that a critical assumption in the derivation of the renormalized

spectrum, Eqs. (39) and (40), is the addition of the nonlinear complex frequency shift,

bk,w, in the fluctuation equation for Ok,w. After the spectrum equation for Skw is derived,

6bk,, is set up to be equal to the nonlinear frequency shift term proportional to Sk,w. It is

clear that b?7k,w represents the complex nonlinear frequency shift for the spectral evolution

equation; however, it then has been assumed that this same nonlinear complex frequency

shift, b77k,,, appears in the fluctuation equation for Ok,,, since it was introduced in the

propagator at the outset. The resultant approximation in this renormalized theory for

the spectrum is that the nonlinear complex frequency shift, 3 ?7k,w, which is defined as the

nonlinear frequency shift in the spectrum equation, is also a good approximation for the

fluctuation equation. Physically, it does seem reasonable that if the fluctuation equation

for 4 k,w is used solely to derive the average evolution of the spectrum, Sk,", then the

complex frequency shift, b?7k,, found in the spectrum equation, might be a good model

to use in the fluctuation propagator, Gk,,.
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It should be noted, as was noted for the DIA renormalization section, that instead

of using the RPA on the potential fluctuations, 4kw, the equations for the spectrum,

S, and propagator, G, could have been obtained by expanding in terms of the zeroth

order quantities, S' and G', and finally renormalizing to S and G. This suggests that

the Kraichnan DIA coupled set of nonlinear spectrum and propagator equations can be

obtained by taking the fluid-like frequency independent limit of Eqs. (39) and (40) for

the spectrum and nonlinear complex frequency, where the linear complex frequency is

k = Wk + 'Yk.

The demonstration that the DIA Eqs. (29) and (30) are identical to the fluid limit of

the above renormalized Eqs. (39) and (40) follows by first writing out the equation for the

propagator, Gk,w, from its definition, Eq. (32),

1 -i(w - f1) 1 -i(w - - 5lk,w) - Ztk, (
-i(w - flk)G,,e -= - . (41)27r -i(w - k - 6bik,) 27r -i(w - Qk - blh,w)

Using Eq. (38) for the frequency shift, 6 'm,w, in Eq. (41), along with the definition of

Gk,,, results in the propagator equation,

k- )Gk,,= - dX4Ck'k',k" Ck,,i,k,,27rGk,,Gk',,"Ski,",It + . (42)

After taking the inverse frequency Fourier transform of the propagator, Eq. (42), while

using the formula for the inverse transform of a product times a convolution,

dwe-'TGkLJ dw'G,,OSk,' -, J dr'Gk(r - T')Gk,(r')Sk"(T'), (43)

the equation for the time evolution of the propagator, Gk(T), is

( +Znk Gk (T) = - dX4Ck,k',k" Ck,,k",k dr'Gk (r-r')Gk'(r')Sk"(r')+6(r). (44)

The spectrum equation, Eq. (37), can be rewritten in terms of Gk,, as

-i(W - SOg)Si = dX [2Ck, k,k,27rG Sk I

- 4 Ck,k',k " C,,,,,27rSkuGk,,w,, Sk,,i i. (45)
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This can be inversed Fourier transformed, using the convolution rule, Eq. (43), and the

transform property f dwe-rf* = f* (-r), to obtain the evolution equation of the spec-

trum, Sk(T),

+ i) J dX [2CkI,,,, dr'G*(r' - r)Sk'(r')S,, (T')

- 4 Ck,k',k"Ck',k,k f dr'S (r - 7')Gk,(7'),Sk,(T). (46)

The Eqs. (44) and (46) for the propagator, Gk(r), and the spectrum, Sk(r), are exactly

the DIA Eqs. (29) and (30) previously derived.

The starting point for the derivation of the renormalized spectrum equations was the

general mode coupling equation, Eq. (2), for the potential fluctuations, k,,.. It should

be noted that a more consistent approach would be to attack the Vlasov-Poisson system

of equations directly with a renormalization scheme, since they comprise a set of coupled

nonlinear equations for the potential fluctuations, 4, and distribution, f. The upshot is

that the nonlinear spectrum equations are similar to the results obtained here, with the

additional feature that the kinetic resonance function under the velocity integral for the

coupling coefficient, C, is also renormalized as 1/(w - k -v) -* 1/(w - k -v - brk,w) [11.
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III. Solution of Nonlinear Spectrum Integral Equation

The result of the preceding section is a set of coupled nonlinear integral equations,

Eqs. (39) and (40), for the spectrum, Sk,,, and the nonlinear complex frequency, rlk,W.

The objective of this section is to formulate an analytic technique to approximate the

solution of nonlinear integral equations of this type, and then to apply the technique to

the spectrum equations for various models of dissipation.

The solution of nonlinear integral equations is one of the major problems addressed

by applied mathematics research at the present time. There are no general analytic so-

lution techniques for these equations. Numerical solutions of nonlinear integral equations

require very lengthy computation times, even for a coarse discretization of the spectrum,

using few spectral modes. In fact, the solution of the spectrum equation, reduced to just

wave number space, involves hours of Cray time [3]. Perturbation methods for the so-

lution of nonlinear equations, where the solution is built up by summing the solutions

for a series of related linearized problems, in many cases will not converge to the actuil

solution. Consequently, it is advantageous to try and obtain a solution directly without

employing a linearization. To this end, as a first order approximation, a moment method

is developed to approximate the solution of the coupled set of nonlinear integral equations

for the spectrum. The method begins by selecting appropriate trial functions which are

dependent on a set of physically relevant parameters. Similar to a variational method,

the trial functions are used as a first order approximation to the solution of the nonlinear

integral equations, where the functional form of the trial functions are determined with

the aid of experimental evidence and physical insight. By using the trial functions in the

nonlinear integral equations, a corresponding set of nonlinear algebraic moment equations

for the parameters are determined. The nonlinear algebraic equations are then solved for

the unknown parameters. These parameters are the leading order approximations to the

corresponding physically relevant parameters of the true solution. Based on this first order

solution, equations are systematically derived which determine the next order correction

to the solution. The equations governing these next order corrections to the solution func-

tions can be solved, so that the solution functions are then known to second order, which

enables the calculation of the parameters to second order. In principle, this procedure

can be iterated to determine higher order corrections to the solution of the coupled set of

nonlinear integral equations. In this article, we will be concerned only with the first step.

Alternatively, the parameters of the theory could be solved to second order by using

a nonlinear variational approach [12]. Briefly, the variational method guarantees by con-
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struct that the resultant parameters will be good to second order if the trial functions are

known to first order. However, as usual, one rarely gets something for nothing. The non-

linear variational calculation is quite difficult, and in many ways parallels the additional

work needed to calculate next order corrections to the first order parameters, as presented

in this section.

In Sec. A., the spectrum problem is reduced to wave number space by choosing a

spectral trial function in frequency space and integrating out the frequency dependence of

the spectrum equation. In Sec. 1., a Lorentzian spectral function in frequency is used to

derive a spectrum equation in wave number space for fluid-like systems. The Lorentzian

is shown to be incompatible with the more general plasma problem, where the linear

growth rate is a function of wave number as well as frequency. The difficulty arises since

the spectrum problem reduced to wave number space incorporates frequency averaged

quantities, such as the growth rate, where the spectrum is a weighting function. However,

most of the frequency moments of the Lorentzian are singular. In Sec. 2., in order to

handle general frequency dependent growth rates such as the realistic electron drift wave

dissipation in the NSA, a Gaussian spectral trial function in frequency is used to produce

a spectrum equation in wave number space. The Gaussian function does not have the

drawback associated with the Lorentzian function since-all moments of the Gaussian exist.

Section B. contains the final solution of the spectrum equations. This is obtained by

choosing a wave number spectral trial function which is a function of several important

parameters, the total integrated spectral amplitude, the spectral wave number width, and

the spectral frequency width. The parameters are determined by solving a set of inde-

pendent nonlinear algebraic equations derived by taking select wave number moments of

the wave number spectrum equations. It should be noted that the selection of the wave

number moments can be formalized by using an optimizing least squares method. This

procedure utilitizes a squared funcitonal form of the nonlinear integral equations which

results in the "best" moment equations in the least squares sense. Our analysis of the

spectrum equations using the least squares method will be reported later. In Sec. 1.,

the general moment method procedure is described in detail for the case of the spectrum

equations. In Sec. 2., equations governing the next order correction to the first order

solution are formally derived, so that in principle the solution parameters can be obtained

to second order accuracy. In Sec. 3., in order to test this analytic moment technique for

solving the nonlinear spectrum integral equation, a Lorentzian frequency function along

with a Gaussian wave number function is used to solve the fluid limit spectrum equa-
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tions for a model dissipation studied by Waltz [3]. A comparison is made between these
analytic results and those obtained numerically by Waltz. It is found that there is both
good qualitative and quantitative agreement between our analytic spectrum results and
the numerical results of Waltz. The root mean square potential, obtained by this ana-
lytic moment method, in dimensionless normalized units, is 0rm, = 1.6. This is in almost
perfect agreement with the quoted numerical results, and is on the order of the experimen-
tal values. In dimensionless normalized units, the average frequency width, (-?,I) ; .02,
found by this moment technique, is much less than the average frequency, (W) ~ .3. This is
also in agreement with the numerical results of Waltz, but, of course, quite a bit different
from the broad frequency spectral widths observed experimentally. Finally, in Sec. 4.,
a Gaussian frequency function along with a Gaussian wave number function is used to
solve the spectrum equation for a model of electron drift wave dissipation derived in the

NSA [4]. Using the approximate analytic moment method of solution, in dimensionless
normalized units, the root mean square potential is krma 3.1. Also, in dimensionless
normalized units, the average frequency width, (-r71 ) ~ .3, is on the order of the average
frequency, (w) z .3. A comparison is made between the model dissipation of Waltz and the
electron dissipation in the NSA with emphasis on the resulting spectral frequency widths.
It should be noted that the frequency width to frequency ratio is roughly independent of a
growth rate rescaling for the electron dissipation in the NSA. Therefore, the difference in
frequency widths for the two dissipation models cannot simply be attributed to a rescaling
of the growth rate. Consequently, a more detailed analysis of differences in the growth rate
structure for the two models must be considered. The basic point is that the wave number
dependent growth rate for the model problem of Waltz contains a narrow wave number
region with small positive growth rates. Almost any two unstable linear eigenmodes which
beat together form a third nonlinear mode which is stable, where the triplet growth rate
is also stable. Since there are very few unstable triplets to drive up the noneigenmode
frequency spectrum, the resultant spectral frequency widths are small. For the case of the
growth rates derived from this model of electron dissipation in the NSA, every eigenmode,
W = wk, is unstable. Any two eigenmodes with positive y components of the wave vectors
which beat together form a third nonlinear mode which is also unstable. There are many
unstable triplets that drive up and populate the noneigenmode frequencies. It is then an-
ticipated that the solution of the spectrum equations dependent on the electron dissipation
in the NSA will result in large frequency spectral widths. The spectrum results for this
dissipation model, being e,ms/Te a 10-2 and an average frequency width on the order
of the average frequency, are in rough agreement with the experimental observations in
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A. Spectral Trial Function: Frequency

In a linear eigenmode theory the effective frequency spectrum, for any fixed wave

number, is centered about the linear eigenfrequency, wk, with negligible frequency width.

In general, however, the spectrum equation is nonlinear so that one expects the frequency

spectrum to be centered about a nonlinear frequency, ,f - wk +69 (6b7 is the nonlinear
frequency shift), with the frequency width being 7 -yj+671 (6t( is the nonlinear growth

rate shift). Employing these two general physical features of the frequency spectrum, two

particular frequency spectral shapes are chosen (the Lorentzian and Gaussian) for the trial

functions. This leads to a reduction of the spectrum problem to wave number space.

