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) Foreword

HESTER ‘is .thc result of an experiment planning cxercise in 1982 by the authors, and as such is the
forcrunner of the next-step tokamak cxperiment being proposcd by the M.L.T. Plasma Fusion Center in 1983.
However, while strong similaritics are réadily cvident between the machine and mission of HESTER and the
proposed tokamak experiment, the two machines are not identical. At this writing, the final parameters of the
proposed machine have not been selected and at least two options are being studicd. The present document
serves two purposes, as a final report on the abovementioned experiment design study and as a background to
the possible missions ;and constraints for a machine of the HESTER class at M.L.T.

Probably the most ihportant difference between HESTER and the machine being proposed at M.LT. is
that HESTER was designed to be long pulse or high power, but not both simultancously. The motivation was
to optimize the use of existing equipment and minimize the machine cost, whilc retaining a number of other
primary ‘missions described in the introduction. However, program prioritics dictate the carly introduction

of a machine which can also serve as an engineering test facility for screening the internal vacuum vessel com-

ponents (limiters, rails, vacuum vessel, waveguides and antennas) and rf components, which are believed to be

the limiting components of reactor reliability, until successful experimental screening has been accomplished. A
small, superconducting machine, heated by high power density rf heating, can achieve high wall loadings and
energy densities with a small wall area that limits wasteful recirculating power and system operating costs. Since
the original design thought for HESTER was inadequate for this enhanced mission, detailed discussion of the
first wall and limiter will be discussed in a separate design document.

A key motivation for the HESTER concept was the ability to effectively utilize the resources at M.L.T.
Although the cost advantages for a machine using large equipment credits and low additional power require-
ments were a major factor in the machine’s motivation, cost will be discussed in a separate document, as is

typically done.
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Prologue

The Physics Mission of HESTER

She was offcred to the world as the living hieroglyphic, in which was revealed the sccret so darkly hidden
- all written in this symbol, all plainly manifest, had there been a prophet or magician skilled to read the
character of flame.!

- N. Hawthorne, The Scarlet Letter
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HESTER

A Hot Electron Superconducting Tokamak Experimental Reactor at MLLT.

1. Introduction

HESTER is an experimental tokamak, designed to resolve many of the central questions in the tokamak
dcvclopment program in the 1980’s. It combines several unique features with new perspectives on the other
major tokamak experiments scheduled for the next decade. The overall objectives of HESTER | in rough
order of their presently perceived importance, are the achicvement of reactor-like wall-loadings and plasma
parameters for long pulse periods, determination of a good, reactor-relevant method of steady-state or very
long pulse tokamak current drive, duplication of the planned very high temperature neutral injection cxperi-
ments using only radio frequency heating, a demonstration of true steady-state tokamak operation, intcgration
of a high-performance superconducting magnet system into a tokamak experiment, determination of the best
methods of long term impurity control, and studies of transport and pressure limits in high field, high aspect

ratio tokamak plasmas. These objectives are described below.

1.1 High Q Current Drive

HESTER has the ability to determine the best of several methods of steady-state tokamak current drive
by testing the efficiencies of attractive candidates at high density, low safety factor and at both low and high
electron temperatures. Current drive experiments have been planned for lower hybrid, transit time magnetic
pumping and compressional Alfven waves, considered to be among the three most promising technologies for
reactor applications. Because of its combined superconducting magnets and low plasma cross-section, HESTER
can test current drive theories at full performance and high temperature with much less power than other major
tokamak experiments. Because of the need for high elcctron temperatures and correspondingly high magnetic
diffusion times in order to evaluate adequately most current drive candidates, a very long pulse machine

without magnet derating is required for definitive tests. -

1-6




1.2 lon Cyclotron Resonance Frequency Heating

ICRF sources currently in place at M.LT. should be adequate to supply 12 MW of short pulse power and
9 MW at up to 10 s. Since high field allows increasing plasma current and confinement, without increasing the
total number of particles, presently used scaling laws imply that the HESTER plasma might achicve central jon
temperatures of 20 keV at low density and close to 10 keV at clectron densitics of 102°, thus providing early

confirmation that ICRF can be used in tokamak reactors at thermonuclear temperatures and pressures.

1.3 Steady-state tokamak operation

The demonstration of true steady-state operation would remove the most serious reservation about the
tokamak as a reactor concept. This can be done without straining the limited steady-state power available at
M.IT. by the use of superconducting magnets, requiring under 1 MW of recirculating power, and current drive

of a low cross-section, moderate density plasma.

1.3.a Quasi-steady-state tokamak operation

A possibly desirable mode of operation for commercial tokamaks is that of quasi-steédy-state operation.
In this mode, a small dc electric field is combined with an external current drive mechanism. For example,
if the electric field were sufficiently small that the plasma could be run for several hours before resettihg the
ohmic transformers and if the addition of a small accelerating ficld to the tail electrons allowed one to halve the
necessary wave power, the overall economics of a fusion reactor might be significantly enhanced.

HESTER benefits from having superconducting magnets which allow long pulses at full performance,
a high aspect ratio plasma which limits the necessary auxiliary current drive power, and a high aspect ratio
solenoid bore which'allows a high flux ohmic transformer at low field. The present HESTER ohmic transformer
design has a capability of 35 V-s , allowing ample time for magnetic diffusion and tail-bulk equilibria to be
reached in an enhanced current drive experiment. Because of the very high ratio of poloidal to toroidal flux,
HESTER is the only planned tokamak with a flat-top time several times larger than the classical magnetic

diffusion time with full plasma current.
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1.4 High Energy Flux to First Wall Components

First wall components, including limiters, rails, vacuum vessels, waveguides and antennas may be the most
life-limited components in fusion reactors. Current analysis techniques are inadequate to predict the lifetime
of these components. A long-pulse machine with a high wall-launching power density can simulate the loéding
conditions of a fusion reactor. For example, for a proposed heating source of 9 MW of ICRF and 7 MW of
LH, involving no entirely new rf systems at M.LT., the average thermal wall loading would be 500 kW/m?,
corresponding to neutron wall loading of 2 MW/m?. Hopefully, this rf power will be primarily put to happier
uses than destroying first wall components, but there is adequate power and energy density to rapidly screen

most of the first wall component concepts that have been proposed for fusion reactors.

1.5 Superconducting Magnet System

The superconducting magnet system of HESTER has many attractive features and solves several problems.

It demonstrates the ability of tokamaks to incorporate superconducting magnets in an integrated system. Unlike

Tore Supra, all coils in the HESTER system are superconducting. The superconducting magnet system also
permits a major new experiment to be built at M.LT. without the requirement for new pulsed energy supplies.
It incorporates the advanced design feature of energy margin design, first proposed at M.L.T. and demonstrated
at Oak Ridge, which permits conservative design against disniption. It incorporates circular magnets, the least
" expensive shape, demonstrating along with Tore Supra that superconducting toroidal magnet systems can be

built to any shape desired.

. 1.6 Long Term Impurity Control

Uncontrolled impurity build-up is not expected in a non-fusile tokamak plasma. However, the steady-
state levels of wall impurites, after the very long time constants associated with plasma-wall interactions, are
still not predictable. HESTER allows high performance discharges to be run longer than the characteristic
times of magnetic diffusion, electron bulk-tail diffusion, and even wall desorption. Fusion ash removal can be
simulated beyond D-T plasma characteristic fusion times. Unlike initially high performance copper magnets,
the HESTER magnets can be run at the full plasma field of 7.0 T for discharges of arbitrary length. HESTER
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also provides the options of internal cryopumping, a poloidal separatrix, limiter pumping and external vacuum

ducts to test the technical feasibility of different long term pumping concepts.

1.7 High Beta Experiments

Although HESTER, being a high aspect ratio device, cannot achicve world record valucs of toroidal beta,
it should achieve competitive values of e, and will also be able to distinguish between flux-conserving and
non-flux-conserving limitations, because of its long pulse capability. Because it is heated by ion cyclotron
resonance heating, it will not have to lower its high toroidal field in order to do high beta experiments, and thus
may achieve higher pressure than previous high beta experiments, despite its higher aspect ratio. Specifically,
a 1.5 % average beta discharge in the nominal 7 T toroidal flux density corresponds to an average pressure
of 3 atmospheres. Similarly, since all heating will be due to radio frequency wa’vcs, it will help to distinguish

between bulk plasma pressure limits and those specifically associated with energetic particle injection.

1.8 Transport Experiments

Along with the TFf R beam heating éxperiment, HESTER will extend the favorable aspect ratio depend-
ence of global electron transport discovered on Aicator C and confirmed in retrospect by discharges in ST,
Wendelstein VII and the statistical study of Pfeiffer and Waltz to a higher performance, more reactor-like
regime. This will further open up the range of possibilities for tokamak reactors, as well as expanding the
physics base elucidating the aspect ratio dependence of all plasma design parameters of interest. It should be
noted, however, that the beam heating discharge on TFTR with an aspect ratio of 5.5 will somewhat diminish
the physics interest of the transport scaling experiments in the ohmic regime, but will greatly diminish the

physics risk of HESTER’s primary goals.
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1.8 Electron Heating

Electron heating is a by-product, although a major goal in its own right, of the primary mission of
HESTER - current drive. Even if no scparate electron heating equipment is proposed for HESTER , it arises
naturally from the intcraction between the electron tail and the bulk clectrons in high density current drive,
and the lower hybrid current drive system can be easily adjusted to heat electrons without net current. In fact,
the current drive experiments at Princeton and M.LT. were the first definitive demonstrations of the efficient
coupling of large amounts of wave energy to electrons, below the electron cyclotron resonance. High electron

temperature is a goal in-itself, because electron temperatures above 4 keV have not yet been reached in the

tokamak program, and because the interaction of the bulk plasma and any current drive mechanism is cxpected

to be a function of electron temperature. Confirmation of favorable aspcct ratio scaling of electron transport
would allow HESTER to achieve high electron temperétures with considerably less auxiliary power than other

machines.

1.9 RF Current Initiation

Although initiation of plasma current with radio frequency waves or electron beams, without ohmic drive,
has frequently been postulated, no definitive experiment has yet been performed. The elimination of the
expensive initiation "blip”, in which an induced electric ficld in the range 2-20 V/m has been required to raise
the plasma temperature to 50 eV, would greatly reduce the cost of power supplies and ease magnet prétection
from disruptions by allowing thick vacuum vessels. A demonstration of complete plasma control using no
ohmic drive at all would lead to major economies in the tokamak as a reactor concept. HESTER is ideally
suited for rf current initiation experiments, bebause its superconducting magnets allow arbitrarily slow current
ramps, its high aspect ratio reduces the power requirements of auxiliary current control and it already contains
several candidates for current initiation in the equipment necessary for its current maintenance experiments. In
particular, the use of superconducting TF coils allows very long preheating, possibly allowing gas evolution to

die down before "blip"-free initiation.
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2.0 Overview

HESTER is a supcrconduéting tokamak with a 2.0 m major radius, a nominal 0.35 m minor radius and
a maximum flux density on axis of 7.00 T . Its major dimensions arc shown in Table 2.1. Thesc four facts
define the unique place of HESTER in the tokamak program: it is capable of higher ficld and longer pulses
than previous large tokamaks. It also operates routinely and heats at a higher aspect ratio. The HESTER
vacuum vessel and ICRF antenna structure will accommodate a plasma discharge up to an clongation of 1.5
and a plasma current of 1.2 MA at g;;,,, = 2.1 . The abovec parameters apply to the baseline design to which
conservative magnet design principles have been applied. The possibility of an extended performance mode, in
which the peak flux density at the toroidal feld magnets is increased from 9.1 T to 11 T and the flux density at
the plasma is increased to 8.5 T will also be discussed.

The physics goals of the machine include current drive, using three different candidate methods, to a
density-safety factor ratio of 5 X 10!9 at electron temperatures near 1 keV and 10‘keV, ion heating with ICRF
to ion temperatures higher than 10 keV, and the capability of increasing the pressure at full ficld to an ¢f3, of

0.5.

2.1 Physics Basis

The overall strategy of HESTER has been to identify the area in parameter space that will allow the
achievement of the overall goals stated in Section 1 with the minimum amount of physics risk. The search
of parameter space was done largely with the new tokamak system code TOKSYC, which is documented in
a companion report [SC82]. After a search through several possible superconducting anq cryoresistive Bitter
plate machines, the quantitative logic behind a large major radius, high aspect ratio, superconducting tokamak
became clear.

1 The selection of superconducting toroidal field coils has the clearest motivation. The superconducting
toroidal coils in HESTER have less than 1/10 the overall recirculating power of normal copper coils,
occupying the same coil envelope. They thus save operating costs as well as satisfying constraints on total
available power at the M.I.T. Plasma Fusion Center. From the point of view of a long pulse, high per-
formance discharge, they have the advantage over the other relatively high and moderate field domestic
tokamaks, such as ALCATOR C, PLT and TFTR that the toroidal ficld does not have to be derated as
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the pulse lcng'th is increased. In addition to the plasma physics motivation basis, the construction of the
first »supcrcoﬁducting tokamak in the United States, using an advanced magnet design, will be a major
engineering advance in the program. A rationale is included for the selection and the perceived higher
reactor relevance of Nb3Sn vs. superfluid helium as the method of obtaining high performance in a
superconducting tokamak.

The selection of overall machine size involves obvious trade-offs. From the point of view of both physics
and reactor réleyance, the size should be as large as that of a commercial tokamak reactor, i.e. as large as
possible. A two meter major radius is selected for HESTER, because it is just abou; the smallest major
radius that provides enough space for simultaneous full field, low safety factor current drive, high density,
high temperature heating and a complete array of the necessary diagnostics. Two meters is also about the

largest radius that allows significant economies due to the use of previously existing facilities at M.LT.

High field has many well-known vimjes, including the ability to increase current and thus ion confinement,
without increasing volume, and the ability to increase density and thus electron confinement in ohmic

discharges. Because of the high aspect ratio of HESTER, it can achieve a 7.0 T plasma using conventional,
even scrap, NbTi superconductor. Using an advanced Nb3zSn superconductor, it is possible to achieve

7.0 T with a high safety margin against disruptions and it is conceivable to achieve 8.5 T with subcooling.

While all physics figures of merit scale well with high field, especially n7, HESTER abandons the tradi-

tional "alto campo™ approach of M.LT. of creating the highest achievable field in a compact magnet, in

favor of the entirely new class of machine, defined by the HESTER acronym. A 7.0 T plasma is felt to
be approximately the best compromise field, since it is at least as high as that of commercial tokamaks,

eliminating the need for further scaling, while still being small enough to allow adequate port space to

ensure the feasibility of a full range of heating and current drive experiments.

High aspect ratio has generally been seen as more appropriate to all toroidal confinement concepts other

than a tokamak. However, in the past year, the success of current drive experiments, the establishment

of aR? scaling for plasma ohmic confinement and the strong suggestion that the fundamental limits on

beta are functions of ¢, and pressure only can all be shown to scale favorably for high field, high aspect

ratio experiments. High aspect ratio has several engincering benefits, as well, once it is perceived that

physics performance is not harmed. It is easier and leés expensive to achieve high flux from an ohmic

transformer, in order to ensure start-up in the case of unproven current drive techniques, as well as to
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investigate super long-pulse operation in the reactor relevant case of partial current drive, supplemented
by a small c]cctric field. High aspect ratio allows the addition of external structure or additiona] helium
reservoirs for either eventual upgrade or as a conservative back-up to the original design specifications. If
aR? continues to hold, as expected, fabrication with poloidal welds in an external vacuum vessel actually
permits machine upgrade by the addition of more identical, rectangular cross-scction TF coils, increasing

the machine major radius.

2.2 Engincering Features

The most striking feature of the HESTER design is the use of circular, superconducting magnets, employ-
ing Nb3Sn cable-in-conduit superconductors. The usc of supcrconducting magnets has long been recognized as
favorable for fusion reactor economics, while the benefits inherent in the use of circular magnets and Nb3Sn
stabilization are discussed in Section 8.

Simplified plan and elevation views of the overall layout of the HESTER tokamak are shown in Figures
2.1 and 2.2. The toroidal magnets and vacuum vessel have independent vacuum systems. The exterior vacuum
vessel has two double scaled, differentially pumped vacuum seals. The vacuum seals run toroidally, allowing the
simplest assembly and disassembly procedure. The top or bottom of the vacuum vessel is removed vertically, in
order to remove a toroidal magnet or antenna.

An interior thick-walled vacuum vessel with an actively-cooled double bellows provides the high vacuum

-containment for the plasma, as well as mounting slots for internal components, such as limiters, rails, antennae
and waveguides.

Figure 2.3 illustrates the horizontal port access for HESTER . The available port space is orders of mag-
nitude greater than that of the Alcator devices,‘with maximum horizontal access at the equator of 18 cm and
maximum vertical access of 74 cm, providing a maximum possibility of 18 horizontal ports. While the port
space is still small in comparison with many tokamaks, a satisfactory compromise has been reached, allowing
adequate access for simultaneous heating and current drive experiments, while retaining the toroidal stiffness
necessary for a high field, superconducting magnet design. High aspect ratio is again very helpful in achieving
this goal, allowing the many ports, reducing in-plane centering forces duc to differential magnetic pressures
on the magnets, reducing out-of-planc forces due to vertical ficlds reacting differential thermal and magnetic
pressures on the plasma, and reducing the field attenuation from the magnet to the plasma.
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The out-of-p.lanc magnct support structure attempts to be as strong as can possibly be sclected for a super-
conducting magnd system. All Lorentz forces, including the out-of-plane forces, arc taken by cold structure.
Solid wedges connect the rectangular toroidal field magnet bobbins at the inner leg. Only half of the magnets
have ports, so that the outer leg of every second magnet can be connected by a thick, solid wedge. Solid wedges
are also placed above and below cach of the horizontal ports. Thus, the structural concept is as close to that of
the monolithic construction typical of Bitter plate design as is possible using wound, superconducting magnets.

The equilibrium magnets are also superconducting, and are included in the outer toroidal vacuum vessel,
sharing the liquid nitrogen radiation shiclds on the sidewalls with the toroidal ficld magnets.

The division of the inner vacuum vessel into thick toroidal rings and double walled bellows allows mount-
ing of larger components, such as limiters and antennae, while limiting resistance and thermal stresses due to
toroidal deflection. The double walled bellows allows both the thick and thin walled sections to be actively
cooled. Under normal operation, the walls would be water cooled, but hot nitrogen would be used for bakeout.
As insurance of clean long pulse operation, if the performance of more advanced forms of impurity control is
not immediately adequate, the vacuum vessel walls are also manifolded to allow active cooling by subcooled
liquid nitrogen.

Figures 2.4 through 2.6 illustrate the overall structural machine concepts for the alternative 24 coil
machine. These drawings are historically later than 2.1 through 2.3 and hopefully represent more advanced and
detailed concepts. With the notable exception that only the 24 coil design has human port hole access and can
be sealed with internal welds, these newer structural concepts are the same as those for HESTER, but have not
been drawn to scale for the 36 coil machine.

Figure 2.4 shows an elevation cross-section of the entire machine. An outer dewar surrounds the magnet
system, while an inner vacuum can isolates the ohmic heating central solenoid. Each toroidal magnet is in a
separate cold case, thermally isolated from warm structure by a superinsulating wrap. The walls of the outer
cryostat are lined with liquid-nitrogen-cooled radiation shields. Cold mass support is from the top of the mid-
vacuum section of the outer dewar, allowing removal of both covers.

Figure 2.5 shows a plan view of the toroidal magnets, vacuum vessel and vertical ports. A new concept
illustrated in figure 2.5 is the addition of a vertical port between every coil, instead of every other coil, making
cooling and other utility access easier, as well as improving the feasibility of global limiter pumping through
vertical ports. |
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Figurc 2.6 ShO\‘JVS several aspects of the TF magnet intercoil structure. Overturning moments are supported
by stiff top-to-bottom élcments between every other coil, using fastencrs and keys on all slip surfaces. Keyways
in adjacent coil structures would be match drilled during fabrication of the cases. The toroidal continuity of the
TF case/intercoil support is broken by insulated G-10 breaks in two toroidal locations.

Figure 2.7 shows the possibility of winding one of the superconducting magnets in a racetrack, in order
to provide tangential viewing of all chords in the plasma. From the drawing, this option docs not appear to
affect coil size requirements significantly, but stresses and complications in the coil structural design have not
yet been analyzed. ’I'ﬁe drawing does, however, illustrate that the racetrack coil does not have much impact on
the vacuum vessel desigﬁ, the protuberance being comparable in size to other flanges in the system. However,
the racetrack winding would creatc a small amount of asymmetric ripple at the edge and 0.4 % ripple in the
center, which could prevent successful ion cyclotron heating at low densities.

| References
[SC82] Joel H. Schultz, "TOKSYC 82: A Tokamak System Design Code", M.I.T. Plasma Fusion Center Report
PFC/82-27, Nov. 1982




Table 2.1
HESTER Major Machine Dimensions

Major radius 20 (m)
Minor radius 0.35 (m)
Maximum toroidal field 7.00 T
Maximum pulse length 24 hrs
Full heating pulse length 10 s
ICRF heating toroidal field 6 T
Maximum plasma current 12 MA
Minimum limiter g 1.7

Maximum ICRF auxiliary heating 9 MwW
(10s)

Maximum LH auxiliary heating 8 MW
or current drive (cw)
Maximum thermal wall loading 500 kW/m?
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3.0 The High nt Experiment

Although HESTER is not primarily a high nr demonstration device, it will undoubtedly cxplore the limits
of confinement time in the ohmic regime as one of its key experiments. Since a common experience in high
temperature and high pressure experiments is that, after an initial drop of a factor of 1.5-2.0, the electron energy
confinement time does not change much, while the ion confinement time may also drop by a factor of 1-3, the
confinement time achieved in the ohmic experiments is probably the base on which confinement in heating
experiments s laid.

HESTER has a fair amount of flexibility in the selection of the plasma minor radius, since the toroidal field
magnets within the vacuum chamber have a clear bore of 96 cm. The results shown in the appendix are for a
plasma with a 35 cm minor radius. A key feature of the ohmic heating experiments on HESTER would be
a systematic variation of the plasma minor radius, as was done on Alcator C [AL82], in order to gain insight
both into the physics of transport scaling and to aid selection of the minor radii at which heating and current

drive experiments should be done. Models for pressure enhanced transport and ripple transport were included

in order to find a reasonable sct of global paramaters. However, regimes in which the model predicts that these -

terms dominate have been generally avoided by selection, for example, of sufficiently low minor radii, because
of the unestablished predictive value of these models. '

A recent interpretation of the Murikami limit by Bickerton [BI79] gives an achievable 1, of 1.99 X 1020
m~3 for a plasma with a major radius of 2.09, a toroidal flux density on axis of 6.9 T, and a safety factor of

2.1. A more complicated formula by Reynolds [RE80] gives a lower estimate of only 1.12 X 1020 m—3 m?20,

Since the Murikami limit is empirical and recent empirical results, since 1979, have reported some success in -

éxceeding the Murikami limit, we adopt the more optimistic estimate of the density limit.
Global energy confinement was calculated using 3 times neoclassical conductivity for ions, according to

~ Hinton [HI76], and Wolfe’s interpretation of Alcator C scaling for electrons [WO82] [AL82].

. 2.3,0.8
TEe = O-OGRO Q"""Ne20,lineay

where 7. is the electron global energy confinement time (s), R, and a are in meters, and n.yg is the line-
average electron density (1020 m—3)
Either Pfeiffer-Waltz or Alcator C scaling appear to be acceptable for predicting global electron energy
| 31




confinement in high aspect ratio experiments, while the other corrclations, used here as checks, fail to predict
results in‘ the othéx‘ high aspect ratio tokamaks, Wendelstein and ST. The various global confinement scalings
being compared are listed in equations 50-57 in the documentation of profile_plasma in the accompanying
document on the TOKSYC system code [SC82]. The scaling of energy confinement time by Wolfe from Alcator
C [WO82] [A1.82] agrees well with the statistical study by Pfeiffer-Waltz [PF79]. For the highest n7 discharge,
described by the table in Appendix 3-1, the Pfeiffer-Waltz equation predicts an electron energy confinement
time of 182 ms, while the Wolfe formula predicts 184 ms . By contrast, Alcator A scaling predicts 75 ms,

Mereshkin scaling predicts 293 ms and Coppi-Mazzucatto scaling predicts 83 ms.

Pfeiffer-Waltz or the similar Alcator C scaling are adopted because they appear to be the only empirical
relations which correctly predict the energy confinement time in high aspect ratio tokamak plasmas. In the
case of the highest aspect ratio tokamak plasma ever, that of Wendelstein VII with low cxternal ¢ [US81]),
Pfeiffer-Waltz predicted the electron energy confinement time within 10 % (although that degree of accuracy
is undoubtedly a coincidence), while other scaling laws were wrong by an order of magnitude. For example, a
discharge with neay = 1.6 X10'9, Ry = 2.0, aminor = 0.12 and Zeyy = 2.3 [WV76] had an electron energy
confinement time of 4.0 ms. The Wolfe scaling gives an electron encrgy confinement time of 4.1 ms, while
Pfeiffer-Waltz scaling gives an electron energy confinement time of 8.2 ms. By contrast the Alcator A scaling
gives 1.15 ms while Mereshkin scaling gives 38 ms. For the Wendelstein discharge with the best confinement
time at 1.1 X 1020 and ¢-bar = 0.55, the reported value of 7z Wéls < 14 ms, while the Pfeiffer-Waltz equation

-predicts 13.5 ms, Mereshkin predicts 43 ms, Alcator A predicts 2.1 ms and Coppi-Mazzucatto predicts 0.4 ms.
The implication is that all scaling laws except for aR? break down at very high aspect ratio. Similarly, 23 dis-
charges from ST, which had an aspect ratio of eight, were included as part of the statistical basis of the Pfeiffer-
Waltz cquations. The best of these dischargés (ST-7 in [PF79]) had an electron energy confinement of 10.1 ms.
The Pfciffer-Waltz equatidn we are using predicts 8.17 ms, while the Alcator A scaling we are using predicts
only 3.2 ms. Although some such dischargcs may exist, we know of no ohmic discharge of any sort that is not
predicted correctly within a factor of two by the best unconstrained Pfeiffer-Waltz equation, while the other
published correlations we have checked are not correét to within a factor of two for high aspect ratio tokamak
discharges. Therefore, "aR2" scaling is adopted here for the HESTER design because of the moderately large
body of empirical circumstantial evidence. Further use of Alcator A scaling in planning studies is justified only
by the observation that it is hard to break a bad habit, but it has been incorrect by a factor of two or greétcr in
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so many famous cascs that its usc weakens the meaning of the word "empirical”.

