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ABSTRACT

The concept of adjusting field derivatives at a collection of points

to create a desired field profile has been used. However, applications

have been hampered by the difficulty of obtaining closed-form expressions

for the higher derivatives of the field from a loop. Algebraic manipul-

ation computer codes have alleviated the problem and have been used to

generate the derivative coefficients up to sixth order for the flux func-

tion for a circular filamentary current loop. The coefficients have been

cast into a normalized form and presented in two sets of twelve charts

which allow loop locations of constant effectiveness to be visualized.

The charts provide contours in normalized space along which different

loops will provide the same derivative coefficient per ampere turn or per

ampere meter for a general point relative to the coil. An example based

on the relative importance of coils in an ideal poloidal field coil set

for a tokamak is also given.



-2-

INTRODUCTION

Figure 1 shows a circular current filament carrying I ampere-turns.

The coil has a radius "a" and is a distance "d" above the z = 0 plane in

a system where the field point of interest is at (ROO). The vector po-

tential or field components at (Ro,O) can be related to the flux function

* = 27ROA where i is the total flux through a loop of radius R0 in the z =

0 plane and A is the azimuthally directed vector potential (eg See [1]).

This allows the fields produced by a set of filaments with known currents

to be analyzed by superposition. The inverse problem of synthesizing a

desired field shape by determining the required currents in a set of coils

which are only partially constrained in number and location is more dif-

ficult.

If the flux function in the vicinity of a point due to one set of

sources is known, then the field derivatives at the point are known in

principle. Furthermore, the same field distribution in the vicinity of

the point may be approximated by a second set of sources if the second set

is adjusted in location or strength such that it matches the magnitudes of

a sufficient number of the desired field derivatives. For an off-axis

point such as (Ro,O), it is sufficient to know and match a number of the

derivatives of the r and z field components with respect to "r" only (see

Appendix A).

In this report, plots with contours of constant effectiveness show

locations in the rz-plane at which coils will create the same magnitude of

vertical or radial field, or their derivatives up to fifth order. Effec-

tiveness coefficients are normalized on an ampere-turn basis to show the

changes required in coil current to achieve the same field component or nth
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order field derivative with different coil locations. A second set of

charts is given in which the field and derivative coefficients are nor-

malized on an ampere meter basis, since this is often of interest in

superconducting coils. The charts are general and there is no restriction

on location of the point of interest relative to the coil.

As an example, this paper also has results from a study which uses

the contours to show that, if a high degree of plasma shaping is required,

a PF coil or coils near the midplane on the inboard side of a tokamak

should be allowed to have a current independent of the central ohmic heat-

ing solenoid stack or, equivalently, the midsection of the central sole-

noid should not be constrained to have the same current as the balance of

the stack. The concept of matching field derivatives has been used as

the basis for a tokamak poloidal field coil system evaluation code [2].

CONTOURS OF CONSTANT EFFECTIVENESS

The normalized flux function at (Ro,O) due to the filament at (a,d)

in real space or (p,n) in normalized space is given by:

-- = 27 - - [(1 - k2/2)K - E] (1)

where:

Po = 4ff x 107= permeability of free space

I = coil current

k2 = 4p[(1 + p) 2 + n2]-l

p = a/Ro = normalized coil radius

n = d/Ro = normalized coil distance to z = 0

K,E = complete elliptic integrals (1st, 2nd)



-4-

The first and second derivatives of this expression can be done in a

straightforward fashion. Higher order derivatives become difficult by

hand, but can be done with a computer-based algebraic manipulation code

(e.g. - MACSYMA [3]). This was done for derivatives up to fifth order (i.

e. , n = 6) with results too lengthy to reproduce here. However, the deri-

vatives may be shown to have the following normalized form.

an-lBk 10 1
-= -- Pnk (2)
arn-1 Rn0

where:

k = r,z

n = 1,2,3..

poo = Eq (1) for n = 0

Pnk = Pnk (Pn) = normalized field or
derivative per ampere turn

Coil locations with the same value of Pnk will produce the same flux

function, vertical field, or its derivative (depending on n) at (1,0) per

ampere-turn in the coil. Contours in the rz plane along which these func-

tions have the same value will be defined as contours of constant effec-

tiveness for the corresponding derivative. The contour plots for the

normalized vertical field, normalized radial field and the higher order

derivatives, are given in Figs. 2-13. Solid lines are positive contours

in that a positive current as defined in Fig. 1 will produce a positive

function, Pnk in (2), whereas dashed contours are negative in that a posi-

tive current produces a negative function in (2).
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The contours show the rapid decrease in effectiveness with distance

