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INTRODUCTION AND SUMMARY

1.0 Introduction

The potential of the high field tokamak for production of very high values of

nr and fusion power density makes possible DD-DT operation which can be used

to reduce tritium breeding requirements. In DD-DT operation, neutrons from

both the D(T,n)He4 and D(D,n)He 3 reactions are used to produce the tritium.

The plasma tritium breeding requirement y where

rate of fused tritons from external source
rate of fusion neutron production

is between zero (DD operation) and one (DT operation). The tritium/deuterium

ratio (nT/nD) in the plasma is < 1 (DT operation) but greater than that

in DD operation where tritium produced by the D(D,p)T reaction is burned

(nT/nD ~~ 0.003). A continuous range of tradeoffs between reduced tritium

breeding requirements and reduced fusion power density together with increased

nTe requirements, is possible'.

The advantages of DD-DT operation include:

" Insurance of self sufficiency in tritium production

* Increased flexibility of blanket and first wall design due to decreased

neutron economy requirements

" High tritium burn-up in the plasma

1



* Increased availability of neutrons for fissile fuel breeding, tritium produc-

tion for makeup or startup fuel for DT reactors and synfuel production

In this report we discuss trade-offs between breeding and plasma perfor-

mance and present illustrative design features for two types of high field tokamaks

which use DD-DT operation. One device is a relatively near term machine of

moderate size (major radius = 4.8 m, minor radius = 1.2 m). It would serve as an

engineering/materials test reactor with self sufficiency in tritium production 2 ,3.

We refer to this device as an Advanced Fusion Test Reactor (AFTR ) device.

An AFTR device might also be used to produce tritium for other reactors or to

produce fissile fuel.

The second device is a larger machine (major radius = 9.6 m, minor radius

= 2.4 m) which would use superconducting magnets. It is a commercial reac-

tor which would produce electricity using blankets which are optimized for con-

siderations other than neutron economy. We refer to this device as an Advanced

Fuel Commercial Reactor (AFCR). AFCR might also be used to produce excess

-tritium. Another possible application is synfuel production.
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Tradeoffs Between Breeding and Plasma Performance Requirements

An important tradeoff between neutronics and plasma performance require-

ments can be expressed in terms of the dependence of nrE required for ignition

upon 1 - -y. We refer to 1 - y as the "plasma tritium breeding margin" since

it represents the difference between the required breeding ratio for DT plasma

operation and that for plasma operation in a DD-DT mode.

Using the empirical scaling rE na2 for the electron energy confinement

time, nrE ~ n2a2 _ p 2B'a 2 where # is the ratio of plasma pressure to magnetic

field pressure, a is the minor radius and B is the magnetic field on axis4 . Figure

1.1 shows the dependence of p 2B4a2 required for ignition upon 1- -y. 32B 4a2 is

given in terms of meter 2-Tesla 4. At each value of 1 - -y the plasma temperature

is chosen to give the lowest value of p 2B4 a2 . Parabolic temperature and density

profiles are assumed. For DT operation, #2B 4a2 = 1.3 m 2 T 4 for a central ion

temperature of 12 keV. It is assumed that all of the tritium produced in the

D(D,p)T reactions is burned and that none of the He3 produced in the D(D,n)He3

reactions is burned.

It can be seen from Figure 1.1 that the nrE requirement for ignition increases

strongly with 1 - -y. Thus if most of the advantages of DD-DT operation can

be realized at low values of 1 - -, operation at higher values of 1 - y can be

disadvantageous.

In DD-DT more than 50% of the neutrons are 14.1 MeV neutrons. When

- = 0 (DD operation), half ther neutron are 2.45 MeV neutrons produced by the

D(D,n)He 3 reaction and half are 14.1 MeV neutrons produced by the D(T,n)He4

3
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reaction which burns the tritium produced by the D(D,p)T reaction. For -y > 0,

additional 14.1 MeV neutrons are produced by burn up of the tritium which is

provided externally. For 1 - - ' 0.3, 70% of the fusion neutrons are 14.1 MeV

neutrons. The 14.1 MeV neutrons are more effective than the 2.45 MeV neutrons

for the purpose of breeding tritium.

4



Advanced Fusion Test Reactor (AFTR) Device

The AFTR device utilizes water cooled, copper toroidal field (TF) magnets

of Bitter construction. The advantages of quasi continuous Bitter plate magnet

construction includes:

9 Capability of high field operation using presently available technology

e Substantial reduction in resistive power losses due to maximization of

conductor area

9 Minimization of ripple by flexibility of choice of conductor geometry

around a port

9 Longer magnet insulation life (stresses are mainly compressive; planar

insulators can be used)

Figure 1.2 shows normalized values of the stored energy in the toroidal field

TF coil, the resistive power for the magnet, the fusion power and the plasma

performance as functions of 1- -y for AFTR -type Reactors. A constant neutron

wall loading of Pwa = 4 MW/m 2 is assumed. The size and stored energy

increase strongly with increasing value of the plasma tritium breeding margin,

1 - -Y.

Table 1.1 gives the main parameters of the illustrative AFTR device. With

a field on axis of 8.5T the resistive power requirement of the TF magnet is 600

MW. The 0.36 m thick inboard blanket should provide sufficient shielding of the

magnet insulation to allow for > 3 years of integrated operation. This assump-

tion of insulator lifetime is based upon recent results of irradiated polyimides

which indicate that fluences of 1024 - 1025 n/m 2 may be possible5 .

5
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As shown in the table, 1 - -y can be increased at the expense of decreased

fusion power and Q, (Q, = fusion power/auxilary heating power) for fixed beta,

magnetic field and size. A value of 1 - - = 0.16 can be obtained at ignition

(Q, = 00). 1 - - = 0.25 can be obtained with Q, = 20.

Table 1.2 shows operating characteristics of the AFTR device at a reduced

field of 6.6T. The resistive power requirement of the TF magnet is 350 MW.

Figure 1.3 shows an elevation view of the plate design that would be used

in the AFTR device.

The AFTR device would serve as an engineering/materials test reactor of

moderate size which would be self sufficient in tritium production because of

its substantial plasma tritium breeding margin and also would produce some

electrical power. It might also be used to produce tritium or be used for fissile

fuel breeding.

The nonelectrical applications capability of AFTR device is illustrated in

Table 1.3. Operation at a toroidal field of 6.6T and 1 - - = 0.1 is assumed. A

LiAlO 2 blanket with a Zr 5Pb3 multiplier is used. The overall tritium breeding

margin (TBM) = k - y where k is the blanket breeding factor; k = M7 where

M is the blanket neutron multiplication factor and 7 is the blanket breeding

efficiency (7 = no. of tritons/neutron absorbed in the blanket). For M = 1.2

and 77 = 0.9, TBM = 0.18. The number of excess neutrons is given by the

product of TBM and the fusion neutron generation rate. The 4.5 X 1019 excess

neutrons generated per second could be used to generate 7.2 kg of excess tritium

per year at 100% availability.

Figure 1.4 shows R,/PCS, the ratio between the rate of production of excess

6



neutrons R, and the resistive power needed to drive the reactor Pa as a function

of 1- -y. It is assumed that the neutron wall loading and the main stresses of the

toroidal field system are kept fixed. It can be seen that there are advantages in

operating with increasing values of 1 - y, in terms of larger neutron generation

rate per unit power dissipated in the magnet system, although the reactor size

increases.

If some form of non-inductive current drive were not used on the AFTR

device, its pulse length would be limited to ~ 100 s by the drive of the ohmic

heating transformer.

For 1 - y = 0.1, the ratio of fusion power to TF magnet power would be

~ 1 for a value of average beta of - 0.06 and a magnetic field on axis of 6.6

T. Even if power producing blankets were used in AFTR device it would still

consume a substantial amount of electricity. Hence the capability the AFTR

device would provide in terms of tritium breeding margin and self sufficiency in

tritium production comes at a substantial price. If higher values of #a could be

-achieved the attractiveness of the AFTR device would, of course, increase.

7



Advanced Fusion Commercial Reactor (AFCR) Device

The use of superconducting toroidal field magnets removes the problem of

a large resistive power requirement. However, a device with superconducting

magnets will be substantially larger (due to increased magnet shielding require-

ments) and will have significantly higher capital cost. Furthermore, whereas the

technology for resistive toroidal field magnets is presently available, a substantial

amount of time is necessary to develop reliable large, high field superconducting

magnets. Because of the high coft and increased time for implementation, a su-

perconducting DD-DT device would best serve as a demonstration or commercial

reactor.

Table 1.4 gives parameters for an illustrative Advanced Fueld Commercial

Reactor (AFCR ) device. The parameters for the AFCR device have been

extrapolated from the HFCTR design 6.

This AFCR device would operate with 1-- = 0.20 at ignition. The fusion

-power would be 3100 MW and the neutron wall loading would be 2.2 MW/M 2 .

Table 1.5 shows the dependence of the fusion power, the wall loading and the

plasma Q as functions of the plasma tritium breeding margin 1 - -Y. Figure 1.5

shows an elevation view of the AFCR device.

The AFCR device uses niobium tin toroidal field magnets. The field at the

magnet is 11.9 T. The superconducting magnets would be in separate dewars and

could be individually removed. The tokamak would be completely modularized.

Each module would consist of two TF magnets, blanket and shield and first wall.

The TF magnets do not touch each other in the throat of the tokamak.
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A bucking cylinder is used to support the inward force. The load from the

cold structure in TF magnets would be transferred to the warm structure by

G-10 struts. Calculations of the heat leak through the struts indicate that it is

sufficiently low.

At 1 - y= 0.20 the plasma is operated at an average temperature of 15

keV. At this temperature the OH transformer has sufficient voltsecond capability

to provide pulse lengths > 1 hour.

Figure 1.6 shows normalized values of the stored energy in the toroidal field

TF coil, the fusion power, the plasma major radius and the plasma performance

as functions of 1 - -y for AFCR -type Reactors. A constant neutron wall loading

of 2.2 MW/m 2 is assumed. The size and fusion power of the reactor increase

with increasing value of the plasma tritium breeding margin, 1 - -y.

If AFCR is operated as an electricity producing reactor, LiAIO 2 would be

used for the tritium breeding blanket. LiAIO 2 has potential safety advantages

relative to liquid breeding materials and could be superior to LiO 2 and other

solid breeding materials in terms of chemical release, tritium holdup, allowed

temperature range for operation, and compatibility with structure and coolant.

A major disadvantage of using LiAlO 2 in DT reactors (a marginal tritium breed-

ing ratio even with a neutron multiplier) is removed by DD-DT operation with

1 - y = 0.20. Without a neutron multiplier, a LiA10 2 blanket should be self-

sufficient in tritium if operated with 1 - - = 0.2.

An additional possibility would be to use a Zr 5Pb3 multiplier, leading to a

large overall tritium breeding margin. With this larger margin the need for a

blanket in the inboard region would be removed. Another possibility is to use
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the substantial overall breeding margin to produce excess tritium which could

be used for start up or make up fuel for DT reactors with a blanket breeding

ratios less than one. Table 1.6 shows how AFCR device could be used to produce

excess tritium. 47 kg of excess tritium can be generated per year with 100%

availability if the space surrounding the plasma is completely utilized.

Figure 1.7 shows R,/ETF, the ratio between the rate of production of excess

neutrons R, and the stored energy in the toroidal field magnet ETF as a function

of 1 - -y for AFCR type devices.

The substantial tritium breeding margin might also facilitate use of this

device for synfuel production, since the absorption of neutrons in high tempera-

ture blankets could be accommodated.
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1.4 Conclusions

High field tokamaks with average betas of - 0.06 and sizes not very much

larger than DT reactors can be operated in the DD-DT mode with substantial

reductions in tritium breeding requirements. Operation with plasma tritium

breeding margins (1 - -y) in the range of 0.1 to 0.3 could lead to significant

advantages in blanket design and to a substantial increase in the availability of

neutrons for excess tritium production. The increased availability of neutrons

could also be used to increase fissile fuel production and to facilitate synfuel

blanket design.

The benefits from operation at high values of 1 - -y (> 0.4) may in general

be outweighed by increases in machine size for average betas which are less than

0.06.

An AFTR device with resistive magnets could serve as a relatively near term

engineering/materials test reactor which would obtain tritium self sufficiency at

a relatively early stage in fusion power development. This device might also be

used for tritium production.

A device with superconducting magnets, illustrated by the AFCR design,

could be used for commercial electricity production with substantial tritium

breeding margin (1 - - = 0.20). The major radius of the AFCR device (R =

9.6 m) is not significantly larger than that of contemporary DT reactor designs.

Furthermore, the AFCR device has the capability of producing pulse lengths >

1 hour with the OH transformer. By going to somewhat larger values of major

radius it should be possible to obtain substantially longer pulses. The AFCR

11



device design thus illustrates the potential of tokamak as a commercial reactor

with reduced blanket requirements and very long pulse lengths.
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TABLE 1.1

MAIN PARAMETERS OF

ADVANCED FUSION TEST REACTOR (AFTR) DEVICE

FULL PERFORMANCE

Major radius (m) 4.8

Minor radius (m) 1.2

Elongation (b/a) 1.5

Average beta 0.062

Magnetic field at plasma axis (T) 8.5

#32 B 4a2 (M2 T4 ) 28

Power requirement of resistive

TF magnet (MW) 600

Inboard blanket/shield

thickness (m) 0.36

Outboard blanket/shield

thickness (m) 0.66

1 - 'Y 0.07 0.16 0.25 1

Fusion Power (MW) 2840 1200 750 160

Neutron Wall Loading (MW/M 2) 8 4.2 2.7 0.6

QV00 00 20 1
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TABLE 1.2

PERFORMANCE OF

ADVANCED FUSION TEST REACTOR (AFTR) DEVICE

REDUCED FIELD

Magnetic Field at Plasma Axis (T) 6.6

/32B 4a2 (M2 T4 ) 10

Power Requirement of Resistive TF Magnet (MW) 360

1 - -Y 0.1 0.27 0.58

Fusion Power (MW) 650 260 110

Neutron Wall Loading (MW/M 2 ) 2.3 0.9 0.4

QV 50 3 1
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TABLE 1.3

TRITIUM PRODUCTION IN

ADVANCED FUSION TEST REACTOR (AFTR) DEVICE

(LITHIUM ALUMINATE BLANKET WITH Zr 5Pb3 MULTIPLIER)

Magnetic Field at Plasma Axis (T)

Power Requirement of Resistive TF Magnet (MW)

1 - -Y

Fusion Power (MW)

M

'r

k

Tritium Breeding Margin (k - -y)

Excess Neutrons (n/s)

Net Tritium Production

(100% Availability) (kg/yr)

6.6

360

0.1

650

1.2

0.9

1.08

0.18

4.5 X 10' 9

7.2
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TABLE 1.4

MAIN PARAMETERS OF

ADVANCED FUEL COMMERCIAL REACTOR

Major Radius (m)

Minor Radius (m)

Magnetic Field at Plasma Axis (T)

Plasma Elongation

Magnetic Field at TF Magnet (T)

Superconductor

Average Beta

P 2B 4a2 (m2 T4)

(AFCR) DEVICE

9.6

2.4

7.0

1.5

11.9

Nb.3 Sn

0.063

55.5
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TABLE 1.5

DD-DT TRADEOFFS FOR

ADVANCED FUEL COMMERCIAL REACTOR (AFCR) DEVICE

Fusion Power

(GW)

40.7

5.9

3.1

1.8

0.72

0.50

Neutron Wall Loading

(MW/M 2)

29.1

4.3

2.2

1.3

0.5

0.36

18

1 -- Y

0.0 (DT)

0.10

0.20

0.35

0.75

1 (DD)

Qv

00

00

00

10.0

2.0

1.25



TABLE 1.6

TRITIUM PRODUCTION IN

ADVANCED FUEL COMMERCIAL REACTOR (AFCR) DEVICE

(LITHIUM ALUMINATE BLANKET WITH Zr 5Pb3 MULTIPLIER)

Fusion Power (MW)

M

k

Tritium Breeding Margin (k - -y)

Excess Neutrons (n/s)

Excess Tritium Generation

(at 100% Availability) (kg/yr)

3100

1.2

0.9

1.08

0.28

3.1 X 1020

47

19



100

80

E 6060

co .40
N

20

S01 0.2 0.3 0.4

Figure 1.1 Plasma Performance Parameter P =
#32 a2B 4 at Ignition as a Function of the
Plasma Tritium Breeding Margin, 1 - -y.
Using the empirical scaling r, - na2 for
the electron energy confinement time, nr, ~
/32Baa2.
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Figure 1.3 Elevation view of AFTR device
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Figure 1.4 Ratio between Excess Neutron Genera-
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in TF Coil as Function of 1- -y for AFTR
type devices. k is the Effective Tritium
Breeding Ratio.
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Figure 1.6 Trade-offs for AFCR devices. Depen-
dence upon 1 - -y of normalized values of
plasma performance P - #2 a2 B4 ; stored
energy in TF magnet, ETF; major radius,
R; and fusion power Pf. A constant neutron
wall loading of 2.2 MW/m 2 is assumed.
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Figure 1.7 Ratio between Excess Neutron Genera-
tion Rate and Stored Energy in the Toroidal
Field Magnet as Function of 1 - -y for
AFCR type devices. k is the Effective Tritium
Breeding Ratio.
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2 DD-DT OPERATION

DD-DT operation refers to the fuel cycle which lies between the deuterium-

tritium (DT) and semi-catalyzed deuterium (SCD) cycles in terms of the amount

of external tritium required [1,2]. The DT cycle is at one extreme of the range of

operation involving the DD and DT reactions, requiring all of the tritium burnt

in the plasma to be supplied externally. This cycle has the smallest plasma

requirements in terms of nr where n is the plasma density and r the energy

confinement time, operating temperature, plasma pressure at ignition and also

achieves the largest fusion power density. In SCD operation, the tritium to

deuterium ratio, nt/nd, is determined by the balance of tritium production from

the D(D,p)T reaction and consumption by the D(T,n)He 4 reaction; where the

He 3 produced in the reaction D(D,n)He3 is assumed to leave the plasma before

it is burned. Thus, no external tritium need be supplied in SCD operation.

Although the DT fuel cycle is considered to be the first that will be uti-

lized in commercial fusion applications, the stringent tritium breeding require-

ment sufficiently complicates design in terms of blankets, safety, and main-

tenance, to at least partially offset the advantages of improved power density

and confinement characteristics compared to SCD. SCD, at the other end of the

spectrum, appears attractive from the point of view of the lack of a tritium

breeding requirement, at the price of a significantly reduced power density, in-

creased ignition requirements, and higher required operating temperature - on

the order of 50 keV [2]. The essence of the DD-DT option is to operate between
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these two bounds, supplying a fraction of the tritium needed in the DT cycle

but with a higher power density and easier confinement than that available from

SCD.

In the DD-DT cycle, some tritium is supplied to the plasma externally so

that nt/nd is greater than the equilibrium value in SCD but is less than one.

This amount of tritium is determined by the paramater -y, representing the ratio

of tritium from the external source to the number of DT and DD fusion neutrons.

Thus, gamma ranges from 1 for DT operation to 0 for SCD operation.

This range of trade-offs available from DD-DT operation between plasma

performance and tritium breeding can be significant in the development of fusion

systems for a number of reasons:

* DD-DT operation could help to insure that the first generation of fusion

reactors are self sufficient in tritium production.

* Since the requirements on neutron economy are reduced, the design of the

blanket/shield can be more readily optimized to satisfy criteria such

as safety, low activation, low tritium inventory, ease of maintenance,

and reduced size.

* DD-DT operation could be used to produce make-up fuel for fusion reac-

tors that have a tritium breeding ratio less than one.

* Low values of nt/nd result in an increased tritium burn-up fraction.

* The availability of neutrons for non-electrical applications such as fissile

fuel breeding and synfuel production can be significantly increased.

It may be possible to obtain very high thermal support ratios for
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fissile fuel breeding applications. (Thermal support ratio is the power

produced by the supported fission reactors minus fusion reactor power

consumption, all divided by the fusion reactor thermal power produc-

tion.)

In this chapter, the plasma properties required for operation in DD-DT mode

are described. In section 2.2, the optimum temprature for operation in DD-DT

mode is obtain. Both fusion power density and ignition criteria are considered.

In section 2.3, the plasma requirements for operation in DD-DT mode are

studied as a function of I- -, that is the plasma tritium breeding margin. In the

first section, the plasma performance P is held constant and the fusion power Pf
and wall loading Pwaul are allowed to vary. This corresponds fixing a machine

and allowing to vary the fusion power as the fuel mixture is varied. In section

2.3.2, the parameter P,,1 X a is kept fixed, and the required plasma. Derformance

(which is related, for a given / scaling, to the machine parameters) is allowed to

vary. This corresponds in practice to varying the machine dimensions. A more

complete study where the wall loading is kept fixed requires information about

the machine dimensions and is delayed until chapters 4 and 7.

Finally, in section 2.4 the advantages of usin DD-DT for neutron applica-

tions are described.
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2.1 Parametric Analysis

In order to make an assessment of the DD-DT fuel cycle, a parametric survey

was performed for operating temperature, performance (defined as 02B4),

and various system powers, versus the range of plasma tritium breeding ratio

-y between 0 (SCD) and 1 (DT). Values of gamma were calculated on the basis of

a given ratio of tritium to deuterium concentration, nt/nd, using the following

balance equation for the relative reaction rates:

1n 2d (ddV), + (±dd)n + ndnt(UdtV) = ndnt(UdtV) (1)22

which describes the equilibrium tritium balance where (OdtV) is the reaction

parameter averaged over the velocity distribution for the DT reaction and (UddV)p

and (addv), are the associated reaction parameters for the DD tritium branch

and DD proton branch, respectively. -y represents the overall external tritium

requirement per neutron reaction

rate of fused tritons from external source
rate of fusion neutron production

Equation (1) is the equilibrium condition for tritons in the plasma. The left

hand side represents the source of tritons and the right hand side represents the

burn-up rate of the tritons. Then

n'(UdtV) 
- (UddV)p

= -(addV)n + -(CrdtV)
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Therefore, the value of -y is determined by the ratio nt/nd and the plasma

temperatui e.