Although naR? séa]ing is entircly empirical in its origin, it has appeared at lcast once previously in an
unheralded form, as a theoretical prediction by Kadomtsev [KA78 ], calibrated against experiment in a global
interpretation by Equipe TFR [EQ80]. Kadomtsev’s relation for electron conductivity is based on saturating
drift-waves, accounting for the cffects of trapped-clectron cffects and toroidal coupling of modes. The TFR

equation in which naR? scaling appeared is:

T = Mo qaazR[qZ/aR19/243;—1/3a—~23/24]

Equipe TFR dismisses the term in brackets as "practically constant,” since it only varies from 0.167 in a typical
Alcator discharge to 0.11 in a typical PLT discharge, and emerges with na2R scaling, used in the remainder
of the abovementioned work. The scaling with B;~'/3 and ¢"/® which remains after naR? is extracted looks
curious and has not yet been either confirmed or denied as part of the HESTER dcéign justification effort.

A theoretical basis for aR? scaling appears again in hidden form in a paper by Miﬁardi [M181], based on
the electrostatic drift instability arising from the ratio of shear damping, due to toroidal effects. In Minardi’s for-
mulation, nongeometric terms can be removed from a complex expression for global transport, which reduces
to an R%/3a?/3 dependence, which is extremely close to Wolfe's empirical formula.

With the above assumptions, the maximum nr achievable in HESTER is 2.6 X 10!° , where n is the
central electron density (m—3) and 7 is the global energy confinement time. It is unlikely that this will break

any records, since TFTR operation will begin beforc HESTER operation, but the achievement of a 184 ms

electron energy confinement time would establish a very strong base for the heating experiments to follow.
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Appendix 3-A: Plasma Parameter Tables: Ohmic Experiment

HIGH NTAU EXPERIMENT DESCRIPTION

Murikami limit on average electron density
Reynolds Jimit on average electron density
particle fraction of the dominant impurity

atomic number of the dominant impurity

3-5

1.986 x 102m—3
1123 X 10%m—3
0.0200
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ﬁ{e

n;

ZO-U

Zess

Net
MORNL
NParker
NHirsh
Qei
QeiBrag
QeiK aplan

P, brem

ion temperature

clectron temperature

field on axis

ion density

helium particle fraction

particle fraction of the dominant impurity
deuterium fraction of the hydrogen
tritium fraction of the hydrogen

atomic number of the dominant impurity
plasma current density

electron density

density of the dominant impurity
average Z of the plasma

effective Z of the plasma

classical plasma resistivity

plasma resistivity (FEDC design code)
plasma resistivity (Parker)

plasma resistivity (Hirshman),

clectron-ion energy exchange power density
electron-ion energy exchange power density (Bragiinski)

electron-ion energy exchange power density (Kaplan)

Bremsstrahlung power loss density
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1.134 keV

1.265 keV

6.695T

2.021 x 10%0m—3
0.0

0.0200

0.0

0.0

6

- 5.955 MA/m?

2223 X 10%m—3
4.042 x 10'8m—3
1.100

1.564

27.01 nOhm-m
52.35 nOhm-m

’ 23.45 nOhm-m

19.08 nOhm-m
619.6 kW/m3
619.6 kW/m?
757.3 kW/m®
46.46 kW/m?




Ponm

P, synch
P, synchatien
H ine
Pal;zha
Pirdrive
Cueff
Ap

TLe

Uri

Ure

U4

Oudt

Prnag

Te

TeHH

TiHH

classical ohmic power density

synchrotron power loss density

synchrotron power loss density (Attenberger)
dominant impurity line radiation loss density
a)pha power genertion density

power density required by current drive
effective atomic mass of the fuel

Debye length of the plasma

Larmor radius of the electrons

thermal velocity of the ions

thermal velocity of the electrons

Alfven speed of the plasma

reactivity of a D-T plasma

upper hybrid frequency

cyclotron frequency ofthe clectrons

electron plasma frequency

ion cyclotron frequency

qold plasma lower hybrid frequency

ion plasma frequency

toroidal beta

magnetic pressure
electron-ion momentum cxchange time (Duchs)

electron-ion momentum exchange time (Hinton)

ion-ion momentum exchange time (Duchs)

ion-ion momentum exchange time (Hinton)
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958.0 kW/m?
27.16 W/m?
31.72 W/m?
5273 kW/m®
00 W/m3

0.0 W/m?3

1

17.73 um
17.93 um
466.1 km/s

- 21.08 Mm/s

9.878 Mm/s
1.346 X 10—28m3/s
1.445 Tradians/s
1.176 Tradians/s
840.6 Gradians/s
639.4 Mradians/s
24.10 Gradians/s
19.60 Gradians/s
0.00479

17.84 MPa

5117 s

2.093 us

384.7 us

1113 us -




Vestar
VestarPf
Vistar
VistarPf
‘XiBP
XiPS,Duchs
’ Xi,Duchs
XiHH
Ryeo
Xi
XiRT
XiRP

Xiripple

electron collisionality parameter (Duchs)
electron collisionality parameter (Pfeiffer)
ion collisionality parameter (Duchs)

ion collisionality parameter (Pfeiffer)

_ banana-plateau ion thermal diffusivity (Duchs)

Pfirsch-Schluter ion thermal diffusivity (Duchs)

totél ion thermal diffusivity (Duchs)

ion thermal diffusivity (Hinton)

assumed ratio of real to theoretical ion thermal diffusivity
ion thermal diffusivity

ripple trapping ion thermal diffusivity

ripple plateau ion thermal diffusivity

total ripple ion thermat diffusivity

3-8

CENTRAL PLASMA PROPERTIES - HIGH NTAU EXPERIMENT (continucd)

21.18

16.52
,15.54

9.937

146.7 mm?/s
6.301 mm?2/s
0.153 (m?%/s)
60.88 mm?/s
3

459.1 mm?2/s
20.39 mm?/s
9.539 mm?2/s
9.559 mm?/s




Q

| qo
p av
Da v‘
W,
TioohmGin
TeoTioTFR
I
L,
Yo
Lyer
Ipbrom

Qim

€betap

Bav

resistive voltage drop

central current density

central safety factor

average plasma pressure

average plasma pressure in atmospheres,

total electron encrgy stored in the plasma
centrai ion temperature for ohmic lieating (Gill)
sum of the central electron and ion temperature (TFR)
total plasma current

total plasma inductance

inductive volt-seconds required by the plasma
total plasma current (JET)

total plasma current (Bromberg)

safety factor at the limiter

Shafranov vertical field on axis

epsilon - beta poloidal product

average toroidal beta

GLOBAL PLASMA PARAMETERS - HIGH NTAU EXPERIMENT

1835V
6.045 MA/m?
0.800
42.11kJ/m?
0.42 atm
112.1kJ
3.655 keV
3.230keV
913.9kA
9.272 uH
8474 V-s
1.064 MA
692.0 kA
2.100

1413 mT
0.0353
0.00174




E
TEnoripple
TEineo
TE:Gill
TE1q
TEePW
TEeWolfe
TEeAlc
TEeMer
TEeCM
TEe
Rchz'ep
})eemp

P, ineo
])bremt

P, alphat
})cohmt
Rayncht
Pline'radt
P, et

P, dlidrive
PinrdrivePLTbest
Py s1driveAlcChest
AicCbest10

P. auzeq

GLLOBAL POWER BALANCE - HIGH NTAU EXPERIMENT

global energy confinement time

global energy confinement time, exclusive of ripple

ion cnergy confinement time, related to ncoclassical transport
ion energy confinement time (Gill)

total ion energy confincment time, including ripple

Pfeiffer-Waltz clectron energy confinement time

electron energy confinement time (Wolfe)

clectron energy confinement time, Alcator scaling

clectron encrgy confinement time, Mereshkin scaling
Coppi-Mazzucatto scaling of energy replacement time
empirical electron energy confinement time

electron conductivity enhancement factor, due to pressure driven modes
empirical electron energy transport loss

ion energy transport loss, sc‘aled from neoclassical,

total Bremsstrahlung loss the plasma

total alpha power generation in the plasma

total neoclassical ohmic loss of the plasma

total synchrotron radiation loss of the plasma

total line radiation loss of the plasma

total power flow from the electrons to the ions

total rf power dissipated, due to current drive

best case PLT scaling for lower hybrid current drive power
best case Alcator C scaling for rf current drive power

best case Alcator C scaling for rf current drive power at 10 T Prfldrive

total auxiliary heating or cooling power required for global energy balance

310

115.0 ms
116.2 ms
74.52 ms
393.0 ms
73.48 ms
120.6 ms
1844 ms
55.85ms
168.3 ms
56.25 ms
2132 ms
1.021
525.7 kW
1.243 MW
66.49 kW
00W
1.879 MW
2545 W
106.3 kW
1.215 MW
0.0W
27.65 MW
34.56 MW

23.65 MW

63.02 kW




GLOBAL POWER BALANCE - HIGH NTAU EXPERIMENT (continued)

Poremay average Bremsstrahlung loss of the plasma 13.76 kW/m?3
Pyyrichav average synchrotron power generation of the plasma 5.269 W/m3
Piineradav average line radiation loss of the plasma 22 kW/m?
Paiphaav average alpha power generation of the plasma 0.0 W/m?
Pd; fav .average rf power dissipated, due to current drive 0.0 W/m?
P.iwo averagc power flow from electrons to ions 251.5 kW/m?
Pohmav average neoclassical chmic loss of the plasma 388.9 kW/m?
"Ploss total power loss from the plasma 1.942 MW
Pygurs average power loss through the plasma surface 68.47 kW/m?
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4.0 The ICRF Heating Experiment

The ICRF heating experiment on HESTER will be the first domestic tokamak experiment with the pos-
sibility of duplicating the ncutral beam heating results expected on large tokamaks, such as TFTR, JET, JT-60
and Big Dee. The fundamental uncertainties of present day physics scaling in the rf heated regime prevent a
definitive statement of the expected plasma performance, but the implications of different assumptions will be
discussed below, the more optimistic of which predict the attainment of thermonuclear fusion regime pressures.
ICRF heating will also be used as a supplement to current drive experiments, providing the high temperatures
that may be an important limitation to lower hybrid current penetration and which are an absolute necessity
to cfficient current drive with alternative rf current drive mechanisms. Ultimately, the ICRF and lower hybrid
electron heating supplies will be run simultaneously in order to test plasma pressure limits, as described in the
second half of this chapter. As rf power supplies are upgraded, the final mission of the ICRF current drive
equipment will be as the source of thermal wall loading for the engineering testing of all first wall components,
including the ICRF equipment itself. '

The ICRF heating experiment is performed using the VHF transmitter circuits obtained by M.LT. for -
use in the Alcator C experimeﬁt. Because HESTER has over treble the major radius of Alcator C, as well as
considerably more access for each port, she will be able to deploy the entire 9 MW of available rf power, while
still permitting adequate current drive and plasma diagnostics. A system of 10 antennae will be installed, each
one similar to the antenna design being tested in Alcator C, which will heat the HESTER plasma at double the
proton cyclotron resonance frequency at 6.0 T. The present ICRF system can also heat central ions up to the

nominal machine field on axis of 7 T, without modification.

4.1 ICRF Heating Experiment: Physics Basis

The principal purpose of the ICRF heating experiments on HESTER is to couple 9 MW of ICRF power
into a tokamak plasma and possibly to duplicate the temperatures and pressures of the large neutral injection
experiments, using ICRF only. This obvious goal of the world tokamak program has not been definitively
planned, although the planned addition of 15 MW of ICRF to 10 MW of neutral injection in JET [RES82] may
achieve these same results, if the global energy scaling for ion heating favors low aspect ratio plasmas, TORE
SUPRA plans to include 6 MW of ICRF heating and 6 MW of lower hybrid heating [AY82). JT-60 plans to

4-1




deposit 10 MW of lower hybrid power and 2-3 MW of ICRH vs. 20 MW of neutral beam injection {SH82}.
Thus, the HES’]‘ER experiment will deploy about the same total tf power as much larger cxperiments into a
plasma with higher magnetic field. To the best of our knowledge, the HESTER experiment will be the only
tokamak with the planned capability of making a definitive test of the ability of second harmonic majority
specics heating to reach thermonuclear plasma regimes. This heating method was identified in the INTOR in-
terim report [IN82] as a particularly reactor relevant method of ICRF heating, because of its compatibility with
waveguide launching. The planned ICRF launching frequencies of the JET and TORE SUPRA experiments
correspond to minority *He heating near full ficld, while the JT-60 90 MHz capability corresponds to second

harmonic hydrogen heating at 3.0 T (2/3 full field), but less than 3 MW of injection at 90 MHz is planned.

4.1 Background

Ion cyclotron frequency heating has recently come to be the favored method of heating tokamak reactors
[IN82], [FL81], because of the perceived higher' efficiency, compactness, lower complexity and cost in com-
parison with neutral beams. While the technological advantages of ICRF heating have been known for some
time, acceptance as a reactor concept was delayed because of the greater carly successes of neutral beam heat-
ing and the inability to this day of achieving significant heating at the plasma majority species fundamental
frequency. Within the past few years, successful ICRF coupling to tokamak plasmas, using cither minority
species heating or majority species harmonic heating, has been achieved on JFT-2 [JF82] [KI82], TFR [GI82],
and, most significantly, on PLT [HO82], which achieved peak ion temperatures above 3 keV.

The only tokamak to achieve a significant risc in temperature using second harmonic proton heating, the
dominant mechanism proposed for use in HESTER, is PLT [HO82], where an effective temperature of 2.3 keV
was achicved for an rf power of 1.6 MW at 42 MHz and a line average electron density of 3.8 X 10'®/m?3, The
fixed frequency of the available rf supplies necessitated reducing the toroidal field to 1.4 T. The best heating
discharges were at a plasma current of 380 kA, somewhat smaller than the 450 kA discharges in which the
best minority heating was achieved. Thus, if the best minority heating and second harmonic proton heating
discharges are normalized to both density and current, the minority heating is more efficient by only 20 %,
which can probably be explained by the greater charge exchange losses in a hydrogen plasma [HO82]. The

comparison between the best discharges, using different ICRH mechanisms is shown in Table 4.1 [IN82).
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4.2 Heating kfficiency

The cfficiency of cither ICRF or lower hybrid clectron frequency is discussed in this scction. As is well
known, the geometry dependence of electron transport is somewhat controversial in the well studied ohmic
transport regimes, lacks well tabulated results in the auxiliary heated regime and lacks any noncollisional dis-
charges in the RF heated regimes. Thus, any predictions of heating efficiency on HESTER are for the purpose
of intcllectual curiosity as to what commonly used models might predict, as well as to discern whether there
arc any obvious ﬂaws in the machine mission description. The high field on axis is beneficial to plasma heating
efficiency, since it permits the increase of current without increasing plasma volume and allows higher densities
in the ohmic regime where they are most uscful. However, since HESTER has a higher aspect ratio than other
high performance tokamaks, a breakdown in the "Alcator C" electron transport scaling discussed the favorable
dependence on aspect ratio of electron transport discussed in chapter 3 would harm heating performance, but
would not prevent a significant range of heating experiments. However, as dis;:ussed in chapters 6 and 7,
the achievement of a broad range of current drive experiments would necessitate the purchase of additional
current drive power beyond that described here, if confinement is disappointing. Hopefully, high aspect ratio
discharges on TFTR, such as the 310 cm by 55 cm neutral beam heating discharges, will eliminate much of the
uncertainty. »

While the ability of a high aspect ratio machine, such as HESTER, to achieve effective heating appears
to be highly dependent on the truth of Alcator C scaling for electrons, the high field allows a sufficiently high |
plasma current that the scaling for heating efficiency is favorable for several popular sca]ing relations. The
relative heating efficiencies for the next generation of tokamaks according to these scaling relations are shown in
Table 4.2.

For 7 proportional to naR?, the achievable temperature for a given auxiliary heating power scales as:

T.
P aur

= A O (4)

For 7 proportional to I, at fixed g, the achievable pressure for a given auxiliary heating power scales as:

nT, _B_g
Pauz - R2

(4.2)

For = proportional to Ia at fixed g, suggested by neoclassical ion transport in the plateau regime, the
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achicvable pressure for a given auxiliary heating power scales as:

e B (43)
FPowz AR

As Table 4.2 indicates, scaling with aspect ratio predicts that HESTER will have about the same efficiency
as TFTR and up to double that of other machines (and that TFTR will have four times the efficiency it
expects!). Scaling with .curre’m, the efficiency should be about double that of TFTR or Big Dee and con-
siderably higher than other machines. The efficiency of hcating in JET, using this rclation, is astonishingly
low. If global transport scaled as I,a, the heating efficiency of HESTER would be the same as that of TFTR
or Big Dee and less than a factor of two higher than that in Tore Supra or JT-60. Of course, HESTER is
smaller than the other next generation of reactors, and it is only to be expected that its heating efficiency should
be greater. Furthermore, it is not really to be expected that there should be a global transport law of any
significance over the entire range of auxiliary heated plasmas, when there are obviously different geometry and
density depcndences'of ion and electron transport and ion-electron encrgy interchange. The appearance of
these popular formulae in planning exercises largely reflects the immaturity of our physical understanding. As
a last caveat, one can’t help noﬁcing that all three methods predict that the best performance will come from
American tokamaks and all three scaling relations were suggested by Americans, but this is undoubtedly a pure
coincidence.

In spite of all caveats, the significant feature of this comparison is that two effects, high ficld and high
aspect ratio seem to be cancelling, so that moderately high efficiency is predicted over a range of assumptions.
A comparison between temperature and density using the TOKSYC system code simulation of HESTER vs.
the two global relations used in the Big Dee design review show a surprising insensitivity of HESTER's perfor-
mance during ion cyclotron heating, as a function of global transport assumptions, as shown in figure 4.1. The

current and current“minor radius scalings used here are:

7 =006], (4.4)

and

75 = 0.13L,a vk (45)
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TOKSYC assumes separates ion and clectron temperature, assuming three times ion neoclassical transport
according to Hinton V[Hl76] and twice Alcator C clectron transport according to Wolfe (Ch. 3), while the
simple global transport equations give an average species-independent temperature. As seen in figure 4.1, the
correlation most favorable to aspect ratio (Wolfe) predicts an ion temperature that is double that predicted by
the least favorable correlation (I,a) at low dcnéity. There is no significant difference between the predictions of
the three assumptions at high density.

" For smaller experiments, one might not be limited by available power so much as by power launching
density W /m? over the available surface. For Alcator A scaling, the achicvable tempcrature for a given power

density would have scaled as;

while for Alcator C scaling, the achievable temperature for a given power density scales as:

Te— 2
E—R'

It is this limitation that prevents Alcator C from achieving the highest machine temperatures. By almost
any scaling law, it should achieve the best heating efficiency at any density, but it cannot Jaunch more than
approximately 4 MW into the plasma by either ICRF or lower hybrid before all four of its small horizontal
ports are used up. If it were not for this horizontal port limitation, much of the HESTER mission could be

| achieved at less expense. Even with this limitation, it will be of great importance to both the lower hybrid and
ICRF experiments on HESTER to complete both the lower hybrid and ICRF experiments on Alcator C at full
power.

Perhaps further insight into expected scaling can be gained by examining the implications of global cor-
relations which appear to have both a theoretical and empirical basis. Gill has derived a global empirical
relation for the ioq temperature in the regime in which jon-electron energy exchange is negligible [G174), which
appears to fit both low and high power heating experiments on many tokamaks [G180]. Gill’s scaling law for ion

temperature as a function of heating power is:

eV

0.4
f:iPn1B},
NeavqL \/Z:f (U ;a.v)
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*

‘v 18 the line average ion collisonality.

where f; is the fraction of the injection power deposited in the ions and v

The function of coliisionality is:

fWiso) =1

forv;, >1.26, and

*0.55
tav

fW}a,) = 0.8

forv;,, <1.26. ‘

For HESTER , Gill's formula predicts a central ion temperature of 35 keV at a central ion density of
5 %10'9 for a total absorbed power of 9.6 MW (12 MW short pulse launched), while the TOKSYC system
code predicts 29 keV, with no ripple. This "runaway” to thermonuclear grade plasmas is what is predicted
above a certain ion heating level due to the favorable temperature dependence of ion transport dominated
by neoclassical transport; it is predicted by almost any scaling model to be achievable at low density in any
tokamak that can maintain adequate plasma purity. |

It has been objected that a high aspect ratio tokamak will provide a poor target for an ion heating experi-
ment, because previous intense neutral injection heating cxperiments have. reported that the heating efficiency
on PDX, defined as stored plasma energy divided by injection power (the global energy confinement ﬁfne in
an injection dominated discharge), increases as I, [HA82), while on ISX-B, the global energy confinement time
increases as 13/2 [SW81]. Reasoning from the perceived benefits of plasma current, which scales as a2/R or
R/A?, some planners have concluded that a good heating experiment should have a low aspect ratio. Gill’s
formula predicts that, for a fixed dimension machine, AT will improve as I:,", if current is increased by
decreasing q;, and as [ ;,'4, if current is increased by increasing toroidal ficld at constant g;, which is, of course,
compatible with the abovementioned experiments, since data from PDX and ISX-B were included in deriving
Gill’s formula. However, if one scales from this formula to a new machine with different dimensions, the

dependence of temperature on power in Gill’s formula scales as

T; BL143
P = gLTAD58RO39

Thus, the unfavorable dependence of temperature on aspect ratio is not nearly as high as that suggested by a
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simple scaling from plasma current, when the machine dimensions are also changed.
Another analytical approach which relates temperature limits to pressure limits through the mechanism of

magnetic surface weakening by tearing modes at rational surfaces was suggested by the Equipe TFR [FQS80]:

9 x 108
VA;

This limit permits a central density ion plus electron temperature limit of 60 keV-102°m—3 in HESTER, which

eqiB2y /1 + Pada

ne(o) [Te(o) + Tl(o)] = Pﬂ

is higher than that predicted by transport models. This formula also predicts a slower than lincar degradation of
ion heating eﬂ”eétiveness with aspect ratio, because of the decreased ohmic power for a fixed safety factor in a
high aspect ratio plasma.

Although there is certainly an unfavorable aspect ratio dependence for ion heating, and perhaps a
favorable dependence for electron heating, this dependence is balanced by the beneficial effects of higher field
on ion containment. The machine dependent effects such as the ability to generate higher ficld with a given field
at the coils and the ability to place more heating elements around the plasma give the HESTER plasma much

higher performance than might have been initially believed for a high aspect ratio plasma.
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Table 4.1
Best Experimental ICRF Results on PLT

Parameter Minority 3He, D 2nd Harmonic H Minority H, D
L, (kA) 500 350 500

P,r (MW) 13 30 15
<n,>10%m—3 32 38 4

AT, (keV) - . 22 27 10

AT, (keV) 1.0 0.5 13

nATo/ Py 54 34 27

nATio/ P, 1.08 | 113 068
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Machine

HESTER
TFTR(nom)
TFTR/NB
JET

JT-60

Big Dee
Tore Supra

PLT

Table 4.2

Heating Efficiencies of Large Tokamaks

R,
(m)
20
2.48
31
30
3.0
1.67
225
143

Q

(m)

0.37
0.85
0.55
0.95
0.95
0.67
0.7

042

B,

M
70
52
42
45
45
22
45
2.8

I
(MA)
12
3.0
2.5
2.7
2.7
35
17
0.5
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a’Rk

0
54
29
56
20
3.16
147
32
34

I
a?Rk

(MA/m?®)
438

1.68

2.7

0.62

10

2.35

1.54

1.98

Ira
a?Rx

(MA/m?)
1.62
1.98
1.49
0.78
0.95
1.57
1.08
0.85




4.2 A High ¢g, Experiment, using ICRF Heating

‘The high beta experimenté on HESTER are similar in nature to the high temperature ion heating experi-
ments and may be included in the same set of experiments. The possible high beta experiment described here
is distinguished from the ion heating experiment by including both the ICRF heating power described above
and the lower hybrid heating described below. The definition of a high beta experiment is still even less precise
than that of a new current drive experiment, because of the lack of any generally agrecd upon model of pressure
enhanced transport. HESTER, being a high aspcect ratio machine, should certainly not challenge the Doublet
11T world record for plasma beta, but it can theorctically achieve higher pressures than 1SX-B, Doublet 111 or
PDX, because of its higher field, as shown in Figure 4.3. However, HESTER is designed to enter the regime
where 0.5 <ef3, <1.0, if pressure enhanced transport is not too severe. The high aspect ratio of HESTER further
extends our knowledge of the aspect ratio dependence of enhanced transport. The dual presence of a strong ion
heating source and a strong electron heating source (current drive) should also prove to be a powerful tool in
the separation of electron temperature vs. density cffects in pressure enhanced transport.

Although high pressure should certainly be achieved in HESTER , toroidal beta limits are not predicted
to be achievable with the allocated auxiliary power supplies. The trade-off is a familiar one to high beta
experimenters. Within any given machine, if confinement is a nearly linear function of current, doubling the
toroidal field halves beta, but doﬁbles the acﬁievablc pressure for a fixed external heating source. The ICRF
heating experiments must be done at relatively high field ( 6 T), while the lower hybrid heating range, while
much broader band, has only partial penetration to the plasma center below 7 T. Thus, because of the high field
needed for heating with existing rf supplies, the ultimate machine pressure limits will not be reached unless
transport is highly favorable. The silver lining is that other machine missions should not be endangered by
pressure enhanced transport.