1. Lorentzian Line Shape

One possibility for the spectral frequency trial function is the very common Lorentzian

model. In fact, the Lorentzian frequency function appears to occur naturally in the spec-

trum equation. Actually, it will be demonstrated that this is due to the method of renor-

malization used to derive the spectrum equations, where the nonlinear complex frequeny,
7 k,w, was introduced. Although superficially there seems to be only one reasonable choice

for the frequency trial function (the Lorentzian), it is shown that general choices are possi-

ble by changing representation of the spectrum problem from the calculation of a nonlinear

complex frequency, qk,,, and a spectrum, Sk,w, to the calculation of a propagator, Gk,,,

and a spectrum, Sk,w. The use of this alternate representation will not lead to any prac-

tical restriction on the form the frequency spectral trial function may assume. In this

section, the representation employing the nonlinear complex frequency, ?7k,w, is used. In

the following section, we will develop the other representation.

The spectrum problem [via Eqs. (39) and (40)] is that of calculating the spectrum,

Sk,,, and the nonlinear complex frequency, 17k,w. The equation for the spectrum is analyzed

first, followed by that of the nonlinear complex frequency. The starting point is Eq. (39)

for the spectrum, where definition (40) has been used,

-i(w - 2k,w)Sk,, f dX 2Ckk',kSkwISk",wi -

T Ck,k i,k t CkikIt ,k Skw Sk = [-a,, + in',', }st (47)

Taking the real part of Eq. (47), with the definition 7/,''k,w + i?,,L, results in
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2 -yk,wSk,W = dX L4 R ,k)kI + (w7 - ~w 2l~ Ski'W ,w'ki,wi

I 

- 87rCk,k,,k"Ck,,k",kSk,- , 1k', Ski, (48)
kr( ' k' k",w

It is interesting to note that the real part of the propagator,

Rk, = Gk, + G* 7r (L - ) + (k)2

will take on a Lorentzian form in frequency, if ?lk,w - ik.

In reference to Eq. (48), it should be noted that the right hand side driving terms

each contain two spectrum factors, S, and one real propagator factor, R. It will be fouid

that the equation for the nonlinear complex frequency will have a triplet driving term

containing two real propagator factors, R, and one spectrum factor, S. This symmetry will

be even more clear when we examine the alternate representation utilizing the propagator,

Gk,,, and the spectrum, Sk,w. The three factors in each equation physically represent the

fundamental triplet interaction found in mode-mode coupling. Parenthetically, in order

to integrate the spectrum equation, Eq. (48), over frequency to obtain a wave number

spectrum equation, the frequency convolution integrals for the triplet interaction must

be obtained. If the spectrum, Sk,w, is taken to be proportional to the real part of the

propagator, Rk,,, then the resultant convolution integrals in frequency will combine in

such a way that the derived resonance function or interaction time, Ik,k',k", will contain

elements of the nonlinear complex frequency, symmetrically for all three waves in a triplet,

similar to that found in weak turbulence theory. Consequently, in view of the above

arguments, it is a useful simplifying assumption to make an ansatz such that the spectrum

is proportional to the real part of the propagator,

Sk,w - SkRk,,, (50)

where the real part of the propagator is normalized to one, f dwRk,L 1.

The spectrum problem is thereby reduced to the evaluation of the normalized spec-

trum, Rk,,, and the nonlinear complex frequency, tlk,w, with the subsidiary condition that
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Eq. (49) is satisfied. In view of Eq. (49) for the general form of the normalized spec-

trum, Rk,,, a possible choice for the normalized spectral frequency trial function is the

Lorentzian,

1-
- k r7kW -+ rk.(51)

7r (W - r1R)2 + (r;I)

Inverse Fourier transforming the normalized spectrum, Rk,,, gives

Rk(r) = e-' ]'7+""rl, (52))

where Rk(r) is the spectral correlation function. The propagator, Gk,,, and its inverse

Fourier transform are

Gk,, 1 1 ,) and Gk (7) = { , (53)
27r -i(w - r7k) 'I0, r < 0-

where the imaginary part of the nonlinear frequency is assumed to be less than zero,

Imr7k = 7 < 0.

The time asymptotic steady state wave number spectrum, Sk, can be obtained by

integrating the wave number frequency spectrum, Sk,w, over frequency,

dSk, J dw (21 dydre-i(k y-wr) (q(X + yt + r)q(x, 0)

dye-ik Y (0(x + y, t)k(x, t)) = Sk. (54)

The wave number spectrum, Sk, is independent of time for a stationary turbulent state,

which is assumed to exist. The steady state spectral equation in wave number space is then

derived by introducing the frequency spectral trial function, Eq. (51), in the spectrum Eq.

(48) and integrating over frequency,

-21 dw'7k,wSk,o

f dk'dk"6(k - k' - k")[47rC2,k,,kSkSkJ dwRk,J dw'R ,k",,o,

-78rCk,k',k"Ck,,k",kSkSk" J dwRk,, J dw'Rk',,,Rk1,L,]. (55)
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The triplet resonance function is

ReIkk,k" dwRk,f drRk,,,,R,. =2, (56)
7r (AnR) 2 + (n )2

where j7T - ?? + 17, + , - - k', and use has been made of Parse-

val's power theorem, f dwfeg, = (1/27r) f dtf(-t)g(t), and the inverse transform of a

convolution, f dwe-i" f d='feig _, f (t)g(t).

The spectral equation in wave number space can now be written in a familiar form,

-2ykSk f dX47rReIk,kk,w4Ck k,,,,Sk'Sk" - 2Ck,k',ksCk',k",kSkSk"}, (57)

where the integrated growth rate is defined as

'1k E J dw-k,wRk,,, (58)

and f dX = f dkb(k - k' - k").

In order to complete the coupled set of nonlinear integral equations describing the

spectrum in wave number space, the equation for the nonlinear complex frequency, Ilk,

must be derived. This is obtained by multiplying Eq. (40) for the nonlinear complex

frequency, 77k, by the normalized spectrum, Rk,,, to give,

?kRk,. = fk, Rk, - if dX4Ck,kI,k"Ck,k,k2rRkw f dw'Gk',,,'Sk",_,L. (59)

Then integrating Eq. (59) over frequency, which corresponds to the step used in deriving

the wave number spectrum equation, results in

7k dwf2k,,Rk,, - if dX4rCk,k',knCk,k",kSkit 2 J dwRk, J dw'Gk',,'Rk",w-,'.

(60)

Defining the complex resonance function, Ik,k',k", from the term on the right hand side

of Eq. (60) and performing the frequency integrals which are similar to those done in

obtaining Eq. (56), results in
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Ik,k',k" = 2f dwRk,w J dw'Gk',,, RkI,,w.-w,, (61)

so that the complex resonance function is

=1 -1 1 -I
Ikk'k" = Re -- ,,RA ReIk,kl,k"T

' 7'rN i I (A77R) 2 + (7)2

1 Anr
ImIk,k,,k" = R (62)

W(ArIR)2 + (11 2

Finally, the equation for the nonlinear complex frequency is

r7k = fk - if dX47rIk,k.,k" Ck,k',k" Ckt,k",kSki, (63)

so that the nonlinear growth rate is

?7 = Yk- dX47rReIk,k',k" Ck,kI,iCk/,k,k Ski,, (64)

and the nonlinear frequency is

Rf
r7k = ±k + dX47rImIk,kI,k, Ck,ki,k" Ck',k,k Si, (65)

where we have defined the spectral averaged complex frequency as

f = dwT,2Rk,,, and Wk f dwWk,,Rk,,. (66)

Using the nonlinear growth rate Eq. (64) in the spectrum Eq. (57), yields a convenient

equation for the spectrum,

27 Sk dX47r ReIkka C2,gi i, (67)
-ik fX4fekl,k"Ck,kI ,k" Sk' Sk"* 67

This last equation, Eq. (67), demonstrates the physical picture that, in the steady state,

the spectrum, Sk, is proportional to the ratio of nonlinear drive (via the SkSk,, term)

to nonlinear damping, ?7k'. The nonlinear drive is due to the three wave process where a

spectral quanta at k' interacts with one at k" to produce one at k. The nonlinear damping
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is a result of linear wave particle interaction plus nonlinear wave-wave interaction, where

a spectral quanta at k interacts with a second quanta to produce a third quanta.

If this spectrum problem had been formulated without renormalizing the propagator,

as demonstrated in the weak turbulence section, then it would not be possible to integrate

for the interaction time, ReIkl,,kI, of the triplets. Some of the triplets are linearly

unstable (IT = -Yk + IVk + YV > 0), so that the integral would diverge. However, when

the resonance function is defined in this renormalized version of the spectrum problem, the

nonlinear growth rates, 77, are nonlinearly coupled to the spectrum [Eqs. (64) and (67)]

and can adjust to become negative, tq < 0. In the limit that the nonlinear damping rate is

zero, 77 -+ 0, so that there is no width in the frequency spectrum, the resonance function

implies a nonlinear frequency, 77, selection rule, since ReIk,k,," _ -+ = yq)

( - ],- 1 ). This produces an expansion about spectra of nonlinear real frequency

that satisfy the above selection rule, and is similar to the linear real frequency expansion

found in weak turbulence theory.

An equation similar to Eq. (63), for the nonlinear complex frequency, was derived by

Kraichnan [13] while searching for an approximate solution of the wave number spectrum,

by using the time domain DIA equations in the fluid turbulence limit (Isw lk). At

first, Kraichnan [13] did not obtain the three wave symmetric resonance function, Eq. (12).

However, by using a Fokker-Planck type formulation of the spectrum problem, Edwards

[14) obtained this symmetric result. Later, Kraichnan [15] developed a revised version

of the DIA, which employed a semi-Lagrangian-Eulerian formulation, and produced the

symmetric resonance function, Eq. (62).

In the above reduction of the spectrum problem to wave number space, the derived

wave number dependent linear complex frequencies, 0k, involve frequency moments over

the spectrum, k - f dwfg,,Rk,w. For the fluid limit of the spectrum problem, the linear

frequency, wk, and growth rate, ay, are unchanged in the wave number reduced spectrum

problem, since f dwRk,, = 1. For the general plasma spectrum problem, where the drift

wave growth rate is a function of frequency as well as wave number, the frequency moment

integral presents a problem if the Lorentzian frequency function is used. The width of

a Lorentzian function is usually defined as the width at half maximum, Rk,,7 ±width

1/2R,,7n -> width = r71, although the variance or higher moments of the Lorentzian are

not convergent, f dwW2Rk,, - oc.

The problem associated with the Lorentzian can be traced back to the original renor-

malization prescription of the potential fluctuation equation, where the nonlinear complex
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frequency shift, bo7,w, was formally added to the propagator. The propagator then had

the form

1 1Gk,,, - .,
27r -iz(w - 11,.)'

where

Gk, + G* =Ik~11k,w22Gk~ + =7r (?7k',,,)' + (7',,,)2

is a Lorentzian function if t1k,, --+ ?k. This led to a seemingly natural choice for the

spectrum, Sk,,, of the Lorentzian form with 77k,, - 77k. However, when the nonlinear

complex frequency, 77k,w, is generally dependent on frequency, w, the real part of the

propagator, Gk,,+ G,,, is not at all of a Lorentzian form. The formulation of the spectrum

equations is general so that other choices of trial solutions can be made. The renormalized

equations describing the spectrum can be written in terms of a propagator, Gk,w, and

a spectrum, Sk,w, instead of a nonlinear complex frequency, '1k,w, and a spectrum. By

doing this it is clear that there is freedom to choose any trial functions for the spectrvm,

Sk,w, and the propagator, Gk,.. In fact, if a Gaussian is chosen, the problem encountered

with the Lorentzian will not occur, since the Gaussian function has the property that all

moments exist.