-At equilibrium, the electron and ion temperature are derived from electron

energy and ion balance equations,

1 dne Tj 1 nTj. 3 ne(To - Te) + Wi (2)
2 dt 2 rj 5 Tei

and
1 dn T eT e 3 ne(To - Te) +__ _(

=-- - +W -Pa-eyci(3)2 dt 2 7e 5 W rci

where Te and Tio are the electron and ion temperatures, -r and ri are the electron

and ion energy confinement times, ne is the electron density and n = nt + nd.

Parabolic electron and ion density and temperature profiles have been assumed.

W, and W represent the electron and ion heating rates by the charged fusion

products. W and W are calculated using the results of reference [3]. Pcvc;

represents the energy losses due to cyclotron emission.

It is assumed that the energy confinement time for the different ions is the

same, and that the different ion species are at the same temperature.

It is assumed that Te is determined by the empirical scaling law [4]

re = 1.9 X 10O2 nea2

where Te is in s, ne is in m- 3 and a is the plasma minor radius in m. For the ions

it is assumed that neoclassical transport governs their behavior. If this is the

case, then for most of the parameter space of interest in this report Tr >> T. and

the main ion energy loss channel is through energy transfer with colder electrons

[5].
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The region of interest, determined by -y (or alternatively by nt/nd), is further

characterized in terms of the fusion power density and the plasma performance,

P - 2 B'a 2. Assuming empirical scaling for the electron energy confinement

time, the performance parameter is written as:

P = a2B 4 ~ (na) 2T + T.0  + Efpnfp

~- (neTe)(Te + T ±i + Efpnfp
n, )

where P is the ratio of plasma pressure to magnetic field on axis pressure and B is

the magnetic toroidal field. Note that the performance parameter is proportional

to the nT product and a function of the temperature. This proportionality holds

for INTOR scaling. For other scalings, however, the proportionality may not

hold. P, on the other hand, is a good figure of merit for machine sizing. This

will be described in the next chapter.

The fusion power density can be written as:

Pf ~ Z rfnknm(UV)k,mEk,m
species

2_ ( rpkpm(ov)Ekm~ f(T,

(T 0±Ten e ±Efpnfp )2Speci esaTic, + nv+ Eni es

where (UV)k,m is the reaction parameter for the species k, m. Ekm is the energy

released per fusion reaction and Efpnfp is the contribution of the fast fusion

products to the plasma preassure. r = 0.5 for like species (k = m) and r = 1

for unlike species (k/m).
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f (T, -y) is a function of the plasma temperature and of the plasma com-

positiorr(Vaich is related to -y). f(T, -y) is a weak function of temperature, as
~ Tio, -with a ~ 0 for DT and a ~ 1 for DD. By introducing a specific

to
machine geometry, thermal fusion power and wall loading are also written in

terms of performance as:

Ptn ~ PR f (T) ;-y)

and
P

Pw,1 ~ -f(T,-y)
a

Therefore, the parameters Pa 11 X a and Pth/R depend only on the parameter

P, the temperature and the ion composition. This holds true irrespective of the

scaling law assumed for the electron energy confinement. Therefore P is clearly

related to fusion power and wall loading.

In summary, we are interested in a parametric survey of operating tem-

perature, performance, and fusion power in the range of gammas for DD-DT

operation from = 1 (DT) to y = 0 (SCD). A performance parameter can be

defined proportional to the fusion system powers, and for Alcator scaling, to the

nfr product.
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2.2 Operating temperature

The first step in the analysis was to determine the optimum ion temperature

at which to operate the DD-DT cycle. This was accomplished by varying perfor-

mance P and fusion power/R (fusion power divided by major radius) versus 1--y

for fixed temperature. Throughout the analysis the "tritium breeding margin",

TBM = 1 - y, was used to identify the particular DD-DT regime of interest.

This quantity represents the fraction of excess neutrons available for uses other

than tritium breeding, assuming the bred tritium is perfectly recirculated, and

that the effective tritium breeding ratio of the blanket k is 1.

Figure 2.2.1 shows the plasma performance versus tritium breeding margin

for temperatures ranging from 10 to 30 keV. Each constant temperature curve

represents the performance required to achieve a range of breeding margins at

ignition at that temperature. Thus, it is desirable to operate at the tempera-

ture that corresponds to the lowest required performances in the breeding mar-

gin range of interest. Note that between breeding margins of 0 and 0.3, this

temperature is approximately 20 - 25 keV. For breeding margins greater than

1 - y > 0.3, optimum temperatures increase to 30 keV.

Figure 2.2.2 shows the function f(T, -y) vs. the tritium breeding margin

1 - -y. f(T, -y) ~ PwaU/P, or equivalently, f(T, -y) - Pf R/P. At low values of

1 - y f(T, -y) has a weak dependence on temperature, but at the higher values

of 1 - , f(T, ' ) is almost independent of Ti0. The optimum temperature is that

that minimizes P at ignition (figure 2.2.1). Temperatures of 20 keV and greater

offer breeding margins in the range of interest with ignited plasma (assuming
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the INTOR empirical scaling law) [4,5]. Due to limitations in extrapolating

present-stLing laws to the larger temperatures and sizes required in this type

of reactors, it is more important to use, as much as possible, the fusion power

and wall loading constraints, and leave the ignition requirement as a secondary

consideration.

Pf/R
The value of is maximized at Ti, - 10 - 15 keV for 1 - - ~ 0 (DTP

operation). At higher values of 1 - -y the optimum temperature increases. The

optimum temperature for SCD operation occurs at Ti - 40 keV.

A similar analysis was performed for driven operation at Q = 5 . Figure

2.2.3 is the resulting figure for performance versus tritium breeding margin. As in

the ignited case, the constant temperature curve at 20 keV requires the minimum

performance for the range of breeding margins of interest (-y < 0.35). In fact,

the range over which this is the case extends to breeding margins of 0.5, due to

the lower performances required for driven operation.

On the basis of this analysis, 20 keV was chosen as the reference temperature

for further analysis for both ignited and driven operation.
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2.3.1 Trade-offs For Fixed Performance

Operation with the DD-DT cycle has two major consequences. A decrease

in the tritium required externally, and a decrease in the fusion power density

relative to DT. Both of these issues must be addressed in a consistent manner in

order for this mode of operation to be evaluated and possible regimes of operation

identified. In this section, the fusion power density tradeoffs will be examined

with the question of increased availability of neutrons being dealt with in a later

section.

For constant temperature, the breeding margin possible is a direct function

of the achievable performance. Figure 2.3.1 is a plot of performance versus

breeding margin for the ignited case at Ti0 = 20 keV. Note, as suggested in the

results of the previous section, that the needed performance for a given value

of 1 - -y increases rapidly past a tritium breeding margin of 0.1. Curves of

fusion power versus breeding margin for fixed P have been selected to analyze

the trade-offs since performance can be expressed both in terms of fusion power

density and specific machine design requirements (@, a and B 2 ). For example, if

P were not held fixed, it would be possible to choose an operating regime based

on fusion power trends that corresponds to a performance parameter beyond

that possible -in a given reactor. The wall loading on the other hand, is allowed

to vary. In Section 2.1.3, the wall loading is held fixed and P is allowed to vary.

Therefore, P = constant relates to fixed machine size, while Pal = constant

allows for varying machine dimensions.

Curves were generated for fixed perfomances of P = 15, 30, and 50 m2

T4 and for the geometries corresponding to the AFTR device (R = 4.8 m,
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a = 1.2 m) and the AFCR superconducting version (R = 9.6 m, a = 2.4

m). Performance was held fixed by varying plasma Q (fusion power/auxilliary

heating power) for subignited operation and increasing artificially the electron

loss channel for the overignited cases. Throughout this analysis, curves with

breeding margin as the abscissa will be used. It will be usefull to divide the

curves into three segments:

Segment 1: 0.0 < - y< 0.1

Segment 2: 0.1 < I -y < 0.3

Segment 3: 0.3 < -y < 1.0

Figure 2.3.2 shows the fusion power density as a function of 1 - y for the

case P = 30 m2 T4 and Ti, = 20 keV. Figure 2.3.3 shows the Q ratio between

the fusion power to required auxiliary heating power as a function of 1 - y for

the same case as Figure 2.3.2. Figure 2.3.3 assumes empirical scaling for the

electron energy confinement.

Some observations can be made regarding possible operating regimes with

analysis of figures 2.3.2 and 2.3.3. In segment 1, the fusion power density

decreases very -rapidly, dropping by a factor of 6. For breeding margins in

segment 2, fusion power density decreases more moderately, dropping by about

50 percent per 10 percent increase in breeding margin. In segment 3, a 10 percent

increase in breeding margin brings only a 10 percent drop in fnusion power density.

For P = 30 m2 T 4 , Q ~ oo for y > 0.8.

Such low tritium breeding margins brings up the question of how much
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margin is desired in terms of the increased availability of neutron and decreased

breeding-rcquirements. This will be dealt with in the Section 2.4. For the first

half.of segment 2 (Figure 2.3.2), the plasma remains ignited and the fusion power

density decreases moderately. The remainder of segment two, 0.2 < 1---y < 0.3

has plasma Q dropping sharply. Finally, for segment 3, the fusion power density

and plasma Q decreases gradually.

The cases corresponding to performances of 15 and 50 m2 T4 exhibit the

same trends as noted above. The major impact of increasing performance is

an increase in the magnitude of the fusion power density and an increase in the

range of breeding margins that are ignited. A plot of fusion power density-Pf for

P=50 m 2 T4 (Figure 2.3.4) shows that the boundaries separating the segments

described earlier occur in roughly the same spots. The net effect, then, is a

widening of the breeding margin range in which the plasma is ignited.

Having identified these possible ranges of operation, based on the fusion

power tradeoff, it remains to determine the tradeoff between an increase in

available neutrons and decreasing fusion power density. This is done in Section

2.4.
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2.3.2 Parametrics for Constant Wall Loading

.In the previous section, P and the ignition criteria are held constant and

the plasma composition is allowed to vary. As P is related to the machine

parameters for a given # scaling with aspect ratio, (P = #2a2B 4 ~ a4B4/R2),

keeping P fixed is equivalent to keeping the machine dimensions fixed. The

fusion power and neutron wall loading, on the other hand, are decreasing rapidly

with increasing values of 1 - '.. From the reactor application point of view,

however, it may be more important to keep the wall loading fixed; in this case,

however, the machine dimensions are varying, and the scoping study has to allow

for changes in machine parameters. In this section the tradeoffs between plasma

physics requirements and plasma tritium breeding margin are performed for fixed

P,,, X a. In chapters 4 and 7 the wall loading Pea1 is kept constant.

As derived in Section 2.1, Pme1  ~ Pff(T, ')/a. Therefore, the product

Pol X a depends only on the plasma performance P, and on the plasma

temperature and ion composition (that is, -y). The product Pe11 X a is held

constant in the parametric analysis described in this section.

It should be noted that the neutron wall loading PwaU is an important

parameter in terms of the first wall, blanket and economics of the machine.

The plasma performance P, on the other hand, is more relavant to ignition

(for empirical or similar scaling laws) and machine requirements (and, therefore,

cost).

The analysis is carried simularly as that in Section 2.3.1 with the difference

that the plasma performance P is not held fixed. The value of -y is determined,
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and then the value of plasma Q that results in a given wall loading are calculated.

There-are rases in which the plasma would have to be overignited. In this case,

a loss mechanism is introduced in the electron balance equation. It should be

noted that in most cases the addition of the electron loss term does not alter the

electron-ion temperature separation. This separation is determined from the ion

energy balance, and thus it is not affected by electron loss. The plasma nre,

however, is determined from the electron energy balance, and thus is affected by

additional electron losses. It is assumed that the additional electron loss does

not affect the other parameters as would be the case for radiative losses from

high-Z impurities.

Figure 2.3.5 shows nere as a function of the tritium breeding margin 1 -

for constant values of Pwa, X a. The ion temperature is assumed to be Ti, ~ 25

keV, and is kept constant as 1 - -y is varied. For 0 < -y < 0.4, the optimum

temperature of operation is Ti, ~ 20 - 25 keV.

nre increases strongly with 1 - y. Thus, for a tritium breeding margin of

I- = 0.2 and for PeuI X a = 4 MW/m, the ner, required is a factor of 6 larger

thAn the nr, required for DT operation at the same value of Pa1l X a. The

scaling of nere with 1 - 'y is approximately linear. It can be seen that because

neTe ~ n2 (for INTOR scaling) and Pf - n 2 , then Pf - n7- for constant value

of 'y.

Figure 2.3.6 shows P as a function of I- y for the cases of figure 2.3.5. It can

be seen that in order to keep the wall loading constant, it is necessary to increase

P as the regime of operation gets close to SCD due to reduction in specific power

dimensions Pf/# 2B 2 as the operating regime approaches SCD. The curves for
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P and nee show the same general trends because the ion temperature is held

constant.

Figure 2.3.7 shows Q as a function of 1 - -y for the same cases as Figure

2.3.5. Empirical electron scaling law is assumed in Figure 2.3.7. The values of

Q decreases with increasing values of the tritium breeding margin. For the case

of Pva1 X a = 4 MW/m 2 , the plasma is ignited for 1 - -1 < 0.25. As seen in

the previous section, there is a minimum value of P required for ignition. For

low values of P,,j X a, P ~ Pw.1 X a/f(T, y) is lower than the minumum

required for ignition. This conclusion holds true also for DT operation (the

plasma Q is highest for this case: -t = 1 in figure 2.3.7). That is, for the empirical

electron scaling law, the ignition requirement (at the optimal temperature) can

be exressed as

(Pwalu X a)ignit ion = 2.6MW/m

Figure 2.3.8 shows the minimum value of Pwal X a for ignition at the

optimum temperature as a function of 1 - -1. As 1 - -y increases, the value of

P required for ignition increases along with the value of Pwjj X a. For ignition

with 1 - y = 0.2, Pall X a - 4 MW/m.

The range of operation with constant wall loading is wide with the use of

DD-DT. However, there are increased requirements (both in terms of decreased Q

and/or increased plasma performance) as the operating point moves away from

DT. The increased requirements result in larger machine sizes and increased cost.

Chapters 4 and 7 deal with the changes in machine sizes for a resistive machine

(AFTR) and a superconducting machine (AFCR) as the fuel mixture is changed
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for fixed wall loadings.
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Figure 2.3.4 Fusion Power Density vs Tritium Breeding Margin
(P = 50 m2 TV, Ti, = 20 keV).
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Margin (Ti, = 25 keV).

52

30

20

I0

0

0

4

2 mv/yfl

0.4



0.2

Pm,, x a Product for Ignited Operation

53

5 x O

3

nJ

0
0

cp =00

I I I I

0.3 0.40.1

Figure 2.3.8



2.4 Neutron Availability

Calculations were performed to determine the number of excess neutrons

made available by operating in the regime with - < 1. The benefit gained in a

particular DD-DT region due to an increase in available neutrons must outweigh

any penalties associated with the loss in fusion power density.

First, it will simplify the subsequent analysis to express the reaction rates in

terms of '-. Let the DT, DD proton branch, and DD neutron branch reaction rates

be specified by RDT, RDD,p and RDD,, respectively. The DD proton branch,

although not directly producing a neutron, produces energetic tritons. These

tritons fuse with the deuterium background, yielding a 14 MeV neutron. The

plasma tritium breeding is then:

RDT - RDD,p

RDT + RDD,n

But, with RDD,P RDD,n,

RDT - RDD,n

RDT + RDD,n

or

RDD,n = RDT
1 + -Y

Using this expression we can find a simple expression for the fraction of 2.45

MeV (DD neutron branch) neutrons produced,

2.45RDD,
RDT + RDD,n
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then
__1

f2.45 = -(1-
2

Thus, even at the far end of the DD-DT spectrum (y = 0, 1 - 1), half of

the neutrons generated are still DT.

The total number of neutron production rate multiplied by the tritium

breeding margin, designated "available excess neutrons", is plotted versus breed-

ing margin in figure 2.4.1 for P = 30 m2 T4 and for an effective tritium breeding

in the blanket of k = 1.0. Available excess neutrons is an indication of how

many neutrons are available for uses other than to breed the tritium needed to

sustain the plasma - assuming no loss of neutrons or tritium and no neutron

multiplication. Note that the number of available neutrons increases rapidly in

segment 1. Throughout segment 2 and up to a gamma of 0.4 in segment 3, there

is a slight increase in available neutrons with little of no. gain after 1 - y > 0.4.

This behavior is essentially what one would expect since the neutrons per

second directly translate to fusion power, which is decreasing rapidly in this

region and more gradually beyond. Some deviation from this behavior might be

expected due to the fact that the average energy per fusion neutron in the plasma

is decreasing for increasing breeding margin due to the larger DD component.

However, in figiire 2.4.2, the fraction of neutron power from the DT component

is plotted versus breeding margin and this shows that even for 1 - 7 0.85,

88% of the neutron power is still derived from the DT component. Thus, there

seems to be questionable gain in terms of the increased availability of neutrons

past a breeding margin of 0.3 to 0.4 for k = 1 and with the assumptions for

Figure 2.4.1.

55



The possible use of the DD-DT cycle for blankets with marginal tritium

breeding ratios is illustrated next. First, note that the rate tritons are burned

is RDT. The rate at which externally supplied tritium is burnt in the plasma

is RDT - RDD,P while the rate at which fusion neutrons are produced is RT =

(RDT + RDD,,). Now the production rate for tritons is kRT where k is the

number of tritons in the blanket per fusion neutron generated in the plasma.

Therefore, a quantity "Net Tritium Production Rate" (NTR) can be defined as;

NTR = (RT + RT)k - (RDT - RDD,n) =

= k - )RT

This quantity represents the rate of production of excess tritons made

available for purposes other than fueling the DD-DT plasma, taking into account

the tritium breeding ratio of the plant blanket system. NTR is plotted in figure

2.4.3. The case shown corresponds to P = 30 m2 T 4 and shows several curves,

each representing the net available neutrons for a given value of k. Note that

for~k = 1, the-expression for NTR reduces to (1 - _-)RT and the corresponding

curve in figure 2.4.3 corresponds to figure 2.4.1. As expected, for tritium breeding

ratios k less than one, operation in DD-DT mode increases the effective breeding

ratio and eventually produces an excess number of neutrons. For example, for a

blanket with a k = 0.9, DD-DT can make the blanket self sufficient in tritium

while operating at 1 - -y > 0.1. From Table 2. we note that the penalty paid is

a factor of six drop in the fusion power density.
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3 MODEL OF RESISTIVE MAGNET

In this chapter, the assumptions used in the parametric code are discussed.

Section 3.1 discusses the engineering assumptions for the magnet systems. The

toroidal field coils are analyzed in terms of stress levels, electrical power require-

ments and cooling.

In section 3.2 the plasma assumptions are analyzed. The plasma require-

ments developed in the previous sections (such as 'y, P, paB2 ) are incorporated

into a machine sizing code.

Finally in Section 3.3 the assumption with respect to the neutronics of the

blanket and shield and the insulator are analyzed. The influence of the blanket

and shield region on the magnet are discussed. Detailed neutronic calculations

have not been performed on these machines, but previously reported results

provide information of use in assessment.

Throughout this chapter it is assumed that the magnet is built with BIT-

TER coils that surround most of the plasma, as in the ALCATOR machines [1]
and in ZEPHYR [2]. However, the requirements and parameters derived are in

most cases directly applicable to other types of magnet structures.

The parametric scans as function of the engineering, neutronics and plasma

requirements are presented in next chapter. Although the purpose of a sizing

code is to evaluate the cost of different alternatives, the code only presents

scaling of the different factors that enter into the cost. Due to large unknowns

61



in estimating the cost, we think that this is an attractive alternative to the

apprffihifnat looks at just one parameter that may (or may not) be related to

the true cost.
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3.1 Magnet Requirements

In this section the toroidal (Section 3.1.1) and poloidal (section 3.1.2) field

systems are analyzed. The discussions of the toroidal field coil are specific to

Bitter magnets. However, most of the discussion is relevant to alternate resistive

magnet systems.

It is estimated that, although not the largest element of the cost, the poloidal

field system is important in calculating the cost of the total system. Therefore,

a simple model for the poloidal field system (one that does not require running

an equilibrium calculation for each case) is necessary. The simple model was

obtained by doing a numerical fit to a large number of runs of the equilibrium

field code. The fit is then used to analyze the main characteristics of the poloidal

field system. Although not as precise or as general as the equilibrium field code

(the main characteristics of the geometry are assumed), the numerical fit is a

powerful tool. The procedure is described in Section 3.1.2.
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3.1.1 Toroidal Field Magnet

The requirements of the toroidal field magnet imposed by plasma considera-

tions are probably the largest driver of the cost of the total machine, as many of

the systems scale with the characteristics of the TF magnet (such as the power

supplies, the stored energy and the shielding). In this section the stresses in the

magnet, the power supply requirements (both steady state power requirements

and energy stored in the magnet) and the heating in the TF coils are discussed.