, The poloidal field system is designed to permit low q (q << 2) operation at design toroidal field. This
permits the plasma to reach the theoretical balloon-mode limits [TO79], based on relatively flat density profiles

and a temperature profile, represented by,

T(r) = To(l1 — r?/a?)?/?

typical of observed temperature profiles in beam heated discharges. This limit has been expressed by the simple
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correlation,

0201+ r?
Rge 2

which is also similar in form to the simplé Shafranov equilibrium limit on beta. For a 40 cm by 210 ¢cm circular

ﬁcrit =

plasma with ¢« = 2, the critical beta would be limited to 1.9 %. If heating is done at 7 T, this corresponds to an
average plasma pressure of about 3 4 atmospheres. _

The parameters of the highest pressure discharges achievable in HESTER are shown in Figure 4.2. The
central temperatures achievable with combined lower hybrid and ion cyclotron heating are superimposed upon
those achicvable with ion cyclotron heating only. Heating by combined mechanisms is hard to interpret and
may be uscful primarily to set performance benchmarks. However, it may also be necessary to include lower |
hybrid electron heating at low density to establish a sufficiently warm plasma to allow adequate absorption of
second harmonic ion cyclotron resonance. waves. The addition of 4.8 MW of lower hybrid electron heating
raises the clectron and ion densities by over S0 % at high densities, as expected. The effect on ion temperature
is small at low densities, but nearly doubles the electron temperature at the lowest densities. The peak electron
temperature is 7.5 keV at a central ion density of 102°, which is marginally adequate to perform a broad range
of current drive experiments, using alternative current drive mechanisms, as discussed in section 6. The ion
temperature begins to saturate at low densities, because of the inclusion of INTOR ripple trapping and plateau
scaling [IN82] in the TOKSYC transport models.

The achievable pressure does not vary strongly with temperature and the highest pressure discharge shown
is at the high density end with a central ion density of 4.0 X 1020 (m—3). The volume averaged toroidal beta
of the plasma is 1.1 % , the central betais 3.0 % , an_d the volume average of €8, is 0.28 . This value is
somewhat below the the highest values of 0.28 in the high beta éxperiments on ISX-B, PDX, and Doublet III
[CO82] [GOB82] [HAB2] [SW81]. Thus, in order to test pressure limits of the HESTER plasmas at high' field, it
will be necessary to heat in a mode in which transport is not significantly degraded.

The value of 4.0 X102 (m™3) in the highest beta discharge is nearly three times the empirical limit
predicted for the ohmic experiment in Chapter 3. Neutral injection experiments have so far shown that the
ohmic density limit no longer applies during intense auxiliary heating. Equipe TFR [EQ80] has suggested that

the achievable céntral plasma pressure (eV-m—3) scales as
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ohm

1 + Phcat+Pdldriue
po = 9% 10225q1/433\/ 7

lim \/Z

where A is the effective atomic mass units of the fuel (). This relation predicts that the above experiment

would have the sum of the central clectron and ion temperatures limited to 37 keV, giving a safcty margin of
5.0 over the design values of T, = 3.8 kéV and Ty, = 3.7 keV . The safety margin vs. a simplc-minded
Shafranov equilibrium limit is 1/¢8, = 3.5. The purpose of calculating these simple global safety margins is
not to imply that the actual high pressure transport is known. The high pressure experiments on HESTER are
not intended to reach world record or reactor relevant values of either toroidal beta or thermal pressure, but
to extend the understa.nding of pressure effects on energy transport in a tokamak at an extreme value of aspect
ratio and magnetic field over a broad range of densities and temperatures. The calculation of simple global
safety margins, then, is a check that there is not some obvious limiting mechanism that prevents an interesting

experiment.
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5.0 Lower Hybrid F,lcctron'Heating Experiments

The perception of the role of lower hybrid has changed dramatically in the past few years. The use of
the lower hybrid resonance to heat ions has not met with dramatic success and is not now considered to be the
best use of auxiliary power in this frequency range. By contrast, current drive and electron heating have been
far more successful. In fact, the heating of bulk electrons by the tail electrons created by current drive may be
the most efficient electron heating mechanism. This change in perception has led to what hopefully will be a
short-lived historical anomaly, that the heating and current drive mechanisms are referred to as lower hybrid
current drive and clectron heating, although they are unrelated to the lower hybrid resonance. Thus, for want
of any other term that can be recognized by the community, we will refer below to lower hybrid current drive
and heating, fearing only that we will contribute further to the perpetuation of another term as meaningless as

"Elmo."

5.1 The Lower Hybrid Electron Heating Experiment

Lower hybrid electron heating has never been the leading contender for plasma heating in tokamak reac-
tors. High plasma temperatures have not yet been obtained using lower hybrid heating. ICRF and neutral beam
heating have the ability to heat ions directly, which allows the possibility of putting less overall energy into the
plasma for a given ion temperature requirement for controlled fusion. However, lower hybrid electron heating
appears to have three important advantages, which are increasing interest in this mechanism. Unlike neutral
beams, which are limited to a narrow range of densities for a given size plasma, and ICRF, which is limited
to a narrow range of fields, lower hybrid electron heating through electron Landau damping can operate over
a broad range of fields and densities. This is particularly important in an experimental device which may not
achieve its predicted values of density or field. There is also preliminary evidence that electron heating does not
degrade global energy confinement as ion heating does [UE82A], and that there may be fundamental reasons
for this observation [UE82B]. Finally, electron Landau damping is also a current drive mechanism, allowing
the same rf equipment to be used flexibly for current drive and heating. If different mechanisms are used, such
as lower hybrid and compressional Alfven wave current drive, the higher electron temperatures due to lower

hybrid heating directly increase the cfficiency, and thus the reactor recirculating power, of the compressional

Alfven heating,




An important motivation for the electron heating experiments on HESTER is to achicve temperatures
in the range of 5-10 keV, so that the accessibility of the lower hybrid wave at higher temperatures can be
tested, and so that a sufficiently hot plasma can be created to permit the testing of alternative current drive

mechanisms, all of which are strongly dependent on electron temperature, as discussed in chapter 7.

5.1.1 Background

Lower hybrid electron heating has been achieved on PLT, Alcator C, WEGA, WT-2, JFT-2 and Versator,
where current drive is counted as a form of electron heating. JFT-2 increased clectron temperature by over 300
eV to 800 eV in a plasma with 200 kW of injected power with a frequency 1.7 times higher than the central .
lower hybrid frequency in a plasma with a line averaged electron density of 10'® m—3. [UE82A]. Alcator C
raised a 1.7 keV electron temperature to 2.0 keV at line average densities of 1-2 X 102"m—3 with 100 kW of
injection into a deuterium plasma [PO82]. To date, there are no published results of an experiment labeled
"lower hybrid e]cctrbn heating” which has a coupled rf power significantly larger than ohmic power into the
plasma. This situation will hopefully change dramatically when the 2 MW (1.2 MW into the plasma) lower
hybrid experiment on Alcator C is fully operational. However, the lower hybrid current drive experiments on
Alcator C and PLT are the more definitive examples of the Landau damping heating mechanism, since the rf

wave was the sole source of both electron energy and net momentum in both of these experiments.

5.1.2 Heating Effectiveness

General considerations of heating efficiency in HESTER were discussed in chapter 4. In this chapter we
examine the implications of two assumptions: the first is the assumption that transport coefficients will be
identical to those assumed for ion heating in chapter 4, in particular that electron confinement is degraded by a
factor of two from its ohmic value, while the second assumes that electron heating is free from the degradation
of confinement observed during ion heating. The results of these assumptions for 4.8 MW absorbed by the
plasma, corresponding to 8 MW klystron output as explained in chapter 9, and 0.9 fractional power going to
electrons, are shown in Figure 5.1. With the assumption that electron conﬁnemént is degraded by a factor
of two during heating, our model predicts that a central electron temperature of 5 keV would be achieved -
at central ion densities lower than 7 X 10'® m —3. This performance would be adequate for a definitive
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demonstration of bulk clectron heating by clectron Landau damping, would be marginal as a tool to study

wave penctratation ai high clectron temperature, and would be marginally adequate to achieve flat-top using

compressional Alfven heating, as discussed in the next chapter. If it is true that confinement is not degraded

from ohmic during electron heating, the model predicts that an electron temperature of 5 keV can be achieved

at a central ion density as high as 2 X 102° m—3 and that 9 keV could be achieved at 7 X 10'9 m—3. At

lower densities, the density scaling of the electron channel becomes totally dominant and electron temperature

appéars to saturate below 10 keV. With the improved scaling, accessibility and compressional Alfven heating

could be studied, while fast wave transit time pumping current drive might possibly be studied. As stated

previously, the backup méthod to achieve machine goals, if confinement is worse than expected is to acquire

adequate high voltage power supplies to operate the ICRF and lower hybrid rf supplies simultaneously. This

mode of operation is discussed in more detail in the section on pressure limit experiments,
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6.0 The Lower Hybrid Current Drive Experiments

The lower hybrid curreni drive experiments on HESTER extend the results on PLT and Alcator C to more
reactor relevant regimes. The physics interest will be primarily in the regimes of achicving low safety factor at
high electron density, with either an original or upgraded current drive capability to drive the plasma to a safety
factor of << 2 at central electron densities of 102°. Two experiments of interest, not cxpected to be duplicated
on PLT or Alcator C, will be to drive current below a limiter safety factor of 2.0 at an electron density between
5.0 % 10'° and 1020, and to drive current to low safety factor at electron temperatures above 5 keV. A possible
upgrade of high voltage power supplics would allow an upgrade cxperiment with simultancous current drive
at the abovementioned density and safety factor and ion cyclotron resonance heating with ion and electron

temperatures above 10 keV.

6.1 Background

Steady-state current drive has been long been recognized as a desirable technique for combining the good
energy confinement of the tokamak with the steady-state capability of other magnetic confinement concepts

[F178}[PR79] [YU79] [BA80].

6.2 Description of a Possible Lower Hybrid Current Drive Discharge

A model of a possible lower hybrid current drive discharge is described below to illustrate HESTER’s
capability. 4.8 MW of microwave power is injected into a plasma with a line-average electron dens‘ity of 1.05
X 1020, heating the plasma to a central electron temperature of 6.0 keV and a central ion temperature of 3.5
keV , assuming that all of the power coupled to the plasma goes directly to the electrons. The efficiency of
coupling to the plasma is assumed to be 80 % , based on claimed coupling efficiencies on PLT [ST82).

One of the first things to notice is the predicted efficiency Qf lower hybrid current as an electron heater.
The central electron temperature is higher than that of any heated tokamak plasmas to date. The high coupling
bandwidth of travelling fast wave energy to electrons is undoubtedly the most attractive feature of lower hybrid
current drive. Recent experiments at M.L.T. succeeded in coupling significant power into the plasma over a
range of central flux densities from 4 to 11 T [PO82]. If this degree of flexibility persists into the reactor regime,
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there would be lit.tlc reason to consider less fiexible and more expensive electron cyclotron resonance heating
for cither bulk heating or current drive.

Pcnctfation of the lower hybrid wave to the center of the plasma should occur if the wave is neither
absorbed by the fast ion mode or reflected by conversion to the whistler mode. Using the interpretation in

Yuen’s reactor study [YU79], a critical frequency for fast wave cutoff (radians/s) is calculated by:

J(\/ L4 g — 1)l i (6.1)
p

The lower refractive index cutoff, is then calculated by:

Ifw! S wCa
1
npe = |———— (6.2)
1 - iiceiiu ‘
Ifwr > wc,‘
@ nc a.
mo = 2 + V1 (e — e (63)

where w; is the current drive launching frequency (radians/s). In this case, the critical frequency at the plasma
center is 34.0 Grad/s and the launching frequency is 28.9 Grad/s , so the lower cutoff due to reflection of a
whistler mode wave is 1.48 .

The upper cutoff set by conversion of the wave to a hot ion mode, followed by strong absorption is

calculated by:
w? :
— — 4
nyc = (0. 5 )( ﬂce 0 1) (6.4)
2 2—0.5
= 1.5 + 0.375 - 6.5
nyc = nuc (( T;) (ch ch) ) ( )

where vre, the thermal electron velocity (m/s), is \/ﬁm The upper cutoff index of refraction at the plasma
center is then 4.0 . The accessibility window, then, is believed to be compatible with the wave spectra launched
by PLT and Alcator C, and should be even more compatible with that of HESTER, because of its higher
number of parallel waveguides in a grill. PLT is believed to have most of its launched spectrum concentrated
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between nyy = 1.5‘ and nz)2 = 3.0 [HO82], while Alcator C may have most of its launched spectrum between
N1 = 1.0 and ny2 =25 [PO82]. Since there are 16 waveguides per grill in HESTER, as contrasted with 4
in Alcator C, .the bandwidth of the launched spectrum should be twice as narrow, and the ability of the waves
to fit within the accessibility window correspondingly better. The possibility of having adequate wave access at
4.6 GHz should allow significant economies in the microwave equipment for HESTER, as discussed in section
10. However, the selection of 4.6 GHz launching, which is very close to v/11.;{) at the plasma center, may be
contraindicated by further understanding of the Alcator C experiments, in particular, the finding that current
drive efficiency is SO% higher at 10 T than at 8 T in Alcator C. The mechanism for this efficiency loss has
not yet been adequately 'clucidated. If the lower efficiency at lower field is due primarily to a lower electron
tail population at lower temperature, then the efficiency of current drive in HESTER will not be degraded by
operation at 7 T. If the fundamental cause is partial inaccessibility of the wave spectrum, this may lead to the
selection of a lower launching frequency on HESTER, despite the loss of credits from existing equipment. Since
the equipment for Alcator C provides about half the needs of the HESTER current drive experiment, it would
clearly be less expensive to operate at a lower frequency if the efficiency is double that at 4.6 GHz. The physics
interest and reactor relevance, of course, would be greatest at whatever frequency gives the highest eﬁ'iciency,'

but this cannot be predicted at present.

One simple-minded approach to the selection of power requirements for a new experiment is to scale from
the best known performance of PLT or Alcator C, assuming that the power requirements scale linearly with
electron density and major radius for a given current. The best case performance predicted by scaling from per-
formance on PLT and Alcator C is somewhat worse than the performance predicted in reactor studies [YU79]
[BAS80). This does not imply that the collisional theory predicting power requirements for current drive is
incorrect. The reactor-grade plasmas were fed by larger waveguide arrays than the 6 waveguide grill on PLT or
the 4 waveguide grill of Alcato_r C, and thus focussed a higher fraction of the waQe energy into the desired band
of wave velocities. In addition, each feactor study proposing lower hybrid current drive has also proposed af
least one clever idea, in order to reduce the recirculating power to attractive levels. In STARFIRE, the idea was
the use of edge currents [BA80], in the current-driven M.L.T. HFCTR [YU79], Kaplan proposed operating the
reactor in the hot ion mode. More recently, Fisch [FI82] has proposed modulating the plasma density and/or
effective impurity level in order to reduce the recirculating power. None of these ideas have been observed -
yet in present-day experiments. HESTER should be able to create a plasma with sufficiently hot and dense
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clectrons to allow skin current formation -and may be able to determine the desirability or undesirability of
hollow current prdﬁ]es in current driven plasmas. The hot ion mode is of no particular relevance in the absence
of fusile i‘uel and will not be simulated in HESTER . The use of density fluctuation to decrease recirculating
power can be easily tested in HESTER , using pellet injection. HESTER is particularly well suited to-this
last concept, because the high aspect ratio decreases the pulsed torques from swinging the equilibrium field
in response to pressurc changes and the restriction of HESTER ’s current drive experiments to nonfusile fuel
greatly decreases wall loading excursions and thermal stresses due to the density modulation. |
Scaling from the best performance discharges of PLT and Alcator C, one would expect power require-

ments of

P, = K Ln.R, | (6.6)

where 7, is the line-average electron density (10 m—3) and K is 9.6, 12.0, and 8.2 for PLT, Alcator C at 8 T
and Alcator C at 10 T, respectively. The best of the best, Alcator C at 10 T, was chosen for the purpose of design
performance prediction, on the grounds that HESTER will have more waveguides in a grill than either Alcator
Cor PLT and that its design may bencfit from the improved understanding of current drive expected from the
ongoing experimental and theoretical program. Balanced against the optimistic considerations is that HESTER
will not be able to achieve 10 T, with the corresponding possibility that the available 4.6 GHz supplies are
suboptimal for current drive in any 7 T plasma. An import;eint decision on the upgrade of the lower hybrid
system to twice its present power will have to be made, whether to attempt to optimize efficiency by selecting a
different frequency or to minimize cost by duplicating the existing launching system. The assumption of Alcator
C efficiency at 10 T leads to the prediction that 4.8 MW is required for ¢;» = 2.1 with a central electron
density of 6.0 keV (eV). This power requirement is twice the power available for Alcator C experiments and
also constitutes the most significant electron heating experiment scheduled for the tokamak program.
Adding one further level of sophistication, PLT suggests a scaling law for the current density/ power

density ratio (A-m/W) [ST82], of a form first suggested by the STARFIRE study [BA80] of:

' 12.6 X 102 n3% — n ;2
JoverPdPLT = ( n, ) in(ﬂ_n_)zl

N2

(6.7)

Since the approximate limits of the index of refraction are 1.5-3.0 for PLT and 1.0-2.5 for Alcator C,
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the function of p?rallcl index is almost twice as good for Alcator C as for PLT. This would suggcst that even
the best discharges on Alcator C fall below the PLT scaling law [ST82] in equation 6.7. However, since the
fraction of the total launched power that actually couples to resonant clectrons is unknown in either case, a true
comparison cannot yet be made. HESTER should be able place most of its launched power spectrum between
ny = 1.5 to 1.7 and test more fully the degree to which current drive efficiency can be improved by control of
the launched wave spectrum ‘

‘Using Alcator C scaling at 10 T and the transport simulation on TOKSYC, described above in chapter 4,
the flattop experiments on HESTER, using lower hybrid current drive, are predicted in Figure 6.1. At high
density, current drive is shown to collapse due to the lower sustainable current, accompanied by deteriorating
ion confinement. If adequate cleanliness can be maintained in the plasma, high temperature and current should

be achievable at central densities between 0.5-1.0 X 1020 m—3,
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7. Alternative Current Drive Experiments

7.0 Low Frequency Current Drive Experiments

Low frequency rf current drive mechanisms are attractive as possible rcactor current drive mechanisms,
becausc low frequency rf technology is relatively incxpensive, wave penctration to the plasma center is less
difficult than for lower hybrid waves and higher theoretical efficiencies than those of lower hybrid are possible,
according to the analysis of Fisch and Karney [FI81]. We consider three variations on this form of current drive
for HESTER : slow wave below the first harmonic ion cyclotron frequency, slow wave between the first and
second harmonic, and fast wave between the first and second harmonic.

As will be seen below, it is not practical to do a definitive test of these low frequency current drive
mechanisms in a tokamak that is not capable of achieving high electron temperafure and a pulse longer than
magnetic diffusion times at high temperature. The HESTER experiments are well suited to be tests of these
mechanisms, because HESTER is large enough to accommodate the ports needed for combined current drive
and heating, but small enough not to require the large currents and power needed for similar experiments on
larger, planned tokamaks. The lack of magnet derating with pulse time also allows the long pulses at peak
performance needed for these experiments. A special effort will be made to use existing rf sources for these

" experiments, as will be discussed below.

7.1 Compressional Alfven Current Drive

Low parallel phase velocity waves were first suggested by Wort as an attractive method of current drive,
because of their high momentum to energy ratio [WO71]. The compressional Alfven wave is a particular case of
these low frequency waves. Motivation for interest in this case as a reactor concept was created by the analysis
of Fisch and Karney [FI81], predicting a normalized J /P, of

J

13
Fd = ";; + 14w3 + 5 (71)

for compressional Alfven waves, where w, is the average ratio of plateau electron paraliel velocity to electron™
thermal velocity. If w, can be lower than 0.5, J/P, ratios of 40 or higher are conceivable, representipg at _
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lcast double the expected cfficiency of lower hybrid current drive. The actual efficiency of current drive/power

efficiency, as defined by Fisch [F181] is then:

I Teloldnorm
— = 0.02—————— = 0.1A/W 7.2
Pd Rone20 / ( )

where T,g is the central electron temperature, normalized to 10 keV and neqq is the central electron density,

normalized to 102°m—3,

7.1.A Low frequency compressional Alfven wave current drive

It has been assumed that sldw wave current drive must also be low frequency, in particular lower than half
the ion cyclotron harmonic frequency, in order to avoid any cyclotron heating of the ions [FI81]). However,
as discussed below, fast wave transit time current drive contemplates using a frequency between the first and
second ion cyclotron-harmonics, and, as is well known, heating of majority species at their fundamental fre-
quency has not demonstrated strong damping. Therefore, we will also consider a high frequency compressional .
Alfven wave, intermediate between the first and second hanﬁonic frequencies, as well as the low frequency,
slow wave proposed by Fisch and Karney [FI81].

Tables 7.1 and 7.2 show the predicted current drive efficiencies for the pessimistic and optimistic bounds
of a central electron temperature of 2 keV and 10 keV, respectively at a density of 102° m—3. As shown in
Table 7.1, a low ffequency, slow wave experiment might select a launching frequency of 39 MHz. This low a
frequency could be provided by the triodes already available at M.I.T., but the delivery system would have to
be altered. The two most expensive alterations would be to the resonant cavities at the tube outputs and the
construction of new antennae. A manufacturer’s estimate places the cost of modification of the output cavities
at $200 K/ tube, or $1.2 M for a six tube experiment. This cost would be avoided by the high frequency, slow
wave experiment described in the next section. | |

The experiment described in Table 7.2 assumes a central electron temperature of 10 keV at a central
electron density of 1020, If these parameters can be achieved, the theoretical current generation efficiency,
according to equation 7.2, is 0.316 A/W. Thus, the baseline experiment would require 1.58 MW of ICRF
power. A full ohmic current of 1.2 MA would require 3.8 MW. In ncither case could the current drive provide
adequate power to achieve the desired electron temperature and another auxiliary power source would be
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required. A curious feature can immediately be obscrved, which is true for all of the lower frequency current
drive mechanisms. Sinéc they all have a favorable dependence on electron temperature and higher theoretical
efficiency than lower hybrid current drive, and since auxiliary heating power is simply the difference between
current drive power and total plasma losses, which decrease with total current, the higher the current, the less
total auxiliary power is required. For the case of the HESTER design problem, the total auxiliary power is fixed
both by achievable thermal wall loading and available power supplies. For this case, the Fisch-Karney theory
prediéts a regime in which current drive power actually decreases with flattop current, as shown in Figure 7.1.
This regime can be identified with any combination of temperature and density in which global conﬁncment‘
improves faster than lineariy with current, e.g. plasmas whose transport is dominated by ions in either thé

colllisional or banana regimes.

7.1.B High Frequency Compressional Alfven Wave Current Drive

At the base ficld on axis of 7 T, HESTER can drive current at 180 MHz, the bottom of the range that
can be excited by existing ICRF supplies at M.LT., but a frequency sufficiently low that the second harmonic
frequency is moved out to-the edge of a 35 cm plasma. The high frequency option forces a small spacing
between wave excitation elements, not dissimilar from the spacing between lower hybrid wave guides. It is
not immediately clear whether this is inferior or superior to the larger spacings associated with slow wave, low
.frequency or fast wave, high frequency current drives, the other two options considered in this chapter.

A possible high frequency, slow wave experiment is described by Tables 7.3 and 7.4 for the pessimistic and
optimistic bounds of electron temperatures of 2 keV.and 10 keV at a central electron density of 10 20 m—3, At
a central electron temperature of 10 keV and a central electron density of 10?0, the predicted efficiency of the
high frequency experinient, 0.4 A/W, is somewhat higher than that predicted for the low frequency experiment.
Thus, a baseline 500 kW flattop discharge would require 1.25 MW, while a full ohmic current discharge of 1.2
MW would require 3 MW. As above, a significant amount of auxiliary heating power would be required, in
addition to the current drive power.

The antenna spacing for the high frequency experiment is only 2.1 cm for quarter-wave spacing and a
required toroidal mode number of 48. This suggests the possibility of launching by a wave guide or some
other form of slow wave structure. The 18 cm port in HESTER could accommodate at least 2 full wave
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lengths. However, it is unclear whether a practical launching structure can be designed for the high frequency

compressional Alfven wave.

7.3 Fast Wave Transit Time Magnetic Pumping Current Drive

Transit time magnetic pumping current drive involves accelerating electrons that are locked in phasc with

a travelling wave, such that the parallel electric field vanishes and

s _ 0B,
dt oz
where u = mvi_ /2B, is the magnetic moment and the z-direction is parallel to the magnetic field.

Fast wave transit time magnctic pumping has been suggested by Perkins [PE82] as a practical current drive
mechanism for high temperature, high beta plasmas, such as those of FED or INTOR. The attractive features
df fast wave transit time magnetic pumping are high theoretical efficiency in the reactor relevant high beta, high
temperature regime and the use of a frequency high enough to be clearly compatible with waveguide launching
in a reactor. The principal disadvantage or key question concerning fast wave transit time pumping is that it is
lightly damped, allowing competition from other absorption mechanisms, such as superthermal alpha particle
heating.

It is theoretically more difficult to establish a flattop current in HESTER using fast wave transit time
pumping than using slow wave compressional Alfven current drive. As can be scen in Table 7.5, the parameters
needed for a reasonably efficient fast wave current drive are much more restrictive than those for slow wave
current drive. The reasons for this are the limitations of dealing with tail electrons, instead of bulk electrons
in the slow wave drive. The fast wave current density must be assumed to be electron tail population limited,
as lower hybrid current density was perhaps incorrectly assumed to be limited. Since fast wave current density
interacts directly with the hot electron tail without establishing any toroidal eigenmodes, it is high Q and thus
must compete with other weak damping mechanisms.

The limitations on fast wave transit time magnetic pumping are defined in terms of its efficiency and its
damping rate. If there are no competing wave absorption mechanisms, the efficiency of transit time magnetic
pumping current drive, according to Fisch and Karney [F180] is:
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J
Pd,norm

= 1—103 + L4w? 4 5 = 22 (1.3)

where w, is the average ratio of parallel wave to electron thermal velocity, and 1’5 is the normalized current
density/power density efficiency. The actual efficiency of current drive/power efficiency, as above, is then:
I Teor i

— = 0. morm - — ), 7.4
P = 002 0.14/W (1.4)

where Te10 is the central electron temperature, normalized to 10 keV and n.gp is the central electron density,
normalized to 1020m“3.- As can be seen in Table 7.5, even if the ambitious, but reasonable, goal of a central
electron temperature of 10 keV at a density of 1020 is achieved, it will still require at least 5 MA for 500 kA
current. Since the 5 MA could be provided by already existing equipment, this is not a problem in itself, but it
is clear that a flattop current experiment cannot be done with fast wave transit time pumping without the use of
a substantial auxiliary power source, perhaps lower hybrid electron heating.

