## A Cost-Performance Evaluation of the

 Use of a 10 T Central Solenoid in INTORby
Joel H. Schultz

November 9, 1984

## A Cost-Performance Evaluation of the

Use of a 10 T Central Solenoid in INTOR by Joel H. Schultz

## M.I.T. Plasma Fusion Center Research Report PFC/RR-84-16

Nov 9, 1984

A reference INTOR design has a central solenoid with a nominal peak flux density of 8 T , and an inductive burn capability of 200 s . Each central solenoid module is constructed using 50 kA superconducting NbTi cables. It has been suggested, but not recommended, that the burn time could be increased by swinging the OH solenoid from 10 T to - 10 T , using higher field $\mathrm{Nb}_{3} \mathrm{Sn}$ superconductor. This study adopts a simple comparison method in order to discover whether performance measures such as volt-seconds and burn time improve faster than cost figures increase.

The simplest method available for such a comparison was to adopt a fixed scenario from a previous INTOR study and a fixed set of winding pack envelopes, and explore the feasibility of increasing the peak flux density to 10 T by increasing the peak current in the central solenoid. In the 8 T option all eleven of the winding packs were modeled as using NbTi , while all of them were modeled as using $\mathrm{Nb}_{3} \mathrm{Sn}$ in the $\mathbf{1 0}$ T option. This modelling decision doesn't affect the basic tradeoff, and was done only to generate more information.

The conductor design approach was to use the two best characterized internal cable-in-conduit conductors for the two options: the Westinghouse LCP, bronze method, $486 \times 0.7 \mathrm{~mm}$ strand conductor is used for the $\mathrm{Nb}_{3} \mathrm{Sn}$ option and a 2,000 strand $\times 0.3 \mathrm{~mm}$ strand conductor is used for the NbTi option. The $\mathrm{Nb}_{3} \mathrm{Sn}$ conductor design is used in the Westinghouse LCP design, the M.I.T./HFTF 12 T Coil design and in the TF system of Alcator DCT [SC83]. The NbTi strands are Fermicable strands, the mass quantity strand design used in American particle accelerators and commercially. The specific ICCS cable-in-conduit design is used in the Alcator DCT PF system design [SC83], the Alcator DCT TF insert design and in the design of the NbTi option for TFCX [SC84]. This cable-in-conduit design is not a 50 kA conductor. Because the current densities for the INTOR design are relatively low, we specify winding four conductors in parallel, so that each conductor is carrying 12.5 kA , while the leads are carrying 50 kA . As will be seen, this gives an extremely conservative design, especially for all PF coils other than the central solenoid. However, the significant parameters that determine the validity of the tradeoff are independent of the specific conductor design approach, as will be seen below.

The positions of the coils, taken from Table of the INTOR Critical Issues Assessment [ST82] are shown
in Table 1. The currents and peak fields are shown in Table 2 and Table 3. The ampere-turn scenario is taken from Tables IX.2-23 and IX.2-25B in the INTOR Critical Issues document [ST82]. To the best of our knowledge, these tables constitute the only fully specified poloidal field/plasma scenario for INTOR. A 360 ms plasma initiation period is adopted from Table XVI-4. Disruption simulation is based on the electromagnetic model in the electromagnetics section of the Critical Issues document [ST82]. The only change made in the scenario is that the central solenoid, PF Coil 6 in the tables, is swung from -28 kA to -50 kA between 11 s and 211 s , instead of to -29 kA . The published current swing for coil 6 drives volt-seconds during burn in the wrong direction (i.e. it would drive the current down). A double-swung central solenoid is typical, as is the use of the central solenoid to cancel the resistive electric field in the plasma during burn. Also, the double-swing is technically feasible and does not increase the peak field in the winding over the worst field with the partial field. (Notice that the peak field is actually 8.46 T , not 8.0 T, whether the conductor is swung to - 29 kA or - 50 kA .) Thus, it seems clear that the published current of Coil 6 at 211 s represents a correctable error. When the coil is swung to - $50 \mathrm{kA}, 13 \mathrm{~V}$-s are available for the 200 s burn phase, as shown in Table 4. This would correspond to a burn voltage of $1 / 15.4$ V , which is sufficiently close to the $1 / 20 \mathrm{~V}$ calculated. When the current in the conductor is increased to 15 kA ( 60 kA leads), the amp-turn swing in coil 6 increases from $\pm 60.2 \mathrm{MAT}$ to $\pm 72.2 \mathrm{MAT}$, the peak flux density at the winding, during the course of the scenario, increases from 8.46 T to 10.1 T , and the available volt-seconds during burn increases from 13 V -s to 30 V -s. If 13 V -s represents a 200 s burn, 30 V-s would permit a 460 s burn. Thus, the benefit of increasing the current in the central solenoid by 20 \% is to increase the total volt-second swing of the PF system by $15 \%$ and the burn time by $130 \%$. If the plasma were dirtier than expected and required $15 \%$ more volt-seconds to get established than required, the additional 17 V -s would make the difference between a long burn and no burn.