In a Bitter type configuration, there are several stresses that dominate the

design. These are the tensile stresses (that is, the principal stress of the magnet)

in the throat, the circumferential (or hoop) stress in the throat due to the

wedging action of the magnet, the bending stresses in the horizontal legs, and

the shearing stresses in the outer leg of the magnet (those resisting the action

of the overturning moments due to the interaction between the TF current and

the equilibirum fields).

The throat principal stresses determine the maximum field at which the

machine can operate. The only way to increase the loading capacity of the throat

(without changing the composition of the throat) is by making the machine

larger. The bending stresses of the horizontal leg can be decreased by increasing

the machine height, and therefore are not limiting. The shearing stresses in the

outer legs of the magnet determine the size and concentration of the keys used

to control the torsional forces. In order to reduce the requirements on the keys,

the thickness of the outer leg of the magnet can be increased. However, because

this region carries most of the material in the machine, the weight of the reactor

is strongly dependent on this thickness.
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Assuming that the tensile stresses in the throat of the magnet are uniform

(this is approximately true for the ALCA TOR C [1] and ZEPHYR [2]), the

average tensile stresses in this region are given approximately by

-2 T- 1RT - F
7r R2-R 2

UTF _ b 3.1.1

aR--R R2--2 (R a--Ri

where FT and MT are respectively the total upward force and the moment due

to the magnetic field. FT is given by

,rBr TR2 Rb Ri )2 +1 Ri )Ri
FT = - In -- + - + - (3.1.2)

YO R,, R, 3 Ra R,

and MT is given by

7rBR 2  
( R) 2  iR2 )Ri)2MT = Rb - R, + (R, - Ri)( 1 --- + R 1 -- + -R

AO5 Ra 2 R, Ra 3Ra

(3.1.3)

RO and Ri.are the outer and inner major radii of the toroidal field coil. BT

is the toroidal field at the location of the plasma major radius R. Ra and Rb

are given by

Ra = R - a -6-

and

Rb = R + a+6 0
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where R and a are the major and minor radii of the plasma. bi relates to the

plasma-TF coil distance in the inner side of the torus. This distance includes the

plasma scrape-off distance, the thickness of the first wall, the support structure

of the first wall and the inboard blanket/shield thickness. Similarly, 6, refers to

the plasma- TF' coil distance in the outer side of the torus. It is assumed that

the vertical distance between the plasma and the horizontal legs of the toroidal

field coils is given by 6T (See Figure 3.1.1).

In deriving equation (3.1.1) It has been assumed that the magnetic field

increases linearly in the throat of the magnet and that the forces generated in

the outer limb of the magnet are small (the results change by - 3% when they

are included). Also, the horizontal magnetic forces and the moments on the

midplane of the machine were ignored. It is not clear how to include these forces

and moments analytically. This is due to the fact that the model fo- the toroidal

field coil is indeterminate. However, it is estimated from calculations using shell

theory and from finite element calculations that the effect of the couple caused

by these forces is a net increase of the tensile stresses in the throat of the magnet

of ~ 30%.

The BITTER geometry does not have a bucking cylinder that supports the

centering forces. The centering forces on the TF coil result in face pressure on

the individual plates, resulting in hoop stresses. The compressive stresses in the

throat resulting from these forces are important. They add to the total and

von Mises stresses, and in some cases, can be larger than the tensile stresses in

the throat. The face pressure u, is calculated assuming that the throat of the

magnet behaves as a thick cylinder. The circumferential streses are given by:
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Fo

,c Ra - Ri

where FO is given by

Fo = YUITF a - - R (Ra - Ri)R) (3.1.4)
27r2 3 (R2 R )2

ITF is the current in the toroidal field coils,

ITF 27rRBT

It has been assumed that the current density in the throat of the magnet is

uniform and that the throat of the magnet behaves like a thick cylinder. Results

from finite element calculations agree with calculations using equation 3.2.2.

A shell method has been used to calculate the stresses in some of the cases.

The results from the code can be summarized as follows:

* The average tensile stresses in the throat of the magnet can be accurately

described by 1.3 X C'TF.

* There can be significant bending in the throat of the magnet. This bending

has to be calculated using the shell model.

* The circumferential compressive stresses (or hoop stresses) in the throat

of the magnet can be accurately described by -c.

The bending stresses in the horizontal legs are determined by calculating

the bending moments in the horizontal legs of the magnet and then calculating

the corresponding bending stress using elementary theory if beams. Using this

approach it is found that the bending stresses are relatively flat in the thin section
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of the horizontal legs. The height of the magnet that results in a maximum

bending-str ss of 70 MPa (10 kpsi) is then determined. Because the corner regions

are ignored, this method of calculating the bending results in an overestimate

of the stresses by about - 50%. However, the factor by which the bending

stresses are overestimated is about constant over a wide range of parameter

space. Furthermore, in order to decrease the resistive losses, it is necessary to

increase the height of the machine beyond what is strictly necessary to restrain

the applied forces. Increasing the width of the horizontal legs of the magnet has

a significant effect in decreasing the resistive power losses.

There is an additional source of concern in BITTER magnets. That is, the

out of plane forces, usually called "overturning". These forces are the equivalent

of putting the magnet under torsional loads. In BITTER magnets, the out of

plane forces are resisted by shear in the outside section of the TFco1 . This shear

can be carried in different regions. In the case of ZEPHYR [2] and ALCATOR [1],

the shear occurs between the plates of the toroidal field magnet. The plates are

joined by bonding, by keying, or by the friction resulting from the wedging force

from either the toroidal field action or from a girth band around the machine.

The resulting structure resembles that of a cylinder subject to torsion loads.

The out of-plane forces are generated by the interaction between the equi-

librium field and the toroidal current in the toroidal field magnet. The acting

torque is calculated by simplifying the magnet geometry representing it as el-

liptical sectors, as shown in Figure 3.1.2. The TF current density is assumed

uniform in sectors that are normal to the inner wall of the TF coil. The equi-

librium field is calculated from the equilibrium field coil locations and currents.

68



The method for determining the coil locations and coil currents is described

below in the poloidal field section. The torque is then determined by

TR = (j X Bpolio)RdV

where j is the current density in the TF coil, Bpoid is the poloidal field (in

the direction normal to the toroidal direction), and R is the major radius. The

integral is over the volume of the TF coil, approximated by the shape shown

in Figure 3.1.2. The shearing force in the outer leg of the TF coil necessary to

prevent the torsion is then given by

TR
27r(R, - tOut/2)2

Here to0 t refers to the radial width of the outer leg of the TF field coil at the

midplane. Finite element calculations indicate that the value of Tr calculated

using the above formula underestimates the peak shearing stresses. Approximate

agreement is obtained when TR calculated using the above formula is multiplied

by a factor of 3.5

The stored energy and resistive powers in the toroidal field and poloidal field

magnets are calculated. The power supply requirement for the TF magnet scales

with the resistive power of the machine. The stored energy in the TF magnet

is related through the Virial theorem to the amount of material required. The

stored energy and resistive energy in the poloidal field coils mandate the power

and energy handling capability of the poloidal field power supplies.

In order to calculate the stored energy in the toroidal field, the energies

in the bore of the magnet and in the conductor of the TF coil are calculated
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separately. The energy in the bore of the toroidal field coil is calculated by

inteiiGng the toroidal field, with a 1/R dependence, over the volume of the

bore. To calculate the energy stored in the conductor, the geometry of Figure

3.1.2 is used. The volume of the coil is divided in several poloidal sectors. The

stored energy in each sector is calculated from the current density, and the

integration is performed radially. Then the sectors are added together. The

spatial distribution of the current density has a small effect on the total energy

stored in the TF coil, and is assumed uniform. In typical BITTER magnets, the

energy in the conductor of the TF-coil is 20-40% of the energy stored in the

toroidal bore of the magnet.

The resistive power of the TF coil is calculated assuming the geometry shown

in Figure 3.1.2. The current density is the same as the one used to calculate

the energy in the conductor and the torques. It is assumed that 10% of the

cross-sectional area of the throat is used for cooling and insulation and that the

rest is conductor. In the outer leg of the TF coil, a larger fraction is allowed for

structure material. Steel wedges are placed between copper coils, and therefore

the conductor filling fraction is decreased. It is assumed that the copper filling

fraction at the outermost location is 60%. The steel wedges start at a major

radius equal to the plasma major radius. The conductor used is copper, cooled

with water.
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3.1.2. Poloidal Field System

The requirements for the poloidal field system are determined from plasma

physics calculations performed in section 3.2.2. The equilibrium field interacts

with the toroidal field magnet producing out-of plane forces. The field is cal-

culated from known coil locations and coil currents. The EF coil currents and

locations depend on the current density in the EF coils. This is due to the

presence of the TF coil which excludes the coils from certain regions in space.

The EF coil currents, on the other hand, increase with distance to the plasma.

Therefore, changing the current density in the EF coils affects the centroid of

the current, and this in turn affects the coil currents.

The stresses in the equilibrium field coils are small compared with the other

stresses in the system, and are not dealt with in the parametric code. The stresses

are not a driving term in the vertical field system because the resistive power

consumed in this system would be very large if the coils were to be determined

by a high-stress assumption.

The energy in the poloidal field systems is calculated from the location and

currents of the equilibrium field coils. The coil locations and coil currents are

determined as ijndicated in section 3.2.2. The energy is important because the

peak power requirements in the equilibrium field power supplies is determined

by the energy swing during startup. Tradeoffs in the vertical field system (coil

location, stored energy, peak reactive power, and resistive power during burn)

are performed in chapter 4.

The OH system is analyzed. The contribution to the current drive from the
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vertical field system can be obtained by integrating the equilibrium field on the

midplane of the machine. The integration is performed from the center of the

machine to- the plasma axis. Not all the flux contributes to the plasma current

and a correction factor less than one is used to determine the contribution to the

inductive drive' from the equilibrium field system. In this report it is assumed

that 0.8 of the flux between the main axis of the machine and the plasma axis

contributes to the current inductive drive.

The available space for the OH transformer is determined by the TF coil.

The OH transformer has to provide the difference between the flux drive required

by the plasma and the flux provided by the vertical field system.

Once the flux requirements of the OH field system have been estimated,

then the stresses, power dissipation and stored energy in the OH system can

be calculated. It is assumed that the OH transformer is partially double swung

(from full field in the core of the OH transformer to half-peak field in the opposite

direction). The stresses are calculated assuming that the OH transformer behaves

like a cylinder with free floating shells. Then the stress is given by

0.5B0 H(RoH,o(R~jj,H - ROH,) - 0-33(RCH, Rooi)
010H Aof(ROH,o - ROH,i)3

where f is the filling fraction of conductor/structure in the OHtranformer, BOH

is the peak field in the OH transformer, and ROH,0 and ROH,j are the outer and

inner radii of the OH transformer, respectively (see Figure 3.1.1).

BOH is determined from the flux swing required from the OH transformer,

'0 H 2ROH,I - 3ROH,o + ROH OROH,oROH i
BOH = O (1 + - H, '

; R-6, i 1+3(RCH,o - ROH,i)
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Here OOH is the flux required for the OH tranformer.

-The rower handling requirements during startup dominate the power han-

dling requirements of the power supplies for the OH transformer. The energy

stored in the OH field is an estimate for the peak inductive power requirements.
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Figure 3.1.2 Simplified Geomectry of AFT? Device
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3.2 Plasma Characteristics

In this section, the plasma physics relevant to the machine are described.

The plasma requirements in terms of /aBT, y and P are given in chapter 2.

Section 3.2.1 describes the plasma characteristics and the underlaying plasma

physics assumptions. Section 3.2.2 describes a novel method for determining the

poloidal field requirements.
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3.2.1 Plasma Scaling

The plasma-# -is defined as

f YnikTj + nekTe)dV

where BT is the toroidal magnetic field at the plasma major radius (geometrical

axis), the integral is performed over the plasma volume, ni and ne are the

ion and electron densities and Ti and Te are the ion and electron temperature,

respectively.

It is assumed that the maximum achievable toroidal beta 8 scales as

#=1.05 t
Aq2

where A is the aspect ratio, q is the safety factor at the limiter radius, and

. = b/a is the elongation. Although experimental determination of this scaling

has yet to be proven, MUD balloning-mode theory predicts this scaling.

Low values of q are desireable because of the large leverage that q has on

#. Although q < 2 has been achieved in some machines, the regime q > 2 is

more reachable. Therefore, it is assumed that q = 2.5 for the.illustrative design

point.

In terms of-the elongation, the poloidal field system becomes complex as the

elongation increases, not only because the currents are increasing with elongation

(see next section), but because the plasma becomes more unstable against vertical

instability. This requires larger power supplies with faster response time to

control the disturbances. An elongatioh of S = 1.5 has been choosen for the

illustrative design.
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As mentioned in Chapter 2, the energy confinement time is determined by

ALCATOR empirical scaling [3]

(Te)emp = 0.5(TE)emp = 3.8 X 10 2 n a 2

where n is the average electron density in m- 3 , a is the minor radius in m and

Te is in s. The factor of 0.5 in this equation is due to the fact that (TE)emp is

defined as the global energy confinement time, even though most of the heat flux

is due to the electrons. It is assumed that the ion energy confinement time, Ti

is given by neoclassical theory. In this case Ti is generally much greater than 7e.

The AL CA TOR- empirical scaling law implies that the minor radius required for

a given value of P is

1 _/P
aign - 23

n OB

The heating power required for ignition is determined from the empirical

scaling law. It is assumed, however, that the plasma composition is near DT,

so that the alpha energy from the DT reactions help the plasma heating early

in the startup, thus reducing the required heating power. The tritium fraction

would then be lowered by allowing it to burn or by pumping it out. Note that

the fraction of tritium need not be 50% for the plasma reactivity close to that

of DT. A 10 - 90 D-T plasma has ~ 40% of the reactivity of a 50 - 50 DT

plasma. With the empirical scaling law, the heating power scales as Pa ~ KR.

The machine allows for significant access through ports located at the outer

leg of the TF coil, and for some rather small vertical access in the horizontal

legs. As the access area for BITTER scales as Apor ~ anR0 (R0 is the outer

radius of the TF coil, a is the plasma minor radius and n is the elongation), then
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the heating power density Pde, is

Paux R 1
Aport Ra a

Ro/R - constant when the aspect ratio is varied for fixed plasma and engineer-

ing requirements Therefore, from an access point of view, large minor radius

(low aspect ratios) are desirable.

In a tritium-rich start-up, the densities required for ignition are not different

from those for DT machines. Consequently, the heating mechanism used for

DT plasmas would be sufficient. However, if a tritium-lean startup is desired,

then higher plasma densities are required. This would probably rule out neutral

beams based on positive ions. This may also rule out some methods of heating

using RF.

The neutron wall loading Pse1 is defined as

= Fnei=Lutrons

Apiasma

where Pneutron is the fusion power carried by the neutrons and Apasma is the

plasma surface. There is a difference between Pwal and the first wall average

neutron loading due to shape considerations of the first wall and to finite scrape

off distance between the plasma and the first wall.

In these designs, it is assumed that a pump limiter is used to provide

impurity and ash control. The BITTER magnet is compact, and the possibility

of a divertor in the machine has neither been analyzed nor ruled out.

The burn pulse is ultimately determined by the flux swing limitations of the

OH transformer. The flux swing requirements are determined by the inductive

79



and resistive volt seconds for the plasma. The inductive volt-seconds required

are calculated using the results from section 3.2.2.

The resistive flux swing requirements are calculated assuming that the

plasma is relatively free of impurities (Zeff = 1.3) and including finite aspect

ratio corrections. High temperature operation results in longer burn times be-

cause of reduced plasma resistivity. However, higher temperatures result in more

stringent ripple requirements. The operating electron temperature is assumed to

be Te, = 20 keV.

The burn pulse length in the base case is Tb,, = 100 s. Longer burn times

can be achieved by either increasing the stresses in the OH transformer or by

going to a larger OH transformer. The tradeoffs between machine size and burn

pulse length are indicated in chapter 4.
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3.2.2 Equilibrium Field Calculations

In this section a method for estimating poloidal field requirements is described.

The usual procedure to calculate poloidal field requirements requires the use of

sofisticated codes that solve the plasma equilibrium [4]. In one scheme of sizing

the equilibrium field, a fixed boundary solution is obtained, and then coil cur-

rents in specified location are estimated to reproduce the fields in the boundary.

Then a free boundary solution is calculated. The procedure is straight forward

but time consuming, and only a very- limited number of cases can be analyzed.

An alternative to this method is that of running a relatively small number

of cases that span most of the parameter space in which we are interested, and

then perform a numerical fit to the results.

It has been assumed that the parameters in the poloidal field system depend

on the following parameters:

R (major radius of plasma)

BT (toroidal field at R)

A = R/a (plasma aspect ratio)

n = b/a (elongation)

q (plasma safety factor)

S ~ Aq (poloidal beta)

R (normalized major radius of poloidal field 1 th coil)R

(normalized height of poloidal field 1 th coil)
atc
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Here Zj is the height above the midplane of the jth coil, and Rj is the major

radius location of the Jth coil. q is the safety factor of the machine, defined as

27r
q = -

where t is the rotational transform of the plasma.

The dependence on plasma pressure should be on #,, not on #. For values

of , < A and for A > 2, p scales as

#p ~ #Aq 2

Through #Aq 2 / n, the parameters in the vertical field system depend on /,.

The functional dependence on the coil currents is assumed to be

/3Aq 2 R, Rn Z1  Zn
IJ=I(R,BT,A,c,q, ,C ,.. .. )t

K R R aK) an

where Ij is the current in the 3th poloidal field coil. There are n coil pairs.

Similarly, the plasma current can be expressed as

O Aq2
I, = Ij(R, BT, A, n, q, )

The contribution of the vertical field system to the inductive drive of the plasma

can be described by

/3Aq2

OEF = EF(RBT,A,r,q, )

In the calculations that have been performed with the full equilibrium

calculations, it is found that two set of coils gave enough flexibility to produce
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the desired equilibrium. Therefore, we have limited the analyzsis to two sets of

coils^ 16 ated symmetrically about the midplane. The coil approximate location

is shown in Figure 3.1.1. Coil set 1 is the main equilibrium field coil pair (dipole

field), while coil set 2 is the shaping coil pair (quadrupole field).

The numerical calculations with the equilibrium field code have been per-

formed by varying one of the variables at a time, and then finding a numerical

fit to the solution. It was assumed that

Ij = fi(R)f2(BT)f3(A)f4(K)f5(q)f6 A 2 f7R f8 R2 f ,foZ
( )(R )(R ) an) an

that is, the function is separable on the variables. For a limited variation in

parameter space this form of the fit is mathematically justifiable.

The numerical fits for the current in the main equilibrium fi- Id coil Ii is

given by

11 =5.59 X 10 6 (R)(I) X
-- -3.03 6.7

1.48+0.095(A-3.36)( q )-0.88(1.+0.2(q-3.1))

3.36 3.18

- ) 2.0( Cpq2 034X
1.5 0.2(3.18)2/1.5

R 0.9 Z )0.7 ( R2 )0.5 Z2 )0.25

R 1 ,sZ1,base R 2 ,base Z2,base)

and for the current in the shaping field zoil 12,

X
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'2 = - 3.39 X 106(3R )(BT) X
3.03 6.7

. -- 880.13 (A-3.36) q -0.4(1.0+0.3(q-3.1))

3.36 3.18

(- 0.54 + 1.56(/1.5 )4) co q2 IK - 0-08

(0.2(3.18)2 /1.5

11 refers to

and 12 refers to

Here it has

, 0.8( Z2 )2.25

\ 1,base ) Z2,base

the current in the main equilibrium field coils (the dipole coils)

the current in the shaping coils (the quadruple coils).

been assumed that

= c3/A,

and that
ac

Zl,base = 1.85 1.3c
1.35'

Z2,base = 3.53 c
1.35,
R

R1,base =6.72 ,
3.03
R

R2,base =3.30-.
3.03

The plasma current is approximately given by

I = 6.59 X 10'
3.03 6.7 3.36

The contribution due to the vertical field system to the inductive drive of

the plasma is calculated using the locations of the coils and their currents, and
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then integrating the field on the midplane from the major axis of the machine

to thi pIasma axis. The numerical fit for the inductive volt seconds from the

vertical field system is approximately given by

2

8X18. (. + 1.43(33 1.5 cpq - .2 X 3.22
(3.3 X 3.22 K 1.5

A -5 69
exp(0.28(1. + (r. - 1.5))(r. - 1.5)) 3.36

- 1.16(1.+.25(q-3.2)) X BT R )"'

-3.2) (6.7) 3.03

The specific numbers that appear in the fit correspond to the numbers of

the base case that has been used in the calculations with the equilibrium field

code. The linear dimensions are in m, BT is in T, Ij is in A and #EF is in T m2.

The position of the coils are determined by the location of the TF field coil,

with a clearance distance between the toroidal field coil and the poloidal field

coils and by the dimension of the poloidal field coils. The current density in

the, poloidal field. coils determines the coil dimension, which in turn determines

the-location of the coils and their current. This procedure is repeated until the

coil locations and currents are self consistently determined. The procedure is

very simple, and fast sizings of the equilibrium field system can be obtained in

this manner. Although the number of coil sets has been limited to two, this is

not a fundamental limitation, and the procedure can be altered to increase the

number of coils. However, the main characteristics of the system have to remain

constant (the method probably can not be expanded to encompass both divertor

and divertorless cases, for example).
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In the parameters of the next chapter, it is assumed that Rshaping = Ra,

hmain = nca + 0.5 m. The clearance between the TF coil and the EF coils is

assumed to be 0.10m.
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3.3 Neutronics

At least three considerations are important for good fusion reactor neutronics

design. First, the breeding of tritium in the blanket must be large enough for

reactor fuel self-suiciency. Second, the neutron damage to blanket components,

to magnets, and t other equipment must be compatible with design lifetimes.