from the point (1,0), and also indicate that the derivatives for n =

1,2,3.. have 1,2,3.. lines, respectively, along which a coil with n > 0

can be placed and have no contribution to that particular field derivative

at (1,0). This also means that a coil located on a zero effectiveness

line can contribute to other derivatives while being decoupled from the

production of that particular derivative. However, contour values vary

rapidly from positive to negative in the vicinity of these zero lines so

that a small change in location near such a line will cause substantial

changes in the current distribution among coils in the production of that

particular derivative requirement. This will be more severe as the num-

ber of coils become smaller and the higher-order derivative requirements

become significant (e.g. - in a tokamak poloidal field coil set for highly

shaped plasmas).

These contours relate coil location and ampere-turn requirement to

the magnitude of the field derivative needed. Similar plots were also

generated on the basis of the ampere-meter requirement since this is

often a better indicator of coil cost. These charts are also general and

are given in Figs. 14 to 25. In this case the contour functions are qnk

defined by:

an-1Bk = O(A-m)

arn-1 (3)

where:

A-m = ampere meters in coil

1 Ro
qnk = - (-) Pnk = qnk (PO)

2n a



FLUX DERIVRTIVES PER RMP METER
SOLDES[GN 7/30/85 4:56

Contour I -1.000E+03 Delta - 3.394E-01

2X 10-3

5x10-

10-

2x 10-2

---- x -

I -/

.5 1.0 1.5 2.0

a/R 0

2.5

BZ COMPONENT

Fig. 14 - Normalized Contours of Bz per ampere meter

3.0

2.6

K

2.0 -

I .s -

0

11N

1.0-

. -

0. -

0. 3.0



FLUX DERIVRTIVES PEP RMP METER
SOLDESIGN 7/30/85 4:57

Contour I - -1.000E+03 Deita - 5.260E-01

3.0

2.- -- -- -- - - -

2.6

2.0 -

0

1. -

0. .5 1.0 1.5 2.0 2.5 3.0

a/R0

dBZ/dR COMPONENT

Fig. 15 - Normalized contours of first derivative of Bz per ampere meter



FLUX DERIVRTIVES PER RMP METER
SOLDESIGN 7/30/85 4:57

Contour I - -1.000E+03 Delta - 3.246E+05

3.0

2.5 -

2.s - -10

-10

1.5

- 0---

-, , /- 0

0.
0. .5 1.0 1.5 2.0 2.5 3.0

a/R 0

d2BZ/dR2 COMPONENT

Fig. 16 - Normalized Contours of second derivative of Bz per ampere meter



FLUX DERIVRTIVES PER RMP METER
SOLDESIGN 7/30/85 5: 2

Contour I - -1.000E+03 Delta - 9.733E+08

3.0-

10- 3

2.5

0-

1.10

2.0 / -

0/

10-

0.

0. .5 1.0 1.5 2.0 2.5 3.0

a/R 0

d3BZ/dR3 COMPONENT

Fig. 17 - Normalized Contours of third derivative of Bz per ampere meter



FLUX DERIVRTIVES PER RMP METER
SOLDESHGN 7/30/85 5: 3

Contour I - -1.000E+03 Delta - 1.946E+t2

3I I I I I I II I I I I I I I I

-10-

2.6 ,.

o/
-I- 0 ''

2.0 -J-
-I-'- ---

II ------

0.

a/R/

2.0 ' '

I%

0.'

1.5 .5:~ 1. 1. . 2 .

d4BZ/dR4 COMPONENT

Fig. 18 - Normalized Contours of fourth derivative of Bz per ampere meter



FLUX DERIVFTIVES PER RMP METER
SOLDESIGN 7/30/85 5: 3

Contour I - -1.000E+03 Delta - 3.890E+l2
3.0 - , I - I . .

2.s -I

2./ -

r%
- , -

-N 10~

IINN

I I- -S I-

2.0 - --

S I 
N

I SI i /

1 . .0 *.0 -. 2.