2. Gaussian Line Shape

Let us now reexamine the spectrum choice, by starting with the nonlinear coupled set

of integral equations expressed in terms of the propagator, Gk,,, and the spectrum, Sk,L,

as opposed to the nonlinear complex frequency, 77k,w, and the spectrum, Sk,,. Here we are

looking for a representation of the spectrum problem which permits, in a simple manner,

the use of general choices for the frequency spectrum trial functions. Using the definition

of the propagator, Eq. (32), in Eq. (47) produces the equation for the spectrum,

-k,w)Sk,w = dX[4Cs,k,, Gjs,wSk,w Sk,)W1

- 8 7rCk,k',k" Ck',k",kSk,.Gk',w'Sk",w"]. (68)

The propagator equation is obtained from Eq. (42) by letting 2k --+ gw,
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f 1
-i(W - fOk,w)GkW - dX47rCk,k',k"Ck',k",k2Gk,,Gk','Sk",I + . (69)f~27r

By taking the real part of Eq. (68), the equation for the spectral energy follows,

-2Yk,wSk,w dX[47rC',,,,(G, +G k

- 8 7rCk,k',k"Ck',k",kSk,w(Gk,'I + G*D,,,)S'',,]. (70)

There is a symmetry among the triplet driving terms for the spectrum and propagator

equations, Eqs. (68) and (69), displayed by interchanging Sk,, and Gk,,. This is the

same symmetry, noted in the previous section, between the real part of the propagator,

Rk, = Gk, + G-, and the spectrum, S,,, for the energy equation, Eq. (70), and

the real part of the propagator equation, to be derived. It should also be realized that

the spectrum, Skw, may be proportional to the real part of the propagator, Rk,", but

not simply to the propagator, Gk,,, since Sk(T) and Rk(r) are both two sided Fourier

inverse time functions, but Gk (r) is one sided. Consequently, as was done in the previous

section, it is a useful simplifying assumption to make an ansatz such that the spectrum is

proportional to the real part of the propagator,

Sk~w -+ SkRkw, (71)

where the real part of the propagator is normalized to one, f dwRk,= 1.

The spectrum problem has been reduced to the evaluation of the normalized spec-

trum, Rk,,. An appealing choice for the normalized spectral frequency trial function is a

Gaussian,

R k,,, 1 expr-(Wj-77k')11, (72)
R 71/2 1~ 3

since it has the same type of characteristics as the Lorentzian with a well defined

real frequency centroid, 1, and a spectral frequency width, 77k, for each wave number.

However, unlike the Lorentzian, the Gaussian has the property that all frequency moments

are well defined. Inverse Fourier transforming the normalized spectrum, Rk,,, gives
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Rk(r) = exp[-iakR - -(?3)
4

where Rk(r) is the spectral correlation function. The inverse Fourier transform of the

propagator, Gk,,, is

G _ (r), r > 0 _ exp[-i7Rlr - -(!r)2], r > 0
Gk {t, r<0 { 0, k 4 k '" r<0 (74)

It should be noted that the spectrum problem posed in terms of Sk," and Gk," is just

as general as that in terms of Sk,, and r7k,,. The normalized spectrum

I

RkW - 1 -r
7T (W - ~,) +r± 2

looks like a Lorentzian frequency function only when rlk,w --+ 77k, and in general there is no

simple relation between r7k, used as a parameter, and the original 17k,". This can be made

quite clear if the relation between ?7k and rlk,w is explicitly written out for the Gaussian

trial function,

Rk,, =1 ___ -+4 exp [ (

Rr (w- )2 + (n7IL) 2  7r 1/2 1, exp 17 7

The above equation demonstrates that if the Gaussian trial function choice is used for

the normalized spectrum, Rk,,, then for the other representation, in order to produce the

same Gaussian choice, the choice of the nonlinear complex frequency, ?7k,,, would have to

be a complicated expression. In this case, the choice for ?7k,,, picked to fit the Gaussian,

and the 77k used as a parameter for the Gaussian, would be drastically different functions.

As in the previous section, the equation for the wave number spectrum, Sk, is derived

by integrating Eq. (70) for the spectrum, Sk,,, over frequency and using the Gaussian

trial function

-2YkSk = dX4ReIkk,,e' [C2,,,,knSkSk - 2C,kI,kCk',kn,kSkSk] , (75)

where the frequency integrated growth rate is Yk = f dw-Yk,, Rk,. The resonance function,

ReIk,k',k", is obtained by doing a contour integral,
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ReIk,k,k, J dwRk,, d Rk,,,Rk,,,w-w,, = .1/2I' exp [~(AiR/r4)2 ], (76)

where the triplet nonlinear frequency mismatch, AnR, and the triplet nonlinear growth
rate sum, 77T is

R = - _ -_ R

and
I = [(1()2 + (r71,)2 + (nI)2 /277)

This Gaussian resonance function has the same structure as the Lorentzian resonance
function Eq. (56), with the same limit of zero nonlinear damping rate,

ReIk,',b ( - 6 (AR) = 5(R _ R _ 

resulting in a nonlinear real frequency selection rule in Eq. (75) for the spectrum.

Equation (69) for the propagator is used to construct an equation for the nonlinear
complex frequency, tyk. Prior to this derivation it is necessary to obtain the complete com-
plex form of the propagator, Gk,,, so that the complex frequency, 77k, can be determined.
The propagator, Gk,,, is obtained by taking the frequency Fourier transform of Eq. (74),
after performing a contour integral, the result is

1 w-riR 2-R
G1= exp -( 1+erf Z. (77)

' 2 1/ 2177k

Here, erf(ix) is the well known error function of imaginary argument. Note that the
propagator satisfies, as it must, the defining relation,

1 Lj - 7R;
Gk,, + Gk', = 1/2 exp[-( I k )21 = Rk,w.

1 ? 17k

To form a closed coupled set of equations describing the spectrum, an equation for the
nonlinear complex frequency, ?7k, must be derived. This is obtained by forming an equation
for the normalized spectrum, Rkw, similar to Eq. (59) for the Lorentzian approximation,
where multiplying the propagator Eq. (69) by Rk,L/Gk,w, produces the result,
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-i(w - fkw)REk, = - [dX47rCk,k,,kICk,k",k2Rk, Gk,W, Sk,w, + .W (78)
j 27r Gk,L,

Integrating the correlation Eq. (78) over frequency produces the equation for the nonlinear

complex frequency, iU,

dw(-iwRk,.,) + if dw~k, , k Ck = - dX47rCk,,,k,,Cs,,k,,i

x 2 dwRk,f dw'Gk,1Rk,-_' + J dw kW. (79)
f f Gk'W

The integrals on the left hand side of Eq. (79) are straightforward,

d iR 1 1) jR/dw(-iwRk,() = -- lk 2 7k) 2 t - , (80)

and

JdwnRk,= Wk + ilk. (81)

The resonance function integral on the right hand side of Eq. (79) is calculated similar to

Eq. (62), where the contour integral is evaluated exactly like the derivation of Eq. (78),

and the result is

Ikk,, / exp [_ (A?7 /7 2 [1 + erf IR (82)

The final integral on the right hand side of Eq. (79) is

ifL R1 1 1
-dw -W dw 2 Fd ,(3

27r Gk,1 7r 1+erf t1+erf

With the use of the parity of erf (ix), erf (ix) = erf( ix), the final expression is

d kw doj 1 Fr;7, (83)
27r GkLo 7r 1+ erf (I
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where

F =f dx = - dx ~ I ) .49. (84)
x , 1 + Jer f (1x)2 7r 0 1 + A(fo d et2) 2

The value for F is obtained by numerical integration. Finally, using Eqs. (80), (81), (82),

and (83) in Eq. (79), with -r71 > 0, results in the equation for the nonlinear complex

frequency, 7,

-r + i(Wk + ilk) =- fdX4lIkk,,Ckk,'Ck',k",kSk' - Fr7,

or multiplying by i gives

r + iFr = k#- kdX4I,," Ck,k',k" Ck,k,k Ski. (85)

This equation is identical to Eq. (63) derived for the Lorentzian approximation except

for the factor F in front of the r7k term. Taking the real part of Eq. (85) produces the

equation for the nonlinear frequency, r,

rk = wk + dX47rImIk,k',k" Ck,k',k" Ck,k",k Sk, (86)

and taking the imaginary part produces the equation for the nonlinear frequency width or

growth rate, ?7k,

Frk = ^/k - dX47rReIk,k',k" Ck,k',k" Ckl,k,k Sk". (87)

A convenient equation for the spectrum is obtained by combining Eqs. (75) and (87),

-2F7ISk f dX47rReIk, c,k C,kI,k SkSki. (88)

The form of the final equations describing the spectrum for this Gaussian trial function

are identical to those for the Lorentzian, except for the numerical factor F. It does seem

reasonable that there should be a slight numerical difference between the two models in

taking moments, since the parameter 77k has somewhat different meanings in the two

models. The main virtue of the Gaussian frequency function is that the spectral weighted

average of the complex frequency, lk = Wk + ZYk = f dwf2k,,Rk,,, is well defined for a

general frequency dependent growth rate, Yk,w.
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B. Spectral Trial Function: Wave Number

The set of nonlinear coupled integral equations for the wave number spectrum, Sk,

and frequency width, r7k, are solved to first order by choosing a spectral wave number trial

function dependent on a set of basic parameters describing the spectrum (E - the total

integrated spectral amplitude, Ak - the wave number width, and W - the average spectral

frequency width). By taking wave number moments of the integral equations, a coupled

set of nonlinear algebraic equations for the unknown first order parameters is obtained.

The parameters are then determined, which results in the approximate analytic solution

of the spectrum.

The analytic technique for solving the nonlinear spectrum equations might be of inter-

est for application to other problems. This formulation of the spectrum solution is based

on obtaining three parameters describing the spectrum. However, the solution technique

is easily generalized to more parameters.

In Sec. 1., the moment equation method is presented. In Sec. 2., the equations de-

scribing the next order correction to the first order solution are formally obtained, which

enable a calculation of the parameters to second order accuracy. As mentioned previously,

the parameters of the theory may be obtained to second order by an alternate nonlinear

variational calculation, which may or may not be easier to implement than the present

method. In Sec. 3., the solution technique is applied to a model problem studied by Waltz

[3], and the results are compared with the numerical solution. Finally, in Sec. 4., the

saturated state drift wave spectrum is obtained for the renormalized electron dissipation

model derived in the NSA [16]. The spectrum for this final drift wave problem is solved

self-consistently. The renormalized electron dissipation is a functional of the spectrum, as

a consequence of the broadened resonance theory. This additional nonlinear dependence

is included while solving the spectrum equation. An iterative procedure is employed to

yield the spectrum saturation level consistent with the electron dissipation used to drive

this spectrum.

The following analysis is done in terms of scaled dimensionless variables. The unit

of length is Ps so that the wave number transforms as psk -+ k. The unit of time is

1/Qj(p,/L,) so that the frequencies transform as [Wk,Yk,r7k/1(ps/Ll) -+ [wkyk,iki.

The transformation to a dimensionless potential being (e/Te)(ps/L.)44 -+ q indicates

that the spectrum transformation is (e/Te) 2 (s/L.)- 2 S -+ S. The linear frequency and
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coupling coefficient are

k y /(1 + k2 )andCk k',k" (k2 /2 2

where w; = ky.

1. Moment Equation Method

The moment equation technique can either be applied to the wave number integral

equations obtained by using the Lorentz or Gaussian spectral frequency trial functions.

The following calculations for the spectrum are made with the approximation that the

nonlinear frequency shift is small compared to the linear frequency so that 77k P Wk.

This approximation is consistent with Eq. (86) for the nonlinear frequency, ,o', where

ImIk,kI,k, Eq. (62) or Eq. (82), tends to zero for Aw = wk - wk, - wkI, tending to zero, r

which is a good approximation for many triplet interactions. The equations to be solved

are Eqs. (75) and (88), and for simplicity of solution the equation obtained by subtracting
one half of Eq. (75) from one half of Eq. (88) is also used,

(-Ic - Fr4)Sk = dX47r ReIk,kI,,I Ck,kI,kit Ck,k,,Skn Sk. (90)

The Lorentzian frequency trial function corresponds to F = 1, and the Gaussian to F = .49,

where the appropriate functions are Eq. (51) and Eq. (72), respectively.

An approximate solution for the wave number spectrum, Sk, is obtaind by using a

wave number trial function dependent on two parameters, the total integrated amplitude,
E - f dkSk, and the wave number width, Ak = (E- f dkk 2 Sk)1/ 2 . The set of equations

describing the total spectrum problem, entails two equations in two unknowns, the spec-

trum, Sk, and the frequency width, ?I. The trial form for t7 is taken to be a function

of wave number and a third parameter, the average frequency width, W = 1/E f dk7jSk.

These trial functions are substituted into the spectrum equations and a set of three inde-

pendent moment equations for the three unknown parameters are obtained by applying

the moments Mi = f dkHi,[ithEq.], i = 1,2,3, one to each of the Eqs. (75), (88), and

(90). The Hik are selected weighting functions. The parameters in the nonlinear algebraic

moment equations are the leading order approximations to the corresponding parameters

of the true solution.

