PFC/RR-83-11

LITFIRE USER'S GUIDE

by

E. Yachimiak, V. Gilberti, and M. S. Tillack

June 1983

Plasma Fusion Center

and the

Department of Nuclear Engineering Massachusetts Institute of Technology Cambridge, Massachusetts 02139

Prepared for

EG&G Idaho, Inc.

and

The U.S. Department of Energy Idaho Operations Office

under

DOE Contract # DE-AP07-79ID0019

PUBLICATIONS UNDER CONTRACT #K-1702 ON FUSION SAFETY

A. General Safety and Risk Assessment

- M. S. Kazimi et al., "Aspects of Environmental Safety Analysis of Fusion Reactors," MITNE-212, Dept. of Nuclear Engineering, M.I.T. October 1977.
- R. W. Sawdye, J. A. Sefcik, M. S. Kazimi, "Reliability Requirements for Admissible Radiological Hazards from Fusion Reactors," Trans. Am. Nucl. Soc. <u>27</u>, 65-66, November 1977.
- 3. R. W. Sawdye and M. S. Kazimi, "Application of Probabilistic Consequence Analysis to the Assessment of Potential Radiological Hazards of Fusion Reactors," MITNE-220, Dept. of Nuclear Engineering, M.I.T., July 1978.
- 4. R. W. Sawdye and M. S. Kazimi, "Fusion Reactor Reliability Requirements Determined by Consideration of Radiological Hazards," Trans. Am. Nucl. Soc. 32, 66, June 1979.
- M. S. Kazimi and R. W. Sawdye, "Radiological Aspects of Fusion Reactor Safety: Risk Constraints in Severe Accidents," J. of Fusion Energy, Vol. 1, No. 1, pp. 87-101, January 1981.
- S. J. Piet, M. S. Kazimi and L. M. Lidsky, "Potential Consequences of Tokamak Fusion Reactor Accidents: The Materials Impact," PFC/RR-82-19, Plasma Fusion Center, M.I.T., June 1982.
- S. J. Piet, V. J. Gilberti, "FUSECRAC: Modifications of CRAC for Fusion Application," Nuclear Eng. Dept. and Plasma Fusion Center, M.I.T., PFC/RR-82-20, June 1982.
- 8. M. S. Kazimi, "Safety and Risk Targets for Fusion Energy," Societe Francaise de Radioprotection 10th Annual Congres, Avignon, France, Oct. 18-22, 1982.
- 9. M. S. Kazimi, "Safety Methodology and Risk Targets," in Proc. of 1982 IAEA Workshop on Fusion Safety, IAEA-TECDOC-277, 1983.

B. Lithium Reactions

- 1. D. A. Dube, M. S. Kazimi and L. M. Lidsky, "Thermal Response of Fusion Reactor Containment to Lithium Fire," 3rd Top. Meeting on Fusion Reactor Technology, May 1978.
- 2. D. A. Dube and M. S. Kazimi, "Analysis of Design Strategies for Mitigating the Consequences of Lithium Fire witin Containment of Controlled Thermonuclear Reactors, MITNE-219, Dept. of Nuclear Engineering, M.I.T., July 1978.

Publications under Contract #K-1702 (continued)

- 3. M. S. Tillack and M. S. Kazimi, "Development and Verification of the LITFIRE Code for Predicting the Effects of Lithium Spills in Fusion Reactor Containments," PFC/RR-80-11, Plasma Fusion Center, M.I.T., July 1980.
- 4. P. J. Krane and M. S. Kazimi, "An Evaluation of Accidental Water-Reactions with Lithium Compounds in Fusion Reactor Blankets," PFC/RR-81-26,, Plasma Fusion Center, M.I.T., July 1981.
- 5. M. S. Tillack and M. S. Kazimi, "Modelling of Lithium Fires," Nuclear Technology/Fusion, Vol. 2, No. 2, pp. 233-245, April 1982.
- V. J. Gilberti and M. S. Kazimi, "Modeling of Lithium and Lithium-Lead Reactions in Air Using LITFIRE," PFC/RR-82-08, Plasma Fusion Center, M.I.T., January 1983.
- E. Yachimiak, V. Gilberti, and M. S. Tillack, "LITFIRE User's Guide," Nuclear Eng. Dept. and Plasma Fusion Center, M.I.T., PFC/RR-82-11, June 1983.

C. Tritium

- S. J. Piet and M. S. Kazimi, "Uncertainties in Modeling of Consequences of Tritium Release from Fusion Reactors," PFC/TR-79-5, Plasma Fusion Center and Nucl. Eng. Dept., M.I.T., July 1979.
- 2. M. J. Young and S. J. Piet, "Revisions to AIRDOS-II," PFC/TR-79-8, Plasma Fusion Center and Nucl. Eng. Dept., M.I.T., August 1979.
- S. J. Piet and M. S. Kazimi, "Implications of Uncertainties in Modeling of Tritium Releases from Fusion Reactors," <u>Proc. Tritium</u> Technology in Fission, Fusion and Isotopic Applications, April 1980.
- D. R. Hanchar and M. S. Kazimi, "Tritium Permeation Modelling of a Conceptual Fusion Reactor Design," PFC/RR-81-27, Plasma Fusion Center, M.I.T., July 1981.

D. Electromagnetic Consideration

- 1. R. W. Green and M. S. Kazimi, "Safety Considerations in the Design of Tokamak Toroidal Magnet Systems," Trans. ANS 32, 69, June 1979.
- 2. R. W. Green and M. S. Kazimi, "Aspects of Tokamak Toroidal Magnet Protection," PFC/TR-79-6, Plasma Fusion Center, M.I.T., July 1979.
- M. S. Tillack, "A Study of Structural Responses to Plasma Disruptions in Toroidal Shells," Dept. of Nucl. Eng. and Plasma Fusion Center, M.I.T., PFC/RR-83-16, June 1983.

E. Others

1. M. S. Kazimi, "IAEA Workshop on Fusion Safety March 23-27, 1981, Vienna, Austria," J. of Fusion Energy, Vol. 1, No. 3, pp. 241-243, 1981.

LITFIRE USER'S GUIDE

Abstract

Instructions for using the current form of the LITFIRE code are summarized in this document. This includes :

• the various modeling options available to the user

• the operational commands needed to execute the code

This guide is designed to be used in conjunction with the following reports :

• MITNE-219

• MIT PFC/RR-80-11

• MIT PFC/RR-83-08

TABLE OF CONTENTS

Abstract		2
List of Fig	gures	
Chapter 1	Intro	$\mathbf{b} \mathbf{d} \mathbf{u} \mathbf{c} \mathbf{t} \mathbf{o} \mathbf{n} \dots \mathbf{o} \mathbf{c} \mathbf{c} \mathbf{c} \mathbf{c} \mathbf{c} \mathbf{c} \mathbf{c} c$
Chapter 2	Prog	ram Description
2.1	Pre-D	Oynamic Cycle 7
	2.1.1	Input Data
	2.1.2	Print Out the Input
	2.1.3	Variable Initialization
	2.1.4	Spray Fire Calculation
2.2	Dyna	mic Cycle
	2.2.1	Temperature Dependent Properties
	2.2.2	Natural Convection Coefficients
	2.2.3	Preliminary Thermal Admittances
	2.2.4	Test for Combustion or No Combustion 10
	2.2.5	Temperature Rates of Change 11
	2.2.6	Overpressure, Leakage, and Aerosol Behavior 11
	2.2.7	Integrals
	2.2.8	Termination Checks
	2.2.9	Time Step Control
	2.2.10	Output Section
	2.2.11	Error Pointers
2.3	Mode	eling Options
	2.3.1	One Cell
	2.3.2	Two Cell
	2.3.3	Pan
	2.3.4	Concrete Combustion
	2.3.5	Lithium/Lead Combustion
	2.3.6	Mitigation Options 15
Chapter 3	Exec	cution of LITFIRE
3.1	LITF	IRE and Input Data Files 19
	3.1.1	One Cell Option
	3.1.1	1.1 PFC-VAX

3.1.1.2 7600-CDC and CRAY's
3.1.2 Two Cell Option
3.1.2.1 PFC-VAX
3.1.2.2 7600-CDC and CRAY's
3.1.3 Pan, Concrete, and Lithium Lead Combustion
3.1.3.1 PFC-VAX
3.1.3.2 7600-CDC and CRAY's
3.1.4 Gas Flooding, Space and Liner Cooling, and Gas Injection 25
3.1.4.1 PFC-VAX
3.1.4.2 7600-CDC and CRAY's
3.2 PFC-VAX (execution)
3.3 7600-CDC (execution)
3.4 CRAY <c and="" d="" machines=""></c>
3.5 Sample Input / Output
Appendices
Appendix A Nomenclature
Appendix B Variable Glossary
Appendix C Toubleshooting
Appendix D Input Data Files
Appendix E Output Data Files
References

•

LIST OF FIGURES

Figure 2.3.1	One Cell Option Geometry	16
Figure 2.3.2	Two Cell Option Geometry	17
Figure 2.3.3	One Cell with Pan Geometry	18

1. Introduction

The computer code, LITFIRE, generates temperature and pressure time profiles which describe the response of a simulated fusion reactor containment to lithium/ lithium lead eutectic spills. This guide briefly describes the operating sequence of the code. It also discusses the available modeling options, as well as the computer commands required to execute the code.

The present version of LITFIRE currently resides on two computing facilities: the MIT-PFC-VAX and the National Magnetic Fusion Energy Computer Center (MFECC) facilities. It is written in the language of FORTRAN, compatable with the individual computing facilities. LITFIRE is accessable for the public's use, and can be executed by following the instructions listed in this guide.

This guide is not intended to be the only source of information on LITFIRE. As mentioned above, this report's purpose is to introduce to the new user the available modeling options and necessary executable computer commands. If a section in this guide is not sufficiently clear, or a detailed description of the physical models or code verification is required, consult the list of references. A list of nomenclature appears in Appendix A, and a listing of the variable designations in LITFIRE appears in Appendix B.

2. Program Description

To assist the new user of LITFIRE in understanding the code, a brief descriptive section is included. This section is broken down into a pre-dynamic cycle portion, and a dynamic cycle part. The dynamic cycle contains the time integrations and most of the calculations which determine the rates of change used in the integrals. The pre-dynamic cycle prepares the code for these calculations.

2.1. Pre-Dynamic Cycle

The four parts of the pre-dynamic cycle are :

- (i) read in the input data
- (ii) write out the input data
- (iii) initialize the variables
- (iv) spray fire calculation

2.1.1. Input Data

The input data consists of titles and headings, control flags, geometry specifications, initial conditions, and properties. In addition to these mandatory inputs, there are various options which can be chosen. These options are discussed in Section 2.3, Modeling Options. For a description of the input variables, see Section 3.1, LITFIRE and Input Data Files.

2.1.2. Print out the Input

This section is self-explanatory. It is suggested that in all cases, regardless of the outcome of the computations, the input be carefully examined. This habit can be very valuable in locating errors before they become large problems.

2.1.3. Variable Initialization

The initialization section zeros all quantities for the first time step. Constants are defined and initial conditions are applied using the input. In addition, there is a brief sub-section where the units are changed to become consistent with the code's calculations :

BTU, lbm, feet, seconds

2.1.4. Spray Fire Calculation

The spray fire calculation assumes that an amount of lithium is consumed as a spray at the initiation of the event. The amount is user specified. Then the only difficulty comes from the fact that the products' specific heats, c_p , are functions of temperature. The lithium is consumed instantaneously, adiabatically, and stoichiometrically, with the equilibrium temperatures being solved by iteration.

2.2. Dynamic Cycle

The main purpose of the dynamic cycle in LITFIRE is the generation of time dependent temperature, pressure, and mass profiles. The bulk of this section consists of calculations for the time dependent thermal admittances between nodes, which ultimately yield the temperature rates of change.

The heat flows are determined by analogy with electric circuits :

$$q_{12} = \frac{(T_1 - T_2)}{\sum_i \frac{1}{h_i A_i} + \sum_j \frac{\Delta x}{k_j A_j}} + \sum_k F_k \sigma_k A_k T_k^4$$
(1)

While the temperature rates of change utilize :

$$mc_p\left(\frac{dT}{dt}\right) = q_{in} - q_{out} \tag{2}$$

The consequent integration of the temperature rates of change is through the use of either fourth-order Runge-Kutta method or Simpson's rule. The integration takes on the form of :

$$Y(t) = Y(t_o) + \int_{t_o}^t dt' \frac{dY}{dt'}$$
(3)

where (dY/dt') is a temperature rate of change calculated in LITFIRE by finite differencing. (See Appendix A for all nomenclature definitions)

In addition to these fundamental calculations, there are many peripheral calculations. The order of appearance in LITFIRE for the many dynamic cycle calculations is as follows :

- (i) calculate temperature dependent properties : heat capacities, gas fractions, radiative interchange factors, and emmisivities
- (ii) natural convection coefficients

(iii) preliminary thermal admittances

- (iv) test for combustion/no combustion
- (v) calculate temperature rates of change from combined conduction, convection, and radiation
- (vi) overpressure, leakage, and aerosal sticking

(vii) integrals

(viii) checks for terminating execution

- (ix) time step control
- (x) printing of the output
- (xi) error pointers

A brief discussion of these 11 sub-sections follows below :

2.2.1. Temperature Dependent Properties

Ideally, all properties should be calculated with respect to their temperature dependence. However, for code simplicity, many properties are assumed constant and appear as input variables. The references for the heat capacity correlations and a description of the derivation of the radiative interchange factors can be found in references 1 and 2.

