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A code has been developed to find the axial eigenmodes for ion loss cone instabilities

(DCLC and ALC), and has been used to determine stability requirements for the TARA ion

anchor with a belly band coil. The equilibrium has a Fokker-Planck-like hot ion distribution,

with maximum density at the outer magnetic field minimum and a 29% density dip at the

midplane due to the belly band, while warm ions are confined between the transition region

and the potential peak at the outer magnetic field minimum. The axial eigenmodes are

found by solving the dispersion relation (a second-order differential equation) along a given

field-line, using WKB across the field, and including the effects of finning, ion cyclotron har-

monics, and finite ion cyclotron resonance width. It is found that modes at lower frequencies

(w < 3wj) are stabilized by the warm plasma, but that higher frequency modes (w > 4wcj,
kLpi > to) remain unstable with growth rates of a few tenths of we. A preliminary study

has been made of the radial and azimuthal mode structure, using a modified ray-tracing

technique which is valid even for complex group velocities. Results of this study suggest that

the radial mode structure will have an important effect on stability.



I. Introduction

An important requirement for the feasibility of tandem mirror reactors, and for good

performance of tandem mirror experiments, is the absence of ion microinstabilities in the

outermost cells, where the ion distribution has a loss cone. Such instabilities may be driven

by the free energy associated with the loss cone (as in the case of the DCLC and ALC

instabilities), or by the ion anisotropy (as in the case of the AIC instability).

In this paper we will be concerned only with instabilities driven unstable by the loss

cone. For these modes kvi > w, so kvA >> w, and (in contrast to anisotropy-driven modes

such as AIC) the ion response is electrostatic. If the electrons are cold (ki1v, < w and kiv, <

we), then the infinite medium dispersion relation is

W2 2 2 k w2  w -
+ (+ ) w 2 k2  k2 C k2 wwc' ne 0 (1)

where g is the ion dielectric tensor. This dispersion relation gives the drift cyclotron loss

cone (DCLC) mode when the term with Vn, dominates the term with k1 , and it gives the

axial loss cone (ALC) mode when the kII term dominates the Vn, term. In finite geometry, the

k1l term, Vn, term and ion term are all comparable in magnitude for DCLC; if kiL > I for

DCLC, then there is no qualitative difference between DCLC and A LC.

To estimate the conditions needed for stability of DCLC and ALC, we may use the

straight-line orbit approximation for the ion term, which is valid when Imw > wi w:

kc Pi Pi r d~* 6 ft/~ du a9Fj.0 /(9u

-00

where F 0n(u) is the one-dimensional ion velocity distribution in the k_ direction. If

aFiOnf/Oulw/ke > 0, i.e. if w/k 1 is in the loss-cone, then k, - n - k_ has a positive

imaginary part, and the mode is unstable. A mode will be stable if it has w/kt such that

Fion/Ou~lwAL< 0, either because w/kj is outside the loss cone, or because there is warm

plasma of sufficient density partially filling the loss cone, with ,. w/k 1 .

I



Taking an ion distribution of the form

00

dvjg fjA0 (v±, vi) = exp(-v2 /2v?)
-00

and assuming k9D < 1 (certainly true for the most dangerous modes), so that we can neglect

the vacuum and electron polarization drift terms, and taking k in the diamagnetic direction

(the most unstable direction), Eq. (1) becomes

w201 1 k_) I -- + 17 -Fi iW
wp ;H +c~k~ +c,~ yi~ 0 (2)

where R, is the radial density scale length. For DCLC, the k term may be neglected, and

it follows from Eq. (2) that w/kL ~ vi in[(p /R,)1/2, #-(pj/R,,) (where pi is the ion Lamor

radius and fli = I /i which is much less than vi if pi <.R,. Hence it is only necessary

to have a relatively small amount of warm plasma, at a relatively low temperature, to stabilize

DCLC. Furthermore, when DCLC is flute-like (i.e. when kj1L < 1, with k11 determined by

requiring the kl term in Eq. (2) to be comparable to both the vne, term and the greatest

of the other two terms; this means L < max[5R, 12p#-R3/4p!/4]), all that matters is the

warm plasma distribution integrated along the field line, so the warm plasma can be axially

localized (in the inner half of the end cell, for example) and still be effective at stabilizing

DCLC.

For ALC, and also for DCLC when it is not flute-like, kj1L > 1. This means that these

modes can localize axially away from the region where there is warm plasma. One way to

stabilize these modes would be to have an unconfined stream of warm plasma through the

entire length of the machine, as was done in the 2XIIB experiment, but this would not be

tolerable in a reactor. Thus it is necessary in a tandem mirror reactor, and desirable in an

experiment, to have L, the length over which there is no warm plasma, be sufficiently short

that w/k_ > vi when kiiL > 1. From Eq. (2), neglecting the Vne term,

2. k2 c2

k ~ (+ W )(2 )3 (3)we kv
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If loss-cone modes are stable for w/kovi > 0.3, and if k 1L > 1 is the condition for a mode to

be axially localized, then from Eq. (3) unstable loss-cone modes will exist only if the region

where there is no warm plasma is longer than the critical length

kic2Lc~-(1+ 2 )-i
S Wpe

For typical design parameters of the TARA ion anchor, e.g. Pi = 0.1, TZ = 12 keV, B =

3.6 kG, we find L, = 60 cm for small kpi, and less than 60 cm for larger kapi. This is close

to the distance from the midplane to the outer mirror throat, a region which would have no

warm plasma if the TARA ion anchor were run in a configuration like the TMX end cell.

Therefore, it would be desirable to modify the ion anchor of TARA (and of any experiment

with similar parameters) to put the peak in potential closer to the outer mirror throat, and

to make the potential fall off as sharply as possible inside the peak, to allow as much warm

plasma as possible to be confined over as much of the length of the cell as possible. One

way to do this would be to put a circular coil with a modest amount of current around the

midplane. This "belly band" coil would increase the magnetic field at the midplane by a few

percent, and there would be two minima in the magnetic field some distance on either side

of the midplane. If neutral beams were injected perpendicular to the field at the outer field

minimum, then the potential peak would occur at the outer field minimum, and a substantial

amount of warm plasma could be confined at the midplane. An alternative to this belly band

configuration would be to inject ions at the midplane, at a sufficiently small angle to the

magnetic field (but not too close to the loss cone) to produce a sloshing ion distribution, with

two peaks in density (and in potential), one on each side of the midplane. Although sloshing

ions are not a possibility in the present design of the TARA ion anchor, because the mirror

ratio is too small, they may be possible in other experiments or in reactors.