The first moment equation, obtained by applying M1 to Eq. (75), is an energy con-

servation dissipative constraint. The nonlinear polarization drift mode coupling satisfies
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energy conservation. The mode coupling for the renormalized spectrum equation also

conserves energy, as it should. Energy conservation arguments applied to the spectrum

equation, Eq. (75), are given below, where the total wave energy density using scaled

dimensionless variables is

=) dkdw (wD ')Ei, = dkdu (rD Rx S, =fdk +8 k [1+2 ISk.
j9w 87 81rA2

(91)

By taking the weighting function Hik= 1 + k2 , and applying this to Eq. (75), the rate of

change of the wave energy density can be determined. The right hand side of the energy

moment equation is then evaluated as follows,

r

M =f dkdk'dk"6(k - k- k")41rReIkk,,k" (1 + k2 )

x Ck,k'," [Ck,k,k"Sk' Ski' - Ck,k,kSk" Sk - Ck",k',kSk'Sk, (92)

where the coupling symmetry, Ck,k',k" = Ck,k",kI, was used to write out the last two

coupling terms. Using the definition of the coupling coefficient, Ck,k',k" = (1/2)(k'k' -

k'k")(k"2 - k'2 )/(1 + k 2 ), and making the change of variables k' -* k", k" - k', k - k,

the resonance function and spectrum are unchanged, so that the following replacement

can be made, (1 + k 2 )Ck,k',k" -+ (k'k' - k' k")k"2 . Using the delta function, the result is

(k'ky - k'yk,)k" 2 . The M, moment is then

M J = dkdk'dk"6(k - k' - k")47rRelkk,,k"(k' ky - k' k 1)k"2

x [Ck,kI,k"Sk'Sk" - k',k",kSk"Sk - Ck",kI,kSk'Sk]. (93)

Making the final change of variables k -+ k', k' - k, k" -k" in the first term results

in k' ky -+ kxk'. With this transformation the delta function is unchanged due to its

even parity. The mode coupling terms interchange among themselves so that there is no

net change due to the coupling symmetries, Ck,k',k" = Ck,k",k' = -Ck,k',k", and the

spectrum reality condition, Sk = S-k. The resonance function is also unchanged due to

the frequency and growth rate reality conditions, i? = -Rk and r77 = 77-. The M 1

moment result is
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M J dkdk'dk"6(k - k- k")47rReIk,kI,k,,(kxk', - kxk')k" 2

x [Ck,k',k"SkISkI - Ck',,,kSkhSk - Cks,k',kSk'Sk] = 0. (94)

Consequently, the energy moment, M1 , annihilates the right hand side of Eq. (75) to give

the dissipative constraint for the steady state spectrum,

M1 = fdk( + k2)YkSk = 0. (95)

The dissipative constraint, Eq. (95), demonstrates that the negative dissipation, un-

stable regions in wave number space must balance the positive dissipation, or damped,
regions. The energy conservation of the mode coupling terms indicate that the coupling

does not create or destroy energy but simply transfers, or mode couples, energy from

sources to sinks. For the spectrum to satisfy this dissipative constraint, the parameters

must adjust so that, in some sense, there is equal positive and negative dissipation averaged

over the spectrum. The first moment equation, which utilizes M 1, produces an equation

for the wave number width, or for the wave number width and the frequency width pa-

rameters, depending on the form of the dissipation. The total amplitude, E, factors out

of this moment equation.

The second moment equation, which utilizes M 2 , is obtained by selecting a weighting

function, H2k, and integrating over Eq. (88),

M 2  f dkH 2,[-2Fr7{Sk]

dkdk'dk"6(k - k' - k")47rReIkI,,H2kCk,,,,SISI,. (96)

This moment equation gives a condition for the total amplitude, E, in terms of the two

other parameters. The third moment equation, which utilizes M 3 , is also obtained by

selecting a weighting function, H3, and integrating over Eq. (90),

M3  J dkH3 , (-Yk - r7k)Sk

f dkdk'dk"6b(k - k' - k")47rReIk,k,,k,,H3,Ck,k,,k,,Ck,ki,,kSI,,Sk. (97)
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This final moment equation gives another condition for the total amplitude, E, in terms

of the two other parameters.

The three nonlinear algebraic equations, obtained by applying the moments M 1 , M 2 ,

and M 3, are easily manipulated into the problem of solving one nonlinear algebraic equation

in one unknown. This is due to the general structure of the spectrum integral equations and

this particular simple choice of parameters and moment equations. In general, the three

moment equations are of the form Pi (E, Ak 2 , W) = 0, i = 1, 2,3. However, in this case, the

first moment gives a condition P1 (Ak 2 , W) = 0, while the second and third moments can

be written as the conditions E = P 2 (Ak 2 , W) and E = P 3 (Ak 2, W). The final equation to

be solved is then of the form 1 P3 (Ak 2 , W)/P 2 (Ak 2 , W), with the subsidiary condition

P1 (Ak 2 , W) = 0. Either the wave number width squared, Ak 2 , or the average frequency

width, W, can be used as the unknown parameter for which a solution search is carried out.

If W is chosen, then the P1 equation produces a Ak 2 for each W which is then used in the

P3 /P 2 ratio equation. A search in the parameter W is made until the ratio, P 3 /P 2 , is one;

the points at which this occurs are the solutions. In general, there may be a multiplicity

of solutions, some of which can be ruled out on physical grounds.

2. Next Order Correction

The main objective in this section is a formal calculation of the next order corrections

to the first order solution parameters. The equations governing the correction of the first

order spectrum functions are derived. Given the solution of these equations, the parameter

corrections can be determined.

The first order parameters are leading order approximations to the corresponding

parameters of the true solution. The true parameters are defined in terms of the true

solution functions, the spectrum, Sk, and the frequency width, k. The exact integrated

amplitude, wave number spectral width squared, and frequency spectral width are E

f dkSk, Ak 2 = (1/E) f dkk 2 Sk, and W = (1/E) f dk?7Sk, respectively. Equations are

derived here, which give the next order approximation of these true solution parameters.

The solutions for the spectrum, Sk, and frequency width, 1k, are expressed as a sum

of the first order solutions, S' and ?k, plus the correction solutions, S' and ?7k,

Sk = Sk + Sk, 77k ?7k + ?k. (98)

The above solution separation, Eq. (98), is substituted into the spectrum integral Eqs.

(75) and (88) in order to derive a set of equations for the correction functions. With the
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assumption that the corrections are of second order compared to the first order solutions,

which can be checked aposteriori, the Eqs. (75) and (88) are solved by separating out the

first order equations, for S' and r7, from the linearized equations for S' and if . The

two sets of equations are

-2-YSko f dX47rReIk, I,"[r 0][C2,,,S,S~,

- 2Ck,kI,kICk1,k's,kS,,ISk] - Fk, (99)

-2FrOSU = J dX47rReIk,kI,kI[r 01C,,k,#S#,SkO - Gk, (100)

and

-2 kSk= dX rT' (47rReIk,k,k[?]) Ck,knSkSk"

- 2Ck,kI,kICk,kI,kuSIISk1

+ 47rReIk,k',k" H7 1 Ck,],,(SS, + Sk,SkI)

- 2Ck,k',k"Ck,k',k"(S1IISk + Si I'Sk) + Fk (101)

-2flr'"S + 1" SO) = fdX r 4lrReIkk,,Ivr4]) Ckk,,k,,SI7

+ 47rReIkI,,k' 1 2]ClI ,, (Sots", + SI, Sil) + Gk. (102)

The errors in the solutions of Eqs. (99) and (100) are expressed by Fk and Gk.

The first order parameters, E 0 , Ak02, and W' are determined by the algebraic moment

equations,

P (E, Ak , W0 ) = 0, i= 1, 2, 3 (103)
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derived by taking moments, Mi = f dkHi,, [ ], of Eqs. (99) and (100). Since the first
order solutions, Si and '7k, are forced to be exact solutions of the moment equations, this

imposes integral conditions on the errors, Fk and G1,

f dkHFk = 0, J dkH 2 Gk = 0, J dkH3(Fk - Gk) =0. (104)

The first order solutions, SQ and 7,", when substituted in Eqs. (99) and (100),

produce the error functions, Fk and Gk. By substituting the known first order solutions

and the error functions into Eqs. (101) and (102), a set of linear equations for the solution

corrections, Si and ?7k, are obtained of the form

L 1[Sk, 77I Fk, L2 [Skl, IGk. (105)

The solution of these linear integral equations give the corrections to the first order so-

lutions. Given these correction functions, Si and 77k, the parameter correctios can be

obtained.

The exact integrated amplitude is E = f dkSk. Using Eq. (98) this is E = f dkSO +

f dkS'. With the definition for the first order integrated amplitude, E0 = f dkS', and

the amplitude correction, E = E 0 + El, the equation for the correction of integrated

amplitude is

El= JdkS&. (106)

For known S1, by solving Eq. (105), the amplitude correction is determined by Eq. (106).

The exact wave number spectral width squared is Ak 2 = 1/E f dkk 2 Sk. With the

definition of the first order wave number spectral width squared, Ak02 1/E f dkk 2 Sk

and the correction to the wave number width squared, Ak 2 Ak 0  Ak', the lowest

order correction in wave number width number squared is

+ ~= dkk2Si - Ak2. (107)
E0 E

For known S', the correction in wave number spectral width is obtained from Eqs. (106)

and (107).
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The exact average frequency spectral width is defined as W = 1/E f dkr7'Sk. With

the definition of the first order average frequency width, WO 1 /E 0 f dkr7'"Sk , and the

correction in average frequency width, W W 0 + W', the lowest order correction in

average frequency width is

W1 = dki * S, + dkI S- (l)WO. (108)

For known S' and i' , the correction in average frequency spectral width is obtained from

Eqs. (106) and (108). The parameter corrections, Eqs. (106), (107), and (108), are of

the same order as the solution corrections, so that the parameters can then be obtained

to second order accuracy. The above procedure can be iterated to determine higher order

corrections to the solution of the coupled set of nonlinear integral equations.
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3. Spectrum Solution of Model Problem

Presented in this section is an approximate analytic solution of the spectrum, which

utilizes the moment technique, for a model dissipation problem proposed and solved nu-

merically by Waltz [3]. In Ref. 3, numerical results are given for the solution of the

renormalized spectrum equations for the Lorentzian frequency approximation, Eqs. (57),
(64), and (65), as well as the solution of the original potential fluctuation equation, Eq.
(5), for the fluid limit. The numerical study uses the approximation of analyzing 11 x 11
modes, ranging from -1 to +1 in k, and ky with a spacing of .2 between modes. Actually,
there are only approximately one fourth this number of distinct modes. This is due to a

combination of two spectral symmetries. The first is a consequence of the reality condi-

tion, Sk S-k, which reduces the number of distinct modes by one half. The second,

a feature of the drift wave problem, is due to the k. symmetry, Sk,, = S-k,,k,k, which

finally reduces the number of distinct modes to one fourth the total number of modes.

Both numerical solutions of the spectrum, obtained by Waltz [3], agree reasonably

well. The root mean square potentials, 4,-ma (E) /2 , for the two numerical solutions,

agree to within thirty percent, where 0,,,= 1.0 for the integration of the dynamical

potential equation, and =rm = 1.3 for the numerical solution of the renormalized spectrum

equations. The k. averaged potential,

10rmIk, (Sk,)1/2, Sk, JdkzS, (109)

and the spectral weighted k. averaged frequency width, growth rate, and frequency,

k, =-f dkx Sk / Sk , (1

have very similar structures to the corresponding quantities for the two numerical solu-

tions. However, there is quite a significant deviation, as much as a factor of two or three,

between results on a mode by mode basis. Qualitative agreement is also obtained for a

numerical solution of the spectrum, calculated by Terry and Horton [17], using the dy-

namical potential equation with a different model dissipation for the case of just twenty

modes. The renormalized spectrum equations in the Lorentzian approximation seem to

give a reasonably good description of the spectrum governed by the dynamical potential

fluctuation equation. The analytic solution of the renormalized spectrum equations, using

the moment method, derived in this section, is compared with the numerical solution ob-
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tained by Waltz [3], and is shown to have very close agreement. This lends some credence

to the accuracy of the moment method, even when carried out only to leading order.