2.2.2. Natural Convection Coefficients

The fundamental equation for convection heat transfer is :

$$Nu = C(GrPr)^{\frac{1}{3}} \tag{4}$$

where :

$$Nu = \frac{hL}{k} \tag{5}$$

(6)

$$Gr = \frac{g\beta\Delta TL^3}{\nu^2}$$

$$Pr = \frac{C_p \mu}{k} \tag{7}$$

The natural convection heat transfer coefficient is calculated from equation (4) using correlations for the various properties occuring in the dimensionless numbers. A separate coefficient is calculated for each of the following :

pool
$$HB = HINHB Ra^{\frac{1}{2}}(\frac{k}{2})$$

inner liner wall $HFPGP = HINGSP \operatorname{Ra}^{\frac{1}{3}}(\frac{k}{2})$

extra heat capacity HEHCP = HIN $\operatorname{Ra}^{\frac{1}{3}}(\frac{k}{t})$

ambient interface $HA = HINSAM Ra^{\frac{1}{2}}(\frac{k}{L})$

where : Ra = PrGr

2.2.3. Preliminary Thermal Admittances

This is a small group of calculations, valid for either combustion or no combustion, which is used to generate the temperature rates of change for each option. More of these calculations appear later on, after the two parallel sections of the code rejoin.

2.2.4. Test for Combustion or No Combustion

Rates of change within the containment cell are considerably different in form, depending upon whether or not the pool is ignited. Two sets of calculations exist in the code, only one of which is excecuted for a given time step. The conditions which allow ignition are :

(i) lithium must be available

- (ii) oxygen or nitrogen must be available
- (iii) if no oxygen is available, then the combusiton zone temperature must be in the correct range

2.2.5. Temperature Rates of Change

These calculations are based upon the fundamental heat transfer relations for conduction, convection, and radiation, respectively.

$$\frac{dq}{dt} = kA\frac{dT}{dx} \tag{8}$$

$$\frac{dq}{dt} = h_c A(T_1 - T_2) \tag{9}$$

$$\frac{dq}{dt} = \sigma A F_k (T_1^4 - T_2^4) \tag{10}$$

References 1 and 2 have a detailed description of the above mechanics utilized.

2.2.6. Overpressure, Leakage, and Aerosol Behavior

The cell gas content and temperature are both quantities which are integrated in the integration section. From these, the cell gas pressure is computed. The leakage and sticking calculations are used to determine the species rates of change.

2.2.7. Integrals

All important masses and temperatures are integrated from one time step to the next. The form of these integrals is as follows :

$$P = \text{INTGRL}\left(P_o, \frac{dP}{dt}\right) \tag{11}$$

where :

 P_o = the initial value of function P (mass or temperature)

 $\frac{dP}{dt}$ = the time dependent rate of change in P

2.2.8. Termination Checks

The possible conditions which terminate execution of the code are :

(i) the lithium pool solidifies or vaporizes

(ii) the cell gas temperature returns to room temperature and no overpressure

2.2.9. Time Step Control

There are three techniques currently being used to determine the largest allowable time step. These restrictions are :

(i) the time step must be smaller than the inverse rates of change :

DELT < RELERR T/
$$\left(\frac{dT}{dt}\right)$$

(ii) the conduction heat transfer limit must be satisfied :

$$\frac{lpha\Delta t}{(\Delta x)^2} < 0.3$$

(iii) The user imposed maximum allowable time step must be obeyed :

IF (DELT.GT. [user chosen value (0.03 to 0.3)]) DELT = (0.03 to 0.3)

This statement is located at approximately line 1028 of the code.

2.2.10. Output Section

The output of LITFIRE is formatted in style and is stored during code execution in permanent output data files. Appendix E contains an example of the output from a LITFIRE code execution, corresponding to the input file in Appendix D.

2.2.11. Error Pointers

This final section is not actually part of the dynamic cycle. If, however, the code should ever diverge from its normal processing of data, an error message would be printed into the first output file, *out1*., and code execution would cease.

2.3. Modeling Options

The LITFIRE code contains all the necessary equations to adaquately model a variety of spill conditions. There are two basic geometries in which a fire may be modeled : a one cell and a two cell case. In addition to these geometries, the lithium may be spilled into a partially insulated pan, or be allowed to react directly on the compartment floor. Another option which can be used is the concrete combustion or breech of liner subroutine. And finally, the user may model a spill consisting of a lithium/lead eutectic, Li_7Pb_2 , $LiPb_4$, etc.

There are a number of additional options available which have to do with the mitigation of lithium fires. These include the following :

(i) gas flooding

(ii) emergency space cooling

(iii) emergency floor liner cooling

(iv) aerosol removal

(v) gas injection

Each one of the above options is disscussed below.

2.3.1. One Cell

The one cell model is the simplest geometry in which the LITFIRE code may be run. (see figure 2.3.1) This model is the foundation upon which all other subroutines are built. The concrete containment can be user specified for up to twenty (20) individual nodes. The inner liner can be of any material (preferably steel) that the user wishes. The containment gas is of user chosen composition. And finally, the entire structure may take on any physical dimensions the user desires.

The heat transfer equations are fixed by the code, so that meaningful results are obtained. The heat conduction, convection, and radiation equations are all solved simultaneously. The transfer of heat by any of these mechanisms, from node to node, is built into the code. For example : the steel liner accepts heat from the combustion zone, lithium pool, and containment gas through radiation, and through convection from the containment gas. It radiates heat back to these three nodes

through radiation, and conducts heat to the concrete node. The above heat transfer mechanisms and their applications are described in references 1, 2, and 3.

2.3.2. Two Cell

The two cell option was developed in order to model Tokamak fusion reactors and the effects that lithium fires would have on their structural integrity. This option allows for the inclusion of a second containment gas, separate from the inner cell, and the inclusion of a variable sized, user specified, crack (see figure 2.3.2). The model calculates both the temperature response to a lithium spill, and the pressure fluxuations accompanied by such a spill. High velocity flows have been successfully tested by LITFIRE, as in the case of a vacuum torus spill (see reference 3).

2.3.3. Pan

Figure 2.3.3 shows a schematic of the pan option being employed. This subroutine may be used either with the one or two cell geometry, but not with the concrete combustion option. The pan option was conceived and incorporated into LITFIRE to model the HEDL experiments. The pan is user defined, both in dimension and composition. It contains two separate conrete nodes, both of which transfer no heat to their surroundings.

2.3.4. Concrete Combustion

The concrete combustion option of breech of floor liner subroutine, allows for the interaction of lithium with the concrete floor. This includes reactions with water, as well as certain components in the concrete. Reference 2 describes the interactions of lithium and concrete in detail.

2.3.5. Lithium/Lead Combustion

This option allows for the interaction of lithium/lead eutectics with various materials. In fact, all other options are compatable with this option, with the exception of the pre-dynamic cycle spray fire calculation. Also available with this option is the ability to choose whether a turbulent or layered pool type reaction should be used. This allows for either optionistic or pessimistic results, depending on the user's view of lithium fires. Reference 3 discusses this option in detail.

2.3.6. Mitigation Options

The following is a list of options available to determine the consequences of certain mitigation techniques used in combatting lithium spills :

(i) gas flooding

- (ii) emergency space cooling
- (iii) emergency floor liner cooling

(iv) aerosol removal

(v) gas injection

Each option allows the user to specify additional heat removal mechanisms, in conjunction with the code's own mechanics. Each mitigation technique is described in detail in MITNE-219 (reference 1).

Figure 2.3.1 : One-Cell Geometry

Concrete Floor

Figure 2.3.2 : Two-Cell Geometry

Figure 2.3.3 : One-Cell with Pan Geometry

3. Execution of LITFIRE

The execution of the code LITFIRE requires the input of certain system commands. The location of the code on either of the computing facilities necessitates specified commands for the compiling, loading (linking), and running of the code. For organizational purposes, the following will be the order of topic discussion :

- (i) Source code and sample input data files
- (ii) PFC-VAX
- (iii) 7600-CDC <a machine>

(iv) CRAY <c and d machines>

3.1. LITFIRE and Input Data Files

There are two locations at which a copy of the source file LITFIRE can be found: the PFC-VAX and the MFECC FILEM disk storage.

To utilize the PFC-VAX copy, one must first have a PFC-VAX account. This may be accomplished by contacting Claude Barsotti at the Plasma Fusion Center, NW16-232, x3-8446, MIT. Introductory information is available for the new user by using the HELP command. This will explain most of the more often used commands, editors, and programs.

To place a copy of LITFIRE in one's filespace, the following command should be used :

copy_ [yak] litfirpb._ [username] litfirpb.

(where : _ means a space)

This will copy litfirpb. into the new user's directory.

To get copies of the three sample input data files, use the COPY command individually on :

1. heading.

2. uwmak2.w

3. uwmak2.x

For example :

user inputs :copy_ [yak] heading.computer responds :To:user inputs :[username] heading.

After implementing the copy command on these files, the user can either use the TYPE command to view the files, or the EMACS command to edit the files.

To obtain a copy of LITFIRE on one of the MFECC computers, one must first be logged onto the 7600-CDC <a machine>. The user should then use the FILEM command; this gives the user access to the copy of LITFIRE. To copy LITFIRE into a directory type :

read_ . 14600_ lita

This will copy LITFIRE (lita) into the user's directory on the 7600-CDC.

To get the three sample input data files out of FILEM, insert *heading*, *uwmak2.w*, and *uwmak2.x* individually into the *read_*. 14600 command, while still in FILEM.

To transfer these files on the 7600-CDC to either of the CRAY's, NETOUT should be used. The following is an example on how to use the NETOUT command to send lita to a CRAY directory:

$netout_in = lita, site = cma, user = 14600$

Probably the most important step in the executing of the code, LITFIRE, is the organization of the input files. Depending on the options chosen, certain input files may or may not be used. Listed below are the options which are available to the user. Each option is discussed separately in its own section.

(i) one cell

- (ii) two cell
- (iii) pan, concrete combustion, and lithium lead combustion
- (iv) gas flooding, emergency space cooling, emergency floor liner cooling, aerosal removal, and gas injection

3.1.1. One Cell Option

The one cell option is the simplest manner in which the LITFIRE code can be run. Below is the order in which the variables must appear in the first input variable file.

<u>line</u>	variables
1	FLAGW,IFLAGF,IFLAGP,IFLAG2,IFLAGS, IFLAGC,IFLAGU,IFLAGB,IBLOW,IESC ISFLC,ISWICH,IAROSL,IFLAGD,IFLAGISI
2	NL,NL1
3	L(1) to L(NL)
4	L1(1) to L1(NL1)
5	VP,CHP,CPAP,XMOLA
6	TEHCZP, XMEHCP, AEHCP, CPEHCP, HINECP
7	THWC, THFC, GAP, KGAP, KLEAK
8	ESTLWP,CPSWP,KSTLWP,RHSWP,AWP,THWP
9	ESTLFP,CPSFP,KSTLFP,RHSFP,AFP,THFP
10	EMLI,CPLI,AKLI,RHLI
11	EMCONC, CPCON, KCON, RHCON
12	RHOLIO, RHOLIN, RHOLIH, EMGPF, EMCZ, TAUCZ
13	QCO1,QCO2,QCN,QCW
14	RCMBO1,RCMBO2,RCMBN,RCMBW,RCMBH2
15	TMELT, TVAP, QVAP, PERCEN
16	HIN,HINGSP,HINGSS,HINPS,HINSAM,HINFAN
17	HINFGS, HINFSG
18	ASLI,SPILL,SPRAY,FRA,RA
19	TCZI, TGPZER, TSPZER, TSFPI, TA, TLII
20	PAPZER,WO2P,WWAP,WAP
21	IMETH, DTMIN, TIMEF, RELERR, DELOUT

The format for the input is :

line	variables
1	(1X,14(11,1X))
2	(14,14)
3,4	(10F5.3)
5-20	(6F12.4)
21	(14,5F12.4)

An example of this data file would be *uwmak2.w*, which is the data for the physical dimensions and properties of a UWMAK-III reactor design.

3.1.1.1. PFC-VAX

The statement :

open(unit = 2, file = 'filename', status = 'old')

must be included in the litfirpb. code in order for the code to execute. Therefore, if uwmak2.w were to be used as the first input variable file, the OPEN statement would read :

open(unit=2,file='uwmak2.w',status='old')

The location of the statement in the code is approximately at line 60.

3.1.1.2. 7600-CDC <a machine> and CRAY's <c and d machines>

For these machines, the statement :

call_ link("unit1 = filename,...//")

must be used.