In order to accurately evaluate the merits of using a belly band coil, or (in other experi-

ments) sloshing ions, it is necessary to calculate the axial eigenmodes numerically, rather

3



than use the rough estimate kj1L > 1 and the infinite medium experession for kg1 evaluated

at some typical axial position, as was done in deriving Eq. (4). An axial eigenmode code

has been written by Pearlstein, and has been used to find stability criteria for the DCLC

and ALC modes in various designs of MFTF-B. We have written a similar code, which gives

results comparable to those of Pearlstein's code for similar equilibria. In addition to increas-

ing our confidence in the correctness of both codes, our code includes some new features, e.g.

it evaluates, in an approximate way, the finite width of ion cyclotron harmonic resonances;

this is especially important in a belly-band equilibrium, where the magnetic field profile is

fairly flat over a large part of the length of the cell, and ions over a broad axial range can be

resonant with the same wave. (Our code also lacks some features found in Pearlstein's code,

for example VB-drift damping from hot electrons.)

In Section II, the belly band equilibrium is described, including the expressions used

for the hot and warm ion distribution functions. An iterative procedure is used to numeri-

cally calculate a self-consistent warm ion distribution, confined axially to the inner side of

the potential peak. In Section III, the dispersion relation (a second order differential equa-

tion along a field line) is derived, and the treatment of the finite ion cyclotron harmonic

resonance width is discussed. In Section IV, we discuss the boundary conditions which must

be used at the mirror throats in order to find the axial normal modes. When the electrons

are cold, outgoing wave boundary conditions are appropriate, but these may not be correct

when the electrons are warm. In Section V, results are presented for the stability of loss-cone

modes along certain field lines. It is found that, for reasonable amounts of warm plasma,

the lowest k_ modes are stabilized, but that modes with higher k, and higher frequency

(kipi > 10, and w > 4wc) remain unstable, although at rather low growth rates (no more

than a few tenths of c)wj. This behavior is expected from Eq. (4), which shows that modes

with kpi > 61/2(mj/m,)1/ 2 require substantially shorter lengths for stability. It is likely,

however, that these high k_ modes will turn out to be less harmful than low kIc modes, when

the nonlinear or quasilinear effect on confinement is determined.

The stability of a given three-dimensional equilibrium does not depend on the local
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stability of each field line and direction of k_, but on the stability of the three-dimensional

normal modes. If the WKB approximation is valid across the magnetic field, then the three-

dimensional normal modes can be constructed by ray-tracing. The criteria for stability may

be substantially modified, due to the radial convection of wave energy, and the additional

constraint on the normal modes that they must satisfy the boundary conditions radially and

azimuthally. If ray-tracing across field lines is attempted for the DCLC and ALC modes, it is

found that the group velocities have large imaginary parts, so the usual ray-tracing methods

do not work. In Section V, we discuss a generalization of the usual ray-tracing equations,

which is valid even when the group velocities are complex. A code incorporating this method

has been partly completed; preliminary results for loss-cone instabilities in the TARA ion

anchor suggest that the radial mode structure has an important effect on stability. A sum-

mary and conclusions are presented in Section VI, together with a discussion of effects (e.g.,
electron Landau damping, ion VB drift) which may be important, but which have not yet

been included in the codes.

Ii. Equilibrium

The TMX yin-yang coils used in the TARA anchor have a vacuum field in the vicinity of

the midplane given by

B(z) = BO[1 + (z/45)2] (5)

where z is the axial distance in cm. The mirror throats occur at a distance of 57 cm from

the midplane, with a mirror ratio of 2.43. A good approximation to the magnetic field in the

entire region between the mirror throats may be obtained by using Eq. (5) for Izi = 45, and

using

B(z) - 2.43Bo - a(z F 57)2 T b(z ^ 57)1

for Izj > 45, with the (~F) sign used in the vicinity of (±) 57 cm, and with the coefficients a
and b chosen to make B(z) and its first derivative continuous.

The magnetic field due to the belly band is
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B(z) = B1[1 + (z/25)2]-A

We must choose B1/Bo large enough to make a local maximum in the field at the midplane,

but small enough to avoid introducing too much bad curvature. We have chosen BO = 2.72

kG and B, = 1.18 kG, which gives a midplane "bump" 3.4% greater than the minimum

magnetic field, and mirror ratio (between the maximum and minimum field) of 1.75. The

total magnetic field (the sum of the fields due to the yin-yang and belly band coils) is then

B(z) = 2.72[1 + (z/45)2] + 1.18[1 + (z/25)2--J for Izi < 45 (6a)

B(z) = 6.6 - 1.185 x 10- 2(z ~ 57)2 F 3.944 X 10-(z T 57)3 for 45 < Jz< 57 (6b)

with B in kG and z in cm. Since the plasma radius is about 7.5 cm at the midplane, the long

thin approximation is fairly good, and we can ignore radial variations in the vacuum field.

Since P < 0.15. the diamagnetic corrections to the vacuum field are not too large, and we

have used Eq. (6) for B(z) on all field lines.

The field lines are labelled by (a, p) coordinates, which are Cartesian at the midplane.

Because of the long, thin approximation and the neglect of diamagnetic corrections to the

vacuum field, we will have va VP = 0 everywhere if we choose Va and vp to be parallel to

the planes of symmetry of the quadrupole field. The fanning factor Va/Va is given by

Va_

exp(z/15) (7)

which is equal to 45 at the mirror throat. Equation (7), together with VaVO = B(z), defines

Va(z) and vp(z).