The damping of the fast wave, as described by Perkins [PE82], is a strong function of the central electron

beta, f., and of the ratio of the

mect
€ = ————— I
2 ikl

where ny is the parallel wave index of refractionandk = 1.6 X 10~!9J /eV.

4.5

The wave absorption coefficient -y is:

v = 0.25w\/7B,\/ceP*on = 384 x 10°

The characteristic radial attenuation length A, defined such that the attenuation per pass is e, is [PE82):

_ 2X*aminor _ 320\ M 30 e _ |
a = Tl — g3 [T e = 0.036

where v, is the Alfven velocity. Thus the number of passes for wave absorption is 28,

Since highly favorable transport is necessary for a successful flattop experiment, using fast wave transit
~ time magnetic pumping, the planning of this experiment, in particular the design of the fast wave launching
antennae, would have to foll'ow:the demonstration of favorable plasma conﬁnement in HESTER, and thus
represents a possible machine upgrade. |
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Table 7.1 Low Frequency Compressional Alfven Wave Current Drive Experiment

Minimum Performance Case: Te, = 2 keV.

Parameter Description Units

R, major radius 205m

a minor radius 30cm

Teo central electron temperature 2keV

Neo ccﬁtral clectron density 1020 m—3

B, toroidél flux density on axis 70T

f wave launching frequency 39MHz

va Alfven speed 1.53 x 107 m/s
VTe electron thermal velocity 1.88 %X 10" m/s
Y| parallel wave velocity 2% 107 m/s

Wy, ratio of parallel velocity to thermal velocity 1.07

) poloidal mode number 1

n toroidal mode number 8

k. toroidal wave number 123m™!

k. poioidal wave number 10.5m™!

Az paralle] wavelength 513cm
6Zyntenna antenna spacing for quarter-wave spacing 128 m

)!; ' normalized ratio of current density to power 18.7

yr current generation efficiency 0.037 A/W
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Parameter

U4
Ure
il

W,

ky
A,

6Zantenna

%
%

Description

major radius

minor radius

central electron temperature
central electron density
toroidal flux density on axis

wave launching frequency

Alfven speed
electron thermal velocity
parallel wave velocity

ratio of parallel velocity to thermal velocity

poloidal mode number

toroidal mode number

toroidal wave number

poloidal wave number

pérallel wavelength

antenna spacing for quarter-wave spacing
normalized ratio of current density to power

current generation efficiency
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Table 7.2 Low Frequency Compressional Alfven Wave Current Drive Experiment

Units
2.05m
30cm

10 keV
1020 ;p—3

10T

-39 MH:z

1.53 x 107 m/s
42 x 107 m/s
2% 107 m/s
0.48

123m™—!
10.5m—1!
513cm
128 m
324

0.316 A/W




Parameter
R,

a

VA
Vre
vy

Wy

n

k.
A,

6zantenna

%
o

Table 7.3 High Frequency Compressional Alfven Wave Current Drive Experiment

Minimuni Performance Case: T, = 2 keV

Description

major radius

minor radius

central electron temperature
central electron density
toroidal flux density on axis

wave launching frequency

Alfven speed
electron thermal velocity

parallet wave velocity

. ratio of parallel velocity to thermal velocity

toroidal mode number
toroidal wave number
parallel wavelength

antenna spacing for quarter-wave spacing

normalized ratio of current density to power

current generation efficiency

7-10

Units
205m
30cm
2keV
1020 m—3
70T

39 MHz

1.53 X107 m/s
1.88 X 107 m/s
15X 107 m/s
0.815

74 m—!
85cm

21cm

219
0.043 A/W




Parameter

R,

-

Ua
UTe

Yl

We

n

k.
A,

6zantenna
%
%

Table 7.4

Description
major radius
minor radius

central electron temperature

- central electron density

toroidal flux density on axis

wave launching frequency

Alfven speed
electron thermal velocity
parallel wave velocity

ratio of parallel velocity to thermal velocity

toroidal mode number

toroidal wave number

parallel wavelength

antenna spacing for quarter-wave spacing
normalized ratio of current density to power

current generation efficiency
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High Fréquency; Slow Wave Compressional Alfven Wave Current Drive Experiment

Units
205m
30cm

10 keV
1020 m—3
70T

180 MH:z

1.53 X107 m/s
43 x 10" m/s

1.53x 107 m/s
0.36

48

T4m—!

85cm
21 ch
40.8

04 A/W




Parameter

Ure

bl

Description

major radius

minor radius

electron temperature

toroidal flux density

launching frequency

central toroidal electron beta

electron thermal velocity

parallel phase velocity

Alfven velocity

ratio of parallel phase velocity to thermal velocity
relative phase of adjacent launching elements
parallel wavelength

antenna element spacing

parallel wavenumber

perpendicular wavenumber

parallel index of refraction

ratio of inertial to resonant electron thermal energy
wave absorption coefficient

quality of the toroidal eigenmode

attenuation per pass coefficient

number of passes for wave absorption

maximum current density carried by a near Maxwellian
normalized current density/ power dissipation ratio

current drive/power ratio
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Table 7.5 Fast Wave Transit Time Magnetic Pumping Current Drive Experiment

Units

21m

40 cm

10 keV

55(T)

220 MHz

266 %

41.9 X 10° m/s
126 X 10% m/s
8.56 x 10° m/s
3.000E+00
90 degrees
0.57m

14.3 cm
Hm!

160 m—l‘

239

45

384 x 103
1800

0.0359

28

5.95 MA/m?
219

010 A/W




Appendix 7-A

The Relativistic Electron Beam Current Drive Experiment

The interest in relativistic electron beam current drive, largely motivated by the high cfficiencies predicted
in the STARFIRE DEMO study [BA82), has declined sharply in recent months, because of the inability of
researchers in this field to find a solution to overly severe constraints on beam penetration. An additional
demotivating factor for the use of REB on HESTER is that the high cost of transmission diodes discussed below
makes the experiment unaffordable within the cost guidelines of this study, unless the efficiency of current drive
is indeed almost as efficient as ohmic drive. However, since the definition of this experiment was completed
before REB lost popularity, it is included in the appendix below, but not accorded its own chapter.

A 500 KA relativistic electron beam (REB) current drive experiment was planned for HESTER , using
equipment being cheloped for the clectron heated inertial confinement program. The REB experiment would
inject relativistic electrons into a 7 keV plasma, heated by lower hybrid or ICRF power, with a line-average
electron density of 1.0 X 1020 m —3,

Relativistic electron beams have been suggested as an attractive reactor current drive concept, because
of their high Q [BA82], since the required power approaches the ohmic power dissipation of the plasma in
the limit of perfect momentum transfer to bulk electrons due to non-linear wave processes. For a HESTER
plasma of 500 kA and 7 keV, the predicted average power of 250 kW is twice the ohrhic power dissipation of
a nondriven plasma and an order of magnitude more efficient than the lower hybrid experiment described in
section 5.

In a possible developmental circuit for an REB experiment in HESTER, a rotating flux compressor dis-
charges its stored energy into an air-core, 1 turn transformer in 1 ms. The transformer output charges a 1.0
MYV water capacitor bank. As‘ soon as the capacitor bank reaches its maximum charge, it is discharged into the
plasma through a high voltage diode delivery system, with magnetic insulation, in 40 ns.

The rotating flux compressor is identical to those being developed at the University of Texas for the
HYDRA-MITE program at Sandia. The RFC would have to be charged up to its full rotational energy by a
700 hp motor, and would discharge its energy in 1.0 ms at a peak voltage of 20 kV. The 1.0 ms pulsed, step-up
transformer is a relatively simple one-turn primary, 50 turn secondary, air-core transformer in an.oil tank, being
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developed by Sandi'a. The HYDRA-MITE upgrade of HYDRA will also 40 ns, 35 kJ Marx banks. In order to
use the ayailable dcsigns of the rotating flux compressor, transformer and diode, four 35 kJ systems would be
necessary for a 125 kJ pulse into the plasma twice a second. However, since present Marx generators require an
hour to charge, temporary high voltage charge storage would have to be performed by water capacitors, such
as those used in the PFBFA-1 facility at Sandia. The overall delivery efficiency is expected to be 50 % efficient,
requiring an additional 500 kW of line power to drive the REB experiment.

The equipment cost of the experiment is dominated by the machining costs of the diode. A tokamak
transmission has beeﬁ previously costed at $1.1 M for a single transmission line. All other components for the
experiment are costed atv about $0.5 M. It is unclear at this time whether the system requirements can be met
by a single diode. Since 35 kJ diodes have already been developed, 4 ports should be an absolute maximum
requirement.

One of the chief problems associated with REB injection, beam deflection at the diode mount, followed by
breakdown, may bclv solved by the short 40 ns pulses, since 40 ns is slightly. less than a toroidal transit time on
HESTER . The magnetic field needed for diversion of the beam, in order to avoid collision with the walls, is
then self-created by the 2 MA of beam current by bending the cathode at the diode mouth. This technique was
proven to be effective by Proulx and Kusse [PR82] at Cornell.

An interesting demonstration of current drive. would be to heat the electrons with lower hybrid current
drive, instead of ICRF. Since the efficiency of REB current drive is a strong function of electron temperature
, and is not expected to be a strong function of ion temperature, the use of an electron heating mechanism,
should allow more cfficient current generation. Of course, since both the REB and the lower hybrid current
drive will be operating at the same time, it will be impossible to scparate out the physical effects of the two
mechanisms. However, the combination current experiment will allow an investigation of enhanced lower
hybrid current drive, similar to the low electric field enhanced current drive experiment suggested in chapter 1.
“Also, if expected eﬂ.iciencies are observed, it will also allow a current drive experiment to probe as deeply below

qim = 2.0 as disruptions will permit at moderate to high electron densities.
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8.0 Superconducting Toroidal Ficld Magnet System

The toroidal field magnet system of HESTER includes several advanced features, which allow the coil

system to be simultancously high performance and inexpensive. These include:

1

Use of already developed Nb3Sn, ICCS superconductor, avoiding the development programs that have

been dominant costs in many other large superconductor purchases. This superconductor has large energy

_ margins at the design flux density of 9.1 T, as well as probable cryostability.

The use of ﬁrcssurized supercritical helium in a conduit, surrounded by an atmospheric pressurc bath
ailows the.electrical and mechanical integrity of potted construction, while avoiding the high entropy
generation of supercritical helium circulation through long, narrow conduits.

The poloidal field system plans to use already manufactured superconductor, the 30 km of 7,000 A con-
ductor from the cancélled MHD Component Development and Integration Facility (CDfF) program,.
This superconductor can probably be run up to 10 kA at the low fields prevailing over most of the PF
system and is more than adequatc for the entire PF system.

The Nb3Sn superconductor is reacted after winding and has a larger void fraction than either the
Westinghouse LCP or M.LT. 12 T magnets. These two factors will result in considerably smaller peak
compressive strain in the conductor and a higher critical curreﬁt densiiy.

Circular magnets have been shown by Bobrov and Schultz [BO81] [BO82] to require less superconductor

and structural material than the constant-tension D concept.

8.1 TF Magnet System Configuration

The TF magnet system reference design includes 36 circular magnets, wound in rectangular cases using the

ICCS superconductor developed for the M.LT. 12 T and the Westinghouse L.CP coils. Each coil is wound in

4 double pancakes, with a maximum number of 11 layers in a pancake. In the two central double pancakes, 2

layers have been removed to reduce the toroidal ripple in the plasma. This concept is illustrated in Fig. 8.1.1.

Each double pancake is potted, in order to ensure the mechanical and clectrical integrity of the coil bundle. The

individual cable-in-conduit conductors have a local helium inventory, which prevents conductor quench. Long

term heat removal from the magnet system is provided by liQuid hetium pool boiling between double pancakes.

The dimensions of the reference TF magnet system are shown in Tables 8.1-1 through 8.1-VI.
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Fig. 8.1.1 al.§o illustrates other features of the toroidal magnet system design. In this design, nitrogen-
cooled thermal shiclds are provided along the walls of the common vacuum dewar enclosing the toroidal mag-
net syslcm; and on the roof and floor. Only superinsulation and vacuum separate the coil cases and the plasma
first-wall vacuum vessel. This thermal insulation concept is unusual, especially on the surface facing the warm
first-wall structure, but is adopted because of space considerations in a high ficld magnet design. The concept

has been successfully tested in the prototype dipole magnets for the Colliding Beam Accelerator [WES81] .

8.1.1 Leads and Header Configuration

The outer scction of the TF magnets in which coolant and electrical connections to the magnets are made
is shown in Figures 8.1.1.1, and 8.1.1.2, while the method of termination fabrication is shown in Figure 8.1.1.3.
The outer wall of a TF magnet dewar is extended several centimeters past the end of the winding pack in order
to provide space for terminations, helium feeds, and intercoil bus and headers.

The atmospheric helium bath and the intercoil electrical leads run toroidally through two common bus and
helium header conduits near the top and bottom of the TF coils, as shown in Figure 8.1.1.4. These conduits also
contain a smaller tube, which is the header for the supercritical pressurized helium feed to the coil conduits.
The entire volume enclosed within the outer coil cases of the TF magnets is bathed in helium, leaked through
holes in the atmospheric helium inlet header.

| Each double pancake is individually vented on either side. Figure 8.1.1.2 shows an interpancake hydraulic
connection and vent line. The pressurized feed is from the inlet manifold into the far double pancake on one
side of the winding pack and out of the other side to the outlet manifold. The feed does not go directly from the
manifold to the coil, but travels up thé vent stack through a Tee and-back down to the cable hydraulic fittings,
in order that all helium valves be outside the coil case in a serviceable location.

The cable hydraulic fittings are shown in Figure 8.1.1.3, which shows the fabrication method of the coil ter-
minations. This method is identical to that being used for the M.LT. 12 T coil [ST82], with the small exception
that a Monel welding adapter is no longer believed necessary, so that the copper sleeve will be brazed directly
to the stainless stecl sheath. The stages in forming a termination are to remove the sheath and the stainless steel
tape around a section of cable, swage a copper tube over the cable, separate the strands and insert a Monel
cooling tube through the middle of the sirands, then swage the copper tube down to a 5 % void fraction,
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squaring it off in a "l‘urk's hcad. The joint is then made by soldering two such lengths of copper terminations
together.

Interpancake joints .are held in place by curved steel retaining pieces, as shown in Figure 8.1.1.2. Each steel
retainer is welded to the outside of the cable leads’ sheaths, near the termination. Pins arc inserted between the
copper terminations and the steel retainer, in order to resist intertermination shear, as a redundant backup to

the solder joint.

8.1.2 TF Conductor Sélection and Description

The TF magnets are wound with the jacketed, cabled superconductor of the type developed by Airco
[SAT79] for use in the Westinghouse L.CP coil and the M.L.T. 12 T winding. The conductor dimensions are
described in Table 8.1-I1. This conductor was selected for several reasons. In order to meet the high field
requirements of the plasma, it was neccsséry to select a high performance superconductor. However, a cost
survey of large superconductor purchases indicated a requirement to avoid adding the cost of a superconductor
development program to the the basic superconductor cost. The survey showed that even in quantities as large .
as those for LCP, new superconductor development could double the cost of superconductor. While a few other
superconductors, tested in small quantities, have demonstrated higher pérformance than this conductor, none
are considered to be fully devcloped at this time. A manufacturer’s quotation confirmed that the specific cost of
a new purchase of this conductor would be less than 3/4 that of the original purchases by either Westinghouse
or M.IT.

The performance requirements of the TF superconductor, when the response to pulsed ac losses and
disruptions are taken into account are quite demanding. For example, an earlier design attempted to take ad-
vantage of already manufactured superconductor from the canceled CDIF program. Operating this conductor
at only 70 % of its original design current, the calculated energy margin of the conductor for avoidance of coil
quench was marginally smaller than the predicted peak energy deposition in the conductor. This behavior is
symptomatic of design with monolithic NbTi superconductor at any temperature. The most significant example
is that of the Tore Supra superconductor, which is only marginally stable against predicted energy depositions
by disruptions, despite immersion in a superfluid helium bath [AY82]. Given some uncertainty in ac loss
modeling and great uncertainty in disruption modeling, it was felt necessary to design to a conservative safety
margin. Furthermore, the goal of an inexpensive experiment is influenced by the ability to use the same rf
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cquipment as that to be used in Alcator C. The lower hybrid current drive cquipment, in particular, improves
in efficiency by 46 '% as the central ficld increases from 8 T to 10 'T, and falls off rapidly below 7 T [PO82], the
central cutoff field at which the launching frequency w = +/Q.. , the gecometric mean of the clectron and
ion cyclotron frequencies. Thus, since 7 T is marginal for high efficiency current drive, it is desirable to design
a system that can guarantee 7 T on axis, and perhaps be run up to 8.5 T. Sufficient structure for 8.5 T operation
is incorporated in the initial design, with the "perhaps” relating only to fundamental uncertaintics as the safety
margin of the conductor vs. disruptions is reduced. The bascline operation has a large, defensible design against
disruptions; after plasma operation has begun, plasma and TF currents would be increased until the empirical
limit of TF magnet stability vs. disruption was established. The maximum possible ficld at the magnet then is 11
T, vs. the nominal, conservatively designed value of 9.1 T, effectively precluding an economical design against
disruptions using NbTi, even in superfluid helium. The reference design would have to be subcooled to 2.5 K in

order to achieve this performance.

8.1.1.2 Alternative Conductor Option

In the past year, a number of superconductor manufacturers have begun to produce moderate quantities
of a new Nb3Sn conductor, using an internal tin process that allows more complete reaction with niobium
[SCB82). Critical current densities in noncopper of approximately twice that of bronze method Nb3Sn have been
reported over a range of magnetic fields and a few hundred pounds of practical conductor have been delivered

- for use in small dipole magnets for high energy physics.

An alternative cable-in-conduit conductor was recently proposed for HESTER, assuming 10° A/cm? in
the bronze region ‘of each internal tin conductor and using 486 0.7 mm strands within the sheath space of
the reference conductor. Because of the high current density, as well as the low copper-noncopper ratio (3:7)
in an individual strand, only 1/3 of the strands contain superconductor, the other 2/3 being pure copper.
In the reference design, all of the strands are superconducting. Because of the smaller number of the more
expensive superconducting strands, the manufacturer’s estimate of the superconducting cable cost for HESTER
is substantially less than that using bronze method conductor [SC82). However, the manufacturer’s estimate
did not attempt to relate critical current density to compaction within a sheath. This correlation needs to be
made before a fair quantitative comparison can be made between the two options. M.1.T. is currently acquiring
samples of the new conductor in order to begin testing its properties for this application.
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8.1.2 Conductor Critical Clirrent

The estimate of conductor critical current is bascd primérily on the test data of Hoenig and Steeves
[HOB82], but also correlates well with data from the Westinghouse I.CP Program [WES0]. Critical current in
subcables of the basic conductor have been tested extensively by Hoenig and Steeves at 4.2 K and a wide range
of magnetic ficlds. Besides temperature and field, critical current is also a first order function of conductor
strain. The dominant cause of conductor compressive strain is differential contraction of the cable and sheath
during cooldown. This effect is itself a strong function of the degree of cable compaction. The relation between

critical current and cable compaction in subcables is shown in Figure 8.1.2.1.

The peak residual compressive strain in the superconductor is lower than that in the Westinghouse LCP
coil and, therefore, the critical current density at any field is higher. The difference is due to a fundamental
superiority of reacting after winding over winding after reacting, which was first discovered in the course of
evaluating the HESTER design. The difference is illustrated in Figure 8.1.2.2. The test data of Hoenig is
superimposed over the test data on the Westinghouse LCP coil [WE80] with the significant difference that
the peak critical current density is at a superimposed tensile strain of 0.7 % for the Westinghouse I.CP coil,
while it corresponds to the zero external strain or zero compaction case for the HESTER conductor. The basic
argument is as follows. The dominant compressive strain in ICCS conductor is typically that due to differential
contraction bétween the cable and the sheath. For the 32 % void fraction of the LCP and MIT 12 T conductor,
this is belicved to be a 0.5 % strain [HO82). If one winds after reacting, bending strain in the conductor is
superimposed on the thermal contraction strain. Since all strands are fully transposed, each strand becomes a
maximally compressed fiber at some position. Tests at Westinghouse suggest that at a void fraction of 32 %,
the bending strain in a cable is 4 that of the conduit. Thus, a 2 cm conductor with a bending radius of 50
cm would have a peak compressive strain of 2 % in the conduit and 0.5 % in the conductor, leaving a peak
compressive strain of 1 % in the conductor, corresponding to a loss of 80 % of the zero strain critical current.
The Westinghouse L.CP fabrication procedure attempts to compensate for this by winding on the activation reel
in the opposite direction from the winding on the coil bobbin, so that the unwinding and rewinding strains
partially cancel. Unfortunately, all LCP coils are Dee-shaped, with a wide range of radii of curvature, so that
exact cancellation is impossible. The process of reacting the superconductor after winding anncals out all of the
bending stresses due to winding. The compressive stress is also less than that in the Westinghouse or the original

8-5




M.L'T. 12 T winding, because the void fraction is 42 %, instead of 32 %.

8.1.2.1 Conductor Stability

The performance of the TF superconductor against ac losses and disruptions is shown in Table 8.1-I11.
The average power dissipation of 26 W is a very small fraction of the total system refrigeration requirements.
The maximum predicted energy deposition in the conductor, due to start-up, is only 3.9 mJ/cm?, less than
the adiabatic stability limit, and orders of magnitude less than the enthalpy of the conductor and helium in a
conductor envelope. The maximum predicted energy deposition in the conductor during a disruption occurs
off the equator on the inside, as it does in Tore Supra [AY82], and is 29 m}/cm?, corresponding to better
than an order of magnitude safety margin vs. the available enthalpy in a conductor envelope between the
bath temperature of 4.2 K and the current-sharing temperature of 5.9 K. As shown in Table 8.1.V, the total
enthalpy per cubic centimeter of metal needed to raise the metal and helium bath of an envelope around the
conductor to the current-sharing temperature is 565 mJ/cm3. The actual recovery energy of an ICCS conductor -
is generally smaller but comparéble to this simplc measure of the energy margin.

Experimental confirmation of the expected energy margin for recovery was provided by Hoenig [HO78],
who heated a 3 m long, 57 strand, Nb3Sn cable with a 1.5:1 copper/noncopper ratio at a temperature of 42 K
and a pressure of 3 atmospheres. At 9 T and 5.8 kA, corresponding to 73 % of critical current and 402 A/mm?
in the noncopper, the entire conductor was heated for 18 ms. With no bulk helium flow, the energy margin was
533 mJ/cm?, increasing to 608 mJ/cm3 at a Reynold’s number of 76,000. These parameters are all very close to
those of the HESTER design. Two transient simulations of HESTER , using SCAN, an ICCS transient recovery
code developed by Arp, showed recovery after a 10 ms pulse over 1.0 m of 445 mJ/cm? and no recovery after a
623 ml/cm? pulse, with no bulk flow, an initial temperature of 4.2 K and an initial pressure of 2.4 atmospheres.

The recovery case is shown in Figure 8.1.2.1.1. -




8.1.3 Heat Removal

Heat genicrated within the TF windings, in particular the heat generated by routine start-up and shut-down
pulses, must be largely removed from the TF coil system, before a new cycle can begin. This may be a limiting
step in determining the minimum time between plasma discharges. In order to remove heat entirely from ﬁ1e
TF system, it must diffuse through the conduit jacket and through the potting insulation into the interpancake

~pool. From there, bubbles must rise through the height of a TF coil.

The thermal time constant of the jacket and insulation can be estimated by using the specific heat and
thermal conductivity of cpoxy at cryogenic temperatures. If a double pancake is heated to 6.0 K, which is the
expected threshold of current-sharing at 9.0 K in Nb3Sn, the calculated heat flux at a temperature difference of
18K b~ctwcen the coil and the bath is 2.25 W/m, while the enthalpy difference in the conduit-enclosed helium
at constant density is 210 J/m. Thus, the initial slope of the energy transfer implics a thermal time constant
at 6.0 K of 92 s. The pressure at constant density at 6.0 K is 11 atmospheres, as opposed to a pressure of 2.4
atmospheres at 4.2 K. If only one part of a pancake were heated, this pressure differential would be eliminated
in far less than 92 s, so we assume isothermal heat transfer along each double pancake. In order to heat the
double pancakes uniformly to 6.0 K, it would be necessary to deposit 2.6 MJ in the windings, which would
cause an instantaneous heat flux into the pool of 28.5 kW. These rathcr'high values contrast with the calculated
values of 2.8 kJ of expected energy deposition per start-up ramp and 224 kJ of expected energy deposition per
disruption. At 5.0 K, the heat flux decreases to 1.0 W/m and- the cnmalpy rise decreases- to 100 J/m, giving
an instantancous time contant of 100 s. At 4.3 K, the thermal time constant has risen to 300 s, implying that
for the reference cycle of 600 s between pulses, the temperature difference between the cable and bath will be
somewhat under 0.1 K. The predicted thermal time constant of 300 s is somewhat long and should perhaps be
reduced in order to compensate for likely debonding and other causes of increased thermal resistivity. However,
it is interesting to note that if helium were circulated through cach double pancake with a total length of 92 at
a velocity of 25 cm/s (the same as the nominal velocity of helium through the Westinghouse LCP conductor
at the Large Coil Facility), it would take 368 s for helium to travel from the inlet to the outlet. The greater
reactor relevance of the stagnant helium design being used here should be apparent when one considers that the

lengths of double pancakes in reactors are usually measured in kilometers.