3.1.2. Two Cell Option

If this option is chosen, the following is the variable listing of the second input variable file :

line	variables
1	VS,CHS,PASZER,TGSZER,TSSZER,TFSZER
2	CRACK,WWAS,WO2S,WAS,CPAS
3	TEHCZS, XMEHCS, AEHCS, CPEHS, HINECS
4	ESTLWS,CPSWS,KSTLWS,RHWS,AWS,THWS
5	ESTLFS,CPSFS,KSTLFS,RHSFS,AFS,THFS
6	TSWICH

Where the format for all lines is : (6f12.4)

3.1.2.1. PFC-VAX

If this option is chosen, the statement :

open(unit=3,file='filename',status='old)

must be included in the litfirpb. code. An example of this input variable file is the uwmak2.x data file, which is for the secondary cell characteristics of a UWMAK-III reactor design.

3.1.2.2. 7600-CDC <a machine> and CRAY's <c and d machines>

For these machines, the statement :

call_ link("unit3=filename,...//")

must be used.

3.1.3. Pan, Concrete Combustion, and Lithium Lead Combustion

The following is the variable listing for each of above subroutine options :

If the pan option is chosen

line	variables
1	KPAN, RHPAN, CPPAN, RHINS, CPINS, EMINS
2	TPANZO, APAN, BREDTH, AINS, HINGF
3	THKPAN, THKIN1, THKIN2

If the <u>concrete combustion</u> option is chosen :

line	variables
(1)	ZZDIN,QCCONC,CRACON,XMH2OI,TCIGNI,RCMBC

(1) The pan option <u>cannot</u> be chosen with concrete combustion

If the lithium lead combustion option is chosen :

line	variables
2(1)	CPLEAD,KLEAD,RHLEAD,ALLOYI,QDISS

(1) if the concrete combustion option is <u>not</u> chosen

For all lines, a (6F12.4) format is used.

3.1.3.1. PFC-VAX

The statement :

open(unit=4,file='filename',status='old')

must be included if any of the above options is used.

3.1.3.2. 7600-CDC <a machine> and CRAY's <c and d machines>

For these machines, the statement :

call_ link("unit4=filename,...//")

must be used.

3.1.4. Gas Flooding, Emergency Space Cooling, Emergency Floor Liner Cooling, and Gas Injection

Each of these options is included in one input data file. If any of the above options is chosen, the statement :

open(unit=5,file='filename',status='old')

The line number of each option will vary, depending on which options are chosen. However, the below listing is the order in which the variables would be read, if all the options had been chosen.

line	variables
1 (gas flooding)	WO2B,WWAB,WN2B,XMOLAB,CPAB,TBLOW
2 (emerg. space cooling)	ESCR, ESCTIN, ESCEND
3 (emerg. floor cooling)	SFLCR, SFLTIN, SFLEND
4 (aerosol removal)	BETA
5 (gas injection)	TONE, TTWO, TTHREE, DP1, DP2, DP3, FCT1, FCT2, FCT3

The formats for all options except the gas injection option is (6F12.4). For the gas injection routine it is (3F10.2,6F8.4).

3.1.4.1. PFC-VAX

The statement :

open(unit=5,file='filename',status='old')

must be included if any of the above options is used.

3.1.4.2. 7600-CDC <a machine> and CRAY's <c and d machines>

For these machines, the statement :

call_ link("unit5 = filename,...//")

must be used.

3.2. PFC-VAX (execution)

If running the code LITFIRE on the PFC-VAX, one must first be certain that all necessary OPEN statements are included. This will allow for the proper reading in of data from the included input data files. The input data file, heading., is always required because it contains the various headings used in the output files. Thus, the following OPEN statement will always appear in the LITFIRE code :

open(unit = 1, file = 'heading.', status = 'old')

This statement requires that the file, heading. , be in theuser's filespace.

There are three separate steps in executing the source code, litfirpb. :

(i) compiling

(ii) linking

(iii) running

To compile litfirpb., the command is :

fortran_ litfirpb.

This will create an object file named, litfirpb.obj.

To link litfirpb.obj, the command line is :

link__ litfirpb.obj

This will create the executable binary file named, litfirpb.exe.

Finally, to <u>run</u> litfirpb.exe type :

run_ litfirpb

If the input data files are all properly formatted, the code should run until the time limit is reached, TIMEF, or, until the code stops its execution.

ie. 'temperature of the lithium pool has reached the melting point' If the code stops for some other reason, refer to Appendix B which discusses

troubleshooting.

3.3. 7600-CDC <a Machine> (execution)

If running the code, lita, on the <a machine>, the file, heading, must be in the CALL LINK statement :

call_ link("unit1 = heading,...//")

Also, the appropriate input data files must be in this statement. The ten (10) output data files which are in the CALL LINK statement should always be included. DO NOT delete any one of these files, for each one may be necessary, depending on the input options chosen.

The easiest method to compile, load, and execute lita is in the following manner :

1. type : $chatr_i = lita, lib = fortlib, x = xlita / t_v$

where : t means the total maximum CPU time allowed v determines the priority

for : t = 1 CPU maximum

v = 0.5

priority = $t^*v = 0.5$

CHATR will form an executable binary file, (xlita), which can then be run.

2. type : x / t_v

This will run xlita, and depending on the priority, no more than one or two CPU's should be required.

3.4. CRAY <c and d machines>

To execute lita on either of the two CRAY's, the same CALL LINK statements should be used as for the 7600-CDC. To compile, load, and execute lita, however, the following commands should be used :

1. $rcft_i = lita, lib = fortlib, x = xlita_tv$

2. *xlita_/_t_v*

Again, no more than one or two CPU's should be required to run xlita.

3.5. Sample Input / Output

To check whether the new user of LITFIRE has executed the code correctly, a set of sample input and output files have been included in the Appendices C and D. An execution on any of the three machines (VAX, 7600, CRAY) gives approximately the same results.

Using the input data files :

heading.

uwmak2.w

uwmak2.x

the following output files should be generated :

outl.

. out2.

out3.

out5.

out7.

out8.

APPENDICES

Appendix A

Nomenclature

$A_{i,j,k}$		heat transfer surface areas
Cp	=	natural convection heat transfer coefficient
c_p	=	specific heat
\dot{F}_{k}		radiation view factor, including emissivity
g .	=	acceleration of gravity
Gr	=	Grashof number
h _c	=	coefficient of heat transfer by convection
k, k_i	=	thermal conductivity
Ĺ		linear dimension
m	=	mass
Nu		Nusselt number
Pr		Prandtl number
dq/dt		heat flow rate
t	=	time
T	=	temperature
x		linear distance
Y	=	general function of time
α		thermal diffusivity
β	=	coefficient of volume expansion
μ		viscosity
ν	=	kinematic viscosity
ρ	_	gas density
σ, σ_k	=	Stefan-Boltzman constant

Appendix B

This is the variable glossary for LITFIRE

ACTVTY	CALULATES ACTIVITY OF LITHIUM IN LIPB	
AEHCP	SURFACE AREA OF PRIMARY EXTRANEOUS HEAT CAPACITY (FT2)	
AEHCS	SURFACE AREA OF SECONDARY EXTRANEOUS HEAT CAPACITY (FT2)	
AFP	AREA OF THE PRIMARY STEEL FLOOR THAT IS OF INTEREST IN HEAT	
	TRANSFER CALCULATIONS. USUALLY EQUAL TO "ASLI" WHEN	
	LITHIUM IS SPILLED DIRECTLY ONTO FLOOR.	
AFS	SURFACE AREA OF SECONDARY STEEL FLOOR LINER (FT2)	
AHT	SURFACE AREA OR HEAT TRANSFER BETWEEN LITHIUM POOL AND PAN (FT2)	
AINS	OUTSIDE EXPOSED AREA OF INSULATING LAYER ON PAN (FT2))	
AKLEAD	THERMAL CONDUCTIVITY OF LEAD (BTU/FTSEC-DEG. F.)	
·	INPUT AS (BTU/FT. HR. DEG. F.)	
AKLI	THERMAL CONDUCTIVITY OF LITHIUM (BTU/FTSEC-DEG. F.)	
	INPUT AS (BTU/FT. HR. DEG. F.)	
AK1,AK2,AK3ES	S, PROD. OF THERMAL COND. AND PRANDTL NO.	
AK3EP,AK4H,A	K5 (BTU/SEC-FTDEG. F.) SEE RELATED FILM TEMPS. "T"	
ALLOYI	INITIAL ATOM PERCENT OF LI IN LIPB SPILLED	
ALPHA	USED IN DETERMINING IF LILP SHOULD BE FIXED AT A MINIMUM	
	EQUAL TO AKLI/(RHLI*CPLI)	
ALPHA2	USED IN DETERMING PYU. TESTS CONDUCTION LIMIT OF THE PAN OR	
	STEEL LINER ON TIME STEP	
AMIN1	A FORTRAN SUPPLIED STATEMENT THAT DETERMINES THE MINIMUM	
	VALUE OF THE ARGUMENTS LISTED.	
AMLI	ATOMIC MASS OF BREEDER	
AMPB	ATOMIC MASS OF ALLOY METAL	
APAN	PAN EXTERNAL AREA FOR HEAT TRANSFER	
ARE	SURFACE AREA OF BREEDER ELEMENT	
ASLI	SURFACE AREA OF LITHIUM (FT2)	
ATI	INNER SURFACE AREA OF COOLANT TUBES IN ELEMENT	
ATO	OUTER SURFACE AREA OF COOLANT TUBES IN ELEMENT	
AWP	PRIMARY CONTAINMENT EXPOSED WALL AREA (FT2)	
AWS	SECONDARY CONTAINMENT EXPOSED WALL AREA (FT2)	
В	USED IN CALC. THERMAL RESIST. OF LINER-GAP-CONC. (FT.)	
BB	ANALOGOUS TO B, ONLY FOR FLOOR CONCRETE	
B1,B2,B3EP,B3	ES, COEFFICIENT OF GAS EXPANSION (1/DEG. F.)	
B4,B4H,B5	SEE RELATED FILM TEMPS. "T"	
BETA	THE INVERSE STICKING COEFFICIENT FOR PARTICLES IMPACTING	
	ON A WALL (SEC)	

BIL	FRACTION CHANGE BETWEEN BILGE AND DELT USED IN DETERMINING
	MINIMUM TIME STEP.
BILGE	EQUAL TO THE MINIMUM VALUE OF DT1, DT2, DT3, DT4, OR DT5
	USED IN CALCULATING THE TIME STEP
BLIN	TIME AFTER SPILL AT WHICH INERT GAS FLOODING AND
	EXHAUST BEGINS (SEC)
BLOUT	TIME AFTER SPILL AT WHICH FLOODING AND EXHAUST STOPS (SEC)
BLOWR	INERT GAS INPUT RATE (LB/SEC)
BLOWV	INERT GAS INPUT RATE (FT3/MIN)
BREAKS	OUTER CELL TEMP. RATE OF CHANGE DUE TO CELL GAS LEAKAGE
BREDTH	LENGTH AROUND THE SIDE OF THE SPILL PAN IN FEET
	"C" IS THE INITIAL USED FOR INDICATING A THERMAL DIFFUSIVITY.
	I.E., A CONDUCTIVITY BETWEEN TWO NODES DIVIDED BY THE
	HEAT CAPACITY OF ONE OF THOSE NODES
C1	CONTAINMENT GAS TO WALL STEEL IN GAS
C2	PAN TO CONT. GAS IN GAS
C3	STEEL LINER TO CONCRETE WALL IN WALL
C4(I)	CONCRETE NODE I TO NODE I + 1 IN WALL CONCRETE
C5	CONCRETE WALL TO AMBIENT IN CONCRETE
C6	CONTAINMENT GAS TO WALL STEEL IN STEEL
C7	STEEL LINER TO CONCRETE WALL IN STEEL
C8	STEEL LINER TO CONCRETE FLOOR IN STEEL
C9	STEEL LINER TO CONCRETE FLOOR IN CONCRETE
C10(I)	CONCRETE FLOOR NODE I TO NODE I +1 IN FLOOR CONCRETE
C11	STEEL WALL LINER TO AMBIENT (NO CONCRETE OPTION) IN STEEL
C12	STEEL FLOOR LINER TO AMBIENT (NO CONCRETE OPTION) IN STEEL
C13	PAN TO GAS IN PAN
C14	SECONDARY STEEL FLOOR TO SECONDARY GAS IN STEEL
C15	SECONDARY STEEL FLOOR TO SECONDARY GAS IN GAS
C16	PRIMARY STEEL FLOOR TO PRIMARY GAS IN STEEL
C17	PRIMARY STEEL FLOOR TO PRIMARY GAS IN GAS
C18	PRIMARY STEEL FLOOR TO SECONDARY GAS IN STEEL
C19	PRIMARY STEEL FLOOR TO SECONDARY GAS IN GAS
C20	PRIMARY STEEL WALL TO SECONDARY GAS IN STEEL
C21	SECONDARY STEEL LINER TO SECONDARY CELL GAS IN STEEL
C22	PRIMARY STEEL WALL TO SECONDARY GAS IN GAS
C23	SECONDARY STEEL LINER TO SECONDARY CELL GAS IN GAS
CCZ	AMOUNT OF HEAT BEING DEVELOPED IN THE COMB. ZONE (BTU/SEC)
CCZG	COMBUSTION ZONE TO CONTAINMENT GAS IN GAS
CCZP	POOL TO COMBUSTION ZONE IN POOL
CD	COEFFICIENT OF DISCHARGE (NEAR UNITY)
CEHCGP	THERMAL DIFFUSIVITY BETWEEN PRIMARY EXTR. HEAT CAPACITY
	AND PRIMARY GAS IN PRIMARY GAS
CEHCGS	THERMAL DIFFUSIVITY BETWEEN SECONDARY EXTR. HEAT CAPACITY
	AND SECONADRY GAS IN SECONDARY GAS

