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A Study of Structural Responses to

Plasma Disruptions in Toroidal Shells

Abstract

An efficient set of 1-D computer routines has been developed to analyze the induced
currents, presiure loading, and structural response in thin toroidal shells due to
externally imposed current and magnetic field transients. The method is used to
study the behavior of the Tokamak first wall during plasma disruption. A base
case is analyzed and then variations are made 10 the key parameters to demonstrate
_important trents. For the base case, peak poloidal strains of 5 X 10— at the inboard
edge and bending stresses of .1 MPa at the top and bottom edges are observed,

The results show significant differences in both the magnitude and spatial variation of
loading and structural response for the different cases studied, indicating that certain
designs are mcre resistant 1o disruptions than others. High aspect ratio designs tend
1o have low induced strains whereas compact, low aspect ratio designs tend to have
large strains and large poloidal asymmetry. Plasma shift is seen to have an influence
on both the level of strain and its spatial dependence. The peak‘ bending stress
observed with @ 25% plasma shift was 10 MPa with peak strain of 6 X 10~* in the
toroidal, instead of the poloidal direction. '
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Nomenclatyure

minor radius |

magnetic vector potential

poloidal magnetic field (Tesla) .

toroidal magnetic field (Tesla)

equilibrium vertical magnetic field

speed of sound in a material

flexural rigidity

modulus of elasticity or electric field
complete elliptic integral of the second kind
shell thickhess :
current (amps)

current density (amps/m?)

surface current density (amps/m)

or bending rigidity

complete elliptic integral of the first kind
self inductance

general mutual inductance

mutual inductance with the source current
toroidal moment.(Nm/m)

poloidal moment (Nm/m)

twist (Nm/m)

toroidal stress resultant (N/m)

poloidal stress resultant (N/m)

radial pressure in toroidal coordinate system
radial pressure in cylindrical coordinates
poloidal pressure

quality factor at a

poloidal shear (N/m)

distance from axis of symettry

major radius or resistance

radial displacement

poloidal displacement

voltage

reactor total power output




Nomenclature, continued

{Bt) average toroidal beta
- {(Be) average poloidal beta

€o toroidal strain

€4 poloidal strain

€46 shear strain

n resistivty (ohm-m)

6 toroidal angle coordinate

L rotational transform

Mo permeability of free space

v Poisson’s ratio

p material density

ob bending stress

b poloidal angle coordinate
used in eddy current analysis

&5 poloidal angle coordinate
used in structural analysis

X8 theta curvature

Xé phi curvature

w frequency
9 dimensionless frequency
(

y d( )/d¢




1. Introduction

Recent fusion reactor studies have concentrated on increasingly detailed
designs of the first wall/blanket/shield region. One arca which has received
particular attention is an engineering analysis of the effects of major plasma
disruptions in tokamaks. Currently there is a general agreement that disruptions
are one of the limiting influences on first wall lifetime.

Disruptioris generate two very different effects in the first wall. The most
widely studied is the effect of particle and radiation fluxes, including thermal
strains, sputtering, and phase change. One good example of design against these
problems is FED. In order to protect the inboard surface of the first wall, the FED
design incorporates a large number of graphite armor tiles designed to absorb the
plasma kinetic energy.(t)

Other potentially serious effects arise from the rapid termination of plasma
current during disruptions. Large electromagnetic forces may be generated by
induced eddy currents in the first wall and blanket region. If the circulating
current paths are eliminated, then large voltages may be generated, resulting in the
possibility of ercing. Relatively less work has been devoted to these concerns as
opposed to thermal and particle effects, however there are some notable examples
in the literatute. In the STARFIRE design, net forces were calculated on the
limiter using the EDDYNET code.®) The FED/INTOR design accounts for the
pressure loading on the first wall as well as in the poloidal limiter and considers
the possibility of arcing between sectors.3%) In either of these cases, the resulting
structural response due to the loading was not considered.

The present work attempts to systematically document the general behavior
of the first wall, in terms of induced currents and forces, using a simple approach
with 1-D curtents and 2-D fields. The plasma current is approximated by a
single filament, located inside the torus, with an exponential decay after ¢t = 0.
This modeling is crude, but the exact details of the current profile evolution are
not well known. The calculation includes a quantitative treatment of structural

response, incliding displacements, moments, shears, and strains. This part of the




problem is fully 1-D, with toroidal axisymmetry and the poloidal angle being
the independent variable. Most of the spatial details of the problem are ignored
in order to simplify the analysis. Consequently, gross design variations can be
quickly analyzed and contrasted. This includes variations in aspect ratio, plasma
current, vertical field, and several other avéraged design parameters. Other effects
which were studied include an outward plasma shift and a second conducting shell
outside the firsi wall to model the multiplier, breeder, and other structure behind
the first wall. '

1.1. Overview of Pressures
The first siep in the analysis is the determination of induced currents and

pressures arisin{g from J x B forces. The eddy current problem has 1-D currents
directed along ¢ and 2-D magnetic fields which contain both R- and z-components.

