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This report presents and discusses the calculation of heating rates and absorption coefficients of
electron cyclotron waves in a mirror. In particular, the scaling of the heating rates with resonant zone
location and plasma density are calculated since this scaling can be compared with the measurements made
on the Constance 2 mirror experiment. Both geometric and Doppler broadening are included by making the

substitution Awl = (wNiipa) 2 -+ (wNi3g) 2 + r, , where (reff) is the average transit time of electrons

through the resonance layer. The energy transfer between the waves and the electrons are calculated with
the same bounce-averaged resonance function used in a Fokker-Plank code" 2. A simple scaling law for the
heating rate is shown to be consistent with the Fokker-Plank results for Maxwellian electrons.
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This report estimates the absorption of clectron cyclotron waves in the Constance 2 mirror experi-
ment. In particular, the scaling of the heating rate with resonant zone location and plasma density are
calculated since this can help interpret the experimental results. Mauel1 '2 are companion papers to this
report and describe with more detail the general theory of clectron cyclotron heating in mirrors and the
Fokker-Plank code used to model the experimental results. The theory is based on the works of Berk3 and
Bernstein and Friedland". The report is divided into three sections. The first section introduces the notation
and approximations by describing briefly the dispersion tensor and resonance function (see, also, Maueli).
The second section describes the expressions for the heating rates and absorption coefficients consistent with
a WKII approximation to the actual wave propagation 5. The final section presents and discusses the results
in light of sample experimental data.

1. The Dispersion Relation and Resonance Function

By expanding the electric ficld, Ee(t'), about the local guiding center coordinates and the current
time, and by integrating along the bouncing, particle orbits, a WKB formalism of the propagation and
absorption of electromagnetic waves in a mirror results'. The approximate, local relationship between the
index of refraction, N, the plasma and cyclotron frequencies, owp, we,, the electron distribution, Fo(p, E, X),
and the wave frequency, w is given by the well-known dispersion tensor, or

DS3 2 PedEd 2 4FS (1--N2 )617 + N'Njf - i -_ - vJ Jk (1)
n 4-I~~

where the (r, 1, |i) basis is used. As explained in Mauell, viva contain operators on the order of the bessel
function, but for our purposes only the right-handed velocities will be important so that v'v' becomes Biz
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and the order of the bessel function is reduced from n to n - 1. Other larmor radius effects are ignored
si ice, for Constance 2, kwp = Ni < 1. The derivative, 9/OX, is the gradient along the wave-induced
electron diffusion path, or

a 1 a + N11I (2)
5x Ba 5E B O.2

where the drift-dependent, radial transport term is small and can be ignored. When evaluated at resonance,
w - nwe - kj1vj1 = 0, and Equation 2 becomes

a = I a (3)
(9X1res ,.F, E

where w = nwcs.. Finally, note that F0 is normalized to unit density.

The term f;-- is the local resonance function, or

- = dt'e~7' (4)

It is this tenn which contains the details of the waVe-particle interaction.

For a homogeneous plasma (ie. when geometric broadening can be ignored), v(t) is constant, and

Q-1 becomes

0;-1 P P + VOLQn (5)

where P refers to the principle value and 6(z) is the Dirac delta function. Those electrons exactly in
resonance are purely resistive, and the remaining particles are purely reactive. For Maxwellian electrons,
Equations 1 and 5 give the right-handed permittivity as le"= I + X"', and

x rr* s X-W-Z W" (6)

Here, X = w/W 2, = VthIe/C, AW = wNI19, and Z is the plasma dispersion function. The term
Aw represents the Doppler broadening of the (infinite-medium) cyclotron resonance. For a plasma in an
inhomogencous magnetic field, Doppler broadening shifts the resonance along a field line by an amount
6s * -wN#/3/n(i - V)wce.
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When v(t) is not constant (ic. for the heating of mirror-confined particles considered in this report),
the resonance function can be approximated by the local derivatives of v,. In this case, the particles are
resonant at specific times during their orbits and exchange energy with the wave during a finite time, reff.
In general, each particle contributes both a reactive and resistive part to the permittivity. In this report, this
cifect is referred to as "gcometric broadening" and is proportional to the inverse transit time, r 1