8.2 Force Caleulations and Stress Analysis

The achievement of a mechanically efficient design of the toroidal field magnet sytem is perhaps the key
engineering problem of the machine. Although not absoluté]y necessary to the machine mission, it is highly
desirable to achieve higher fields on axis than the larger tokamaks being built in the 1980’s, including TFTR,
JET, JT-60, Big Dee and Tore Supra. This goal is desirable in order to allow unique regions of plasma
parameter space to be explored, in particular current drive at high densities, and because of the at least linear
improvement of achievable plasma temperature/pressure for fixed auxiliary power with toroidal field. At this
early point in the‘ design, it would be untrue to claim that the necessary structural efficiencies have been
achieved or that understanding of Qvera]] structural behavior is adequate to know whether it can be achieved.
However, with the achievement of this goal established as the principle mission of the TF magnet system
design, the cngineering effort will be focused on the twin goal of achieving at least 7 T on axis, while supporting
the overturning moments and pulsed losses duc to the highest possible beta plasma discharge.

The structural principles that, it is hoped, will allow a mechanically éfﬁciem design include:

1 Potted, rather than open pool boiling, pancake construction.

2 Use of the most structurally efficient coil shape, i.e. circular. The justification of the belief that circular
coils have greater structural efficiency than, for example, Dee shaped coils is found in Appendix 8.A.

3 A large number of toroidal magnets, allowing the structural concept to approach a monolith as nearly as
possible,

4  High aspect ratio, minimizing the pressure differentials between the inner and outer legs of the coils. This
minimizes the bending and centering stresses due to the departure from solenoid magnet behavior of a

toroidal coil system.

5 Solid intercoil wedges. This is not the most mass efficient concept nor the concept that minimizes pulsed

losses, but it should be the strongest for a fixed volume.

6  Poloidally continuous wedges between every second toroidal field magnet. The creation of two coil
modules greatly increases the effective moment of inertia against overturning. Because of the high ex-
pected power density launching capability, using only rf sources, it is possible to achieve high overall wall
loading with only half of the possible number of ports. However, as explained below, the existence of
vertical ports between every second coil still provides stress relief against the strain incompatibility at the
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- crown of the toroidal structural shell.

8.2.1 Stress Allowables

Although no structural standards have been adopted for the construction of superconducting magnets and
there appears to be a broad consensus that such standards would be premature, the ASME Power Boiler Code
for.Nuclear Power P]ant Components [AS80] has been used for many recent large superconducting systems
designs, such as LCP, EBT-P, FED and INTOR. Barring any specific structural insight that the code is inap-
plicable in a given situatidn, it will be adopted for the HESTER design. The sort of structural insight that
might lead to deviation from the Boiler Code rules might be expected to include shear limitations in composite
bonding materials and strain limitations in Nb3Sn.

ASME Boiler Code limitations are shown in Table 8.2-1. Whichever limit is the most restrictive is taken as
the basis for design. Primary membrane stress intensity is defined as the average (i.c. uniform stress necessary to
achieve global force balance) difference between principal stresses over a cross-section. Primary bending stress _
is the linearly varying component of the stress normal to a cross-section (i.e. for nonlinear cases, the linearly
varying component that would give global moment balance).

Because a detailed fatigue analysis has not yet been performed for each material, an allowable membrane
stress of 420 MPa (630 MPa membranc plus bending) has been selected for the stainless steel structural mem-
bers, including the bobbin, outer plate, case sidewalls, outer leg wedging blocks, wedging bllock pins and
wedging block: bolts, even though the pins and bolts should have higher strength than the larger structural
me_:mbef_s. This conservatism could not quite be obtained in the conductor sheath, as explained in section 8.2.2.
The sheaih strength of the JBK-75 jackets is limited by the weld strengths, which have a yicld strength of 1156
MPa and an u]tima'te tensile strength of 1622 MPa for the GTA weld (SA-982 C) [GO80]. These properties
imply a static allowable membrane stress bof 540 MPa (78.5 ksi). This higher allowable membrane stress is
supported by fatigue tests at Westinghouse, in which a sheath was stressed to 90 ksi for 5,000 cycles with no

yielding or inelastic behavior [WES0].
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8.2.2 Finite Klement Analysis of In-Plane Stress

Finite clement analysis of the toroidal ficld magnet structure was done using the PAFEC stress analysis
code. Three simulations were completed in order to determine the correct and/or desirable boundary condi-
tions for the coil restraints. These simulations were
[1]:  Coil supported by inner bobbin only, with no slip between coil layers. The specification that the coil

is supported ‘by the inner bobbin only, corresponds to the case in which there is a significant weld gap
between the outermost layer and the outside case wall, as was done in the EBT-P prototype magnets
[BA81]. The specification of no slip implies a ﬁerfectly potted coil, with no delamination.

[2]: Coil supported by outer case only, with no slip between coil layers. The finite element analysis showed
that, if the outer case is sufficiently close to the outermost layer (< 0.1 mm), the coil winding will leave
the inside bobbin, and will be supported against in-plane translation cverywhere by the outer case.

- [3]:  Coil supported by outer case only, with no shear between coil layers. This corresponds to an unpotted
case or to a case in which shear stresses were sufficiently large that hardly any bonds survived. Since we
are not contemplating dcliberately unbonded construction, the second and third models represent uppér
and lower bounds on coil behavior. |

The finite element analysis of a TF coil supported by the inner bobbin quickly revealed the undesirability
of designing the coils without positive support from the outer case. Without outside support, the coils lift off 3
~mm from the inner bobbin on the inner leg. Figure 8.2.2.1 shows the membrane tensile stresses in the sheaths of
the first, fifth and tenth layers. The peak membrane stress, occurring in the first layer, near the crown of the coil,
is 570 MPa, vs. an allowable in JBK-75 of 540 MPa membrane stress at 4 K. The radial stress adds another 175
MPa to the membrane Tresca stress, while the potential upgrade to 11 T would increase stresses by another 40
%. Thus, the approach of using self-supporting conductors does not satisfy Boiler Code allowables.

If the coil is potted and there is no gap between the outer case and the coil winding, the winding will
lift off the inside bobbin everywhere and the outside winding will be directly supported by the outer case

- everywhere. In this case, as shown in Figure 8.2.2.2, the peak poloidal stress is reduced to 290 MPa and the

radial compressive stress at the tenth layer is 170 MPa, as shown in figure 8.2.2.3. At the tenth layer, the peak

poloidal stress is only 50 MPa at the inside equator and 140 MPa at the crown. Combined Tresca membrane
stress was not printed out directly by the finite clement code, but is equal to 220 MPa at the inside equator of
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the tenth layer, ZL}S MPa at the crown of the tenth layer and 305 MPa at the inside cquator of the first layer,
all well within the a]lbwable-of 540 MPa, and allowing the possibility of an upgrade to 11 . The radial gap
between the first layer of conductor and the inner conductor varics from 0.08 mm at the outside leg to 0.18
mm at the inside leg, as shown in Figure 8.2.2.4, indicating that the winding pack will lift off from the winding
bobbin, everywhere along the coil. The maximum radial deflection of 0.18 mm is lowest for this case and is
only one-twentieth the maximum deflection of that for the coils supported by the inner bobbin. The shear
stress in the conduit walls due to in-plane loads is shown in Figure 8.2.2.5. These stresses are most severe in the
middle layers, peaking at 30 MPa in the fifth layer. In the ground wrap surrounding the conduit, this translates
to a shear of 4.4 MPa (650 psi). Considering the additional shéar due to out-of-plane loads, considered in the
next section, this may be marginal for epoxy bonds. This consideration leads to the third model, assuming that
the coil is supported by the outer case, but that all layers are free to slip (no bonding). This is not an actual
proposed fabrication method, but represents a limit of coil behavior. The actual stresses in the TF coils should
be intermediate between those calculated in the second and third finite element models. Finally, the primary
poloidal tensile stresses in the case walls are shown in Figure 8.2.2.6. The peak value of 77 MPa appears at the
inside equator in the winding bobbin. These values are low in comparison with the stresses in the conduits and

reflect the ability of a perfectly bonded winding pack to take most of the load.

With the coils supported by the outer case and each layer free to slip, there is no shear in the conduit
walls due to in-plane forces. Similarly, the poloidal tension stresses in each layer are essentially constant over
a turn, as shown in Figure 8.2.2.7. The peak tensile stress appears in the first layer, as before, and is only
220 MPa. The peak radial stress, as shown in Figure 8.2.2.8, appears in the tenth layer at the equator, and
is 180 MPa, as before. The peak Tresca membrane stress in the tenth layer is 285 MPa, only slightly lower
than that in the perfectly bonded model, despite the significantly lower peak tensile stress, because the peak
tension and compression stresses are more "out-of-phase” for the bonded case. The radial gap betwceen the first
layer and the inner bobbin is shown in Figure 8.2.2.9, which shows that the winding separates from the bobbin
everywhere, as it did for the bonded model. The peak gap of 0.195 mm is only slightly higher than the peak gap
for the bonded case. The primary, poloidal tensile stress in the inner, outer and side walls of the coil cold case
are shown in Figure 8.2.2.10. The peak stresscs are low, with the worst spot being 165 MPa at the inside equator

of the inner bobbin. This peak stress is, however, about double the peak bobbin stress for the bonded case.

The finite element analysis as it has been completed does not answer all questions about the structural
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behavior of the TF Jmagnets. Bending in the conduits, buckling and local stress concentrators have not been
addrcssed.. Howe\;er, as far as the analysis goes, if the primary stresses and allowables studied in the finite
clement analysis and the primary plus bending stresses studied in the shell model are indeed the dominating
factors, it appears that one should design for a fully bonded design with winding pack translation supported by
the outer case. If shear stresses must be lowered to allow a conservative design against debonding, increasing
the thickness of the outer case, as will done on the 24 coil Alcator DCT iteration of this design, appears to be a

solution.

8.2.3 Toroidal Shell Analysis

A quick and accurate analysis of stresses in coil cases and out-of-plane structures can be made by using the
thick toroidal shell model of Bobrov [BO81] [BO82]. This model uses the equations from Reissner’s toroidal
shell theory in order to find the solution for the stresses in a thick shell with orthotrop‘ic (i.e. anisotropic in
two directions) properties, acted upon by symmetric (in-plane) and antisymmetric (out-of-plane) forces. The
technique is sufficiently detailed to model exactly the lack of structure in port regions, the discrete nature of .
forces on the structure and thé lack of toroidal symmetry in the ports (i.e. only every second coil pair has
ports between them). The finite difference solution using the Bobrov analysis technique requires less than a
hundredth of the computer time needed by a finite element analysis and less than 1/10 the set-up time, making
it appropriate for parametric analysis and planning exercises, such as the present study.

The results of the in-plane stress analyses are shown in Figures 8.2.3.1 and 8.2.3.2. The primary membrane
stress in the shell in the poloidal (winding) direction varies from a peak of 147 MPa (21.4 ksi) at the inside
equator to a minimum of 116 MPa near the outside equator. The peak stress is 10 % lower than that calculated
by the finite element method for a coil supported by the outer case. The peak stress is 11 % higher than the
average or ideal constant stress. The toroidal shell compressiye stress varies from a peak of 197 MPa (28.6 ksi)
at the equator to 178 MPa (ksi) at the vertical ports in the inside wedge and is nearly constant at 117 MPa (17
ksi) in the outside wedges. The peak primary membrane stress intensity then is 344 MPa (50 ksi) in the case
walls at the inside equator. For 304 LN at 4.2 K, the minimum tensile strength is 1,700 MPa (247 ksi), while the
minimum yield strength is 760 MPa (110 ksi) [RE79]. Using the above figures of material strength, the allowable

_primary membrane stress intensity would be limited by the yicld strength at 73 ksi, but for thick pieces has been
limited to 60 ksi, as discussed in section 8.2.1.
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‘The combined membranc and bending stresses in thc’ outer fibers of the toroidal magnet structural shell
are shown in Figure 8.2.3.2. The combined membrane and bending stress in the poloidal direction has a peak
of 228 MPa .(33 ksi), an increase of 55 % over the peak primary tensile stress. The combined membrane
and bending stress in the toroidal dircction has a peak of 244 MPa (35.5 ksi), an increase of 24 9% over the
primary compressive stress. The combined membrane and bending stress intensity at the outer fibers of the
inner equatorial cross-section is 472 MPa (68.6 ksi), an increase of 37 % over the peak primary stress intensity.
Thus, bending stresses, being less than 50 % of primary stresses have no effect on allowables. This points out
again that the many reactor designs that assumed that the minimization of bending was the sole criterion for
structural efficiency in supérconducting, toroidal magnet systems were making an unjustified assumption.

‘The ratio of peak to allowable stress is marginal for a 2 T upgrade from 9 T to 11 T peak field at the coils.
Since all of the peak stresses occur at the outer fibers of the structure at the inside equator, reinforcement of
that area with a thicker outer case is suggested. A thicker outer case wall would also be helpful in reducing local

centering forces, as discussed below.

8.2.4 Out-of-Plane Loads and Shear Stress Ana]ysis

Out-of-plane loads can dominate toroidal magnet design because of their pulsed nature and because of the
inability of the winding pack to contribute much strength in resisting them. A preliminary evalution of these
loads has been made, again using the Bobrov thick shell analysis [BO82]. '

| The radial »an.d vertical fields at the toroidal field magnet due to the reference high beta, high current
discharge used for engincering sizing (See Ch. 9) are shown in Figure 8.2.4.1. The running shear stress resultant
“due to these forces, using thick toroidal shell analysis, is shown in Figure 8.2.4.2. The shear stresses across the
planes of the case and the winding pack are very low. .Shear stress multipliers in the intercase pins and the

interlayer sheets have not yet been completely determined.

8.3 TF System Heat Loads
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8.3.1 Pulsed Magnetic Ficld Losses

The pulsed losscs in the toroidal field system are very low due to the use of the low eddy and coupling
currents in cabled conductors, relatively low poloidal fields due to the high aspect ratio plasma and the lack of
high clongation or beta experiments, and relatively slow start-up arid ramp down times. As will be discussed in
chapter 11, the losses in the poloidal field magnet system dominate the system refrigeration requirements due to
pulsed losses.

Two methods were used for calculating pulsed losses. When applicable, the test data of Wagner on the
Westinghouse LCP conductor was used. The shorted transformer secondaty approximation of Shen [SH78]
[SH79] was used as a check. Although Shen does not ascribe second-order accuracy to his method, it was
selected because of its ability to handle nested structures, because it does not break down in the transition
regime between full flux penectration and full flux exclusion, it has adequate experimental verification, and
because it is signiﬂcanﬂy easier to understaﬁd than most other methods, especially for complex configurations.
The Shen shorted secondary method, however, only describes diffusive flux penetration effects, such as
transverse and parallel eddy losses and transverse coupling losses. Filament hysteresis losses are straightforward,
while parallel coupling losses are modeled as a macroscopic hysteresis phenomenon with only partical flux
penetration, because of the long decay time of parallel coupling supercurrents. However, since parallel coupling
losses are predicted to be the largest loss component in the superconductor, they require a more sophisticated
analysis, supplemented by experimental investigations. The identification of parallel coupling loss, followed by
transverse coupling loss, as the two largest loss components differs from the implication of the Westinghouse
test data that transverse filament hysteresis losses would be predicted to be the single largest loss term. The
predictions of transverse filament hysteresis losses have been calibrated against test data, but the predictions of
coupling losses are more dependent on the strand insulation concept, since the interstrand insulation selected
for both the Westinghouse LCP cable and the M.LT./Livermore 12 T cable have a relatively low quality
~ coil insulation whose effectiveness in preventing interstrand current is inadequately characterized. M.LT. is
curtently working with Airco to independently develop the higher quality Cu$ strand insulation, benchmarked

at Westinghouse [WES0).
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8.3.2 Conduction and Radiation Losses

Radiation losses in HESTER are high in comparison with conduction losses, because of the absence of
nitrogen cooled radiation shiclds on the inside surfaces of the TF magnets. However, as shown in the summary
of cryogenic losses in Table 11.1.1., radiation losses are less than a fourth of the dominant refrigeration load,
the pulsed losses in the poloidal field system. Radiation losses were scaled from the measured losses in the
dipole magnets in ISABELLE [WES81], which are separated from a high vacuum beam tube by superinsulation
without a nitrogen cooled shield. Confirmation of heat loss performance would be part of the experimental

development program proposed for HESTER.

8.3.3 Joint Losses

The joint concept used for the HESTER/ TF coil system was developed and tested for the M.L.T. ICCS-
HFTF program [ST82]. A 2/3 scale conductor was tested up to 20.9 kA for that program, with a measured joint
voltage of 56 uV at zero field. Extrapolating test data to 25 kA indicates a probable joint voltage of 65 uV in -
HESTER . However, the joint concept to be used in HESTER will have at least twice the contact length of that
tested by Steeves [ST82]. The new concept will be tested in 1983. If there is an average joint voltage of 33 uV
at 25 kA, the total joint losses in the TF system for 36 coils and 3 interpancake joints and 2 lead joints per coil

would‘equal a refrigeration load of 150 W.

8.3.4 Lead Losses_

The selection of the number of leads to be brought out to warm bus is based on the trade-off between low
refrigeration requirements with a low number of leads and low terminal voltage with a high number of leads.
As explained in the section on TF magnet protection, a voltage limit of 4 kV was imposed, leading to a design
discharge voltage of 3.2 kV when 18 c-oils are discharged in series. This design leads to 2 pairs of leads being
brought out to warm bus and 2 pairs of 18 interleaved coils being discharged in parallel. |

The nominal current through the TF conductor is 25 kA, but the coils must be designed for a possible
upgrade to 30 kA. If the original set of leads are designed for 30 kA, approximately 180 1/hr of helium flow
would be required through the 4 leads. If supplied directly by a refrigerator, this would require the same
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amount of power as 550 W of refrigeration at 4.2 K. If the initial lcad design were sized for 25 kA, the helium

requircment would be reduced to 150 I/hr,

8.4 TF Magnet Protection

In the event of a TF magnet quench, the magnet must be discharged through an external dump resistor.
Quench is detected by pressure sensors within each of the double pancakes. The temperature rise in the

conductor is limited to 200 K, while the terminal voltage across a coil dump circuit is limited to 3.2 kV

8.4.1 TF Magnet Protection Circuit

The TF maghet system consists of 2 parallel pairs of 18 coils in series, charged through 2 pairs of 25 kA
leads. Each coil is surrounded by 2 coils from the other pair. When a quench is detected in one coil, all 36 coils
arc dumped simultaneously through 2 independent dump networks. The dump resistor for each series coil set is

125 m2 and is capable of dissipating 200 MJ.

8.4.2 Temperature Rise Limitation

Absolute limits on temperature rise on coil quench include copper annealing at ~ 150 C and damage to
epoxy insulation at ~s 50 C. In most magnet designs, the most limiting failure mechanism may be delamination
-of the epoxy-conductor bond due to thermal stresses. In a potted ICCS winding, delamination should not cause
failure, because there is no place for a debonded insulation to move. However, the avoidance of bond breaking
is still desirable.

If one takes the most conservative basis for design, that there is no compression on the bond from adjacent
conductors and that there is no reduction of conductor current as the coil warms up, and that heat transfer from
helium to the conductor jacket is rapid, while heat transfer from the Jacket to epoxy is slow, a conservative
temperature limit can be calculated. If one assumes that a cryogenic bond between epoxy and steel has a shear
strength of 2 ksi, and that the shear stress developed in the bond is typically equal to the tensile stress developed
in th¢ conductor due to differential expansion, the permissible strain for a G-10 epoxy/glass fiber composite
with a Young’s modulus of 29.4 GPa is 0.5 X 103, corresponding to a temperature rise from 4.2 K to 80 K.
An exact limit cannot be calculated without a three-dimensional transient analysis and good knowledge of the
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statistical properties of the bond. Since delamination should not cause failure, and since case walls, reduction of
coil current and compression on the bond should all reduce the probabilty of bond failure, we have adopted the

more optimistic limit of 200 K.

8.4.3 Voltage Rise Limitation

- The turn-to-turn and layer-to-layer insulation in a cable-in-conduit superconductor is more rugged electri-
cally than an open pool conductor, because a complete ground wrap can surround each conductor, instead
of merely spacers. The voltage rise limitation is based on the Westinghouse LCP verification testing [WE80).
Westinghouse tested several insulating wraps around rectangular copper bars of the same size as the HESTER
conductor. These samples were bent to a radius of 70 cm, coincidentally ﬂ1e average turn radius of the HESTER
windings. The voltage breakdown tests were performed at room temperature in ajr and in vacuum and at 4.2
K in vacuum. The minimum 60 Hz breakdown voltages of kapton, epoxy glass insulation at room temperature
and in air were 15 kV, at room temperature and in vacuum were 11.5 kV and at liquid helium temperature and
in vacuum were 9.2 kV. Since the highest voltage would be applied at the beginning of a coil dump, the voltage
at low temperature is the most limiting. '

The selection of a voltage slightly higher than 3 kV is somewhat arbitrary. The voltage tests indicate that
a somewhat higher voltage could be selected. However, these tests were performed over a small number of
samples. Furthermore, the Westinghouse LCP coil is designed for a dump voltage of only 2.5 kV, so higher
voltages will not be field tested as part of the LCP program. This is particularly important because high
voltage standoff will not be tested at all at hydraulic connections and electrical joints, except where they are

benchmarked by the Westinghouse coil.

8.5 Toroidal Ficld Ripple

Because toroidal magnets consist of discrete coils, instead of a continuous winding, ripple will appear in
the toroidal magnetic field, which can have a delcterious effect on plasma confinement of hot ions. The design
approach to limiting toroidal ripple in HESTER includes the following concepts: |
1. A large number of toroidal magnets, 36 , allows the coil bore to be close in size to the maximum plasma

minor radius, thus using the high performance superconducting magnets in a cost effective manner.
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'l‘ﬁcrc is no warm structure between adjacent magnets, obviating the need for space-consuming thermal
isolation. |

3. Wherever possible, necessary structure is placed external to the sidewalls at the throat.

4. The option of reducing ripple by introducing a notch in the middle of cach TF coil has been investigated.

Contours of constant ripple for a bascline 36 coil case with no notch in the TF coil are shown in Figure
8.5.1. In a broad band between 1.92 <R <2.27 m, the toroidal ripple at the equator is less than 1 %. The contour
of 1% ripple runs between 1.79 m and 2.45 m, corresponding to a minor r(;adius of 33 cm. The contour of 2 %
ripple runs between 1;75 m and 2.5 m, corresponding to a minor radius of 37.5 cm. The constant ripple contours
are nearly circular and véry slightly more clongated than circular. Thus, the maximum ripple at most circular
discharges would be at the equator, but more toward the crest for significantly elongated discharges.

A comparison between the toroidal ripple at the equator with and without the notch is shown in Figure
8.5.2. The principle beneficial effect of the notch is at the high field side of the plasma where ripple is halved,
the effect being second order on the low ficld side. The trade-off between design with or without the ripple-
reducing notch appears to be very close, and thus not very important.
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R mintf
Bma.z tf
WINdpyild
wy n4therm
Wouttherm
ti ncase

tou.t case

t, tdecase
Wyind
Twpboreav
Yinwpboretf
Yinmagnet
Toutcasebore
6Tcaaei n
6Rcaae

Rt fmagbore
Rmi nwp
Rbmazt f
Rl dewar

R2dewar

Table 8.1-1

minimum major radius of the TF magnet, including warm case
maximum flux density at the toroidal field coils

radial build of the conductor winding pack

total width of cold to warm thermal isolation, inside leg

tdta] width of cold to warm thermal isplation, outside case wall
thickﬁess of the inner case winding bobbin

thickness of the outer case closure ring

thickness of the case side walls

width of the winding pack

average bore radius of the winding pack

inner clear bore of the winding pack

inner clear bore of the magnet can or dewar

outer bore of the structural case

inside radial build of the structural case

radial build of the structural case '

major radius of the axis of the TF magnet bore

smallest major radius of the conductor winding pack
maximum field radius of the magnet

major radius of the high field side of the can or dewar

major radius of inside of outer leg of can or dewar
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DIMENSIONS OF THE SUPERCONDUCTING TF MAGNET SYSTEM

1.385m
9.021T
245.1 mm
20 mm

20 mm
14.55 mm
29.10 mm
29.10 mm
184.1 mm
664.4 mm
520.0 mm
500.0 mm
808.7 mm
2451 mm
288.7 mm
2.199 m
1434 m
1.679m
1714 m
2714m




Acaee
Acoil
Aheina
Awp
Je
Acucond
Anoncucon

tgaptf

Dport

Vvac
Aoutgas
Icond
Ndpancakes
Nayers
Nturns
Lscnew

Lact f
NI,y

Table 8.1-1

arca of superconductor required in a coil
area of copper required in a coil

area of insulation required in a coil

.arca of the structural case

total area of the winding pack and structural case

arca of helium and insulation rcquired in a coil

total area of the winding pack, including ground insulation
noncopper critical current density

coppér area of a conductor

noncoppper area of a conductor

clearance gap between TF coils at the equator

maximum inside diameter of port between the TF coils at the equator
volume evacuated by the main vacuum pumps

arca of steel outgassing into the plasma

conductor current

number of double pancakes in a winding

number of layers in a pancake

number of turns in a winding

total length of new superconductor in the TF system

total length of superconductor in the TF system

total number of ampere-meters in the TF system
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DIMENSIONS OF THE SUPERCONDUCTING TF MAGNET SYSTEM (continued)

0.0044 m?-
0.02987 m?
0.0054 m?
0.02484 m?
0.070 m?
0.0108 m?
0.0451 m?
56.02 kA/cm?
1.197 cm?
0.673 cm?
231.6 mm
180 mm |
17.46 m3
191.5 m?
22.28 kA
40

11

88
13.22km
13.22km
294.6 MA-m




Table 8.1-11

lN'l‘ERNALLY COOLED CABLED SUPERCONDUCTOR SPECIFICATIONS

sctype

Jre

Cu — noncu
Senon
Anoncucond
Agcoond
Ain

tjack
Wojack

D,

Dy

Lpf

chablc

Ny

Mt ran

Py,

Pijak

Proncu

Ratran

RRR

superconductor type

helium fraction of the inside cross-section

copper/noncopper ratio of a superconducting composite strand

superconductor/noncopper ratio
noncopper arca of the cable

cross-section area of superconductor in a cable

inside cross-section, available for helium and conductor

jacket thickness

outside jacket width

strand diameter

bronze diameter

filament twist pitch length

cable twist pitch length

number of filaments in a strand

number of strands

wetted perimeter of the cable and conduit
jacket resistivity

resistivity of the noncopper/nonsuperconductor
radius of a strand |

residual resistivity ratio of the matrix

8-23

Nb3Sn ()
0.400
1.700
0.200
67.33 mm?
15.49 mm?
282.7 mm?
1.730 mm
20.80 mm
700.0 gm
4200 um
2540 mm
305.0 mm
2869
486
1.137 m
5000n2 —m
50 n2-m
350.0 um
15




Lhystrav
Lhyspaav
Ledpamv
Ledtranav
.Lcouparav
Lcoutranav
Ltotav

Lcascav

Mt

P, scav

P, scvworst

P, dis,worst

Q

Lt urnt

Lhys padisav
Lhyst rdisav
Led paravdis
Ledt ranavdis
Lcout ranavdis
Lcoupnmvd is
Ltotavd i8
Ecoil
Esyswind

Ea yscasc
Esya

Ecas edis

Es yadis

Ea ysrampdis
Mhyeboitog 1
Micvoitofsdis
P, cond

P, cages

P, avsys

) ‘Table 8.1-111
Pulsed Losscs in the TF Magnet System

average transverse field hysteresis loss/length
parallel ficld hysteresis loss/length

eddy loss/length, parallel field,

eddy loss/length duc to transverse ficld
coupling loss/length, parallel field,,

.averagce loss/unit length duc to transverse coupling

average loss/unit length in the conductor

average loss/unit length in the case

efficiency of ficld pcnetration

average volumetric loss in the metal

worst case cnergy deposition in the metal, start-up
worst case encrgy deposition in the metal, disruption
surface heat flux required to remove the pulsed losses

- loss/turn in the conductor,

average parallel hysteresis loss/length due to disruption
average transverse hysteresis loss/length duc to disruption
average loss/length from parallel ficld eddy currents, due to disruption

average loss/length from transverse field eddy currents, due to disruption

average transverse coupling loss/length, due:to to disruption
average parallel coupling loss/unit length in the conductor
average total loss per unit length on disruption

loss/coil per pulse

loss in all the system’s windings per pulse

 system case losses per pulse

system loss per pulse

case loss due to a disruption

winding pack system loss due to a disruption

winding pack system loss due to a ramp followed by a disruption
system helium boil-off per pulse

system helium boil-off on disruption

average system power in the conductors

average system power in the cases,

average system power requirement
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63.5mJ/m
36.1mJ/m
230ml/m
714 pJ/m
155 mJ/m
111 mJ/m
369 mJ/m
219J/m
99.3(%)
1.97 mJ/cm3
3.89 mJ/cm?®
29.2ml)/cm?
130 mW/cm?
149)

18.0 mJ/m
12.19 mJ/m
202 mJ/m
27.18 m}/m
1431/m
155 m}/m
1.76 I/m
1311
471k]
318k}
7.90k]
791k]
307kJ
312kJ

395¢g

15.6 kg
157W

106 W

26.3 W




sctype
Avoncu |
Acu

B, .