To determine the hot ion distribution, we have made use of a bounce-averaged Fokker-

Planck code which calculated the distribution generated by a 15 keV neutral beam injected

perpendicular to the field at the field minimum of a 1.75 mirror ratio cell. In the Fokker-
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Planck code, and in the equilibrium we have used, the hot ions are assumed to be energetic

enough so that they are not affected by the ambipolar potential; this assumption was later

checked, and found to be fairly well satisfied. In this case, the hot ion density depends only

on B. A good fit to the Fokker-Planck results for the hot ion density is provided by

naa(B)= 2BI arctan[(Bmin/B -Bmiu,/Bx)b(1+± T1 /T- Bmin/B)-]

B4 (1 + T g|Tj - Bmin/B)l

2(1 -B/Bmax) (8)
1 + T11/T - Bmin/Bax)

if we take T/T 1 = 0.08. The dip in density at the midplane (due to the 3.4% bump in

magnetic field) is 29%. This rather complicated expression is just the nR,(B) that is associated

with the pitch angle distribution

g(v) = (1 + T1/TL - vBm.i)' - (I + T11/TL - B rnu4',.)_

which is one of the simplest expressions exhibiting the desired behavior in the vicinity of
v = B iand v = B;. The pitch angle distribution is defined as

g(v)=v~f dA A f(H = p/v, A)

and is related to nhot(B) by

nfht(B) =B O dv(B - v)^-g(v).

The Fokker-Planck calculation was done for a mirror cell with a single field minimum.

With a belly band, there are two field minima, one on each side of the midplane. If the
neutral beam is injected at the outer field minimum (at H == P~min) then we would expect

Nwlh(B) to be lower than the value given by Eq. (8) for B < 111, (where B.,,, is the field

at the midplane) at z < 0 (around the inner minimum), since ions can become trapped on

the inner side of the midplane bump only by diffusing first into the region of velocity space
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where H > ABIUM,, and then back to H < pB1 ,,, on the other side of the midplane. During

the time it takes for this diffusion to occur, some of the ions will be lost by charge exchange,

so we expect to find fewer ions trapped on the inner side of the midplane bump than on the

outer side. As a guess, we have simply used constant density, i.e.,

nhot(B) = nht(Bbump) (9)

(with the right hand side given by Eq. (8)) for B < B.,111, on the inner side (z < 0). Recently,

Matsuda has developed a multi-region bounce-averaged Fokker-Planck code, and we plan to

use this code to see whether Eq. (9) is a good guess. B(z) and nhot(z) are plotted in Fig. 1.

The Fokker-Planck code predicts a perpendicular hot ion velocity distribution at a given

axial position which has a sharp peak at the injected neutral beam energy. Such a dis-

tribution might be unstable to velocity-space instabilities (such as Dory-Guest-Harris) which

would smooth out the distribution, without causing any losses of ions. Since we are not

concerned with such instabilities, but only with instabilities that would drive ions into the

loss cone, we have used a smoother, broader perpendicular velocity distribution for the hot

ions, one of the form

fL(i, B) - n"A(B)[exp(-A/2hPt(B)) - exp(-A/2p,, )] (10)
I2/Ot(B)-pue

This "subtracted Maxwellians" form for fL has the advantage that it is easy to incorporate

into the ion term of the dispersion relation for loss cone instabilities, and is often used in loss

cone stability studies. The justification for using the Fokker-Planck results for nj,,(B), but this

simplified form for fL, is the idea that velocity space instabilities will cause changes in fl but

not in nhct(B); although not strictly true, this should be a reasonable approximation.

We have assumed plole is independent of B, and taken As,,(B) to have the form

Ahot(B) _ hl(I + aTI|1 L~ BB|OmV)
((1+aTI/T± - BniIB)

with the free parameter a. In order to choose a reasonable value for a, we wrote a code,

FOFHMU, which takes IAht(B) and. nht(B) as input, and generates fh0 (H,A)as output. This
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code is described in Appendix A. We would like to choose a to be as small as possible (in

order to make po,/Iphoe as large as possible, and minimize loss cone instabilities), subject to

the constraints 1) that kot(H, [t) ;;> 0 everywhere, and 2) that fOit(H, [t) be fairly small for H

less than the ambipolar potential, justifying our neglect of the ambipolar potential in the

hot ion equilibrium. We found that a = 1.2 is a reasonable choice, for T/T± = 0.08 and

Bmax/Brnin = 1.75. The hot ion distribution functions f(vL, vI), at both the outer and inner

field minima, are shown in Fig, 2.

Although the ion term in the dispersion relation depends mostly on the perpendicular

velocity distribution, the parallel velocity distribution does come into the expression for

the ion cyclotron harmonic resonance width. The hot ion distribution f(H,p) given in

Appendix A is not separable into a function of vj times a function of VI, but as a rough

approximation, which greatly simplifies the expression for the ion term in the dispersion

relation, we will treat the ion distribution as if it were fL(p,B) (given by Eq. (10)) times

(2r(V2))-JeXp(-V /2(V2)), where (v2) is the mean v2 of the actual ion distribution f(H, p),

CC) Pfmax

(vI) = [nI,.O(B)|l]B f di f dH(H - pB)If(H, p) (12)
0 AB

From Appendix A, f(FI,p) may be expressed as a sum of Laguerre polynomials Li(/AA,,)

times functions Ni(/H) which are moments of the perpendicular distribution function

LL(p,B), defined by Eq. (A6). Changing the variable of integration in Eq. (12) from H to

L = iI, and using the identity

f dx x exp(-z/2)Li(x) = 4(-1)'(2i + 1)
0

to do the A integration, Eq. (12) becomes
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B'

(v ) dv v-'(B- - v)iEmax(-1)'(2i + 1)Ni(v)

Using Eq. (A8) for Nj(v), the sum over i in Eq. (13) may be done, yielding

(vI) = - q)wnfhot(B)

B-1 Y(V = 4rRIM.1,y(fr')

f dv v-'(B-' -V)-yv) 4I3iwe f
max lrl 0

where
Bmax

y(v)= f dB'(v -B'~)~G(B')

and

G(B) = n&,t(B)B--r4 + aTl / BT i + Bin(B'- B;j(1 + aT-BT] - B- 1 )B~tj 4aT111T -. ( + a3rnaxj max

(1 + aTIj/T_ - Bmi,,/B)] [2(1 + aTI/Tw) -Bmin(B1 1 B; ~1 (15)

Equation (14) may be integrated by parts to yield

I Max B-I1

(v2) = 2Bp B'G(B') [ dv(2B--I -V)j--2
?h1t (B) I 'II, B D'--'(- vI-')

(16)