\,
@e %

Fig. 1 Definition of Coordinates
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(see fig 1.) The structure being analyzed includes a conducting toroidal shell
whose volume contains current-carrying plasma. This current is called the

source or driving current. When the plasma currents experience a transient, there

are currents ir/duced in the shell which attempt to maintain the field pattern

unchanged. These currents are called the induced or structural currents. If the

magnetic diffusion time of the torus is long compared to the transient time constant,
then the structiiral currents are large and shield the region outside the torus from
the transient. In this case the structural currents die away slowly due to the
low resistance of the structure. This is the case for the examples studied in this
document.

For a sourte current at the center of the torus, the induced currents are peaked
on the part of the shell closest to the major axis. The main reason for this is the
lower resistance of the inner edge due to a shorter path length around the torus.
In addition, the field due to a current loop is larger inside the loop, therefore the
linked fluxes are larger on the inside of the shell (see figs 2 and 3 and Appendix
A). The result is larger induced currents. Of course, if the source current is shifted
outward with respect to the shell axis, then this would not necessarily hold true.
A shifted current example is analyzed later for comparison. Even disregarding
this non-unifoim field effect, at early times in the transient the flux through the
central hole is well shielded by the inner edge, resulting in another reason for the
existence of peaked induced currents.

The forces generated by a disruption can be generalized into three main
components:

1. Minor Radils Compression
The induced currents always flow in the same direction as the source current.
This results in a minor radius compressive force due to both shell current
interactior; with the shell current field (“self-interactions”) and shell current
interactior| with the source current field (“‘source-interactions™).

2. Hoop Forcd Expansion
The hoop force attempts to expand the shell towards a larger major radius.
On the inboard side it is aligned with the major radius component of the

1
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compressive force. On the outboard side the two forces tend to cancel. This is

a principzl source of the poloidal asymmetry observed. The source field also

has a hoop force effect on the shell current. Early in the disruption when the

currents are peaked on the inside, the source current draws the shell outward

(and the

3. Vertical Fi

source current is itself drawn inward).

(‘Id Interaction

The vertital field interaction with the shell current yields a force directed

toward the torus major axis, opposite to the hoop force. Depending on the

geometry, field strength, and time durin g the transient, the three forces become

more or

less dominant. The result is that in some cases there is substantial

poloidal variation of the forces but in other cases there is little variation. The

magnitude of the vertical field is the primary cause for differences in the time

evolution lof the loading for different geometries. In some cases the forces are

radially intward throughout most of the disruption time and in other cases the

inboard side forces are radially outward. The details will be made clearer in

the comparative study in Section 5.

Since the vertical field interaction scales as I and the other two forces as 12,

at low values
is true at the
that near the

ﬁof current the vertical field interaction is the dominant force. This
beginning and end of the structural current transient. This implies
‘end of the current transient when the first wall is most likely to

exhibit meltin}g at the surface, the forces tend to be directed toward the major

axis. In some designs, the time at which the forces turn inward are very late in

the disruptiong, perhaps even after the plasma current has completely vanished.

1.2. Overview of Stresses

After the
Although it it
wall has a ge:
the most inter
of “singular |

linear membr:

pressure loading is known, the response of the shell can be solved.
substantially more complicated, the structural response of the first
1eral behavior which can also be summarized qualitatively. One of
esting aspects of the stress problem in toroidal shells is the existence
boints”. These points are mathematically singular only when the

ine theory is used. The internal forces (the stress resultants) produce
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displacements vhich result in a discontinuous structure. This occurs even for the

case of a unifor

The source
continuous stru
acting on the ¢
a net componel
acts in the dire
forces point in 1
constrain vertice
Allowing non-lis
or allowing ben
adopted here is
generated mome

Another fea

major and mino
tends to displace
they tend to ad
~ radius dependen

4

m pressure loading.
of incompatibility between the displacements and the original
cture can be visualized by considering the two stress resultants |
quilibrium, Ny and Ny. Due to the toroidal symmetry, Np has
it only in the r-direction, or towards the major axis. Ny always
tion tangent to the shell. At the top and bottom, both of these
he same direction. Consequently there is no way for the shell to
| displacement. The result is a discontinuity at these two points.
1ear response (i.e. solving the equations at the deformed points)
ding moments and shears will cure this problem. The method

a complete bending theory solution accounting correctly for the
nts and shears.

ure of the structural problem results from the competition between
r radii effects. In the pressure loaded problem the inboard side
less since the two effects balance, whereas on the outboard side
1. Strains are moderated there somewhat due to the 1/r major
e

&
1

reg = vcos @ + wsin @

)

In the eddy curient loaded problem, the pressurés are inward toward the minor

axis and displacements are greater on the inboard side.

