
A computational method was developed which alleviates the need for lengthy parametric scans as

part of a design process. The method makes use of a least squares algorithm to find the optimal

value of a parameter vector. Optimal is defined in terms of a utility function prescribed by the
user. '[he placement of the vertical field coils of a torsatron is such a non-linear problem.

PFC/RR-82-16 DOE/ET-51013-46

UC-20B

Solve : A Non-Linear Least Squares Code

and its application to the
Optimal Placement of Torsatron Vertical Field Coils

John Aspinall

MIT Plasma Fusion Center, Cambridge Ma. USA

May 25 1982

Contents

Introduction 4

1.1 The Problem. 4

1.2 A Simplified Model of the Torsatron. 6

1.3 "Wishes", or How To Get What You Want. 6

1.4 A Word of Caution about the Results. 8

2 Input to Solve 10

2.1 The Log File. 10

2.2 Solve Execute Line. 11

2.3 Comments. 12

2.4 Specification of the Model. 12

2.5 Parameters of the Optimization. 14

2.6 1e Wishes and the Utility Function. 16

2.7 Control of Solve. 18

2.8 Glossary of Input Variables. 19

2.9 Example of a Complete Input File. 20

3 Output from Solve 23

3.1 Summary of the Problem. 23

3.2 Basic Results. 26

3.3 Residuals - The Quality of the Solution. 28

3.4 Jacobians and Hessians - Sensitivity Analysis. 29

Contents

4 Sample Input and Output 34

4.1 Equality Constraints Using the Dimensionless Parameters. 34

4.2 Geometric Inequality Constraints Using the Wishes. 39

4.3 A Large Residual Solution. 41

4.4 A Small Residual Solution. 46

5 Theory of Operation 52

5.1 Solve and the Philosophy of Design. 52

5.2 Overview of the Program. 53

5.3 Why the Model was Simplified. 53

5.4 How the Model was Simplified. 55

5.5 Introduction to the Operation of Least-Squares Optimizers. 56

5.6 Applications, Extensions. 59

References 61

A Appendix - Obtaining Solve. 62

3

Introduction

This report describes Solve, a non-linear least-squares code for calculating the optimal positions

and currents for the vertical field coils of a torsatron.

This report is intended as both a user's manual of sorts, and as a reference for the techniques used

in the code. It must, therefore, blend the sublime and the ridiculous from time to time. Chapter

I is an introduction to the problem and the method of solution. Chapter 2 descends into the

details of running the code; it describes how to execute the code in its present version on the MFE

"A" machine - a CDC 7600. Chapter 3 describes how to interpret the output from the code,

while chapter 4 gives specific examples of its use. Chapter 5 discusses the theory behind the code

operation in detail. Readers interested in the nitty-gritty of using the code should read chapters

1 through 4, putting chapter 5 aside for browsing. Readers interested in the theory of operation,

should read chapter 1, skim chapters 2, 3 and 4, and read chapter 5.

I am grateful for many discussions with Dr. P.A. Politzer, and Professor L.M. Lidsky, during this

work. Dr. R. Potok also gave me valuable help in the development of this technique. During

some of this time, I was supported by a National Science and Engineering Research Council of

Canada scholarship. This work was also supported by DOE contract DE-AC02-78ET.-51013.

The Problem

A torsatron is a toroidal plasma confinement device closely related to the stellarator. The helical

windings of a torsatron all carry current in the same toroidal direction; those of a stellarator are

Introduction

arranged in pairs, carrying equal currents in both directions around the torus. In the stellarator,

this means that toroidal field coils (similar to those of a tokamak) arc necessary since the helical

windings provide no net toroidal field. In the torsatron there is a net toroidal field generated by

the helices, however the net current in the toroidal direction also generates a vertical field. In most

cases it is necessary to cancel this vertical field in the plasma region to ensure closed magnetic

* surfaces for plasma confinement. Usually the vertical field of the helical windings is cancelled using

pairs of circular coils, placed symmetrically above and below the helices. These will be referred to

as "vertical field coils", keeping in mind that they contribute to the net radial field as well as the

net vertical field of the torsatron.

There are a number of criteria which may be easily applied to evaluate the "goodness" of a

given arrangement of the vertical field coils. From a plasma engineering point of view, a simple

requirement is that there exist closed flux surfaces in the plasma region. (This is, of course, only a

necessary and not a sufficient condition for confinement.) From a mechanical engineering point of

view, it is desirable to reduce the forces on all the windings as much as possible. It is also useful

to ensure that the physical arrangement of the vertical field coils allows good access to the helical

windings for maintenance, diagnostics, neutral beam ports and so on. These criteria each lead

individually to differing solutions to the problem of placing the vertical field coils. For example,

accurate cancellation of the vertical and radial fields in the center of the plasma region will best be

accomplished by a large number of coils placed close to the plasma. 'T'his contradicts sharply the

requirements for easy access and maintenance. We have also found (using a complete fields and

forces code) that when the vertical field coil is placed close to the helix, the distribution of forces
around the helix is peaked at the point of closest approach of the helix to the other coil.

There are other conditions that one may wish the magnetic geometry to satisfy. For a torsatron

confinement experiment it may be desirable that no magnetic flux link the plasma so that fluctuations

in the power supply do not produce tokamak-like transformer action. For a torsatron reactor design

it is probably more desirable to reduce the dipole moment of the entire system as much as possible

to reduce stray fields.

A related problem that can be addressed using the same methods is that of finding the optimal

arrangement of coils for a tokamak air core transformer. Here the desired situation is just the

opposite of that mentioned in the previous paragraph. The transformer should provide a sufficient

flux swing through the minor axis of the torus, without contributing significantly to the field in the

plasma region.

5

Introduction

A Simplified Model of the Torsatron

The purpose of Solve is to find vertical field coils to null the poloidal field contributions of the

helix. We are not interested in the toroidal field of the helix at this stage, presumably it has

been determined earlier in the design process. By ignoring the toroidal field of the helix, and

by considering the poloidal fields from a "smoothed" version of the helix, we can obtain a much

simpler model of the torsatron with which to work.

Since the circular vertical field c6ils have toroidal symmetry, this suggests the first step of the

simplification. Let us ignore the changing angular orientation of the helix and consider a "phase-

averaged" helix instead. This is a continuous distribution of currents on the surface of the torus

with the local pitch angle the same as the discrete helix at all poloidal angles.

This distribution will be the equivalent of taking an ensemble of discrete helices, and averaging

the current distribution over all possible starting toroidal angles in a field period. Another way to

look at this is to consider it as the limiting case of taking a given winding law, iid then letting N

and I approach infinity, while keeping their ratio constant. The details of this smoothing process

are given in Chapter 5.

Once we have this continuous surface current distribution as a function of poloidal angle, we can

ignore the poloidal coniponent of the current as explained above. We can approximate the toroidal

component of the current with a set of discrete loops around the major axis. Now we can see

the major simplification that has become possible. Both the known currents in the helix, and the

"6unknown" (i.e. to be found by the optimizer) vertical field coils are now modelled as loops of
current around the major axis. This is very advantageous in terms of computational efficiency.

"Wishes", or How To Get What You Want

There is a trade-off between a set of conditions that completely models the entire physical situation,

but which. is cumbersome computationally, and a simplified set that uses only quantities that are
computed quickly, but may ignore certain effects. Because the iterative algorithm used may call the
physical model hundreds of times, we have found it more useful .to pose the optimization problem

in very simple form, and then go to more detailed analysis after this procedure has suggested a

solution.

6

Introduction

The conditions on the magnetic geometry mentioned in the previous section are therefore formulated

in terms of various types of "wishes", as shown below.

Point Field Wishes.

" Make the radial component of the magnetic field at a given point approach a desired value.

" Make the vertical component of the magnetic field at a given point approach a desired value.

" Make the total magnetic field at a given point approach a desired value.

" Make the magnetic flux linked through a loop of given radius and height approach a desired

value.

Global Field Wishes.

" Make the dipole moment of the entire system approach a desired value.

" Make the stored energy of the entire system approach a desired value.

Geometric Constraints.

& Ensure that a given vertical field coil has at least a minimum clearance from a point in. rz

space.

* Ensure that a given vertical field coil has at most a maximum clearance from a point in rz

space.

" Ensure that a given vertical field coil has at least a minimum clearance from a line in rz space.

" Ensure that a given vertical field coil has at most a maximum clearance from a line in rz
space.

Solve, then, addresses a two dimensional problem which is an approximation to the full three
dimensional problem mentioned at the start of this chapter. The simplified problem is posed in

terms of circular loop conductors of circular cross section around the major axis of the torsatron.
Each loop can, therefore, be specified by four numbers - the major radius, the height, the minor

diameter, and the current. An array of these four quantities for all the loops in the simplified
problem makes up the set of parameters that specify the model.

7

Introduction

Figure 1.1 - An example of a Two Parameter Utility Function.

The plot above shows an example of how a simple set of wishes can yield a utility function with

multiple minima.

A Word of Caution about the Results

All non-linear optimization algorithms suffer from one common problem. There is no way to tell

whether a given local minimum that has been found is the global minimum for the domain of the

8

Introduction

problem. Algorithms that use a systematic search of the problem space may miss a solution that

"falls between the cracks". Algorithms which successively estimate the position of the minimum

from the gradient and higher derivatives of the utility function, spend most of their time "walking

downhill", and are therefore sensitive to their starting position in parameter space.

The algorithm used in Solve (which is described in detail later) is of the second kind above. When

solving all but the simplest problems with this code, it will be likely that the utility function will

have more than one local minimum. There are some common symptoms of this effect, that will

be described below.

Figure 1.1 shows the utility function produced from a simple set of field-nulling wishes plus a

geometric constraint "repelling" a single (symmetric) pair of vertical field coils from a circular

boundary. The parameter controlling the radius of the coils increases to the right and away from

the viewer. T.he parameter controlling the height of the coils increases to the left and away from

the viewer. The plot was made with the coil currents close to, but not exactly at, their ideal value.

This function shows how even a simple problem may yield different solutions depending upon the

iteration starting point.

If no constraints are placed on the height of a coil, the solution will sometimes place the coil at a

ridiculously large distance from the torsatron helix. There is often another minimum that can be

found closer to the helix, in this case. The "cookbook" cure for this is to start another run with

the coils closer, carrying more current, to see if another solution can be found. (The reason for

more current is to increase the change in field for a given change in position - thereby increasing

the appropriate component in the gradient, which will cause the minimization algorithm to start
with a smaller step.) The problem displayed in Figure 1.1 might exhibit this problem.

Sometimes, two runs of the code with wishes that differ only slightly, will finish with two completely

different solutions. This may be an indication that the starting position is near a point in parameter

space where the solution "trajectories" diverge - i.e. a saddle point. Again, try different starting

positions to see if both minima can be reached with the same set of wishes and constraints.