The original 8 T design, even though it was really 8.46 T , still has an adequate design margin. The maximum fraction of critical current in the conductor is only 0.44 , as shown in Table 6. In a simple, free-standing solenoid, design values of 0.7 critical current are common. For the $\mathrm{Nb}_{3} \mathrm{Sn}$ coil at 10.1 T , the maximum fraction of critical current is only 0.383 . In a simple solenoid, design values of 0.5 critical current are common, though this should increase as the strain-sensitivity of $\mathrm{Nb}_{3} \mathrm{Sn}$ in a conduit becomes well characterized by the U.S. conductor development program [MO84]. For the NbTi at 8.4 T , the energy margin vs. a disturbance, such as initiation or disruption, is $536 \mathrm{~mJ} / \mathrm{cc}$, as shown in Table 8. This is typical of the TF and PF designs for Alcator DCT and TFCX. For the $\mathrm{Nb}_{3} \mathrm{Sn}$ at 10.1 T , the energy margin is $3,380 \mathrm{~mJ} / \mathrm{cc}$, which is extremely conservative. Notice that the outlet temperature of the coils was held at 4.0 K in all of the energy margin analyses. This corresponds to the outlet conditions of the TORE

SUPRA Upgrade coils, and represents a degree of helium subcooling in a forced circulation loop which is about the maximum feasible without significant cost penalties. For a real design, the high energy margins indicate that the outlet temperatures for all of the $\mathrm{Nb}_{3} \mathrm{Sn}$ coils should be at least 5.3 K , as in the TFCX PF coils. The NbTi PF6 coil has a current-sharing temperature of 4.7 K . An outlet temperature of 4.3 K with reduced energy margin may be a favorable trade for the NbTi coils.

If the PF6 coils were run as a single coil, without modularization, the peak terminal voltage during initiation would be 125 kV for the nominal 8 T option, as shown in Table 10 , and -151 kV for the nominal 10 T option, as shown in Table 11. Even for ICCS conductor, which has an individual ground wrap around each turn, the terminal voltage should be limited to $15-20 \mathrm{kV}$. This means that the 10 T option would require another 1-2 pairs of 50 kA cryogenic current leads and another 1-2 $\mathbf{5 0} \mathrm{kA}$ power supplies. If the voltage were limited to 17 kV , the 8 T design would require 22 power supplies and lead pairs, while the nominal 10 T design would require 24 power supplies and lead pairs, for an increase of $9 \%$. The additional lead pairs would correspond to the equivalent of an additional 1 kW of helium refrigeration at 4.2 K .

The pulsed loss generation from initiation is more severe than either a current-conserving (constant current, third column) or a flux-conserving (constant terminal voltage, fourth column) disruption in the present scenario, as shown in Tables 12 and 13. For the most conservative possible assumption, that no heat at all is removed during a cycle, the safety margin, expressed as the ratio of the energy margin to the pulsed energy deposited during a cycle ending in disruption is a factor of 9 in the NbTi PF6 and a factor of 35 in the $\mathrm{Nb}_{3} \mathrm{Sn}$ coil. Alcator DCT and TFCX attempted to design to safety margins of 10 . The large factor was considered appropriate, since it represented the product of moderately large uncertainties in both the superconductor and plasma behaviour. Both PF6 designs for INTOR have adequate margins against initiation and disruption.