T,
TeNnasn
Tenbasn
Pcu

I)l Te.
Qpp
kcuBT
RU
Vadiabatic
Yglong

q
) tad iacs
tad iac
tisocs

theatTs

Table 8.1-1V
ENERGY BALANCE TERMS: TF SUPERCONDUCTOR

superconductor material type
superconductor noncopper area
coppcf area of the conductor

magnetic flux density

* bath temperature

zcro-cufrent critical temperature of Nb3Sn

current sharing temperature in Nb3Sn

resistivity of copper at the specified field

power dissipation per unit length at the critical temperature

heat flux per unit area into the helium on quench

thermal conductivity of copper at design temperature and field
radius of the minimum propagating zone

adiabiatic longitudinal propagating velocity of a quench
longitudinal propagation velocity of a quench, with cooling,

total heat transferred by nucleate boiling during film establishment
metal enthalpy to current sharing divided by power/length
metal enthalpy to critical temperature divided by power/length
bath enthalpy to cufrent sharing divided by the power per length

characteristic time to heat the copper to final temperature

8-25

Nb3Sn ()
67.3 mm?

119.7 mm?
9021 T
4200K

1001 K

5943 K

933.7 pOhm-m
115.7 kW/m
101.8 kW/m?
1102 W/m-K
8509mm
10.89 m/s
4.700 m/s
8.640 J/m

2965 us

26.59 us
2.500 ms
3.035s




AH, cubcsl
AH, nonbces
AH, nonbesl
AH, metalbesl
AHhebcsl
AHbcal

AH, metalbcsv
AHbcs v
Ach

AH, cul

AH, nonbe
AH, nonbcl
AHh.ebc
AHpepel
AHy

AH, metalbcv
A}-Ibc'v
AHjobo

Table 8.1-V
SUPERCONDUCTOR ENTHALPY MARGINS: TF MAGNETS

bath to current sharing copper energy/length

bath to current sharing change in enthalpy in noncopper

bath to current sharing energy/length absorbed by noncopper

total bath to current shziring encrgy/length absorbed by metal

bath to current sharing change in enthalpy/length in helium
enthalpy/length to raise entire conductor to current sharing temperature
total bath to current sharing energy/volume of metal absorbed by metal
total bath to current sharing energy/volume of metal

change in copper enthalpy between bath and critical tcﬁpcrature
enthalpy/length to raise the copper to the critical temperature

bath to critical change in enthalpy in the noncopper

bath to critical energy/length absorbed by the noncopper

bath to critical change in enthal'py in the helium

bath to critical change in enthalpy/length in the helium
enthalpy/length to raise the entire conductor to the critical temperature
total bath to current sharing energy/volume of metal absorbed by metal
total bath to-current sharing energy/volume of metal

10 % helium boil off energy/volume of metal
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176.031/m

288.3mJ/m
631.8 ml/kg
54.80ml/m
343.1ml/m

76.371/m
2.538 mJ/cm®
564.9 mJ/cm3
2.266 1/kg
2414 )/m
7.650 1/kg
663.4mJ/m ‘
35.14 kJ/kg
286.3J/m
2894 J/m
22.77 mJ/cm®
2.141 J/cm?®
120.5 m)/cm3




Npar
Nieaas
Nseries
Wints
P

IS B

8.1-VICIRCULAR SUPERCONDUCTING TF MAGNET SYSTEM

actual number of parallel discharge circuits

number of discharge leads

total number of serics magnets, during discharge,
magnetic stored energy of the toroidal magnet system
total vertical force on the upper half of the magnet system
total c;cntering force on the toroidal magnet system

total vertiéal force on a magnet

total radial force on a magnet
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20

40

18
369.0MJ
329.7MN
-177.8 MN
9.159 MN
-4.940 MN




S is dcﬁned' as the lesser of 2/3 yicld strength or 1/3 ultimate strength at operating temperature.

Stress Parameter - Ratio
Primary membrane stress intensity <1
Primary membrane plus bending <15
Average shear stress < 0.6
Average shear stress v < 1/3
Compressive stress <02

Table 8.2-1

Material Parameter

Sm

Sm

S, metals

ultimate shear strength, nonmetals

elastic buckling stress

Each of the above limits is multiplied by 1.5 for abnormal conditions, such as 1 coil disabled.
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Appendix 8.A

8.A.1 The Desirability of Circular Superconducting Magnets

Circular magnets have always been the casiest to wind and the easiest to weld, as well as the casicst to

analyze and understand. They have been used in PLT and will be used in TFTR and JT-60. They have becn

used in the small superconducting tokamak T-7, and have been proposed for use in the large superconducting

experiment TORE SUPRA, as well as high aspect ratio toroidal devices such as EBT-P. However, to the best of

our knowledge, they have never been proposed for use in a tokamak reactor or large tokamak test facility. There

are three principal reasons for this:

1

The mistaken assumption that superconducting magnets have no strength in bending has led to a quest
for optimizing the magnet shape, most popularly with the so-called constant-tension D. We will argue
below that shape optimization, driven by the minimization of in-plane bending, is an unnecessary and
harmful concept. |

Small improvements in overall plasma beta, although not in the overall mass of the toroidal and poloidal
coil systems, have been theoretically predicted, and not yet expcrimentally confirmed, for strongly D-
shaped plasmas. The natural harmony of combining D-shaped coils with D-shaped plasmas was irresis-
tible when plasma designers believed that magnet designers required a D and vice-versa.

Cylindrical bucking cylinders have been easier to design for some designers than a system of rings or
intercoil wedging.

Because of the large available space, many designs introduce topological complications, such as poloidal
divertors, internal poloidal field coils and high-side ECRH injection to the tokamak system. The space
available under the soaring arches of the so-called constant tension D shape then becomes necessary and
appears to be unwasted.

The argument in Bobrov’s anisotropic, thick toroidal shell analysis [BO81] [BO82] that shape optimization

is unnecessary is repeated below.
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8.A.2 TF Magnet Shape Optimization: Background

‘The history of shape optimization for tokamak reactors sometimes appears to begin and end with the
discovery by researchers at Princeton [F171] that filaments in pure tension, subjected to a 1/r? force ficld, and
supported against inward centering forces by a stiff cylinder, would take on the now familiar "constant-tension”
D shape. Following this observation, almost every tokamak reactor study has utilized this shape. When pertur-
bations on this shape have been selected [LU77], they are generally accompanied by apologia justifying the
deviation. Some theérctical modifications of the concept which have appeared include the analytical solution
to the bending stresses iﬁduced because the filaments have finite thickness [WE77], perturbations to the shape
because of the nonuniform toroidal field of a finite number of coils [MO75], and the effect of finite compliance
in the bucking post on the optimum shape [0J79].

An obvious deficiency in using a filament model to derive an optimum shape is that the presence of inter-
coil structure to support out-of-plane loads introduces circumferential force terms into the equilibrium equa-
tions, as was first analyzed by Gray ct al [GR81]. Specifically, the equations of equilibirium for an axisymmetric

shell of revolution loaded normally to the middie surface are:

dTl 1 dr

L )+ 2 (8.A1)
T Q ldar .
i R2 + + = TLQ=—q (8.4.2)
and
dG, ldr _
—Q + rda(Gl —G)=20 (8.A.3)

where T and T; are the meridional (poloidal) and circumferential (toroidal) stress resultants, @ is the shear
stress resultant, Gy and G are the meridional and circumferential stress couples, R; and Ry are the radii of
curvature, r is the radius of the hoop circle, s is the meridional coordinate, and ¢ is the normal pressure. The
terms with T in equations (8.A.1) and (8.A.2) are neglected in the filamentary model, but included in Gray’s
model. The Bobrov model also includes Q, the shear stress resultant [BO81]. Gray’s analysis showed that the
inclusion of intercoil structure to support out-of-plane stresses would define a zero-bending shell shape which
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could have a significantly smaller perimeter and much less triangularity than the constant-tension filament
~ shape. Unlike the sfgniﬁcant shape deviations described by Ojalvo [0J79] or Welch [WETS], the deviation
from the D happened automatically, without deliberately adding reaction forces in what might be inaccessible
places. Furthermore, the existence of a zero-bending shell shape suggested that real magnets, such as the LCP
coils, which followed the so-called "constant-tension” D trajectory, might have large bending stresses due to the
incvitable reaction forces in the intercoil structure. In many ways, &e zero-bending shell is just as idealized as
the constant-tension D. The D filament model ignores all intercoil structure, while the constant thickness shell
ignores deviations from constant thickness and models current as being toroidally uniform, which is only a good
approximaton for magnets with Bitter plate construction. In addition, there is an inherent strain incompatibility
at the crown of a "zero-bending" toroidal shell, described by membrane theory, which can be eliminated by
including bending. Stated differently, the greatest weakness of both idealizations is that the magnet structures
are negligibly thick or have negligible moments of inertia, and thus must of necessity be bending free.

The existence of TF coils in the tokamak program of all shapes and sizes raises a more fundamental
question about shape optimization, which is whether shape optimization based on the climination of bending
moments is a valid design criterion at all. The implicit assumption behind this method is that supercbnductihg,
pool-boiling magnets are so flimsy against in-plane stresses that only negligible bending moments are permitted.
While it appears obvious that a pool-boiling coil cannot have the stiffness of a potted coil in the same case, it
is unclear on first principles whether the stiffness limitations of this technology dominate shape selection. The
operational Russian superconducting tokamak T-7 uses circular TF coils, as does the conéeptual design of the
French Tore Supra [AY80]. Hooper [FL81] calculated that the case thicknesses of the TF coils for the Fusion

Engineering Device were determined entirely by out-of-plane loads.

8.B.2 Bobrov’s Results

Bobrov’s thick shell analysis allowed the analytical determination of stress in shapes which have non-zero
bending. Using the example of the Fusion Engineering Device design of 1981, he addressed the question
of whether bending stresses are dominant for realistic case thicknesses and significant deviations from “zero-
bending” shapes. |

The meridian shapes selected as examples were a circle and the "bending free” shell of Gray et al [GR81].
Both shells have dimensions of the toroidal field coils in the 1981 Fusion Engineering Device (FED) described
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in [FL81], i.e., Tin = 2.14 m, 7oy = 10.5 m, NI = 115 MAT, effective shell thickness h = 0.66 m
and a coil case thiékncss 0.08 m. Figure 8.B.2.1 shows the meridians of the circular and "bending free” shells
analyzed, along with that of a Princeton D. These analyses were performed twice [BO81] [BO82], with the more
sophisticated model {BO82] including out-of-plane forces and discrete currents in the shell.

The results of the latter analysis are presented in Fig. 8.B.2.2 and Fig. 8.B.2.3. Figure 8.B.2.2 shows
the distribution of the effective meridional and circumferential membrane stresses in the coils and intercoil
structures of both shapes. The effective meridional and circumferential bending stresses in the extreme fibers
of the structural elements are as shown in Fig. 8.B.2.3. For the circular configuration the primary tensile stress
at the inner leg at the equator is 151 MPa while the peak bending stress is 54 MPa. For the "bending free"
configuration, the primary tensile stress in the inner leg at the equator is 139 MPa, while the peak bending stress
is 66 MPa.

This demonstrates that if the finite thickness of the magnet structure is accounted for the "bending freg"
configuration proposed in [GR81] has bending stresses which are proportionally as large as the bending stresses
in the circular configuration.

Since the total upward force on the upper half of the coil system must be

l‘o(N I )2 Tout |
Tout 39
4ir In Tin ( )

F, =
or 2122 MN, the theoretical minimum tension is 1061 MN in the inner leg, giving an average stress of 120 MPa
in an ideal constant tension coil. Thus, the tensile stress in the inner leg at the equator for a circular coil is 1.26
times the theoretical minimum, while the tensile stress for the "bending free" configuration is 1.16 times the
theoretical minimum. The primary stress in the "bending free” shape is 8.5 %% smaller than that in the circle,

while the perimeter of the "bending free” configuration is 18 %% greater than that of a circle, implying that the

circular configuration requires less mass for a given set of stress allowables.

8.B.3 Discussion

If circular magnets have lower mass than constant tension D or zero-bending shell shaped magnets before
out-of-plane forces are considered, there will be no trade-off at all, once they are. The current required in
external poloidal field magnets increases more rapidly than r, the poloidal radius, while the moment arm of the
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out-of-plane forccs‘incrcases with coil height. Thus, there is a very high power dependence of both torsional
moment and poloidél ficld energy on the height of the toroidal field coil meridian. The ability to drive flux
through the narrow reactor center ohmically will improve as the inner legs open up into a circular shape. A
ring or wedged support system will allow ohmic and poloidal coils with smaller major radii than the machine
supports to the building to be simply removed upward and downward, ag proposed by Brown [BR82], with no
requirement for joints or displacement of machine structure. The replacement of high arched TF coils with
circular coils propagates through the rest of the reactor system in such a dramatic way that it can easily halve
the overall mass of a fokamak reactor, as suggested by an earlier reduced straight-leg concept by Brown [BR81]
and to be proved by the éuthors in a subsequent design study. The reduction of the TF coil meridian, far from
being an obscure theoretical issue, is probably the only way to significantly reduce the size of a commercial °
tokamak reactor, along with a solution to the simultaneous radial removal of toroidal field coils and blanket-

shield structure, having more importance in our opinion than the improvement of toroidal beta.
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9.0 The Poloidal Ficld Mag;nct System

The poloidal ficld magnet éystcm is a conventional set of ohmic transformers and cquilibrium field trans-
formers. There is, of course, no fundamental distinction between these two sets of coils, except that the ohmic
transformer power supplies are programmed independently from those of the cquilibrium coil supplies, such
that the ohmic system controls plasma current, while the equilibrium coils control position. These functions
are independent but not orthogonal, since increases in the vertical equilibrium ficld also increasc the plasrﬁa
current, Shaping experiments being considered may use some of the coils normally used for control of plasma
current to create elongated or triangular plasmas.

The poloidal ficld magnets could be cither normal or superconducting without any substantial effect on the
overall system cost, but superconducting magnets have been selected for the preconceptual machine because of
their lower recirculating power and their greater relevance to tokamak programmatic requirements. Although,
if all goes well, the ohmic transformer may no longer be required. at the end of the HESTER experimental
program, an ohmic transformer with a very large volt-second capability has been included. This allows a broad
range of long pulse experiments, even in the absence of current drive, and including a class of experiments
with partial current drive, reduced electric field and very long pulses. Perhaps most significantly, the ohmic
volt-second swing of 35 V-s allows an ohmically driven pulse length at all temperatures, which is an order of
magnitude higher than the classical magnetic diffusion time. For the first tfme, this will provide unambiguous
differentiation between plasma behavior in the flux-conserving and magnetic steady-state regimes. Even if
current drive should be wholly successful, the highest ion temperature and pressure experiments would use all
available high voltage regulated supplies to drive the ICRF sources, so current drive would not be used in these

important shorter pulse experiments.

9.1 The Equilibrium Field System

The equilibrium ficld coils have been designed on the basis of a low beta and high beta MHD equilibrium.
The low beta equilibrium is for the maximum nr discharge described in section 3. The high beta equilibrium is
for the same plasma parameters, but with the toroidal beta increased to 1.5 %. This is actually somewhat higher
than the highest beta expected in the high beta experiment described in section 4, but allows room for upgrade
by sizing the EF system, the TF system intercoil structure and the refrigerator pulsed loss heat removal system

9-1




Ll

for the more demanding requirements of a higher beta discharge. The positions and currents in the EF system
coils are listed in Table 9.1-1. Several MHD equilibria have been obtained, but the equilibrium ficld system has
only been sized on the basis of two discharges that appeared relatively attractive from the point of view of good

plasma pressure with low total EF system ampere-turns and ampere-meters.

9.2 Ohmic Current Magnet System

Since the principal mission of the HESTER experiment is to provide a testbcdv for very long pulse dis-
charges, the ohmic traﬁsformer is designed to provide a larger number of total volt-scconds. Although it
is probably possible to design a lower hybrid steady-state drive with a relatively high degree of confidence,
the large ohmic drive adds considerably more flexibility for high density discharges, current drive assisted
discharges, and auxiliary power-limited discharges. The maximum number of volt-scconds for a double-swung

ohmic heating transformer, 35 V-5 , is considerably larger than that for other comparably sized tokamaks. The

ohmic flux and voltage requirements of the plasma are summarized in Table 9.2-1. For an ohmic discharge ‘

with a predicted resistive voltage of 2 V , about 11.9 V-s are required from the ohmic heating transformer,
after which a flattop discharge of 11.5 s is possible. For a high temperature discharge, for example a peak
central electron temperature of 10 keV, the flattop discharge time could be extended to 120 s. For the slightly
elongated, moderated beta discharges used for poloidal magnet sizing purposes, the inner »elongating EF coil
largely cancels the volt-second contribution of the outer, radial equilibrium EF coil, so that the contribution of
the EF system to the overall flux requirement of the system is small.

The currents and positions of the ohmié heating coils are shown in Table 9.2-I1. The ohmic heating system
is divided into a central solenoid and an inner and outer coil pair in the same region as the inner and outer
equilibrium field co@ls. The ohmic coils in the central solenoid are subdivided into 5 independent coils, because
of the current limitations of the superconductor and the voltage limitations of unpotted, pool-boiling magnets.
The current distribution in the three OH coil regions is selected to minimize field leakage into the plasma

region.




9.3 Poloidal System Scenario

A scenario of coil and plasma parameters vs. time has been developed for the higher beta discharge
described above. Ideally, the sizing of components should be based on all of the different types of planned
experimental discharges, but no tokamak design to our knowledge has ever been able to either model all pbs-
sibilities or absorb the results of such models at the conceptual design level. This capability is currently being
built into the TOKSYC tokamak system analysis code [SC82]. It is felt that a discharge at the machine limits
of beta and current will come close to defining the requirements of the poloidal ficld system. A scenario for a
highly shaped, probably lower performance plasma should also be developed.

The plasma and poloidal system scenario has many purposes, being used for the selection of poloidal
magnet power supplies, pulsed refrigeration losses, and electromagnetic force and stress analysis, as well as
influencing the selection of auxiliary power levels. A possible set of voltages and currents for each coil in the
poloidal field system is shown in Figure 9.3.1 for the EF system and Figure 9.3.2 for the OH system. This
possible set fits the fixed ampere-turn and volt/turn requirements of the scenario. The sclection of the operating
current and the number of turns per coil is based primarily on the constraints that a maximum limit of 10 kA
should be placed on the CDIF conductor, in order to be relatively close to c'ryostablc operation at low ficlds,
and that current be limited to 70 % of critical current at higher ficlds. At higher fields, the conductors are
also constrained to 7,000 A, in order to assure cryostable operation, since the conductors operating in higher
fields are the most likely to experience normal events. Since thé CDIF conductor has not yet been tested for its

behavior in a pulsed field environment, these criteria will probably have to be revised.

9.3.1 Force Scenario on the PF Magnets

The PF magnet currents in reference scenario above cause a time history of radial and vertical forces 6n
each of PF coils. This time history is shown in Figures 9.3.1.1 and 9.3.1.2. As can be seen, the highest forces are
usually, but not necessarily at the end of the discharge flattop. A common problem in magnet structural design
for off-normal conditions is that forces can be in the reverse direction from those of their normal operating con-
ditions, requiring in particular adequate structure against both radially inward and radially outward deflections.
In a complex tokamak scenario, this phenomenon can be seen during a normal discharge, as occurs in coils 2, 4,
12 and 13. Similarly, vertical forces change direction in the course of a normal discharge for coils 1, 2, 3, 12 and
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13. Axial forces on the ohmic hcating central solenoid coils are only significant on the upper and lower outer
modules. The radial forces on each of the S modules are nearly identical. Without doing a comprehensive fault
analysis or a consideration of all possible types of plasma discharge, it is clear that all coils will require relatively

stiff restraints against motion in all four case wall directions.

9.3.2 Poloidal Magnet Power Conditioning Equipment

Because of the absence of resistive power requirements in superconducting coils, the power conditioning
equipment in use on Alcator C will be largely adequate for the poloidal magnet system of HESTER. The
currents and voltages selected above would have to be changed somewhat in a final design for an optimum fit
to the available power conditioning equipment at M.L.T., shown in Figure 9.3.2.1 in the configuration in use on
Alcator C. The rectifiers in this set of equipment can be upgraded to steady-state operation by increasing the
water flow to the thyristor collector heat sinks. Rectifier-transformers can be operated at short pulse currents up
to pulse lengths of about twenty seconds, as shown in Figure 9.3.2.2. IFHESTER achieves full power operation
for longer pulse lengths, new transformers would be purchased.

The Alcator C rectifier set is adequate for the needs of the above scenario, if the OH system is discharged
passively into switched resistors. If active control is required during the first half of the OH cycle, two new
modules must be added to the eight already available.
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Table 9.1-1
CURRENTS AND POSITIONS OF EF COILS

major radius of the first EF coil
height of the first EF coil
total number of ampere-turns in the first EF coil on discharge 1

total number of ampere-turns in the first EF coil on discharge 2

major radius of the second EF coil
height of the second EF coil
total number of ampere-turns in the first EF coil on discharge 1,

total number of ampere-turns in the second EF coil on discharge 2,

plasma major radius for discharge 1
plasma major radius for discharge 2
plasma current for discharge 1

plasma current for discharge 2

flux linkage between EF1 and the first plasma

flux linkage between EF1 and the second plasma

flux linkage between the second EF coil and the first plasma discharge
flux linkage between the second EF coil and the second plasma discharge
EF system contribution to the plasma inductive volt-seconds for an ohmic discharge

EF system contribution to the plasma inductive volt-scconds for a high beta discharge

number of ampere-meters in the EF system

total number of ampere-turns in the EF system

9-5

2915m
715.0 mm
-354.7 KA-T
-413.7kA-T

1495 m
700.0 mm
630.0 kA-T
731.0kA-T

2033 m
2.082m
817.0kA
1.190 MA

-1.023 V-s
-1.257 V-s
1.208 V-s
1.388 V-s
368.3mV-s
262.2mV-s

28.89 MA-m
2289 MA-T




q)teu

q)total

Table 9.2-1

OHMIC FLUX AND VOLTAGE REQUIREMENTS

plasma major radius

plasma minor radius

flattop resistive voltage

plasma inductive volt-second requirements

flattop time

loop voltage required for initiation

resistive volt-seconds during start-up

resistive volt-seconds during flattop

total resistive volt-second requirement of the plasma
total volt-second requirement of ohmic start-up

total volt-second requirecment of the plasma

2091 m
3123 mm
1835V
8474 V-s
8.500s
105.1V
3.390 V-s
15.60 V-s
18.99 V-s
11.86 V-s
27.46 V-s




Zyoh
Z2oh

Njoh

Table 9.2-11

CURRENTS AND POSITIONS OF THE OH COILS

OH coil number

inner major radius

outer major radius

lower height

upper height

ampere-turns in the i-th OH coil
OH coil number

inner major radius

outer major radius

lower height

upper height

ampere-turns in the i-th OH coil
OH coil number

inner major radius

" outer major radius

lower height

upper height

ampere-turns in the i-th OH coil
OH coil number

inner major radius

outer major radius

lower height

upper height

ampere-turns in the i-th OH coil
OH coil number

inner major radius

outer major radius

lower height

upper height

ampere-turns in the i-th OH coil

overall current-density in the i-th OH coil

1
955 mm
1240 m
595.0 mm
991.6 mm
147 MA-T
2
955 mm
1240 m
198.3 mm
$95.0 mm
147 MA-T
3
955 mm
1240 m
-198.3 mm
198.3 mm
147 MA-T
4
955 mm
1240 m
-595.0 mm
-198.3 mm
147 MA-T
5
955 mm
1240 m
-991.6 mm
-595.0 mm
147 MA-T
13 MA/m?