1/0o

41 IV NO

d5BZ/dR5 COMPONENT

Fig. 19 - Normalized Contours of fifth derivative of Bz per ampere meter



FLUX DERIVRTIVES PER RMP METER
SOLDESIGN 7/30/85 5: 14

Contour t - -1.000E+03 Delta - 3.246E-01

2.0

2.s - -10 -

-2x10-

2.0 -

0 -

-.- - - 5 x 1 0 3
1 .5 -

1.0 -
-- - X -2

-Ix 0 -

0.
0. .5 1.0 1.5 2.0 2.5 3.0

a/R0

Br COMPONENT

Fig. 20 - Normalized Contours of Br per ampere meter



FLUX DERIVRTIVES PER RMP METER
SOLOESIGN 7/30/85 5: 7

Contour I - -1.000E+03 Delta - 3.245E+02

2.0 -- O~

2. - ~0 -

0 -2.0 --- -2 x iO-

I -

0

ItI

.1 - 0

\ ~ -- 5 x 10-~

1.0 - 1
4-P

10~

0. .5 1.0 1.5 2.0 2.5 3.0

a/R 0

dBR/dR COMPONENT

Fig. 21 - Normalized Contours of first derivative of Br per ampere meter



FLUX DERIVRTIVES PER RMP METER
SOLDES[GN 7/30/85

Contour I - -1.000E+03

5:
Delta

7
3. 244E+05

I I I I I I I I I I

0.

3.0

2.6 -

2.0

I I I I I

.5 L.5 2.0 2.5

a/R 0
d2BR/dR2 COMPONENT

Fig. 22 - Normalized Contours of second derivative of Br per ampere meter

10-3

2X 10-3

5xlO0

10-2
100-

-1

- - ~~

0

/

'S-

1.s5

1.0-

0.
3.0

I I I I I . I I I I I



FLUX DERIVRTIVES PER RMP METER
SOLDESIGN 7/30/85 5: 7

Contour I - -1.000E+03 Delta - 4.862E+05

3 4 I i I i I I I I 3.0

- 0-

2.5-
-0-

20 '

-0/-

1.- -

1.0 Oa,

-110. - ---

0.
0.5 .5 1.0 1.5 2.0 2.5 3.0

a/R,

d3BR/dR3 COMPONENT

Fig. 23 - Normalized Contours of third derivative of Br per ampere meter



FLUX DERIVRTIVES PER RMP METER
SOLDES[GN 7/30/85 5: 8

Contour t - -1.000E+03 Delta - 1.947E+12

3.0

2.0 -

OO-

2 - -

S0-2

1.0 10
,/it,

2- -- - - -i - -/~

o.-

0. .5 1.0 1.5 2.0 2.5 3.0

a/R/

d4BR/dR4 COMPONENT

Fig. 24 - Normalized contours of fourth derivative of Br Per ampere meter



FLUX DERIVRTIVES PER RMP METER
SOLOES[GN 7/30/85 5:11

Contour I - -1.000E+03 Delta - 9.733E+15

0. -- a0

2.I -
lo 1% 0 Q

2.0

1.5~-

1.0 - 0-

v. -

0. .5 1.0 1.5 2.0 2.5 3.0

a/R0

d5BR/dR5 COMPONENT

Fig. 25 - Normalized Contours of fifth derivative of Br per ampere meter



-6-

In these charts, coils on a given contour will produce the same deriva-

tive at (1,0) for a given amount of (A-m).

EXAMPLE BASED ON AN IDEAL PF SET FOR A TOKAMAK

The currents required for plasma equilibrium computed using an

equilibrium code described in [4] were determined for an ideal PF coil

set (50 coils). Results are shown in Fig. 26 in which the size of each

PF coil is proportional to the current it carries and shaded coils are

carrying current into the page.

To illustrate the relative function of the different coils in produc-

ing the field derivative requirements, the currents were combined with

their contour coefficients based on the magnitude of the functions, Pnk,

in (2) and the coils were superimposed on selected effectiveness plots.

An example is shown in Fig. 27 for the vertical field component and il-

lustrates that the major part of this component is produced by the outer-

most coils. Figure 28 is for the second vertical field derivative which

is effective in shaping the plasma. It shows that the inboard coils

ideally create a significant portion of the total second order field de-

rivative requirements for this case. Because of the change in sign of con-

tours on the inboard side, the coil currents in this region also change

sign so as to aid in the higher-order field production. This implies

that the central ohmic heating coil stack (typically as high as d/Ro ~

1) in a combined OH and PF system should not be constrained to be driven by

a single current source. This would negate the ability to provide the

current reversal on the inboard side and force other coils to compensate

with an increase in ampere-turns. The ideal height for the independent

current region near the midplane of the OH stack will be related to the
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highest order dominant derivative required by the plasma shape because the

effectiveness plots show that the height of the zero line on the inboard

side decreases for derivatives of successively higher order. For plasmas

of the type considered, the highest order dominant derivative is probably

n = 3. Furthermore, the OH stack radius was typically at 0.35-0.4 of the

major radius. The n = 3 plot shows that a reasonable height for the in-

dependent portion of the stack would be about 0.25 of the major radius

since this will allow effective n = 3 production without being too close to

the zero effectiveness line. In more highly shaped plasmas, higher orders

will become important and the height of the independent stack near the

midplane should probably be shorter.