The growth rate in Waltz's model is

.0 6 1 .5 (kxi .5 ) 2 ( .5( ky.-.5) 2 ] -. 05

= -. 12k 2 + .12(1k. + Iky 1) -- .05. (111)

The main features of this growth rate are that it has a maximum drive, at k, = ±.5 and

ky = ±.5, of - .01, and a maximum damping, at k; = ky = 0, or k, = ±1 and ky = ±1,
of -y = -. 05, for the kx, ky range [-1,1]. For k, = 0 or ky = 0 there is damping, -y < 0.

The Lorentzian frequency trial function,

S_, =7__ S, (112)
7r (w - Wk) 2 + (71)2

applied to the spectrum problem results in the coupled nonlinear integral Eqs. (75), (88),
and (90) for the wave number spectrum, Sk, and the wave number dependent frequency

width, i. Besides the features of the growth rate and spectrum symmetries, the boundary

conditions on the spectrum and width functions help determine the best trial function.

From Eq. (64) for the nonlinear growth rate or spectral width, 77 1 , the condition at k = 0
is

71 = W, (113)

where use has been made of the coupling condition

C(,,',-k, = 0. (114)

Using Eq. (114) again gives the k = 0 limit of Eq. (67),

S = 0. (115)

The result obtained from Eqs. (113) and (115) is
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So = 0 and i = -. 05.

In order that the spectrum have a finite integrated amplitude, E, the large k spectrum

must be zero,

lim Sk = 0. (117)
k-0

Taking into account the indicated features of the growth rate, the spectrum symme-

tries, and the boundary conditions, the trial function for the wave number spectrum is

chosen to be a Gaussian times a quadratic in k, and ky,

Sk eXPk2 2 (k1 Ak)2]. (118)7rAk 2 \Ak/ AkJ

The spectrum is normalized to E,

E J dkSk, (119)

and has a maximum at kx = ±+k and ky = ±Ak. The frequency width trial function is

chosen as a quadratic form, which is modeled after the growth rate, and which has maxima

in the center of the kx, ky quadrants similar to the spectrum trial function structure,

r7'- --. 025 E( 1) + (kyL 1\21
kc [ ( f k I

.025 | kx2
- 4)2( ' A)] (120)

A2 [ k Ak

where A - k,/Ak. The boundary condition and symmetries are incorporated into the

frequency width trial function, while the maximum value of zero is achieved at k, = +k,
and ky = ±k, which represents the marginally stable region of the spectrum. Using

Eqs. (118) and (120) in the spectrum Eqs. (75), (88), and (90), along with the moment

technique, the solution for the unknown parameters (E, Ak and ko) can be obtained.

The dissipative constraint, Eq. (95), gives a condition for the wave number width,

Ak,
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M = dk(1 + k2 )_YkSk = 0, (121)

which is a quartic equation in Ak,

7 11 5
Ak - 7 Ak 3 +51 Ak 2 - Ak+ -= 0. (122)

671/ 2  144 31r/2 144

The real solutions of this quartic equation are

Ak = .31 or .41. (123)

From the symmetry of the growth rate, 'yl, and the spectrum trial function, Sk, it is

possible to have two solutions to the dissipative constraint condition. The Ak = .31

solution balances the damping near k = 0 with the growth rate in the central wave number

region. The Ak = .41 solution balances the higher wave number damping with the growth

rate in the central wave number region.

The choices for the second and third weighting functions, W2k and W3k, are actually

arbitrary, and give slightly different results for each choice. In general, the weighting

functions depend on which exact constraints are desirable to impose on the approximate

solution, obtained by this moment method. One criterion that was used to determine

the weighting functions is to choose them so that the final equation, in one unknown

parameter, has a large slope at the solution point, in order to reduce the error of the

solution parameter. Just as with the weighting function used in the dissipative constraint,

or energy moment, it is reasonable to choose low order wave number moments, H1 = k",
to represent exact constaints such as for the average frequency width (H = 1) or the

average wave number width squared (H =- k 2). After some trial and error, and noting

that the solution did not vary much with weighting function choice, in order to satisfy the

above criteria, the second and third weighting functions are chosen as one, H2 - and

Substituting this second weighting function, H2k - 1 in Eq. (96), results in the

second moment equation,

M 2 J dk[-2rIS] f dkdk'dk"6(k - k' - k")47rReIk,k,,,i,,, g,SeSk,. (124)
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The left hand side of this equation can be readily evaluated,

M2 = ( -r - 71/2A + -A2 E. (125)
7rA2 (8 4

The integral on the right hand side of Eq. (124) is very complicated. It is useful
to make the simplifying assumption that (AW) 2 < (71) 2 for evaluation of the resonance

function. This approximation is very well satisfied for most of the small wave number
triplet interactions. In fact, some analysis with the complete resonance function was done

as a check, and it was found that little variation in the solution resulted. The resonance
function then takes on the approximate form

1 1
ReIk,k', ,k" - . (126)

This approximation of the resonance function is consistent with the physical picture that a
long interaction time, or large resonance function (ReIk,k,,ku), corresponds to a marginally
stable nonlinear triplet, where the nonlinear growth rate sum, ?71, is small.

The evaluation of the integral on the right hand side of Eq. (124) proceeds as follows,

M J dkdkldk"6(k - k' - k") 4 CkIk, SkiSki, (127)

and by using the delta function,

M2 = dk'dk" C Ck+k",k,k" Sk'Ski. (128)
7k'+k" + 1 k' 71k"

Expressing the integral in polar coordinates,

k' - k'(cos O'Ax + sin O'Ay), k" = k"(cos O"Ax + sin O"Ay), (129)

while using the coupling coefficient, Eq. (89), the spectral and frequency width trial

functions, Eqs. (118) and (120), and the change of variables in Eq. (128),

k' - Akx, k" A Aky, (130)

results in
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16(40)A 2 AkL 1 (Ak,A)
M2 =2 E, (131)

where

L1 (Ak, A) j dx dy j dO' j dO"
1 0 1

[sin(O' - 0") sin O'sin 0" cos 0'cos 01"]2(XY) 7 (x 2 _ Y2)2 exp[- 2 + y2 )]

x [1 + Ak 2(X2 + y2 + 2xy cos(0' - 0I"))1-2

x [(xl cos ' - A) 2 + (xjsin O'l - A) 2 + (yj cos 0"1 - A) 2 + (yjsin 0"1 - A) 2

+ (Ixcos#' + ycose"I - A) 2 + (Ix sin 0' + ysinO"I - A) 2 )-. (132)

Combining the two expressions for M 2 , Eqs. (125) and (131), produces an equation for

the total integrated amplitude,

E 1600A4AkL(Ak, A) r - 7r1/2A + I rA2). (133)

The final expression which closes the system of nonlinear algebraic equations is ob-

tained by using the third weighting function, H3 , -> 1, and inserting it in Eq. (97), which

results in

M3 = dk(-yk - r/k)Sk J dkdk'dk"47rReIk,k',k, Ck,k,,k,,Ck,,k',,k Sk"Sk. (134)

The left hand side of Eq. (134) is rea(dily evaluated to give,

M, = - 7r 7r 2 A 1 (2.47r'/2 Ak - 1.87rAkz) 42 E. (135)
xA2 8

The integral on the right hand side of Eq. (134) is evaluated in a similar manner to

Eq. (128),

M3 J dkdk'dk"6(k - k' - k")47rReIk,k,,k,, Ck,k,,kI Ck,,k,,k Sk,, Sk, (136)
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and making the change of variables k -- -k', k' -+ -k, k" -+ k",

M3 = f dkdk'dk"6(k - k' - k")47rReIk,k,kICk',k,kuCkn,., SSkSkI, (137)

where use has been made of the delta function symmetry and the resonance function

property

ReI-k,,_kk" = ReIki,,k". (138)

Using polar coordinates, Eq. (129), and the change of variables, Eq. (130), the Eq. (137)

integral becomes

16(40)A 2 Ak 8 L2 (Ak, A)
M3 = 72 E2, (139)

where

L 2 (iAk, A) = dx dy f dO' d"
1 0

[sin(O' - 0") sin O'sin " cos ' cos "12 (XY) 7 (x 2 
- y 2 )[X2 + 2xy cos(0' - o")]exp[-(X2 + y2

x [I + Ak 2 (X 2 + y2 + 2xycos(O' - O"))]1[1+ Ak 2 X2]-

x [(xI cos 0'I A) 2 -- (xI sin 0' - A) 2 + (yj cos 0" - A)' + (y sin 0"| - A) 2

-+ (|xcos0' i ycos0"| - A) 2 + (|x sin0' + y sin 0"I -- A)21-1 (140)

Combining the two expressions for M., Eqs. (135) and (139), produces another equation

for the total integrated amplitude,

71 3
32 0 0A 4 AkL2(AkA ) 18

I/2A + (2.4r1/2Ak - 1.8rAk2 )A2j

The equations determining the parameters are Eqs. (123), (133), and (141). To

generate a numerical iteration procedure, the two equations for E, Eqs. (133) and (141),

49

E (141)



can be combined as a ratio which is equal to one. The final equation for determining the

parameters is then

R_ 8 -1 2 A + (2.4r1/ 2 Ak -1.8 k2 )A2 ] L1 (Ak,A) (142)
2[1r - r1/ 2 A + !7rA2] L2(Ak, A)'

where the solution is found by solving

R 1 =1. (143)

Only two choices of the wave number width, Ak, are allowed by Eq. (123). For each choice
of Ak, Eq. (143) is solved by choosing various values of A and iteratively searching for
the solutions. The nonlinear integral equation problem has been reduced to the numerical
evaluation of just two integrals L 1 (Ak, A), Eq. (132), and L 2 (Ak, A), Eq. (140).

The four dimensional integrals, Eq. (132) and (140), are computed using an extension
of the Simpson's quadratic rule for one dimensional integrals. The total number of points
the integrand is evaluated at is (N + 1)(M + 1)(L + 1)(P + 1). The intervals

x : [0, 4], y : [0, 4], 0' : [0, 2r], 0' : [0, 2r] (144)

are found to be sufficiently accurate by comparison with larger intervals. A quick solution

search was made using the number of steps as N = M = L = P = 10 on a hand held
computer. The final accurate integrations were made using the MACSYMA system where
N = M = L = P = 20 was used. It is interesting to note that the analytic moment method
reduces the spectrum problem to a few hours of computation on a hand held computer as

compared to hours of Cray time 131, a reduction of about a factor of 10G in computation

steps.

One expects the solution to be in the regime where A a k,/Ak ; 1, since the

nonlinear marginally stable modes (k, = k ~ kr,) should roughly correspond to the

maximum amplitude modes (k, - kzz Ak). In this regime the search for a solution,

using Eq. (113) for R], with Ak .41 indicates that no solution exists. The ratio, Rf for

this wave number width is always greater than 1, R1 > 1, which is shown in Fig. 1(a).

The search for a solution using Ak = .31 is successful, with a solution found at A = .97.
This is shown in Fig. 1(b). Using Eq. (133) for E, the solution parameters are

Ak = .31, ko = .30, 4,, = 1.6, (145)
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where ko = AAk, and rm, = E

The spectrum results are presented graphically in Fig. 2 by averaging over km, where

the root mean square potential, 14 rmsk, as a function of ky is defined by Eq. (109),
and the spectral weighted k, averaged frequency width, (-7 1 )k,, growth rate, (y)c,,, and
frequency, (w k,, are defined by Eq. (110). The k, averaged potential is evaluated from

the wave number spectral solution, Eq. (118). Using the solution parameters, Ak = .31

and rms 1.6, the average potential,

21/2(1.6) k ~ 122rms(. exp[--(ky/.31)2], (ky)max = .31, (146)Ors~, r1/ 4(312.311 2

is plotted in Fig. 2(a).

The spectrum weighted kx average of the frequency width, (-r7')k, is evaluated from

the frequency width trial function, Eq. (120). Using the solution parameters, Ak = .31

and A = .97, the spectral weighted average of the frequency width,

(- ')k, = (97)2 (2 _ /2 (.97) + (.97)2) + .' - .97) ], (ky)mi = .30, (147)

is also plotted in Fig. 2(a).