The pressurized torus example was used to verify the structural part of the

calculation. The commercial Finite Element code PAFEC was used with 3-noded

axisymmetric thin shell elements®). The results are not presented here, but
in general the agreement was within ~5-10%. In all likelihood, the PAFEC
calculation was ltss accurate since so many fewer elements were used. Figs. 4

and 5 display the; deformed shell due to uniform pressure loading of 1 Pa. High

moments correspond to areas of high curvature. In the figures, the major axis is

located off the pl

drawing a torus.

bt, beneath _the x-axis. This is rotated 90° from the usual way of
The quantities in the plot are scaled so that they appear readable.
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For example, { displacement off of the undisturbed shell of 1 m in Fig. 4 actually
represents 4.8 X 108 m,

15
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2. Descripfiion of Computational Method

There are jseveral steps required to compute currents, pressures, and finally
strains. Broadlyi, they can be grouped into two problems: the eddy current problem
(including calcdlation of ] X B forces) and the structural problem.

2.1. The Eddiy Current Problem

The eddy current problem is solved using an electric circuit analog. The
structure is brfpken into a large (typically ~100) number of filamentary loops
concentric witli the source current. Fach loop has a resistance, R, and self-
inductance, L, associated with it. (See p. 6 for nomenclature.)

__ n2xr
k= halAd¢ : (2)
L="oa¥ _ 115 (3)
2r b )

b=/halA¢/x . (4)

In addition, each loop couples with the source current and each of the other
loops through a mutual inductance. This mutual inductance is computed using
the vector potential Ag. The vector potential and the fields, B, and B,, used to
compute forces are given analytically in terms of complete elliptic integrals E(k)
and K(k). The expressions are found in Appendix A. The relationship between

the distributec| quantity A4 and the discrete mutual inductance is derived from

v=[Ed (5)
Substituting ﬂie expressions
: dl L
V=M— (6)

: dA
and fE- dl= 27r'r-a—t- (7)

17




we arrive at
M=21rA (8)

where A is the vector potential per unit source current.

One of th(‘} great simplifications involved in this 1-D model is the absence of
“mutual resistahces”. “In a 2-D model where currents are broken into a mesh of
loops, borderiné loops must share line elements. This feature is absent in the 1-D
analysis where each loop has a resistive voltage drop which only depends upon its

own current.

These equaftions are approximations that treat the loops as having circular cross
sections with thie same cross sectional area as the shell element they model. For
the approximation to be valid, there should be enough loops such that k/(aA¢)
is not “too smell”. In order to avoid a rigorous treatment of this problem, we
make the observation that the order of accuracy of the problem is limited but can
.be improved byii increasing the number of loops chosen. The maximum number
of loops is limiI\ed by storage and execution time which scale as N2. The worst
problems occur when two shells are placed close together. Small scale perturbations
(bumpiness) canl dominate the response in this case.

The solution of the equations as a function of time is accomplished with a
simple explicit c[iﬂ’erencing scheme. Vector notation (underlining in this case) is
introduced whergin the vectors represent columns of values such that each loop
contributes one %:lement in the vector. The mutual inductance matrix, M, relates

each loop to every other loop, with self-inductances appearing on the diagonal.
The matrix circuit equation

dl dl, ‘
M-Z +RI+M,=2 =0 (9)
is rewritten in two parts
‘ A=M-14+M,, (10)
My _9A
7rb2I T dt . (11)

The factor 27r his been absorbed into M,

18




The differénce equations are:

dA; Aip1 — A
d At - (11)
Aiyi = A — A= (12)
Ii+1 = M—l ) (Ai+1 — Io(t)Mo) . ' (13)

where the subscript i is a time step identifier. After the currents are known at
each time stepi, the fields due to these currents are computed using the elliptic
integral represéntaﬁons given in Appendix A. The pressure loading is a simple
cross product |

p=KXxB (14)
K = h] = (I/aA9)8 (15)
Pr = preos¢ + pasing (16)
Py = p;cos$ — ppsin ¢ (7)

The entire solution for 1000 time steps and 100 loops typically takes less
than 30 seconhs on a VAX 11/780. Including plotting of the results, interactive
_execution and§ data analysis requires times of the order of minutes.

2.2. The Structural Problem

The structural part of the problem takes the pressures as input and then
at any given time step computes the quasi-static structural response in terms of
the displacemknts, strains, shears, moments, etc. The elimination of the inertial
terms in the équilibrium equations is not strictly valid. A full time-dependent
problem wouid be easy to implement, but would require orders of magnitude

19




more computer} time. The quasi-static assumption is probably conservative, since
at early times when the forces and time derivatives are largest, the inertia tends to
decrease the displacements. A dimensionless frequency parameter, 2, is defined
by

n=22=" (12)

where c, the speed of sound in the material, is given by

c=VE/p (13)

In steel, ¢ is ~ 5 km/s. Hence, for scale lengths on the order of 5 m (and
accounting for tbe factor 2r), the transition to a time-dependent problem should
take place at characteristic times (1/f) of ~ 10 msec. This is very close to the 25
msec used in th¢ following analysis. The derivation of the static equations is given

in Appendix B, and follows closely the work of Flugge® and Timoshenko(".