CF	THERMAL IMPEDANCE BETWEEN BREEDER ELEMENTS IN INNER ELEMENT
CGCZ	COMBUSTION ZONE TO CONTAINMENT GAS IN COMBUSTION ZONE
CGLI	POOL TO CONTAINMENT GAS (NO COMBUSTION) IN POOL
CGPEHC	THERMAL DIFFUSIVITY BETWEEN PRIMARY GAS AND PRIMARY
	EXTRANEOUS HEAT CAPACITY IN EXTR. HEAT CAPACITY
CGSEHC	THERMAL DIFFUSIVITY BETWEEN SECONDARY GAS AND SECONDARY
	EXTRANEOUS HEAT CAPACITY IN EXTR. HEAT CAPACITY
CHP	PRIMARY CONTAINMENT HEIGHT (FT.)
CHS	SECONDARY CONTAINMENT HEIGHT (FT.)
CIN1PN	STEEL PAN TO INNER INSULATION IN INSULATION
CIN12	INNER TO OUTER INSULATION IN INNER INSULATION
CIN21	INNER TO OUTER INSULATION IN OUTER INSULATION
CLIG	POOL TO CONTAINMENT GAS (NO COMBUSTION) IN GAS
CLIPAN	POOL TO SPILL PAN IN POOL (SUSP. PAN OPTION)
CLIST	LITHIUM POOL TO FLOOR STEEL IN LITHIUM
CMBR	TOTAL COMBUSTION RATE (LB LI/SEC-FT2)
CMBRH	TOTAL COMBUSTION RATE (LB LI/HRFT2)
CMBRHI	INITIAL COMBUSTION RATE (LB LI/HR-FT2)
CMBRN	COMB. RATE FOR NITROGEN REACTION (LB LI/SEC-FT2)
CMBRO	COMB. RATE FOR OXYGEN REACTION (LB LI/SEC-FT2)
CMBRW	COMB. RATE FOR WATER VAPOR REACTION (LB LI/SEC-FT2)
CPA	INERT GAS SPECIFIC HEAT (BTU/LB-DEG. F.)
CPAB	SPEC. HEAT OF FLOODING GAS (BTU/LB-DEG. F.)
CPANLI	POOL TO PAN IN PAN
CPAP	SPECIFIC HEAT OF PRIMARY CELL INERT GAS (BTU/LB-DEG. F.)
CPAS	SPECIFIC HEAT OF SECONDARY CELL INERT GAS (BTU/LB-DEG. F.)
CPCON	HEAT CAPACITY OF FLOOR AND WALL CONCRETE
CPCZ	LITHIUM POOL TO COMBUSTION ZONE IN COMBUSTION ZONE
CPEHCP	SPECIFIC HEAT OF PRIMARY EXTRANEOUS HEAT CAPACITY (BTU/LB-DEG. F.)
CPEHCS	SPECIFIC HEAT OF SECONDARY EXTRANEOUS HEAT CAPACITY (BTU/LB-DEG. F.)
CPFAC	USED IN CALCULATING CPLI (CPFAC = .004938**TLI -6.20741)
CPH2	SPECIFIC HEAT OF HYDROGEN GAS
	SET TO 3.76 (BTU/LB-DEG. F.) IN PROGRAM
CPINS	SPECIFIC HEAT OF INSULATION (BTU/LB-DEG. F.)
CPLEAD	SPECIFIC HEAT OF PURE LEAD
CPLI	SPECIFIC HEAT OF LI (BTU/LB-DEG. F.)
CPLIH	SPECIFIC HEAT OF LITH. HYDROXIDE IN CONT.
,	SET TO 0.67 (BTU/LB-DEG. F.) IN PROGRAM.
CPLIN	SPECIFIC HEAT OF LITHIUM NITRIDE (BTU/LB-DEG. F.)
CPLINP	SPECIFIC HEAT OF LITH. NITRIDE IN PRIMARY CONT. (BTU/LB-DEG. F.)
CPLINS	SPECIFIC HEAT OF LITH. NITRIDE IN SECONDARY CONT. (BTU/LB-DEG. F.)
CPLIO	SPECIFIC HEAT OF LITHIUM OXIDE (BTU/LB-DEG. F.)
CPLIOH	SPECIFIC HEAT OF LIOH (BTU/LB-MOLE-DEG. F.)
CPLIOP	SPECIFIC HEAT OF LITHIUM OXIDE IN PRIMARY (BTU/LB-DEG. F.)
CPLIOS	SPECIFIC HEAT OF LITHIUM OXIDE IN SECONDARY (BTU/LB-DEG. F.)

CPLI1	MEAN HEAT CAPACITY OF BREEDER AS SOLID (BTU/LB-MOLE-DEG. R.)
CPMCZ	EFFECTIVE HEAT CAPACITY OF COMB. ZONE (BTU/DEG. F.)
CPMH2	HEAT CAPACITY OF HYDROGEN IN CONTAINMENT (BTU/DEG. F.)
CPMLOS	HEAT CAP. OF LITHIUM OXIDE IN PRIMARY CONT. (BTU/DEG. F.)
CPMLOP	HEAT CAP. OF LITHIUM OXIDE IN SECONDARY CONT. (BTU/DEG. F.)
CPMNIP	HEAT CAPACITY OF NITROGEN IN PRIMARY CONT. (BTU/DEG. F.)
CPMNIS	HEAT CAPACITY OF NITROGEN IN SECONDARY CONT. (BTU/DEG. F.)
CPMOXP	HEAT CAPACITY OF OXYGEN IN PRIMARY CONTAINMENT (BTU/DEG. F.)
CPMOXS	HEAT CAPACITY OF OXYGEN IN SECONDARY CONTAINMENT (BTU/DEG. F.)
CPMWA	HEAT CAP. OF WATER VAP. IN (BTU/LB-MOLE)
CPMWA	HEAT CAP. OF WATER VAP. IN CONTAINMENT (BTU/DEG. F.)
CPNIN1	THERMAL DIFFUSIVITY OF STEEL PAN TO INNER INSULATION IN PAN
CPN2P	SPECIFIC HEAT OF NITROGEN GAS IN PRIMARY CONT. (BTU/LB-DEG. F.)
CPN2S	SPECIFIC HEAT OF NITROGEN GAS IN SECONDARY CONT. (BTU/LB-DEG. F.)
CPPB	HEAT CAPACITY OF ALLOY METAL IN BREEDER ZONE (BTU/LB-DEG. F.)
CPPB1	MEAN HEAT CAPACITY OF ALLOY METAL SOLID (BTU/LB-MOLE-DEG. R.)
CPPL	LIQUID HEAT CAPACITY OF ALLOY METAL (BTU/LB-DEG. F.)
CPPZ	HEAT CAPACITY OF ALLOY METAL IN REACTION ZONE (BTU/LB-DEG. F.)
CPSTL	HEAT CAPACITY OF STEEL LINER (BTU/LB-DEG. F.)
CPWA	SPEC. HEAT OF WATER VAPOR. SET TO 0.44 (BTU/LB. DEG. F.)
CP1	USED TO CALCULATE CP CHANGE OF ALLOY METAL (BTU/LB-DEG. R.)
CP2	USED TO CALCULATE CP CHANGE OF ALLOY METAL (BTU/LB-DEG. R.)
CRACON	AREA OF CONCRETE EXPOSED TO LITHIUM IN CONCRETE COMBUSTION MODEL (FT2)
CRACK	AREA OF ORIFICE BETWEEN PRIMARY AND SECONDARY CONTAINMENTS
	THE UNITS OF CRACK ARE SQUARE INCHES!!! CONVERTED TO (FT2) IN
	PROGRAM
CSBLI	THERMAL DIFFUSIVITY OF LITHIUM POOL TO FLOOR STEEL IN STEEL
СТ	THERMAL IMPEDANCE BETWEEN BREEDER ELEMENTS IN OUTER ELEMENT
DELH	STANDARD HEAT OF HYDROLSIS OF BREEDER (BTU/LB-MOLE)
DELMP	FRACTIONAL EXCHANGE RATE OF PRIMARY GAS (IN SEC) USED IN
	DETERMINING THE MINIMUM TIME STEP
DELMS	FRACTIONAL EXCHANGE RATE OF SECONDARY GAS (IN SEC) USED IN
	DETERMINING THE MINIMUM TIME STEP
DELOUT	OUT TIME STEP (SEC)
DELT	INTEGRATION TIME STEP (SEC)
DFILM	LITHIUM VAPOR FILM THICKNESS (FT.)
DFLIPB	DIFFUSION COEFFICIENT FOR LITHIUM THROUGH LEAD FT2/SEC
DIFF	DIFFUSION COEFF. TO COMB. ZONE FT2/SEC
DIFFLI	LITHIUM VAPOR DIFFUSION COEFFICIENT FT2/SEC
DMPBDT	MASS RATE OF CHANGE OF LEAD IN LEAD LAYER (LB/SEC)
DPROD	ENTHALPY CHANGE OF REACTION PRODUCTS IN REACTION ZONE
DP1,DP3	PSIA INCREASE IN CONTAINMENT PRESSURE DUE TO EACH INJECTION
DREAC	ENTHALPY CHANGE OF REACTANTS IN REACTION ZONE
DTBDT(I)	CONC. FLOOR TEMP. RATE OF CHANGE, NODE I (DEG. F./SEC)
DTCDT(I)	CONC. WALL TEMP. RATE OF CHANGE, NODE I (DEG. F./SEC)

DTMIN	MINIMUM TIME STEP TO BE USED (SEC)
DT1,DT4	USED IN CALCULATING TIME STEP (SEC)
DT1	POOL TIME STEP (TEMP./RATE OF CHANGE OF TEMP.)
DT2	CONT. GAS TIME STEP
DT3	STEEL WALL TIME STEP
DT4	COMBUSTION RATE TIME STEP
DT5	COMBUSTION ZONE TEMP. TIME STEP
DYNAMI	SUBROUTINE USED IN CONTROLLING INTEGRATION LOOPS
D1,D2,DEP,D3E	S, KINEMATIC VISCOSITY OF CELL GAS (SQUARED)
D4,D4H,D5	(FT4/SEC2) SEE RELATED FILM TEMPS "T"
EFILM	FILM DEPTH OF DEPLETED ZONE ABOVE COMB. ZONE (IN INCHES)
EMCONC	THERMAL EMISSIVITY OF CONCRETE
EMCZ	THERMAL EMISSIVITY OF COMBUSTION ZONE
EMF	USED IN FIXING MINIMUM THERMAL EMISSIVITY OF LI POOL
	SET EQUAL TO .9 IN PROGRAM
EMGP	THERMAL EMISSIVITY OF PRIMARY CELL GAS
	MINIMUM VALUE OF .005 IN PROGRAM
EMGS	THERMAL EMISSIVITY OF SECONDARY CELL GAS
	MINIMUM VALUE OF .005 IN PROGRAM
EMINS	THERMAL EMISSIVITY OF INSULATION AROUND PAN
EMLI	THERMAL EMISSIVITY OF LITHIUM POOL
EMSTL	THERMAL EMISSIVITY OF STEEL LINER
ESCR	HEAT REMOVAL RATE BY EMERGENCY SPACE COOLING (BTU/SEC)
ESCTIN	TIME AFTER SPILL WHEN ESCR BEGINS (SEC)
EXHSTR	RATE OF CONTAINMENT GAS EXHAUST (LB/SEC)
EXHSTV	RATE OF CONTAINMENT GAS EXHAUST (FT3/SEC)
EXX	USED IN CALC. MASS & HEAT TRANSF. COEFF. (1/FT3)
EX1,EX2	EX3EP,EX3ES,EX4H,EX5 USED IN CALCULATING MASS
	& HEAT TRANSF. COEFF. (1/FT.) SEE RELATED FILM TEMPS "T"
FCT1,FCT2,FCT	3 FRACTION OF NITROGEN PRESENT IN EACH INJECTION (BY NO.)
FF1,FF2	USED IN HEAT BALANCE EQS. FOR SPRAY FIRE (BTU)
FMLEAK	FRACT. OF MASS LEAKED OUT OF CONTAINMENT
FMLEFT	FRACTION OF MASS STILL WITHIN CONTAINMENT
FNIP	WT. FRACTION OF NITROGEN IN PRIMARY CELL GAS
FNIS	WT. FRACTION OF NITROGEN IN SECONDARY CELL GAS
FOUTP	LOSS RATE OF PRIMARY CONT. GAS WHICH EITHER LEAKS OR IS EXHAUSTED
FOUTS	LOSS RATE OF SECONDARY CONT. GAS WHICH EITHER LEAKS OR IS EXHAUSTED
FOUTT	TOTAL LEAKAGE FROM OUTERMOST CONTAINMENT (FOUTS+LEAK)
FOXP	WT. FRACTION OF OXYGEN IN PRIMARY CELL GAS
FOXS	WT. FRACTION OF OXYGEN IN SECONDARY CELL GAS
FPG	RADIATIVE VIEW FACTOR FROM POOL TO GAS (1.0 IF NO PAN, 0.23 IF PAN)
FPW	RAD. VIEW FACTOR FROM POOL TO WALL (1.0 IF NO PAN, 0.384 IF PAN)
FRA	FRACTION OF COMBUSTION PRODUCTS EVOLVED INTO CELL GAS
FWAP	WT. FRACTION OF WATER VAPOR IN PRIMARY CELL GAS
FWAS	WT. FRACTION OF WATER VAPOR IN SECONDARY CELL GAS