The average stress in the PF coils were calculated, using a homogeneous, anisotropic model, making no assumptions about the particular structural support concept to be used. The results are shown in Tables 14 and 15. The radial stress in the PF6 coil increased by $44 \%$, while the axial stress increased by $53 \%$, indicating a probable increase in the cost of structure for PF6 of about $50 \%$. If the combined membrane stress in the conductor conduits were to be held to 250 MPa to meet fatigue criteria, the stress multiplier would have to be limited to 2.2 , which is fairly low for a typical PF coil. However, since the conductor envelopes are only taking up $66 \%$ of the available winding pack area in this design, a considerable volume of cowound strip or conduit thickening is permissible. There is also a moderate amount of volume on the outside for a steel case and a large amount of available volume on the inside of a column to hold axial support shelves. Therefore, without doing a detailed structural design, the 10 T option appears to be
feasible.
Two cost figures for superconducting coils that appear in the 1984 Cost Specification for the Preconceptual TFCX Design Report [PP84] are the ampere-meter product, which is proportional to the winding cost, and the ampere-meter-peak field product, which is proportional to the cost of a well designed superconductor. The cost of structure is not, strictly speaking, proportional to either, but dimensionally scales more closely with the ampere-meter-field product. The 10 T option increases the ampere-meter total cost figure for the poloidal field system by $3 \%$, as shown in Tables 16 and 17. The ampere-meter-field total cost figure for the poloidal field system is increased by $9 \%$.

## Conclusions

The change from a nominal 8 T to a nominal 10 T system has a second-order effect on both the volt-second capability of the poloidal field system and the costs associated with it. By contrast, there is a first-order increase in the burn time, under the reference scenario. This has to be tempered in two directions. On the one hand, the value of the machine mission may be a slow function of burn time (i.e. doubling the burn time does not double the value of the experiment). On the other hand, the risk associated with losing all of the burn time due to a relatively small change in the plasma impurity level must be substantially reduced with the buffer of an additional 17 V -s. Since the effect on the overall machine cost must be third-order, the 10 T option appears to be favored.

## References

[MO84] D.B. Montgomery, "Superconductor qualification program for TFCX and Alcator DCT magnetic systems", Appl Supercond Conf, San Diego, CA, Sept 1984
[PP84] Princeton Plasma Physics Laboratory, TFCX Group, "Cost Specification: Addendum to the Preconceptual Design Report", Revision 2, June 22, 1984
[SC83] J.H. Schultz, "Stabilization and cooling requirements for the Alcator DCT superconducting magnet system", 10th Symp Eng Fus Research, Philadelphia, PA, Dec 1983
[SC84] J.H. Schultz, "Poloidal field system for TFCX", Appl SupercondConf, San Diego, CA, Sept 1984
[ST82] W.M. Stacey et al, "Critical issues for FED and INTOR", U.S. FED-INTOR Activity and U.S. contribution to the International Tokamak Reactor Phase-2A Workshop USA FED-INTOR/82-1, Oct 1982

Table 1
PF System Winding Pack Dimensions for INTOR:
Nominal 8 T Option

| Coil | R | Z | $\mathrm{R}_{1}$ | $\mathrm{R}_{2}$ | $\mathrm{Z}_{1}$ | $\mathrm{Z}_{2}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | $(\mathrm{~m})$ | $(\mathrm{m})$ | $(\mathrm{m})$ | $(\mathrm{m})$ | $(\mathrm{m})$ |  |
| PF1 | 10.000 | 4.800 | 9.701 | 10.299 | 4.502 | 5.099 |
| PF2 | 6.450 | 5.450 | 6.167 | 6.733 | 5.167 | 5.733 |
| PF3 | $\mathbf{3 . 5 5 0}$ | 5.450 | 3.299 | $\mathbf{3 . 8 0 2}$ | 5.198 | 5.701 |
| PF4 | 2.250 | 4.450 | 2.168 | 2.332 | 4.368 | 4.531 |
| PF5 | 1.350 | 4.600 | 1.074 | 1.627 | 4.324 | 4.877 |
| PF6 | 1.350 | 0.000 | 1.117 | 1.584 | -4.280 | 4.280 |
| PF7 | 1.350 | -4.600 | 1.074 | 1.627 | -4.877 | -4.324 |
| PF8 | 2.250 | -5.850 | 2.016 | 2.484 | -6.084 | -5.615 |
| PF9 | 3.200 | -6.850 | 2.726 | $\mathbf{3 . 6 7 4}$ | $-\mathbf{- 7 . 3 2 5}$ | -6.375 |
| PF10 | 6.000 | -6.850 | 5.547 | 6.453 | $-\mathbf{- 7 . 3 0 3}$ | -6.397 |
| PF11 | 12.350 | -5.500 | 11.809 | 12.891 | -6.041 | -4.959 |