The spectral weighted kx average of the growth rate, (-Y)k,,, is evaluated from the

expression for the growth rate, Eq. (111). Using the solution parameter, Ak = .31, the

spectral weighted average growth rate,

, 12 (.31) 2  3.1) + ( ky, .5) 2 , (k )m ,L .5, (148)

is plotted in Fig. 2(b).

The spectral weighied A1 average of the frequency, (v k,, is evaluated from the ex-

pression for the frequency, Eq. (89). Using the solution parameter, Ak = .31, the spectral

weighted average frequency,

4 CO j 2 k- (4
"LV kY r7/2 1 1xI+ k2 +(.31)2X2 ky (49
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is also plotted in Fig. 2(b).

The results presented here compare favorably with the numerical solution of the renor-
malized equations for the spectrum obtained by Waltz [3]. The integrated spectral am-
plitude or root mean square potential, =rma = 1.6, derived from this analytic moment
method, is in almost perfect agreement with the quoted numerical results for a system of
30 x 30 modes, 0"' ~ 1.6. The numerical study, in Ref. 3, dealt mainly with a system
of 11 x 11 (or only 6 x 6 = 36 distinct) modes, for this case, 0"'u = 1.3, there is about
a twenty percent discrepancy with our results. However, the numerical study was based
on a descretization of the spectrum, where a set of 11 x 11 modes is not sufficient. This
is actually explored in the numerical study, where they have included a test for changes
of the saturation amplitude while increasing the number of modes. It was found that ap-
proximately a system of 30 x 30 modes is necessary for an accurate saturation amplitude
calculation. In this case, as stated above, we are in agreement.

There is also a good agreement between the potential spectrum obtained numericaLy
and our analytic potential spectrum,

'=rm kS 12 (150)

From Eq. (118), the potential spectrum is

2q$4 k~ k y1
'rrms = s exp[- -(k/Ak) 2], (151)7ri/ 2 Ak 1k Ak 2

or using the solution parameters, this is

2(1.6) k k 1
|4rm/2 - (--- -;1)p (k!. 1 1 22 (.31) .31 .31 2

The results quoted in the numerical study have a different normalization than ours,

due to their discretized approach. In all lhe fOllowing comparison of results, between

our an alytic solution and the numerical ones of Ref. 3, all values are presented with onur

normalization while incorporating a correction factor in the numerical ones. The details

of this normalization difference are found in appendix A.

With the normalization correction factor utilized, there is reasonable agreement be-

tween the potential spectra of the analytic solution and the numerical solution on a mode

by mode basis. The maximum analytic amplitude occurs at k = v/2Ak = .44 and has the
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value kkrms~max = 2.2, while the maximum numerical amplitude occurs at k ~ .45 and

has the value 1,"n m,, ~ 2.7. The trial function property that krmsl = 0 for k. = 0 or
ky = 0 is of course not in good agreement with the numerical solution since this is just a

simplifying feature of the trial function.

The qualitative structure of the average analytic potential, Fig. 2(a), is very similar
to that of the average numerical potential. Also, quantitatively the comparison is close,
where the maximum analytic amplitude of the average potential occurs at k = Ak = .31
and has the value q0,,lm,,x = 1.9, while the maximum numerical amplitude occurs at

k ~ .2 and has the value J4nmmk,,,maz ~ 1.7. The slight discrepancy between the position
of the analytic maximum average amplitude and the numerical one might be understood

by the fact that the numerical study allowed modes only up to a maximum of kmax = 1.
The numerical study of the spectrum solution included a test for changes in the average

spectrum with increases in the maximum wave number, kmax > 1. The case kmax = 1.2

was analyzed numerically with the result that the maximum average spectrum amplitude

shifted to a slightly higher wave number, or closer to our analytic result.

The agreement between the analytic frequency width and the numerical frequency
width is also very good. For both solutions the minimum of the frequency width and the

k, average frequency width occurs where the spectrum and k. average spectrum reach

a maximum. This is indicative of the fact that the marginal nonlinearly stable modes

should be the largest amplitude modes. The dominant part of the spectrum naturally

coincides with the most narrow frequency width region of the spectrum. The average

analytic frequency width, Fig. 2(a), is both qualitatively and quantitatively similar to the

average numerical frequency width up to k. ~ .8. The simple quadratic frequency width

trial function is not able to match the numerical results beyond ky ~~ .8; however, this is an

unimportant region of the solution, physically, where the spectrum is insignificantly small.

Tlie average frequency width found for this model problem is quite small, K-ill) ~ .02,
compared to the average frequency, (& .3. This result is over a factor of ten different

from the experimental indication that the frequency width is on the order of the frequency,

There is also good agreement between the analytic and numerical results for the

average growth rate and frequency, Fig. 2(b). It is interesting to note that the maximum

drive of the average growth rate occurs at ky ~ .5, while the maximum average potential

amplitude occurs at ky ~ .31. This is evidence of the nonlinear cascade of the spectrum

to lower wave numbers than the maximum drive wave number. This can be understood
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since it is found that for a system with no dissipation, 'y = 0, the equilibrium is centered

about k = 0 [18]. Physically, it is reasonable that if a system is driven near some finite

wave number, that it would have a tendency to relax towards the equilibrium nearer to

k = 0.

It is clear from this comparison of the analytic spectrum solution to the numerical

solution that accurate results can be obtained using the analytic moment method. The

useful feature of the moment method is that the important parameters of the solutions

for the nonlinear spectrum integral equations can be obtained from quite trivial numerical

integrations. The results give very accurate values for the important bulk parameters such

as the saturation integrated amplitude, the wave number width, and the frequency width,
when the trial functions can be made reasonably close, in shape, with the true solutions.
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Figure 1: The spectrum solution parameters for the model problem are determined by
the ratio equation, R1 (Ak, A) = 1, where the ratio, R 1, is defined by Eq. (142). The
two allowed wave number width parameters (Ak = .41,.31) are used while varying
the frequency width parameter, A. (a) For Ak = .41, no solution (R 1 5 1) exists.
(b) For Ak = .31, a solution (R 1 = 1) is found at A = .97. All the points in the
above graphs are from numerical computations.
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(a)

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0

Figure 2: Spectrum results for the model problem are presented
averaged quantities. (a) Root mean square potential, |rms,,,,, and

(-r1')k,,. (b) Growth rate, (KY)k,, , and frequency, (w)k,,.

in terms of kr-
frequency width,
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4. Spectrum Solution of Self-Consistent Drift Wave Problem

In this section, the spectrum equations are solved for the drift wave electron dissipation
computed in the NSA [4]. The renormalized electron dissipation in the NSA is a nonlinear
analysis of the drift wave problem, where the important feature of stochastic electron
diffusion, due to the resonance overlap condition being satisfied, is incorporated. The
desire here is to calculate an accurate drift wave spectrum utilizing this realistic drift wave
electron dissipation. Besides the general motivation to derive a turbulent spectrum needed
for a transport theory, there is also the current question whether a good theory can predict
the experimentally observed broad frequency spectrum.

The dissipation considered here is fundamentally different from that of the model
problem, Sec. 3. The wave number dependent growth rate for the model problem exhibits
very large damping for low and high wave numbers, with a narrow band of marginally
unstable growth rates in between, k, ~ ky ~ .5. Almost any two unstable linear eigen-
modes, W = wk, which beat together, satisfying the selection rule, k = k' + k", produce-a
nonlinear mode, w # wk, which is stable, where the triplet growth rate is negative. It is
then found that there are very few unstable triplets. Since there is no drive to populate
the noneigenmode spectral frequencies, it is expected that the spectral frequency width
for this dissipation model would be small. This narrow frequency width assertion is in
agreement with the results of the last section. In contrast, the growth rate derived from
the electron dissipation in the NSA, which is obtained from Eq. (4) and Ref. 16,

w(w - w*)T (153)
1 +k 2

indicates that all linear eigenmodes, w = ok, are unstable. Here. the parameter T is a
correlation time. It is also found that any two linear eigenmodes with y components of the
wave vectors, either both positive or both negative, produces a nonlinear mode which is
also unstable. This property of the electron dissipation in the NSA can be ascertained by
plotting the vector sum of a ny two eigennmodes in a two dimensional frequency, w', and y
cornponent of wave vector. kAP. coordinate syst(Iem. The growth rate from Eq. (153), /
is proportional to -w( - o). The eigenmode frequency is w = Wk = w,/(1 + k 2)
ky /(1+k 2 ). The beat waves must satisfy the selection rules, W = '+w", and k = k'+k".

For positive y components of the wave vectors, k' and k" > 0, it is clear that the beat wave

frequency, w' + w" = [k' /(I + k' 2 )] + (k"/(1 - k 2 )], is less than the drift wave frequency,

W;e k' + k". In this case the growth rate is positive, which is also true for y components
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of the wave vectors both negative, k' and k" < 0. The above picture for the beat wave

growth rate is also clearly represented by formally expressing the growth rate,

( k' k" F ( k' k 2JI
'Yk'+k",w'+w" is proportional to K1 + k2 + 1 " k' + k - +( +

The beat wave growth rate is positive for k' , k both positive or both negative. For this

model of dissipation there are then many unstable triplets. The unstable triplets tend to

drive up and populate the noneigenmode frequency spectrum, w $ wk. In the spectrum

problem reduced to wave number space, the noneigenmode frequencies are expressed in

terms of a spectral frequency width. Consequently, it is anticipated that the spectral

frequency widths will be large for the spectrum dependent on the electron dissipation in

the NSA.

The Lorentzian frequency trial function is not appropriate for a frequency dependent

growth rate such as Eq. (153). In order that the frequency moment integral of the growth

rate converge, the Gaussian spectral frequency trial function is chosen,

1 CA -Wk)s
Sk,w = / W )exp[-( )2S (154)

7r1/2 1?k'1'7k

The wave number spectrum integral equations to be solved now are Eqs. (75), (88), and

(90). The moment technique is used to reduce the wave number integral equations to a set

of nonlinear algebraic equations for the unknown parameters which are incorporated in the

trial functions. This solution is dependent on the dissipation parameter, T, of Eq. (153).

The parameter, T, is itself a functional of the spectrum level, via the diffusion coefficient,

p I - 1/3

T = r',f2 2.8Tr-Q T,. (I' Ve)(5 )
LTI L, 13

wliere the average (iffusion coeficient, ), is

D = du ri 2 exp[ (u/ve)) dkyS,(x) . (156).

kYu

Here, ve - (2Te/me)1/ 2 is the electron thermal velocity, R is the tokamak major radius,

L, is the shear length, Ei = Qi(p 8/La)kyk I = ky/Ls, and /y is the spectral averaged wave
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vector, k. The final spectrum solution is insured to be self-consistent by obtaining a new
parameter, T, from the spectrum solution and iterating until a common solution for both

the spectrum equation and the dissipation is found. Initially a value for the parameter, T,
is chosen, the spectrum equations are then solved. The spectrum solution can be used to
calculate a second parameter, T, using the diffusion coefficient, Eq. (156), and the equation

for T, Eq. (155). This new value for T is used in the solution of the spectrum equations,

and this implies a new T value. The feedback is found to be negative, so that when this

iteration scheme is continued, the parameter, T, oscillates about a fixed point. In fact, the

parameter, T, converges quite rapidly to a solution. This problem is fully nonlinear, having

the nonlinear mode coupling saturation spectrum problem combined with the nonlinear
electron dissipation.

Using the Gaussian frequency trial function, Eq. (154), the wave number growth rate

moment integral is calculated using Eq. (81),

1 12
Yk = 1 P,2 k(we - wk) - (7)2 T. (157)

Note that the frequency averaged growth rate, -Yk, has the nonlinear spectral width, 7,,
explicitly incorporated. The sources of negative and positive dissipation are clearly pre-
sented in Eq. (157) as a dichotomy. The w < w- portion of the spectrum produces the
negative dissipation (positive growth rate), while the w > w* portion of the spectrum,
arising because of the nonlinear frequency width, nj, produces the positive dissipation

(negative growth rate).