Note that the limitation on the pressure data due to the N? nature of the eddy
current problem|is not a factor here since the structural problem has storage and
execution time scaling as N (where N is the number of elements). The pressure
data is therefore intemolated using cubic B-spline interpolating functions. As many
as 1000 points are typically used in the structural problem. This greatly improves

~ the accuracy of 1Ihe structural problem which is limited by constant element size.

A finite elelhent method (FEM) is employed in order to convert the set of
coupled partial differential equations into a matrix of algebraic equations which

requires only one¢ large matrix inversion for their solution. For a one-dimensional
problem broken into N elements with M unknowns to be solved at each point, the
matrix is NxNxMxM. With pentic spline basis functions, each equation involves
only five points, itherefore the matrix rows contain only 5 blocks each with full
MxM blocks. M&st of the matrix is filled with zeros. By using a special purpose
block penta-diag(ibnal banded matrix system solver, a tremendous savings in time
and storage is m:}ude. Whereas the execution time of a full matrix inverter scales

as N2, the penta-biagonal system scales as N.

- The B-sp]ine]basis functions B;(¢) used in the FEM analysis are described in
.detail in Appendix C and plotted in Fig 6. As far as the equations are concerned,

20




B-Spline Basis Function and Derivatives

FIGURE 6.

B-splines are ‘%imply 5th order polynomials. Mathamatically, they must result in

the same solution as any 5th order polynomial. The primary reason for using them

is their simplijpity and ease of application, resulting mainly from the absence of
the explicit occurrence of matching conditions at the element boundaries.

5th ordeﬂ B-splines were not the original choice of basis functions. Cubic

B-splines wer¢ attempted, but the discontinuity in their third derivative resulted

in the solutiofh being dependent on the number of ncdes, particularly for the
moments whic‘th enter the equations as the highest derivative of the displacements.

‘ting the third derivative as the average value at the discontinuity,

By approxime
accurate displicements were obtained, but moments and shears were not consistant.

Inspection of }‘the‘structural equations reveals that even the 4th derivative enters
into the moment equations.

The four unknown quantities are approximated in terms of the basis functions
(using the suramation convention) as follows:

21




u(¢) = D iBi(¢) = i Bi(9) (18)

v(¢) = B:Bi(¢) (19)

Qu(9) = uB(¢) (20)
My(¢) = 6;Bi(¢) (21)

The sums contain only five terms since B; is zero except for

(¢i —344) < ¢ < (¢ +3A9) (22)

At each point for each of the unknowns the splines B; are evaluated and the
contributions of the neighbors are added in

u(¢hi) = u; = oy g + 26041 + 660; 4 2601 + 3 (23)

Similarly for the derivatives,

’M'((ﬁ,‘) == u: = 5a;42 + 5041 — 50a;; — 502 (24)

u(¢;) = u = 200;—3 + 4001 — 1200 + 40ti+1 + 20049 (25)

These form are substituted into the reduced set of structural equations, which
results in four equations (one for each j) at each point zj '

Aii(zk)os + Bij(zi)Bi + Cij(zr)vi + Dij(zi)b; = pj (26)

where p, contains the terms with the externally applied pressure and the i sums
range only from k — 2 < ¢ < k + 2 since the splines are zero elsewhere. A,
B, C, and D contain all of the information from evaluating the coefficients of
the structural equations at each point. We can also write a more general form,

2




redefining A abd replacing the four equations with
Ajjiag = py | : (27)

The / index renges through the 4 equations. The entire system of equations can

now be expressed as one matrix equation
Aijkios = Pik (28)

where o is the generalized N by 4 spline coefficient matrix, and i and k are point
indices and j Emd 1 are equation indices. Aj;jx; is a block penta-diagonal matrix.
It has 5 full 4§<4 blocks in each row which contain the equation information at a
given point ankl its four nearest neighbors.
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3. Base Case

3.1. Descriptiori of Base Case

There is a large number of examples which could be studied. The quantities
in a reactor design which affect the calculation are: a, R, I(t), By, », h, E, and v.
Each unique ctioice of these variables results in a different loading and structural
response. In order to limit the number of cases studied and also to include reactor-
relevant examples, a base case design was chosen using data from the STARFIRE
reactor design®. The STARFIRE structure is far too complex to model in detail
using only this 1-D model. For the purposes of this calculation, the details of the
first wall and tlanket region are homogenized such that the structure becomes a
simple circular cross section, constant thickness, constant resistivity shell. Some of
the numbers are included in Table 1 (section 5).

In addition to these, the material properties and wall thickness must be
" lumped into sirigle numbers, STARFIRE employs a two-layer first wall of 1.5 mm
austentitic stainless steel coated with 1.0 mm beryllium. The steel is responsible for
the majority of the structural stiffnes, whereas the beryllium provides the majority
of the electrical conductivity. Most of the forces are generated in the Be coating
and supported structurally by the steel. We will consider the average properties
of the wall, although it is certainly possible that the coating could detach from the
steel during disruption, in which case the forces would not transfer to the steel and
consequences would be much more severe. The following parameters are obtained
by averaging the properties of the two materials, weighted by their thickness:

n = 5.54 ufl — cm

‘h = 1.5mm
E = 190 GPa
v=20.3

Throughout the comparative study these quantities remain fixed.