Table 2
PF System Current and Winding Parameters for INTOR:
Nominal 8 T Option

| Coil | $\mathrm{I}_{\text {max }}$ <br> (MAT) | $\mathbf{B}_{\text {max }}$ <br> (T) | $\begin{aligned} & \mathbf{n}_{\text {turna }} \\ & () \end{aligned}$ | $\mathbf{I}_{\text {cond.max }}$ <br> (kA) |
| :---: | :---: | :---: | :---: | :---: |
| PF 1 | 5.35 | 5.820 | 428 | 12.5 |
| PF2 | 4.80 | 3.526 | 384 | 12.5 |
| PF3 | 3.80 | 3.088 | 304 | 12.5 |
| PF4 | 0.40 | 1.843 | 32 | 12.5 |
| PF5 | 4.58 | 4.906 | 368 | 12.5 |
| PF6 | 60.18 | 8.456 | 4800 | 12.5 |
| PF7 | 4.58 | 5.370 | 368 | 12.5 |
| PF8 | 3.30 | 4.659 | 264 | 12.5 |
| PF9 | 13.50 | 6.996 | 1080 | 12.5 |
| PF 10 | 12.30 | 4.932 | 984 | 12.5 |
| PF11 | 17.57 | $\begin{gathered} 6.805 \\ \text { Table 3 } \end{gathered}$ | 1408 | 12.5 |

PF System Current and Winding Parameters for INTOR:
Nominal 10 T Option

| Coil | $\mathbf{I}_{\text {max }}$ <br> (MAT) | $\mathbf{B}_{\text {max }}$ <br> (T) | $\begin{aligned} & \mathbf{n}_{\text {turnn }} \\ & 0 \end{aligned}$ | $\mathbf{I}_{\text {cond.ma }}$ (kA) |
| :---: | :---: | :---: | :---: | :---: |
| PF1 | 5.350 | 3.818 | 428.0 | 12.500 |
| PF2 | 4.800 | 3.525 | 384.0 | 12.500 |
| PF3 | 3.800 | 3.078 | 304.0 | 12.500 |
| PF4 | 0.400 | 1.939 | 32.0 | 12.500 |
| PF5 | 4.580 | 5.705 | 368.0 | 12.446 |
| PF6 | 72.214 | 10.147 | 4800.0 | 15.045 |
| PF7 | 4.580 | 5.718 | 368.0 | 12.446 |
| PF8 | 3.300 | 4.621 | 264.0 | 12.500 |
| PF9 | 13.500 | 6.976 | 1080.0 | 12.500 |
| PF10 | 12.300 | 4.933 | 984.0 | 12.500 |
| PF11 | 17.570 | 6.804 | 1408.0 | 12.479 |

## Table 4

Volt-second Contributions of Each PF Coil:
Nominal 8 T Option

| Coil | VS $_{\text {end.start-up }}$ <br> (V-S) | VS $_{\text {end,flattop }}$ <br> (V-S) |
| :--- | :--- | :--- |
| PF1 | -21.169 | -21.169 |
| PF2 | 9.965 | 14.655 |
| PF3 | 4.471 | 4.471 |
| PF4 | 0.000 | 0.000 |
| PF5 | -0.079 | -0.079 |
| PF6 | -66.907 | -84.606 |
| PF7 | -0.079 | -0.079 |
| PF8 | 0.000 | 0.000 |
| PF9 | 10.438 | 10.438 |
| PF10 | 21.173 | 21.173 |
| PF11 | -59.304 | -59.304 |
| Total | -101.491 | -114.501 |
|  | Table 5 |  |