All of these subjects - the simplified model, the formulation of wishes, and the algorithmic
problems, are dealt with in greater detail in chapter 5. The details of specifying a model and a
set of wishes in the input to the code are explained in the next chapter, and interpretation of the
output is explained in chapter 3.

9

Input to Solve

Solve expects two files to be present in the user's active file index. These files will be referred to

as the "input file" and the "log file". All the input controlling the operation of the program is

read from the input file. It is a fatal error if this file is not present.

If errors in the input are detected by Solve, the code will write a file called errors to the active

file space. This file will contain an appropriate message.

The Log File

In addition to the input file, Solve looks for a file named sol og. This is "the log file"; its purpose

is to store one number - a unique identification of the particular run of the code. If this file is not

present, the code will create it and set the identification number - usually called "the run number"

to 1. If the file is present in the active file index the code will read the run number, increment it

by one, and write the new run number to the log file. The new run number will appear on the

output to identify this particular run of the code. In addition, this number will be used to give a

unique name to the default output file (see the section on the execute line).

The log file is simply an ASCII character file, so users may create their own if they want to start a

series of runs with an identification number of their own choosing. The only requirement is that

the file contains a decimal integer in the first 8 columns of the first row. The lowest four digits of

this integer will be used. The user is free to write anything else in the rest of the file - it will be

Input to Solve

ignored. The present version of the code writes the version number of the code later on the same

line using the format specification: format (i8,8x, 3a8).

Solve Execute Line

solve [i=1nput file] [, o=output file] / t v

Solve is executed with the above execute line. Square brackets <enote optional arguments. If

the input file is not specified, Solve will look for a file called sol in. lhe default name for the

output file is soutNNNN where NNNN is the low four digits of the log number. Examples of typical

execute lines are given in here.

Example 1.

The log file sol og does not exist. The file myp rob contains the desired input to the code.

solve i=myprob

The log file solog will be created. The run number will be 1. The output file will be soutOO01.

Example 2.

The log file sol og is in the active file index, and it contains the log number 222 from a previous

run. The file so1 i n contains the desired input to the code.

solve
The log file sol og will be changed. The run number will be 223. The output file will be

sout0223.

Example 3.

The log file sol og is in the active file index, and it contains the log number 222 from a previous
run. The file sol i n contains the desired input to the code.

solve o=solvout

The log file solog will be changed. The run number will be 223. The output file will be

solvout.

Other than the run number, all input to the code comes from the input file. This input comes in

five distinct parts. The following five sections describe, in the order that they must appear in the

file, those parts.

11

Input to Solve

Comments

For purposes of documentation, the code allows an unlimited number of comments to be placed
at the beginning of the input file. 'liese comments will be reproduced verbatim on the first page
of the output file.

Comments are read line by line until a line starting with the string "*end-comment" is read. The

asterisk must be in column 1.

Specification of the Model

The purpose of this part is to describe the idealized torus, and all the other coils used in the model
of the torsatron. The code deals with a set of circular coils around the z axis - so each coil is
specified by four numbers - major radius, height above the z = 0 plane, minor radius, and the

current in the loop.

The model coils fall into 3 groups. They are: (1) the variable coils - the coils that will be "moved

around" by the optimization process; (2)' the fixed coils which approximate the current in the

helix; and (3) any other fixed coils (other than (2) above) which are not allowed to change in the

optimization process, but are not part of the helix. All this data is supplied by one Namelist read.

(For a general description of the Nanielist feature of LRLtran see the Fortlib documentation [41.)

For the variable coils, specify nv c, the number of variable coils. This is the only datum referring
to the variable coils that has to be specified in this part of the input - the starting positions of

the coils will be specified in part 3 - the initial parameters of the optimization.

In specifying the shape of the torsatron helix, we have adopted the convention that the winding

law (i.e. toroidal angle 4 as a function of poloidal angle 9) is given by a general harmonic series
of the form

q (= (+ E am sin m9) (2.1)

and the torus on which the helix is wound may have a non-circular cross-section described in a
similar manner

r = ro(I + E ,m cos mO) (2.2)
m=1

12

Input to Solve

where r is the minor radius and ro is a "nominal" minor radius. The upper limits on the sums are
implementation dependent - the current version allows a maximum of eight terms in both series.

To specify the helix requires:'nhc the number of circular loops that will be used to approximate
the helical current; iwn and iwl the N and I numbers of the torsatron: alpha and orda, the
array a and its size which describe the winding law (see above for winding law used); rmajor
and rminor - the major and nominal minor radii of the helix; beta and ordb the array P and
its size which describe the cross-section shape of the torus; tdip - the minor radius (i.e. half the
thickness) of the loops used to niodel the helix; and cur, the total toroidal current around the
torus.

Specifying any non-h'elix constant coils requires: ncc the number of constant coils; and an array
ccoil which contains (major) radius, height, thickness (minor radius), and current for each
constant coil.

For commonly used cases, the user does not have to specify all these variables explicitly - there
are default values and a special flag to specify a number of these variables. The default values are
assigned to the variables before the Nanelist read. If a variable does not appear in the input file,
the value of the variable remains the default value. These defaults are listed below.

nhc 32 This is a reasonable number of coils to model the helix.

ncc 0 Often there are no constant coils *other than the helix.

iwn 0 iwn and iwl, the N and I numbers of the torsatron may be specified for

documentation purposes, but the values are not used by the algorithm. These defaults were

deliberately chosen to be non-physical, the values will not appear anywhere in the output if they

are zero, however if non-zero they will appear in the model specification.

iwl 0 See iwn above.

orda 0 By setting orda to the default value of zero, the harmonic series part of the
winding law is not used and phi is linearly related to theta.

ordb 0 By setting ordb to the default value of zero, the harmonic series part of the

minor radius is not used and the minor radius is a constant.

The special case flag wf 1 ag (a character string) has been included in the code to allow easy
specification of certain other torsatron geometries. The default is the null string.

13

Input to Solve

If the input sets wf lag to the string "conp i tch", this specifies a constant pitch angle winding

law on a circular cross section torus. This also sets orda, alpha, ordb, and beta to appropriate

values. The constant pitch angle winding law can be generalized with a parameter s as follows.

9 R +a N p
tan - = s - tan

2 R-a 12

If s = 1 this is the usual constant pitch angle winding law; larger values of s make the helix

steeper (more poloidal component to the current) on the outside and shallower on the inside, while

smaller s does the opposite. The input variable sconp is s in the formula above.

Parameters of the Optimization

The model of the torsatron is a set of current-carrying loops around the z axis. Some of the

loops are allowed to vary in position and current. For two reasons (discussed in detail, later) the

optimization routine does not vary the parameters of the variable loops explicitly. The first reason

is that the problem, posed in terms of all the positions and currents of the variable loops, may have

too many degrees of freedom. This leads into the technique of applying equality constraints to the

model. The second reason for not wishing to vary the physical quantities of the model directly,

is that the model is written in terms of different physical units (amps, meters) which have widely

varying magnitudes. The optimization routine is better behaved when its parameter space is more

isotropic. This leads into the topic of rescaling the parameter space.

The mapping used is a linear mapping from the vector of dimensionless parameters that the

optimizer uses, to the vector of distances and currents of the model. The mapping can be written

as a matrix multiplication; Figure 2.2 shows this in two different notations. In the input file, the

starting value of the dimensionless parameter vector is specified by the variable xsta rt, and the

matrix by the variable xno rm. The first index of xno rm iterates over the dimensionless parameters,

the second over the different coil quantities (ie 1 - R , 2 - Z , 3 - t , 4 - I), and the third over

the different coils in the model.

The first point to notice in this mapping is that the dimensionless parameter vector (xstart in

the input) has been augmented with a constant (1.0) in the m + ith position. This allows the user

to write a general linear equality constraint relating one or a number of model parameters to a

fixed constant in a linear manner. For example, by setting two elements in a column of xnorm

to be non-zero, we can constrain two model parameters to be related to the same dimensionless

14

Input to Solve

N 1 N 1 ... (NR N R1

N1 N ... N N + 1
T1

N N .. N NI :1 I=
N 2 N~ ... N7 Nin~ I2R

N N ... Nm Nm+l Z,

Zq Z

N Nr ... N N' 1 T,

N N2 ... NT N +1,

do 1 ic=1,nvc

do 1 iq=1,4

ddip(iq,ic) = xnorm(np+1,iq,ic)

do 1 ip=1,np

1 ddip(iq,ic) =ddip'(iq,ic) + xnorm(ip,iq,ic)*xstart(ip)

Figure 2.2 -- The Mapping of Dimensionless Parameters

Onto the Model, in Algebraic and Fortran Notation.

parameter. Wc could, for instance, constrain two coils to carry the same current, while allowing
their positions to be independent. More examples of equality constraints appear in Chapter 4.

It is also easy to see that if an clement of xs ta rt is multiplied by a constant, and the corresponding
column of xno rm is divided by the same constant, then the end result upon the model will be nil.
However, when a dimensionless parameter is varied by the optimizer there will be a difference in
the response of the model per unit change in the dimensionless parameter.

This leads to the idea of "rescaling" the problem such that the starting values of the dimensionless

parameters are a convenient set of constants of the same magnitude, regardless of the quantity
(i.e. distance or current) that the parameter controls. This is specified in the input by the variable

15

Input to Solve

rescal e, (default value yes), and will be done for all parameters except those with zero starting

value. If the user sets rescal e to anything else, rescaling will not be done. This may be useful

in the last stages of a problem when the user knows the range of parameters that is interesting.

For reading xnorm and xstart, the implicit do-loop feature of the Namelist read is very useful.

The Wishes and the Utility. Function

The types of wishes that specify the utility function have already been mentioned in Chapter

1. These wishes are in physical units, so just as we had to map from dimensionless parameters

onto physical quantities in the input, we have to map from physical quantities onto dimensionless

residuals in the output from the model.

All wishes must specify the desired (ideal) value for the quantity considered. This is the input

variable value. Like the input to the model, this is specified in MKS units. The contribution

of the discrepancy between this desired value and the real value to the (dimensionless) residual

vector is given by we i g h t. Its units are the inverse of the corresponding value. The type of wish

is specified by type.

"type = brad" The value specifies the desired value of .ihe radial component of the

magnetic field at a point.

"type = bver" The value specifies the desired value of the vertical component of the
magnetic field at a point.

"type = btot" The value specifies the desired value of the magnitude of the magnetic
field at a point.

"type = flux" The value specifies the desired value of the linked flux through a loop
around the z axis.

In the four wishes above, the user specifies the r and z positions of the point or loop with the
variable posit (a vector with two elements).

"type = dipi"

model.

The value specifies the desired value of the dipole moment of the entire

16

Input to Solve

Figure 2.3 - The Two Types of Geometric Inequality Constraints.

Above : radial constraints ; below : linear constraints. Positive weight on the left. The shaded

region denotes where the residual becomes non-zero. The thin arrow shows pos it; the thick arrow,
value.

"type = enrg"

entire model.

The value specifies the desired value of the total stored energy of the

No position information is needed for these two global wishes.