Mathematically, v, in Equation 4 is expanded backwards in time along a particle's bounce-6rbit. The
contribution to the integral for times in the distant past can be safely ignored provided that the electric field
is large enough so that the electron motion is not superadiabatic. In this case, the wave and particle are de-
correlated during each resonance passing. As in Mauel', when 1/' 3 0, the integral in Equation 4 becomes

n 'jT OO tle -(7)
S Ire2fe~~i*Z In;-'e-:'i/4

2i (

where r-1 = v'//2 and Z(z) is the plasma dispersion function. On the other hand, as i'n -+ 0, the next
order expansion gives

- - geti(Vj1T'e-3t'3/3)
" J-.(8)

__ wIreIf\Ai(vnreff) + rIerffGi(vnreff)

where, in this case, r-= d"/2. When v, = 0, V' n 0, f; 1 = e"/4 v'reff/2 and when 0,eff n ffl an hnii e0
fl--n = 0.355r(|reffI + ireff/v3). For the first case (Equation 7), the integral over -t 1 1 cancels the
reactive part at w = w, since 1/ changes sign. However, due to the particles which turn at within the
absorption layer (ie. when i/ -+ 0), the total integral of the reactive part remains finite and, instead, vanishes
slightly off resonance.

The appropriate local expressions for v' and V' in these equations are given by the following for-
mulas

1/n = W - nu)c - kjje (9)

v'n = -nv(6- V)we + k 1 t( - V)B (10)

L4" = n!{ p(6. VB)2 - V2(6. V)2B + kv 1g.(6 - V)2B (11)

3
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Note that the local "bouncing" resonance function is determined by the constants of the motion, the local
magnetic field strength, and the first and second derivatives of |III along the field lines. For deeply trapped
particles, the bounce frequency is given by wc 2 = p( - V) 2w.e or wjj - v±/L. Finally, note that
Equations 7 through 11 still include the Doppler shift while simply "smearing" the delta-function interaction
of Equation 5 over the time reff.

In order to incorporate Equations 7 and 8 into a more useful form, an ad hoc approximation is made
to eliminate the need to numerically integrate the resonance function when evaluating X" . '[he broadening
term in the infinite medium result is changed by the simple substitution

S (wNg#) 2 -* (wNjip)2 + r (12)

where (reff) includes the geometric part with the term proportional to kl removed. Aw remains the breadth
of the integral of the resonance function and is made equal to the geometric mean of the breadth of Doppler
term with an instantaneous interaction and the geometric breadth without Doppler broadening. Assuming
Maxwellian electrons, (vjj) - (vw) ~ cf, and the expressions for (reff) become

2) -(13)

when (f V wec) 3 > 2c# [(6 . V) 2w,1 2 and

(r 2) [C2(S. V)2 wceJ (14)

for the opposite inequality. The inequality states that the second-order expansion is used provided (reff)
never exceeds the bound set by the third-order expansion. The above approximation actually serves two
purposes since both an analytic expression for the geometric effect is obtained and, at the same time, the
oscillatory part of the resonance function (which occurs after a particle's passage through the absorption
layer) is by-passed, avoiding the development of more detailed approximations necessary to deal with the
de-correlation of the wave and particle with finite fields.

From Equation 12, geometric broadening becomes important when r - >wNji which is

equivalent to the condition that the effective length of the energy exchange (vlreff) is larger th'an the mean
Doppler shift. Thus the condition for geometric broadening to dominate is when N2 < (1/2#) (c -V Wee).
For the Constance 2 experiment, with 3 - 0.01, the geometric effect makes only a small change in the
polarization and damping predicted by the infinite medium theory whenever N1 > 1. However, for
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propagation within 10 or 15 degrees of the normal to the magnetic field, geometric broadening significantly
increases the strength of the right-handed polarization and, therefore, the absorption coefficients. Note that,
in addition to Doppler broadening, the relativistic mass shift will broaden the resonance by an amount

s; PWce/F- V we. Therefore, using the same arguments as above, when N11 -- 0, geometric broadening
is significantly increases the absorption whenever p2 < (2c/w2)fi. V wc,, or, for Constance 2, whenever
Te < 30kev.