For aTII/T 1 < 1, G(B') is a steeply decreasing function of B', so the B' integral is dominated

by B'~ c B. Then in the v integral, (2B-1 - v)v- 2 ~ B, and the v integration may be done,

yielding

Btnax

(v2) = 2Bo e dB'G(B')
ne~t(1B
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Although the B' integral cannot be expressed in closed form, we can find simple expressions

for (v2) in the limiting cases B ~ B n and B ~ Bmnx, using Eq. (16) for G(B) and Eq. (8) for

nhot(B), We find

nhot(B) a (1 + TiI/T1 - Bmjn/B)~

(v ) 8p/h.,Bnin(l - Bmij/Bnax)(1 + T11/T1 - Bmin/B)1(1 + aTg/T 1 - Bmin/B)~I

~ 7I.poteBrin(l - Bmin/Bmak)

for B ~ Bmin and

nhot(B) a (B.a./B-1)

V2) 16
(v1)~ Tphotc(Bmax- B)

for

B : Bma

For the code, we have simply used an arbitrary expression for (v2) which has the correct

behavior in these two limits,

(v') = phteh(B-' - B;;)(Bma, BAin) [ Bax(B - Bmi.) + 7(Bm,, - B)]. (18)

The warm plasma is assumed to be confined to the inner side of the potential peak,

which is located at the outer field minimum (where the hot ion density is greatest). On the

inner side of the potential peak, we assume a warm ion distribution of the form

fwarrn(H, y a(PBni, -- H) eXp(- I/T'w) for H <pBi,
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fwam(I, =)= 0 forH > pB(ni1

where

H= 1mV2 + miv' + e#(z) - eomax

and
I

The warm plasma density is given by

00 00

nwarm(z) = dvil f 21rvdvfwarm(H, pA)
-00 0

)Bmvn/BZ)][ (

a dvj1 ] dvLVL[bmax -O(z) -v2 -v( - BnIB)]

exp[-(vi + V2 + #(z))/T.] (20)

Doing the vil and v1 integrals, we obtain

nfwarm(z) a [#kwar - #(z)]lTj + v 1([#max - ( - #(z)]T'

3
-2 + Bmin/B(z)) eXp([#.2. - #(z)]Tjj)

-[1 - Bin/.1 B(z)] ' '[B(Z)/Bmin]j JReZ([Omax - O(z)]ITri [B(z)/Bmin - 11]^) (21)

where D is the probability integral and ReZ is the real part of the Z function. The potential

O(z) is also related to the warm plasma density fla,,n(z) by the Boltzmann relation

O(z) -#MT = Teen(fnwrm(z) + nfhot(z)]/nm.) (22)

12
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where nnta is the hot plasma density at the outer field minimum. Since B(z) and nlht(z) are

known functions, given by Eqs. (6) and (8), we can use Eqs. (21) and (22) to solve for the

two unknown functions n m(,Lz) and #(z). The constant of proportionality in Eq. (21) is fixed

by specifying nwa,.r at the inner mirror throat, where the anchor joins the transition region.

The most obvious numerical scheme for finding nfvgtrrn(z) and #(z) would be to first use Eq.

(22) to find #(z) at the inner mirror throat, z = -Zth,. Then #(-Zthr) would be used as an

initial guess for #(-zth, + Az), for some Az < L, and Eq. (21) would be used to make an

initial guess for ntvcr(-zutr + Az); this nwa,,(-Zthr + Az) would be put into Eq. (22) to

make a revised estimate of #(-Zh + Az), and the procedure would be continued until the

estimates of 4(-ihr + Az) and nvarm(-Ztr + Az) converged. Then #(-Zhr + Az) would be

used as an initial guess for 0(-zth, + 2Az), and so on. In practice, this scheme often fails to

converge since the estimates overshoot the correct solution, and the errors grow larger with

each iteration, Instead, the new estimate used for n ,m is (1 - tv) times the old estimate, plus

w times the right hand side of Eq. (21), where w is a weight factor, typically about 0.1, which

is adjusted dynamically to maximize the rate of convergence.

Figure 1 shows nturn(Z) calculated by this method, using fwarm/na, = 0.8 at the inner

mirror throat.

The warm ion distribution function given by Eq. (19) is difficult to put into the ion term

of the dispersion relation; the ion term would be much easier to calculate if the warm ion dis-

tribution were bi-Maxwellian. We have therefore treated the warm ion velocity distribution

as if it were bi-Maxwellian, with the same (v2 and v(2) as the distribution given by Eq. (19),

for purposes of calculating the ion term in the dispersion relation.

In the limit that e[1 - / #(z)] > Tw, we find (v_ ) - T./mi for the warm

ions, while in the opposite limit, we find

(V2 ~_2 [#,ma. 1(z)} Bmin/B(z)]

so in the code we have used

13
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(v2  min(T,/m , 2 e [0.a - O(z)][1 - B.,./1B(z)]') (23)

Similarly, we have used

(v2) = minf(T /Mn 2 [OMa - 4(z))) (24)

In practice, we always have Oekkmax - 4(z)] < T., and 2e[m,.r - O(z)][I - 13,i/B(z)-'- <

T, except very close to the field minimum, so T, has very little effect on the dispersion

relation.

III. Local Dispersion Relation

From Maxwell's equations and the definition 47riwIJ = -E, the dispersion relation for

waves in a plasma is

- X- X + + =(25)

To evaluate V x V x E in (a,f,z) coordinates, we note that these coordinates are or-

thogonal to the extent that the long, thin approximation is valid and the diamagnetic correc-

tions to the magnetic field can be neglected, i.e.,

(ds) 2 
- (Va)-2(da) 2 + (V) 2 (gdp) 2 + (dz) 2

In this case, the curl of a vector A is given by

SX A = (VP)&[ A & AO])+(Va)fl[5 A ZA]+(VaVfpz[$ A91 a AI (

For loss-cone instabilities, kj >> k1j, so we assume E locally is of the form

E(a,p, z) = exp(ikaa + ikpP)N(a, f, z) (27)

where R(a,6, z), varies slowly with a, p, and z, on the scale of the plasma density, while

exp(ikaa + iki'p) is a rapid variation. The components of V x V x E are then
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92 0 a2C9VaO I9 O9Va (a . (V x V x E) = VaVP&#E - (V#) E. - VE) V -0 Fa E (28a)

(V X V X R) = VaV#p E& -- (Va)2 E - Va E- + Va E, (28b)

&az (< X~ Vo 201 1 a (02 0

(Vx V xE) =(Va) Ea + (E - (Va) 5E - (VP) 2 E2  (28c)

We define kg(z) = Vakaa + Vfik4 &, and change from (a, i, ) coordinates to (I, &L x 2, 2)

coordinates, where k1  &L/k±. We note that

E =(ikcVaE + E exp(ikaa + ikp#3)

and similarly for 0is/09, where the term ikVaR, is greater than the term a0/aa by a factor of

order kiR?,, where R, is the plasma radius. For each term of each component of V x V x E in

(kL, x , ) coordinates, we keep only the lowest-order non-vanishing terms in (kRv)- t .