In STARFIRE, conducting paths.behind the first wall account for the equiv-
alent of ~ 2 ¢m of stainless steel. In the comparative study, this outer shell was
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not included. lbstead, a special case was studied comparing the base case with and

without a secoriid conducting shell, also called an electromagnetic shield.

3.2. Base Case

Results

Each of the cases studied in this report was modeled with 48 element loops,

except for the
25 msec. In th
and 400 msec {
In the ETF/IN
plasma disrupti
are thought to
deposition and -
during which tt
adopts the INT
important parar

two-shell case. An exponential plasma decay time was fixed at
e STARFIRE design, this time constant was varied between zero
or the analysis of electromagnetic effects (section 10.7 of Ref. 2).
TOR study, 25 msec was used. The actual time evolution of a
on is actually more complicated than a simple exponential. There
be different time constants associated with the thermal energy
the current decay. For the current decay, there is probably a phase
le currents redistribute before they actually disappear. This study
DR value with the understanding that the current decay time is an

neter which is relatively unknown.

Referring to the time histories (Figs. 7 and 8), it can be seen that the structural
response time iy approximately 100 msec. This is sufficiently longer than the 25
msec transient time constant such that the profiles can be considered to contain two
regimes: the ramp up to peak currents at ~ 30 msec and the structural decay. The
largest pressures

of the details of

and strains occur after the ramp-up and are relatively independent
the magnetic diffusion and ramp-down.

The peak cﬁrrent varies between 120 - 140 kamps from outboard to inboard
loops. The tota
of 10 MA plasi
inductance of the shell, since there hasn’t been time enough for resistive decay to

current transferred is therefore approximately 6.25 MAmps out
na current. This is entirely due to the ratio of mutual to self

act.

Referring n{bw to the spatial profile of the induced current (Fig. 9), it can be
seen that the pohoidal asymmetry is small and decreases with time. Initially only
current in the inboard part of the torus maintains the central flux. After the field
diffuses into the }toruvs, the current flattens,
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The préss&res show a much greater poloidal asymmetry than the currents
(Figs. 10-11). This is due to the I? dependence of forces as well as the 1/r field
dependences. An interesting feature is the change in shape as a function of time.
At first, all of fhe pressures are radially inward, peaked near the major axis. Later,
as the vertical field interaction takes over, the inboard pressure passes through zero

and at large tirhes is radially outward.

The circun;hferential (phi-directed) pressures are down approximately a factor of
10 from the racjlial pressures. Some of the unexpected behavior in the displacement

and bending pﬂots can be explained by these. Early in the disruption there is a

force toward the top and bottom points. Later, the sin ¢ dependence indicates an
inward force toward the axis due to B,.

The displacement plots for the base case (Fig. 12) show the combined influence
of the pressure loading (both radial and circumferential) as well as the tendency
for the rotations to be supported at the top and bottom points. The strains do not
‘show the same peaking as the moments and displacements. Initially there is a net
outward motion of 2-3 mm with an accompanying minor radius compression of 1-2
mm. Peak strain levels are ~ 5 X 10—* poloidal strain and ~ 1.5 X 10~ toroidal
strain, both occuring at the inboard edge. These levels are not likely to destroy
the structure immediately unless stress concentrations occur near discontinuities.
However, they are not insigniﬁcan.t from the point of view of impact on lifetime

due to fatigue when other sources of wall damage are considered. .

Later in t’be disruption the strains drop and the structure moves toward the
axis. Since th«ﬁ computational method does not include time dependence in the
structural ‘equzihtions, the recoil effect is unknown. This will add to the strains
at later times,}but these are not the largest ones, so the quasi-static solution is
probably still %conservative. More plots of moments and strains appear in the
following secti Dn
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4. Variation of Parameters

There are; two possible ways to vary the important parameters in this problem.

One could leave all of them constant except one and then examine the effect
of independently varying that one. In this study, it was decided that a more
enlightening rnethod requires that all of the tokamak parameters vary together in a

self-consistent fashion. The total reactor power output is fixed at the base case value

as is the rotafional transform at the limiter. This leads to-5 constraint equations

and 8 unknovrs, leaving 3 free parameters which can be varied independently.

4.1. Equations Used for Self-Consistency

The 8 unknowns are: a, R, 1, By, By, By, (B¢), and (B,). The reactor power

output for a given temperature and q(a) are given by,

W~ <ﬂ2>3§a2R
__ 2me’B;
9o = woRI

In addition, tﬂe two defining equations for B, and g, are:

_ sl
Bp_27rr
Py _ B
B BE°

~ Finally, the vejrtical field equilibrium is given by,

Do BB 1 (g —229).