N Iohtatal

N Imohtotal

Table 9.2.11

OH coil number

inner major radius

outer major radius

lower height

ubpcr height

ampere-turns in the i-th OH coil
OH coil number

inner major radius

outer major radius

lower height

ﬁpper height

ampere-turns in the i-th OH coil
OH coil number

inner major radius

outer majdr radius

lower height

upper height

émpere-tums in the i-th OH coil
OH coil number |

inner major radius

‘outer major radius

lower height

upper height

ampere-turns in the i-th OH coil

number of ampere-turns in the OH system

number of ampere-meters in the OH system
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| CURRENTS AND POSITIONS OF THE OH COILS - CONTINUED

6

1.527m
1.738 m
839.2 mm
1.051m
1.341 MA-T
7

1.527Tm
1.738 m
-1.051m
-839.2 mm
1.341 MA-T
8

2.852m
2979m
773.8 mm
900.5 mm
482.1 kA-T
9

2852m
2979 m
-900.5 mm
-773.8 mm
482.1 kA-T
7.364 MA-T
46.27 MA-m
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10.0 RF Hcating Electrical Equipment

The radio frequency (RF) clectrical equipment in HESTER is a straightforward simple extension of the
RF cquipment already in use on Alcator C. In particular, the lower hybrid heating and current drive and ion
cyclotron resonance heating equipment use the same frequencies as the Alcator C cxperiments. A limitatioﬁ in
utilizing the Alcator C equipment fully is the decrease in the peak available magnet flux density from 14 T to 7
T. This limits the ICRH experiment to second harmonic proton heating. The Alcator C ICRH experiment also
plans to heat protons at the second ion cyclotron harmonic frequency, but the magnet engincering safety factor
for the Alcator C experiment is much greater. Within accessibility limits, discussed in chapter 5, the efficiency
of lower hybrid current drive is primarily a function of parallel phase velocity which can be better controlled
at a high frequency, allowing sixteen parallel waveguides within the ai«'ailable horizontal port space of 24 cm.
It remains to be determined whether the ficld Iimitations of HESTER will lead to suboptimal current drive

efficiency, as discussed in chapter 6.

10.1 The Lower Hybrid (C-Band) Microwave Delivery System

The C-Band delivery system consists of high voltage transformers and rectifiers, series regulators, klystrons,
circulators, microwave waveguide plumbing including power splitters and instrumentation, and internal,
reduced width waveguides.

High voltage regulated power supplies in Alcator C are shared with the ICRF power delivery system
described below. An option being considered for HESTER is the addition of unregulated power supplies for
the ICRF transmitters, in order to permit simultaneous operation of lower hybrid and ICRF equipment at low
cost. The regulators are supplied with rectified power from 4 rectifier-transformer tanks with 2 series rectifiers
in each tank. Each tank is capable of providing the regulators with 58 kV and 16 A. Only 11.5 kA is provided
to the regulators in actual operation because of current limitations in the C-band klystrons. The oil tanks are
uncooled and would have to be derated by a factor of 2 for a 10 s pulse and by a much larger factor for
cw operation. The addition of external cooling circuits for long-pulse operation in HESTER would be much
less expensive than complete replacement of the rectifier-transformer sets, but tests are required to determine
whether pulsed ratings can be duplicated in longer pulse operation. Under normal operating conditions, the
voltage passed by the regulator is down to 46 kV, so that the plate power delivered to a klystron is 46 kV x 11.5
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A = 529 kW. Since the gzﬁn of the klystrons is 45.7 db, the power requirement of the input ports is negligible.
In a full power lower hybrid experiment on Alcator C, 16 klystrons will be driven, providing 4 MW of RF

power and requiring 8.46 MW of regulated power and 10.7 MW of unregulated dc power.

10.2 Fxisting C-Band Equipment

The Alcator C microwave system can deliver 2.6 MW to the edge of the plasma. The basic RF drivers are
16 4.6 GHz klystrons, each capable of 260 kW of RF output. These klystrons are capable of delivering 260 kW
cw, so no derating of the tubes is planned for the long pulse current drive experiments. The cost of 17 klystrons
for the project was $1.13 M. The microwave delivery equipment includes regulated power supplies, circulators,
waveguides and microwave electronics. Each klystron is followed by a filter and a circulator. The insertion
losses of the filter and the circulator are 0.1 db apiece, reducing the power delivered to the waveguides to 158

kW per klystron, or 2.6 MW for the system.

10.3 New C-Band Equipment

The HESTER experiments require twice the power of the Alcator C system in order to test a broad range
of current drive and auxiliary regimes. If waveguides and windows have to be derated by a factor of two or
four because of the long pulse requirements, the cost in additional windows, power splitters and dircctioné]
couplers will cancel the cost savings of using existing tubes and of using a window/launcher array concept
which is already developed. The Alcator C and Alcator A delivery systems have achicved significantly greater
power densities than the microwave delivery systems of oiher tokamaks. The Alcator A waveguides achieved
8 kW/cm? with the windows close to the plasma and the ECRF layer pressurized and 4 kW/cm? with the
windows far from the plasma and the ECRF in vacuum. Alcator C has duplicated the power densities of Alcator
A with the windows close to the plasma. FT has claimed power launching densities of 6 kW/cm? at 2.45 GHz
through windows and waveguides also believed to be at cryogenic temperatures during a discharge [AL82].
Most tokamak experiments experience conditioning-like breakdown at power launching densities on the order
of 1 kW/cm?. In a noncryogenic environment, 2.5 kW/cm? has been reported on JFT-2. Since multipactor
breakdown occurs at higher power densities for higher frequencies and is also suppressed by low sccondary
electron emission, such as is characteristic of metals at cryogenic temperatures, the reason for the superior
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performance of the {\lcamr C windows and waveguidcs is not entirely understood. According to Schuss {SC82],
a half wavclength ceramic window, identical topologically to the Alcator C window, was tested with the Alcator
A supply at 2.45 GHz, to a power launching density of 8 kW/cm? with 10-20 ms pulses at room temperature.
The load side of the wihdow was vacuum, while the source side was dry, unpressurized nitrogen. Windows have
achieved 8 kW/cm? into vacuum. It is possible to test the limits of wave launching through warm windows
into the Alcator C plasma, although this has not yet been done. The design of HESTER includes cooling
passages that allow the circulation of liquid nitrogen as a last resort insurance that adequate wave launching
density can be obtain.ed. Another option being considered in order to reduce the cost of launcher arrays is to
increase the width of theAindividua] waveguides. This permits more efficient waveguide launching with fewer
waveguides overall, although lower waveguide losses may be more than balanced by a loss in control of the
launched wave spectrum. In particular, the broader waveguide limits the maximum parallel index of refraction,
which is probably not too harmful for current drive, but probably limiting the range of heating experiments for

which penetration can be achieved.

HESTER has adequate port space to perform combined ICRF and LH experiments, designing even to
the relatively pessimistic assumption that only 2.5 kW/cm? can be achieved. Unfortunately, a hardware cost
analysis shows that at this launching density, the RF system cost is dominated by the cost of launching grills,
windows, power dividers and associated instrumentation. A compromise design goal of 4 kW/cm? is selected,
requiring proof of principle experiments. Tests into plasma with room temperature waveguides and window
have, however, not been done, so that present results are encouraging but not definitive as to whether HESTER
can achieve high launching densities for long pulses at noncryogenic temperatures and possibly somewhat
reduced frequency. Since breakdown limits for long pulses are frequently associated with breakdown between
the waveguide and windows, the windows could be placed outside the ports and perhaps before the power
splitters in order to limit the power density through the windows and improve the accessibility of cooling.
This places the ECRF layer in vacuum. Although this has been an area of concern that led to the selection
of pressurized ECRF layers in Alcator C and PLT, a review of the generally ambiguous operating history of
tokamaks [SC80] revealed no evidence that electron cyclotron resonance enhanced breakdown has occurred in

tokamaks at power densities lower than 4 kW/cm?.

The assumed achievable power density through the HESTER waveguides gives an overall system require-
ment for 480 individual waveguides, arranged in groups of 16 waveguides in a horizontal grill in a vertical
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stack of 5 grills. One port would then be capable of launching 1 MW into the plasma. Since the Alcator C
scaling employed in Chapter 5 suggests a requirement for a launched power of 6.0 MW | 6 will be devoted to

lower hybrid wave launching.

If the same system efficiencics are achicved as for the Alcator C system, then the klystron tubes will have to
deliver 13.4 MW and 23 MW will be required from cither the utility line or the on-site alternator. There is a
possibility of obtaining more efficient klystrons in order to reduce the power requirements and the cost of high
Voltagc regulated power. The klystrons being used by M.LT. in the Alcator C experiment have a plate efficiency
of only 45 %. Klystrons in a lower frequency range than those used in Alcator C have been developed with

higher efficiencies.

Another possibility is that of using developmental tubes, as was done for the neutral beam sources of all
of the major neutral beam injection experiments, the RCA 301A switch/regulator wbes for the TFTR neutral
beam power supplies and the Varian 200 kW gyrotrons for EBT-I and ISX-B. At Stanford, a 500 kW cw tube
was developed for PEP at 353 MHz with an overall efficiency of 70 % [KO77]. A new generation of 500 MHz
klystrons was developed by Valvo, Hamburg for the PETRA Storage Rings at DESY [MU81]. The klystrons for
the A storage ring were 540 kW cw tubes, operating at 60 % efficiency. If klystrons were replaced by smaller but
more efficient crossed-field amplifiers, as proposed by Schultz [SC79] and adopted by the STARFIRE design
[BABO], less RF power conditioning equipment would be required. As ah cxample of the system benefits that
might accrue from a tube development program, in 1964 Skowron and Brown demonstrated a crossed-field

-amplifier which developed 400 kW cw at a frequency of 3 GHz, a gain of 9 db and an overall efficiency of 72 %
[SK64]. The electronic efficiency of the tube, exclusive of power dissipated at the cathode, in the straps, and in
circuit losses, was at least 80 %. At the time that DOE's super power tube development program was canceled,
the same design team at Raytheon was proposing to build a 1 MW, S-band tube with an overall efficiency of
85 %. Since the dimensions of a tube are essentially fixed by the frequency, both power and efficiency tend
to go up together, since vane dissipation is usually the power limiting factor for cw operation. Benchmark
performance of the above historical prototype tubes indicates the probable success of a tube development
program which would almost pay for itself through the reduced cost of regulated power supplies in HESTER ,
and could greatly enhance the pcrfdrmance of any lower hybrid current drive upgrades in TFTR, JET and JT-
60. However, any development program would have to be compatible with the construction and cxperimental
schedule of HESTER .
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10.4 Lower Hybrid Launching Array

The lower hybrid launching array concept is shown in Figure 10.1, with the number of waveguides
consistent with the larger port size of the competing 24 coil option for HESTER. The internal and external
dimensions of each individual waveguide are identical with those of the Alcator C grills. Each waveguide is a
seamless, 304 stainless steel case, internally coated with silver to prevent excessive RF losses in the relatively
long waveguide run within the port flange. Each row of waveguides is cooled and partially supported by top
and bottom steel plates, which are themselves supported from the horizontal port flange and in-port mounting
brackets. The BeO windows are placed 10 cm back from the plasma to avoid any significant particle deposition,
but are inside the ECRF layer. Each window is 1.6 cm thick, corresponding to half a wavelength in beryllia.
The waveguides fan back radially, so that there is adequate space between waveguides to bolt the adapter flange
to the row support flange between each individual waveguide, preventing possible arcing between flanges.
Each row is positioned with the aid of an array flange, radially inside the row ﬁaﬁges, which permits a row of
waveguides to be removed individually. Outside the port area, standard adapters are connected to the adapter

flange and the waveguides broaden to standard C-band waveguide.
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10.4 Fnginecring Aspects of the ICRF Heating Fxperiment

The outstanding featuré of the ICRF heating experiment is that most of the equipment necessary for 10
MW of ICRF injection at the proton second harmonic frequency is already on-site at M.I.T. and will be largely
wasted without the HESTER experiment to utilize it. This equipment was obtained as surplus, four yéars
ago, from the United States Air Force, when the radar transmitter system deployed in Shemya, Alaska was
dismantled. The useful parts of the system were acquired ny the Department of Energy and then assigned
to M.LT. for use in ICRF heating on Alcator C. The first ICRF heating experiment using this cquipment
is scheduled for early in.1983. Transferred items included amplifier chains, coaxial transmission lines and
misccllaneous RF and electrical components. Selected RF components from other USAF radar stations were
also added at a later date to the Alcator C system. The power supplies, configured for high-power, short-
pulse operations were unsuitable for experimental purposes and Wcre replaced by new high voltage regulated
supplies, used on both the ICRF and lower hybrid heating experiments on Alcator C. As explained below,
these regulated supplies will provide half of the required power for HESTER . A full line of RF diagnostics
and control instrumentation were also purchased for the Alcator C experiment, which can also be utilized on
HESTER . ‘

The VHF transmitters at M.I.T. employ RCA 6952 tetrodes, which can be run for 10 s with a plate dis-
sipation of 500 kW and an cxpected overall efficiency of 60 %, giving an available RF output power of 750
kW/tube. Air Force test logs indicated that thirteen of these ‘tﬁbes are in perfect condition and can be run to
full power. Twelve cabinets are available, each with output resonators that permit operation at 200 MHz. Only
the two tubes to be used in the Alcator C heating experiments currently have driver amplifiers attached. The
other 10 would require new drivers, such as one provided by EIMAC which would cost $5 per tube, along with
another $5 per cabinet for cabinet modification and mounting.

The Y676A high voltage regulator tubes used for both the lower hybrid and ICRF heating experiments on
Alcator C can pass 100 A at 25 kV steady-state, according to the manufacturer’s curves. Therefore, 8-10 MW
of regulated dc power is available for a long pulse experiment. If all 9 MW of RF power is transmitted to the
plasma, four new regulated power supplies would have to be purchased. However, the purchase of new supplies

could conceivably be postponed until initial success is achieved, heating at 4 MW.
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Component/ No. of  Power. Handling Power Handling Power Handling
Subsystem Units (100 ms) (10s) CW)
Rectifier/ 4 tanks 58 kV X 64 A 58kV X 2 A 0
Transformer 8 rectifiers = 3712 kW, max = 1856 MW/tank
58 kV X 48 A, nom X 4 = 742 MW/syst
= 2,784 kW, nom X 4 = 11.1 MW
Y676A 46 kV X 115 A P; = 100 kW Ps = 100 kW
Regulator 16 = 529 kW/tube I = 100 kW 112 kV = 833 I =83A
(High V) X 16 = 846 MW P =383 kW X 16 = 61 MW
Y676A 2kV X 33 A =726 kW Pz = 100 kW P; = 100 kW
Regulator -- X 12 = 87 MW I = 100 kW/5 kV = 20 A I1=20A
Med V) P=2KkV X 20A =440 kW X F, = 440 kW/tube
16 = 7.04 MW X 16 = 7.0 MW
RCA 6950 12 1.0 MW, «f 750 kW, 1f 300 kW, of
triodes X 4 = 40 MW X 4 = 30 MWW X 4 = 12 MW
klystrons 16 250 kW 250 kW 250 kW
1 spare X 16 = 4 MW
circulators 16 244 kW X 16 = 39 MW
filters 16 238 kW X 16 = 3.8 MW
External 64 209 kW/wg
waveguides X 16 = 334 MW
Internal 64 47 kW/wg
waveguides 3.0 MW/64 wg 700 kW/wg 700 kW/wg
vhf 200 ft
coax 9"
vhf 1
antennas
measurement &
control
vhf, 2041 3 82 kW 82 kW 82 kW

tetrodes
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) Original Replacement

Input Efficiency Cost Cost
Requirements %) (K$) (K9$)

$ 1245 K $ 278 K/tank

(3 rect, X FFMR, modulators)

$ 185 K/tank

+ $ 230 K/modulator
58 kV X 115 A 793 $ 180 K/1 + $ 86 K/modulator
= 667 kW/tube $ 50 K, rehab
X 16 = 107 MW /4 modulators
27kV X 33 = 815
= 891 kW/tube
X 16 - 143 MW
I X 2KV X BBA 60 0 $ 200 K/tube (RCA
+ 1 X 22 kV X 33 A/driver estimate, includes driver)
= 218 MW/tetrode
(1.25 MW @ 750 kW)
600 kW/driver
46 kV X 12 A $ 66 K/1 $ 100 K/klystron
= 552 kW
X 16 = 883 MW $ 113 M/17
250 kW 97.5% $ 5 K/circulator $ 7.5 K/circulator
X 16 = 4 MW $ 80 K/16
244 kW/filter 97.5%
X 16 = 39 MW
238 kW/wg 9%0% $ 125 K/wg $ 125 K/wg
X 16 = 318 MW
52 kW/wg 90%
X 64 = 334 MW

05 db/200 ft
$ 20K $80 K
70emid X 17ecm X 4 am

$ 5 K/wg $ 7 K/waveguide

15kV X 10 A 55% -- $ 10 K/tube
10-11

= 149 kW/tube
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11.0 Cryogenic Refrigeration System

The cryogenic refrigeration system provides cooling for all of the magnets in the system. This system
providcé the combination of pulsed and steady-state operation required by a typical four day series of single
shift experiments. The specific refrigeration system design is based on the assumption that M.L.T. will acqﬁire
the use of the refrigeration system from the cancelled MHD Component and Device Integration Facility
(CDIF). This system has a large storage capacity, which will be used to. multiply its instantaneous refrigeration

capability.

11.1 Cryogenic Refrigeration Requirements

The cryogenic refrigeration system operates both the pool-boiling PF magnets and the internally cabled
TF magnets by boiling-off helium in an atmospheric pressure, 4.2 K pool. The loss mechanisms causing helium
boil-off include pulsed magnetic field losses due to start-up, shut-down and plasma disruptions, thermal radia-
tion, conduction through cold mass supports and joint losses. The liquefaction requirements are determined
by the lead losses in the TF and PF system. Table 11.1.1 lists the individual refrigeration rcquirenﬁents of the
system. The basis for these loss estimates is described in chapters 8 and 9.
The entropy generation of the system, and thus the helium and electrical power requirements, are totally
dominated by helium flow through the leads. If no measures were taken to reduce this requirement, the 340
-1/hr required for the leads would require the same refrigeration capacity from a CTI-2800 helium refrigerator
as 1.04 kW of pool-boiling refrigeration at 4.2 K, or twice the size of all other loads. Because the lead losses
dominate, the option of discharging the TF coil through only two leads is selected, which also eliminates out-
of-plane loads on the coils. If the number of discharge leads were increased to 4, the overall lead helium
requirement would be increased by 20 %, while the discharge voltage would be decreased by 1.4.
A promising approach is to develop a disconnectable cryogenic lead, such as those constructed for the
Los Alamos METS program [L175], or to reduce the helium level in a specially designed lead. Both of these
concepts could be used in parallel to provide a reliable method for reducing lead losses during idle periods,
such as evenings and weekends.
After the current leads, the largest source of entropy generation is the pulsed magnetic field loss in the
pol‘oida] field magnets. This is not surprising, since the poloidal ficld system is wound with the CDIF supercon-
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ductor, a fairly la‘rgc monolith. The alrcady fabricated CDII- superconductor was selected bccavusc it is the only
conductor that prdvidcs a basis for conservative mechanical and clectrical design within budgetary constraints.
Since the poloidal field system of HESTER is a good test bed for intermediate size pulsed magnets, a possible
improvement in this source of refrigeration loss would be to replace magnets using CDIF conductor with more

advanced superconducting coils as part of United States and/or Japanese technology development programs.

11.1 Resources at MLLT.

The M.LT. Plasma Fusion Center and National Magnet Laboratory already have certain cryogenic
refrigeration and distribution facilities, that could be utilized in support of the HESTER experiment. In
particular, the Fusion Center has requested a CTI-2800 refrigerator from the canceled MHD Component
Development and Integration Facility (CDDIF), The CDIF refrigeration equipmcnt on-site also includes a 4,000
liter liquid helium dewar, a 30,000 gallon warm gas storage tank and an 11,000 gallon liquid nitrogen dewar.
Another CTI-2800 at the M.L.T. Low Temperature Laboratory, is being used for the EPR1 5 MVA supercon-
ducting generator program, whose canccllation is a possibility, and whose planned lifc would end before that of

HESTER.

11.2 Refrigerator Design Concept

The refrigeration system design attempts to utilize the inherent downtime of typical experimental tokamak
operation (single shift operation and no runs on weekends), along with the assumed availability of all of the
CDIF equipment, in order to achieve significant cost savings. The design described below permits 600 W of
cryogenic losses during each of four daily § hour experiments, with 80 discharges a day. It does not require the
purchase of an additional CTI-2800, but instead allows the 200 W refrigerator to provide 600 W of refrigeration
by purchasing an additional heat exchanger and cold turboexpander that permit stored helium to be utilized
effectively. An additional bencfit of the expander is that subcooling of the magnet baths can also be provided.
The subcooling option then becomes a lower duty cycle capability of the base machine and does not require
additional funding for an upgrade. An important caveat is that the refrigcrator design has assumed that it
will be possible to thermally disconnect power leads during the 136 hours a weck that the machine is not in
operation.
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The refrigcratgr block diagram is shown in Figure 11.1.1. The basic C11-2800 refrigerator with an addi-
tional compressor is run continuously as a liquefier, with a capability of gencrating 15,000 liters of helium per
weck or of filling the available 8,000 liters of helium storage capacity in 3 % days. During operation of the
tokamak, the helium level of the storage dewar is drawn down. If no additional refrigeration were available,
it would be necessary to only operate the tokamak every second day. In order to avoid such a severe incon-
venience, a simple second refrigerator is constructed of a room temperature, 20 aunosphere screw compressor
(60 g/s , 1 atmospheres inlet or 30 g/s, % atmosphere inlet), available from Mycom or Sullair, a 600 W heat
exchanger such as thése built by Meyer Tool for the Fermi National Accelerator Laboratory, and a cold expan-
sion ehginc, available frdin Koch. A second 4,000 1 storage dewar is added to the 4,000 1 alrcady available from
the CDIF program. A small third compressor is also added to the two which are standard with a CT 1-2800,
increasing the liquefaction capacity by 50 % to 3 g/s. The total cost of the additional capacity is somewhat more
than half the cost of a new CT1-2800 system. Additional costs to the cryogenic system would include cryogenic
valves and transfer lines, instrumentation, warm piping, liquid nitrogen piping.

With the additional capacity available from the 600 W heat exchanger, only 32 % of the helium flow to the
tokamak has to Be made up from stored liquid helium. The 2800 supplies 3 g/s to the liquefier, which in turn
supplics 14 g/s to the tokamak. Thus in an 8 hour run, the storage dewar is drawn down by 2,640 liters. Over
a 24 hour period, the stofage dewar has been drawn down by 1,200 liters and 6,240 liters immediately after the
fourth consecutive days of runs with no down time. This level is then replenished in 69 hours over the weekend.
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Table 11.1.1

Cryogenic Loss Inventory

Pulsed Losses Loss/Cycle Average Load
(kJ) W)

PF Losses 235 392

TF Losses 54 9.0

Disruption Pulsed Losses

PF Loss/Disruption 450 -

TF Loss/Disruption 206 -

Lead losses, PF 47() 280(1/hr)

Lead losses, TF 10 62 (1/hr)

Joint losses, TF 49 150

Joint losses, PF 23 18"

Cold mass support 9 15

Radiation 70 117

Steady-state load, no pulse 282 W, refrigeration 342 I/hr, liquefaction

(without lead disconnect)
Average loading, pulsed operation 687 W refrigeration 342 V/hr, liquefaction
Maximum inventory loss/pulse 1,027 kJ 86 kJ, lead loss

(5001, boil-off) 57.6 1, helium to leads
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12.0 Vacuum System Requircments

The HES'I‘ER ;'acuum system must be capable of pumping down the vacuum chamber to an initial
pressure of 1.3 X 1078Pa (102 torr) in 25,000 s, and to be able to hold this vacuum against outgassing from
a system with an internal surface area of 100 m?. The vacuum pumping system must alsb be adequate to pump
back down to the initial conditions in 100 s after a plasma discharge, and to be adequate for limiter pump and
ash removal expcriments. However, since there is no natural ash generation during the pure hydrdgen pulses
plarined for HESTER , the most limiting case is steady-state removal of outgassed oxygen and water vapor and
inleakage of air through the double sealed, butyl rubber seals in the vacuum vessel. System specifications are
summarized in-Table 12.1-1.

‘The conservative assumption used in the design against outgassing was that only 60 %% of the internal
surface should be considered to be bakeable, with the rest unbaked. This gives a total outgassing rate of 10—
Pa-m?/s, corresponding to a speed of 15.3 m®/s. The butyl rubber seals are differentially pumped at 103 Pa,
the same pressure as the Leybold-Heraus DK-200 rotary piston pumps, used to rough the main turbomolecular
pumps. The air inleakage rate with 40 % compression of the butyl rubber seals is 5.9 X 10~ Pa-m3/s, giving a
total system pumping speed requirement of 16 (m3/s). Overall vacuum system requirements for pumpdown ére
summarized in Table 12.1.-I1.