Then, using 1(z) = VaVO,

k. (V x V x E) = -Ic 1- ( x V). (2 x V)(k.EAJ + c (I X V)(ik±Ek±X.)

B ak01a 1 E +iB ak2l
E k B -E. (29)

x 2) (V x V x R) -ik(i x V) . (_LEkJ + kLEkx (30)

i - (V x V X E) E + LE, (31)

Using the ordering, appropriate for ion loss-cone instabilities, that
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kWc 2  kc 2

z-g-~ >(16 z)g-k g~k(32)

the components of Eq. (25) are

-RB 2-le Ek-k x k). V[( XV). (kiEk±]

0 2 k1 O B Oz k1 E2 L

+ (4J X 2 VkJ 1 - 0-. (33)

ik c2 kc 2

- X( x V) -(kiEk_ + '*y~k, + kC 2 kx= 0 (34)

ikic2  t k2 c2
-2-- k +k - zz& 0 (35)

where e ,, . k = (k L x L) ( x), and cy =c .(k x) = -'t* x z).. ,

and e., - i. For ion loss-cone instabilities, the electrons dominate r, and ,, with

Pe__ pe 3exy = , e2= j (36)

for cold electrons, while c., includes the ion term E,,, and the electron polarization drift

wpe/w.. Eliminating Ek ,, and E from Eqs. (33) through (35), we obtain the dispersion

relation

2 ~ 2  2~
+e !i +! + _Xjk +A91 pe + ~ _

k2 )+X~~jI9;kJ+ka&B w~ (1 + I~2

(kJ- x ). w( * )=0 (37)
WWekL

which is a second-order differential equation (or an integral equation if , is an integral

operator) for the axial eigenmode Pk1 (z). If we replace a/az by ik1, we recover Eq. (1),

the infinite medium dispersion relation. Because of the ordering k1c 2 /W2 >> , which we

16



assumed [Eq. (32)] in deriving Eq. (37), this dispersion relation does not include modes such

as the Alfven ion cyclotron (AIC) instability, for which the ion response is electromagnetic,

but only modes (such as DCLC and A LC) for which the ion response is electrostatic. The as-

sumption of cold electrons is valid if w/kjve > 1, otherwise c, is an integral operator and the

dispersion relation will be an integral equation. The assumption that ery is dominated by the

electrons is valid if kipi > 1 (where pi is the ion Larmor radius) or w > wc, otherwise 4,y will

be modified (and usually reduced in magnitude) by the ions, and the terms (w,/k c 22),

and (k_± x 2) V(Pk,,/wweck_) will be modified.

The ion term , may be evaluated in the usual way by integrating the linearized

Vlasov equation along the unperturbed ion orbits to obtain the perturbed ion distribution

function and integrating the perturbed distribution function over velocity space to obtain the

perturbed ion current in the k, direction, and hence :

2iv~ 0 W

t~jf f O~'

(38)

where v, _, ' i(z'(/ )), v'r) (d/dt)x'(r), and x'(r, v) is the orbit of

an ion which is located at position x and has velocity v at r = 0. For adiabatic ion motion,

neglecting cross-field drifts, we have

~~gc w~i(r)

WV11 + v'L[kJ sif(f drw,!jiIr) - 'p f~x i) cos(f drw. i~i') - ()
0 0

where p is the azimuthal angle of t. The integral over p may be done by using the Bessel

function identity

exp(ia sin 0)= cn=__ J,(a) exp(ino)
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The result is

00 00 0

CXa ,k(Z) = k d 1  f dd ]di V'
-00 0 -- 00

+ exp[-iw +n Jfd wCi()][n2 .(ri)( +ik-)J"(kiLi)
0

k+in kLv 1 -L xL]. _)g.(j+ (39)

If the contribution to the r integral is substantial only for 1z' - zj < L, where L is

the axial scale length of equilibrium quantities and of EPk(z), then we can replace z' by z

everywhere (and hence k' by v, and kL by &J, and we recover the infinite medium result

for modes with kl = 0. If w r nwe, however, it is necessary to keep the r dependence in

exp[-iwr + infordir'wo(r')], although we can still set z' = z everywhere else. For this term,

because only 1z' - zI < L contributes, we can make the approximation

Wei(r)== W + Vdw + V2r2 d2W,
dz 2 11 dz2

With this set of assumptions, which is called the impulse approximation, Eq. (39) beconies

00 00

iriw f i (V o 2j kLvj_
wkL2 fd v92 n= 0 -

-00 0

0

dr expji(nci~- w)r+ nvr2 j + 3 d ]w (40)
f i di 6 , 2
-00

The vii integral may be done analytically if the vjj dependence is exp(- /2(v2)), inde-

pendent of v . Although the actual vii dependence is not of this form, we have treated each
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component s of ions (where s = hot, hWoe, or warm) as if its v11 dependence is exp(-v /2v J,

where vlhc, and V2,e are both given by Eq. (18), and v2. is given by Eq. (24). Then the

contribution to E, from a given ion component s is

00

4friw dv[ jf00 2A k vj
w kJ = d n2 2

0

0
in( 2 A~ e~8

3 dz2)_ n 2 ,(duw in 2 3 dWp1
ddr( - s ) exp[i(nwc - w)r - -(4)2

-00

If the terms involving dwo,/dz and d2wic/dz2 are neglected, then the r integral just gives

the resonant denominator, -i(nci - w)-. In this case, , is purely real except at the points

w = nwc.(z) where the wave interracts resonantly with the ions. When we include the dwi/dz

and d2 wei/dz2, terms, the resonance is spread out over some characteristic width A,, i.e. ,

has a significant imaginary part whenever Jw - nwce(z) < A,. The r integral cannot be done

analytically, but we have done it numerically for the two cases d2wi/dz2 = 0 and d /dz = 0.