Just as in the solution of the model problem, Sec. 3., the boundary conditions of Sk
arid 7k help to determine good trial function choices. The k = 0 limit of the frequency

spectral width is found using Eq.(87),

Y(), (158)

where use has been made of the coupling constraint Eq. (I H). For IHe same reason, the

k = 0 limit of Eq. (88) is

7() S( = 0. (159)

The growth rate Eq. (157) can be written as
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T k 2 (
Ik = - (ri )2 ,(160)

1+k2: j+k2 1+k2 2k

where use has been made of the frequencies w* = kg and Wk = ky/(1 + k2 ). Combining

Eq. (158) with Eq. (160) results in the condition for the k = 0 limit of the frequency

width, 77,

F?7= T(n 1)2, (161)
2

so that there are two possibilities,

I 2FI or o = T (162)

The two solutions of the boundary conditions are ?0 = -2F/T with So 0, or tI = 0

with any So. The choice taken here is to pick the latter condition so that a large amplitude

of the frequency width, near the dominant part of the spectrum at k = 0, is not picked a

priori. Also, the first boundary condition choice tends to produce a positive feedback loop

for the self-consistency condition, where the parameter, T, is evaluated from the spectrum,
S, and vice versa. This occurs since the average spectrum, S, is directly proportional to

the average frequency width, q , which can be noted from Eq. (88). With use of this

first boundary condition choice, where the frequency width is inversely proportional to

T, it is clear that the spectrum and parameter, T, are inversely related for one half of

the iteration loop. Using Eqs. (155) and (156) it can be noted that the parameter, T,
is inversely proportional to the spectrum for the other half of the feedback loop. This

indicates an overall positive feedback loop, so that there would tend to be no solution

found using the iteration procedure and the first, boundary condition choice.

Iii order to model the spectrm response aller the region of inegative dissipation

(source) at some finite k position, the choice of the trial function for the wave number

spectrum is a Gaussian times a quadratic in wave number,

Ek \2
Sk - exp --(k/Ak) 2]. (163)

7rAk2 Ak

The spectrum is normalized to E,

E = dkS, (164)
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and attains a maximum at k = Ak. The trial function for the frequency spectral width is

chosen to be a quartic function,

r-+ -Gk 4 . (165)

A quadratic frequency width trial function was attempted but no solution for the spectrum

problem could be found since the growth rate, Eq. (160), did not produce sufficient

negative dissipation to balance the positive dissipation from the frequency width, r71, term.

Consequently, one needs a trial function for the frequency width which would demonstrate

a slower increase with wave number near k 0. The growth rate, Eq. (160), is now

T k k21 1
Yk = 21 - -G2k . (166)

f+-k2 .11+ k 1 +k2 2

Using the trial function choices, Eqs. (163) and (165), in the spectrum Eqs. (75), (88),
and (90), along with the moment technique, the solution for the unknown parameters (E,
Ak, and G) can be obtained.

The dissipation constraint, Eq. (95), gives a condition for the parameters Ak and G,

M f dk(1 + k2 )-Yk Sk 0, (167)

Defining the functions,

I, (Ak) = d x and I2 = 0 dx _ 5e-2 (168)
1I+ Ak 2x 2  ( + Ak 2 X2 ) 2 '

the equation for the parameter G is

2 11 (Ak) -- 12 (Ak) (169)
60Ak;

Given any value of the wave number width, Ak, the corresponding value of the frequency

width parameter, G, is obtained from Eq. (169).

As noted in the previous section, the choices for the weighting functions depend on

which exact constraints are desired to impose on the approximate solution. It was also

noted that the weighting function choice can be used to satisfy the criterion that the slope

near the solution point is large, when solving an equation equivalent to Eq. (143). After
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some trial and error, the choices for the second and third weighting functions were found

as, H2k -+ 1 + k 2 and H3, -+ k2 . After inserting this second weighting function in Eq.

(96), the second moment equation is,

M2 = dk(1 + k 2 )(-2Fn4)Sk

J dkdk'dk"b(k - k' - k")47rReIk,kI,k (1 + k 2 )C2,k,,k, SkSkI. (170)

The left hand side of this equation can be readily evaluated,

M2 = 12FGAk 4 (1 + 4Ak 2 )E. (171)

The integral on the right hand side of Eq. (170) is obtained using the same approxi-

mation for the resonance function, that was used in solving the model problem,

ReIkk',k" 1 1 1 ('7) 2 + (tI,)2 + (,,)2. (172)

The right hand side of Eq. (170) is then

2  / dk'dk 41/2(1 + k 2 )
2 = k ' k (( &k+ ) 2  + (7 , 2 + (71,)2]1/2 C k +kII,k ,k Sk'SkI. (173)

Using polar coordinates, Eq. (129),and the change of variables, Eq. (130), the result for

Eq. (173) is

Ak24E 2 j dx j dy / dO' / dO" (174)
7F/ 2GI I ..a .

sin 2(0" 0')(-ry) 5 (X2  
- y2 )2exp (x2  

_ y_2)1

{x 8 + ya + [12 + y2 + 2xycos(O" - ') 14}1/2 {1 + ak 2lx 2 + y2 + 2xycos(O" - O')}.

The final change of variables is obtained using the transformation

4 - 2, = o'+ O", 0' = 2 (' - 0), 0" = -(0+01), (175)
2 2
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which gives the final expression for M 2 ,

Ml2 =2Ak
4 L3 (Ak)

M2 = 7r3/2G E,

L3 (Ak) f d dy f dO
fo 1 0

0 sin 2 O(Xy) 5 (x 2 - y 2 ) 2exp[-(X2 + y 2 )]

[X8 + y8 + (x 2 + y 2 + 2xycosd)411/ 2[1 + Ak 2 (X2 + y2 + 2xycos4)]

Combining the two expression for M 2 , Eqs. (171) and (176), produces an equation for the

total integrated amplitude,

E =67r3/ 2 FG2 (1 + 4Ak 2 )
L3 (Ak)

(178)

The final expression which closes the system of nonlinear algebraic equations is ob-

tained by using the third weighting function, H 3 , --+ k 2 , and inserting this in Eq. (97),

where the result is

M 3 J dkk 2(7k - Fr')Sk I dkdk'dk"4 7rReIk,k',kk 2 Ck,kI,k Ck,k,k Ski 5 k. (179)

The left hand side of Eq. (158) is readily evaluated, with

,7 -X
dx +

(I + Ak 2 X2 ) 2
I4 (A k) / dx-- -

J5 (A k) dx k ,

the result is

M 3 = 24FGAk 6 1 + T [L 3(Ak) - 14 (Ak) - G2Ak(I 5 (Ak)] E.
I 24FG Ak2I
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(177)

i

I3 (Ak)

(180)
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The integral on the right hand side of Eq. (179) is evaluated in a similar manner to Eq.

(176) and Eq. (137). Using the polar coordinates, Eq. (129), and the change of variables,

Eq. (130), the result of Eq. (179) is

= 2Ak 6L4(Ak) (182)
7r3/2G

where

L4 (Ak) -- d 0 dy dO (183)
fo 1 0

Osin2 (xy)5(X2 _ y2) (X2 + 2xy cos )(x 2 + y 2 + 2xy cos )exp[-(x 2 + y 2 )]

[X 8 + y8 + (x 2 + y2 + 2xy cos 0) 4 ]1/ 2 [1 + Ak 2 (X2 + y2 + 2xy cos 0)][1 + Ak 2x 2]-

Combining the M 3 Eqs. (181) and (182) produces another equation for the total integrated

amplitude,

127r3 /2FG 2 [ T
E L4(Ak) 1 + 24FGAk2 [13 (Ak) - I 4 (Ak) - G2Ak.I5(Ak)] (184)

The solution of the parameters is found from Eqs. (169), (178), and (184). The two

equations for E, Eqs. (178) and (184), can be combined as a ratio which is equal to one.

The final equation for determining the parameters is then

_2_=_24FC--k 2+ I[ 3 (Ak) - I 4 (Ak) - G2 Ak 6 Is(Ak)l] L 3 (Ak)1 + 4Ak 2] L(Ak)' 185)

where the solution is found by solving

R2 = 1. (186)

The soltution of Eq. (186) is o)tained by choosi ng variou s valies of Ak 2. with the sub-

sidiary condition for G, Eq. (169), and iteratively searching fr a solutiion. The nonlinear

integral equation problem has been reduced to the numerical evaluation of just two (three

dimensional) integrals L 3 (Ak), Eq. (177), and L 4 (Ak), Eq. (183), and the simple numer-

ical evaluation of five (one dimensional) integrals I1(Ak),..., 15 (Ak). The three dimen-

sional integrals, Eqs. (177) and (183), are computed using an extension of the Simpson's

quadratic rule for one dimensional integrals. The integration domains
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(187)

were found to be sufficiently accurate. A quick solution search was made using the number

of steps as N = M = L = 10 on a hand held computer. The final accurate integrations

were made using the MACSYMA system where N = M = L = 20 was used. Similar to

that found during the model problem computation, Sec. 3., the analytic moment method

reduces the spectrum problem to a few hours of computation on a hand held computer as

compared to hours of Cray time needed for the numerical solution of the spectrum integral

equation. Just as noted in the previous section, this is different in speed by about 106.

In order that Eqs. (186) and (178) for E be self-consistently solved, the expression for

the dissipation parameter, T, as a function of Ak and E must be known. The parameter,

T, is found by using our spectrum trial function in the diffusion coefficient, Eq. (156), and

substituting this in Eq. (155), where the result is evaluated in Appendix B,

2
T~,z (188)

(Ak 4E) 1/3'

and typical parameters have been used (mi/me z 1836, L8 /L, ; 16, L,/R ~ 3, Ak ~ .6).

The search for a solution of Eq. (186) proceeds by choosing a Ak 2 value, computing

G from Eq. (169), computing I3, I4, and I from Eq. (180), computing L3 and L 4 from

Eqs. (177) and (183), computing E from Eq. (178), computing T from Eq. (188), and

finally computing R 2 from Eq. (185). An iteration of this procedure is performed until

Eq. (186), R 2 = 1, is solved. This iteration converged very rapidly, and as mentioned at

the beginning of this section, the feedback is negative so that the solution is quite stable.

A solution is found at Ak 2 = .28, as can be seen from Fig. 3. The solution parameters

are found to be

Ak .53, G = .41, T = 2.2, 6rrm- 3.1. (189)

The spectrum results are presented graphically, Fig. 4, by averaging over k,, as was

done for the presentation of the model problem results, Sec. 3. The average root mean

square potential, Ormjk,, is defined by Eq. (109), and the average spectral weighted

average frequency width, (-rII)k,, growth rate, (,)k,, and frequency, (W)k, , are defined

by Eq. (110). The k, average potential is evaluated from the wave number spectral
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solution, Eq. (163). Using the solution parameters, Ak = .53 and 'rms 3.1, the average

potential,

3.1 21/2
rm k, =21/2 1/4(.53)1/2 [ +] exp([ (ky/.53)2], (ky)maz = .37, (190)

is plotted in Fig. 4(a).

The spectral weighted k, average of the frequency width, (-r1I)k.,, is evaluated from

the frequency width solution, Eq. (165). Using the solution parameters, Ak = .53 and G

= .41, the spectral weighted average of the frequency width,

= 2(.41)(.53)4[ + (k) 2 + + ( ky) 2 ( )]

(ky)min = .29, (191)

is also plotted in Fig. 4(a).

The spectral weighted k_ average of the growth rate, (Y)k,,, is evaluated from the

expression for the growth rate, Eq. (166) Using the solution parameters, Ak = .53 and

G .41, the spectral weighted average growth rate,

Y~k, 4(2.2) (192)
( 1/2(.53)3

__ _ d _ 1 -+k2 +2 -!(.41) 2 (k, + x2)4 exp [-(x/.53) 2]
X 2-f~d2 k" )- 2

[1 + 2Q~

is numerically integrated and plotted in Fig. 4(b), where the maximum value occurs at

(ky)maz = -8-

The spectral weighted kx average of the frequency, (w)kk, is evaluated from the ex-

pression for the frequency, Eq. (89). Using the solution parameter, Ak = .53, the spectral

weighted average frequency,
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(w)k, = dx .) 2 e /[1 + 2( ,) (193)

(.53)2 + .53 + 2

is also numerically integrated and also plotted in Fig. 4(b).