Volt-second Contributions of Each PF Coil:
Nominal 10 T Option

| Coil | $\mathbf{V S}_{\text {end.ntart-ul }}$ (V-S) | VS $_{\text {end.flatton }}$ $(V-S)$ |
| :---: | :---: | :---: |
| PF1 | -21.169 | -21.169 |
| PF2 | 9.965 | 14.655 |
| PF3 | 4.471 | 4.471 |
| PF4 | 0.000 | 0.000 |
| PF5 | -0.079 | -0.079 |
| PF6 | -66.907 | -101.528 |
| PF7 | -0.079 | -0.079 |
| PF8 | 0.000 | 0.000 |
| PF9 | 10.438 | 10.488 |
| PF10 | 21.173 | 21.173 |
| PF11 | -59.304 | -59.304 |
| Total | -101.491 | -131.422 |

Table 6
Minimum Fractions of Critical Current Density in the INTOR PF Coils: Nominal 8 T Option

| Coil | $\mathbf{B}_{\text {max }}$ <br> (T) | $\mathbf{T}_{\text {max }}$ <br> (K) | $\begin{aligned} & \mathbf{J}_{\text {nuncu }} \\ & \left(\mathbf{A} / \mathbf{m m}^{2}\right) \end{aligned}$ | $\mathbf{J}_{\text {c. } \text { min }}$ $\left(\mathrm{A} / \mathrm{mm}^{2}\right)$ | $\mathbf{f}_{\text {crit.max }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| PF1 | 3.820 | 4.000 | 223.722 | 1580.859 | 0.142 |
| PF2 | 3.526 | 4.000 | 223.722 | 1668.006 | 0.134 |
| PF3 | 3.088 | 4.000 | 223.722 | 1830.076 | 0.122 |
| PF4 | 1.843 | 4.000 | 223.722 | 2500.223 | 0.089 |
| PF5 | 4.906 | 4.000 | 222.750 | 1326.477 | 0.168 |
| PF6 | 8.456 | 4.000 | 224.388 | 505.275 | 0.444 |
| PF7 | 5.370 | 4.000 | 222.750 | 1219.115 | 0.183 |
| PF8 | 4.659 | 4.000 | 223.722 | 1383.655 | 0.162 |
| PF9 | 6.996 | 4.000 | 223.722 | 843.049 | 0.265 |
| PF10 | 4.932 | 4.000 | 223.722 | 1320.456 | 0.169 |
| PF11 | 6.805 | 4.000 | 223.341 | 887.200 | 0.252 |

Table 7
Minimum Fractions of Critical Current Density in the INTOR PF Coils Nominal 10 T Option

| Coil | $\mathbf{B}_{\text {mar }}$ <br> (T) | $\mathbf{T}_{\text {max }}$ <br> (K) | $\mathbf{J}_{\text {Bumu }}$ $\left(\mathrm{A} / \mathrm{mm}^{2}\right)$ | $\mathbf{J}_{c \cdot \min }$ <br> ( $\mathrm{A} / \mathrm{mm}^{2}$ ) | $\mathbf{f}_{\text {crit.max }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| PF1 | 3.818 | 4.000 | 185.646 | 1740.984 | 0.107 |
| PF2 | 3.525 | 4.000 | 185.646 | 1848.441 | 0.100 |
| PFs | 3.078 | 4.000 | 185.646 | 2028.151 | 0.092 |
| PF4 | 1.939 | 4.000 | 185.646 | 2585.395 | 0.072 |
| PF5 | 5.705 | 4.000 | 184.839 | 1204.038 | 0.154 |
| PF6 | 10.147 | 4.000 | 223.438 | 588.350 | 0.383 |
| PF7 | 5.718 | 4.000 | 184.839 | 1201.199 | 0.154 |
| PF8 | 4.621 | 4.000 | 185.646 | 1482.371 | 0.125 |
| PF9 | 6.976 | 4.000 | 185.646 | 958.047 | 0.194 |
| PF10 | 4.933 | 4.000 | 185.646 | 1394.535 | 0.133 |
| PF11 | 6.804 | 4.000 | 185.329 | 987.113 | 0.188 |