GAP	AIR GAP BETWEEN STEEL LINER AND CONCRETE FLOOR (INPUT AS FT.)
GAMMA	RATIO OF SPECIFIC HEATS Cp/Cv (SET = 1.4)
GIN	GRAVITATIONAL CONSTANT 32.2 (FT./SEC**2)
HGWP	INTERIOR FILM COEF. (BTU/SEC-FT2-DEG. F.)
HA	EXTERIOR FILM COEF. (BTU/SEC-FT2-DEG. F.)
НВ	HEAT TRANSFER COEFFICIENT TO POOL (BTU/SEC-FT2-DEG. F.)
HBINF	EQUILIBRIUM VALUE OF HB
HCO	HEAT TRANSFER COEFICIENT OF BOILING WATER (BTU/SEC-FT2-DEG. F.)
HEHCP	HEAT TRANSFER COEFFICIENT OF PRIMARY CELL EXTRANEOUS HEAT
	CAPACITY TO PRIMARY GAS (BTU/SEC-FT2-DEG. F.)
HEHCS	HEAT TRANSFER COEFFICIENT OF SECONDARY CELL EXTRANEOUS HEAT
	CAPACITY TO SECONDARY CELL GAS (BTU/SEC-FT2-DEG. F.)
HF	GAS TRANSPORT COEFF. TO POOL FT./SEC
HFPGP	HEAT TRANSFER COEFFICIENT FROM PRIMARY FLOOR STEEL TO
	PRIMARY CELL GAS (BTU/SEC-FT2-DEG. F.)
HFPGAS	HEAT TRANSFER COEFFICIENT FROM PRIMARY FLOOR STEEL TO
	SECONDARY CELL GAS (BTU/SEC-FT2-DEG. F.)
HFINF	EQUILIBRIUM VALUE OF HF
HIN	CORRELATION FOR HEAT TRANSFER COEFFICIENT (H, HB, HF)
HINECP	CORRELATION FOR HEAT TRANSFER COEFFICIENT FOR PRIMARY
	CELL EXTRANEOUS HEAT CAPACITY DIMENSIONLESS
HINECS	CORRELATION FOR HEAT TRANSFER COEFFICIENT FOR SECONDARY
	CELL EXTRANEOUS HEAT CAPACITY DIMENSIONLESS
HINFGS	CORRELATION FOR HEAT TRANSFER COEFFICIENT (HFPGAS)
HINGSP	CORRELATION FOR HEAT TRANSFER COEFFICIENT (HGWP)
HINGSS	CORRELATION FOR HEAT TRANSFER COEFFICIENT (HSEC)
HINPS	CORRELATION FOR HEAT TRANSFER COEFFICIENT (HWPGAS)
HINBAM	CORRELATION FOR HEAT TRANSFER COEFFICIENT (HAWBAM)
HINSAM	CORRELATION FOR HEAT TRANSFER COEFFICIENT (HA)
HPAN	HEAT TRANSFER COEFFICIENT TO PAN (BTU/SEC-F12-DEG. F.)
HSEC	HEAT TRANSFER COEFFICIENT FROM SECONDARY STEEL WALL LINER
	TO SECONDARY CELL GAS (BTU/SEC-F12-DEG. F.)
HICPGP	
HICPGS	HEAT CAPACITY OF SECONDARY CONTAINMENT ATMOSPHERE BT0/DEG.F
HWPGAS	HEAT TRANSFER COEFFICIENT FROM PRIMARY STEEL WALL TO
	SECONDARY CELL GAS (BIU/SEC-FI2-DEG. F.)
1	GENERAL PURPOSE DO LOOP INDEX
	DO LOOP INDEX FOR FLOOR AND WALL CONCRETE NODE INITIALIZATION
INJECT, INJEC2	HINJEUG FLAGS FUR GAS INJEUTION INJEUET INDIGATES
INTOD	
	NUMBER OF OUTPUT LINES PER PAGE (BETWEEN HEADINGS)
12422	SEE SUBROUTINE VARIABLE LIST

J1 = 1	IF LITHIUM IS BREEDER
J2 = 1	IF HYDROGEN IS EVOLVED
KLEAK	LEAK RATE CONSTANT FROM CONTAINMENT (INCHES/((LB**0.5)*SEC))
	NOTE: UNITS HAVE BEEN INFERRED FROM THE PROGRAM AND MAY NOT
	BE CORRECT. REFERENCE INPUT VALUE: 2.588E(-09)
KCON	THERMAL CONDUCTIVITY OF THE FLOOR AND WALL CONCRETE
	CONVERTED TO (BTU/SEC-FTDEG. F.) IN PROGRAM
KFILM	THERM. COND. OF LI POOL/COMB. ZONE FILM (BTU/SEC-FTDEG. F.)
KGAP	THERMAL COND. OF THE AIR GAP BETWEEN THE LINER AND CONCRETE
	CONVERTED TO (BTU/SEC-FTDEG. F.) IN PROGRAM
KIN1	THERMAL CONDUCTIVITY OF INNER INSULATION - CALC. IN PROGRAM
KIN2	THERMAL CONDUCTIVITY OF OUTER INSULATION - CALC. IN PROGRAM
KPAN	THERMAL CONDUCTIVITY OF LI PAN (BTU/HR-FTDEG. F.)
	CONVERTED TO (BTU/SEC-FTDEG. F.) IN PROGRAM
KSTL	THERMAL CONDUCTIVITY OF THE STEEL LINER (BTU/HR-FTDEG. F.)
	CONVERTED TO (BTU/SEC-FT. DEG. F.) IN PROGRAM
L	CONCRETE WALL ELEMENT THICKNESS (FT.)
LBN	DISTANCE BETWEEN TWO BREEDER ELEMENTS
LEAK	CELL GAS LEAKAGE RATE FROM OUTERMOST CONTAINMENT (1/SEC)
LEAKO	INITIAL CELL GAS LEAKAGE RATE FROM OUTERMOST CONTAINMENT (1/SEC)
LIBP	LITHIUM BURNED IN POOL FIRE (LB)
LIL	AMOUNT OF LI LEFT IN POOL, BUT NOT ALLOWED TO BE LESS
	THAN LIT/10 FOR NUMERICAL STABILITY IN HEAT TRANSFER CALC.
LILNI	AMOUNT OF LITHIUM NITRIDE IN POOL (LB)
LILOX	AMOUNT OF LITHIUM OXIDE IN POOL (LB)
LILP	TRUE AMOUNT OF LITHIUM IN POOL (LB)
LIS	LITHIUM USED IN SPRAY FIRE (LB)
LIT	MASS OF LITHIUM IN POOL INITIALLY (LB)
L1	CONCRETE FLOOR ELEMENT THICKNESS (FT.)
MAIP	INITIAL MASS OF INERT GAS IN PRIMARY CONTAINMENT (LB)
MAIS	INITIAL MASS OF INERT GAS IN SECONDARY CONTAINMENT (LB)
MAIRP	WT. OF PRIMARY CELL GAS (LB)
MAIRS	WT. OF SECONDARY CELL GAS (LB)
MAP	WT. OF INERT GAS IN PRIMARY CELL (LB)
MAS	WT. OF INERT GAS IN SECONDARY CELL (LB)
MB	MASS OF BREEDER ELEMENT (LB-MOLES)
MCZ	REACTION ZONE MASS (LB-MOLES)
MCZ1	INITIAL REACTION ZONE MASS (LB-MOLES)
MH2P	WT. OF HYDROGEN IN PRIMARY CONT. CELL GAS (LB)
MH2S	WT. OF HYDROGEN IN SECONDARY CONT. CELL GAS (LB)
MLEAD	MASS OF LEAD IN LEAD LAYER ABOVE LIPB POOL (LB)
MLIHP	WT. OF LITHIUM HRYDROXIDE IN PRIMARY CONT. GAS (LB)
MLIHS	WT. OF LITHIUM HRYDROXIDE IN SECONDARY CONT. GAS (LB)
MLINIP	INITIAL MASS OF LITHIUM NITRIDE IN PRIMARY CONT. (LB)
MLINIS	INITIAL MASS OF LITHIUM NITRIDE IN SECONDARY CONT. (LB)

MLINP	WT. OF LITHIUM NITRIDE IN PRIMARY CONT. GAS CELL (LB)
MLINS	WT. OF LITHIUM NITRIDE IN SECONDARY CONT. GAS CELL (LB)
MLIOH	MASS OF LIOH PRODUCT IN (LB) MOLES
MLIOIP	INITIAL MASS OF LITHIUM OXIDE IN PRIMARY CONT. (LB)
MLIOIS	INITIAL MASS OF LITHIUM OXIDE IN SECONDARY CONT. (LB)
MLIOP	WEIGHT OF LITHIUM OXIDE IN PRIMARY CELL GAS. ALL OF THE
	SPRAY FIRE PRODUCT REMAINS IN THE CELL GAS. A FRACTION
	OF THE PRODUCTS FROM THE POOL FIRE IS ADDED (LB)
MLIOS	WT. OF LITHIUM OXIDE IN SECONDARY CELL GAS. (LB) (ZERO)
MNIINJ	RATE OF INJECTION OF NITROGEN DURING A 60 SEC INTERVAL
	USED TO MODEL HEDL PROCEDURE (LB/SEC)
MNIIP	INITIAL WEIGHT OF NITROGEN IN PRIMARY CONTAINMENT (LB)
MNIIS	INITIAL WEIGHT OF NITROGEN IN SECONDARY CONTAINMENT (LB)
MNIP	WEIGHT OF NITROGEN IN PRIMARY CONT. CELL GAS (LB)
MNIS	WEIGHT OF NITROGEN IN SECONDARY CONT. CELL GAS (LB)
MNINJ1,MNINJ2	2,MNINJ3 MASS OF NITROGEN INJECTED (LB)
MOINJ1,MOINJ	2,MOINJ3 MASS OF OXYGEN INJECTED (LB)
MOXINJ	RATE OF INJECTION OF OXYGEN USED TO MODEL HEDL EXPERIMENTAL
	PROCEDURE. OCCURS DURING A 60 SEC INTERVAL (LB/SEC)
MOXIP	INITIAL WEIGHT OF OXYGEN IN PRIMARY CONT. (LB)
MOXIS	INITIAL WEIGHT OF OXYGEN IN SECONDARY CONT. (LB)
MOXP	WEIGHT OF OXYGEN IN PRIMARY CELL GAS (LB)
MOXS	WEIGHT OF OXYGEN IN SECONDARY CELL GAS (LB)
MPB	MASS OF ALLOY METAL PRODUCT IN (LB-MOLES)
MWAP	WEIGHT OF WAT. VAP. IN PRIMARY CONTAINMENT CELL GAS (LB)
MWAS	WEIGHT OF WAT. VAP. IN SECONDARY CONTAINMENT CELL GAS (LB)
MWAIP	INITIAL MASS OF WATER VAPOR IN PRIMARY CONT. CELL GAS (LB)
MWAIS	INITIAL MASS OF WATER VAPOR IN SECONDARY CONT. CELL GAS (LB)
N	INDICE USED TO TRANSFER CONTROL IN SUBROUTINES
NA	NUMBER OF ELEMENTS IN BREEDER ZONE
NAME(I)	INPUT CONTAINING PROGRAM TITLE AND HEADING
NL	NUMBER OF CONCRETE WALL NODES
NL1	NUMBER OF CONCRETE FLOOR NODES
NLM1,NL1M1	WALL AND FLOOR CONCRETE NUMBER OF NODES MINUS ONE
NUMCTD	NUMBER OF COOLANT TUBES DAMAGED
OUTINT	FRACTION OF THE OUTERMOST CONTAINMENT GAS LEAKED TO AMBIENT
OVERP	CONTAINMENT OVER PRESSURE (PSIG)
OVERPP	PRIMARY CONTAINMENT OVERPRESSURE (PSIG)
OVERPS	SECONDARY CONTAINMENT OVERPRESSURE (PSIG)
OXLB	OXYGEN BURNED (LB)
OXLBI	OXYGEN BURNED INITIALLY (LB)
OXLFS	OXYGEN LEFT AFTER SPRAY FIRE (LB)
PAP	GAS PRESSURE IN PRIMARY CELL (PSIA)
PAPZER	INITIAL PRIMARY CELL PRESSURE (PSIA)
PAS	GAS PRESSURE IN SECONDARY CELL (PSIA)