We find

A, c- (0.5nvgiidwei/dzI)1 for d2w;/dz2 = 0

, ~ (0.022nId2we/dz2 I for dwc/dz = 0

In the general case where dwes/dz / 0 and d2wC,/dz 2 3 0, a good approximation to the

resonance width A, is given by

A, ~ [0.5nvoiidwc /dz + (0.022nvi|d2wci/dz21)iJ (42)

Since it would be very time-consuming to compute the exact shape of the resonance function

in Eq. (41), but the finite width has important physical consequences, we have approximated

the r integral in the code by -- i(nwic - w - iA)", with A, given by Eq. (42).
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In going from Eq. (38) to Eq. (39), we have treated A as a function only of v1 and

v11, but in fact the ions have a net current in the diamagnetic direction, due to the pressure

gradient, and this causes additional terms to appear in Eq. (40) if &J has a non-vanishing

component in the diamagnetic direction. In the case where there is only a density gradient

(no temperature gradient), the v1 integral can be done analytically. The result, which is used

in the code, is

0_ (wr 2- 22 .ep- 22 v,22
-~~~~ j.shth~~amkv n 0 - w - ,12w2/ 2~~

[w + w;;(&e x i). VW2(2L/2wei + nw/ku)] (43)

where A, is given by Eq. (42), and w2 = 4rne 2/mj, with nhole = --ntltholc/I, given by Eq.

(11), and nwarm calculated numerically from Eqs. (21) and (20), as explained in Sec. 11.

Equation (43) is only valid for growing modes (Imw > 0), or for modes with very slight

damping rates, jImwl < A. If Imw < -A, then the r integral in Eq. (39) will not be

dominated by Irl < L/vill, but will be dominated by T in the distant past, when the wave

amplitude was much larger. In this case the impulse approximation is no longer valid, and

the r integral in Eq. (39) must be done exactly, including the bounce motion of the ions in

woc(r). Then f,, will be exponentially large, and will be a rapidly oscillating function of z.

Any normal mode with rmw < -A will have very spiky eigenmodes E k(z), with the ions

retaining detailed memory of their distant past history. Such eigenmodes would be almost

impossible to calculate numerically, but fortunately theyt are not needed. If only the normal

mode frequency w is desired, but not Pki_(z), then the differential equation for a damped

mode can be solved along a path in the complex z plane for which Im(w - nwjc(z)) > -A,

but the code is not set up to do this at present. We have only looked at modes for which

Imw > 0.

IV. Boundary Conditions for Axial Eigenmodes

To determine whether a given field line is locally stable, we solve the second-order
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differential equation, Eq. (37), along that field line, subject to appropriate boundary condi-

tions at the inner and outer mirror throats. For a given k1 and a given field line, there will

be only one value of complex w, or a discrete set of values of w, satisfying both boundary

conditions. A field line is locally stable if Imw < 0 for all magnitudes and directions of &L.

'The boundary conditions we have used are outgoing wave boundary conditions at both

the inner and outer mirror throats. That is, we write Eq. (37) in the form

B--- (91 1 + -AP)_ I +('-(+ _ 'P_2_QMzEk± 0
Iji~ k2c Ok k2 k2 IC

which has the WKB solutions k11(z) = ±Q1. We then use the boundary conditions

d. i[Q(-Zthr)]tk, at z =-z, (the inner throat)

and

+i[Q(Z1,)] tk, at z==+Zth, (the outer throat).

These boundary conditions, which are the usual ones used in studying ion loss-cone in-

stabilities, correspond to outgoing wave energy at the mirror throats. (This would be true

even if the wave energy were negative at the mirror throats, since negative energy waves

would have group velocity in the direction opposite to their phase velocity; outgoing phase

velocity would then correspond to ingoing group velocity, and to outgoing wave energy.) The

usual justification for using outgoing wave boundary conditions at the outer mirror throat is

that, for cold electrons, the wave becomes a Langmuir wave in the limit of very low density;

that the WKB approximation becomes more and more valid as we get closer to the outer

mirror throat (i.e., k1i(z)Iz - ZlhJ -+ co as z -- zih,); and that eventually, very close to the

outer mirror throat, finite electron temperature becomes important, and the wave energy is

absorbed by electron Landau damping. For the TARA ion anchor, with 7 ~ 500eV, the

situation is quite different. Finite electron temperature effects would be important at some

distance away from the mirror throat, where WKB is not valid. In these circumstances, the

WKB approximation would not become more valid as we approach the outer mirror throat;

rather, WKB would never be valid, and it would be necessary to solve an integral equation to
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find the appropriate boundary conditions. However, an outgoing wave boundary condition

can be justified at the outer mirror throat of the TARA ion anchor if there is a steam of

warm plasma flowing past the potential peak and out through the outer mirror throat. We

would expect such a stream to come from the central cell, with a current of about 200 A. If

its streaming velocity at the outer mirror throat is given by the drop in potential from the

potential peak to the outer mirror throat (about 5 Tc), then its density at the outer mirror

throat would be about 10" cm- 3 , or about 2% of nma,, the peak hot ion density. The perpen-

dicular temperature of the stream would be about 400 eV, the central cell temperature. The

contribution of these steaming ions to the perpendicular ion dielectric function , would

always be small compared to either the hot ion contribution or the vacuum term, for any of

the unstable modes found, so the stream ions would not contribute directly to the dispersion

relation. But they would keep the electron density from going below 2% of n, even at the

outer mirror throat. Then k11(z) would not keep increasing as we approach the outer mirror

throat, but would remain less than w/ve, and finite electron temperature effects will remain

unimportant at the outer mirror throat and beyond. The wave will become a Langmuir wave,

which will travel out past the outer mirror throat with the stream. Due to various damping

processes outside the outer mirror throat (e.g. slight Landau damping by the tail of the

electron distribution, cyclotron harmonic damping by the stream ions, collisional damping in

a cool sheath near the end wall) the wave will not be able to reflect and come back into the

anchor cell, so an outgoing wave boundary condition is justified at the outer mirror throat.