Finally, as a coroliary to the other two items, the neutronics treatment must be

adequate for speci al regions adjacent to beam heating ducts, limiters, etc. (to

assure that appro riate local adjustments to breeding and neutron damage are

adopted).

In the AFTR studies, we have not performed neutronics calculations. We

have however, examined neutronics results reported for STARFIRE [5] and have

compared pertine4t reactor features.

3.3.1 Breeding

We have concentrated on the STARFIRE results for a blanket module with

the following com osition:

* The first w411 is Be-coated austenitic stainless steel

* The neutroi multiplier region is zirconium lead (Zr 5 Pb3 )

* The secondwall is austentic stainless steel

* The tritiun breeder is 60% effective density lithium aluminate (LiAIO 2)
with the lithium enriched to 60% Li6 (with a fine grain size and bimodal

pore dist ibution)
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* The

* The

9 The

reflecto

coolant

sweep 1

The thickness

mation relating S'

3.3.2

Some feature!

higher than that c

9 The duct a

percenta

* The AFTR

outer bla

Other feature

lower than that of

* The neutron

higher, r(

* The AFTR

inner bla

* Some of the

ing) may

to D-shap

It is not clear

1.04 given for ST,

r is graphite

in all regions is pressurized water

'as for on-line tritium removal is helium

of each blanket region is given in Table 3.3.1. Other infor-

?ARFIRE parameters to those of AFTR is supplied in Table

in Table 3.3.2 imply that the AFTR breeding ratio may be

f STARFIRE:

nd inner blanket area percentage is lower, giving a greater

:e of the high breeding outer blanket

aspect ratio is higher, resulting in more neutrons going to the

aket

s in Table 3.3.2 imply that the AFTR breeding ratio may be

STARFIRE or that the direction is uncertain:

wall loadings (and surface heat deposition rates) are significantly

quiring more space for cooling components

elliptical plasma has high power density regions closer to the

ikets

effects mentioned (i.e. inner blanket area and plasma center-

be modified if the AFTR plasma evolves from elliptical shape

ie during detailed design work.

whether the k value for AFTR is smaller or larger than the

ARFIRE. It is also not clear whether the k value of 1.04 is
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sufficiently large fc

uncerUarities, for 1

losses during~ fueli

that the AFTR vs

0.93).

3.3.2

r the DT case (-y = 1). Allowances are required for calculation

)sses during tritium recovery from the blanket, and for tritium

ng and plasma rejuvenation. However, it seems quite likely

lue for k will be sufficiently large for DD-DT operation (h =

Neutronic J)amage

The neutron

blanket in AFTR

essentially no dan

which satifies:

It is likely that d

fluence:

The AFTR inner

field coil to protec

lamage to the insulation of the magnet coils within the inner

must be kept acceptably low. There is evidence that [6]

age will occur for a fast neutron (> 0.1 MeV) fluence, NF,

NF < 10 2 4n/m 2

image will be acceptably small for at least a decade higher

NF _ 1025n/m 2

blanket has no shield between the blanket and the toroidal

U the magnet insulation.
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3.3.3 Special Rejion Effects

No special re

breeding and loca

these AFTR regioi

associated with n(

bulk shielding is e:

difficult.

gion calculations have been completed to assure that local

I neutron damage are adequately treated. The problems in

is seem generally similar to those in STARFIRE. The shielding

utron streaming may require special care in AFTR since no

nployed. Special region problems do not appear to be unduly
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Table 3.3.1

Blanket Region Thickness (mm)

STARFIRE STARFIRE AFTR AFTR

Region Outer Inner Outer Inner

First Wall 10 10 10 10

Multiplier 50 50 50 50

Second wall 10 10 10 10

Breeder 460 280 440 290

Reflector 150 0 150 0

Total '680 350 660 360
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Table 3.3.2

Breeding-Related Information

Radius Cavity CL (in)

Radius Inner First Wall (m)

Difference (m)

Aspect Ratio

First Wall Area m2 )
% Outer Blanke

% Inner Blanketl

% Ducts, Etc.

ID Breeding Ratio Outer

ID Breeding Ratio Inner

k (3D Breeding Fatio)

Neutron Wall Loading (MW/M 2 )
Fusion Power (MW)

Blkt Life (full power years)

STARFIRE

7.00

4.81

2.19

3.20

773

77.5

18.7

3.8

1.21

1.15
1.04

3.6
3480

4.5

AFTR

4.82

3.48

1.34

3.60

Line

(1)
(2)

(3)=(1)-(2)
(4)=(1)/(3)

332

82.3

10.5
7.2

1.20

1.16

6.9t

2910
2.3

(5)
(6)=100-(7)-(8)

(7)
(8)

(9)
(10)
(11)

(12)

(13)
(14)

Pll is defined as neutron power over plasma surface. The number here
corresponds to actual average neutron loading on the first wall.

Notes

(a) These values are based on a multiple straight line representation of the
actual first wall position.

(b) An elliptical representation of the AFTR plasma, allowing 0.14 m for scrape
off, has an area of 288 m 2 (hence 8.0 MW/M 2 X 288 332 = 6.9 MW/m 2).

(c) The 3D breeding ratio (line 11) was calculated by STARFIRE personnel.
No simple extrapolation method was found for AFTR .

(d) Blanket life cline (14)) is based on equal exposures, 16.2 MW - y/M 2 .
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4 SCOPING STUDIES: INTRODUCTION

. In this chapt(

previous section i

mixture (i.e., 1 -

plasma- TF coil di!

is not a cost code,

series of numbers 1

tradeoffs performe

In section 4.1

implications of op(

As stated before,

In section 4.2

is analyzed using

thickness and -red-

are discussed.

Section 4.3.pr

of 1 - -y. The m;

their impact on th

Elongation tr

elongation involve

provided by the si

r, a scoping study is performed. The code described in the

utilized. Variations discussed are with respect to the fuel

-y, the allowable stresses, pulse length, aspect ratio and the

tance both in the inboard side and outboard side). The code

and the output is not a single number indicating cost but a

hat should enter into the cost equation. There is a number of

d in selecting the base case.

a scoping study is performed as a function of 1 - -y. The

,rating in DD-DT fuel mixtures on the reactor size is analyzed.

L single number describing the cost is hard to derive.

the influence of the blanket and shield size on the reactor

bhe parametric code. The tradeoffs between reduced blanket

iced tritium breeding requirements due to DD-DT operation

esents the results of the parametric variations for a fixed value

Lin engineering and physics constraints are varied to look at

e machine design.

adeoffs are discussed in section 4.4. The tradeoffs involving

better calculations of the stresses in the magnet than what is

rnple analysis presented in chapter 3.
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Section 4.5 pi

systems-arLund th

the location and cu

parameters of the

In chapter 5

is given.

esents an attempt to optimize the toroidal and poloidal field

? base case. The plasma is kept approximately constant while

Irrent density of the poloidal field coils are varied, and specific

toroidal field coil are changed.

L short discussion of the engineering problems of the magnet
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4.1 Parametric Analysis - Breeding and Engineering Tradeoffs

In this sectioi

and plasma and d

In order to co

loading is kept co]

determines the cc

from the plasma

irradiation). As o]

of specific fusion p

at constant wall lc

The main pu

reactor, self suffic

test reactor would

the neutron wall 1

scoping studies in

PW1 = 8 MW/m

to the plasma sur

smaller.

However, the

for utilization in f

breeding fissile m,

be operated at lo)

larger than the va

, the tradeoffs between the plasma tritium breeding margin

vice parameters is studied.

npare machines that have similar properties, the neutron wall

stant. The wall loading (related to the neutron wall loading)

>ling required for the first wall, heat removal requirements

-egion and lifetime of the first wall (if limited by neutron

eration with DD-DT fuel mixtures results in large variations

>wer density Pf /#2B4 as the value of 1-y changes, operating

ading insures that the machines being scoped are comparable.

rpose of this machine is that of being an engineering test

ent in tritium production. The objectives of an engineering

be that of materials testing. In order to achieve this mission,

)ading has been chosen to be relatively high. In fact, for the

this section, the neutron wall loading has been chosen to be

. This wall loading corresponds to the neutron power divided

ace. The average neutron loading of the first wall would be

AFTR device can also achieve the goal of producing tritium

ision reactors that are not self sufficient in tritium, or that of

terial. For these latter applications, the AFTR device could

Ter wall loadings by operating with values of 1 - -y that are

ue required for a materials test reactor (see chapter 2).
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Table 4.1.1 sl

sectionr.-A; and A

region. The elect

lowest value of nr

accordance with t

Table 4.1.2 sl

breeding margin 1

machine is allowec

density pf/# 2B 4

parametric scan.

ratio (chosen to b

the major and mii

is the plasma curr

f32 B 4 a 2, P is thc

torque due to the i

Uhoop represents t

forte present in tc

ETF is the energ)

the toroidal field

POH are the energ

and EEF, PEF, 11

Ampere-turns of t

Also shown ii

that the machines

ows the assumptions for the scoping study presented in this

represent the thickness of the inboard and outboard blanket/shield

'on temperature is 12 keV in DT, which correcponds to the

gnition, while the peak temperature is increased in DD-DT in

ie results in chapter 2.

:>ws the result from the parametric code as the plasma tritium

- 'yis varied. The neutron wall loading is kept fixed, and the

to increase in size to balance the reduced specific fusion power

with increasing 1 - -y. Table 4.1.2 shows the results of the

- 3 increases from 0 (DT operation) to 0.21. A is the aspect

A - 4; this choice is justified in section 4.3). R and a are

or plasma radii, B is the magnetic field on the plasma axis, I

!nt, P is the plasma performance defined in chap:'r 2 as P =

fusion power, WTF is the magnet weight, TR is the applied

ateraction between the toroidal field coil with the vertical field,

ie hoop stresses in the throat of the magnet (the centering

roidal magnets is taken in Bitter magnets through wedging),

in the toroidal field system, PTF is the power dissipated in

ystem, 7blanket is the weight of the blanket/shield, EOH and

r and power dissipated in the ohmic transformer at peak field,

EF and MAEF are the energy, dissipated power, weight and

ae vertical field system.

Table 4.1.2 are the fusion power and wall loading assuming

were operated in DT. Operationg at 1 - - = 0.21 results in
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a net decrease of fusion power by a factor of 10 relative to DT operation. Note,

however, that the machine designed for DD-DT operation cannot be run with

DT due to the large wall loadings with DT operation. This restriction does not

apply if the field ia the machine or the plasma 6 are downgraded.

Figure 4.1.1 shows the normalized stored energy, the normalized resistive

power of the TF magnet, the normalized fusion power and the normalized value

of required plasm3, performance as functions of 1 - -y for fixed wall loading.

The values of P and ETF required for operating at fixed wall loading increase

very fast with increasing 1 - -y. The fusion power and the resistive power of

the magnet increase slower. There is a large price to pay for operating at large

values of 1 - -y at Jixed wall loading. Operating at lower values of 1- (- 0.05)

still results in a moderate increase in machine size.

Figure 4.1.2 shows the main parameters of the vertical field system as

function of 1 - . The overall machine size and associated systems increase

rapidly with increasing values of 1 - ry.

If the main goal of the AFTR device is that of tritium self sufficiency, then

the value of 1 - that results in this tritium self sufficiency should be chosen,

as going to larger values of 1 - -y results in larger than necessary machine size.

If the goal is for neutron applications (tritium or fissile breeding, for ex-

ample), the situation is different. Figures 4.1.3 through 4.1.5 show the ratios

of the excess neutron production to the resistive power dissipation, the stored

energy in the toroidal field coil and the weight of the toroidal field coil as func-

tions of 1 - -y for constant wall loading (for the designs in Table 4.1.2). The

excess neutron generation rate Reis defined as
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R, ~ 3.6 X 10 20 (k - -y)Pf

where R, is in neutrons per s, k is the effective breeding ratio of the blanket and

Pf is the fusion power in GW. The generation of excess neutrons becomes more

efficient (as defined by R,/ETF, Rn/Pre.s and Rn/WTF) with increasing value

of 1 - ' for k < 1.1 For k > 1.1, the ratio R,/ETF decreases with increasing

1 - 7y.

Although the unit size is increasing, the rate of production of excess neutrons

increases faster than the unit size, resulting in more efficient excess neutron

generation.
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Table 4.1.1

Constraints for Scoping Study

PW11 (MW/m 2 ) 8

A 4

UTF (MPa) 150

C3 =/T x A 0.25

q 2.5

r.= b/a 1.5

Te, (keV) DT 12

DD-DT 20

burn pulse lengths (s) 100

UOH(MPa) 150

A (M) 0.36

A0 (m) 0.66
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Table 4.1.2

Parametric Scan of Device vs 1 - -

Pwon = 8 MW/m 2, UTF = 150 MPa

1 - 0. 0.035 0.068 0.12 0.21

A 4.09 3.98 4.07 4.05 4.07

R (i) 3.27 3.98 4.89 6.28 8.27

a (m) 0.8 1.0 1.2 1.55 2.03

B (T) 7.09 7.61 8.5 9.21 9.97

I (MA) 6.13 8.47 11.1 15.6 22.0

P (M2 T4 ) 6.05 13.2 28.4 65.9 154.

Pf (GJ) 1.26 1.93 2.84 4.7 8.1

DT equivalent operation

P..1 (MW/m 2) 8.0 14.0 25.0 45.0 80.0

Pf (G J) 1.26 3.37 8.8 26.5 81.2

Choop (MPa) 0.125 0.136 0.149 0.163 0.179

WTF (Gg) 2.71 4.13 6.49 11.7 23.3

TR(GNi m) 0.91 1.75 3.65 8.25 2.00

ETF (GJ) 4.62 8,68 17.5 38.8 92.7

PTF (MW) 307. 417. 610. 928. 1463.

Wbianket (Gg) 0.0825 0.118 0.167 0.264 0.438

EOH (GJ) 0.774 1.21 1.96 3.52 6.6

POH (MW) 55.0 52.9 55.2 56.5 58.1

EEF (GJ) 0.934 1.55 2.7 5.33 11.4

PEF (GW) 0.156 0.213 0.298 0.454 0.73

WEF (Gg) 0.312 0.428 0.599 0.915 1.47

MAEF (MA) 21.7 24.5 27.9 33.6 41.6
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4.2 Scoping of the Effect of Blanket/Shield on Reactor Size

In this section the effect of the blanket/shield on the reactor is studied.

The effect of the blanket size on the tritium breeding ratio is outside the

scope of this report. The effect of varying the thicknesses of the blanket region,

the first wall, the multiplier and the reflector on the tritium breeding is hard

to estimate. An attempt to reach a model for the tritium breeding ratio as a

function of some of the parameters that describe the blanket/shield region was

unsuccessful. However, some comments can be made in the tradeoff between

blanket size (which determines the tritium breeding) and the plasma tritium

breeding margin 1 - -y.

Table 4.2.1 shows the parametric scan for a resistive tokamak with fixed wall

loading of Pel == 8 MW/in 2 (y 0.93), and UTF = 150 MPa as a function

of the thickness of the blanket thickness in the inboard side of the tokamak Aj.

The scrape off, first wall, second wall and multiplier region is - 0.21 m. The

thickness of the blanket/shield region is varying in Table 4.2.1 from 0.19 to 0.39.

As Aj is decre-ased from the base case of Ai = 0.29 m to A, = 0.19 m, the net

result in the machine size is a - 10% reduction in major radius and resistive

power and -- 25% decrease in fusion power, weight of toroidal field magnet and

stored energy. Increasing Ai to Ai = 0.39 in has approximately the opposite

effect.

On the other hand, reduction of Aj has a fairly large effect on the tritium

breeding ratio. Ir. a cylindrical one dimensional calculation, assuming STAR-

FIRE blanket [1) with 60% solid density, the tritium breeding ratios are k =
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1.090, 1.134 and 1.165 for Aj = 0.19, 0.29 and 0.39 m, respectively.

Table 4.2.2 sh ows the results of varying the thickness of the outer blanket

region (including reflector), A,. The influence of A( on the design are very small.

Similarly, Table 4.2.3 shows the machine designs when Atop, the thickness

of the blanket at Lhe location that corresponds to a major radius equal to the

location of the plas ma major radius, is varied. There are very small perturbations

on the main machine parameters.

The parametErs in Tables 4.2.1-4.2.3 have been calculated assuming P" =

8 MW/M 2 with y = 0.93. The tritium breeding characteristics of the machine

are changing as the thickness of the blanket at different locations is varying.

From Tables 4.2.1-4.2.3, is can be concluded that only the thickness of the

inboard blanket has a relatively strong effect on the machine size. The question

of whether it is advantageous to reduce the size of the inner blanket by operating

in DD-DT mode is addresed.

For calculational purposes, assume that about 15% of the tritium, breeding

occurs in the inboard side of the blanket. Also assume that the size of the inboard

blanket does not affect significantly the breeding done elsewhere. Then if the

size of the blanket is reduced by 0.10 m, the net tritium breeding is reduced by

0.15 X (1.134 - 1.090) = 0.0066. For AFTR type devices, reduction of the size

of the blanket by 0.10 m results in a reduction in major radius of 0.44 m, or

~ 10% (Table 4.2.1).

In order to b:'ing the tritium breeding back up to where it was before, it

is necessary to increase the plasma tritium breeding ratio by the same number.

From Table 4.1.2,
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~-h 2.8
AR/R

In order to increase the plasma tritium breeding margin by 0.0066, the major

radius has to increase by approximately

AR ~ R ~ 0.20m
2.8 -y

Therefore, it Is advantageous to decrease the breeding in the throat of the

magnet, as the increase due to larger required y is smaller than the decrease

of the magnet due to decreased distance between the plasma and the toroidal

field coil. This result is due to the relatively minor contribution to the total

breeding from the inner blanket. However, reducing the size of the inboard

blanket would have implications for the lifetime of the insulation of the magnet.

The implications are beyond the scope of this work.
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Table 4.2.1

Parametr.c Scans vs. Thickness of Inboard Blanket/shield, A

PFwa = 8 MW/M 2 (' = 0.93), UTF = 150 MPa

0.19 0.29 0.39

A 4.05 4.07 4.06

R (M) 4.45 4.89 5.28

a (m) 1.1 1.2 1.3

B (T) 8.66 8.5 8.32

I (MA) 10.4 11.1 11.8

F (M 2 T4 ) 26.0 28.4 30.7

Ff (GW) 2.37 2.84 3.33

0',Oop 0.148 0.149 0.148

TR(GN m) 3.03 3.65 4.31

W'TF(Gg) 5.23 6.49 7.86

ETF(GJ) 13.6 17.5 21.7

FTF(MW) 550 610 664

lbsafket(Gg) 0.12 0.167 0.223

'OH(GJ) 1.73 1.96 2.26

FOH(MW) 57.6 55.2 56.1

E'EF(GJ) 2.28 2.73 3.22

PEF(GW) 0.223 0.253 0.284

WEF(Gg) 0.649 0.733 0.82

MAEF(MA-turn) 26.4 28.2 30.1
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Table 4.2.2

Parametric Scans vs. Thickness of Outboard Blanket/Shiled, A,

PWa = 8 MW/M 2 (y = 0.93), CTF = 150 MPa

10 (M) 0.39 0.59 0.79

A 4.0 4.07 4.0

' (m) 4.8 4.89 5.0

a (m) 1.2 1.2 1.25

B (T) 8.44 8.5 8.34

I (MA) 11.2 11.1 11.5

P (m 2 T4 ) 28.5 28.4 29.5

FPf (GW) 2.80 2.84 3.02

u,100p(MPa) 0.152 0.149 0.144

T (GN m) 3.16 3.65 4.17

14 TF(Gg) 5.92 6.49 7.33

ETF(GJ) 16.3 17.5 18.8

PTF(MW) 606 610 614

l4 bianket(Gg) 0.135 0.167 0.209

EOH(GJ) 1.96 1.96 2.11

PDH(MW) 56.4 55.2 57.3

EEF(GJ) 2.48 2.7 2.99

FPF(GW) 0.283 0.298 0.318

14EF(Gg) 0.567 0.599 0.641

AMAEF(MA-turn) 27.4 27.9 28.7
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Table 4.2.3

Parametric Scan vs. Thickness of blanket

al Location of the Plasma Major Radius, Atp

PW'1 = 8 MW/m 2 ( = 0.93), UTF 150 MPa

Atop (i) 0.14 0.29 0.43

TR(GN m) 3.65 3.65 3.65

WTF (Gg) 6.31 6.5 6.7

ETF (GJ) 11.2 11.9 12.7

PTF (MW) 587. 610. 628.

Wblanket (Gg) 0.14 0.167 0.195

EOH (GJ) 1.94 1.94 1.94

POH (MW) 54.1 54.1 54.1

EEF (GJ) 2.51 2.7 2.9

PEF (GW) 0.284 0.298 0.313

WEF (Gg) 0.573 0.6 0.626

MAEF (MA) 26.4 27.9 29.3
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4.3 Parametric Analysis for Constant -y = 0.93

-In this section, parametric scans are performed to illustrate the different

tradeoffs. The assamptions in the parametric code are shown in Table 4.3.1.

The stresses in the throat of the magnet are UTF = 150 MPa. The stresses

in the ohmic heating central transformer are UOH = 140 MPa, with the OH

transformer at the end of the burn pulse biased half way in the opposite direction

than prior to initiation. The burn pulse length of the base case is assumed to be

100 seconds, limited by the OH transformer, with a peak electron temperature

of 20 keV.