PASZER	INITIAL SECONDARY CELL PRESSURE (PSIA)
PAZERO	INITIAL CELL PRESSURE (PSIA)
PBMELT	MELTING POINT OF ALLOY METAL (DEG. R.)
PERCEN	PERCENTAGE BY NUMBER OF PEROXIDE (VS. MONOXIDE) FORMED IN
	COMBUSTION
PLIV	PARTIAL PRESSURE OF LITHIUM VAPOR (PSIA)
PYU	USED IN SETTING THE MINIMUM TIME STEP CALCULATED FROM
	CONDUCTION RATE FROM PAN OR STEEL LINER FROM POOL
PZEROP	PRIMARY CONTAINMENT PRESSURE AFTER SPRAY FIRE (PSIA)
QC	FORCED CONVECTIVE COOLING HEAT FLOW
QCCONC	HEAT OF COMB. FOR CONCRETE REACTION (BTU/LB LI)
QCN	HEAT OF COMB. FOR NITROGEN REACTION (BTU/LB LI)
QCO	HEAT OF COMBUSTION FOR OXYGEN REACTION (BTU/LB LI)
QCO1	HEAT OF COMBUSTION FOR MONOXIDE REACTION (BTU/LB LI)
QCO2	HEAT OF COMBUSTION FOR PEROXIDE REACTION (BTU/LB LI)
QCW	HEAT OF COMB. FOR REACTION WITH WATER VAPOR (BTU/LB LI)
QIN	HEAT ADDITION TO CELL GAS FROM SPRAY FIRE (BTU)
QLIOH	LATENT HEAT OF MELTING FOR LIOH (BTU/LB-MOLE)
QMELT	HEAT OF FUSION OF BREEDER (BTU/LB-MOLE)
QMELTP	HEAT OF FUSION OF ALLOY METAL (BTU/LB-MOLE)
QOUT1,2,3,4	USED IN HEAT BALANCE EQS. FOR SPRAY FIRE (BTU)
QRAD	INDICATES A RADIATIVE HEAT FLOW (BTU/SEC)
QRADB	FROM STEEL FLOOR (PAN) TO FLOOR CONC. OR TO AMBIENT
QRADC	FROM STEEL WALL TO WALL CONCRETE OR TO AMBIENT
QRADCG	FROM SPILL PAN TO CELL GAS
QRADFS	FROM PRIMARY STEEL FLOOR TO SECONDARY STEEL WALL
QRADG	FROM LI POOL TO GAS (NO COMB.) OR FROM COMB ZONE TO CELL GAS
QRADP	FROM COMB. ZONE TO LITHIUM POOL (COMB. ZONE MODEL ONLY)
QRADPG	FROM PRIMARY STEEL WALL TO SECONDARY CELL GAS
QRADPS	FROM PRIMARY STEEL WALL TO SECONDARY STEEL WALL
QRADS	FROM SPILL PAN TO STEEL FLOOR
QRADW	FROM COMB ZONE TO WALL STEEL OR FROM LI POOL TO WALL STEEL
QVAP	HEAT OF VAPORIZATION OF LITHIUM (BTU/LB)
QWA	HEAT OF REACTION OF BREEDER WITH WATER
RA	MEAN RADIUS OF COMBUSTION PRODUCT PARTICLES (MICRONS)
RAREA	SURFACE AREA OF REACTION ZONE
	THE SYMBOL "R" DESIGNATES A TEMPERATURE RATE OF CHANGE
	IN SOME NODE DUE TO RADIATION HEAT TRANSFER BETWEEN
	THAT NODE AND SOME OTHER NODE
RADB	IN FLOOR STEEL DUE TO RAD. TO FLOOR CONC. OR TO AMBIENT
RADC	IN WALL STEEL DUE TO RAD. TO CONCRETE OR TO AMBIENT
RADCB	IN FLOOR CONCRETE FROM STEEL FLOOR (PAN)
RADCC	IN WALL CONCRETE FROM STEEL WALL
RBREAK	TEMP. RATE OF CHANGE OF PRIMARY CELL GAS DUE TO GAS LEAKAGE
RCMBH2	STOICH, COMB. RATIO FOR H2O VAPOR REACT. (LB LI/LB H2)

.

RCMBN	STOICH. COMB. RATIO OF NITROGEN REACT. (LB LI/LB N)
RCMBO	STOICH. COMB. RATIO FOR OXYGEN REACTION (LB LI/LB O)
RCMBO1	STOICH. COMB. RATIO FOR MONOXIDE REACTION (LB LI/LB O)
RCMBO2	STOICH. COMB. RATIO FOR PEROXIDE REACTION (LB LI/LB O)
RCMBW	STOICH. COMB. RATIO FOR WAT. VAP. REACT. (LB LI/LB H2O)
RCZG	IN GAS FROM COMBUSTION ZONE
RCZP	IN LITHIUM POOL FROM COMBUSTION ZONE
RCZW	IN WALL STEEL FROM COMBUSTION ZONE
RELERR	MAXIMUM ALLOWABLE FRACTIONAL TEMP. CHANGE ACROSS A SINGLE
-	INTEGRATION STEP. USED TO VARY TIME STEP.
RGASPA	IN PAN DUE TO RAD. TO CONTAINMENT GAS
RGLI	IN POOL DUE TO RAD. TO GAS (NO COMB)
RHCON	DENSITY OF FLOOR AND WALL CONCRETE
RHINS	DENSITY OF INSULATING LAYER ON PAN
RHLEAD	DENSITY OF PURE LEAD (LB/FT3)
RHLI	DENSITY OF LITHIUM (LB/FT3)
RHOAIP	INITIAL DENSITY OF PRIMARY CELL GAS (LB/FT3)
RHOAIS	INITIAL DENSITY OF SECONDARY CELL GAS (LB/FT3)
RHOAP	DENSITY PRIMARY CELL GAS (LB/FT3)
RHOAS	DENSITY SECONDARY CELL GAS (LB/FT3)
RHOLIH	DENSITY OF LITHIUM HYDROXIDE (LB/FT3)
RHOLIN	DENSITY OF LITHIUM NITRIDE (LB/FT3)
RHOLIO	DENSITY OF LITHIUM OXIDE (LB/FT3)
RHOLIV	LITHIUM VAPOR DENSITY ABOVE POOL (LB/FT3)
RHPAN	DENSITY OF LI SPILL PAN (LB/FT3)
RHPB	DENSITY OF ALLOY METAL (LB-MOLE/FT3)
RHSTL	DENSITY OF STEEL LINER (LB/FT3)
RIFCZG	RADIATIVE INTERCHANGE FACTOR BETWEEN COMB. ZONE AND THE
	PRIMARY CELL GAS
RIFCZP	RADIATIVE INTERCHANGE FACTOR BETWEEN COMB. ZONE AND
	THE POOL SURFACE
RIFCZW	RADIATIVE INTERCHANGE FACTOR BETWEEN COMB. ZONE AND
	CONTAINMENT WALLS
RIFFPS	RADIATIVE INTERCHANGE FACTOR BETWEEN PRIMARY STEEL FLOOR
	AND SECONDARY STEEL FLOOR
RIFPAG	RADIATIVE INTERCHANGE FACTOR PAN TO GAS
RIFPAS	RADIATIVE INTERCHANGE FACTOR PAN TO STEEL FLOOR
RIFPG	RAD. INT. FAC. BETWEEN POOL AND PRIMARY CELL GAS
RIFPGA	RAD. INT. FAC. BETWEEN PRIMARY STEEL WALL AND SECONDARY GAS
RIFPS	RAD. INT. FAC. BETWEEN PRIMARY AND SECONDARY CELLS
RIFPW	RAD. INT. FAC. BETWEEN POOL AND WALL
RIFSLC	RADIATIVE INTERCHANGE FACTOR BETWEEN STEEL LINER
	AND CONCRETE SURFACE
RIN	UNIVERSAL GAS CONSTANT 1545 (FTLBF./LB-MOLE-DEG. F.)
RINP	PRIMARY CELL RIN

RINS	SECONDARY CELL RIN
RLIG	IN GAS DUE TO RAD. FROM POOL (NO COMBUSTION)
RLIW	IN WALL STEEL FROM LITHIUM POOL (NO COMB)
RNILB	RATE OF NITROGEN CONSUMPTION (LB/SEC)
RN2	DEGREE TO WHICH NITROGEN LI REACTION OCCURS. VALUE IS
	BETWEEN ZERO AND ONE (=0 FOR NO REACTION, =1 FOR COMPLETE)
ROXLB	RATE OF OXYGEN CONSUMPTION BY POOL FIRE (LB/SEC)
RPAGAS	IN CELL GAS DUE TO RAD. FROM LI PAN
RPANST	IN WALL STEEL DUE TO RAD. FROM LITHIUM PAN
RRAD	INITIAL RADIUS OF REACTION ZONE (FT.)
RSTPAN	IN PAN DUE TO RAD. TO FLOOR STEEL
RTLI,RTG,RAD	B, VARIOUS RATES OF TEMP.
RADW,RADCB,	RADCW CHANGE OF NODES (DEG. F./SEC)
RVOL	INITIAL REACTION ZONE VOLUME (FT3)
RVOL1	REACTION ZONE VOLUME (FT3)
RWALB	RATE OF WATER VAPOR CONSUMPTION (LB/SEC)
RWCZ,RCZW,F	ICZG,RADB,RADW,
RADCB,RADCV	V,RLIW,RGLI,RLIG, VARIOUS RATES OF TEMP. CHANGE OF NODES (DEG. F./SEC)
RSPGS,RWLI,R	WPGAS,RWPWS,RWSWP
RWLI	IN LITHIUM POOL FROM RAD. TO WALL STEEL (NO COMB)
R1	COEFFICIENT OF BREEDER IN WATER REACTION EQUATION
R2	COEFFICIENT OF ALLOY METAL IN WATER REACTION EQUATION
SFLCR	HEAT REMOVAL RATE BY EMERGENCY COOLING OF STEEL
	FLOOR LINER (BTU/SEC)
SFLEND	TIME AFTER SPILL WHEN SFLCR ENDS (SEC)
SFLTIN	TIME AFTER SPILL WHEN SFLCR BEGINS (SEC)
SIGMA	STEPHAN-BOLTZMAN CONSTANT 0.1713E-8 (BTU/FT2/HR/DEG. R.**4)
SPILL	TOTAL WEIGHT OF LITHIUM SPILLED (LB)
SPRAY	WEIGHT FRACTION OF LITHIUM CONSUMED IN THE SPRAY FIRE
STICK	RATE AT WHICH AEROSOLS ARE REMOVED FROM PRIMARY DUE TO
	STICKING TO THE WALL. IF STICK > 1.0 EXECUTION IS STOPPED
	STICK MAY BE DECREASED BY INCREASING "BETA".
TA	AMBIENT TEMPERATURE (DEG. F.)
TAU	TIME CONSTANT FOR TRANSIENT NATURAL CONVECTION
TAUCZ	USED TO MODEL COMBUSTION ZONE-POOL COUPLING IN THE RADIATIVE
	INTERCHANGE FACTORS INSTEAD OF (1EMCZ) (DIMENSIONLESS)
TB(I)	TEMP. OF ITH NODE OF CONCRETE FLOOR (DEG. R.)
TBIC(I)	INITIAL TEMP. OF ITH NODE OF CONCRETE FLOOR (DEG. R.)
TBF,TCF,TGF,	ETC. CORRESPONDING TEMP. IN DEGREES FAHRENHEIT
TBLOW	INERT GAS INLET TEMP. (DEG. R.)
TC(I)	TEMP. OF ITH NODE OF CONCRETE WALL (DEG. R.)
TCIC(I)	INITIAL TEMP. OF ITH NODE OF CONCRETE WALL (DEG. R.)
TCIGNI	IGNITION TEMPERATURE OF CONCRETE LITHIUM REACTION
	IN CONCRETE COMBUSTION MODEL (DEG. R.)
TCON	CONCRETE COMBUSTION ZONE TEMPERATURE IN