CONCLUSIONS

General contour plots illustrate the effect of current loop location

on the production of magnetic field components and their derivatives at

an arbitrary point in normalized space. The plots give loci of coil

positions which produce no contribution to specific derivatives and allow

magnitudes to be determined for other cases by combining contour values

with (2). They may be used to find loop locations or currents to create

a desired field or derivative null at a given point.

For a tokamak, the contours show how minor changes in PF coil location

can drastically affect the higher order field derivatives and, therefore,

make PF coil location optimization difficult when the number of coils is

small and significant shaping is required. They also imply the need for

independent current control near the midplane of a typical OH coil stack.
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Appendix A

Field/Flux Derivatives Required for Coaxial Field Coil Design

A.1 Introduction

This section shows that matching a number of field derivatives at a point in space

is sufficient to generate equivalent fields throughout a region in the vicinity of the point

and to show which derivatives it is necessary to match. Cases which are symmetric and

antisymmetric relative to the z = zo plane are considered separately since an unsymmet-

ric case can always be treated by superposing a symmetric and an antisymmetric case.

Because of the curl and divergence requirements on the field, there is some freedom in

choosing the form of the Taylor series in terms of the form of the partial derivatives it

is necessary to match. In this apppendix we choose to match partial derivatives of B,

with respect to radial position, r, for the symmetric situation and partial derivatives of

B, with respect to r for the antisymmetric case. The analytic form for these derivatives

can be generated for a given current loop by taking successive derivatives of the vector

potential or flux function for a circular current filament as mentioned earlier.

A.2 Symmetric Coil Distributions

In this case we are interested in coils which are coaxial and exist in pairs carry-

ing currents which are symmetric relative to the z = zi plane. Because of the axial

symmetry, the vector potential, A has a component only in the 6 direction:

A(r, z) = A(r, z)4. (1)

Note that A(r, z) is related to the flux function V by the relation ) = 2xrA and that

the following may therefore be carried out in terms of 0 if desired.

The vector potential can be determined in the vicinity of the point (ro, zo) by using

a Taylor's series expansion as follows:

0 1 a a
A(ro + Ar, zo + A z) = I + A z )- A(r, z)1(ro (2)

(n )

where the expression in parentheses is to be expanded in a formal fashion by the binomial

theorem and then applied as an operator to A(r, z). After taking the indicated partial

derivatives, the terms are to be evaluated at the point (ro, zo). Equation (2) can be

rewritten as follows:

1



a aA(ro -+ Ar, zo + Az) = A(ro, zo) + I(Ar--- - Az -- )A(r, z))r.,,ar d z
1 a2 a 2  A 2

+ [((Ar)2 + 2ArAz-r + (A z)2-g2)A(r, z)(z)

a IA (
+. (n - 1) (Ar - az ) A(r, Z)](rsz,,) + R, (3)

where R,, the remainder after n terms is given by:

R, = [(Ar + Az )"A(r,z)(r1zi), (4)
n! F A9r ) .

where r1 lies between ro and r + Ar and z, lies between zo and zo + Az. Note that the
magnitude of the error is in the (n + 1)st term evaluated at some point (ri, zi) in the
domain. The Taylor's series will converge to the value of A(ro + Ar, zo + Az) if, and
only if:

lim R, = 0. (5)
n- oo

If A(r, z) is the vector potential due to the poloidal field, (ro, zo) is a point within
the plasma cross section, and (ro + Ar, zo + Az) is a point within the plasma boundary,
then the expansion can reconstruct the vector potential throughout that region (or,
equivalently, the flux function or the field) with an error, Rn, if n terms are used.

The vector potential has been expanded using this technique to the seventh term

(n=7). The derivatives of A were then expressed in terms of A, B2, and the partial
derivatives of B, with respect to r by using the following relationships:

V x A = 5(6)

V. = 0 (7)

Vx = 0 (8)

In terms of the components which exist in the configuration of Figure 1, equation
(6) becomes

a A
Br a (9)49Z
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B i = (rA) =A -- A (10)
r Or cr r

while equation (7) becomes

a B, 1a B, a Br
- - (rB,.) = - - R . (11)

aZ r Or r Or

and equation (8) becomes
ORB,. _ OB,
Oz 9Br (12)

In addition, symmetry about the z = zo plane may be used to simplify, since this
condition requires that

ORB,. _ "t B,
B,. - -_ ... - 0 (13)

Or iOrm

when these terms are evaluated at z = z. Note that this does not limit the applicability
or accuracy of the series for values of z # zo (i.e., for nonzero values of Az). This is
shown by equations (2) and (3), since the indicated terms are evaluated at the point

(ro, zo) while finite values of Az are used for z 0 zo.