"type = conr"' The value specifies the radius of a circular boundary around a point in
rz space. The point is specified by pos i t, the radius by value. When the weight is positive,
the residual is zero outside the circular boundary, and increases linearly inside the boundary by
we i g h t per meter. Negative weight has the opposite effect.

17

..I
.............

..........

.
.

.
.

.

...

..

Input to Solve

"type = con1" po s i t specifies the normal to a straight line boundary, which is a distance

value from the origin. Positive weight "forces" the coil in the direction of the posit vector

-- that is the residual increases on the side of line opposite to the normal. As with the radial

constraint, negative weight has the opposite effect.

These last two types of wishes are the only ones where negative weights are allowed. These

inequality constraints are shown graphically in Figure 2.3.

Control of the Code

'I his last section of the input file is where the user specifies the details of the optimization operation.

Most are concerned with the convergence of the code to a solution. There are three different

criteria for convergence of the algorithm. The first convergence criterion is satisfied if, on two

successive iterations, the dimensionless parameter estimates agree to n s i g figures. (This has a

default value of 5.) The second convergence criterion is satisfied if, on two successive iterations,

the sum of the squares of the residuals have a relative difference less than or equal to eps. The

third convergence criterion is satisfied if the Euclidean nonn of the gradient vector is less than or

equal to delta. Both eps and delta may be set to zero. The iteration terminates if any one

condition is satisfied. Convergence of the algorithm is discussed in Chapter 5.

The sophisticated user may want more control over the minimization algorithm than is provided by

the above variables. The input variables iopt and parm provide this. If iopt is not specified, it

has the default value 1, and the minimizer uses default values of pa rm in a strict-descent algorithm.

If i opt = 2 the user must supply his own values of pa rm. If i op t = 0 then another algorithm,

called Brown's algorithm without strict-descent, is used. The use of these options is discussed in

Chapter 5, the default action is sufficient for most cases.

The variable maxf n provides a way to terminate the minimization iteration if the model function

is being called a large number of times. maxf n specifies the maximum number of function calls

to the model function - the code will terminate if this number is reached. It has a default value

of 1000.

All variables in this section are read with one Namelist read.

18

Input to Solve

Glossary of Input Variables

All variables that may appear in the input file arc listed here with a brief description. The word

in square brackets at the end of each entry indicates in which section of the input the variable will

appear. This is also the section above where more detailed documentation relating to that variable

can be found.

alpha Array of coefficients for the winding law harmonic series.[model]

beta Array of coefficients for radius harmonic series.Imodell

ccoi1 Array of radius, height, thickness, current for constant coils.[mnodel]

coil Indicates to which variable coil a constraint wish applies.[wishes]

cur Total toroidal current in the torsatron.inodel]

del ta Convergence limit for the norm of the gradient.[control]

eps Convergence limit for the sum of squares of residuals.[control]

iopt Algorithm option for the least-squares minimizer.[control

iwl I : Number of poloidal periods in the torsatron field.[mnodel]

iwn N : Number of toroidal periods in the torsatron field.[model]

maxfn Maximum number of function evaluations by the least-squares routine.[control]

np Number of independent parameters in the optimization.[parameters]

ncc Number of constant coils (other than those in the helix).Imodel]

n h c Number of coils modelling the helix.[modell

ns ig Desired number of significant figures in the final parameter vector.Icontroll

nvc Number of variable coils.[modell

orda Number of terms in phi harmonic series - see al ph a.[modelI

o rdb Number of terms in radius harmonic series - see beta.[modell

pa rm Parameters for control of least-squares algorithm.[control

19

Input to Solve

posit r and z coordinates associated with field or clearance wish.[wishes]

rescale Flag to indicate whether or not rescaling xnorm and x should take place at

initialization time.Iparameters]

rmajo r Major radius of torsatron.[modell

rni no r Nominal minor radius of torsatron.[modell

sconp "Tuning" parameter for constant pitch angle winding law.[modell

td ip Radius of conductors used to model helix.[modell

type String indicating type of wish (eg dipole moment).[wishes]

value Desired (optimal) value for field quantity wishes, desired minimum distance for

clearance wishes.[wishes]

we ig ht Relative contribution of wish discrepancy to residual.[wishes]

wf 1 ag Flag to indicate special model (eg constant pitch angle).[inodel]

xnorm Matrix which describes the mapping of the parameter vector onto the variable

part of the model.[paranicters]

xstart Starting value of the parameter vector (see rescale).[parameters]

Example of a Complete Input File

A complete input file is included here for purposes of illustration. The output that corresponds to

this input is used for examples in the next chapter.

THIS SHOULD PRODUCE RESULTS SIMILAR TO THE RESULTS

FROM THE T-1 DATA IN FILE SOLINTI

*END-COMMENTS

* SPECIFICATION OF THE MODEL

NVC = 2
NHC = 16

20

Input to Solve

IWN = 18
IWL = 4

ORDA = 0
RMAJOR = 29.18

RMINOR = 4.00

ORDB = 0
TDIP = 0.20

CUR = 3.667E+07

* PARAMETERS CONTROLLING THE MODEL

NP = 3

RESCALE = "YES"

(XSTART(IP),IP=1,3)

36.0, 9.0, -3.5E+7

(((XNORM(IP,IQ,IC),IP=1,4),IQ=1,4),IC=1,2) =

1 0 0
0 1 0
0 0 0
0 -0 1

1 0 0
0 -1 0
0 0 0
0 0 1

0

0

0.15
0

0

0

0.15
0

S

* WISHES

28.18, 1.00
= "BRAD"

28.68, 1.00
= "BRAD"

29.18, 1.00
= "BRAD"

VALUE

$

VALUE

$
VALUE

$

= 0 WEIGHT = 1.E+4

= 0 WEIGHT = 1.E+4

= 0 WEIGHT = 1.E+4

21

POSIT =

TYPE

POSIT =

TYPE

POSIT =

TYPE

Input to Solve

POSIT = 29.68, 1.00 VALUE = 0 WEIGHT = 1.E+4

TYPE

POSIT =
TYPE

POSIT =
TYPE

POSIT =

TYPE

PO$IT =
TYPE

POSIT =

TYPE

POSIT =

.TYPE

POSIT =

TYPE

POSIT =

= "BRAD" $

30.18, 1.00 VALUE =
= "BRAD" $

28.18, 0.00 VALUE =
= "BVER" $

28.68, 0.00 VALUE =

= "BVER" $

29.18, 0.00 VALUE =

= "BVER" $

29.68, 0.00 VALUE =
= "BVER" $

30.18, 0.00 VALUE =

"BVER" $

29.18, 0.0 VALUE =

= "DIPL" $

29.18, 0.0 VALUE

TYPE = "CONR" COIL = 1

POSIT =

TYPE

TYPE

0.0, 1.0
= "CONL"

= "END"

0 WEIGHT

0

0

0

0

0

WEIGHT

WEIGHT

WEIGHT

WEIGHT

WEIGHT

= 1.E+4

= 1.E+4

= 1.E+4

=1.E+4

= 1.E+4

=1.E+4

0 WEIGHT = I.E-8

0.6 WEIGHT = 1.E+4
$

VALUE = 10.0 WEIGHT = -1.E+4

COIL 1 $

$ (DUMMY - TERMINATOR)

* CONTROL

MAXFN = 1000

NSIG = 5

EPS = 1.0E-08

DELTA = 1.OE-07

IOPT = 1

22

I

Output from Solve

Like the input, the code output is easily divided into parts. However, where the input divided along

functional lines related to the operation of the code, the output divides according to complexity.

The first part of the output summarizes the problem input. The second part simply gives you "The

Answer" and an indication of whether or not it's a good one. The third part tells you a bit more

about the result - how good it is, in terns of the criteria for optimization that were set forth in

the input. Finally the fourth part gives details about the neighbourhood of the solution, revealing

information about how sensitive the result is to small changes in the input conditions.

Each page of the output contains the ruri number in the upper left corner. If the page is one

of a number that all deal with the same type of data, then a page number will appear in the

upper right corner. This does not refer to the page position in the entire file, but only to the

position in a number of pages dealing with the same data. For example, the cigenvalues are printed

column-wise across the page. If there are more than five parameters in the solution, there will be

more than one page of eigenvalues, and the first page of eigenvalues will contain p (1), the second

p(2), and so on.

In the sections that follow, page breaks are indicated by horizontal lines across the full width of

the page.

Summary of the Problem

This part is self-explanatory. All the data specifying the problem from the input file, plus the

Output from Solve

effects of any defaults, are shown here. The parameter vector xs ta r t and mapping matrix xno rm

appear in rescaled form if that was desired. The wishes are sorted by type.

SOLVE VERSION 4.2

RUN NUMBER 1 AT 06:39:54

A (A) MACHINE ON 06/03/81

THIS SHOULD PRODUCE RESULTS SIMILAR TO THE RESULTS

FROM THE T-1 STUFF IN FILE SOLINTI

(1) SETUP OF TORSATRON MODEL

NUMBER OF

NUMBER OF

NUMBER OF

VARIABLE

CONSTANT

HELIX

COiLS

COILS
COILS

2

0

16

HELIX WINDING DATA

N :18
L: 4

LINEAR DEPENDANCE OF THETA ON PHI

MAJOR RADIUS : 29.1800

MINOR RADIUS : 4.0000

CONSTANT MINOR RADIUS

24

Output from Solve

SIZE OF COILS USED TO MODEL HELIX :

TOTAL TOROIDAL CURRENT : 3.6670E+07

0.2000

(1) XSTART AND XNORM - PARAMETER TO MODEL COUPLIRG

(1) (2) (3)

1.OOOOE+02

0.

9.0000E-02

0.

0.

0.

-9.OOOOE-02

0.

0.

1.0000E+02

0.

0.

0.
-3.5000E+05

0.

0.

0.

-3.5000E+05

(1) WISHES

WEIGHT

1.00OOE+04

1.00OOE+04

1.000OE+04
1.00OOE+04

1.0000E+04

PARAM

P(1, 1)

CONSTANT

COIL

(1) R
Z

T

I

(2) R

Z

T

I

1.OOOOE+02

3.6000E-01
0.

0.

0.

3.6000E-01
0.

0.

0.

1.0

0.

0.

1. 5000E-01

0.

0.

0.

1.5000E-01

0.

TYPE R

1

2

3

4

5

VALUE

RADIAL

RADIAL

RADIAL

RADIAL

RADIAL

FIELD

FIELD

FIELD

FIELD

FIELD

P(1)

COILZ

1.000
1.000
1.000

1.000
1.000

28.180
28.680
29.180
29.680

30.180

0.

0.

0.

0.

0.

25

Output from Solve

VERTICAL FIELD

VERTICAL FIELD

VERTICAL FIELD

VERTICAL FIELD

VERTICAL FIELD

DIPOLE MOMENT

RADIAL CONSTR.

PLANAR CONSTR.