	CONCRETE COMBUSTION MODEL (DEG. R.)
TCONF	CONCRETE COMBUSTION ZONE TEMPERATURE IN
	CONCRETE COMBUSTION MODEL (DEG. F.)
TCZ	COMBUSTION ZONE TEMPERATURE (DEG. R)
TCZF	COMBUSTION ZONE TEMP. (DEG. F.)
TCZI	INITIAL VALUE OF COMB. ZONE TEMP. (DEG. R.)
TE	EQUILIBRIUM TEMP. RESULTING FROM SPRAY FIRE (DEG. R.)
TEHCP	TEMP. OF PRIMARY EXTRANEOUS HEAT CAPACITY NODE (DEG. R.)
TEHCPF	TEMP. OF PRIMARY EXTRANEOUS HEAT CAPACITY NODE (DEG. F.)
TEHCS	TEMP. OF SECONDARY EXTRANEOUS HEAT CAPACITY NODE (DEG. R.)
TEHCSF	TEMP. OF SECONDARY EXTRANEOUS HEAT CAPACITY NODE (DEG. F.)
TEHCZP	INITIAL TEMP. OF PRIMARY EXTRANEOUS HEAT CAPACITY NODE (DEG. R.)
TEHCZS	INITIAL TEMP. OF SECONDARY EXTRANEOUS HEAT CAPACITY NODE (DEG. R.)
TET1	USED IN CALCULATING THERMAL CONDUCTIVITY OF INNER
	PAN INSULATION SEE KIN1
TET2	USED IN CALCULATING THERMAL CONDUCTIVITY OF OUTER
	PAN INSULATION SEE KIN2
TEZ	AVERAGE OF COMBUSTION ZONE TEMP. AND LITHIUM POOL TEMP.
	USED IN TEST FOR COMBUSTION CONDITION
TFEFF	NORMALIZED TEMP. OF LI POOL/COMB. ZONE FILM
TGF	CONTAINMENT GAS TEMP. IN FARENHEIT
TGP	PRIMARY CELL GAS TEMP. AFTER SPRAY FIRE (DEG. R.)
TGPF	PRIMARY CELL GAS TEMP. (DEG. F.)
TGPZER	INITIAL PRIMARY CELL GAS TEMP. (DEG. R.)
TGS	SECONDARY CONT. CELL GAS TEMP. (DEG. R.)
TGSF	SECONDARY CONT. CELL GAS TEMP. (DEG. F.)
TGSZER	INITIAL SECONDARY CELL GAS TEMP. (DEG. R.)
THFC	CONCRETE FLOOR THICKNESS INPUT AS FT.
THFP	PRIMARY STEEL FLOOR THICKNESS INPUT AS FT.
THFS	SECONDARY STEEL FLOOR THICKNESS INPUT AS FT.
THKIN1	INNER INSULATION THICKNESS INPUT AS FT.
THKIN2	OUTER INSULATION THICKNESS INPUT AS FT.
THKPAN	SPILL PAN THICKNESS IN FEET INPUT AS FT.
THPB	THICKNESS OF LEAD LAYER ABOVE LIPB POOL
THWC	CONCRETE WALL THICKNESS INPUT AS FT.
THWP	PRIMARY STEEL WALL THICKNESS INPUT AS FT.
THWS	SECONDARY STEEL WALL THICKNESS INPUT AS FT.
TIME	TIME AFTER SPILL HAS OCCURRED (SEC)
TIMEF	STOP INTEGRATION TIME (SEC)
TIMEO	OUTPUT TIME INDICATOR (SEC)
TINS1	TEMP. OF INNER NODE OF INSULATION (DEG. R.)
TINS1F	TEMP. OF INNER NODE OF INSULATION (DEG. F.)
TINS11	INITIAL TEMP. OF INNER NODE OF INSULATION (DEG. R.)
TINS2	TEMP. OF OUTER NODE OF INSULATION (DEG. R.)
TINS2F	TEMP. OF OUTER NODE OF INSULATION (DEG. F.)

TINS2I	INITIAL TEMP. OF OUTER NODE OF INSULATION (DEG. R.)
TLEAD	TEMP. OF LEAD LAYER IN POOL (DEG. R.)
TLEADF	TEMP. OF LEAD LAYER IN POOL (DEG. F.)
TLEADI	INITIAL TEMP. OF LEAD LAYER IN POOL (DEG. R.)
TLI	LITHIUM TEMP. IN POOL (DEG. R.)
TLIBS	LITHIUM TEMPERATURE BEFORE SPRAY FIRE (DEG. R.)
TLIF	LITHIUM POOL TEMP. IN FARENHEIT
TLII	INITIAL LITHIUM POOL TEMP. (DEG. R)
TLIO	INITIAL LITHIUM POOL TEMP. (DEG. R.)
TMELT	MELTING TEMP. OF LITHIUM (DEG. R.)
TN	TEMPERATURE OF BREEDER ZONE ELEMENT (DEG. R.)
ТО	TEMP. OF CELL GAS BEFORE SPRAY FIRE (DEG. R.)
TONE,TTWO,T	THREE TIME IN SECONDS AT WHICH EACH INJECTION OCCURS
TPAN	LITHIUM PAN TEMP SUSP. PAN OPTION (DEG. R.)
TPANF	LITHIUM PAN TEMP (DEG. F.)
TPANZO	INITIAL PAN TEMPERATURE IN DEGREES R.
TSFP	PRIMARY STEEL FLOOR LINER TEMP. (DEG. R.)
TSFPF	PRIMARY FLOOR STEEL LINER TEMPERATURE (DEG. F.)
TSFPI	INITIAL PRIMARY STEEL FLOOR LINER TEMP. (DEG. R.)
TSFSI	INITIAL SECONDARY CELL FLOOR LINER TEMP. (DEG. R.)
TSP	PRIMARY CELL STEEL WALL LINER TEMP. (DEG. R.)
TSPF	PRIMARY CELL STEEL WALL LINER TEMP. (DEG. F.)
TSPZER	INITIAL PRIMARY CELL STEEL WALL LINER TEMP. (DEG. R.)
TSS	SECONDARY CELL STEEL WALL LINER TEMP. (DEG. R.)
TSSF	SECONDARY CELL STEEL WALL LINER TEMP. (DEG. F.)
TSSZER	INITIAL SECONDARY CELL STEEL WALL LINER TEMP. (DEG. R.)
TVAP	BOILING POINT OF LITHIUM (DEG. R.)
T1	FILM TEMP. BETWEEN PRIMARY CELL GAS AND POOL (DEG. R.)
T2	FILM TEMP. BETWEEN PRIMARY CELL GAS AND STEEL WALL LINER ((DEG. R.))
T3EP	FILM TEMP. BETWEEN PRIMARY CELL GAS AND EXTR. HEAT CAP. DEG. R.
T3ES	FILM TEMP. BETWEEN SECONDARY CELL GAS AND EXTR. HEAT CAP. (DEG. R.)
T4	FILM TEMP. BETWEEN SECONDARY GAS AND SECONDARY STEEL WALL (DEG. R.)
T4H	FILM TEMP. BETWEEN AMBIENT AND OUTSIDE STEEL OR CONCRETE WALL
	DEPENDING IF THERE IS CONCRETE PRESENT (DEG. R.)
T5	FILM TEMP. BETWEEN PRIMARY STEEL WALL AND SECONDARY GAS (DEG. R.)
T6	FILM TEMP. BETWEEN SECONDARY CELL GAS AND PRIMARY FLOOR (DEG. R.)
T7	FILM TEMP. BETWEEN AMBIENT AND OUTSIDE STEEL FLOOR OR CONCRETE
	FLOOR DEPENDING IF THERE IS CONCRETE PRESENT (DEG. R.)
USUBA	HEAT TRANSF. COEFF., CONTAINMENT AMBIENT (BTU/SEC FT2 DEG. F.)
VCONC	VOLUME OF CONCRETE IN FIRST NODE OF CONCRETE IN THE CONCRETE
	COMBUSTION MODEL (FT3)
VP	PRIMARY CONTAINMENT CELL FREE VOLUME (FT3)
VS	SECONDARY CONTAINMENT CELL FREE VOLUME (FT3)
VOL	VOLUME OF BREEDER ELEMENT (FT3)
WAB	WEIGHT FRACTION OF INERT GAS IN FLOODING GAS

-

WAP	WT. FRACTION OF INERT GAS IN PRIMARY ATMOSPHERE
WAS	WT. FRACTION OF INERT GAS IN SECONDARY ATMOSPHERE
WATER	AMOUNT OF WATER THAT SHOULD BE LEFT IN CONCRETE TOP NODE
	ACCORDING TO THE CORRELATION USED (LB/FT3)
WFP	THICKNESS OF PRIMARY FLOOR STEEL LINER (INPUT AS FT.)
WN2P	WEIGHT FRACTION OF NITROGEN IN PRIMARY ATMOSPHERE
WN2S	WEIGHT FRACTION OF NITROGEN IN SECONDARY ATMOSPHERE
WN2B	WEIGHT FRACTION OF NITROGEN IN FLOODING GAS
WO2P	WEIGHT FRACTION OF OXYGEN IN PRIMARY ATMOSPHERE
WO2S	WEIGHT FRACTION OF OXYGEN IN SECONDARY ATMOSPHERE
WO2B	WEIGHT FRCTION OF OXYGEN IN FLOODING GAS
WP	THICKNESS OF PRIMARY STEEL POOL LINER INPUT AS FT.
WS	THICKNESS OF SECONDARY STEEL POOL LINER INPUT AS FT.
WWAB	WT. FRACTION OF WATER VAPOR IN FLOODING GAS
WWAP	WT. FRACTION OF WATER VAPOR IN PRIMARY CONTAINMENT ATMOSPHERE
WWAS	WT. FRACTION OF WATER VAPOR IN SECONDARY CONTAINMENT ATMOSPHERE
XALLOY	ATOM PERCENT LITHIUM IN LIPB POOL
XBLOW	USED IN CONJUNCTION WITH IBLOW
XESC	USED IN CONJUNCTION WITH IESC
XLI	WEIGHT FRACTION OF LITHIUM IN LIPB ALLOY
XLIDOT	MASS FLOW RATE OF LITHIUM THROUGH LEAD LAYER ABOVE LIPB POOL (LB/SEC)
XMAIRP	AMOUNT OF GAS IN PRIMARY CONTAIMENT AFTER SPRAY (LB-MOLES)
XMAIRS	AMOUNT OF GAS IN SECONDARY CONTAIMENT AFTER SPRAY (LB-MOLES)
XMDOT	MASS FLOW RATE OF GAS BETWEEN PRIMARY AND SECONDARY CONT. (LB/SEC)
XMEHCP	MASS OF PRIMARY EXTRANEOUS HEAT CAPACITY (LB)
XMEHCS	MASS OF SECONDARY EXTRANEOUS HEAT CAPACITY (LB)
XMH2OI	INITIAL MASS OF WATER IN CONCRETE IN CONCRETE COMBUSTION
	OPTION (LB)
XMOLP	MOL. WEIGHT OF PRIMARY CONTAINMENT GAS (LB/LB-MOLE)
XMOLS	MOL. WEIGHT OF SECONDARY CONTAINMENT GAS (LB/LB-MOLE)
XMOLA	MOLECULAR WT. OF INERT GAS (LB/LB-MOLE)
XMOLAB	MOL. WT. OF INERT FLOODING GAS
XPB	WEIGHT FRACTION OF ALLOY METAL
XSFL	INDICATES EMERGENCY COOLING OF FLOOR STEEL (1/SEC)
	XSFL=0. FOR NO COOLING , XSFL=1. FOR COOLING
YALICZ	EFFECTIVE THERMAL ADMITTANCE, FILM-COMB. ZONE (BTU/SEC-DEG. F.)
YALIG	EFFECTIVE THERMAL ADMITTANCE, POOL-CELL GAS (BTU/SEC-DEG. F.)
YAPCZ	EFFECTIVE THERMAL ADMITTANCE POOL-COMB. ZONE (BTU/SEC-DEG. F.)
YPAGAS	EFFECTIVE THERMAL ADMITTANCE PAN-PRIMARY CELL GAS (BTU/SEC-DEG. F.)
ZLI	THICKNESS OF LITHIUM NODE (FT.)
ZP	USED TO DETERMINE EMLI IF EMLI .LT. 0.9
ZZ	TEMPERATURE RATE OF CHANGE IN BREEDER ELEMENT
ZZ1	POOL TEMP. RATE OF CHANGE (DEG. F./SEC)
ZZ2	LI SPILL PAN TEMP. RATE OF CHANGE (DEG. R./SEC)
ZZ3	SECONDARY CELL GAS TEMPERATURE RATE OF CHANGE (DEG. R./SEC)

ZZ4	PRIMARY CELL GAS TEMP. RATE OF CHANGE (DEG. F./SEC)
ZZ5	STEEL WALL LINER TEMP. RATE OF CHANGE (DEG. F./SEC)
ZZ6	COMB. ZONE TEMP. RATE OF CHANGE (DEG. F./SEC)
ZZ7	FLOOR STRUCTURE TEMP. RATE OF CHANGE (DEG. F./SEC)
ZZ8	INNER INSULATION TEMP. RATE OF CHANGE (SUSP. PAN OPTION)
ZZ9	OUTER INSULATION TEMP. RATE OF CHANGE (SUSP. PAN OPTION)
ZZ99	USED TO ENSURE POSITIVE COMBUSTION RATE
ZZEP	PRIMARY CELL EXTRANEOUS HEAT CAPACITY TEMP. RATE OF CHANGE
	DEG.R./SEC
ZZES	SECONDARY CELL EXTRANEOUS HEAT CAPACITY TEMP. RATE OF CHANGE
	(DEG. R./SEC)
ZZPB	LEAD LAYER ABOVE LIPB POOL TEMPERATURE RATE OF CHANGE (DEG. R./SEC)
ZZS	SECONDARY CONTAINMENT CELL STEEL WALL TEMPERATURE RATE OF
	CHANGE (DEG. R./SEC)

PROGRAM DECISION FLAGS

IAROSL	= 1 AEROSOL REMOVAL FROM PRIMARY CONTAINMENT
	DUE TO AEROSOLSTICKING TO THE WALL.
	= 0 NO AEROSOL REMOVAL.
IBLOW	= 1 FLOOD CONTASINMENT WITH INERT GAS
	= 0 NO CONTAINMENT FLOODING
ICMB	= 0 NO OXYGEN LEFT AFTER SPRAY FIRE.
	= 1 THERE IS STILL OXYGEN LEFT AFTER SPRAY FIRE.
	SET INITIALLY TO 1 AND THEN RESET TO 0 WHEN THE
	PROGRAM CALCULATES THAT THE OXYGEN HAS RUN OUT.
ICNI	= 1 NITROGEN REACTIONS POSSIBLE.
	= 0 NITROGEN REACTIONS NOT POSSIBLE.
ICZ	= 1 COMBUSTION ZONE MODEL USED
	= 0 COMBUSTION ZONE MODEL NOT USED
IESC	= 1 EMERGENCY SPACE COOLING OPTION
	= 0 NO EMERGENCY SPACE COOLING
ILIT	= 0 NO LITHIUM LEFT TO BURN.
	= 1 LITHIUM LEFT TO BURN (INITIAL CONDITION).
IMETH	= 1 RUNGE-KUTTA METHOD OF INTEGRATION USED.
	= 3 SIMPSON'S RULE METHOD OF INTEGRATION USED.
ISFLC	= 1 EMERGENCY COOLING OF STEEL FLOOR LINER OPTION
	= 0 NO EMERGENCY COOLING OF STEEL FLOOR LINER
ISWICH	= 1 CRACK SIZE BECOMES ZERO AFTER INNER AND OUTER CELL
	PRESSURES EQUILIBRATE IN TWO CELL CALCULATION.
	= 0 CRACK SIZE REMAINS CONSTANT.