The radial diffusion coefficient, D, is computed by using the spectrum trial function,
Eq. (163), in Eq. (156), which is evaluated in Appendix B,

D = [r ()1/2 (R) (L. (Ik2E)] (194)

where,

I= K,(2M), M= ( Ak, (195)

and K, is the modified Bessel function. Using the spectrum solution, Eq. (189), and

typical parameters (mi/me = 1836, L,/Ln = 16, L,/R 3), the diffusion coefficient is,

D~1.8ni L pl. (196)

The physical parameters (L,/Ln, mi/me, L,/R) were varied in order to determine the

scaling of the diffusion coefficient on them. The results indicate that the diffusion coefficient

is roughly independent of L,/L, and (mi/me) , but it scales with (R/L,)1 ",

S~9.6 ( .,PSP (197)

The diffusion coefficient scaling with R/L, can be physically understood since R/L, is

proportional to the density of modes or mode rational surface points.

The integrated amplitude or root mean square potential result, qrms 3.1, and the

radial diffusion coefficient, D = 1.8, are very close to experimental values of ~D - 0(1) and

= (eO/Te)/(p8 /Ln) 0(3) where p8 /L, ~ .3 x 10-2 and eo/Te ~ 10-2 [6]. From Fig.

4(a) it is seen that the minimum frequency width occurs at ky ~ .29 and the maximum

value of the potential occurs near this at ky ~z .37. This is the same feature found for the

model problem that the marginally stable nonlinear modes, small frequency width modes,

coincide with the maximum amplitude modes. The maximum drive, Fig. 4(b), occurs at
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kv ~ .8 which demonstrates, as also seen in the model problem, that there is a cascade of

energy to lower wave number, which is physically understood since the undriven system

would have an equilibrium centered about k = 0. However, the frequency width, (r?') k,,

shown in Fig. 4(a), in contrast to the model problem, is actually quite large. The average

frequency width (q7') ~ .3 is on the order of the average frequency (w) ~ .3. This is in

agreement with the broad drift wave frequency spectrum found from microwave scattering

experiments in tokamaks [6]. The growth rate, Eq. (157), was rescaled and the spectrum

equations were solved in order to determine the rescaling of the ratio of frequency width to

frequency. The frequency width and the frequency were both found to exhibit roughly a

linear rescaling with growth rate. Furthermore, the ratio of frequency width to frequency

was found to be approximately independent of the growth rate rescaling. The assertion

made at the beginning of this section was shown to be correct; the growth rate, Eq. (153),
used in this analysis of the spectrum, is fundamentally different from the one used for the

model problem, Eq. (111). Since all the linear eigenmodes are unstable, and many of the

beat wave nonlinear modes are also unstable, there are numerous unstable triplets. The

unstable triplets drive up and populate the noneigenmode frequency spectrum. In this

drift wave problem, which had been reduced to wave number space, the noneigenmode

frequencies are modeled by the spectral frequency widths. As was expected, the average

frequency width, for the electron dissipation in the NSA, has been found to be large.
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Figure 3: The spectrum solution parameters for the self-consistent drift wave prob-
lem are determined by the ratio equation, R 2 (Ak 2) = 1, where the ratio, R 2, is
defined by Eq. (185), and is a function of the squared wave number width parame-
ter. A solution (R 2 = 1) is found at Ak 2 = .28. All the points in the above graph
are from numerical computations.
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Figure 4: Spectrum results for the self-consistent drift wave problem are presented
in terms of kr-averaged quantities. (a) Root mean square potential, 'krms K,, and

frequency width, (-r')k,. (b) Growth rate, (I)k,,, and frequency, (\LU)k,,.
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IV. Summary and Conclusions

A derivation of the renormalized mode coupling spectrum equations for drift wave tur-

bulence has been presented. The failure of a weak turbulence formulation of the spectrum

equations for a system with negative dissipation was demonstrated. This failure has been

shown to be directly related to the linear instability of the triplet correlation function. The

nonlinear feedback effect from higher order correlations on the propagation of the triplet

correlation was obtained by utilizing a renormalized theory for the spectrum equivalent to

the DIA[11].

An approximate solution of the spectrum equations has been obtained first for a

model dissipation proposed and numerically solved by Waltzf3], and second for the elec-

tron dissipation in the NSA[16]. The model dissipation problem was used as a check for

the approximate analytic moment method. This moment method determined the first

order solutions of the nonlinear integral spectrum equations, in terms of a trial function

dependent on first order parameters, which correspond to physically relevant parameters

of the true solution. The comparison between Waltz's numerical solution of the spec-

trum equations and our approximate analytic solution, indicated an excellent agreement

both quantitatively and qualitatively. Using the analytic moment method, the root mean

square potential in dimensionless normalized units was found to be Orms = 1.6. This

result is almost identical to the quoted numerical solution for the necessary set of 30 x

30 modes. This model dissipation problem has led to a narrow frequency spectral width,

where the average frequency width was found to be (-nI) ~ .02n2(p,/L.), while the

average frequency was (w) ~ .3 l,(p./L.). The approximate analytic moment method

solution of the self-consistent drift wave spectrum problem, with the electron dissipation

in the NSA, was found to be in rough agreement with experimental observations in toka-

maks[6]. The root mean square potential and the radial diffusion coefficient were found to

be e&rms/Te = 3.1(p/L,) and D 1.8Ql(p,/L,)p2, respectively, which are on the order

of experimental values. The frequency spectral width, which has been calculated using

the electron dissipation in the NSA, was shown to be broad, which is also consistent with

experiment. The average frequency width was approximately (-n') ; .3Slj(p 8 /La), while

the average frequency was also (w) ~~ .3[2(p 8/L.).

A comparison has been presented between the model dissipation of Waltz and the

electron dissipation in the NSA, regarding the differences in the resulting spectral widths.

The wave number dependent growth rate for the model problem exhibited a very narrow

band of small positive growth rates. Almost any two unstable linear eigenmodes produced
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a stable nonlinear mode such that the triplet growth rate was negative. Since there were

very few unstable triplets to drive up the nonlinear frequency spectrum the resultant

frequency spectral widths were small for the model dissipation problem. In contrast, the

frequency and wave number dependent growth rate, derived from the electron dissipation

in the NSA, indicated that for this model all linear eigenmodes, w = wk, were unstable.

Any two linear eigenmodes, with positive y components of wave number, produced an

unstable nonlinear mode, w 5 wk. These unstable triplets were driven up and populated

the noneigenmode frequency spectrum. The resultant spectral widths, for the electron

dissipation in the NSA, were then found to be large.

The approximate analytic moment method has been demonstrated as being a useful

method for approximating the solution of the nonlinear integral equations describing the

drift wave spectrum. The important feature of the approximate analytic moment method

is that it can be used to extract the fundamental parameters (total integrated amplitude,

wave number width, and frequency width), without actually solving the integral equations.

The approximate solution is obtained from trivial numerical calculations, as compared

with the lengthy computations needed to attack the spectrum solution numerically. This

solution technique can then be used to readily analyze the spectrum resulting from other

models of dissipation.
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Appendix A. Normalization Correction Factor in Model Problem

This section is in reference to the model problem where a different normalization of the

spectrum is used due to the discretized approach in the numerical solution of Waltz. The
numerical computation uses a discrete number of modes where the numerical root mean

square potential spectrum, kkrm;,5 nSuml/2, utilizes indices ij, which correspond to
the k,,ky wave numbers of our root means square potential, kkrmslI.,k,,. The correction

factor needed for comparison purposes is obtained by noting that

dkzdky Sk,,k, = ( ur, (1)
k j

and since the discreet interval wave number width used in the numerical study was .2, the
spectrum correction factor is

and the potential correction factor is

.2 1 Ornmjs I ,kI r . i (3)

The k. average potential, |orm I, , also has a different normalization than the discreet
average potential, |4'"m I. The correction factor is obtained by noting that

.2Sk,= S 'u r' (4)

and using the definitions Irms k, = s1 2 and 4num (gnum)1/2, so that the followingkY Ormq k
relation is obtained,

(2 / (5)
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Appendix B: Evaluation of T, Eq. (188)

The T parameter is found from Eq. (155),

T:= 2.80 
1/3

I (1Ln L.D(k ve 2

and Eq. (156), where the inverse Fourier transform in k, of the spectrum, Sk.,(x), is

needed. The Maxwellian velocity averaged diffusion coefficient, D, is

D = di 1e (- dk Sk (X) , (2)

where 0 = (ITj/L,)pAk, k= Ak/L,. Using the spectral ansatz, Eq. (163), Sk,(x))Js

calculated as follows,

Sk,(x) dke 'Skk dk e E1rk2
fJ cc ~ _r~k 00

1/r~ C d

0k0~o

+is TA- I

x k) j- Ak

dkz e EA) k e (3)

The second integral in Eq. (3) is

dleiz~kte

d e-2 e Y =e- ) ,
0-0

(4)

where the contour integral was deformed from the line J-oo - i(xAk/2), +oo - i(xAk/2)]

to the line [-oc, oo]. The first integral in Eq. (3) is
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7rAk C
dke e-( Y

_N1 J-_00



= 1 J00 dtt2 e-(t2-izkt)

"/- 1- _0
0 k dkze k

/rak f osk)

dtt22(t- -e )

and using the change of variables z = t - iA

e- 2  - dz z2 + izAkz e

where the contour [-oo - i(zAk/2), +oo - i(xAk/2)] can be deformed to [-oo, oo],

1 ) Ak ) 2 1 t2
=edt P2+izxAkt 2

/r -o.1o

1 [1 (xAk)2 ]tAk2

-2 2 e 4 (5)

The inverse Fourier transform in k, of the spectral ansatz is, using Eqs. (4) and (5) in Eq.

(3),

(ak) 2  E k) 2 ( k
e 4 7Ak Ak e

(xAk)2  
(.rAk)

2 J
E/kA k

The average diffusion coefficient, Eq. (2), is then

Z 2= dv j Ve e
V7 V' id

. [e
( ,o- L

IrAk (zk )2 Ae e- (

S ) E dkykq

2 l-2LAk\2 kyVI / e
__1 e

i/zak

1 1
dvn I I e-

ve7- V, I

(I2 c 2 [3 +1 -

B 4 4

since M = OL,/2ve < 1, so that the result is
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rR ( IAk2E, (7)
Ve \B

where

I - j dx e X (8)

The integral I can be approximated as follows,

I=I-0 dz 1e-(N +-),
V z

where the change of variables x 2 = z was made,

= dte-2mcosht =- 0 dte-2mcosht

where the additional change of variables z = Met was made, so that the result is

I = Ko(2M), (9)

where

Ko(x) = dte-cosht (10)

is the modified Bessel function. The Bessel function K can be approximated as

Ko (x) ~ - In +

where ay is the Euler constant which is -y a .577, so that Eq. (9) is approximately given by

2
1 ~ [.577 + ln(M)I. (i1)

The expression for T, Eq. (1), can be written in terms of familiar quantities by using the
transformation to dimensionless variables,

(e)2

Akp --+ Ak and E - E,
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T = 2.8 [L3 22] 1/3

ne
-28 [(3ApiveB2L ) (pe

2 L

\ T42P ) I

1/3 1

(Ak 4E)1/3

3W__5L 1/3

=2.8 = ,S
7rIvC4LnR (Ak4E)1/3

2.8
2.8 E3cL ( 1 k1/3 1

[7rIvLnRJ (Ak4 E)1/ 3 '

or

__1/3 1T = 2.8 /(kE)/.7rI n R 2mi (zAk 4E) 1/3 '

In a similar manner the diffusion coefficient can be obtained by using Eq. (7),

7r (Mu ) E2 ( R can b (apko2iE)m ae by P2.
2 \Mi \L, L, , Ln

The value of T, Eq. (12), can be approximated by using

M =O - QLp Ak=2 ve 2 veLn

in, 1

CeL, Ak
2VeLn

- a 16,

1 m ( L. )k,
2 2mi Ln '

L,
R 3,

so that

M .08 and I ; 2,

and finally the dissipation parameter is

2

(Ak 4 E)1/ 3
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as follows,

(12)

(13)

where

(14)

(15)

(16)

(17)
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