28.180
28.680

29.180
29.680
30.180

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

29.180 0.. 6.OOOOE-01

0. . 1.000 1.0000E+01

1.OOOOE+04

1.0000E+04
1.0000E+04
1.OOOOE+04

1.0000E+04

1.OOOOE-08
1.0000E+04

-1.0000E+04

(1) CONTROL OF SOLVE

MAXIMUM NUMBER OF FUNCTION EVALUATIONS

NUMBER OF SIGNIFICANT FIGURES

MINIMUM RELATIVE CHANGE IN SUM OF SQUARES

MINIMUM NORM OF GRADIENT

1000
5

1.OOOE-08
1 .000E-07

ALGORITHM OPTION IOPT = 1
STFICT DESCENT WITH DEFAULT PARAMETERS

Basic Results

This part of the output contains the final values of the dimensionless parancters and the

corresponding configuration of the variable coils. It also contains indications of whether the

least-squares routine converged or not, and if so, what convergence criteria were satisfied.

(1) BASIC RESULTS

. 26

6

7

8

9

10

11

12

13

1

1

Output from Solve

INFER = 1

FIRST CONVERGENCE CRITERION SATISFIED

PARAMETER ESTIMATES AGREE TO NSIG DIGITS

ESTIMATED NUMBER OF SIGNIFICANT FIGURES 5

FINAL PARAMETER VALUES

(1)

(2)

(3)

1.02416E+02

9.88423E+01

3.35716E+01

ESTIMATED SIGNIFICANT DIGITS

NUMBER OF FUNCTION EVALUATIONS

NUMBER OF ITERATIONS

NORM OF GRADIENT

FINAL MARQUARDT PARAMETER

5

39

12

2.2109E-02

3.9502E-08

FINAL VARIABLE COIL CONFIGURATION

36.8698

36.8698

z

8.8958

-8.895.8

T

0.1500

0.1500

I

-1.1750E+07

-1.1750E+07

At the top of the page is the variable in f e r. This will be non-zero if the least-squares routine

has satisfied one of the convergence criteria. The explanation of the value is directly below. If

the routine has not converged the explanation of the failure will appear there instead. (For an

example of a failing iteration see Chapter 4.)

27

R

(1)
(2)

Output from Solve

Next on the page arc the final values of the dimensionless parameters. The mapping from these
onto the coil configuration appears later on this page, but these dimensionless values arc sometimes

useful as well for sensitivity analysis.

The estimated number of significant digits in the final values for the parameters is shown, regardless

of which convergence criterion is satisfied. This is only valid if the algorithm converged in some

way. If the magnitudes of the parameters differ greatly, this will overestimate slightly the significant

digits in the smaller parameters.

The number of function evaluations is the total number of times 'the model routine was called,

while the number of iterations is the number of steps in parameter space that the least-squares

routine made. More than one function evaluation is needed for each step as the routine uses finite

difference techniques to evaluate gradients in parameter space.

The nonn of the gradient is an indication of how flat the utility function is in the region of the

final parameter values. The fimal Marquardt parameter is an indication of how the algorithmic step

process converged on the answer. These are discussed in Chapter 5.

At the end of die page the final coil configuration is displayed. This is just the mapping of the

dimensionless parameters shown earlier, using xnorm as supplied in the input.

Residuals - The Quality of the Solution

This section of the output is concerned with the fulfillment of the user's wishes. To be more
precise, it lists the discrepancy between the wished-for value and the result as found from the

model. At the top of the page is the total sum of the squars of all the dimensionless residuals.

This is the number that the code has been minimizing. Below that there is a line for each wish,
showing the dimensionless residual and the discrepancy in physical units. Since it is difficult to list
all the information about a wish on one line, the general type of the wish is listed along with the
number corresponding to the full listing of the wishes in the input section.

(1) RESIDUALS P(1)

28

Output from Solve

RESIDUAL SUM OF SQUARES 9.08021E+03

WISH NORMALIZED

RADIAL

RADIAL

RADIAL

RADIAL

RADIAL

VERTICAL

VERTICAL

VERTICAL

VERTICAL

VERTICAL

FIELD

FIELD

FIELD

FIELD

FIELD

FIELD

FIELD

FIELD

FIELD

FIELD

DIPOLE MOMENT

RADIAL CONSTR.

PLANAR CONSTR.

-5.77003E+01

-3.44177E+01

-7.92696E+00

2.20298E+01

5.56426E+01

1.80981E+01

-3.89764E+00

-1.33602E+01

-8.63534E+00

1.20333E+01

-1.34711E+01

0.

0.

-5.77003E-03

-3.44177E-03

-7.92696E-04

2.20298E-03

5.56426E-03

1.80981E-03

-3.89764E-04

-1.33602E-03

-8.63534E-04

1.20333E-03

-1.34711E+09

0.

0.

You should note that the physical residuals are still just that - residuals. They show the discrepancy

between your wish and the value from the model in its final form. Refer to the list of wishes in

the input summary to find out what you wished for.

In the next section on sensitivity analysis I will show how to use the information about the residuals

to greater advantage.

Jacobians and Hessians - Sensitivity Analysis

In this section there are three interesting quantities. If we represent the parameter vector by zi,

the residuals by R3 , and the sum of the squares of the residuals by <P, then these quantities are

29

PHYSICAL

1)

2)

3)

4)

5)

6)

7)

8)

9)

10)

11)

12)

13)

TESLA

TESLA

TESLA

TESLA

TESLA

TESLA

TESLA

TESLA

TESLA

TESLA

AMP-Mt2

METER

METER

Output from Solve

the Jacobian matrix :

(Z
8R,

OX2

Dn, J.
OM&

the gradient vector:

and the Hessian matrix

_,2 , x2 x, C x 1
T-acb OX2 n2 gdnX 3 sX 2

Thle Jacobian and gradient appear as follows in the output.

(1) JACOBIAN (DIMENSIONLESS)

PARAM(1) (2)

WISH

(1) -1.4575E+01 3.2671E+00

(2) -1.6857E+01 3.1830E+00

(3) -1.9336E+01 3.0105E+00

(4) -2.1976E+01 2.7281E+00

(5) -2.4720E+01 2.3128E+00

(6) -8.0889E-01 3.5601E+01

(7) -8.7364E+00 3.7190E+01

P(1, 1)

(3)

1. 1125E+00

1.7398E+00

2.4652E+00

3.2962E+00

4.2384E+00

-1.3557E+02

-1.3482E+02

30

Output from Solve

(8) -1.7847E+01 3.8707E+01 -1.3374E+02

(9) -2.8223E+01 4.0105E+01 -1.3226E+02

(10) -3.9923E+01 4.1320E+01 -1.3034E+02

(11) -1.9599E+01 0. -2.9894E+01

(12) 0. 0. 0.

(13) 0. 0. 0.

The Jacobian shows the effects of changing a parameter on individual residuals. It is here that

you can find the details of "what is being traded-off against what?" Consider the Jacobian matrix

shown above.

Zero components show where a parameter has no effect on a wish. Since the constraints are not

violated in the final solution, the Jacobian has two rows of zeros corresponding to those wishes.

Also in wish 11, parameter 2 has no effect on the dipole moment. This is as expected - parameter

2 controls the height of the coil.

The remaining entries in the second column are all positive. This shows that all the residuals
corresponding to those wishes are increasing as the parameter increases. However, looking back

at the residuals in the previous section we can see that some are negative and some positive.

This is a common situation. The field quantities that the first ten wishes specify are changing in
approximately the same manner with the parameter. However not all achieve their desired values

at exactly the same parameter value. So the result minimizes the sum of the square residuals,

leaving some residuals positive and some negative.

Column 3 shows another effect. Some elements have much larger magnitudes than others. It
shows that the current in the vertical field coil has much more effect on the vertical field than on

the radial field component. This is a function of the position of the coil of course. Keep in mind
that these magnitudes are all in terms of the dimensionless parameters and residuals. If you want
the effect in terms of real-model parameter on real-wish result, you will have to multiply by the
weight of the wish and similarly extract the effect of the parameter mapping matrix.

31

Output from Solve

While the Jacobian shows the effect of parameter changes on individual residuals, the gradient and

Hessian show the effects on the sum-of-squares function that is being minimized. The Hessian

is not printed in its raw form. Instead it is decomposed into its eigenvectors, and the normalized

vectors and corresponding eigenvalues are shown instead. (Since the Hessian is real symmetric, the

eigenvalues are real.)

(1) GRADIENT (DIMENSIONLESS)

(1)
(2)
(3)

2.46294E-02

-3.30213E-03

-1.05249E-02

(1) EIGENVALUES AND EIGENVECTORS (DIMENSIONLESS) P(1)

(1)
1.1183E+n2

-1.2285E-01

-9.5869E-01

-2.5654E-01

(2)
3.2279E+03

-9.8211E-01

8.0271E-02

1.7033E-01

(3)
9.9160E+04

1.4270E-01

-2.7288E-01

9. 5141E-01

The gradient should be small at the final solution, because the code is supposed to find a minimum.

The gradient is displayed mainly to show "how flat is (b around the point that has been found?"

It provides a way to compare the different convergence criteria also.

Since the first derivatives of D with respect to the parameters are approximately zero, it is the

second derivatives which give the lowest order description of the way that 0 changes significantly

32

EIGEN-

VALUE

PARAM

(1)

(2)

(3)

Output from Solve

around the solution point. (In a two dimensional parameter space you can imagine 4) plotted as

the height of a surface, like Figure 1.1, and then the Hessian tells you what shape is the hole that

you're in.)

The cigenvectors are normalized, and shown ordered by increasing cigenvalue. The larger the

cigenvalue, the greater the change of D for a given step in the direction of the eigenvalue in

parameter space. In the example above, for instance, a change in the height of the coil (parameter

2), with small changes in the radius and current, is the least significant change in terms of the

utility function. It is in this direction that errors will be least critical. Changes in parameter 3. on

the other hand, are an order of magnitude more critical then changes in the height.

Keep in mind that these are changes in the dimensionless parameters - multiply by xnorm to find

the consequences in terms of real-world parameters, but do this cautiously. Remember that the

problem has been solved with the number of dimensionless parameters as the number of degrees

of freedom, and looking at "cigenvectors" in real-model parameter space obscures the fact that

the solution algorithm has not, in general, been able to move through all of that model space.

This warning is particularly important when xnorm has a more complicated structure than the

essentially diagonal one in the above version.

33

Sample Input and Output

The last two chapters were a very basic primer on using Solve. While talking in grandiose terms

about parameter space and so forth, a simple result was obtained for a simple problem. This

chapter is meant to fill the gap between promise and practice by demonstrating some of the "tricks

of the trade", and showing a couple of interesting problems that can be posed to Solve. (One of

them can be solved tool)

Equality Constraints Using the Dimensionless Parameters

This section deals mainly with using the linear mapping specified by xnorm to select the portion

of the model space to be investigated. For reasons of brevity (and boredom), complete input files

are not shown. Instead, only the relevant portions are shown here; they should be placed in the

context of a complete input file as described in Chapter 2.