For the special case of Az = 0, the final results are simplified in comparison to the

general case of nonzero Az. For Az = 0, the vector potential can be expressed as

A(ro -+- Ar, z) 1 r "BA [(Ar)
A~o+ r z)=[1+ ]-{ rn n! ][1 + ( )(-)r 14ro n=1 n +! n -4

or as
Ar C,(Ar)" n B""B

A(ro + Ar, zo) = [1 + ]-'{A + aJ9" gn(Ar/ro)} (15)
ro n=1 n! arn-1

,1=1

where

gn(Ar/ro) = 11 + (.n )(Ar
n + I ro

The functions gn are dependent only on the location of the point of interest and not

on the location of the field source which produces the derivatives. Again, A, B,, and

the partial derivatives of B, are all to be evaluated at (r, z) = (ro, zo).

When the general case of Az : 0 is considered, all of the terms gn which multiply

the partial derivative terms of equation (15) (beginning with the first partial derivative

term, i.e.,n = 2) contain additional factors which depend on Az/Ar as well as Ar/Aro.

One may therefore express the vector potential in the neighborhood of (ro, zo) simply in

3



terms of A, B.and "'Bz/ar' all evaluated at (r1, zo) plus functions f,(Ar/ro, Az/Ar)

which again depend only on the location of the point of interest. In functional form,

Ar , (Ar)" a"-'BZ Ar Az
A(ro + Ar, z0 + Az) = 1+ -'{A + I ! rn ( r, ' r)}. (16)

Y?]n. (9r" ro Ar

Note that the extremes of the variables of the f,, functions are equivalent to signif-

icant geometric parameters in a tokamak. For example. if ro is the major radius, then

since the extreme value of Ar is the plasma minor radius. the ratio Ar/ro in the inverse

aspect ratio. In addition, since the extreme value of Az is the half height of the plasma,
then Az/Ar is the elongation. In equation (16), the other derivative terms (such as

'Br/8z", for example) are not needed due to the field relationships and symmetry

given by equations (6) through (13).

If the flux function 0 is preferred, then equation (16) can be rewritten as

(Ar"B"1Bz Ar Az
ip(ro + Ar, zo + A z) = V(ro, zo) + (27r ro) ! fnr" -, r -' (17)

n=1 n! ar ro Ar

Equations (16) and (17) show that two different PF coil sets will produce the same

symmetric field throughout the plasma region provided they produce the same vector

potential or flux function at (ro, zo) and provided they have the same values for the B,

field derivatives with respect to r at that point. The number of terms which should be

included in the matching process is dependent on the level of shaping required. The

error which is introduced by truncation or by not exactly matching individual poles

requires investigation.

3.0 Antisymmetric Coil Distributions

An antisymmetric coil pair has coils symmetrically located relative to the z = zo

plane, but has equal and opposite currents in each coil. In this situation B, and its

derivatives with respect to r will be zero in the z = zo plane. The expanded formulation

for the vector potential is still given by equations (1) through (5).

The field constraints imposed by V x A = B, V - P = 0, and V x P = 0 remain as

given in equations (9) through (12). However, the symmetry condition now yields the

following at z = zo:
aB, - 9B, =0. (18)
,z ar
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In addition,
8 A - A
B = -- (19)
ar r

If a similar process of Taylor series expansion, simplification, and collection of terms
is carried out for this antisymmetric case, the vector potential and flux function can be
shown to be given by:

A ± Ar c (Ar)n 8"~ 1B, Ar Az
A~ro+Ar~o+Az)=(1 ) h Ar ) (0

ro n (n - 1)! arn- i r ) 2r

(Ar)"0 3"1 B, Ar Az
O/(ro + Ar, zo + Az) (27rro) rh (-, ). (21)

(n - 1)! rn-I ro Ar

Equations (20) and (21) show that two different coil sets will produce the same
antisymmetric field throughout the plasma region provided they produce the same vector
potential or flux function at ro, zo and provided they have the same values for the Br
field derivatives with respect to r at that point. The number of terms which should be
included in the matching process is dependent on the level of shaping required. The
error which is introduced by truncation or by not exactly matching individual poles for
this case requires investigation.
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