Near the inner mirror throat, the WKB dispersion relation would be

PLO W2

k 2 (I+ )V

if k1i < w/Ve. The ion term .,i is dominated by the warm ions; in order of magnitude,

r, W 2 /k2V2. For the unstable modes which we found, W /kc 2 < 2 at the midplane, so

wo/k c 2 < 1 near the mirror throats, where k_ is greater due to the fanning and the greater

magnetic field. Then
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2 P2.W 2 7 w2 T. B~ni.kl 2 --- w2 W - #(z)(1 - - )V2 2 V #Max B(z)

where we have used Eq. (23) for v2. Since, from Eq. (22), [P(,na - ()/= n[n,./n(z)] <

I for a reasonable amount of warm plasma near the inner mirror throat, we would always

have k11 > u)/ve near the inner mirror throat, in fact anywhere where the warm ions dominate

x, X. This means that the electrons cannot be treated as cold in the part of the anchor

where the warm ions dominate, and Eq. (37) is not valid in this region. Instead, the term

-k1w1e/kiw2 should be replaced by (We/k V )Z'(W/kV) if WKB is valid; if WKB is not

valid, the second-order differential operator in Eq. (37) must be replaced by the appropriate

integral operator. This would make the solution of the dispersion relation much more

difficult.

Instead, we note that the main physical effect of finite electron temperature ought to be

strong electron Landau damping in the entire region where the warm ions dominate. There

is already strong damping in this region due to cyclotron harmonic resonance with the warm

ions, since w/kvl, ~ I, so modes must be localized away from this region in order to be un-

stable; this may be seen in the normal modes Ek,(z) plotted in Fig. 3, for example. Therefore,

we do not expect the electron Landau damping to have much effect on these modes. To

avoid having to solve an integral equation, we have used the cold electron dispersion relation

Eq. (37), and we have arbitrarily used an outgoing wave boundary condition at the inner

mirror throat (as well as at the outer mirror throat). The results ought to be quite insensitive

to the boundary condition at the inner mirror throat; if they are not, then we should not

be using Eq. (37) at all, but should be using the integral equation. It is likely that some of

the less axially localized modes, such as that shown in Fig. 3a, will be stabilized by electron

Landau damping; it is also possible that there are negative energy modes which are destabil-

ized by electron Landau damping, although this seems unlikely because of the large width of

the ion cyclotron harmonic resonances. We plan to explore these possibilities in the future;

for the results described in this paper, however, we have used the cold electron dispersion

relation, Eq. (37), with outgoing wave boundary conditions at both mirror throats.

Local Stability Results
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We have examined an equilibrium with a circular plasma cross-section, of radius 7.5 cm,

at the midplane, i.e., nitot(a,P) = noexp[-(a2 + P2)/(7.5cm)2 ], with n..arr. having the same

radial dependence as nl,. The hot ion Larmor radius at the field minimum, Pio, is 4 cm,

the peak 3 is 0.15, Te is 500 eV, and the parameter T, used in Eq. (19) is I keV (but, as

pointed out in Sec. 11, the warm ion distribution is insensitive to Ta,, except very near the

field minima).

In our local stability study, we have concentrated on the field line a = 2cm, p 0. We

expect this to be more unstable than the center line (a = 0,P = 0), because of the additional

free energy available from the density gradient. Further from the center line the density

gradient is even greater, but the assumption that the ion Larmor radius is small compared to

the radial scale length, used in deriving the ion density gradient terms in Eq. (42), starts to

break down, and the results are less reliable. For field lines still further from the center line,

the density is much lower, and these field lines should be more stable. We have calculated

some normal modes for field lines 3 or 4 cm from the central line; we find somewhat greater

growth rates than for the field line at 2 cm, but qualitatively similar behavior.

In an axisymmetric equilibrium, the most unstable modes have k, in the azimuthal

direction, since such modes can make full use of the free energy of the radial gradients. With

quadrupole fields, the situation is more complicated, because k1 (z) depends strongly on the

direction of k- at the midplane, due to the dependence of the fanning factor Va/VP on z.

For the field line at a = 2 cm, p = 0, we have found that the most unstable modes generally

have a radial component of ks comparable in magnitude to the azimuthal component at the

midplane.

In Fig. 4, we show the normal mode frequencies and growth rates as a function of k[ (the

azimuthal component of kA at the midplane), holding k0 (the radial component) constant at

1 cm-', i.e., kpi = 4. The warm plasma density at the inner mirror throat was 0.5 nm, for

Fig. 4a, and 0.8 nnma, for Fig. 4b (the value of nWarn in the equilibrium shown in Fig. 1). Only

modes with Imw > 0 are shown, since, as discussed in Sec. 111, the dispersion relation is only

valid for Imw > 0.
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As expected, the high density of warm plasma in the inner part of the anchor precludes

the existence of unstable flute-like DCLC modes, with kjL > 1. Roughly, we would expect

unstable ALC modes (or DCLC modes with kjL > 1) to occur when w/kvo < 0.3, at k11L =

1, 2, 3--., with L0 the length of the outer part of the anchor, where there is relatively little

warm ion density, and kl given by Eq. (3), evaluating k_, wl,, and wpi at some point in the

outer part of the anchor. This rough estimate, which ignores the effects of ion cyclotron

harmonic structure and the dependence of the shape of the eigenmode on km and W, gives a

fairly good fit to the modes shown in Fig. 4, if we take kjLO = 1 and L = 60 cm. (Unstable

modes with k 1L = 2, 3,.. -, probably exist at higher frequencies, w/wci > 10, which we did

not examine since we only kept terms up to n = 10 in the sum over ion cyclotron harmonics

in Eq. (43).) The growth rates of these modes are considerably reduced from those of ALC

modes in the absence of warm plasma, which have growth rates -t comparable to the real

frequency w,. For the modes shown in Fig. 4, -j is only a few percent of w,. These reduced

growth rates are due to the fact that the modes cannot localize entirely away fiom the warm

ions. For modes with -y < 0.3wci, the ion cyclotron harmonic structure becomes important.

The damping due to warm ions is much stronger at those axial positions for which nwjc(z) ~

w. Since the cyclotron resonance is strongest at the midplane, where dwic/dz = 0, unstable

modes do not occur at w = nwo0 (where wo0 is the midplane value of wc), but occur only

in bands of w around (n + J)w o, when y . The cyclotron harmonic structure also

affects the shape of the axial eigenmode EPk(z), and this influences stability. For example,

Ekj_(z) for the mode at w, = 3.7wc1o and kpio = 11.3 is shown in Fig. 5a. This mode has

a large amplitude in the inner part of the anchor, where there is a large fraction of warm

ions, and we might expect it to be strongly damped; however, it manages to be marginally

unstable because it has a node at z = -37 cm, where w = 3we(z), which is the only cyclotron

harmonic resonance present. Such unstable modes can only exist in narrow bands of kr. At

higher frequencies, where -y > 0.5wc and the effect of ion cyclotron harmonics is smeared

out, unstable modes must be localized more in the outer part of the anchor, away from the

warm ions. A plot of kI(z) for a typical mode of this type is shown in Fig. 5b. As might

be expected, such modes cannot be easily stabilized by increasing the density of warm ions in
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the inner half of the anchor, since the mode is localized almost entirely in the region where

there are no ions. A comparison of Figs. 4a and 4b shows that w,(kf3) and -y(k#) are almost

the same for the two cases nware(-Zehr) = 0.8nmax and nwarm(-autr) = 0.5flnax for kgpi0 >_ 60.