In addition to the local resonance function, the integral of 1;-1 along the particle's orbit, or the
bounce-average, is used to calculate the Fokker-Plank diffusion coefficient and the total, single-pass absorp-
tion coefficient. These are derived in MauelI and are given as

Re{f;;-}= ~WBT~12 (where rj = v'n/2) (15)

Re{f1Z'}= 2rwr ffAi 2(vnrerf) (where i-r = /2) (16)

re11 is defined as before. Only the real part is needed, representing the irreversible, resonant wave-particle
energy exchange. Note that Equation 15 can be checked by bounce-averaging 7r6(v,) in Equation 5.
However, to obtain Equation 16, the full evaluation of the phase integral of Equation 4 is necessary as was
first done by Berk3.

2. Physical Optics

The equation for the wave energy flow results when terms of order 1/kL are retained. This gives the
physical optics equation

aWl
(V-( Wk ) + 2k, . v (17)

where v' is the group velocity for the ith mode, or9

k ow (18)

Wk' is the total wave energy, or

- D(19
W.= |-Etj 2-. (9

I
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ki = -D is the local damping rate, and the "modes" are to be considered to be defined by

the local dispersion tensor, which is an cigenvalue equation for the index of refraction and the polarization.
Di= D1, + iD is the complex diagonal element of DW' in the basis of the mode polarizations.

Using the bounce-averaged quasilinear equation', the heating rate is given by

6(nE) 1 I 3 jo20

where the "bar" over D"j signifies that the bounce-averaged resonance function is to be used. Using
Fquations 18 and 19, Equation 20 can be rewritten into a more useful form by defining the heating rate per
unit input power flux

1 22vWs~ (21)

where S is the resonant electric field energy per input power flux, or

-,r, =r2 (22)

The heating rate per input power flux has the dimensions of area -volumn- 1 or length-' , and the dimen-
sions of 8,e, is speed--. For a right-handed wave in a vacuum, r = 1/2c. For a cold plasma, 9', -+ 0
since the electrons effectively "short-out" the resonant polarization. For a thermal plasma, with finite Aw,
9,,, remains finite. In addition to the heating rate, re, is used to give the local damping rate

kI = D79,. (23)

Finally, another way to utilize the bounce-averaged resonanc& function is to calculate the single-
pass absorption coefficient. This is given by the integral of k1 along a ray trajectory which passes through a
resonance, or

(2kL,e.,) = 2 f k -v9dr (24)
ray
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As explained in Friedland and Porkolabo, the absorption layer, L,,., is often short compared to the scale-
lengths of changes in the dispersion tensor and the ray path. In these cases, the slowly varying quantities
in the integral above can be approximated by their values at resonance. Then, using geometry to relate the
integral along the ray trajectory to an integral along the magnetic field line,

(2k1L,,,) = 2 C f80 6 - k, ds (25)
2cos( - )

where cosO ~ V11 - B and cos ~ vg - B. The value of N, 0, 0, and e can all be found in the appropriate

geometry by using a ray tracing code. Note that when # - -+ ir/2, the ray is no longer "crossing"the
resonance zone and the approximation breaks down. The integral over da becomes a bounce average by the
transformation

da -+ 1r( (26)

where r3 is the bounce period. Then,

(2kiL,,,) F 2w 2 Cos f d3 VF 0 d I rRe{;i~}BA (27)PCCos a 1 rzRxf~B

For simplicity, the factor VIrIT can be replaced by multiplying 15 by (VJJrB) - 27rLB, then the first-pass
absorption is related to the heating rate per input power flux by the formula

(2kL, ) (vtjrB) COS - ((nE) (28)
COS (4)-0~ (V9Wk)... &t

which is just a statement of conservation of energy. Furthermore, as shown in the next section, a good

approximation to Re{f0 '} is 22r(WIgr2j ,. Then, Equation 28 becomes

(2kL e,) 87 ir 2(v Sl."' Co?8 0 - (29)

where - ~i/b' V wce when Equation 13 is valid.