In the excerpts from the input files in the examples that follow, I have followed the convention in

the implict do loops that i p is the index that iterates over different dimensionless parameters; iq

is the index that iterates over different model quantities (ie 1 - R , 2 - Z , 3 - t , 4 - I), and i c

iterates over different coils of the model. Also remember that the mapping matrix xno rm has one

more column than the number of parameters (i p runs to one more than np).This is the column

that maps the constant 1.0 onto the model vector.

Setting up a standard pair of coils above and below the Z = 0 plane. This is the simplest common

situation. We want to optimize the arrangement of a single pair of coils, giving the variable coils

Sample Input and Output

all the usual degrees of freedom. We know that from symmetry arguments the coils should have
the same radius and current, and heights of equal magnitude but opposite sign. We set the minor
diameter of the coils to a constant 15cm.

NP = 3

(XSTART(IP),IP=1,3) = 2.0 1.5 - 1.5e+06

(((XNORM(IP.IQ.IC),IP=1,4),IQ=1,4),IC=1,2) =

1. 0.
0. 1.
0. 0.
0. 0.

1. 0.
0. -1.
0. 0.
0. 0.

0.

0.
0.
1.~

0.

0.

0.
1.

0.

0.
0.15
0.

0.
0.

0.15
0.

The first parameter contro. the radii; the second, the heights; and the third, the current in the

loops. In the case where you have two or more pairs of loops to optimize, it makes sense to take

advantage of the default value of 0 for all the elements of xnorm and avoid explicitly specifying

regions of zeros.

* PARAMETERS CONTROLLING THE MODEL

NP = 7

set all the variable-coil minor radii

(XNORM(8,3,IC),IC=1,4) = 4(0.22)

* a standard pair of variable coils controlled by parameters 1,2,3

(XSTART(IP),IP=1,3) = 10.0. 8.0, 2.5E+7

35

Sample Input and Output

0.

1.

0.

0.

0.

-1.

0.

0.

0.

0.

0.

1.

0.

0.

0.

1.

* another standard pair of variable coils contro

(XSTART(IP),IP=4,6) = 6.0, 8.0,

lled by parameters 4,5,6

-1.5E+7

(((XNORM(IPIQ,IC),IP=4,6).IQ=1,4),IC=3.4) =

1.

0.

0.

0.

1.

0.

0.

0.

0.

1.

0.

0.

0.

-1.
0.

0.

0.

0.

0.

1.

0.

0.

0.

1.

Here I have specified the minor diameters of all the variable coils first. Then I specified the pieces
of xstart and xnorm pertaining to the first pair, and then the pieces pertaining to the second
pair. Nearly half of xnorm did not have to be mentioned at all since it was all zero. Also note
the use of comments in the input. This is a useful feature of the Nanielist input.

Setting up coils at fixed positions. A plausible situation is one where the machine designer has
room for a loop in a restricted location, and he wants to optimize the current in that loop along
with the positions and currents in loops farther out. This would probably be done in conjunction

36

1.

0.

0.

0.

1..
0.

0.

0.

(((XNORM(IPIQ,IC),IP=1,3),IQ=1,4),IC=1,2)

Sample Input and Output

with a constraint keeping the other coils out of the restricted region, however the parameter section
of the input might contain something like this.

NP = 7

XSTART(7) = 2.0E+6

(((XNORM(IP,IQIC),IP=7.8),IQ=1,4),IC=5,6) =

0.
0.

0.

1.

0.

0.

0.

1.

1.2
0.7
0.22
0.

1.2
-0.7

0.22
0.

Here I have specified a pair of coils with fixed radius, height and thickness, but with their current

controlled by parameter 7. Remember that if you want a coil with all its quantities fixed, there is

no need to take up xnorm space, and slow the code down - it should be specified in the model

section of the input as a fixed coil.

Modelling a coil with more than one filamentary loop. This is one of the more complicated things

that you can do with the mapping matrix. Suppose you want to check the limitations of modelling

a coil with a single filament, and instead you want to model the coil with four filaments which are
"tied together" - ie maintain a constant relationship in space with respect to each other.

NP = 3

(XSTART(IP),IP=1,3) = 10.0 5.5 5.OE+6

(((XNORM(IP,IQ,IC),IP=1,4),IQ=1,4),IC=1,8) =

0. 0. -0.04

37

1.

Sample Input and Output

0.

0.
0.

1.

0.
0.
0.

1.

0.
0.
0.

1.

0.
0.

0.

1.

0.
0.
0.

1.

0.
0.
0.

1.

0.
0.
0.

1.

0.
0.
0.

0.
-1.

0.
0.

0.
-1.

0.
0.

0.
-1.

0.
0.

0.
-1.

0.
0.

1.

0.

0.

0.
1.

0.
0.

0.
1.

0.
0.

0.
1.

0.
0.

38

0.

0.
0.20

0.
0.

0.
0.30

0.
0.
0.

0.30

0.
0.
0.

0.20

0.
0.

0.
0.20

0.
0.
0.

0.30

0.
0.
0.

0.30

0.
0.
0.

0.20

-0.04

0.05

0.

0.04

-0.04

0.05

0.

0.04

0.04

0.05
0.

-0.04

0.04

0.05

0.

-0.04

-0.04

0.05

0.

0.04

-0.04

0.05
0.

0.04

0.04

0.05
0.

-0.04

0.04

0.05

0.

Sample Input and Output

Here we have eight filaments, in two groups of four. The usual method has been used to make
symmetric pairs above and below the Z = 0 plane. In addition small constants are alternately

added and subtracted from the radius and height parameters letting us keep the four filaments in
a square configuration with sides of 8cm. Finally note that the current has been divided up so that

the outer filaments (greater radius) carry 60% of the current and the inner filaments only carry

40%.

As you can see, the mapping matrix allows quite sophisticated control of the model in parameter

space.

Geometric Inequality Constraints Using the Wishes

As described above, the mapping from dimensionless parameters to model parameters allows one
sort of control over the problem domain, essentially by allowing the least-squares routine to only
access a subset of the entire model space. The inequality constraints which are part of the wishes

are not true constraints in the same sense as above. Instead of making a region of model space
inaccessible, they make the region increasingly undesirable by increasing the residual linearly from
the boundary (which means the utility function will increase quadratically). This approach is called
the penalty function technique, for obvious reasons.

Various excerpts from input files are shown in the same manner as the previous section to illustrate

some common applications of the inequality constraints.

Constraining a coil to be outside the helix volume. This is the most common use of the geometric

constraints. In fact, nearly every problem posed to Solve will have constraints of this form. Suppose
you have a problem with four coils in the usual pairs, coils 1 and 2 forming one pair, coils 3 and
4 the other. The machine has a major radius of 10 meters and a coil minor radius of 4 meters.
You decide to start the residual increasing a meter out from the helix coils themselves, so that a
small violation of the constraint is not serious.

POSIT = 10.00, 0.00 VALUE = 5.0 WEIGHT = 1.E+4
TYPE = "CONR" COIL = 1 $

POSIT = 10.00, 0.00 VALUE = 5.0 WEIGHT = 1.E+4
TYPE = "CONR" COIL = 3 $

39

39

Sample Input and Output

Note that, because of the usual symmetry in the pairs of coils, I don't have to explicitly put a

constraint on coils 2 or 4.

Constraining a coil inside a region. Now suppose that Solve has produced a solution with a coil

in a possible, but somewhat undesirable place. You want to "push" the coil into a more desirable

place, but see how much it costs in the final residuals. Lets suppose you want the coil no more

than 10 meters away from the center of the machine (major radius 15 meters), but at least 3 meters

away. Also you want to be strict about the 3 meter inside criterion because of clearance from other

coils, while you can be more relaxed about the 10 meter maximum. Finally, you want to keep the

coil at a greater radius than the major radius of the machine, and this is more important than the

10 meter maximum, but not as important as the 3 meter minimum.

POSIT = 15.00, 0.00 VALUE = 3.0 WEIGHT = l.E+4
TYPE = "CONR" COIL = .1 $

POSIT = 15.00, 0.00 VALUE 10.0 WEIGHT -1.E+3
TYPE = "CONR" COIL = 1 $

POSIT = 1.00, 0.00 VALUE = 15.0 WEIGHT = 3.E+3

TYPE = "CONL" COIL = 1 $

Remember that pos it specifies the center for a radial constraint, the normal direction for a linear

constraint, and value specifies the radius for a radial constraint, the distance from the origin for
a linear one.

Keeping two coils separated in different regions. This example shows why it is useful to have

geometric constraints apply to individual coils, rather than to all coils. Suppose you want to keep

one coil above and to the left of the line 2Z = R, while another is to be kept below and to the
right of the same line.

POSIT = -1.00, 2.00 VALUE 0.0 WEIGHT = 2.E+3
TYPE = "CONL" COIL = 1 $

40

Sample Input and Output

POSIT = -1.00, 2.00 VALUE = 0.0 WEIGHT = -2.E+3

TYPE = "CONL" COIL = 3 $

Coil 1 will be "encouraged" to stay above the line, coil 3 below. Note that the only difference

between the wishes is the sign of the weights. This could have been done by changing the sign of

all the normal components (pos i t) instead.

A Large Residual Solution

This section demonstrates an example of a well posed problem for Solve. The code converges well

on a minimum, however the minimum has large residuals left. The problem is adapted from the

design of TOREX-4, a proposed [31 experimental torsatron. It was desirable to have well formed

flux surfaces in the plasma region, and also to prevent power supply fluctuations from inducing

currents in the plasma. The majority of wishes are therefore concerned with nulling both the field

and the linked flux in the plasma region. In addition there is a geometric constraint to keep the

nulling pair out of the helix and a dipole moment wish to reduce the far field magnitude.

The entire input file, apart from the comments, is shown here.