FLAG2 = .TRUE.	TWO CELL CALCULATION (DEFAULTS TO 1 CELL IF FALSE)
FLAGAS = .TRUE.	INJECTIONS OF DRY GAS DURING RUN
FLAGC = .TRUE.	CONCRETE COMBUSTION (BREACH OF STEEL LINER)
FLAGD = .TRUE.	CONCRETE COMBUSTION HAS STOPPED
FLAGDF = .TRUE.	LIPB LAYERED POOL COMBUSTION MODEL IN USE
FLAGF = .TRUE.	FLOOR CONCRETE
FLAGL = .TRUE.	LILP IS FIXED AT A MINIMUM
FLAGM = .TRUE.	SONIC FLOW BETWEEN CONTAINMENTS (CALCULATED IN PROGRAM)
FLAGN = .TRUE.	SETS N = 1 IN SUBROUTINES IN ORDER TO PROPERLY TRANSFER
	FLOW THROUGH SUBROUTINES
FLAGPB = .TRUE.	LIPB POOL COMBUSTION MODEL IN USE
FLAGPN = .TRUE.	YES ON SUSPENDED PAN GEOMETRY
FLAGSI = .TRUE.	IF USER WISHES INPUT/OUTPUT IN SI UNITS
FLAGW = .TRUE.	WALL CONCRETE

Appendix C

Troubleshooting (D.A. Dube 5/22/78)

"There exists no large computer code which runs perfectly 100% of the time." -ANONYMOUS

The user of this code will no doubt run into troubles along the way, hopefully not. The most common error is :

'EXX IS NEGATIVE – CANNOT TAKE ROOT'

Whenever this error occurs, it usually means that the program has diverged and that the combustion zone temperature has decressed to less than absolute zero. This may arise because the temperature rate of change of the combustion zone is relatively large because of the heat capacity of the zone. If this occurs, try a lower value of EMCZ. A number of corrective measures have been taken and the problem seems to have disappeared for this particular condition. In addition, this error statement was found to occur when the combustion rate, CMBRH, was quite small. (ie. $<< 1.0 lbm LI/HR/ft^2$) This could happen when the oxygen and nitrogen concentrations are rather low for example, or when the gas pressure is quite small. It has also occurred when values of EXHSTV exceed 40,000. In general, the combustion zone temperature should be greater than the lithium pool temperature. If not, this is a possible indication of trouble.

When the liquid lithium is depleted, or other conditions are reached, combustion stops. The calculations then proceed from the section in the program marked, "COMPUTATIONS USING COMBUSTION ZONE MODEL" to "COMPUTATIONS WITHOUT COMBUSTION ZONE MODEL". This is indicated on the printed output by CMBRH going to zero. Since the liquid lithium is now non-existent one would expect something to happen to TLIF i.e. the lithium pool temperature.

Another error which may occur is the "DIVIDE CHECK" error from the computer itself which interrupts the calculations and is printed out on the output.

The error indicates that an attempt was made to divide by zero or something close to zero. This may indicate problems with the containment gas. It may occur if the value of EXHSTV is too high or LILP too low. The problem can be corrected to a certain extent, if it arises, by decreasing DTMIN, the minimum time step. This unfortunately increases the computation time.

If the statement "LITHIUM TEMP. ABOVE BOILING POINT" occurs, this may indicate that for some reason, the temperature rate of change of lithium was very large. Possibly because the combustion zone temperature diverged to a large value. It generally arises as the value of LILP approaches zero.

The other error pointers in the code do not indicate serious problems but merely point out that situations have arisen where there is no reason to continue with the calculations. Such as when the temperature of lithium drops below its melting point, or when the gas temperature <u>and</u> pressure return to normal.

For the vast majority of calculations there should be no problems. Always watch for conditions when the containment gas weight decreases rather fast (MNI, MOX), or when the combustion zone temperature, TCZF ; combustion rate, CMBRH ; or the time step, DELT ; oscillate. In general, the value of DELT after time = 0 should steadily increase, them possibly decrease until the end of combustion. Then it will change greatly, possibly oscillate and eventually reach a steady value. Sudden changes in DELT mean that the temperature rates of change are varying abnormally. For the most part, the temperature rate of change of the combustion zone or lithium pool controls the value of DELT. If there is uncertainty as to the source of the error, print out the values of TCZ, CMBRH, ZZ5, and ZZ6 as functions of time.

Appendix D

This is the sample input data file, uwmak2.w :

1	1	0	1 0	0	1	0	0	0	0	0	0	0	1														
	8		8										-														
	.1(0	. 10		. 1	0	.1	15		. 1	5	.1	ι5	•	15	.1)			•							
	.10	D	.10		. 1	0	.1	15		. 1	5	.1	15	•	15	. 10)										
	ç	950	.00				f	ð.	20			Ę	522	2.0	000		40	0.0	0								
	Ę	543	.0			12	300).	00	0			0	0.0			502	2.0	00			0.	00				
		00	. 25	4			00).	63	5			0	0.0	076		0	0.0	26			0.	00				
		0	. 85			ł	502	2.1	00	00			51	ι.9			797(0.0	00		65	50.	00			0.0	50
		0	. 85			ŧ	502	2.	00	00			51	ι.9		•	797(0.0	00		15	50.	00			0.0	50
	÷	0	. 2			4	17().	00	00			48	3.4	4		480).5	5								
		0	.9			(653	3.	00	00			1	ι.7	3		2306	3.6	6								
	19	986	. 29			1	392	2.1	64	00		28	562	2.9	5		(0.0	4			0.	10			0.5	0
	429	936	.7				().	0		-	94	164	4.1	6	3	1974	4.0									
		0	. 87	64			().	0				1	L.4	87		(0.3	83			0.	00				
		453	.7			10	518	5.	00			193	370	0.0		•	(0.0									
		0	. 12				C).	12				C).1	20		(0.0	70			0.	07			0.0	7
		0	.07				0).	07																		
		150	.00	0		22(000).	00				C).0	000		(0.7	50		30)0.	0				
	7	723	.0			-	722	2.1	0			7	723	3.0			723	3.0			30)0.	0		72	3.0	
	1	101	. 4				C),:	23	16			C).0	000		. (0.0	000								

0003000000.03000044444.0000000000.00600002000.0000

This is the sample input data file, uwmak2.x :

0255000.0000	0000045.000000	00101.40000	000300.0000	0000300.000000	0300.0000
1000.00	00.00	0.232	0.0	522.0000	
300.0	11500.0	50.00	502.00	0.09	
0.85	502.0000	51.90	7970.0	17000.00	0.0060
0.85	502.0000	51.90	7970.0	6000.00	0.0060
350,00				•	

Appendix E

The following are parts of the output files LITFIRE produces :

OUT2.

TIME	DELT	TCZF	TLIF	<u>TGPF</u>	<u>PAP</u>	<u>TSPF</u>	<u>TSFPF</u>
100.1	3.00	449.84	449.83	448.26	101.34	442.31	442.80
1002.2	3.00	592.36	468.96	467.21	75.75	388.25	422.37
5001.2	3.00	454.30	423.56	334.17	35.94	269.11	392.47
10401.2	3.00	344.29	344.25	253.39	33./1	204.84	327.39
15201.2	3.00	28/.12	287.09	214.10	44.28	1/2.00	2/3.49
20002.8	3.00	299.07	00.30	196.85	20.48 22.40	149.94	200.07
20201.0	3.00	229.45	229.43	108.93	02.49 77 75	133.00	222.13
38001.2	3.00	180.76	180.75	133.13	87.89	121.27 106.76	176.09

OUT3.

TIME	<u>TGSF</u>	TFSF	<u>PAS</u>	<u>XMDOT</u>	MOXS	<u>MNIS</u>
100.1	281.2	271.6	101.8	.3211E-2	1.529E+5	5.062E+5
1002.2	374.7	285.4	104.9	.2617E-1	1.529E+5	5.062E + 5
5001.2	609.2	343.0	112.8	.3526E-1	1.528E+5	5.059E+5
10401.2	670.1	405.5	114.8	.3555E-1	1.528E+5	5.056E+5
15201.2	651.0	438.9	114.1	.3543E-1	1.526E+5	5.053E+5
20002.8	620.6	458.3	113.0	.3523E-1	1.526E+5	5.050E+5
25402.8	590.4	471.9	111.9	.3399E-1	1.525E+5	5.046E+5
30201.2	566.4	477.0	111.0	.2790E-1	1.524E+5	5.044E+5
38001.2	535.9	479.1	109.9	.2269E-1	1.523E+5	5.0405 + 5

OUT5.

<u>TIME</u>	MNIP	MOXP	<u>RN2</u>	<u>CMBRH</u>	LIBP
100.1	355.7	107.2	0	0.7560	0
1002.2	287.7	45.38	0.3623	4.504	174.0
5001.2	176.0	15.34	0.3145	1.288	549.8
10401.2	191.4	15.47	0	0.6301	683.8
15201.2	261.8	33.17	0	0.6627	683.8
20002.8	362.5	25.28	0.07671	1.047	769.3
25402.8	435.2	19.68	0	0.6130	808.1
30201.2	544.5	44.75	0.03843	1.476	821.7
38001.2	658.2	39.13	0	0.8123	884.0

OUT7.

۴

TIME	<u>TB(1)</u>	<u>TB(2)</u>	<u>TB(4)</u>	<u>TB(6)</u>	<u>TB(8)</u>
100.1	27.00	27.00	27.00	27.00	27.00
1002.2	27.02	27.00	27.00	27.00	27.00
5001.2	27.42	27.13	27.00	27.00	27.00
10401.2	28.38	27.62	27.09	27.00	27.00
15201.2	29.30	28.24	27.30	27.02	27.00
20002.8	30.15	28.89	27.60	27.07	27.00
25402.8	31.00	29.62	28.01	27.16	27.02
30201.2	31.66	30.22	28.40	27.27	27.07
38001.2	32.54	31.00	29.07	27.52	27.16

OUT8.

<u>TIME</u>	<u>TC(1)</u>	<u>TC(2)</u>	<u>TC(4)</u>	<u>TC(6)</u>	<u>TC(8)</u>
100.1	27.01	27.00	27.00	27.00	27.00
1002.2	27.40	27.17	27.01	27.00	27.00
5000.2	30.59	29.47	28.08	27.21	27.04
10401.2	33.37	32.18	30.29	28.30	27.62
15201.2	34.83	33.76	31.89	29.55	28.62
20002.8	35.73	34.00	33.10	30.77	29.72
25402.8	36.38	35.60	34.12	31.96	30.88
30201.2	36.79	36.12	34.81	32.83	31.76
38001.2	37.24	36.71	35.63	33.92	32.88

REFERENCES

- 1. D. A. Dube and M. S. Kazimi, "Analysis of Design Strategies for Mitigating the Consequences of Lithium Fire Within Containment of Controlled Thermonuclear Reactors," MITNE-219, July 1978.
- 2. M. S. Tillack and M. S. Kazimi, "Development and Verification of the LITFIRE Code for Predicting the Effects of Lithium Spills in Fusion Reactor Containments," MIT PFC/RR-80-11, July 1980.
- 3. V. Gilberti and M. S. Kazimi, "Lithium Fire Modeling in Multi-Compartment Systems," MIT PFC/RR-83-08, January 1983.