It should also be mentioned that when the heating rate per input power flux is much greater than
one, the absorption is strong enough that the wave is damped well before the turning-point resonance. If
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thc propagation angle is small, then only those particles which have their resonances Doppler shifted in the
direction of the incoming wave absorb energy. In other words, the hot, passing particles get hotter while the
cooler, turning particles absorb little. If th2 propagation is nearly perpendicular to B, then the resonance
w'dth is determined by geometric broadening which scales only as the squarc-root of velocity and tends to
reduce "hot-particle, Doppler shielding". Nevertheless, in either case, when there is strong damping, both
the WKB formalism and the velocity-space integral over the bounce-averaged resonance function found in
51 are not valid.

3. Results

Figures 1 and 2 show 9re, and X are, as a function of X = w2 /w 2 for several values of the
propagation angle, 0 = cos-'( ). 9,c, is the right-handed field energy per input power flux at resonance,
and Xg,,, scales as the heating rate and first-pass absorption. The two limiting cases of parallel and per-
pendicular propagation are the well-known whistler and extra-ordinary modes. (See for example Akhiezer,
el. al.7 , Eldridge, el. aL, and Fidone, et. al.9.) For nearly parallel propagation, nearly all of the electric
field energy is right-handed and c is nearly independent of X. On the other hand, for perpendicular
piopagation, the electrons "short-out" the resonant field. In this case, Er - 1/X"' - Aw/X, giving
ge, ~ (Aw/X) 2 . Note, that without geometric broadening 9,,, ~ N2p which vanishes as N -* 0.

Knowing , the heating rate (Equation 21) can be calculated by numerically integrating the
bounce-averaged resonance function to obtain 57 . Thiq is shown in Figure 3 as a function of the midplane
field, we(. ('[he RF frequency is fixed so that as the field is raise.I the resonance zones move toward
the midplane from the mirror peaks.) The field is assumed parabolic, Ly = 33cm, and the distribution
Maxwellian, T = 50ev. The density is made to decay axially as a Gaussian with a mean of L, = 15cm,
and the peak value of X is 0.92. Also plotted is the useful approximation

r 27rw(wBff) (30)

where the factor of 27r was added to fix the numerical results. Notice that Dr is linearly dependent on n,
while (at this range of temperatures) nearly independent of Nil and Te. On the other hand, the heating rate
is strongly dependent on these parameters through 13e,. To illustrate this, Figure 4 graphs the heating rate
for four propagation angles, 0 =0.2, 0.6, 1.0, and 1.4 for four values of the peak X =0.37, 0.55, 0.73, and
0.92. Note, that for perpendicular propagation, the heating rate is either independent or decreasing function
of w/wco while for small 0, X8re, is nearly independent of X and the heating rate reflects the increase inK Teff) as w/wco - 1.

Another, more graphic way to illustrate the scaling of the heating rate with density and resonant zone
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location is shown in Figures 5 and 6. Figure 5b show contour plots of WPe(, 9,, ,. for a model of the

magnetic geometry used to calculate the ray trajectoricsl0 in Constance 2 (shown in Figure 5a). The radial
scale of the plasma density at the midplane is about 1.5cm, and the length on axis is 15cm. X at the origin
is 0.92, which is typical for the Constance 2 experiment. The height of the contours approximate the heating
rate if the magnetic field was adjusted to be resonant at that location (w is constant) and if the propagation
angle was fixed by that indicated in each figure (8 = 0.2, 0.6, 1.0, and 1.4). Figure 6 shows the heating rate
as a function of radius at the midplane for these same four cases to indicate the larger absorption at the edge
of the plasma due to the reduction of ,e. at high densities.