The plasma elongation has been chosen to be rc = b/a = 1.5 and the plasma

safety factor q = 2.5 at the plasma edge and q = 0.9 - 1 at the plasma center.

The plasma triangularity resulting from the poloidal field system i. 0.05 < 6 <

0.2.

The parameters of the equilibrium field system are calculated using the

method described in section 3.3. The same parameters that optimize the vertical

field system are assumed (section 4.5.2).

The distance between the toroidal field coil and the plasma in the midplane

in the throat of the magnet, 6, is assumed to be 6i = 0.50 m. This allows for 0.36

m of blanket, shield, first wall and multiplier space plus 0.14 m for scrape-off

region . On the outboard side of the plasma, the distance between the plasma

and the toroidal field coil is 6o = 0.80 m. The larger distance allows for ~ 0.66

m of blanket/shield modules located between the toroidal field coil and the first

wall.
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In this section, the tradeoffs between the different parameters of the machine

engineering and pLasma physics are done keeping the neutron wall loading and

1 -- y constant.- This is to keep the nuclear characteristics of the machines

constant (with constant thickness of the blanket/shield region and with constant

wall loading, the nuclear properties of the machine should remain constant).

Keeping the Nall loading constant means that the plasma performance P

has to vary. This is because a single parameter, either P~1 1 or P, plus the aspect

ratio A determines the design parameters. The fact that P is varying implies

that for fixed -y and for fixed wall loading PJIl the plasma Q = Pfusion/Peating

is varying (or, if the plasma is overignited, the amount of biasing required for

thermal equilibriumn according to the empirical scaling law described in chapters

2 and 3). However, due to the unknowns in the scaling of energy confinement for

plasmas of this size and operating at these temperatures, keeping the wall loading

fixed is a better base for the parametric scans than the plasma performance

parameter P. Although P is varying, y and PwaU do not vary.

The lifetime of the magnet is determined by the survivability of the in-

sulation in ther inboard side of the magnet. The allowable fast neutron fluence

(section 3.3.2) is 1024 to 1025 n/M 2 [2). The fast neutron flux at the inner edge

of the inner blanket is required for an estimate of magnet lifetime. That flux

has not yet been cetermined.

Table 4.3.2 shows the results of the parametric scan vs. aspect ratio. The

tensile stresses in the throat of the magnet are kept constant and the neutron wall

loading is also kept constant. This table therefore shows the possible variations

in machine characteristics for fixed engineering and nuclear properties. The
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aspect ratio for the machine is varied between A ~ 6 to A - 3. The magnetic

field 6iilhfi plasma axis varies between 11.5 and 7 T. If the designs in Table 4.3.2

where run in DT, the neutron wall loading would be Pwau = 25 MW/rn 2 . For

0.93 the corrmsponding wall loading would be 8 MW/m 2 and for - = 0.8

the corresponding wall loading would be Pwau = 2.8 MW/m 2. In Table 4.3.2,

I is the plasma current, WTF is the weight of the TF coil, PTF is the resistive

power of the TF ccil, ETF is the stored energy in the EF coil, PEF is the resistive

power of the EF coils, EEF is the stored energy in the EF coils, MAEF is the

Ampere turns of tie EF coils and WEF is the weight of the EF coils. TR is the

torque due to the interaction between the poloidal field and the current in the

TF coil. Pf is the total fusion power determined for y = 0.93.

The fixed wal loading and fixed constant stresses result in varying values of

the plasma perforrmance P. Thus the machines in Table 4.3.2 (and in subsequent

tables) do not have constant margins of performance. Fcr fixed wall loading, the

performance P increases with decreasing field (or increasing minor radius). From

Table 4.3.2, the plasma performance P for a fixed wall loading is decreasing

with increasing aspect ratio A. The reason for this is that the wall loading is

determined by

n 2 Ra 2  n 2 a 2  2 a2 B 4  P

Ra a a a

Therefore, for smaller minor radius a, (larger aspect ratio), the plasma perfor-

mance P has decreased. The fusion power decreases with increasing aspect ratio,

as

Pf ~ n 2Ra2 ~ (P)R
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and the major radius R remains approximately constant while P decreases.

The plasma major radius remains approximately constant because of the

constraint on the stresses in the throat of the magnet: as the aspect ratio in-

creases with apprcximately fixed plasma major radius, the throat cross sectional

area increases suff ciently (due to smaller minor radius) to balance the increased

loads due to the increased magnetic field necessary to keep P""1 constant.

The major radius is minimized at a - 1 m. The stored energy in the magnet

is also minimized For a - 1 m.

The weight cf the magnet WTF increases monotonically with decreasing

aspect ratio. ThE resistive power decreases with aspect ratio for A > 4 and

remains approximately constant for A < 4. The EF system characteristics

(weight, stored enErgy, resistance power and Ampere turns) remain approximately

constant over the -ange A > 3.5, but the requirements increase for aspect ratios

lower than A - 3.5. The optimum aspect ratio results, therefore, from a tradeoff

between the weight of the magnet and the resistive power dissipation. An aspect

ratio of A = 4 has been chosen as a compromise between minimum resistive

power dissipation- and slowly increasing weight of the magnet.

The choice :' aspect ratio is reached in order to minimize the operation

costs and capital cost of the plant. With QTF - 3 - 4 (QTF = Fusion

power/electricity 'equired for driving the magnet systems), it is unlikely that

this type of device would be a commercial machine for selling fusion power. (The

applications of this type of device are as a materials test reactor or as supplier

of tritium for other DT reactors.) It is possible, however, to obtain larger values

of QTF by operating at even lower aspect ratios. For A = 3.3, for example,
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QTF = 4.5 (as opposed to QTF =3 at A = 4). However, the capital expense

of therraceine with A = 3.3 is significantly larger than the base case A = 4

(weight of TF iricreases by a factor of 1.35, stored energy up by a factor of

1.13 while the resistive power remains approximately constant due to increased

requirements in the EF system).

The nuclear cliaracteristics of the machine designs, shown in Table 4.3.2 are

approximately constant, as the neutron wall loading and the radial builds of the

shield and/or blankets have been kept fixed.

Tables 4.3.3 and 4.3.4 show the results from the parametric scans for different

values of Ps1 1 than Table 4.3.2. Table 4.3.3 is. for P = 4.8 MW/r 2 for

= 0.93 and Table 4.3.4 is for P,,, = 11.2 MW/M 2 for y = 0.93. Again,

most of the parameters describing the system are approximately constant for

5 < A < 3.5 with the exception of the plasma performance P, the iusion power

Pf, the weight of the magnet WTF and the resistive power RTF. Pf, P and

PTF are optimized with decreasing aspect ratio, while WTF is optimized with

A ~ 5. Again A ~ 4 is a compromise between minimum weight, minimum

resistive power; and increasing P and PB aspect ratio for varying wall loadings

is A 4.

Table 4.3.5 shows the results from the parametric scan with A = 4 and

varying wall loadiags. This table indicates the increase in machine size with

increasing wall loading. For a factor of 1.6 increase in wall loading (12.8 MW/M 2

vs. 8 MW/m 2 for y = 0.93 the weight of the machine increases by a factor of

- 1.75. The stored energy increases by a factor of 2 and the resistive power

increases by a factor of 1.4.
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Alternatively, the machines in Table 4.3.5 can be considered as machines

with constant wal loading and varying y. This is shown in Table 4.3.5.b. The

value of 'y can be varied to alter the specific fusion power density Pf/#32 B4 and

keep the wall loading fixed. The value of the tritium breeding ratio 1 - -y over

the range of these parametric scan varies from 1 - = 0.035 for the smallest

machine (R = 4.03m, PTF = 437MW, ETF = 9.3 GJ) to 1 - 3 = 0.11 for the

largest machine (F = 6.1m, PTF = 830 MW, ETF = 34.2 GJ). There is a very

large increase in machine size with moderate increases of l-y. This is due to the

fact, shown in Chapter 2, that the fusion power density decreases very fast with

increasing 1-y. T, should be noted that the neutronic or breeding characteristics

of the designs in Table 4.3.5.b are not comparable, as the blanket/shield thickness

and P,,, 1 are kept constant while ' is allowed to vary. In Section 4.2 the inner

blanket would be Cecreased in size to indicate the relaxed requirements in tritium

breeding.

Table 4.3.6 si ows the machine design as the burn-time is allowed to vary.

It is assumed tha- the current drive is provided by an OH transformer. The

wall loading is Pal = 8 MW/m 2 for y = 0.93. There are small effects on

the machine size when the requirements for an OH transformer capable of up

to 100 s of burn plus all inductive requirements. The OH transformer starts

to be affected by the resistive volts seconds for a burn-pulse of - 10 3 s and

the reactor itself increases substantially in size for 104 s of burn. Between no

resistive volt seconds for the burn and up to 10 4 s of OH transformer driven

burn, the machine weight and stored energy in the TF magnet in the TF system

increase by a factor of - 3, and the resistive power by a factor of 2.
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Table 4.3.7 shows the results of the parametric scan for fixed wall loading

(P -fz b MW/m 2 for y 0.93) for varying the plasma # scaling. The

parameter cp = PX A is varied between 0.15 to co = 0.30. As ca is increased

from cp = 0.15 to cp = 0.25, the stored energy in the magnet decreases by a

factor of - 4, thE weight decreases by a factor of - 3 and the resistive power

by a factor of ~ 2. The fusion power decreases by a factor of - 2.5. Values

of ce lower than 0.15 result in very large machine dimensions. The choice of cp

(co - 0.25) is opt:mistic, resulting in values of beta poloidal close to the aspect

ratio.

Table 4.3.8 shiows the results of the parametric scan with constant wall

loading (Pwa1 = 8 MW/M 2 for y = 0.93) vs. varying tensile stresses in the

throat of the magr et. The size of the machine is strongly affected by the assumed

tensile stress in tl e throat. If UTF = 240 MPa, the major radius is under 4m.

For UTF = 150 MPa (the base case), the major radius increases to under 5m.

For UTF = 115 MPa, R ~ 6.6 m. The resistive power of the TF magnet does

not increase as fast, while the stored energy and weight increases by about a

factor of 3.
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Table 4.3.1

Constrains for the Parametric Scans

#TA 0.25

q 2.5

r. = b/a 1.5

burn pulse lengths (s) 100

UTF (MPa) 150

LTOH(MIPa) 150

5;(m) 0.50

6,(m) 0.80

Teo . 20
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Table 4.3.2

Parametric Scan for UTF = 150 MPa and

P-Wa = 8 MW/m 2 (at y = 0.93)

A 6.11 4.74 4.07 3.64 3.37

R (M) 4.89 4.74 4.89 5.1 5.38

a (m) 0.8 1.0 1.2 1.4 1.6

B (T) 11.5 9.6 8.5 7.73 7.19

I (MA) 6.4 8.82 11.1 13.3 15.4

P (m2 T4) 18.9 23.6 28.4 33.0 37.7

Pf (GW) 1.89 2.29 2.84 3.46 4.16

PTF(MW) 860 667 610 590 587

6hoop(MPa 0.164 0.153 0.149 0.145 0.144

TR(GN m) 4.63 3.7 3.65 3.79 4.10

WTF(Gg) 5.47 5.67 6.49 7.53 8.74

ETF(GJ) 22.0 17.8 17.5 18.2 19.8

Wbanket(Gg) 0.12 0.139 0.167 0.199 0.236

EoH(GJ) 1.45 1.66 1.96 2.38 2.83

POH(MW) 59.6 56.7 55.2 57.9 58.9

EEF(GJ) 3.53 2.62 2.7 3.01 3.47

PEF(GW) 0.286 0.288 0.298 0.322 0.355

WEF(Gg) 0.812 0.577 0.599 0.649 0.716

MAEF(M.-turn) 31.6 27.6 27.9 29.2 30.9
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Table 4.3.3

Parametric Scan for UTF = 150 MPa

and Peel = 4.8 MW/m 2 (at y = 0.93)

A 7.1 4.89 4.03 3.56 3.26

R (i) 4.26 3.91 4.03 4.27 4.56

a (m) 0.6 0.8 1.0 1.2 1.4

B (T) 11.7 9.07 7.79 7.0 6.44

I (MA) 4.15 6.45 8.55 10.6 12.5

p (m2 T4) 8.51 11.3 14.2 17.0 19.8

Pf (GW) 0.74 0.91 1.17 1.49 1.85

PTF(MW) 729 488 437 428 429

Uhoop(MP.a) 0.158 0.141 0.137 0.135 0.134

TR(GN m) 2.98 2.04 1.88 1.98 2.15

WTF(Gg) 3.8 3.67 4.25 5.02 6.09

ETF(GJ) 14.6 9.76 9.31 9.87 10.83

Wblanket(Gg) 0.0853 0.0974 0.12 0.148 0.179

EOH(GJ) 0.912 1.07 1.28 1.55 1.88

PoH (MW) 58.2 58.7 55.9 55.2 55.3

EEF(GJ) 3.13 1.63 1.64 1.85 2.18

PEF(GW) 0.308 0.215 0.22 0.241 0.27

WEF(Gg) 0.6 0.428 0.44 0.483 0.541

MAEF(MA-turn) 32.7 24.7 24.8 26.1 27.9
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Table 4.3.4

Parametric Scan for UTF = 150 MPa and

PwaI1 = 11.2 MW/m 2 (at -y = 0.93)

A 7.86 5.49 4.55 4.03 3.68

R (M) 6.29 5.49 5.46 5.64 5.88

a (m) 0.8 1.0 1.2 1.4 1.6

B (T) 14.2 11.2 9.78 8.85 8.18

I (MA) 5.99 8.78 11.3 13.6 15.9

P (M2 T4 ) 26.5 33.1 39.7 46.3 52.9

Pf (GW) 3.39 3.71 4.45 5.34 6.37

Uhoop(MPa' 0.192 0.169 0.161 0.157 0.154

TR(GN m) 10.8 6.48 5.47 5.78 6.04

WTF(Gg) 8.62 7.43 8.01 9.1 10.5

ETF(GJ) 49.4 30.3 27.5 27.4 28.9

PTF(MW) 1536 967 820 764 746

Wblanket(Gg) 0.153 0.16 0.186 0.218 0.256

EOH(GJ) 1.84 2.0 2.34 2.75 3.25

POH(MW) 56.9 55.6 55.7 55.5 56.9

EEF(GJ) 9.37 4.12 3.73 3.97 4.44

PEF(GW) 0.595 0.377 0.36 0.379 0.41

WEF(Gg) 1.16 0.749 0.723 0.762 0.826

MAEF(MLA.-turn) 43.8 31.4 30.3 31.0 32.4
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Table 4.3.5

(a) Parametric Scan vs. PaU for -y = 0.93, UTF = 150 MPa

Pwall (MW,'m2 ) 12.8 10.4 8.0 6.4 4.8

A 3.84 3.93 4.07 4.05 4.03

R (m) 6.14 5.5 4.89 4.45 4.03

a (m) 1.6 1.4 1.2 1.1 1.0

B (T) 8.64 8.58 8.5 8.19 7.79

I (MA) 16.0 13.6 11.1 9.84 8.55

P (M2 T4 ) 60.5 43.0 28.4 20.8 14.2

Pf (GW) 7.58 4.83 2.84 1.89 1.17

Uhoop(MPa) 0.159 0.154 0.149 0.142 0.137

TR(GN m) 7.23 5.23 3.65 2.71 1.88

WTF(Gg) 11.4 8.7 6.49 5.28 4.25

ETF(GJ) 34.2 25.0 17.5 13.0 9.3

PTF(MW) 830 720 610 522 437

Wblanket(Gg) 0.266 0.213 0.167 0.142 0.12

EOH(GJ) 3.39 2.67 1.96 1.65 1.28

POH(MW) 54.5 56.8 55.2 58.6 55.9

EEF(GJ) 4.95 3.71 2.7 2.13 1.64

PEF(GW) 0.437 0.364 0.298 0.257 0.22

WEF(Gg) 0.88 0.733 0.599 0.517 0.44

MAEF(MA-turn) 33.1 30.6 27.9 26.3 24.8

(b) Values cf y for Constant Pwall

Pwall(MW/:M2) 8 8 8 8 8

0.89 0.91 0.93 0.95 0.965

1 - 0.11 0.09 0.07 0.05 0.035
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Table 4.3.6

Parametric Scan vs. Burn Time of

-for-PwaI = 8 MW/m 2 (y = 0.93), UTF = 150 MPa

tbun(s) 0 100 1000 10000
A 4.0 4.07 4.06 4.06

R (m) 4.8 4.89 5.48 8.72

a (m) 1.2 1.2 1.35 2.15

B (T) 8.43 8.5 8.24 7.33

I (MA) 11.2 11.1 12.1 17.2

P (M2 T4) 28.4 28.4 31.9 50.8

Pf (GW) 2.79 2.84 3.58 9.06

uChoop (]va) 0.145 0.149 0.168 0.229

TR(GN m) 3.51 3.65 4.59 12.01

WTF(Gg) 6.36 6.49 8.08 20.1

ETF(GJ) 16.9 17.5 21 3 51

PTF(MW) 597 610 681 1082

Wblanket(Gg) 0.165 0.167 0.206 0.485

EOH(GJ) 1.86 1.96 3.56 16.8

PoH(MW) 58.1 55.2 57.1 58.9

EEF(GJ) 2.66 2.7 3.09 6.04

PEF(CW) 0.295 0.298 0.327 0.519

WEF(Gg) 0.594 0.599 0.659 1.05

MAEj'(MA-turn) 28.1 27.9 27.5 28.1
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Table 4.3.7

Parametric Scan vs. c= X A for

P 11 = 8 MW/m 2 (y = 0.93), UTF = 150 MPa

Ci 0.15 0.20 0.25 0.3

A 3.97 3.93 4.07 3.93

R (i) 7.54 5.89 4.89 4.33

a (m) 1.9 1.5 1.2 1.1

B (T) 9.66 8.83 8.5 7.8

I (MA) 18.8 14.4 11.1 9.97

P (m2 T4) 44.9 35.4 28.4 26.0

Pf (GW) 6.94 4.26 2.84 2.30

Uh o op (MPa) 0.168 0.156 0.149 0.141

TR(GNi m) 12.3 6.07 3.65 2.48

WTF(Gg) 18.9 10.3 6.49 4.99

ETF(GJ) 70.9 31.5 17.5 11.3

PTF(MW) 1260 812 610 480

WbIan Aet(Gg) 0.378 0.242 0.167 0.139

EOH(GJ) 4.99 3.0 1.96 1.58

P&H(MAW) 58.0 56.7 55.2 56.2

EEF(GJ) 6.99 4.04 2.7 2.13

PEF(GW) 0.558 0.389 0.298 0.257

WEF(Gg) 1.12 0.781 0.599 0.516

MAEF(MA-turn) 35.4 30.9 27.9 26.9
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Table 4.3.8

Parametric Scan vs. UTF for

Fixed Wall-Loading

P&Lu 8 MW/m 2 (' = 0.93)

CTF(MPa) 210 150

4.07 4.07

P (m) 3.86 4.89

a (m) 0.95 1.2

B (T) 9.02 8.5

I (MA) 9.31 11.1

P (M2 T4 ) 22.5 28.4

PU (GW) 1.78 2.84

Choop(MPa) 0.205 0.149

Th(GN m) 2.37 3.65

VTF(Gg) 4.09 6.49

ETF(GJ) 11.2 17.5

ITF(MW) 548 610

iVblanket(Gg) 0.111 0.167

EOH(GJ) 1.35 1.96

.fOH(MW) 55.5 55.2

EEF(GJ) 2.2 2.7

PTEF(GW) 0.258 0.298

VEF(Gg) 0.515 0.599

MAEF(MA-turn) 30.2 27.9
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4.12

6.59

1.6

7.96

13.7

37.9

5.12

0.107

6.53

12.2

31.9

741

0.285

3.29

57.7

3.91

0.385

0.778
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4.4 Elongation Tradeoffs

In the previous sections the plasma elongation has been kept fixed at K =

b/a = 1.5. In thii section the elongation is allowed to vary, while keeping the

neutronics and, m gnet engineering constant.

In discrete coil reactor designs, the height of the magnet is determined from

the use of D-shape coils [3] or bending free coils [4]. The location of the outer

leg of the TF is ditermined by either ripple or maintenance requirements. The

height of the coil is such that increased plasma elongation does not affect the

location of the coil.

For a continous magnet (such as the Bitter magnet that is being con-

sidered), the coil contour follows the outer periphery of the blanket/shield reflector.

That is, it is located as close as possible to the plasma. Elongating the plasma

has a direct consequence on the shape of the TF magnet and on the stresses.

In this section a elongation scan is performed to find the optimum plasma elon-

gation. As noted in Chapter 3, the plasma elongation increases the allowable

plasma pressure. -t is assumed that

1

A

The machine size is varied while keeping the wall loading and the stresses in

the throat of the inagnet constant. The stresses are calculated using thick shell

theory [5].

Table 4.4.1 shows the results of the-parametric scan for PWL = 8 MW/n 2

with -y = 0.93 and Umembrane = 260 MPa. 0 membrane are the von Mises
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membrane stresses in the throat of the magnet. The bending in the throat of

the magnet is approximately the same in the three cases. The aspect ratio has

been- kept approximately the same. As can be seen, the energy and the weight

of the TF magnet have increased by - 30% when the elongation is decreased

from 1.5 to 1.2. TI e total resistive power (EF plus TF resistive powers) however,

has remained appioximately constant (908 MW for n = 1.5 and 934 MW for

1.2).

The vertical f eld system is very significantly simplified by operating with

= 1.2. In Table 4.4.1 Idipole and Iquadruple represent the currents in the

main equilibrium ield coil (dipole coil) and the shaping coil (quadruple coil).