The modes in Fig. 4a at smaller k3, which are less well localized away from the warm ions,

are easily stabilized by adding more warm plasma; these modes are stable, or have greatly

reduced growth rates in Fig. 4b.

These results for local stability are consistent with recent results of Pearlstein, who used a

similar axial eigenmode code to find the amount of warm plasma needed to stabilize DCLC

and ALC in the anchor of MFTF-B. Pearlstein's equilibrium includes hot electrons localized

near the midplane, which cause a large dip in ambipolar potential, allowing more warm ions

to be trapped near the midplane, and also has an excess of hot electrons over hot ions near

the outer mirror throat, making the ambipolar potential negative there, and allowing warm

ions to be trapped near the outer mirror throat. With this equilibrium, all ion loss-cone

modes (DCLC and ALC) become stable with a warm plasma density at the midplane which

is about 75% of the hot ion density. In our equilibrium, there is no warm plasma near the

outer mirror throat, and the warm plasma density at the midplane is only about 30% of the

hot ion density, so it is not surprising that some modes remain unstable.

The modes that remain unstable when nf,,arm(-zthr) = 0.8n,,,, all have either very short

perpendicular wavelengths or very small growth rates; they all have -j/k2 s 3 x 104 cp?,

which means -1/k2 < 10c4wip? at the axial position where the mode is localized (since k 1 >

2k# there, due to fanning). If -y/k2 is taken as an estimate of the cross-field diffusion that the

mode would cause when it is nonlinearly saturated, then these unstable modes may not cause

much degradation in confinement.

Finally, it is possible that the unstable modes found locally on certain field lines may

become stable when the mode structure across field lines (the radial and azimuthal mode

structure) is taken into account. This may happen if the wave energy is convected away

radially at a greater rate than energy is going into the mode from the free energy of the ion

loss-cone. (It is also possible that radial convection of wave energy may destabilize a negative
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energy wave.) Iis possibility will be examined in Sec. VI.

If the local instabilities which we have found saturate nonlinearly at a low level, or

are stabilized by radial convection of wave energy, then the TARA ion anchor with belly

band should perform satisfactorily as far as ion loss-cone instabilities are concerned. If the

nonlinear behavior is worse than expected from y/kI, and radial convection does not sub-

stantially reduce the growth rate, then confinement in the ion anchor may be degraded by

ion loss-cone instabilities. In this case, it may be necessary to use ECRH to deepen the

ambipolar potential dip, allowing more warm to be trapped, as in the ion anchor design

investigated by Pearlstein for MFTF-B. Otherwise, it may be necessary to use a hot electron

anchor. Hot electron anchors must also have moderately hot ions (- I keV), which would

have a loss-cone and be subject to the DCLC or ALC instabilities, but the density would be

lower than in the ion anchor, and the critical length for ALC would be longer, according to

Eq. (4). So it is likely that the warm plasma trapped on the inner side of the ambipolar peak

will be enough to stabilize all ion loss-cone instabilities in a hot electron anchor.
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Appendix A

Given the perpendicular distribution function f (p,B), defined by

pB max

fA(p, B) = B dH (H - pB)--if(I, ) (Al)

we wish to find f(H, A). The perpendicular distribution is normalized to the density nhat(B),

i.e.,

fhot(B) = f dptf (p, B) (A2)
0

To do this, we expand f(H, it) and fj(pA, B) in Laguerre polynomials of A/phe,

f(I, p) = 7r'-H-i(p/hole) exp(---/2,'ole) Lj(pM/p)Nj(A/I) (A3)

fL(p, B) = exp(-/2AhjOI) Z Li(S/ptoe)Ci(B) (A4)

Since f dxe Li(x)Lj(x) = b6j, we can put Eq. (A3) and (A4) into Eq. (A1), multiply each side

by exp(-p/ 2Aho.e), integrate over it and change variables of integration from H to V - p/H, to

obtain

B 1

7r-'B] dv(B-- - v)~-Ni(v) = Ci(B) (A5)
,nax

for all positive integers i. The problem then reduces to that of inverting Eq. (A5) to find Ni(v)

in terms of Ci(B); Eq. (A3) can then be used to find f(H,iu) in terms of CG(B), and Eq. (A4) can

be easily inverted to find Ci(B) in terms of f (M, B). The inversion of Eq. (A5) is

Ni(v) = dB BA(x-BI)~C(B)] (A)

where

28



Cj(B)= dA A;;;' exp(-p/2phoe)Lj(y4phe)f±(pB)

For the form of ft(p,B) given by Eq. (10), we find

Co(B)= nhot[Yhot/Ilph.1e + 1]-

and

Ci(B) = 2 nhotphOtIphoj(--)(.Lhot - phoej)i-1(Iphot + /h ol,) fori > 1

Using Eq. (11) for y .t, Eqs. (A5) through (A7) yield

No(v) d f-
dx ,-, _

N,(v) = (

B-3(x - B-- I (1 + aT11/Tj - BT ?/B)
dB ho(B) 2(1 + aT/T)- Bmin(B± i ]=V

_) dB(B) (- ma
-1)i2[ dB nhoI(B)B-A(x - B-')~i(1 + aT I/T_ - Bj.n/B)

(1 + aT1 /T Bnin/Bmax)B ' + B;;)- for i > I (A8b)
[2(1 + aT1/T_) -Ba,(B-' + Bma)]i+I I ~~

Equations (A3) and (A8) are used by the code FOFHM U to find f(U, A) and to make a

contour plot of it, using a, TI/T 1 , and Bma,/Bmin as input. For nhot(B), the code uses Eq. (8)

or Eq. (9) for B < Bbt,,, depending on whether we are looking at z > 0 or z < 0. Typical

results are shown in Fig. 2.
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