In the Constance 2 experiment, the scaling of the heating rate and the radial profile of the heating
can be estimated with diamagnetism measurements. Although these measurements cannot prove or disprove
the theoretical calculations reported here, they are the only measurements available which can be compared
with the numerical results. A complete description of the goals and construction of the Constance 2 experi-
ment will not be given here, but details can be found in either Consiance 2: Progress and Plans1 or a
copy of "Electron Cyclotron Heating in the Constance 2 Mirror Experiment"' 2 . For the sample data shown
here, the only special information needed is that the experiment is divided into two parts. In the first pa.-,
the propagation angle and input power flux at each resonance region are not known since the microwaves
bounce within the vacuum chamber and through the plasma several times before being absorbed. This
is evidenced by the observed equal heating efficiencies when the launch geometry was changed, and the
constant ratio of local RF measurements at different positions in the chamber. In this case, the power should
be absorbed by the modes with the highest first-pass absorption (ie. small propagation angles), and at those
regions with the highest heating rates, which is at the edge, as shown in Figures 5 and 6: All of the following
data are samples from this part of the experiment. In the second part (not yet completed), absorbing liners
will be placed within the chamber which should reduce the intensity of the power radiated back from the
walls.

Figure 7 shows a sample of the scaling of the initial rate of rise of diamagnetism with midplane field
for two values of peak density X P 1.2 and 0.25. The diamagnetism is measured with a large loop encircling
the plasma. (The magnetic flux, 6P, linking the loop is related to the product of the density and temperature
through 8IB0 ~ irR , 6(nT±).) The rate of rise of diamagnetism scales as the heating rate provided that the
plasma geometry does not change. However, as the midplane field is lowered, the axial and radial location of
the heating zone moves away from the origin which may modifies the coupling of the heated plasma to the
loop. Nevertheless, since the loop's diameter is 4 to 10 times larger than the plasma and is positioned axially
almost midway between the midplane and the position of the resonant zone at the lowest field tested, these
coupling variations should be minimized. If the possible changes in the coupling are assumed small, then
Figure 7 shows an insignificant difference between the high and low density cases and shows a peak in the
heating rate when the midplane field is resonant at the midplane. Since the most strongly absorbing regions
of the mirror are at the edge, the increase in density is expected to push the heating further away from axis
but not necessarily modify the total heating rate. The peaking of the heating rate when w = wco would be
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expected from the increase in (0K r W ff) and scaling of the highly absorbent, small 0 modes shown in Figure

4.

To further demonstrate edge heating, Figure 8 shows the radial profile of the plasma density (before
and after ECRH) as measured with a Langmuir probe and the radial profile of the change in the axial
Iragnctic field due to the heated electrons. The flux profile was measured with a small, movable magnetic
p obe. 'The increase in plasma density is due to the ionization of the neutral gas around the plasma.
The "paramagnetic" signal on the magnetic probe is the return flux of the increased diamagnetism of the
electrons. The radial position where the flux does not change is the effective radius of the heated plasma
which is significantly larger than the radius of the density. In fact, floating probe signals show large negative
p.tentials (indicative of heating) out past 10cm from the axis.
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OENSITY CONTOURS

Figure 5a. Contour plots-of the density and magnetic field contours which
model the Constance 2 plasma.

HEATING RATE

HEATING RATE

HEAI RTE

Figure 5b. The corresponding contours of wpK WB ffI iga at each point

assuming that the propagation angle was fixed at either 9 = 0.2, 0.6, 1.0,
or 1.4. The contour height is proportional to the heating rate at that coor-
dinate if the field was adjusted to give resonance. Notice the that the peak
heating is at the edge of the plasma.
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Figure 6. The cross-section of the heating rate shown in Figure 6b at the
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Figure 8a. The plasma density profile measured with a Langmuir probe.
The line density measured with a 60GHz interfcrometcr gives the vertical
scale. Data taken before and after heating. The increase in density is due to
ionization.
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Figure 8b. The radial profile of the change in axial magnetic field due
to the heated electrons. The midplane field was adjusted so that the
resonance zone was , 5cm of the midplane with w/wco = 1.02. Notice
that the radial width of AnT from the ECRH is wider than the density
profile.
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