Idipole and 'quadrpo1, have been calculated using the results from Chapter 3.

For n = 1.2 the quadruple coil has very little current (Iquadrupole - 1.2 MA).

Furthermore, the dipole current also carries - 25% less current than for . =

1.2 than for K = 1,5. The total number of Ampere-turns, the stored energy, and

the resistive power of the EF system have decreased by a factor of 2, making

this system simpler and less expensive.

Figure 4.4.1'shiows a schematic view of the TF and EF coils for the cases

with k = 1.5 and C = 1.2. The TF magnet is slightly larger in size for the case

= 1.2, while the EF coils have decreased substantially.

The specific t adeoffs between the EF and TF systems are beyond the scope

of this report. The energy, weight and resistive power of the toroidal field system

decrease with incrEasing elongation, while the poloidal field system becomes more

complex with increasing elongation.
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Table 4.4.1

Parametric Variation vs. Elongation

Pswii- 8 MW/M 2, y = 0.93, Umembramee 260 MPa

C 1.5 1.35 1.2

A 4.08 4.08 4.0

R (i) 4.89 5.1 5.4

a i'm) 1.2 1.25 1.35

B (T) 8.51 8.99 9.41

I (MA) 11.1 10.8 10.9

P (M2 T4) 28.4 31.1 35.7

Pj (GW) 2.84 2.92 3.16

TI!(GN m) 3.65 4.40 5.30

WPF (Gg) 6.5 7.06 8.08

E'F (GJ) 17.5 20.5 24.9

PTF (MW) 610. 670. 754.

Waianket (Gg) 0.167 0.17 0.18

EOH (GJ) 1.94 2.02 2.15

P)H (MW) 54.1 56.1 57.9

- FEF (GJ) 2.7 1.96 1.35

FIF (GW) 0.298 0.243 0.18

W-WF (Gg) 0.6 0.498 0.385

MAEF (MA-turn) 27.9 20.9 13.0

Id pole (MA) 6.62 5.94 5.26

'q'adrupole (MA) -7.31 -4.5 -1.27
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,2

Figure 4.4.1 Schematic View of EF and TF Systems for AlTR
with Pwa"i = 8 MW/M 2 (y = 0.93) for r. = 1.2 and
K = 1.5.
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4.5 Magnet O ptimization

In this sectioa, the tradeoffs for the TF and EF coils for fixed plasma

requirements are analyzed.

In section 4.5.1 the toroidal field is analyzed. The height and the thickness

of the outer leg of the machine are varied, and the tradeoffs are discussed.

In section 4.5.2 the poloidal field system is analyzed. The location of the EF

coils and the current density in these coils are varied, and the tradeoffs discussed.
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Toroidal Field Magnet

.In this sectio - the toroidal field magnet, for fixed plasma conditions, is

analyzed. The ph sma properties are described in sections 4.1 and 4.3 for the

case referred to as base case.

Table 4.5.1 sliows the main parameters of the magnet system when the

width of the outer leg of the toroidal field coil, tout is varied. The plasma varies

somewhat due to the fact that changing the thickness of the outer leg varies the

stresses in the thrat of the magnet. In order to keep these stresses fixed, the

plasma changes sli,;htly. The main consequence of increasing the thickness of the

outer leg of the magnet from 1 m to 2 m is that the weight of the toroidal field

coil, WTF increases by - 40%, the stored energy and fusion power increase by

~ 10% while the resistive power of the toroidal field coil decreases by - 15%.

The detailed tradeDffs between increased capital costs (increases in ETF, Pf, and

WTF) and decreased operating costs (decreased PTF) is beyond the scope of this

work.

Table- 4.5;2 -shows the main parameters of the magnet system when the

height of the toroidal field coil is varied. The main variations occur in the weight

of the magnet anc the resistive power dissipation. Increasing the height of the

magnet by 5% in-.reases the weight of the magnet by 7% and decreases the

resistive power of Lhe magnet by 5%, while increasing the power dissipation of

the EF system and its weight by 5%.
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Table 4.5.1.1

Paiametric Scan vs. Thickness of Outer Leg, tout

Psi = 8 MW/m 2 (y = 0.93), UTF = 150 MPa

tc t(m) 1.0 1.5 2.0

A 4.0 4.07 3.98

F (M) 4.79 4.89 4.98

a (m) 1.2 1.2 1.25

B (T) 8.42 8.5 8.32

I (MA) 11.2 11.1 11.6

£ (M2 T4 ) 28.4 28.4 29.5

FP (GW) 2.78 2.84 3.01

u 0oop(MP a) 0.152 0.149 0.143

T7(GN m) 3.4 3.65 3.84

WT.F(Gg) 5.49 6.49 7.72

ETF(GJ) 16.3 17.5 18.5

FTF(MW) 656 610 573

Vblanket(Gg) 0.164 0.167 0.176

OH(GJ) 1.95 1.96 2.14

F5 H(MW) 56.1 55.2 59.6

EEF(GJ) 2.48 2.7 2.98

F F(GW) 0.283 0.298 0.317

IrEF(Gg) 0.567 0.599 0.64

AfAEF(MA-turn) 27.7 27.9 28.5
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Table 4.5.1.2

Parametric Scan vs.

P" = 8 MW/M 2

hTF (M)

WTF (Gg)

ETF(GJ)

PTF(MW)

EEF(GJ)

PEF(GW)

WEF(Gg)

MAEF(MA)

TR (GN m)

Height of Toroidal Field Coil

('y = 0.93), UTF = 150 MPa

6.33

6.05

16.6

645

2.51

0.284

0.573

26.4

3.65

6.63

6.5

17,5

610

2.7

0.298

0.60

27.9

3.66

6.93

6.95

18.5

580

2.9

0.313

0.63

29.3

3.65
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4.5.2 Equilibrium Field System

In this sectio. , an optimization of the vertical field system for a specific

TF design is perfcrined. The geometry of the TF coil used in the optimization

studies of the EF ;ystem are shown in Figure 3.1.1.

The optimizaion study has been performed as follows: for a given set of

plasma parameters and a boundary for the TF coil, the optimum coil location is

determined. Wher that location is determined, the current densities in the coils

are varied. The dEsign point for the illustrative parameters is then chosen.

It would in piinciple be possible to calculate the vertical field system using

an equilibrium field coil for each particular case. [6]. This procedure would be

tedious and time (onsuming. The approach used has been described in chapter

3.

There are fou, parameters of interest in performing the optimization study

of the EF system. These are:

* Resistive losses during the plasma burn

* Energy stored at peak current

* Mass of th e coils

* Ampere t rns.

Figures 4.5.2.1 through 4.5.2.4 show the resistive loses, at peak conditions

for Pwaii = 8MW'm 2 , the stored energy at peak field, the weight of the coils and

the number of A-turns as functions of the locations of the EF coils for the TF coil

outer envelope shcwn in Figure 3.1.1. These Figures show contours of constant

resistive power, stored energy, weight and MA-turns of the vertical field system
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as the locations o the main and shaping EF coils are varied. The coordinate

hmain represents thbe lowest point of the main EF coil, and the ordinate Rshaping

represents the poirit of minimum major radius of the shaping coil (see Figure

3.1.1). It is assumed that the current density in the coils is Ji = J2 = 1.2 X 107

A/m 2 . In Figu'res 4.5.2.1 through 4.5.2.4 it is assumed that the major radius

of the main coil, R, and the height of the shaping coil h are such that the

clearance between the TF coil and the poloidal field coils is 0.1 m. The coil

locations are then self-consistently determined from hmain and Rshaping and the

current density in the coils.

As can be seEn from the figures, the optimum location of the coils is such

that hmain is as sriall as possible, that is, the main equilibrium coil should be as

close as possible to the midplane. The parameters of the system do not depend

strongly on the location of the shaping coil. hmain is determined from access

considerations: the coil should clear the access openings in the TF coil, and it

should have sufficient clearance. From engineering considerations (described in

the structures section), the clearance should be - 0.5 m. As the port half height

is O.5 m, then the height of the lowest point of the main EF coil is hmai, = 1.0

m. The location OI the shaping coil is such that it clears the inner corner, that is,

Rshaping ~ Ra (whiere Ra = R -a -6 ). Reducing Rhaping has the advantage

of giving the plasma a significant amount of triangularity without increasing the

requirements of the EF system considerably. Access to this area without having

to place the coils inside the toroidal field system is one of. the advantages of

resistive versus superconducting magnets.

Next, the op timum current density in each coil is determined. Figures
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4.5.2.5 through 4.5.2.8 show contours of constant peak resistive power, peak

stord energy, wfight and number of MA-turns as functions of the current

densities in the main EF coil (Ji) and in the shaping coil (12) for hnain = 1.5

m. The optimum in this case is not as clear: as the resistive power decreases,

the stored energy and weight increase. The point *1 ~ J2 - 1.2 X 107 MA/M 2

has been chosen a; a compromise.
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5 ILLUSTRATIVE DESIGN

* In this section, the base case is described. The purpose of this chapter

is to summarily describe the engineering aspects of an illustrative design of a

resistive magnet reactor AFTR using DD-DT fuel cycle. A thorough analysis

of the engineering of this device is outside the scope of this work. However,

analysis of the magnet system of a smaller machine with similar characteristics

(FED-R2) has been carried out and is reported in reference [1].

In Section 5.1 the base case is illustrated. In Section 5.2, the engineering

concepts of the AFTR -type device are described.
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5.1 Base Case

-Table 5.1.1 shows the main characteristics of the base case for the. full

perfomance (full field). Figure 5.1.1 shows an elevation view of the machine.

The main dimension of the reactor are shown in the figure. The poloidal field

coils are shown. The port geometry is illustrated. Figure 5.1.2 shows a top view

of AFTR . There are 16 modules, each with a port. Figure 5.1.3 shows a cross

sectional view of AFTR . The first wall and the blanket/shield are not shown.

The machine can operate at full performance with 1 - = 0.07. Table

5.1.2.a shows the tradeoffs of fusion power, wall loading and 1 - -y for the case

of full performance. Operation at 1 - 'y < 0.07 at full field is ruled out due to

wall loading limitations. Operation with increased values of 1 - -y result in lower

wall loadings at full field. For 1 - 'y as large as 0.3, the neutron wall loading is

P..1 > 1.8 MW/M 2 . Alternatively, for 1 - y = 0.07 the reactor can operate

at a neutron wall loading of P,,, = 1 MW/m 2 by operation at lower plasma Q

and reduced field (B = 5.1 T). This is shown in Table 5.1.2.b. In this case, the

resistive powet (TF plus EF resistive powers) is reduced to 320 MW, while the

fusion power has been decreased to 350 MW.

Note that the fusion power decreases faster with decreasing magnetic field

than the resistive power. This is due to the fact that the fusion power scales with

the fourth power of the magnetic field, the resistive power scales as the second

power of the magnetic field. Therefore, if the goal is to increase the value of

QTF = f /TF, then the highest possible fields should be used.

The peak magnetic field on axis is 8.5 T, the major radius of the machine
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is 4.8 m, the aspect ratio is 4. The safety factor q is 2.5. The burn pulse in the

machinfis 100 seconds.

-The energy in the toroidal field system is 17.5 GJ. The energy in the

equilibrium field system (with small OH fields) is 2.7 GJ. The peak resistive

power dissipation in the magnet is 610 MW, not including the vertical field

system (another 300 MW).

The plasma TF coil distance is 0.50 m in the inboard side of the machine,

while the distance in the outboard is 0.80 m. The space allowed for the plasma

scrape-off distance is 0.14 m, leaving about 0.36 m for an inboard blanket,

multiplier and the first wall. The outboard blanket can be substantially larger.

There is no space in the throat of the magnet for shielding to reduce neutron

streaming into the TF coil.

The weight of the machine, inluding TF coil plus blanket/riield, is 6.6

ktonnes. The tensile stresses in the inner throat of the magnet are UTF = 150

MPa. The circumferential stresses are Uhoop = 150 MPa.

The neutron wall loading P,,u is 8 MW/rn 2 . The corresponding fusion

power is 2.8 GW. The allowable value of -y is y = 0.93 for Pwa, = 8 MW/m 2 .

Lower values of y can be obtained by operating at lower values of Pwal
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Table 5.1.1

AFTR -TYPE DEVICE MAIN PARAMETERS

PLASMA
MAJOR RADIUS (i)

MINOR RADIUS (m)

SCRAPE-OFF LAYER (m)

PLASMA ELONGATION (m)

PLASMA TRIANGULARITY

ASPECT RATIO

PLASMA TEMPERATURE (keV)
1 -' -
D-T ION DENSITY (m- 3 )

SAFETY FACTOR

PLASMA CURRENT (MA)
EFFECTIVE CHARGE
PEAK-TO-AVERAGE

RIPPLE AT EDGE (%)
TOTAL BETA (%)
FIELD ON AXIS (T)

D-T FUSION POWER (MW)
NEUTRON WALL LOADING

(MW/m 2

RF POWER (MW)

MODE
FREQUENCY (MHZ)

INBOARD BLANKET THICKNESS (m)
OUTBOARD BLANKET/SHIELD

THICKNESS (m)

4.8
1.2

0.14

1.5
0.2

4.0

25

0.07

1.8 X10 20

2.5
11.1

1.2

0.8
6.2
8.5

2800

8
PLASMA HEATING (DT)

BLANKE T/SHIELD

50
2 Wcd

130

0.29

0.59
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AFTR -TYPE DEVICE PARAMETERS (continued)

TF COIL

PLATE SIZE (i 2 ) 6.7 X 6.6

NUMIBER OF TF PLATES 384

NUMBER OF MODULES 16

MAXIMUM TF FIELD (T) 13

MAXIMUM CURRENT DENSITY (kA/cm 2 ) 0.97

RESISTIVE LOSSES (MW) 610

TF POWER (START-UP) (MW) 800

TF STORED ENERGY (MJ) 17.5

TF WEIGHT (ktonnes) 6.5

TOTAL CURRENT (MA) 200

COIL CURRENT (kA) 520

CHARGE TIME (s) 60

PF COILS

EF COIL A-TURNS (MAT) 27.9

V-s FROM EF COILS (Wb) 42

V-s FROM OH COILS (Wb) 125

TOTAL V-s FROM PF (Wb) 167

FIELD (OH SOLENOID) (T) 15.1

CURRENT RISE TIME (s) 4

CURRENT DENSITY (EF COILS) (MA/M 2 ) 12.

PEAK RESISTIVE POWER (EF COIL) (MW) 300

PEAK RESISTIVE POWER (OH COIL) (MW) 70
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Table 5.1.2

(a) Peak Performance Trade-Offs

B

PTF (MW)

PEF (MW)

8.5T

610

300

P 1 1(MW/m 2 )

25

8

2.7

1.8

Pf (GW)

8.8

2.8

0.95

0.63

(b) Reduced Performance

- = 0.93

B (T) Pwaii(MW/m 2 )

8.5

7.1

6.0

5.1

8

4

2

1

Pf(GW) - Pes(MW)

2.8

1.4

0.7

0.35

900

636

450

320
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0.0 (DT)
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OR VAC.UUM VE65EL
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5.2 Engineering Concepts for AFTR

.The AFTR type of tokamak reactor is modeled after Alcator. The basis of

the machine is a to'roidal field coil made of tapered Bitter plates. But a major

difference between Alcator and AFTR is the means by which forces generated

in the copper plates are transmitted to the reinforcing steel and by which the

overturning torque of the vertical field is restrained. In Alcator A these are

both accomplished by friction between plates of the TF coil which, in turn, is

achieved through adequate circumferential clamping. In Alcator C keying is

used additionally. Because of the much higher in-plane and overturning forces

in AFTR either very high circumferential stress is needed to provide sufficient

friction or a positive support for each copper turn is needed. For reasons outlined

below, the latter concept is adopted.

The TF coil of AFTR is operated continuously and cooled accordingly.

Except for pulsed operation, cryogenic cooling provides no net economy over

water-cooling. For pulses as short as one minute, liquid nitrogen pre-cooling

might result in decreased capital cost. It cannot decrease operating cost however

and has not been considered in the present conceptual design.

The choice of structural principle is influenced predominantly by emer-

gencies and maintenance. Modularity has been adopted as a sine qua non of

maintenance. It allows the removal of an octant (or possibly smaller unit) of

the combined TF coil, blanket, first wall system. In order to fully exploit the

advantages of modularity, a simple method of breaking and remaking a vacuum

joint in the first wall is needed. The present design assumes that this will be done

by means of differentially pumped, unwelded flange seals. This would eliminate
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the most complicated step in a change-out procedure and is considered to be

feasible with some development. It is described below.

The magnetic fields of a tokamak are generated by four current sources;

the toroidal field coil, the vertical field coils, the induction coil and the plasma.

These fields and currents interact to produce Lorentz forces of which by far the

most significant are the in-plane and overturning torque in the TF coil. The

design of the TF coil system to withstand these forces dominates the conceptual

design and is therefore considered exclusively in the present study.
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159

Field Coil



All the in-pla

centering force. E

must be reacted i

loads and the she

The shear sti

reinforcement (st

all other Bitter t:

in the copper in I

Also, because of t

also be transferrE

shown schematic

disposition and le

respect to the co<

horizontal shear fi

movement.

The general-

shown in Figure -

is schematically s

to decrease their

being transmitted

of preferred coil I

need to be locatei

by the removal of

coils.

ae forces are reacted by tensile or compressive stresses, as is the

y contrast, the out-of-plane forces due to the overturning load

i shear. Figure 5.3.2 shows the disposition of the overturning

Lr stresses that react it.

ss in the horizontal mid-plane of the TF coil is reacted by the

,inless steel wedges). This mechanism is the same as that in

pe TF coils, such as Alcator. It is necessitated by the break

he outer leg where current transfer between turns is effected.

1is break, the vertical load in the outer leg of the copper must

I to the reinforcement. This is mediated by insulated keys,

lly in Figures 5.3.2 and 5.3.3. Figure 5.3.2 indicates their

igth; Figure 5.3.3 schematically shows their arrangement with

ling channels. These keys also serve to transmit vertical and

rces in the vertical plane that are generated by the overturning

arrangement of the EF and TF coils, ports and plasma is

i.3.4. An enlarged view of the TF coil plates near the port

iown in Figure 5.3.5. The corners of the plates are removed

)ending stiffness. This prevents large bending moments from

down the throat of the TF coil. It also offers the advantage

lacement. Both the induction coil and the vertical field coils

as close to the plasma as possible: the space made available

the corners of the TF coil can profitably be occupied by those
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Figure 5.3.3 Schematic Arrangement of Keys and
Cooling Channels in the BITTER plates of
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6 SUPERCONDUCTING MACHINES

. Resistive toroidal field coils represent both a high operating cost and, through

power conditioning equipment, an appreciable capital cost. Furthermore, in the

economics of a fusion reactor devoted to electricity production, recirculating

power requirements may represent a significant part of the capital cost and hence

drive up the cost per unit of electricity produced. Superconductive toroidal field

coils solve or mitigate these disadvantages while presenting others. In order to

determine the advantages and problems of superconducting toroidal field coils,

a brief parametric study has been undertaken for their applications to AFCR

(Advanced Fusion Commercial Reactor). This study has been carried out using a

simple code, REACTOR, which designs the smallest tokamak reactor consistent

with a set of input parameters.
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6.1 The REACTOR Program

This code sizes a tokamak from data describing the physics of the plasma

and the engineeriig constraints of conductor and structures.

Inpuf data is the following:

plasma parameter

aspect ratio

burn time

first wall, blanket/shield and scrape-off distance

tensile stress allowable in

toroidal structure

bucking cylinder

induction structure

stabilizing copper

current density in toroidal and induction winding coils

fraction of copper in the windings

maximum, induction coil flux density

number of TF coils

beta constant

plasma elongation

peak electron temperature

2B4 a2

R/a

Tbur

CTF

Obuckpost

COH

cU

JTF,c, 3OH,c

FCu

BOH,max

cp = PR/a

b/a

Te

Using these, together with a guessed initial value of major radius, the pro-

gram sizes the toroidal field coils, bucking cylinder and ohmic heating trans-

former for the smallest possible machine. The output data is the following:
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orequired induction flux OOH

* major radius - R

* minor radius a

* toroidal field, at the plasma and at the TF winding B, Bmax

* toroidal current I

* induction col radii ROH

* bucking cylinder inner and outer radii Ri,buck and R2,buck

* TF coil inner and outer radii of inner leg R1,TF and R2,TF

* TF coil, shape factor and inner radius of outer leg

* centering and tensile forces in TF coil

* fraction of cross sections devoted to windings

* average current densities in cross sections JTF and JOH

* length of TF conductor in ampere-meter ieond

* fusion power and wall loading Pf and P.ai1

The code is simple and short. It is intended for parametric survey. A greater

range of input variables than those listed can be achieved by manipulation of

the input data. For instance, spacing between TF coils can be simulated by

decreasing input stresses and current densities. Resistive OH transformer can

be simulated by changing the maximum induction coil flux density. Copper TF

coils can be simulated by increasing the copper fraction in the windings to 100%

and decreasing the TF structural stress to zero. This even allows copper-stainless

steel composites to be simulated.

The program has been used to investigate the probable sizes and parametric

dependences of AFCR type systems with superconducting toroidal and poloidal
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field coils. The results are shown in the next chapter.

The assumptions of the code are given in Table 6.1. Some of the parameters

shown in Table 6.1 are varied in the scoping study presented in the next chapter.