* SPECIFICATION OF THE MODEL

NVC = 2

NHC = 16

IWN = 18

IWL = 4

RMAJOR a 2.06

RMINOR = 0.36

WFLAG = "CONPITCH"

TDIP = 0.20

CUR = 6.88E+06

* PARAMETERS CONTROLLING THE MODEL

. 41

Sample Input and Output

NP = 3

RESCALE = "YES"

(XSTART(I),I=1,3) =

2.0, 1.0, -3.5E+6

(((XNORM(K,J,I),K=1,4),J=1,4),1=1,2)-=

I

0

0

0

1

0

0

0

0

1
0

0

0

-1

0

0

0

0

0
1

0
0
0
1

$

* WISHES

1.96, 0.05
= "BRAD"

2.01, 0.05
= "BRAD"

2.06, 0.05
= "BRAD"

2.11, 0.05
= "BRAD"

2.16, 0.05
= "BRAD"

1.96. 0.00
= "BVER"

2.01, 0.00
= "BVER"

2.06, 0.00
= "BVER"

2.11, 0.00

VALUE

s

= 0. WEIGHT = 4.E+4

VALUE = 0. WEIGHT = 4.E+4
$

VALUE = 0. WEIGHT = 4.E+4

$

VALUE = 0. WEIGHT = 4.E+4

$

VALUE = 0. WEIGHT m 4.E+4

$

VALUE = 0. WEIGHT = 4.E+4

$
VALUE =0. WEIGHT = 4.E+4

$
VALUE = 0. WEIGHT =4.E+4

$
VALUE = 0. WEIGHT = 4.E+4

42

0

0

0.15
0

0

0

0.15
0

POSIT =
TYPE

POSIT =

TYPE

POSIT =

TYPE

POSIT =

TYPE

POSIT =
TYPE

POSIT =

TYPE

POSIT =

TYPE

POSIT =

TYPE

POSIT =

Sample Input and Output

TYPE = "BVER" $

POSIT = 2.16, 0.00 VALUE = 0. WEIGHT = 4.E+4

TYPE = "BVER" $

POSIT = 1.96, 0.00 VALUE = 0. WEIGHT = 4.E+4

TYPE = "FLUX" $

POSIT = 2.01, 0.00 VALUE = 0. WEIGHT = 4.E+4

TYPE = "FLUX" $

POSIT = 2.06, 0.00 VALUE = 0. WEIGHT = 4.E+4

rYPE = "FLUX" $

POSIT = 2.11, 0.00 VALUE = 0. WEIGHT = 4.E+4

TYPE = "FLUX" $

POSIT = 2.16, 0.00 VALUE = 0. WEIGHT = 4.E+4

TYPE = "FLUX" $

VALUE = 0 WEIGHT a 1.

TYPE a"DIPL" $

POSIT = 2.06, 0.0 VALUE = 0.6 WEIGHT = 1.E+6

TYPE = "CONR" COIL = 1 $

TYPE = "END" $ (DUMMY - TERMINATOR)

* CONTROL

MAXFN = 1000

NSIG a 5

EPS = 1.OE-08

DELTA = 1.OE-07

IOPT - 1

43

The results of the run are shown here. The input summary and sensitivity analysis have been

deleted for brevity.

Sample Input and Output

(7) BASIC RESULTS

INFER 3

FIRST CONVERGENCE CRITERION SATISFIED

PARAMETER ESTIMATES AGREE TO NSIG DIGITS

ESTIMATED NUMBER OF SIGNIFICANT FIGURES

SECOND CONVERGENCE CRITERION SATISFIED

RELATIVE CHANGE IN RESIDUAL LESS THAN EPS

FINAL PARAMETER VALUES

(1)
(2)
(3)

5

1.03049E+02

3.56461E+01

9.66818E+01

ESTIMATED SIGNIFICANT DIGITS

NUMBER OF FUNCTION EVALUATIONS

NUMBER OF ITERATIONS

NORM OF GRADIENT

FINAL MARQUARDT PARAMETER

5

50

22

1.9797E+04

7.3458E-09

FINAL VARIABLE COIL CONFIGURATION

z

2.0610
2.0610

RESIDUALS

0.3565
-0.3565

T

0.1500
0.1500

I

-3.3839E+06

-3.3839E+06

RESIDUAL SUM OF SQUARES : 7.49917E+09

44

R

(1)
(2)

1(7) P(1)

now---

Sample Input and Output

NORMALIZED

RADIAL FIELD

RADIAL FIELD

RADIAL FIELD

RADIAL FIELD

RADIAL FIELD

VERTICAL FIELD

VERTICAL FIELD

VERTICAL FIELD

VERTICAL FIELD

VERTICAL FIELD

NET LINKED FLUX

NET LINKED FLUX

NET LINKED FLUX

NET LINKED FLUX

NET LINKED FLUX

DIPOLE MOMENT

RADIAL CONSTR.

1.73091E+04

2.05661E+04

2.16637E+04

2.01779E+04

1.66606E+04

-4.62023E+04

-2.73868E+04

-6.46137E+03

1.42656E+04

3.25503E+04

9.44211E+03

-6.33632E+03

-8.95266E+03

1.89905E+03

2.50378E+04

-2.10743E+02

2.43538E+04

4.32727E-01

5. 14153E-01

5. 41594E-01

5.04449E-01

4. 16515E-01

-1.15506E+00

-6.84669E-01

-1.61534E-01

3.56639E-01

8. 13756E-01

2.36053E-01

-1.58408E-01

-2.23816E-01

4. 74763E-02

6.25945E-01

-2.10743E+02

2. 43538E-01

Despite the radial constraint, the code has placed the coil very close to the helix winding. Even

with the nulling coil this close, the solution is not a good one. There are residual fields of more

than 1 Tesla in the plasma region. The weight of the constraint wish could be increased to force

the nulling coils outward, but this would certainly yield even worse field conditions. There may

be a better solution to be found elsewhere in parameter space, but it turns out that this is not so.

The most important conclusion from this run is that one pair of coils is not sufficient to satisfy all

the wishes.

45

WISH PHYSICAL

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)
(10)

(11)
(12)

(13)

(14)

(15)

(16)

(17)

TESLA

TESLA

TESLA

TESLA

TESLA

TESLA

TESLA

TESLA

TESLA

TESLA

WEBER

WEBER

WEBER

WEBER

WEBER

AMP-Mt2

METER

Sample.Jn out and Output

A Small Residual Solution

Continuing with the example from the previous section, a two pair solution was tried. New
parameters and another constraint wish have been added for the second pair of coils, but otherwise
the input looks much the same as the previous example.

* SPECIFICATION OF THE MODEL

NVC = 4
NHC = 16

IWN = 18
IWL = 4

RMAJOR = 2.06

RMINOR = 0.36
WFLAG = "CONPITCH"
TDIP = 0.20
CUR = 6.88E+06

* PARAMETERS CONTROLLING THE MODEL

NP = 6
RESCALE = "YES"

(XNORM(7,3,IC),IC=1,4) = 4(0.15)

(XSTART(),I=1,3)

1.5, 1.0. -1.0E+6

(((XNORM(IP,JIC).IP=1,3).J=1,4),IC=1,2) =

1. 0. 0.

0. 1. 0.

0. 0. 0.

0. 0. 1.

46

1.

0.

0.

0.

(XSTART(I),1=4,6)

2.5,

(((XNORM(IP,J.IC)

1.

0.
0.

0.

1.

0.

0.

0.

POSIT =

TYPE

POSIT =

TYPE

POSIT =

TYPE

POSIT =

TYPE

POSIT =

TYPE

POSIT =
. TYPE

POSIT =

TYPE

POSIT =

1.96, 0.05
= "BRAD"

2.01, 0.05
= "BRAD"

2.06, 0.05
= "BRAD"
2.11, 0.05
= "BRAD"

2.16, 0.05
= "BRAD"

1.96, 0.00
= "BVER"

2.01, 0.00
= "BVER"

2.06, 0.00

Sample Input and Output

0. 0.
-1. 0.

0. 0.
0. 1.

=

1.0, -1.0E+6

IP=4,6),J=1,4),IC=3,4) =

0. 0.

1. 0.

0. 0.

0. 1.

0. 0.

-1. 0.

0. 0.
0. 1.

VALUE

$

VALUE

$

VALUE

$

VALUE

$

VALUE

$

VALUE

$
VALUE

$
VALUE

0.

0.

0.

0.

0.

0.

0.

0.

WEIGHT

WEIGHT

WEIGHT

WEIGHT

WEIGHT

WEIGHT

WEIGHT

WEIGHT

47

=

4.E+4

-4.E+4

4.E+4

4.E+4

4.E+4

= 4.E+4

= 4.E+4

w 4.E+4

* WISHES

Sample Input and Output

TYPE = "BVER" $
POSIT = 2.11. 0.00 VALUE = 0. WEIGHT = 4.E+4

TYPE = "BVER" $
POSIT = 2.16, 0.00 VALUE = 0. WEIGHT = 4.E+4

TYPE = "BVER" $

POSIT = 1.96, 0.00 VALUE = 0. WEIGHT = 4.E+4

TYPE = "FLUX" $
POSIT = 2.01, 0.00 VALUE = 0. WEIGHT = 4.E+4

TYPE = "FLUX" $

POSIT = 2.06, 0.00 VALUE = 0. WEIGHT = 4.E+4

TYPE = "FLUX" $
POSIT = 2.11. 0.00 VALUE = 0. WEIGHT = 4.E+4

TYPE = "FLUX" $
POSIT = 2.16, 0.00 VALUE = 0. WEIGHT = 4.E+4

TYPE = "FLUX" $

VALUE = 0. WEIGHT = 1.E-4
TYPE = "DIPL" $

POSIT = 2.06, 0.0 VALUE = 0.6 WEIGHT = 1.E+6
TYPE = "CONR" COIL = 1 $

POSIT = 2.06, 0.0 VALUE = 0.6 WEIGHT = 1.E+6
TYPE = "CONR" COIL = 3 $

TYPE = "END" $ (DUMMY - TERMINATOR)

* CONTROL

MAXFN = 1000

NSIG = 5

EPS = 1.OE-08

DELTA = 1.0E-07
IOPT a1

The results are shown here.

48

Sample Input and Output

(9) BASIC RESULTS

INFER = 0 : CONVERGENCE FAILED

IER = 131 : THE MARQUARDT PARAMETER EXCEEDED

THE LIMIT PARM(3)

FINAL PARAMETER VALUES

(
(
(
(C
(

1)

2)

3)

4)

5)

(6)

1.09313E+02

-4.28165E+01

3.09'721E+02

9.91635E+01

-4.29255E+01

1.81887E+02

ESTIMATED SIGNIFICANT DIGITS

NUMBER OF FUNCTION EVALUATIONS

NUMBER OF ITERATIONS

9

521
152

NORM OF GRADIENT

FINAL MARQUARDT PARAMETER

2.0314E+02
2.2583E+02

FINAL VARIABLE COIL CONFIGURATION

Z

-0.4282

0.4282

-0.4293

0.4293

T

0.1500
0.1500
0.1500
0.1500

I

-3.0972E+06

-3.0972E+06

-1.8189E+06

-1 .8189E+06

49

R

(1)
(2)
(3)

(4)

1.6397
1.6397
2.4791

2.4791

Sample Input and Output

(9) RESIDUALS

RESIDUAL SUM OF SQUARES

WISH

1)

2)

3)

4)

5)

6)

7)
8)

9)
10)

11)

12)

13)
14)
15)

16)
17)
18)

RADIAL

RADIAL

RADIAL

RADIAL

RADIAL

VERTICAL

VERTICAL

VERTICAL

VERTICAL

VERTICAL

NET

NET

NET

NET

NET

LINKED

LINKED

LINKED

LINKED

LINKED

FIELD

FIELD
FIELD

FIELD

FIELD

FIELD

FIELD

FIELD

FIELD

FIELD

FLUX

FLUX

FLUX

FLUX

FLUX

DIPOLE MOMENT

RADIAL CONSTR.

RADIAL CONSTR.