Table 8
Minimum Available Enthalpies of PF Conductors:
Nominal 8 T Option
Coil $\quad \mathbf{T}_{c . \min } \quad \mathbf{T}_{c \cdot, \text { min }} \quad \Delta \mathbf{H}_{\text {hc. min }}$
(Const D)
(K) (K) (mJ/cc)

| PF1 | 7.431 | 6.945 | 2257.471 |
| :---: | :---: | :---: | :---: |
| PF2 | 7.563 | 7.085 | 2376.118 |
| PFS | 7.760 | 7.301 | 2559.706 |
| PF4 | 8.378 | 7.987 | 3150.749 |
| PF5 | 6.942 | 6.448 | 1838.909 |
| PF6 | 5.327 | 4.737 | 536.171 |
| PF7 | 6.752 | 6.249 | 1672.869 |
| PF8 | 7.054 | 6.560 | 1932.479 |
| PF9 | 6.102 | 5.544 | 1091.055 |
| PF10 | 6.981 | 6.434 | 1827.204 |
| PF11 | 6.178 | 5.630 | 1161.502 |

Table 9
Minimum Available Enthalpies of PF Conductors:
Nominal 10 T Option

| Coil | $\mathbf{T}_{\text {c.min }}$ | $\mathbf{T c m a n}_{\text {min }}$ | $\Delta \mathbf{H}_{h \prime, \text { min }}$ <br> (Const D) |
| :---: | :---: | :---: | :---: |
|  | (K) | (K) | (mJ/ce) |
| PF1 | 15.137 | 13.949 | 8549.484 |
| PF2 | 15.356 | 14.216 | 8797.061 |
| PF3 | 15.691 | 14.621 | 9174.495 |
| PF4 | 16.546 | 15.645 | 10129.706 |
| PF5 | 13.721 | 12.229 | 6959.500 |
| PF6 | 10.890 | 8.251 | 3380.760 |
| PF7 | 13.712 | 12.217 | 6948.845 |
| PF8 | 14.535 | 13.215 | 7869.181 |
| PF9 | 12.768 | 11.069 | 5898.692 |
| PF10 | 14.300 | 12.929 | 7604.440 |
| PF11 | 12.897 | 11.227 | 6042.151 |

Table 10
Peak Currents and Voltages on PF Coils:
Nominal 8 T Option

| Coil | $\mathbf{I}_{\text {lead.max }}$ <br> (kA) | $\mathbf{I}_{\text {lead.min }}$ (kA) | $\begin{aligned} & \mathbf{V}_{\text {term.max }} \\ & (\mathbf{k V}) \end{aligned}$ | $\begin{aligned} & \mathbf{V}_{\text {term.min }} \\ & (\mathrm{kV}) \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
| PF1 | 0.000 | -50.000 | 4.675 | -5.792 |
| PF2 | 50.000 | 0.000 | 29.367 | -1.673 |
| PF3 | 50.000 | 0.000 | 3.405 | -0.482 |
| PF4 | 50.000 | 0.000 | 0.032 | -0.021 |
| PF5 | 49.783 | -2.987 | 0.338 | -0.258 |
| PF6 | 50.149 | -50.149 | 7.091 | -125.524 |
| PF7 | 49.783 | -2.987 | 0.378 | -0.233 |
| PF8 | 50.000 | 0.000 | 0.644 | -0.449 |
| PF9 | 50.000 | 0.000 | 4.282 | -5.613 |
| PF10 | 50.000 | 0.000 | 11.384 | -6.623 |
| PF11 | 0.000 | -49.915 | 48.536 | -70.782 |
|  |  | Table 11 |  |  |