Chapter 8 describes the engineering features of an illustrative design.
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Table 6.1

Assumptions for the Reactor Code

TF ripple on-axis, bo 0.1%

number of TF coils, Ncoils 16

tensile stress in TF structure, OTF (MPa) 270

tensile stress in OH structure, aOH (MPa) 300

tensile stress in TF copper, uc, (MPa) 135

bucking cylinder compressive stress, buckpost (MPa) 300

TF winding current density, JTF (MA/M 2 ) 18

OH winding current density, jOH (MA/m 2) 18

EF winding current density, jEF (MA/m 2 ) 15

OH field strength, BOH,maz (T) 7

fraction of stabilizing copper

in TF windings, fcu 70%

cp= x A 0.25

peak electron temperature, Teo(keV) 35
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7 SCOPING STUDIES OF AFCR

In thissection, parametric scans of the AFCR (Advanced Fusion Commercial

Reactor) are performed to illustrate the tradeoffs.

The device we are considering, AFCR , is an advanced applications com-

mercial reactor. Its goal would be to be a net generator of electricity, coupled

with self-substaining tritium production. The reactor could be designed in or-

der to optimize the blanket/shield region and the first wall with self sufficiency

in tritium. The blanket/shield and first wall would be optimized in terms of

activation (either short term or long term), lifetime of first wall under sputter-

ing or disruptions (which may require thicker walls) or for applications other

than direct production of electricity. These applications could be synthetic fuel

production, breeding of fissile material or breeding excess tritium production to

be used in smaller reactors that do not have tritium self sufficiency.
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7.1 AFCR with DD-DT fuels

In this section; reactor characteristics of an AFCR operating with DD-DT

fuels are described.' There is a wide range of operation with DD-DT as fuel.

Where to operate in DD-DT fuels could depend on the reactor size required for

sufficiently large wall loadings. In this section, the main engineering and plasma

physics parameters are kept fixed, and the parameter 1 - -y which identifies the

regime of operation in DD-DT is allowed to vary. In the following sections of this

chapter, specific tradeoffs and parametric studies are performed for fixed 1 - -Y.

There it is found that an aspect ratio A - 4 optimizes AFCR. Therefore in this

section it assumed that A - 4. The other important parameters used in this

section are described in Table 7.1.1. A is the aspect ratio, P""1 is the average

neutron wall loading in the plasma surface, q is the plasma safety factor, cO =

,3 X A, r. = b/a is the plasma elongation, T is the electron central temperature,

Tbr is the length of the plasma burn, UTF is the tensile stress in the throat

of the TF magnet, buckpost is the stress in the buckin post, S is the ripple at

the plasma edge, Ne0o15 is the number of toroidal field coils, and BOH,ma is the

peak field in the OH transformer.

Table 7.1.2 shows the main reactor parameters of an AFCR device as a func-

tion of 1 - -y. The parametric variation is performed assuming the constraints

in Table 7.1.1. The wall loading is kept fixed in order to compare reactors with

similar problems relevant to the first wall (impurity control, life-time and cool-

ing).

The magnetic field on axis B is varied between 4.0 T and 8.0 T. The

corresponding values of 1 - - vary between 0 and 0.4. The aspect ratio is kept
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constant at A - 4. The wall loading is also kept also constant at PaU = 2.2

MW/ii 2 ~.!he value of the plasma performace P defined in chapter 2, increases

very-fast with increasing value of 1 - '. This is due to the fact that the specific

fusion power density Pf/# 2B 4 decreases rapidly as the mode of operation moves

away from DT.

In Table 7.1.2 R is the plasma major radius, a is the minor radius, I

is the plasma current, ETF is the energy stored in the TF coil, econd is the

conductor length times the conductor current for the TF coils, BTF,mQX is the

peak field at the conductor of the toroidal field coil, Wbianket is the weight of

the blanket/shield, EOH is the energy stored in the magnetic field of the OH

transformer when it is up to full field and 1OH is its corresponding current, and

EEF and WEF are the energy stored and the weight of the vertical field system

and MAEF is the Mega Ampere turns in this system.

1 - = 0 corresponds to DT operation. (There is a small deviation from

1 - = 0 for DT, because of the small contribution to the neutron production

bythe deuterium reactions D(D,n)He3 which produces a neutron and D(D,p)T,

which produces a triton; these reactions are present in a 50-50 DT fuel mixture).

The machine for 1 - - = 0 (DT operation) is somewhat larger than typical

fusion designs which operate on DT. The reason for the larger size is that the

pulse length is 3600 s. The pulse length for typical DT reactor designs is a

few minutes. The largest machine has a plasma performance P = 155 m 2 T4,

which results in 1 - -y = 0.6, or about half way between DT and DD in terms

of tritium breeding required in the blanket for self-sufficiency in tritium. The

operating temperature varies for the different cases in Table 7.1.2. For a fuel
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mixture close to DT, the fusion power is maximized for Tj - 20 keV, while for

DD-DT operation for 1 - ' > 0.05, the temperature for minimizing the value of

P required for ignition occurs at higher temperatures. Note, however, that the

specific fusion power density does not vary significantly with temperature in the

temperature range 25 < Ti < 35 keV in the range of 1 - y considered in Table

7.1.2 as shown in Chapter 2.

The OH transformer has a significant consequence on the machine design

due to the relatively long pulse length. High temperature is favored by the OH

transformer due to decreased resistivity during burn with higher temperatures.

The lower temperature in the DT case is a tradeoff between decreased fusion

power density and decreased OH drive requirements at the higher temperatures.

The lower temperatures result in a more attractive design for DT, while the

higher temperatures are favoured by DD-DT operation. This is due to the fact

that the specific fusion power density is relatively flat with temperature in the

case of DD-DT operation, while the higher temperature reduces the required volt

seconds from the OH transformer.

-Also shown in Table 7.1.2 are the fusion power and neutron wall loading if

the reactors are operated with DT fuel.

From Table 7.1.2, it can be seen that there is a factor of - 10 reduction in

fusion power for 1 - -y = 0.2 due to the lower reactivity of DD-DT relative to

that of DT. The equivalent DT wall loading increases very fast with 1 - -Y, with

the consequence that DT operation cannot be used in a reactor desinged to run

DD-DT, unless the reactor is underrated (the magnetic field or the plasma P can

be dropped to decrease the fusion power).
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The results in Table 7.1.2 are shown in Figures 7.1.1 through 7.1.3 as a

functibii o 1 - -1. Figure 7.1.1 shows the normalized values of the plasma

parameters P, 1, R, Pf and B as functions of 1 - 'y. Figure 7.1.2 shows the

parameters of the toroidal field system ETF, BTF,maz and tcond as functions of

1 - -y. Figure 7.1.3 shows the parameters of the vertical field system as functions

of 1 - -y. There are large increases in the main parameters of the reactor as the

fuel mixture moves away from DT towards SCD.

The value of 1 - y for operating an electricity producing reactor is the

value necesary to obtain tritium self sufficiency. The tritium breeding ratio is

determined by the neutronic characteristics of the blanket. Therefore, the overall

tritium breeding ratio is determined by both 1 - y and the blanket.

Although the reactor increases in size, it is interesting to note that the

availability of excess neutrons (neutrons not required for tritium I-reeding) in-

creases as fuel mixture moves away from DT. The number of excess neutrons

(see chapters 2 and 4) scales as

R, - 3.6 X 1020 (k -I)P

where R, is the excess neutron rate in neutrons per s, k is the effective breeding

ratio of the blanket and Pf is the fusion power in GW. Due to the fact that Pf

increases with increasing 1 - ' while -y decreases, R, increases. The question

is whether the increase in R, is large enough to compensate for the increase in

machine size. Figures 7.1.4 and 7.1.5 show the ratios R,/ETF and Rn/fcod as

function of 1.- 7 for k varying from 0.9 through 1.1. The use of the AFCR

device for neutron applications becomes more attractive with increasing value
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of 1 - -y. The ratios R,/ETF and Rnfcond increase with 1 - -y for k < 1.05.

For k -' 1.1, the ratio R/ETF remains approximately constant, while the

ratio R,/tco0 d increases with increasing 1 - -y. However, the device size also

increases substantially. The point of operation is a tradeoff between more efficient

excess neutron generation rate and increased plant size. This tradeoff has not

been analyzed in the work reported here. From the point of view of neutron

applications, operation in DD-DT fuels is attractive.

For illustrative purposes, it was chosen to do engineering analysis on the

machine with 1 - = 0.8, that is, R = 9.6 m. This machine would be able to

produce a substantial amount of excess neutrons, or, equivalently, would be able

to be self sufficient in tritium production in a blanket that has been optimized

for purposes other than tritium breeding (maybe without an inboard blanket, or

with a solid blanket without multiplier).

The remaining of this chapter deals with parametric optimization and scop-

ing of the AFCR device. Chapter 8 deals with some engineering issues of the

AFCR device.
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Table 7.1.1

Assumptions for Scoping Study

vs 1 -

A 4

P, 11 (MW/m 2 ) 2.2

q 2.5

cp 0.25

b/a 1.5

Te (keV) (DT) 18

(DD-DT) 35

Tburn (s) (Zeff 1) 3600

UTF (MPa) 270

Ubuckpost (MPa) 300

fraction of stabilizing

copper in TF windings 70%

61 0.1%

Ncojj 16

BoH,maz (T) .7
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Table 7.1.2

Parametric Scan vs 1 - -y

for Pwan = 2.2 MW/m 2

1 - -y 0.005 0.125 0.20 0.275 0.375

A 4.01 4.0 4.0 3.99 3.99

R (m) 6.61 8.4 9.6 10.7 12.3

a (m) 1.65 2.1 2.4 2.69 3.07

B (m) 4.06 6.45 7.05 7.52 8.0

I (MA) 7.4 15.0 18.7 22.4 27.2

P (m 2T4) 2.88 29.8 55.6 90.7 151.

Pf (GW) 1.54 2.34 3.1 3.9 5.2

DT-equivalent operation

P. 11 (MW/m 2 ) 2.2 17.8 29.1 42.3 61.7

Pf (GW) 1.54 18.0 40.7 74.2 141.

ETF (GJ) 13.5 55.9 89.2 131. 206.

tcond (GA m) 7.22 18.6 26.5 35.5 49.3

-BTF,-ria (Y 7.76 11.2 11.9 12.3 12.7

WbIanket (Gg) 1.43 2.14 2.69 3.27 4.13

EOH (GJ) 8.03 12.0 17.5 24.2 35.2

IoH (MA) 89.8 113. 125. 137. 152.

EEF (GJ) 2.15 9.12 14.2 20.4 30.7

WEF (Gg) 0.466 1.07 1.4 1.75 2.25

MAEF (MA turns) 16.4 31.2 36.4 41.3 47.2
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Figure 7.1.1 Normalized Valucs of P, I, R. B and Pf as Functions
of I - -y for ArCIR Type Devices with P,. 11 = 2.2
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Figure 7.1.4 Ratio of Excess Neutron Generation Rate and ETE
as Function of I - -1 for AFCR Type Devices with
Pwall = 2.2 MW/rn 2 . k is the Effective Tritiurn Breeding
Ratio (arbitrary units)
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7.2 Scoping Studies of the AFCR Device

In this section; scoping study of the AFCR device is performed for a fixed

value of 1 - y. 1 - = 0.2 has been chosen for the illustrative case.

In order to keep the nuclear characteristics of the machine designs constant,

the neutron wall loading of the first wall is kept constant in most of the param-

terics scans performed in this chapter. The effect of changing the wall loading,

however, is also analyzed. The radial build of the blanket/shield region is also

varied to study the effect on the main machine parameters.

In order to maximize the burn pulse length, it is assumed that the OH trans-

former is double swung (the magnetic field in the OH transformer is reversed).

The illustrative case has a burn pulse of 3600 s, that is, one hour of operation.

The effect of different pulse lengths and the possibility of current drive is analyzed

in section 7.4.

The plasma elongation has been chosen to be c = b/a = 1.5 and the plasma

safety factor q = 2.5 at the plasma edge and q = 0.9 - 1.0 at the plasma center.

For these conditions, it is assumed that the value of the average toroidal beta

(i) is determined by-

0.25
A

The parameters of the equilibrium field system are calculated using the

method described in chapter 3.

The distance between the toroidal field coil and the plasma in the midplane

in the throat of the magnet, 6i is assumed to be -6 = 1.50 m. This allows for 1.2
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m of blanket/shielding in the inboard of the magnet, plus 0.10 m for first wall

and 0:20'hi for the plasma scrape-off region. On the outboard side of the plasma,

the distance betwe'en the plasma and the toroidal field coil is the larger of 2.0

m or the value required to reduce the ripple in the magnetic field to acceptable

levels. The lar'ger distance allows for 1.5 m of blanket/shield modules located

between the toroidal field coil and the first wall.

The assumptions in the parametric code are shown in Table 7.2.1. Table

7.2.2 shows the results of the parametric scan vs. aspect ratio for a fixed neutron

wall loading of P Il = 2.2 MW/m 2 . In Table 7.2.2, I is the plasma current, Pj
is the total fusion power, tcond is the length of the conductor of the TF coil times

its current, ETF is the stored energy in the EF coil, EEF is the stored energy

in the EF coils and MAEF is the Ampere turns of the EF coils. BTF,mrnaz is

the maximum field at the conductor. Table 7.2.2 shows that for a fixed neutron

wall loading there is a maximum aspect ratio, above which the peak field at the

conductor would be larger than the maximum allowable.

Figure 7.2. 1shows the plasma current I, the magnetic field on axis B, the

plasma major radius. R, the plasma performance P, and the fusion power Pf as

functions of the aspect ratio. The plasma major radius remains approximately

constant because of the constraint on the stresses in the throat of the magnet:

as the aspect ratio increases, the throat cross sectional area increases sufficiently

to balance the increased loads due to the increased magnetic field necessary to

keep P,,, constant. Furthermore, the thickness of the blanket/shield region

remains constant, and this is a significant driver in the size of the reactor. The

fusion power, however, increases very significantly. This is due to the constraint
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of constant wall loading, coupled with the approximately constant major radius,

resulting in increased wall area as the aspect ratio is decreased. The plasma

current, the peak field at the conductor, the field on the axis and the energy

stored in the toroidal field coil are also monotonically increasing with decreasing

aspect ratio.

Figure 7.2.2 shows the parameters of the toroidal field coil ETF (stored

energy in the toroidal coil), and £cod (length of the conductor in the toroidal

field coil times the conductor current) as functions of the aspect ratio. There is

a minimum in both ETF and ecod for A - 4. The minimum is fairly narrow.

Figure 7.2.3 shows the parameters of the equilibrium field system EEF

(stored energy), MAEF (Ampere turns) and WEE (weight of the coils of the EF

system) as functions of the aspect ratio. The parameters of the vertical system

also show a relatively narrow minimum for an aspect ratio of A = 4.

For the illustrative design, the case with aspect ratio A :: 4 has been chosen.

The optimum is narrow for the toroidal field and vertical field systems. The

maximum field at the conductor implies a maximum aspect ratio allowable.

Due to the large variation of fusion power with aspect ratio, the maximum

allowed fusion power limits the minimum aspect ratio permissible. For the case

of P,,u = 2.2 MW/m2, these regions (for Pf 3000 MW, BTF,ma < 12 - 13

T for Nb 3 Sn and optimum toroidal and poloidal systems) are reduced to a region

near A = 4.

In order to further study the effect of varying aspect ratio, Tables 7.2.3

and 7.2.4 show the results of the parametric study for different neutron wall

loadings. Table 7.2.3 is for Pwal = 4.4 MA/m 2 and Table 7.2.4 is for Pwal
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1.1 MW/M 2 . As for the case of Table 7.2.2 with Pault = 2.2 MW/m 2, A - 4

minimizes The requirements on the toroidal and vertical field systems.

-For A 4, the maximum field at the conductor ranges from BTF,max 11

T for the case of low wall loading, to BTF,maz = 12.7 for the case with high wall

loading. The fusion power, on the other hand, has varied from 1.1 GW for the

case of low wall loading to - 10 GW for the high wall loading case. Therefore,

although the minimum in the vertical and toroidal field systems occur at about

the same value of aspect ratio (A ~ 4), the fusion power output varies widely

with varying wall loading. Pf - 3 GW is reachable in the case of low wall

loading with very low aspect ratios A ~ 2.5 while it is not accessible with high

wall loadings.

The fusion power increases with increasing A in Table 7.2.3 (for A > 6) due

to the fact that the major plasma radius is increasing. The increase in major

radius more than balances the decrease in minor-radius for A > 6, resulting in

an increase in the first wall area and fusion power. For the high wall loading

case, the minimum fusion power is about Pf = 7.25 GW for an aspect ratio of

A 6.

Table 7.3.5 shows the results of the parametrics code when the parameter

c= X A is varied while keeping the wall loading fixed. cp is varied between

0.15 and 0.35, and corresponds to values of beta that are pessimistic (# = 0.0375

for cp = 0.15) and optimistic (P = 0.0875 for co = 0.35) for an aspect ratio of

A = 4. The scaling in the energy of the toroidal field system with cp is

ETF C 2
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As cp increases, that is, the 8 limits are more optimistic, the energy in the

toroidal field system decreases but at a reduced rate (AETFACP ~ -1/cp).

For the illustrative design in this study, it has been asumed that cp = 0.25,

corresponding to # = 0.0625 for A = 4.
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Table 7.2.1

Assumptions for the Parametric Study

1 -0.2

q 2.5

b/a 1.5

Te (keV) 35

Tburn (s) 3600

Aj, (m) 1.2

Aout (m) 1.5

UTF (MPa) 270

Ubuckpost (MPa) 300

Ncojis 16

BOHmax (T) 7
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Table 7.2.2

Parametric Scan vs Aspect Ratio for UTF = 270 MPa and

P'wa 1 =2.2 MW/rn 2 (at y = 0.80)

A 8.0 5.99 4.0 3.0 2.49
R (i) 11.4 9.82 9.6 11.2 14.2

a (m) 1.42 1.64 2.4 3.75 5.7

B (m) 11.4 9.51 7.05 5.46 4.48

I (MA) 8.32 11.1 18.7 31.1 47.6

P (M2T4 ) 32.7 38.3 55.6 86.8 132.
Pf (GW) 2.15 2.18 3.09 5.65 10.8

ETF (GJ) 178. 111. 89.2 115. 186.

tcond (GA m) 60.7 37.8 26.5 28.1 36.7
BTF,maz (T) 15.3 14.0 11.9 10.2 9.1

Wblanket (Gg) 2.19 2.09 2.69 4.49 8.1

EOH (GJ) 11.3 12.0 17.5 34.9 77.8

'OH (MA) 108. 109. 125. 160. 213.

EEF (GJ) 41.5 18.3 14.2 22.3 43.7

WEF {Og) 2.51 1.58 1.4 1.9 2.95

MAEF (MAiturns) 59.7 42.5 36.4 40.9 50.1
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Table 7.2.3

parametric Scan vs Aspect Ratio for UTF = 270 MPa and

Pw11 = 4.4 MW/M 2 (at y = 0.80)

A 7.99 6.0 4.0 3.0 2.5

R (m) 15.6 12.7 12.0 14.2 18.6

a (m) 1.95 2.12 3.0 4.73 7.43

B (m) 12.5 10.6 7.91 6.11 5.0

I (MA) 12.6 15.9 26.3 43.9 69.0

P (m2T4) 89.4 98.7 138. 217. 345.

Pf (GW) 8.07 7.26 9.56 17.8 37.1

ETF (GJ) 466. 260. 190. 255. 464.

tcond (GA m) 126. 70.6 46.8 50.2 70.1

BTFmax (T) 15.9 14.8 12.7 10.9 9.6

Wblanket (Gg) 3.69 3.22 3.97 6.85 13.4

EOH (GJ) 21.0 21.8 33.0 71.6 182.

'OH (MA) 132. 131. 149. 195. 270.

EEF (GJ) 89.9 39.2 29.1 48.0 106.

WEF -(Gg) 4.15 2.55 2.18 3.04 5.11

MAEF (MAiturns) 71.4 52.7 46.3 53.5 68.3
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Table 7.2.4

Parametric Scan vs Aspect Ratio for UTF = 270 MPa and

Pai = 1.1 MW/M 2 (at y = 0.80)

A 8.02 6.0 4.0 3.0 2.5

R (m) 8.9 7.98 8.0 9.32 11.5
a (m) 1.11 1.33 2.0 3.11 4.6

B (M) 10.2 8.42 6.2 4.81 4.0

I (MA) 5.83 7.94 13.7 22.8 34.2
P (m2T 4 ) 13.0 15.4 23.1 36.0 54.2

Pf (GW) 0.668 0.713 1.07 1.94 3.61

ETF (GJ) 80.2 55.2 46.6 57.5 86.9

tcond (GA m) 33.3 22.0 16.1 16.9 21.3
BTF,maz (T) 14.4 13.0 11.0 9.5 8.5

Wbamket (Gg) 1.48 1.49 1.97 3.21 5.46

EOH (GJ) 7.27 7.57 10.4 19.2 38.9

IoH (MA) 92.7 94.8 109. 137. 177.