3.55599E+0'7

NORMALIZED

1.61397E+03

7.10159E+02

2.80916E+02

2.94909E+02

7.19029E+02

-2.27861E+02
9.70279E+02

1.56215E+03

1.82558E+03

2.36652E+03

2.14057E+03

7.74095E+02

-2.81851E+02

-1.13515E+03

-1.62122E+03

-3.22476E+03
1.64494E+01

8.79970E+01

PHYSICAL

4. 03493E-02

1. 77540E-02
7. 02289E-03

7. 37272E-03

1. 79757E-02

-5.69653E-03

2. 42570E-02
3. 75538E-02
4.56395E-02
5.91630E-02

5. 35143E-02

1.93524E-02
-7.04628E-03

-2.83787E-02

-4.05304E-02

-3.22476E+07

1. 64494E-05
8. 79970E-05

50

TESLA

TESLA

TESLA

TESLA
TESLA

TESLA

TESLA

TESLA

TESLA

TESLA

WEBER

WEBER

WEBER

WEBER

WEBER

AMP-Mt2

METER

METER

When the Marquardt parameter exceeds the limit, it is usually an indication that the iteration has

broken down in a large uniform region of parameter space. The solution is not too bad in terms of

P(1)

Sample Input and Output

the residuals, so this indicates that another try with slightly different starting point might converge.

In fact, if we start the same problem with the following starting point, a solution with satisfactory

convergence is obtained.

(XSTART(I),I=1,3) =

1.4, 0..7, -6.OE+6

(XSTART(I).I=4,6) =

2.5, 0.5, -1.5E+6

The final coil configuration is as follows.

FINAL VARIABLE COIL CONFIGURATION

R z

1.4592
1.4592
2.5020
2.5020

0.6649
-0.6649
0.4055

-0.4055

T

0.1500
0.1500
0.1500
0.1500

I

-6.3040E+06

-6.3040E+06

-1.5493E+06

-1.5493E+06

51

(1)
(2)
(3)
(4)

Theory of Operation

Solve and the Philosophy of Design

In some sense, most design is optimization. It is, however, a long way from this global view to
defining some sort of value or utility function for any design problem that the designer can then
minimize. (Or maximize - traditionally, optimizers have always minimized, but the difference is
only one of viewpoint.)

I don't suggest that all design problems should be posed as minimization problems, nor do I even
claim to have the final word on the particular problem described in this report. The technique
used here is most useful in conjunction with some educated physical insight, and is presented here
as a part of the design process. To illustrate this, examples of its use were shown, with comments
showing the physical reasoning that went into the process between computations.

I found that the torsatron vertical field coil problem was too complex to solve analytically in its
entirety. On the other hand, it was simple enough to specify the criteria for an acceptable solution
in semi-quantitative terms - such as reducing certain quantities as much as possible. This lead to
formulating the problem as one of reducing the error in a set of quantities as much as possible,
and implementing this by using a least-squares technique. This approach should be useful in any
situation where parametric studies would otherwise be performed.

Teory of Operation

Overview of the Program

The overall structure of the program can be described in terms of four levels. The top level
handles input and output, including various utilities for interpreting the solution to the user. The
second level is the least squares routine. Next, is the level which maps the dimensionless quantities

of the least-squares routine onto the physical quantities of the model. At this level the reverse

transformation - from the discrepancy in physical units to the dimensionless residual - is also

performed. The lowest level contains the physical niodel of the torsatron.

Figure 5.1 shows a schematic diagram of the structure of the code. This is not an exact flowchart

of the program, but rather an overview, showing the important flows of control and data. Data

flows pertaining to input and output have been omitted for clarity - it should be fairly obvious,

for instance, that the routine that reads the wishes has to initialize the residual mapping data. The

four levels can be seen, approximately, running from left to right.

The least squares algorithm used is a modified Levenberg-Marquardt algorithm [1] as implemented

in the July 1977 release of the IMSIL mathematical subroutines package [2]. This routine uses finite

differences to evaluate the local Jacobian matrix of derivatives. This algorithm is discussed in a

hter section.

The routine that interfaces the model to the least-squares routine does three things. Every time

it is called by the least-squares routine it maps the dimensionless parameters of the least-squares

routine onto the parameters of the model. It then changes the model to match these parameters.

Secondly it calls the routines to find fields, fluxes and the like and directly accesses the model data

to calculate geometric clearances. Finally it takes the wish data and converts that to dimensionless

residuals for passing back to the least-squares routine.

Why the Model was Simplified

There is a trade-off between a set of conditions that completely models the entire physical situation,

but which is cumbersome computationally, and a simplified set that uses only quantities that are

computed quickly, but may ignore certain effects. Because the iterative algorithm used may call the

physical model hundreds of times, we have found it more useful to pose the optimization problem

in very simple form, and then go to more detailed analysis after this procedure has suggested a

solution.

53

11heory of Operation

set up io
read comments

get model
description

ield
and flux

get parameter
descriptions

parameter dpl
get wish mapping dioet.
descriptions constantsmoe

model
coil
data

get control
information soe

> least model
squares interface
routine routine

display
results

residuals sidg

constants

sensitivity
analysis

Figure 5.1 - Structure of Solve.

The general organization of Solve is shown here. Flow of control is indicated by thin arrows, while

important data paths are shown with thick arrows. Sonic data paths (eg initialization of the model)

have been omitted for clarity.

By separating the model loops into variable and constant coils we also increase efficiency. The
field contribution from the constant coils to the wishes is calculated only once, likewise the stored
energy terms for pairs of constant coils are calculated to start with and never altered again.

By limiting the geometric wishes to simple clearances from a point and a line we have a set of

54

Theory of Operation

constraints that can delimit a variety of regions, without becoming too cumbersome, or causing

problems when they overlap.

It would be useful to be able to optimize (i.e. wish for) quantities such as the peak force on the

helix winding, or the maximum field in the conductor, but the increase in the model complexity

would be so great that the cost of a large number of trial runs would become prohibitive. Some

thoughts on possible extensions are mentioned in the last section, however.

How the Model was Simplified

As mentioned in Chapter 1, it was useful to be able to express the distribution of currents in the

helices of the-torsatron as an equivalent surface current, having components in the surface of the

torus. (Remember also, that we allow the torus to be non-circular in cross section.)

Let us assume that we have specified the winding law of the helix and the cross-section shape of

the torus by relations such as

I T*(0)

and

r rop*(9).

(Note that equations 2.1 and 2.2 are of this form.) Then the vector tangent to the helix (not

normalized) will have toroidal components (r, 0, 0) of

(a , P* I R + P* Cos r) . (\

We define a surface current density K which is everywhere parallel to the helix tangent, so

K = . (5.2)

and we normalize it such that

/2wj K6rode= dO I

2 K toroidal (5.3)
fK6+K (R+rocos9)d0= (I

poloidal

55

Theory of Operation

Now in the limit of a smooth distribution (i.e. as I -+ oo, and N -- + oo, but the ratio N/

remains constant), the surface current is no longer a function of 0. Realizing that the current is

divcrgenceless, we get the following dependencies:

K,.(0) = (5.4a)
2 (R+r 0p cos) f*2 2

P

K,(O) = I p (5.4b)
2w pdl(R + rop -cos8) .2 2

KO) =I (5.4c)
2p ro+ -

This sheet current can be further simplified to a number of filamentary circular loops. This is

done by replacing the torus surface with a number of loops, equally spaced in poloidal angle, on

the surface. The total current in all the loops is equal to the total toroidal current, as used in the

formula for K4, and the individual currents are in the same ratios as the point values of K0(0) at

their respective places on the surface.

Thus the model for all the conductors in the torsatron, both helices and vertical field coils, is

reduced to a sum of the well known functions of elliptic integrals that describe the field

B 2K(m) - ! E(m)] (5.5a)

B_ = K(m) - (1 - m r + a)E(m) (5.5b)
4 ar 2r(1 - m)

and the vector potential

A,_ _ a 2[(2 - m)K(m) - 2E(rn)] (5.5c)
4w rm

from a circular filamentary conductor, given here in cylindrical coordinates. K and E are complete

elliptic integrals of the first and second kind, and m = 4ar/((a + r)2 + Z2).

Introduction to the Operation of Least-Squares Optimizers.

The general optimization problem is defined simply. Find the vector x such that the magnitude of

some function (x) is reduced as much as possible subject to inequality constraints G(x) < 0 and

equality constraints H(z) =0.

56

Th1cory of Operation

When the utility function 4 and the constraints G and H arc linear in the components of x then

the optimization problem is well understood. The problem is called a linear programming problem

and a large arsenal of methods is available for its solution. The well known Simplex algorithm is

the basis of most of these.

If the utility function is not linear, we are not so well off, but if the function is convex over the

domain specified by the constraints, and the domain is convex, then there are still some useful

properties of a solution. Most importantly, if the above properties hold, then a local solution will

be a global solution. That is if we have some-.s-uch that i(X*)6(:r) for all i in the neighborhood

of x*, then 4(x*)I(x) for all z in the domain of the problem.

In cases where we cannot guarantee such convexity properties there is no way to tell whether a

given local minimum is in fact a global minimum. This single fact is the root cause of most of

the difficulties associatcd with this method. In terms of the specific torsatron problem, this is the

reason that (as mentioned in Chapter 1) the final solution may depend on the starting point of the

optimizer.

With these caveats in mind let us take a look at algorithms for minimizing @, concentrating on

common features, rather than small differences. In all cases we are basicly interested in producing

a sequence of approximations XO, X1 ,X 2 ,... which approaches z*.

Newton's method in one dimension is the starting point for this discussion. If we seek a root of

f(x)= 0, where this is a scalar function of a scalar, Newton's method prescribes the iteration step
as

X + 1 - i= df xi)- 1 f i)dx
which extrapolates the tangent to the curve towards zero. It is useful to regard this as having been

derived from the first order Taylor series for f around the present value.

0 = f(*) = f (x)+ df(x)(* xz)dx

In many dimensional parameter space we are trying to minimize the length (more generally, some
norm) of a residual vector R, or equivalently minimize

1 1R1 12.

A Taylor expansion of R about the zero:

0 = R(x*) = R(x) + J(R(x))(x* - x)

57

Theory of Operation

may be written in the same manner as the one dimensional case. (J denotes the Jacobian matrix,

and x is now a vector.) In the sort of problem that we arc dealing with, the Jacobian is not square

- the problem is overdetennined because there are more components to the residual than there

are parameters - so the Newton step is found as a minimum norm solution

(J(R(xj))T J(R(xi))) (Xi+ 1 - Xi) = - J(R(xi))T R(xi)

The problem with Newton's method, in.one or more dimensions, is that if the starting point is not

sufficiently close to the optimum, the method may overshoot the point and oscillate about it, or

fail to converge in other ways. The modified Newton method is an attempt to correct this. Even

though the Newton step may be of the wrong size, we know that 4 is decreasing in that direction.