The high system pumping speed and the availability of a 4,000 1 helium dewar, described in section 11,
suggests that cryopanels, attached to the main system cryogenic system, may be the most economical method of

‘pumping. This option has not yet been costed. The option of using 2500 1/s turbomoleculaf pumps can be sized
and costed, using only catalog items. Using 7 vacuum ports, with 16 inch VAT 104-24pu gate valves, an elbow

and TMP-3500 turbomolecular pumps, an undiscounted vacuum system would cost $392,000.
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Table 12.1-1
PERFORMANCE SPECIFICATIONS - MAIN VACUUM SYSTEM

steady-state baseline pressure capability of the vacuum system
desired ambient pressure before initiation
assumed oxygen pressure in the vacuum chamber at the end of a discharge

initial pressure of oxygen in the plasma before initiation

desired down time between plasma pulses

desired pumpdown time of the system from stp to initial conditions
number of mechanical vacuum seals in the system

intermediate pressure in a double sealed system

fraction of the internal vacuum chamber that is baked out

1222

0.7 uPa
1.3 uPa
7u Pa

0.7 4 Pa

100 s
25,000s

1kPa
0.6




_ Table 12.1-11
YACUUM SYSTEM FOR PUMPDOWN FROM STP AND BETWEEN PULSES

R obake specific outgassing rate of stainless steel, no bakeout 0.132 uPa-m/s
Ryake specific outgassing rate of steel after bakeout ' 2.64 nPa-m/s
Routgas total outgassing rate of the wall 9.89 uPa-m3/s
Pbase | steady-state base line pressure of the vacuum vessel 0.7 uPa

R,e,;k ‘ lea.k rate through butyl rubber at 40 % squeeze 61.5 uPa-m3/s
Rojeak leak rate tﬁmugh the second seal ‘ 0.615 uPa-m®/s
Satpi speed needed to pump down from STP to initial operating conditions 16.7 m3/s
Soafi oxygen pumping speed needed to remove oxygen between pulses 0.384 m3/s
Soutgas system pumping speed needed to maintain base pressure against outgassing 141 m3/s
Sieaks system pumping speed needed to maintain base pressure against leaks 0.879 (m3/s)
Ses total system pumping speed needed to maintain base pressure | 15 m3/s
Svacaystem total system vacuum pumping speed 16 m3/s
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Table 12.1-111
COST AND POWER REQUIREMENTS OF VACUUM SYSTEM

speed of a VAT 104-24pu 16 inch gate valve

speed of a Leybold-Heraeus TMP-3500 turbomolecular pump
speed of a vacuum vessel port for air o

speed of the elbow for air

effective pumping speed of a single pump

number of Leybold-Heraeus TMP-3500 turbomolecular pumps required
cost of turbomolecular pumps

power required by turbomolecular pumps

cost of VAT 104-24pu 16 inch gate valves

cost of port to 16 inch tees
cost of Leybold-Hereaus DK-200 rotary piston roughing pumps
cost of miscellaneous vacuum hardware

total cost of a vacuum system, based on turbepumps
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30m3/s
3.5m3/s
18.2m3/s
241 m%/s
2.41 m3/s

229k$
6.02 kW

70k$
35k$
525k$
6.07 k$
392k$




13.0 System Summary

All the f)arameters of the HESTER system are listed in an output listing of of the TOKSYC tokamak
system code. While there is not total agreement between the outputs of the system code and the parameters in

the design drawings and independent costing, neither are there any significant discrepancies.

The system description includes a listing of the installed capacity at the M.IT. Plasma Fusion Center and
the Francis Bitter National Magnet Laboratory. The available resources and the limitations of this site were a
large determining factor in the formulation of this particular design soiution to the problem of creating a new,
low cost machine to addféss important needs of the tokamak program. The resources that were fully taken |
advantage of included the 9 MW long-pulse VHF supplies, the 4.0 MW long-pulse C-band power supplies, 30
km of 8,000 A superconductor, 1 or 2 CTI-2800 helium refrigerators along with the CDIF cryogenic storage
facilities, an empty garage in an existing building with adequate space for auxiliary equipment, a 200 MJ pulsed
motor-generator set, and 250 MW of solid-state rectifier power supplics. This equipment, if purchased new, is

estimated to have added about $40 M to the cost of HESTER .

The principal limitation of the M.L.T. Plasma Fusion Center site is the relatively small amount of prime
power available for a major fusion experiment. The installed capacity of the M.I.T. Plasma Fusion Center and
the Francis Bitter National Magnet Laboratory, used in the Alcator C and Tara experimental programs, is listed
in Table 13-1. The available steady-state and pulsed power for a new experiment are somewhat speculative,
based on recent discussions with Cambridge Electric and M.L.T. Physical Plant. The availability of 10 MW
steady-state appeats to be relatively firm, while the availability of 20 MW pulsed for 10 s remains to be nego-
tiated. 25 MW for 10 s has been rejected by the utility as physically damaging to the cable. The availability of
20 MW pulsed power would mean 20 MW on top of the steady-state draw, probably about 2 MW for cryogenic
refrigeration, poloidal field coil supplies and motor-generator recharging. Thus, only 21-22 MW peak would be

available from the utility, not 30 MW,

The Alcator C and Tara experiments, along with the National Magnct Laboratory, draw power from a
single cable. The present ncgotiated permissible power for Alcator C is the combination of 18 MVA for a 1
.sccond triangular ramp every S minutes, an 0.5 second 5 MVA square pulse every S minutes and 2 MVA for
one hour to accelerate the generator. The cable also provides 10 MW of continuous power to the National
Magnet Laboratory and 18 MVA for a 1 second flat-top and 2-4 MVA ramps to TARA with a duty cycle of
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0.03 %. "l‘hc current motor-generator sct can deliver 200 MJ to a transformer. "Thus, the use of Bitter plate
toroidal field magnets with a recirculating power of 15 MW for comparable performance (and significantly
higher operating costs due to high liquid nitrogen usage) would probably either usc up all the available pulsed
power over a 10 second pulsc or all of the stcady-state power from the cable. Overspeeding of the generator
1.1 pu has been discussed and would increase the available pulsed power by 50 %. Other alternatives include
purchase of a low cost dicsel generator or purchase of a new dedicated cable.

While the power and cnergy limitations at M.LT. preclude a new experiment with copper magnets, they
also reinforce previous perceptions of the importance of reducing recirculating power in any real life cxperi-
ment with power and operating expense limitations. Whatever the power linﬁitations, a 15 MW magnet system
will reduce the possible auxiliary power, referred to the line, in any specific discharge scenario, by 15 MW and
increase operating costs by several million dollars per year. The superconducting magnet system of HESTER
solves the same problem for its experimental program that superconducting magnets arc supposed to solve for
commercial tokamak reactors.

A summary of machine parameters is given in Tables 13-2 through 13-23, with a certain amount of redun-

dancy from previous chapters.
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Pline
P, pulsed
P, rect
P, ohrlect
P, efrect
Wings
Iy hvdc

P, vhfcw
LCDIF

‘Table 13-1

NML INSTALLED CAPACITY

steady-state power from the utility
available pulsed power, 10s
rectified 750 V power

rectified 1200 V power

-rectified 3000 V power

available rotational stored energy
high voltage, regulated power supply capacity
available cw vhf power

available length of superconductor from CDIF
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10 MW

20 MW
187.5 MW
60 MW

15 MW

200 MW
3.52MW
400 kW
30.5km - -
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‘Table 13-2
MAJOR MACHINE DIMENSIONS

plasma major radius on axis during ohmic discharges
plasma minor radius during ohmic discharges
plasma minor radius during auxiliary heating

plasma minor radius during current drive

toroidal flux density on axis during ohmic discharges

stored magnetic energy in the reactor system
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2.091m
3123 mm
2409 mm
240.9 mm
6.695T
695.6 MJ




Table 13-3
SYSTEM POWER INVENTORY

P, peak clectrical power requirement of the system 42,671 MW

Epuise total energy required per pulse 402.2_MW
Eovail available energy from the utility line and GE generator, during a pulse 180.0 MJ
Estorenew _new deliverable cnergy storage required, if pulsed 2222 M]
bRmazts - maximum joule heating in the TF magnet supplies 75 kW
bpres | maximum joule heating in the EF magnet supplies 300 kW
Prineres line power required by the cryogenic refrigerator 565.1 kW
Piineaus line power required for auxiliary heating _ 18.21 MW
Piinerdrive line power required for current drive 23.39 MW
P, total steady state line power requirement 42.67 MW
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Table 13-4
OVERALIL MACHINE SPECIFICATIONS

smallest major radius of the TF magnet, including its warm case,
neutron and gamma shield thickness

major radius - flux density product in the TF magnet bore

ratio of the innef to the outer radius of the central solenoid

fraction of the vacuum vessel used by the plasma for ohmic discharges
fraction of the vacuum vessel _uscd by the plasma for auxiliary heating
fraction of the vacuum vesscl used by the plasma for current drive
fraction of the largest plasma observed by a vertical port

plasma current rise time

plasma current shutdown time

maximum flattop of an ohmic discharge

minimum discharge/recharge time of the system

number of ports in the tokamak

total length of a waveguide run from tube to tokamak

maximum number of plasma discharges per year

maximum number of plasma discharges per week

maximum number of plasma discharges per day

number of D-T burn years

maximum neutron wall loading or 4 times thermal
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1.385m
0.0m

14 m-T
0.700

0.709 ‘
0.570

0.570

0.700
1.500s

30s

8.500s
600.0s

18

30m
4000,
200.0

50

0.0

20 MW/m?




<I>tsu

q)total

Table 13-5

OHMIC FLUX AND VOLTAGE REQUIREMENTS

plasma major radius

plasma minor radius

flattop resistive voltage

plasma inductive volt-second requirements

ﬂatto;; time

loop volta-ge required for initiation

resistive volt-seconds during start-up

resistive volt-seconds during flat-top

total resistive volt-second réquirement of the plasma
total volt-second requirement of ohmic start-up

total volt-second requirement of the plasma
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2091 m
3123 mm
1835V
8474 V-s
8.500 s
1051V
3.390 V-s
15.60 V-s
18.99 V-s
11.86 V-s
27.46 V-s




ZZoh

Tabie 13-6

- CURRENTS AND POSITIONS OF THE OH COILS

OH coil number

inner major radius

outer major radius

lower height

upper height

ampere-turns in the i-th OH coil
OH coil number

inner major radius

outer major radius

lower height

upper height

ampere-turns in the i-th OH coil
OH coil number

inner major radius

outer major radius

lower height

u]ﬁper height

ampere-turns in the i-th OH coil
OH coil number

inner major radius

outer major radius

lower height

upper height

ampere-turns in the i-th OH coil
OH coil number

inner major radius

outer major radius

lower height

upper height

ampere-turns in the i-th OH coil

overall current-density in the i-th OH coil

1

955 mm
1.240 m
595.0 mm
991.6 mm
147 MAT
2

955 mm
1240m
198.3 mm
595.0 mm
147 MAT
3

955 mm
1.240m
-198.3 mm
198.3mm
147 MAT
4

955 mm
1240m
-595.0 mm
-198.3 mm
1.47 MAT
5

955 mm
1.240m
-991.6 mm
-595.0 mm
147 MAT
13 MA/m?
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Table 13-6 - continued

CURRENTS AND POSITIONS OF THE OH COILS - CONTINUED

OH coil number

inner major radius

outer major radius

lower height

upper height

ampere-turns in the i-th OH coil
OH coil number

inner major radius

outer major radius

lower height

upper height

ampere-turns in the i-th OH coil

OH coil number

_ inner major radius

outer major radius

lower height

upper height

ampere-turns in the i-th OH coil
OH coil number

inner major radius

outer major radius

lower height

upper height

ampere-turns in the i-th OH coil
number of ampere-turns in the OH system

number of ampcere-meters in the OH system
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6

1.527m
1.738 m
839.2 mm
1.051m
1.341 MA-T
7

1.527m
1738 m
-1.051m
-839.2 mm
1.341 MA-T

8

2852m
2979 m
773.8 mm
900.5 mm
482.1 kA-T
9

2852m
2979 m
-900.5 mm
-7173.8 mm
482.1kA-T
7.364 MA-T
46.27 MA-m
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Table 13-7
CURRENTS AND POSITIONS OF EF COILS

major radius of the first EF coil
height of the first EF coil
total number of ampere-turns in the first EF coil on discharge 1

total number of ampére-turns in the first EF coil on discharge 2

major radius of the second EF coil
height of the second EF coil
total number of ampere-turns in the first EF coil on discharge 1,

total number of ampere-turns in the second EF coil on discharge 2,

plasma major radius for discharge 1
plasma major radius for discharge 2
plasma current for discharge 1

plasma current for discharge 2

flux linkage between EF1 and the first plasma

flux linkage between EF1 and the second plasma

flux linkage between the second EF coil and the first plasma discharge

flux linkage between the second EF coil and the second plasma discharge

EF system contribution to the plasma inductive volt-seconds for an ohmic discharge

EF system contribution to the plasma inductive volt-seconds for a high beta discharge

number of ampere-meters in the EF system

total number of ampere-turns in the EF system
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2915m
715.0 mm

-354.7 KA-T
-413.7KA-T

1495 m
700.0 mm
630.0 kA-T
731.0kA-T

2033 m
2.082m
817.0kA -
1.190 MA

-1.023 V-5
-1.257 V-s
1.208 V-s
1.388 V-s
368.3 mV-s
262.2mV-s

28.89 MA-m
2289 MA-T
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Table 13-8

number of ampere-turns in the toroidal field system
number of toroidal field coils

number of ampere-turns in one toroidal field magnet
superconductor material

type of superconductor
maximum design value of final voltage on quench

helium bath temperature

maximum final temperature in the conductor on quench
magnet inlet pressure of the helium coolant

ratio of operating to critical current

helium or void fraction of a conductor envelope or cable space
inside bore radius of a toroidal field magnet winding pack
desired major radius - ﬂux density product in the TF bore
width of cold to warm thermal isolation, inside case wall
width of cold to warm thermal isolation, outside case wall
width of cold to warm thermal isolation, inside case wall

minimum intercase wedge thickness
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DESIGN SPECIFICATIONS: SUPERCONDUCTING TF MAGNET SYSTEM

70 MA-T
36

1.944 MA-T
Nb3Sn ()
Airco L.CP
3.20kV
4200 K
2000K
240.0 kPa
0.7

0.400
520.0 mm
14 m-T

20 mm

20 mm
00m
11.67 mm




INTERNALLY COOLED CABLED SUPERCONDUCTOR SPECIFICATIONS

sctype

fH €

Cu — noncu
A noncucond
Asccond

A in

tj ack
Wojack

. D,

Dy,

Lyy

chabl e

Nfil

Mt ron

P,

Pjak
Proncu
Rstran
RRR

Table 13-9

superconductor type

helium fraction of the inside cross-section

copper/noncopper ratio of a superconducting composite strand

noncopper area of the cable

cross-section area of superconductor in a cable

inside cross-section, available for helium and conductor

jacket thickness

outside jacket width

strand diameter

bronze diameter

filament twist pitch length

cable twist pitch length

number of filamerits in a strand

number of strands

wetted perimeter of the cable and conduit
jacket resistivity

resistivity of the noncopper/nonsuperconductor
radius of a strand

residual resistivity ratio of the matrix
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Nb3Sn ()
0.400
1.700
67.33 mm?
15.49 mm? ‘
282.7 mm?
1.730 mm
20.80 mm
700.0 pm
420.0 um
2540 mm
305.0 mm
2869
486
1.137m

500.0 nQ — m
50 nQ2-m

350.0 pym

75




Table 13-10
MASS AND VOLUME INVENTORY: TF MAGNET SYSTEM

Leond total length of conductor 1322 km
Vaccoil volume of superconductor in a coil 0.01856 m3
Viscoil volume of steel in a coil 0.1037 m3
Veweoil volume of copper in a coil 0.1247 m®
V;nscoil volurﬁc insulation in a coil 0.02256 m?
Victs volumé o'f superconductor in the TF system 0.6683 m3
Vists volume of stainless steel in the TF system 3733 m?
Veuts volume of copper in the TF system 4489 m3
Vinsts volume of insulation in the TF system 0.8123 m?
M, iy mass of copper in the TF system 40.04 tonne
Mty mass of stainless steel in the TF system 29.11 tonne
Mopis mass of niobium in the TF system 3.743 tonne
Moty mass of insulation in the TF system 1.097 tonne
M_o1q cofd mass of the TF system 73.99 tonne
M, mass of the vacuum vessel 16.54 tonne
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Table 13-11

minimum major radius of the TF magnet, including warm case
maximum flux density at the toroidal ficld coils

radial build of the conductor winding pack

_total width of cold to warm thermal isolation, inside leg

total width of cold to warm thermal isolation, outside case wall
thickness of the inner case winding bobbin

thickness of the outer case closure ring

thickness of the case side walls

width of the winding pack

weld gap betwcen the winding pack and the outer closure ring
average bore radius of the winding pack

inner clear bore of the winding pack

inner clear bore of the magnet can or dewar

outer bore of the structural case

inside radial build of the structural case

radial build of the structural case

major radius of the axis of the TF magnet bore

smallest major radius of the conductor winding pack
maximum field radius of the magnet

major radius of the high field side of the can or dewar

major radius of inside of outer leg of can or dewar
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DIMENSIONS OF THE SUPERCONDUCTING TF MAGNET SYSTEM

1.385m
9.021T
245.1 mm
20 mm

20 mm
14.55 mm
29.10 mm
29.10 mm
184.1 mm
00m
664.4 mm
5200 mm
500.0 mm
808.7 mm
245.1 mm
288.7 mm
2199 m
1434 m
1.679m
1714m
2714m




Aup
Je
Acucond
Anoncucon
tgaptf
Dport

Vvac
Aoutgaa
Icond
Ndpancakes
Nayers
Nturns
Lscnew
Lsctf
N. Imtf

Table 13-12

area of superconductor required in a coil

area of copper required in a coil

area of insulation required in a coil

area of the structural case

total area of the winding pack and structural case

arca of helium and insulation required in a coil

total area of the winding pack, including ground insulation
noncopper critical current density |

copper area of a conductor

noncoppper area of a conductor

clearance gap between TF coils at the equator

maximum inside diameter of port between the TF coils at the equator
volume evacuated by the main vacuum pumps

area of steel outgassing into the plasma

conductor current

number of double pancakes in a winding

number of layers in a pancake

number of turns in a winding

total length of new superconductor in the TF system

total length of superconductor in the TF system

total number of ampere-meters in the TF system
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DIMENSIONS OF THE SUPERCONDUCTING TF MAGNET SYSTEM (continued)

0.0044 m?
0.02987 m?
0.0054 m?
0.02484 m?
0.070 m?
0.0108 m?
0.0451 m?
56.02 kA/cm?
1.197 cm?
0.673 cm?
231.6 mm
180 mm
17.46 m3
191.5 m?
2228 kA
40

11

88
13.22km
13.22 km
294.6 MA-m
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Table 13-13

CIRCULAR SUPERCONDUCTING F MAGNET SYSTEM

actual number of parallel discharge circuits

number of discharge leads

total number of series magnets, during discharge,
magnetic stored cnergy of the toroidal magnet system
total vertical force on the upper half of the magnet system
total cenfcring force on the toroidal magnet system

total vertical force on a magnet

total radial force on a magnet
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Table 13-14

ENERGY BALANCE TERMS: TF SUPERCONDUCTOR

superconductor material type

superconductor noncopper area

copper area of the conductor

magnetic flux density -

bath temperature

zero-curfent critical temperature of Nb3Sn

current sharing temperature in Nb3Sn

resistivity of copper at the specified field

power dissipation per unit length at the critical temperature

heat flux per unit area into the helium on quench

thermal conductivity of copper at design temperature and field
radius of the minimum propagating zone

adiabiatic longitudinal propagating velocity of a quench
longitudinal propagation velocity of a quench, with cooling,

total heat transferred by nucleate boiling during film establishment
metal enthalpy to current sharing divided by power/length
metal enthalpy to critical temperature divided by power/length
bath enthalpy to current sharing divided by the power per length

characteristic time to heat the copper to final temperature
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Nb3Sn ()

67.3 mm?

119.7 mm?
9.021T
4200K

10.01 K

5943 K

933.7 pOhm-m
115.7kW/m
101.8 kW/m?
110.2 W/m-K
8509mm
10.89 m/s
4.700 m/s
8.640 J/m

2965 us

26.59 us
2.500 ms
3.035s
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Table 13-15

| SUPERCONDUCTOR ENTHALPY MARGINS: TF MAGNETS

bath to current sharing copper energy/length

bath to current sharing change in enthalpy in noncopper

bath to current sharing energy/length absorbed by noncopper

total bath to current sharing energy/length absorbed by metal

bath to current sharing change in enthalpy/length in helium
cnthalpy/length to raise entire conductor to current sharing temperature
total bath to current sharing energy/volume of metal absorbed by metal
total bath to current sharing energy/volume of metal

change in copper enthalpy between bath and critical temperature
enthalpy/length to raise the copper to the critical temperature

bath to critical change in enthalpy in the noncopper

bath to critical energy/length absorbed by the noncopper

bath to critical change in enthalpy in the helium

bath to critical change in enthalpy/length in the helium
enthalpy/length to raise the entire conductor to the critical temperature
total bath to current sharing energy/volume of metal absorbed by metal
total bath to current sharing energy/volume of metal |

10 % helium boil off energy/volume of metal
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288.3mJ/m
631.8 ml/kg
54.80 mJ/m
343.1mJ/m
76.03J/m
76.371/m
2.538 mJ/cm?®
564.9 mJ/cm®
2.266 1/kg
24143/m
7.6501/kg
663.4 mlJ/m
35.14kJ/kg
286.3J/m
2894 J/m
22.77 mJ/cm?
2.141 J/em?
120.5 mJ/cm?®
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Table 13-16
OUTER VACUUM CAN DIMENSIONS

minimum major radius of the toroidal magnet system
thickness of the outer vacuum can wall
total radial build of the outer vacuum can at the inside

minimum major radius of the outer vacuum can
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1.385m
30 mm
125.0 mm
1.260 m
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Table 13-17
INNER VACUUM VESSEL DIMENSIONS

fraction of the vacuum vessel that is thick walled

fraction of the vacuum vessel that is thin walled bellows
inner [greater] major radius of the vacuum vessel inside leg
inner [lesser] major radius of the vacuum veésel outside leg
inside minor radius of the vacuum vessel

inductance of the inner vacuum vessel

resistance of the inner vacuum vessel

fall time outside the vacuum vessel, due to an internal disruption

mass of the inner vacuum vessel
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0.700
0.300
1739 m
2.660 m
460.5 mm
4.541 uH
42.16 m{2
107.7 ps
1,260 kg
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Table 13-18
'~ SIZE OF VACUUM VESSEL INTERNAL COMPONENTS

inner (greater) major radius of inside leg of inner vacuum vessel

inside minor radius of the vacuum vessel

inner (lesser) major radius of ﬂ1e outside leg of the inner vacuum vessel
thickness of the rails

thickness of the limiters on the inside

micknéss of the limiters on the outside

thickness of the antenna on the inside

thickness of the antenna on the outside

innermost possible major radius of the plasma edge

outermost possible major radius of the plasma edge

maximum physically possible plasma minor radius
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1.739m
460.5 mm
2.660 m
20 mm
0.0m

60 mm
40 mm
40 mm
1.779 m
2.600 m
410.5 mm
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Table 13-19
DIMENSIONS OF PLASMA DISCHARGES

plasma minor radius for ohmic discharges

plasma major radius for ohmic discharges

plasma minor radius for auxiliary heating discharges
plasma major radius for auxiliary heating discharges
.plasma minor radius for current drive discharges
plaéma major radius for current drive discharges
flux density on axis for ohmic discharges

flux density on axis for auxiliary heating discharges

flux density on axis for current drive discharges
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3123 mm
2091m
2409 mm
2020m
240.9 mm
2020m
6.695m
6.932m
6.932T
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Table 13-20
SIZING OF VERTICAL DIAGNOSTIC PORTS

plasma major radius used for port location
plasma minor radius used for port location
fraction of the plasma minor diameter viewed by the port

inner major radius of the vertical port

- outer major radius of the vertical port
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2091m
3123 mm
0.700
1.935m
2403 m




Nports
Hport

Wyport

Aport

Table 13-21
HORIZONTAL PORT SIZE

number of ports 18()
height above the equator of the port 369.2 mm
width at the cquator of the port 180 mm
maximum portarea 0.133 m?
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Table 13-22

number of heating ports -

number of wave guidés in a grid

number of wave guides in a port

number of stacked grids in a port

total .number of wave guides in the heating system

total lenéih of a waveguide run

maximum port space in the vertical direction

thickness of the vertical coolant passage between guides
height of the wave guide, long dimension

width of the wave guide, short dimension

thickness of the interwaveguide septum

thickness of the horizontal coolant passage between grills
area required by one port

area of the wave guide

rf frequency of the launched wave

rf frequency of the launched wave

efficiency of heat deposition from the grid into the plasma
efficiency of a high-voltage series regulator

efficiency of a klystron

safety factor of the wave guide dimensions vs. cutoff

maximum permissible rf electric field
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LOWER HYBRID CURRENT DRIVE MICROWAVE POWER DELIVERY SYSTEM
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361.4 mm
800.0 pm
57.50 mm
80 mm

20 mm
11.50 mm
0.18 m?
460.0 mm?
28.90 Gradians/s
4.600 GHz
0.800
0.800
0.500
1.100
220.0kV/m




Table 13-23 POWER INVENTORY LH DELIVERY SYSTEM

Pioed | power delivered to the load . 5SMW
Piube rf power needed to feed onc waveguide 31 kW

Py ybes output rf power required from the tubes 13.89 MW
Piine power drawn from the line by the rf system 23.89 MW
Py ‘maximum possible power transmission through a waveguide 12.16 kW
Parode dc anode power required by the microwave tube 19.29 MW
Pt unregulated power supplied by a high-voltage rectifier 22.70 MW
Pinosx maximum permitted power density in the grid 25 MW/m?
Npwg total attenuation of the TEOL mode in the waveguides 3.227db
Py power dissipated in the waveguides 5.510 MW
Pyginport . power dissipated in the waveguides, inside the port 4286 MW
Py wall loading on the waveguide, inside the port 146.1 kW/m?
Qcirc attenuation in the circulator 230.0 mdb
Quind attenuation in the waveguide window 10 mdb
Nptot total attenuation of the rf system 4.437db
Qaunch "attenuation” of launching into the plasma . 970.7 mdb
‘QTE10cu ~ attenuation of the TEO1 mode in copper guide 107.6 mdb/m
NeTEOL cutoff wavelength for the TEOI mode 16 mm
NeTELL cutoff wavelength for the TE11 mode 15.85 mm
NeTELD cutoff wavelength for the TE10 mode 115.0 mm
A free-space wave length at the launching frequency - 65.22 mm
Awg | waveguide wavelength of the T mode 79.19 mm
P,, maximum power transmitted through one waveguide 11.50 kW
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