(29)

(30)

(31)

(32)

(33)

The threej free parameters-are then (B;), B:, and a/R. Each is varied while

keeping the otber two fixed to the base case value. In Table 1, the four cases are

summarized.
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Table 1 — Data for Comparative Analysis
STARFIRE-like base case

high field - giving larger B, and smaller dimensions

magnetic fields are measured on axis)

low g - giving higher current, lower B,, and larger dimensions
high aspect ratio — giving lower current and higher B,

4.2, Results Fro:h Variation of Parameters

Appendix L
the 4 cases show
of the induced ¢
flatness of the pi
on absolute size |
on the induced

current — case C,

The pressur
of this is due to

currents, one would choose the design with the lowest plasma
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Parameters for the 4 Cases Studied

A B C D
minor radius a [m] 2 2.82 1.78 124
major riadius R [m] 7 9.87 8.88 4.35
plasma turrent 1 [MA] 10.1 14.1 6.3 8.96
toroidal field B, [T] 7 7 7 10
poloidal| field B,(a) [T] 0.35 0.25 0.39 0.50
vertical field B, [T} 067 0.04 067 067
toroidal beta (8,) 291 1.74 4.16 2.90
poloidal beta (8,) 10 1.0 0.7 143

contains plots of the results. The induced current profiles from
few significant differences (Figs. D.1 and D.2). The rhagnitudes
arrents simply reflect the magnitude of the driving currents. The
ofiles is mostly a function of aspect ratio with some dependence
»ecause of the difference in structural time constants. Based solely

> profiles show more marked differences (Figs. D.3-D.5). Part
the 12 dependence, but notice also that the compact machine,




case D, has a
external fields
profiles have
profiles. How:
altered pressu
one another i
lower B, shov
in the disrupti
the most desir

The peak

large poloidal asymmetry and much larger forces due to the larger
present. At later times (> 100 msec) the four induced current
already peaked and returned to levels comparable to the 20 msec
;&ver, the driving current has dropped significantly, leading to much
e profiles. At 100 msec, the four pressure profiles have approached
1 both shape and magnitude. The low 8 machine (case B), with
s the least tendency for a radially outward pressure until very late
on. Based on the radial pressures, the high aspect ratio machine has
eable response and the high field case has the worst.

]strains for all cases range between 5 and 10 X 104, except for the

high aspect rakio case (Figs. D.6-D.13). It peaks at under 10— and also shows

the least poloiidal variation early in the disruption. The other 3 cases show few
remarkable differences. The strain profiles exhibit much less variation than the

displacement I}IOts. The primary difference is in the relative magnitudes. The high

-field case is cl«}arly the worst, with peak strains of 10—3 and peak bending stresses

of 1.8 MPa (L

4.3. Effect of

The plofs
the effect of pl
field at its int
of the central
the field lines.
expected in a

The equit
are perpendict
directed radial

This test ¢
MA driving c
shift was slight
pressure has i

3 atm).

Large Plasma Shift

of field lines and field contours are very revealing when discussing
asma shift. A circular shell centered at the current loop sees a larger
oard edge compared to outboard. But a correct amount of shift
current with respect to the shield would nearly aligﬁ the shell with

This amount of shift is the same order of magnitude as the shift
normal high beta equilibrium. .

otential lines are the same lines along which forces act, since they
llar to both I and B,. This explains why most of the pressure is

y.

:ase has all of the input parameters of the base case, except the 10
rrent was shifted out 50 cm. The results show that the amount of
ly greater than that needed to flatten the profiles. The inboard radial
ipped around so that it is always more positive than the outboard
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side. Peak pre
shell. This inci
At later times,

is almost indist

4.4. Effects of 1

The test ¢
STARFIRE co
equivalent stair
the radial positi
loops (200) was
and second she
desired degree -
in the structura

The first cc
is relatively un
20 msec the pe
structural time
example the co:

ssures are larger because the driving current is now closer to the
eases the mutual inductance as well as the field seen at the shell.
he structure’s natural electrical response dominates and the profile
nguishable from the case with a central currént.

n Electromagnetic Shield

ase with an electromagnetic shield was intended to model the
nducting blanket region. For plasma stability, at least 2 cm
less steel is said to be required. This number was used, with
on of the shield at 10 cm behind the first wall. A large number of
used for this case because of the close spacing between the first
Ils. Spacings closer than 10 cm required too many loops for the
of accuracy. Even so, some small scale non-uniformity is apparent

plots, especially in the moment plot.

nclusion from the results is that the shape of the pressure profiles
changed. The mégnitude is down by about a factor of two; at
ak values are .35 and .17 MPa (Figs. 10 and 14). The effective
In this
1ductance of the shield is approximately equal to that of the first

constant is lengthened by the presence of the shield.

wall due to the much lower conductivity of stainless steel compared to beryllium
(nss = 72uﬂ-mb, me = 4uQ-cm). It is probably safe to assume that a higher
conductivity sh:iield would have greater moderating effect on the pressures and
hence the stressps