Peak Currents and Voltages on PF Coils:
Nominal 10 T Option

| Coil | $\mathbf{I}_{\text {l/ad.max }}$ <br> (kA) | $\mathbf{I}_{\text {(Gad.min }}$ <br> (kA) | $\begin{aligned} & \mathbf{V}_{t \in r m . \max } \\ & (\mathbf{k} \mathbf{V}) \end{aligned}$ | $\begin{aligned} & \mathbf{V}_{\text {tcrm.min }} \\ & (\mathrm{kV}) \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
| PF1 | 0.000 | -50.000 | 4.731 | -5.833 |
| PF2 | 50.000 | 0.000 | 28.578 | -1.708 |
| PF3 | 50.000 | 0.000 | 3.003 | -0.458 |
| PF4 | 50.000 | 0.000 | 0.016 | -0.021 |
| PF5 | 49.783 | -2.987 | 0.244 | -0.254 |
| PF6 | 60.179 | -60.179 | 8.658 | -151.650 |
| PF7 | 49.783 | -2.987 | 0.871 | -0.233 |
| PF8 | 50.000 | 0.000 | 0.637 | -0.440 |
| PF9 | 50.000 | 0.000 | 4.087 | -5.568 |
| PF 10 | 50.000 | 0.000 | 9.994 | -6.539 |
| PF11 | 0.000 | -49.915 | 48.693 | -73.397 |

Table 12
Worst Case Local Energy Depositions in Winding:
Nominal 8 T Option

| Coil | Cycle Energy <br> $\left(\mathrm{mJ} / \mathrm{cm}^{3}\right)$ | Initiation <br> $\left(\mathrm{mJ} / \mathrm{cm}^{3}\right)$ | Disruption <br> $\left(\mathrm{mJ} / \mathrm{cm}^{3}\right)$ | FCT Disruption <br> $\left(\mathrm{mJ} / \mathrm{cm}^{3}\right)$ |
| :--- | :--- | :--- | :--- | :--- |
| PF1 | 17.915 | 1.308 | 0.157 | 0.621 |
| PF2 | 21.410 | 7.680 | 0.362 | 1.016 |
| PFs | 15.013 | 1.412 | 0.542 | 0.789 |
| PF4 | 11.593 | 1.241 | 0.128 | 0.955 |
| PF5 | 34.686 | 12.306 | 0.655 | 0.735 |
| PF6 | 62.395 | $\mathbf{3 3 . 0 7 2}$ | 2.010 | 1.857 |
| PF7 | $\mathbf{3 6 . 6 0 2}$ | 13.626 | 0.577 | 0.595 |
| PF8 | 17.485 | 1.117 | 0.300 | 0.191 |
| PF9 | 27.894 | 0.513 | 0.368 | 0.279 |
| PF10 | 21.494 | 1.225 | 0.249 | 0.543 |
| PF11 | 27.730 | 1.492 | 0.077 | 0.281 |

Table 18
Worst Case Local Energy Depositions in Winding:
Nominal 10 T Option

| Coil | Cycle Energy <br> $\left(\mathrm{mJ} / \mathrm{cm}^{3}\right)$ | Initiation <br> $\left(\mathrm{mJ} / \mathrm{cm}^{3}\right)$ | Disruption <br> $\left(\mathrm{mJ} / \mathrm{cm}^{3}\right)$ | FCT Disruption <br> $\left(\mathrm{mJ} / \mathrm{cm}^{3}\right)$ |
| :--- | :--- | :--- | :--- | :--- |
| PF1 | 21.979 | 1.463 | 0.217 | 0.729 |
| PF2 | 25.445 | 7.584 | 0.389 | 1.252 |
| PF3 | 17.186 | 15.065 | 0.642 | 0.901 |
| PF4 | 13.478 | 1.401 | 0.145 | 1.103 |
| PF5 | 39.367 | 14.496 | 0.732 | 0.854 |
| PF6 | 92.031 | 45.142 | 2.690 | 2.428 |
| PF7 | 40.626 | 15.666 | 0.631 | 0.750 |
| PF8 | 19.791 | 1.451 | 0.498 | 0.1723 |
| PF9 | $\mathbf{3 1 . 6 8 8}$ | 0.696 | 0.406 | 0.288 |
| PF10 | 21.110 | 1.221 | 0.384 | 0.516 |
| PF11 | 27.900 | 1.443 | 0.129 | 0.335 |