EEF (GJ) 22.3 9.82 7.67 11.5 20.8

WEF (Gg) 1.68 1.08 0.965 1.26 1.87

MAEF (MA turns) 51.5 35.2 29.3 32.0 38.3
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Table 7.2.5

Parametric Scan vs co for O-TF = 270 MPa and

Pa. = 2.2 MW/m 2 (at y = 0.80)

C8 0.15 0.20 0.25 0.30 0.35

R (M) 13.3 10.9 9.6 8.74 8.16

a (m) 3.32 2.73 2.4 2.19 2.04

A 4.0 3.99 4.0 3.99 4.0

B (m) 8.39 7.63 7.05 6.6 6.21

I (MA) 28.3 22.2 18.7 16.5 14.9

p (m 2T4 ) 76.8 63.4 55.6 51.4 47.4

Pf (GW) 5.9 4.0 3.09 2.6 2.24

ETF (GJ) 278. 139. 89.2 63.9 48.7

Ccond (GA m) 60.8 37.2 26.5 20.5 16.9

BTF,max (T) 13.1 12.5 11.9 11.4 11.0

WbIanket (Gg) 4.76 3.36 2.69 2.29 2.04

EOH (GJ) 41.2 24.5 17.5 13.8 11.5

IOH (MA) 163. 139. 125. 117. 110.

(T) -9.03 -8.57 -8.15 -7.87 -7.54

EEF (GJ) 31.8 19.2 14.2 11.5 9.63

WEF (Gg) 2.38 1.71 1.4 1.22 1.09

MAEF (MA turns) 46.4 40.0 36.4 34.0 32.0
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Figure 7.2.1 Values of I, R, B, vIP - paB2 as Functions of
Aspect Ratio for A FCR Type Devices with P,,, = 2.2
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Figure 7.2.2 Values of ETF, tcond and BTF max as Functions of
Aspect Ratio for AFCR Type Devices with P,1 1 = 2.2
MW/M 2 (y = 0.80).
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7.3 Optimization of the Toroidal Field Coil

In this section, the effect of varying several parameters of the toroidal field

system are analyzed. The parameters in Table 7.2.1 are used in the analysis.

The aspect ratio is assumed to be A = 4.

Table 7.3.1 shows results of the parametric analysis as the stresses in the

toroidal field coil, UTF, are increased. The stresses are varied from 200 MPa to

350 MPa. Increasing the stresses in the throat of the magnet from 200 to 350

MPa results in a reduction of the plasma major radius of 0.60 m, or about 5%.

The main machine parameters do not vary strongly with UTF, in contrast to the

machine with resistive magnets, where the machine size was strongly affected

by the stresses in the throat of the magnet (see Chapter 4). It is chosen that

UTF = 270 MPa.

In the illustrative design discussed in chapter 8 it is assumed that there is

a bucking post and that the coils are separated in the throat of the magnet.

The reason for this choice is discussed in the next chapter and has to do with

maintenance requirements. Table 7.3.2 shows the results from the parametric

abalysis when the stresses in the bucking post used to carry the centering loads

of the TF magnet are varied. The stresses in the bucking post are varied from

150 to 1000 MPa. This last case simulates the absence of a bucking post. In

this case, the centering forces would be carried by the legs in the throat of the

magnet through wedging, or by the OH transformer directly. The presence and

size of the bucking post has a significant consequences on the machine. The

plasma major radius increases from 8.1 to 12.5 in the case of no bucking post to

the case of one with a bucking post with OTF = 150 MPa. Significant increases
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are also observed in the equilibrium field and toroidal field systems. Ubuckpost is

choseff-~6 be 300 MPa.

Table 7.3.3 shows the results of the parametric code when the thickness

of the inboard blanket/shield is varied from Aj, = 0.9 m to Ai, = 1.5 m.

The major radius of the machine R increases by approximately 0.8 m for every

0.30 m increments in Ai,. The AFCR device is not strongly dependent on this

distance (in contrast of the AFTR design) due to the large section used in the

throat region by the OH transformer. For the illustrative design case, it has

been assumed that Ai, = 1.2 m.

Table 7.3.4 shows the main parameters of the AFCR device as the ripple

requirements on the plasma axis are varied. The main effect of decreasing the

allowable ripple is that the outer leg of the toroidal field magnet moves away

from the plasma. This has the effect of increasing the equilibrium and toroidal

field system requirements. However, removing the outer leg of the magnet away

from the plasma increases accessibility for maintenance. For 60 = 0.1%, the

locations of the outer leg of the coils is determined by the blanket requirements.

Tlis ripple requirement has been chosen for the illustrative case and for the rest

of the scoping study.

Finally, Table 7.3.5 shows the main machine parameters as the number of

coils is varied for fixed ripple on axis. For Ncoil, = 16 the outer leg of the

coil is determined by the blanket/shield requirements. Noa, = 12 results in

a significant increase in the amount of conductor required for the toroidal field

coil, plus increases in both the energies in both the toroidal field system and

the vertical field system. The latter effect due to the change in the location of

205



the main equilibrium field coil as the outer leg of the magnet is pushed away

from the plasma. A lower number of coils facilitates maintenance operations, at

a price of increased coil size. For the study performed here, it is assumed that

Ncoj, = 16.
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Table 7.3.1

Parametric Scan vs UTF for

Pwa= 2.2 MW/M 2 (at y = 0.80)

CTF (MPa) 200. 270. 350.
R (M) 9.96 9.6 9.35
a (in) 2.49 2.4 2.34

A 4.0 4.0 4.0

B (m) 7.0 7.05 7.1

I (MA) 19.3 18.7 18.4

P (m2 T4 ) 58.2 55.6 54.5

Pf (GW) 3.35 3.09 2.95

ETF (GJ) 95.4 89.2 85.5

tcond (GA in) 28.3 26.6 25.3
BTF,max (T) 11.7 11.9 12.0

Wblanket (Gg) 2.87 2.69 2.57

EOH (GJ) 18.7 17.5 16.7

IOH (MA) 128. 125. 124.

EEF (GJ) 14.9 14.2. 13.8

WEF (Gg) 1.45 1.4 1.37

MAEF (MA turns) 36.5 36.4 36.5
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Table 7.3.2

Parametric Scan vs Ubuckpost for O-TF = 270 MPa and

P.1=1 2.2 MW/m 2 (at y = 0.80)

Ubuckpost (MPa) 150. 300. 450. 1000.

R (m) 12.5 9.6 8.83 8.14

a (m) 3.12 2.4 2.21 2.03

A 4.01 4.0 4.0 4.01

B (m) 6.6 7.05 7.2 7.34

I (MA) 22.8 18.7 17.6 16.5

P (m 2 T4 ) 71.9 55.6 51.4 46.5

Pf (GW) 5.2 3.09 2.63 2.19

ETF (GJ) 147. 89.2 77.7 67.5

Lcond (GA m) 42.4 26.5 22.9 19.8

BTF,max (T) 10.5 11.9 12.4 13.0

Wbianket (Gg) 4.27 2.69 2.33 2.02

EOH (GJ) 28.9 17.5 15.2 13.3

IOH (MA) 147. 125. 120. 114.

EEF (GJ) 20.8 14.2 12.9 11.7

WEF (Gg) 1.84 1.4 1.31 1.22

MAEF (MA turns) 37.1 36.4 36.6 36.8
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Table 7.3.3

arametric Scan vs Inboard Blanket/Shield Thickness A

for c-TF = 270 MPa and

Po 1 = 2.2 MW/m 2 (at y = 0.80)

Aif (m) 0.9 1.2 1.5

R (m) 8.7 9.6 10.4

a (m) 2.18 2.4 2.6

A 3.99 4.0 4.0

B (M) 7.21 7.05 6.9

I (MA) 17.4 18.7 19.8

p (M2T4 ) 50.4 55.6 59.7

Pf (GW) 2.54 3.09 3.6

ETF (GJ) 71.2 89.2 108.

tcond (GA m) 22.4 26.5 30.6

BTF,max (T) 11.8 11.9 12.0

WbIanket (Gg) 2.19 2.69 3.21

EOH (GJ) 14.6 17.5 20.7

-0H (MA) 117. 125. 133.

EEF (GJ) 12.4 14.2 15.8

WEF (Gg) 1.28 1.4 1.52

MAEF (MA turns) 36.1 36.4 36.7

209



Table 7.3.4

Parametric Scan vs Ripple Requirement on Axis 6,

for UTF = 270 MPa and

Pw,1= 2.2 MW/m 2 (at -y = 0.80)

60 .01% .05% .1%

R (m) 9.77 9.65 9.6

a (m) 2.44 2.41 2.4

A 4.0 4.0 4.0

B (m) 7.02 7.05 7.05

I (MA) 18.9 18.8 18.7

P (M2T4) 56.4 55.9 55.6

Pf (GW) 3.19 3.12 3.09

ETF (GJ) 106. 91.8 89.2

Lcond (GA m) 31.4 27.9 26.5

BTFmax (T)- 11.8 11.8 11.9

WbIanket (Gg) 2.77 2.71 2.69

EOH (GJ) 18.1 17.7 17.5

IOH (MA) 127. 126. 125.

EEF (GJ) 17.3 14.6 14.2

WEF (Gg) 1.59 1.43 1.4

MAEF (MA turns) 38.0 36.6 36.4
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Table 7.3.5

Parametric Scan vs Number of Coils Nco,15

for -TF = 270 MPa and

Psu I= 2.2 MW/M 2 (at y = 0.80)

Ncols 12 16

R (m) 9.78 9.6

a (m) 2.44 2.4

A 4.01 4.0

B (i) 7.01 7.05

I (MA) 18.9 18.7

P (m2 T4 ) 55.9 55.6

Pf (GW) 3.17 3.09

ETF (GJ) 107. 89.2

£cond (GA n) 31.6 26.5

BTF,max (T) 11.8 11.9

Wblanket (Gg) 2.77 2.69

EOH (GJ) 18.1 17.5

O H (MA) 127. 125.

EEF (GJ) 17.4 14.2

WEF (Gg) 1.59 1.4

MAEF (MA turns) 38.0 36.4
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7.4 Pulse Length Tradeoffs

In this section the pulse length of the plasma is varied. The implications for

the design of the AFCR device and for the requirement for the OH transformer

are analyzed.

As discussed previously, the plasma temperature that optimizes the machine

design results from a tradeoff between the fusion power density (which is op-

timized for a temperature of T ~ 20 keV for DT and for a wide range of

temperatures for DD-DT), the requirement for the ohmic transformer (the resis-

tive volt seconds required for the plasma burn decrease with increasing tempera-

ture), and the ignition criteria. The ignition criteria for plasmas operating at

these temperature and of these sizes cannot be estimated with any degree of

confidence. Therefore, in this section, and through most of this report, the im-

portant parameters have been wall loading, fusion power density, and, in this

section, resistive voltage requirements.

Table 7.4.1 shows the results of the parametric code for varying peak fields

in the ohmic heating solenoid (the stresses of the solenoid are kept constant).

The peak field is varied from BOH,maz = 7 to BOH,max = 11 T. The machine

decreases with increasing BOH,max at the expense of increased energy stored

and increased current in the ohmic heating transformer. The illustrative case

has a peak field of BOH,max = 7 T, as would be the case if NbTi were used for

this transformer. The gains in size reduction probably do not warrant going to

a higher field ohmic transformer. This conclusion changes if the pulse length is

increased beyond the rb,n = 3600 s assumed in Table 7.4.1.
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Table 7.4.2 shows the results of the parametric code as the pulse length is

varied- The first entry in this Table corresponds to the case of current driven

operation, both for the inductive part and for the burn (that is, there is no OH

transformer). The other entries refer to the case with an ohmic transformer

providing the inductive and resistive fluxes. The last entry in Table 7.4.2

corresponds to a pulse length of half a day (43200 s).

The absense of an ohmic solenoid reduces the size of the machine substan-

tially. Once the solenoid is there to provide the required flux, not much effect

on the machine size is experienced as the pulse length is increased from 0 s to

10800 s (that is, 3 hours). Further increases in the burn pulse result in significant

increases in the size of the machine.

As a conclusion, it is possible to provide for long pulse lengths (in the order

of hours) in reactor devices by slightly increasing the reactor size accomodate

a larger ohmic heating solenoid.
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Table 7.4.1

Parametric Scan vs Peak Field in the OH Transformer BOH,mcLX

for UTF = 270 MPa and

PW,1= 2.2 MW/M 2 (at = 0.80)

BOH,mrax (T) 7.0 9.0 11.0

A 4.0 4.0 4.0

R (i) 9.6 9.16 8.93

a (m) 2.4 2.29 2.23

B (M) 7.05 7.13 7.19

I (MA) 18.7 18.1 17.7

P (m2 T4) 55.6 52.9 51.8

Pj (GW) 3.09 2.81 2.68

ETF (GJ) 89.2 82.3 79.1

tcond (GA m) 26.5 24.4 23.4

BTFmax (T) 11.9 12.1 12.3

WbIanket (Gg) 2.69 2.48 2.37

EOH (GJ) 17.5 20.7 24.1

1OH (MA) 125. 157. 189.

EEF (GJ) 14.2 13.4 13.1

WEF (Gg) 1.4 1.35 1.32

MAEF (MA turns) 36.4 36.5 36.6
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Table 7.4.2

Parametric Scan vs Burn Pulse Length Trb,

for UTF = 270 MPa and

PWai = 2.2 MW/M 2 (at y = 0.80)

Tburn (s) No OH 0 3600 10800 43200
R (m) 6.84 8.71 9.6 10.9 14.4
a (m) 1.71 2.18 2.4 2.72 3.61
A 4.0 4.0 4.0 4.0 4.0
B (M) 7.7 7.23 7.05 6.83 6.36
I (MA) 14.6 17.5 18.7 20.6 25.4
P (M2T4 ) 40.2 50.8 55.6 62.9 83.3
Pf (GW) 1.59 2.56 3.09 3.96 6.96
ETF (GJ) 52.0 76.0 89.2 111. 199.
econd (GA m) 14.6 22.4 26.6 33.1 54.6
BTF,max (T) 14.5 12.5 11.9 11.1 9.8
Wbianket (Gg) 1.52 2.28 2.69 3.34 5.53
EOH (GJ) 0.473 10.0 17.5 32.5 102.

OH (MA) 105. 119. 125. 135. 161.
EEF (GJ) 10.2 12.8 14.2 16.6 26.9
WEF (Gg) 1.1 1.3 1.4 1.57 2.19
MAEF (MA turns) 38.5 36.7 36.4 36.4 38.3
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8 ILLUSTRATIVE DESIGN OF AFCR

In this chapter, the illustrative design of an AFCR device is described.

The purpose of an AFCR type device is to be a net electricity producer

self sufficient in tritium production. It would do this with a blanket optimized

for purposes different from only tritium breeding. The relaxation of the tritium

breeding ratio could result in

* blankets that are optimized for safety

9 blankets optimized for low activity

* removal of the need of breeding tritium in the inboard region of the reactor

* optimization of the first wall that would result in decreased breeding (such

as locating thick armor for disruption protection of the first wall).

Alternatively, the AFCR device could be used for breeding fissile material

or additional tritium to be used in other fusion reactors that are not tritium

self-suffic-ient.

Section 8.1 decribes the illustrative device.

Section 8.2 describes some of the most salient engineering features of the

illustrative design.
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8.1 Illustrative Design

.Table 8.1.1. lists the main machine parameters for the illustrative AFCR

device for the full performance operation.

Figure 8.1.1 shows a cross sectional view of the AFCR device. The poloidal

field coils are located outside the toroidal field coils. The plasma major radius is

9.6 m. The bucking cylinder supports the toroidal field coils against the inward

force due to the toroidal field.

Figure 8.1.2 shows a top view of the reactor. There are 16 toroidal field

coils. Each toroidal field coil is removable to facilitate remote maintenance. It

is not necessary to warm up any of the structure in order to remove a toroidal

field coil.

The machine operates with 1 - = 0.2 and a wall loading P.. 1 = 2.2

MW/M 2 . The peak ion temperature is 45 keV, while the electron temperature

is Te = 35 keV. The high ion and electron temperature are needed not because

of the use of DD-DT fuels (lower temperatures result in slighty increased specific

fusion power density Pf/3 2B4 ), but are used in order to save in the resistive

volt-seconds in the OH transformer.

Table 8.1.2 shows the performance of the illustrative design as a function

of 1 - -y. Very high wall loadings would result if the machine were operated

with DT fuels (1 - -y - 0). The advantages of DD-DT are best exploited in

the cases where the wall loading in DT operation is beyond what the wall can

tolerate. Although the machine can be underrated (reduced field and or reduced

#), a machine that has been optimized for DT operation with these constraints
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would be significantly smaller.
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Table 8.1.1

AFCR -TYPE DEVICE MAIN PARAMETERS

PLASMA

MAJOR RADIUS (i)

MINOR RADIUS (i)

PULSE LENGTH (s)
SCRAPE-OFF LAYER (m)

PLASMA ELONGATION (m)

PLASMA TRIANGULARITY

ASPECT RATIO

PEAK ION TEMPERATURE (keV)
I -y
SAFETY FACTOR

I - -y
D-T ION DENSITY (i-3)

PLASMA CURRENT (MA)

EFFECTIVE CHARGE

PEAK-TO-AVERAGE RIPPLE

AT PLASMA AXIS(%)
:TOTAL BETA (%)
FIELD ON AXIS- (T)

D-T FUSION POWER (MW)

NEUTRON.WALL LOADING

(MW/m 2)

9.6
2.4

3600
0.20

1.5
0.2

4.0
35

0.2
2.5

0.20

±.2 X10 20

18.7
1.2

0.08

6.25

7.05

3090

2.2

BLANKET/SIBELD

INBOARD BLANKET THICKNESS (i)

OUTBOARD BLANKET/SHIELD

THICKNESS (m)
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AFCR -TYPE DEVICE PARAMETERS (continued)

TF COIL

NUMBER OF TF COILS 16

MAXIMUM TF FIELD (T) 11.9

WINDING CURRENT DENSITY (MA/m 2 ) 20

TF STORED ENERGY (GJ) 89.2

TF CONDUCTOR LENGTH (MA m) 26500

TOTAL CURRENT (MA) 340

CURRENT (kA) 520

PF COILS

EF COIL A-TURNS (MAT) 36.4

V-s FROM EF COILS (Wb) 120

V-s FROM OH COILS (Wb) 480

TOTAL V-s FROM PF (Wb) 600

FIELD (OH SOLENOID) (T) 7

CURRENT RISE TIME (s) 4

CURRENT DENSITY (EF COILS) (MA/M 2 ) 15

PEAK ENERGY (EF COIL) (GJ) 14.2

PEAK ENERGY (OH COIL) (GJ) 17.5
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TABLE 8.1.2

DD-DT TRADEOFFS FOR

ADVANCED FUEL COMMERCIAL REACTOR (AFCR) DEVICE

Fusion Power

(GW)

40.7

5.9

3.1

1.8

0.72

0.50

Neutral Wall Loading

(MW/M 2)

29.1

4.3

2.2

1.3

0.5

0.36
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Figure 8.1.1 Cross Sectional View of AFCR
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Figure 8.1.2 Top View of AFCR

223

oe1



8.2 Reactor Design Principles

The design of the superconducting machine is dominated by the support of

the TF coils against the overturning moment of the vertical field and against

the centering force, in a manner compatible with modular disassembly of the

system.

The key principle for the solution of these problems and other slightly

less difficult structural constraints is the use of a compression member of low

thermal conductivity between the low temperature region of the coils and room

the temperature structure.

Such a material is G-10, a composite of epoxy resin and glass fiber. It

can support 200 MPa in compression with adequate margin and has low thermal

conductivity integrals, especially at low temperatures. The thermal conductivity

integral is f kd9 and for G - 10 it has the values, 0.49 W m 1 in the tempera-

ture range 20 K to 4.2K, 2.37 (77K to 20K) and 18.4 (300K to 77K).

Figure 8.2.1 shows the principal use of G-10 spaces between heat sinks

.refrigerated to-20K and 77K in the vacuum space surrounding the TF coil. The

plates are 1/2" thick and of sufficient area to limit compressive stresses in the

G-10 to 200 MPa. In Table 8.2.1 are compiled the characteristics of the G-10

constraints for the centering and overturning forces.
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Table 8.2.1

Effect of G-10 Supports in Thermal Load of TF Coil

Total Force (GN)

Total Moment (GN m)

Required Area (m2 )

Heat loads

to 4.2 K (kW)

to 20 K (kW)

to 77 K (kW)

Total Roorr-Temperature

Heat Load (MW) t

Centering Forces

14

71

1.7

13.8

105

3.7

Overturning Moments

17

45

2.7

21.6

167

5.8

t :ssuming 20% of Carnot efficiency.
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Figure 8.2.1 Cross Sectional View of the Toroidal Field Coil. G-
10 Struts are Shown.
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8.3 Modularity and Maintenance

The use -of G-10 compressive supports obviates the need for cold structure

between the TF coils. This is the feature which allows the unfettered removal

and replacement of a module consisting of a TF coil, blanket, first wall and

vacuum flanges. In order that the matching faces of a vacuum flange should

separate freely the line of withdrawal of a module must make a positive angle

with the plane of the flange as shown in Figure 8.3.1. Furthermore, no part

of a module must interfere with an adjoining flange face as it moves along the

line of withdrawal. These conditions limit the positioning of the flanges but

nevertheless allow them to be located between an access port and a TF coil so

that large ports can be accommodated between TF coils.

The proposed vacuum flange design is shown schematically in Figure 8.3.2.

It is a weldless flange, requiring essentially no preparation either for disassembly

or reassembly. The principle of the flange is the use of a set of concentric

galleries, separately pumped and sealed from adjacent sections. At the inside of

the flange in high radiation regions the seals would be metallic; at the outside

the seals could be of silicone or other radiation resistant flexible polymer. An

important feature of the flange is the use of a gallery close to the outside as a

controlled leak of low Z gas such as helium or deuterium. This ensures that any

leak inwards past the galleries is of a benign species and not oxygen, nitrogen or

other high Z impurity.
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Figure 8.3.1 Modularization Scheme for AFCR . Toroidal Field
Coil and Shear Pannels of one Module Have Been
Removed.
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