S. Conclusionb .

A simple ohe-dimensiona] computer model has been developed to compute
forces and straibs generated in toroidal shells due to eddy currents induced by
plasma disrupthjbns. The method uses a circuit analog for computing induced
currents and prcissures, wherein any toroidal axisymmetric structure can be broken
into a set of circular loops with resistances and mutual inductances which are
used to form a matrix loop voltage equation. The structural problem involves




calculating stre

finite element

picture is avai

basic forces ac

interaction. Fo

become more

Typical va
from the inbo
displacement ¢

sses and strains by expressing the full set of bending equations in a
i
|

ormulation. In addition to the computer programs, a clear intuitive
able for understanding the structural response involving the three
ing on the shell: radial compression, hoop force, and vertical field
r different combinations of the basic reactor parameters, these forces

or less dominant with respect to one another.

lues of pressure (using the base case) ranged from .25 to .35 MPa
ard to the outboard sides of the torus. This resulted in a peak
f 1 cm, strain of 5 X 10—*, and bending stress of .7 MPa. Various

regimes of reajtor parameters studied show that there are significant variations in

both the magnitude and spatial profiles of the induced forces. As might have

been expected
machine. Pre

applied curren

Plasma sh

shift was enou

strains, and b«

occurs at the

- poloidally to

i the design with the largest strain is the high field, low aspect ratio

sures and strains both increase by a factor of two, whereas the
. was decreased by 10%.

ft tends to reduce the poloidal peaking, but in the case studied, the
gh to reverse the pressure profiles. This resulted in larger forces,
'nding stresses as compéred_ to the base case. The peak pressure
sutboard edge rather than inboard, and peak strains switch from
yroidally directed.

The technﬁque developed here is very efficient, taking only minutes to execute

and analyze a

Future improy

~ coils and the
poloidal limite
using the same

case. This allows for easily examining a wide range of problémé.
ements suggested include the analysis of forces on magnetic field
ability to model toroidal loops outside the shell, for example a
r. Also, a full time-dependent treatment could be implemented

programs modified for time integration.
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Appendices

APPENDIX A — MAGNETIC FIELDS

Field from a Ci}cular.Loop

The magnetic field and vector potential due to a circular current loop is well

documenteh in the literature (See Jackson, pp 177-178)®). The equations are

repeated here for reference.

_ HoR _(2— KA)K(k) — 2E(K)
T k2 /R4 r2 4 2Rrsina

Ay

AT tan oz\/R2 + r?2 4 2Rrsin o

R4 rsina ’
(o _j2f R rSIm 2
g, b 2K (k) — (2 — (L2 JER)/ (1 — )
am \/R2 + 72 + 2Rrsina
2 — 4Rrsina
" R:+4r?+4 2Rrsina

42

(A1)

(A.2)

(A.3)

(A.4)







APPENDIX B — STRUCTURAL EQUATIONS

In the equzjtions that follow, we use the abbreviations for the bending rigidity
and flexure]l rigidity

Eh3
K=-—— B.
12(1 — v?) (B-1)
Eh
D= .
1—uv? (B-2)

- In addition, by virtue of the somewhat untraditional coordinate system, the radial
distance from the axis of symettry is given by

R=R,+asin¢ (B.3)

Equilibrium Equations

A force ba iance on the shell element is performed in the phi- and r-directions
and a moment balance perpendicular to r and phi, yielding '

(rNg) —aNgcos¢p — rQg = —arpy (B-4)
(rQq) + aNpsin ¢ + rNy = arp, | (B.5)
(rMy) — aMgcos ¢ —arQy =0 (B.6)

Deformation Relations

Using the strain-displacement relations:

acy = % +w (B.7)
reg = vcos ¢ + wsin ¢ (B.8)
a’xg = Ed(;(v - %) (B.9)
arxp = cos ¢(v — ‘;—’;) (B.10)
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and Hoolike’s law:

Ny = D(eg + veg) (B.11)
= D(€p + ué.,,) | (B.12) |

My = —K(x¢ + vxo) | (B.13)

Ms = —K(x6 + vx¢) (B-14)

we derive 1the deformation relations:

Ny = DE( i w) + (v cos ¢ + wsin ¢)]  (B.1y)
Ny = D[}(v cos ¢ + wsin ¢) + — (j; + )] (B.16)
e e o I
- S -)egls-g e

These are ﬁwn solved together with the 3 equilibrium equations, making 7
equations and 7\ unknowns. Due to the form of the deformation relations, it is easy
to eliminate eqn}ations if desired. In the analysis described in this report, Mg, Ny,
and Ny were el:iminated leaving four equations in u, v, Q4, and My. The moment
results are exprlbssed in terms of the bending stress which is related through the

relation;
6M, ¢

=7

(B.19)
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APPENDIX C — B-SPLINES AS BASIS FUNCTIONS

B-splines are really just polynomials which can be used like the more standard
power series representations for the purpose of fitting data, interpolating pointwise
specified functions, and in particular as basis functions for finite element analysis.