Table 14
Average Stresses in PF Coils, Homogeneous, Anisotropic Model: Nominal 8 T Option

| Coil | $\begin{aligned} & \sigma_{a v, T} \\ & (\mathbf{M P a}) \end{aligned}$ | $\begin{aligned} & \sigma_{a v . Z} \\ & (\mathrm{MPa}) \end{aligned}$ |
| :---: | :---: | :---: |
| PF1 | 108.835 | -0.898 |
| PF2 | 29.851 | 0.577 |
| PF3 | 28.573 | 0.966 |
| PF4 | 19.582 | 1.414 |
| PF5 | 26.748 | 6.664 |
| PF6 | 70.849 | 11.19 |
| PF7 | 43.369 | -9.024 |
| PF8 | 89.085 | -2.915 |
| PF9 | 115.654 | -1.280 |
| PF10 | 0.151 | -0.743 |
| PF11 | 174.191 | 0.708 |
|  | Table 1 |  |

Average Stresses in PF Coils, Homogeneous, Anisotropic Model:
Nominal 10 T Option

| Coil | $\sigma_{a v . T}$ <br> $(\mathrm{MPa})$ | $\sigma_{a v . Z}$ <br> $(\mathrm{MPa})$ |
| :--- | :--- | :--- |
| PF1 | 108.353 | $-\mathbf{- 0 . 9 2 7}$ |
| PF2 | 29.851 | $\mathbf{0 . 6 6 7}$ |
| PF3 | 27.770 | $\mathbf{1 . 2 0 6}$ |
| PF4 | 19.267 | 1.581 |
| PF5 | 22.221 | $\mathbf{7 . 9 2 8}$ |
| PF6 | 102.022 | 13.831 |
| PF7 | $\mathbf{3 8 . 5 4 2}$ | -10.271 |
| PF8 | $\mathbf{8 7 . 5 5 8}$ | $\mathbf{- 3 . 1 2 3}$ |
| PF9 | 114.738 | $\mathbf{- 1 . 6 0 1}$ |
| PF10 | 0.151 | $-\mathbf{- 0 . 8 5 9}$ |
| PF11 | 173.985 | 0.730 |

Table 16
Cost Figures for Poloidal Field System:
Nominal 8 T Option

| Coil | Amp-m <br> (MA-m) | Amp-m-T <br> (MA-m-T) |
| :--- | :--- | :--- |
| PF1 | $\mathbf{3 3 6 . 1 5 0}$ | $\mathbf{1 2 8 4 . 1 5 4}$ |
| PF2 | 194.527 | 685.985 |
| PFS | $\mathbf{8 4 . 7 6 0}$ | 261.759 |
| PF4 | 5.655 | 10.422 |
| PF5 | $\mathbf{3 8 . 8 4 9}$ | 190.587 |
| PF6 | 510.453 | 4316.300 |
| PF7 | $\mathbf{3 8 . 8 4 9}$ | 208.618 |
| PF8 | $\mathbf{4 6 . 6 5 3}$ | 217.340 |
| PF9 | 271.484 | 1898.859 |
| PF10 | 463.699 | 2286.913 |
| PF11 | 1363.385 | 9277.571 |
| Total | $\mathbf{3 3 5 4 . 4 1 5}$ | 20638.510 |

Table 17
Cost Figures for Poloidal Field System:
Nominal 10 T Option

| Coil | Amp-m <br> (MA-m) | Amp-m-T <br> (MA-m-T) |
| :--- | :--- | :--- |
| PF1 | $\mathbf{3 3 6 . 1 5 0}$ | $\mathbf{1 2 8 3 . 3 2 6}$ |
| PF2 | 194.527 | $\mathbf{6 8 5 . 7 5 4}$ |
| PF3 | $\mathbf{8 4 . 7 6 0}$ | 260.917 |
| PF4 | 5.655 | 10.966 |
| PF5 | $\mathbf{3 8 . 8 4 9}$ | 221.636 |
| PF6 | 612.543 | 6215.474 |
| PF7 | $\mathbf{3 8 . 8 4 9}$ | 222.128 |
| PF8 | 46.653 | 215.566 |
| PF9 | 271.434 | 1893.450 |
| PF10 | 463.699 | 2287.540 |
| PF11 | 1363.385 | 9276.317 |
| Total | $\mathbf{3 4 5 6 . 5 0 5}$ | 22573.076 |