So the modified Newton step is given by

where the si are typically the Newton step vectors, and the Xi are scalar constants chosen to make

4(xi) a decreasing series. One choice for Xj is

1 -I
cond J(R(Xi))T J(R(xi))) J(R(Xi))

which looks complicated, but it isn't really. The argument of cond is simply the solution matrix

from the newton step equation above, and cond is the condition number of the matrix. This means

that if the matrix is well conditioned, the condition number will be near 1, and the step approaches

a full Newton step. If the eigenvalues of the matrix differ widely in magnitude, the condition

number becomes large, and a smaller step will be taken.

This algorithm is quite expensive to evaluate, so certain efficiency measures can be taken. The

Jacobian can be replaced with a finite difference equivalent. One can go even further and replace

the finite difference matrix with another, even simpler, one that requires less work to evaluate.

This is the basis of update methods, however this is getting beyond the scope of an introductory

discussion. A good reference for further study is Stoer and Bulirsch [6].

Instead of choosing Xj as above to ensure a decreasing sequence of 0(z1) it is instead possible to

choose p; and define the Levenberg Marquardt step for a decreasing sequence of 4(xi). This is

the default algorithm for Solve.

pg + J(R(zi))T J(R(xi))) (zi+1 - Xi) = -J(R(xi))T R(xi)

58

Theory of Operation

The si are small positive constants and I is the identity matrix. Having mentioned the method I

will point the interested reader at the literature [2] for a full explanation.

A short word about terminating these algorithms is in order. The most obvious criterion is to

stop when the steps in parameter space get small enough. This is the ns ig criterion. This is

reasonable as long as the final parameter magnitudes are similar. (And this, incidentally, is the

reason for default rescaling of the starting parameters. Assuming that the starting point is of the

same magnitude as the optimum, then the number of significant figures in each of the optimum

coordinates will be the same.)

The other two criteria (norm of the gradient, and relative change in the residual) both serve the

same purpose. They top the algorithm from wandering about in a flat region of <. The norm of

the gradient refers to parameter space, the other to residual space. Both of these, however, are not

scale-free, that is they depend on the "shape" of the space around the minimum. A better criterion

that has been suggested by Dennis, Gay, and Welsch [7], is to use the fact that at a minimum,

the column space of the Jacobian is perpendicular to the residual vector. Dennis et al. suggest

using the maximum cosine between the residual and any column as a convergence criterion. This

is independent of the scale of the problem, but this condition has not been implemented in the

present algorithm.

Applications, Extensions

Solve was first written to optimize the vertical field coil configuration for the proposed experimental

device TOREX-4 [3]. The wishes included field and flux nulling in the plasma region. A zero

residual solution was found with two pairs of coils.

Similar methods have been applied to other magnetic configurations. The O.R.N.L. mhd

equilibrium code has been run in conjunction with a similar least squares code [5]. The method

finds a distribution of real conductors which produces the poloidal fields necessary for a given free

boundary equilibrium.

Finally, it is tempting to speculate about a much more powerful optimizing code, which allows

a very general model beneath it, with a large variety of "diagnostics" to examine the model and

make wishes. It would, of course, be interactive with graphical feedback - it could plot the utility

function surface (like Figure 1.1) at various points, or draw the current state of the model. Most

59

'Iheory of Operation

importantly, it would be extensible, so that a user could write his own diagnostic into the model,
and define a new type of wish. This, however, is an undertaking of no small magnitude and would

require a fair amount of computational power.

60

References

1. Brown, K.M..and Dennis, J.E., "Derivative Free Analogues of the Levenberg-Marquardt and
Gauss Algorithms for Nonlinear Least Squares Approximations", Numerische Afalheinatik 18,
289-297, 1972.

2. I.M.S.L. Inc., International Afatheinatical Subroutine Librar, Edition 6, I.M.S.L., Houston,
Texas. 1977.

3. Politzcr, P.A., L.M. Lidsky, D.B. Montgomery, "TOREX-4. A Torsatron Proof of Principle
Experiment", MIT report PFC-TR-79-2, 1979.

4. Lundeen, T, et al. FORTLIB writeup. Available online at MFECC from DOCUMENT
routine.

5. Peng. M., private communication.

6. Stoer, J. and R. Bulirsch Introduction to Numerical Analysis, Springer-Verlag, New York, NY.
1980.

7. Dennis, J.E., D.M. Gay and R.E. Welsch, "An Adaptive Nonlinear Least-Squares Algorithm",
University of Wisconsin, Mathematics Research Center Technical Summary Report 2010,
1979.

Appendix - Obtaining Solve

Solve is available on the Magnetic Fusion Energy (MFE) Network CDC7600. To get the
executable code, execute filem as follows:

filem read 11027 .sol solve
Also available from directory . sol are four demonstration input files - demo1 , demo2,

demo3, demno4, which will produce the examples in Chapter 4.

EXTERNAL DISTRIBUTION

Institutions

Argonne National Laboratory
Association Euratom-CEA

Grenoble, France
Fontenay-aux-Roses, France

Atomics International
Austin Research Associates
Bank of Tokyo
Brookhaven National Laboratory
CNEN-Italy
College of Wiliam and Mary
Columbia University
Cornell University

Laboratory for Plasma Studies
Applied & Engineering Physics

Culham Laboratory
Culham Laboratory/Project JET
E G & G Idaho, Inc.
Electric Power Research Institute
Gneral Atomic Company
General Electric Company
Georgia Institute of Technology
Grumman Aerospace Corporation
Hanform Engineering Development Lab.
Hiroshima University
Japan Atomic Energy Research Institute
Kernforshungsanlage/Julich GmbH
Kyoto University
Kyushu University
Lawrence Berkeley Laboratory.
Lawrence Livermore Laboratory
Los Alamos Scientific Laboratory
Max Planck Institut fur Plasma Physik
McDonnel Douglas Astronautics Co.
Nagoya University
Naval Research Laboratory
New York University/Courant Institute

Nuclear Service Corporation
Oak Ridge National Laboratory
Osaka University
Physics International Group
Princeton University/Plasma Physics
Sandia Research Laboratories
Science Applications, Inc.

Fusion Energy Development
Lab for Applied Plasma Studies
Plasma Research Institute

Stanford University
University of California/Berkeley

Dept. of Electrical Engineering
Dept. of Physics

University of California/Irvine
University of California/Los Angeles

Dept. of Electrical Engineering
Dept. of Physics
Tokamak Fusion Laboratory
School of Eng. & Applied Science

University of Maryland
Dept. of Electrical Engineering
Dept. of Physics
Inst. for Physical Science & Tech.

University of Michigan
University of Rochester
University of Texas

Dept. of Mechanical Engineering
Dept. of Physics

University of Tokyo
University of Washington
University of Wisconsin

Dept. of Nuclear Engineering
Dept. of Physics

Varian Associates
Westinghouse Electric Corporation
Yale University

EXTERNAL DISTRIBUTION

Individuals

Amheard, N.
Electric Power Research Institute

Balescu, R.C.
University Libre de Bruxelles

Bartosek, V.
Nuclear Res. Inst., Czechoslovakia

Berge, G.
University of Bergen, Norway

Braams, C.M.
FOM/Inst. for Plasma Phys., Netherlands

Brunelli, B.
C.N.E.N.-Centro Frascati, Italy

Brzosko, J.S.
Inst. of Physics, Warsaw University

Cap, F.
Inst. fur Theor. Physik, Innsbruck

Conn, R.W.
Chemical Engineering, UCLA

Consoli, T.
Residence Elysee I, Claud, France

Cuperman, S.
Dept. of Physics, Tel-Aviv University

Engelhardt, W. 11
Max-Planck Institute fur Plasmaphysik

Engelmann, F.
FOM/Inst. for Plasma Phys., Netherlands

Fiedorowicz, H.
Kaliski Inst. of Plasma Physics, Warsaw

Frolov, V.
Div. of Research & Laboratories, Vienna

Fushimi, K.
Science Council of Japan, Tokyo

Gibson, A.
JET/Culham, Abingdon, England

Goedbloed, J.P.
FOM/Inst. for Plasma Phys., Netherlands

Goldenbaum, G.
Lawrence Livermore Laboratories

Hamberger, S.M.
Australian National University

Hellberg, M.A.
University of Natal, South Africa

Hintz, E.A.K.
Kernforschungsanlage/Julich GmbH

Hirose, A.
University of Saskatchewan

Hirsch, R.
EXXON Research & Engineering Co.

Hosking, R.J.
University of Waikato, New Zealand

Ito, H.
Osaka University

Jacquinot, J.G.
CEN/Fontenay-aux-Roses, France

Jensen, V.0.
Riso National Lab, Denmark

Jones, R.
National University of Singapore

Kadomtsev, B.B.
Kurchatov Institute, Moscow

Kostka, P.
Central Res. Inst., Budapest

Kunze, H.-J.
Ruhr-Universitat, F. R. Germany

Lackner, K.
Max-Planck Inst. fur Plasmaphysik

Lee, S.
University of Malay

Lenhert, B.P.
Royal Inst. of Technology, Sweden

Malo, J.0.
University of Nairobi, Kenya

Mercier, C.H.B.
C.N.E.N./Fontenay-aux-Roses, France

Nodwell, R.A.
University of British Columbia, Canada

Offenberger, A.A.
University of Alberta, Canada

Ortolani, S.
Centro di Studio/C.N.R., Italy

Palumbo, D.
Rue de la Loi, 200, Bruxelles

Pellat, R.
Centre National, Palaiseau, France

Paquette, G.
Universite de Montreal, Canada

Rabinovich, M.S.
Lebedev Institute, Moscow

Razumova, K.A.
Kurchatov Institute, Moscow

Rogister, A.
Kernforschungsanlage/Julich GmbH

Rosenau, P.
Technion, Haifa, Israel

Rosenblum, M.
Soreq Research Center, Yavne, Israel

Rudakov, L.I.
Kurchatov Institute, Moscow

Ryutov, D.D.
Nuclear Physics Instit., Novosibirsk

Salas, J.S.R.
Inst. Nacional de Investig. Nucleares

Shafranov, V.D.
Kurchatov Institute, Moscow

Smirnov, V.P.
Kurchatov Institute, Moscow

Spalding, J.-J.
Culham Laboratory, Abingdon, England

Tachon, J.
CEN/Fontenay-aux-Roses, France

Tewari, D.D.
Dept. of Physics, IIT, New Dehli

Trocheris, M.
CEN/Fontenay-aux-Roses, France

Vandenplas, P.E.
Ecole Royale Militaire, Bruxelles

Verheest, F.
Rijksuniversiteit, Gent, Belgium

Watson-Munro, C.N.
University of Sydney, Australia

Wesson, J.A.
Culham Laboratory, Abindgon, England

Wilhelm, R.
Inst. fur Plasmaphysik, Stuttgart

Wilhelmsson, K.H.B.
Chalmers Univ. of Technology, Sweden

Wobig, H.
Max-Planck Inst. fur Plasmaphysik