Like “normal”| polynomials such as

az® +b:c4+c:v3‘+d2+ez+f , (C.1)

B-splines have derivatives which are trivial to evaluate. However, B-splines have
the very desirc%able property that functions modeléd with them have continuous
first and second derivatives throughout the entire domain — including at the nodal
-points — withfput the need to add boundary equations on the continuity of these
derivatives. In@ essence, the boundary conditions are incorporated into the basis
functions then}selves. Another advantage appears in the final matrix equation
which must be§ solved for the displacements. Its form is much simpler since there

is only one set of equations at each node and every node is treated identically.

This paﬁikular derivation of B-splines uses 5th order polynomials and has
~ equal spacings ]between all of the nodes. The equal node spacing can be a problem
in a case like tlbe toroidal shell, where a tendency for discontinuity at certain points
requires that ai small mesh be used throughout the entire structure. However, the
gain in simplicity justifies the extra computation time considering the ease with

which problems can be run using up to 1000 elements. The need to use a Sth
order fomlulaﬂ;ion stems from the importance of 4th derivatives in the structural
equations. Wben a cubic B-spline representation was tried, poor results were

obtained.

The basis function and its derivatives are given by:
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Bi(z) = (Klag[(x — z¢_3)3_ — 6(z — Z,’_2)3_ + 15(z — z,'__l)i_ — 20(z — a:,-)i_

+ 15(z — ziq1)} —6(z — ziga) + (z — ziy3)%] - C2
1 ]
Bi(z) = L [5(; — z,-_a)f*_ — 30(z — x;_g)‘_"_ + 75(z — :c,'._.l)fi_ — 100(z — :z:,-)f*_
' -+ 'fS(z — Z,‘+1)fl_ —30(z — $i+2)f}. + 5(z — zi+3)3|-] Cc3
1 i
Bj(z) = B2 [201!2 — x;_a)i_ —120(z — a:,-__g)ﬂ_ -+ 300(z — zi—l)i. —- 400(z — :t,-)i_
+ 900(z — zi11)% —120(z — z;42)% + 20(z — 7 45)3 ] C4
1 :
B!'(z) = Bf [60(z — 3:,-_3)3_ — 360(z — z.'_g)ﬁ_ + 900(z — z,‘_l)ﬁ_ — 1200(z — m,-)?i_
-+ €I00(z — :t,-_*_l)?*_ — 360(z — :t,'+2)3_ -+ 60(z — x.-+3)f}_] C5

where the notstion (f), is defined by

if (f > 0) then ()4 = 1

else (f)4 =0 | (C.6)

Any function u(x) can be defined in terms of the basis functions as

u(z) = Z o;B;(z) (c)

Evaluation of the function requires evaluation of the spline function at the point
of interest as well as the two nearest neighbors on each side

u(zi) = 09 Bi—a(%i) + 01 Bi—1(2:) + i Bi(zi) + aip1Biga(mi) + oiyaBita(a)
= a;_9 + 2bio;__; -+ 660; 4 26041 + oy (0.8)

Similarly, the clerivatives of u require evaluation of the derivatives of the spline
functions at the point and its neighbors
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W(z;) = ai_gBl_y(m:) + i1 Biy(2i) + 0iBi(:) + i1 B (3:) + @igaBigalzi)
1
= -A—;(501¢+2 + 5001 — 50041 — 5 y2) (C.9)

W"(2:) = @i B_y(zi) + i1 By (%) + 0iBl(z:) + ei1By 4 (2i) + cigaBiia(si)

1
— W@Oai_g + 400; ;3 — 1200; 4 400541 -+ 20a,~+2) (C.IO)

u"(z;) = aig Bl 5(z:) + 01 BiL (%) 4 B (3:) + i1 By (2:) + a2 B o(x:)

1
(Bz)? (600;—g — 120a; 1 + 1200, 41 — 60042) (C.11)
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APPENDIX Di—-— STRUCTURAL PLOTS FFOR DESIGN COMPARISON
D.1 Current Piofiles at 20 ms

D.2 Current Plbﬁles at 100 ms

D.3 Inboard Piessure Histories

D.4 Radial Preﬁsure broﬁles at 20 ms

D.5 Radial Prefksure profiles at 100 ins

D.6 Case A Suﬁ]cturﬂ Response at 20 ms
D.7 Case B Subcmrm Response at 20 ms
D.8 Case C' Structural Response at 20 ms.
D.9 Case D Stertura] Response at 20 ms
D.10 Case A Strictural Response at 100 ms
D.11 Case B Snlbcturﬂ Response at 100 ms
D.12 Case C Stnbctural Response at 100 ms

D.13 Case D Striuctural Response at 100 ms
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Inboard Response
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Case A at 20 msec
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Case C at 20 msec
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Case A at 100 Msec
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Case B at 100 msec
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