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Non-Local Alpha Encrgy Deposition Effects

in Torsatron Reactors

Abstract

The behavior of the temperature profiles in torsatrons is compared for the cases of local and non-
local alpha energy deposition. A numerical model of the plasma is developed, in which the flux surfaces
remain stationary. The non-local cnergy deposition results in slightly higher temperatures (6 per cent
on axis) required for ignition and a 15 per cent lower temperature growth rate. These non-local cffects
arc larger at lower densities. Both cases are found to be stable against step perturbations in the electron
temperature. '
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Section 1. Introduction

The torsatron magnetic confinement device is of considerable interest for controlled fusion applica-
tions. In this paper, the timc dependent behavior of the electron and ion temperature profiles in a
typical torsatron reactor is studied. Recently, the non-local nature of the alpha heating source has been
quantified!!], i.c. the amount of energy deposited in each region due to alpha particles born in ény region
of the plasma has been calculated. The goal of this work is to determine the cffect of this non-local
energy deposition on the ignition characteristics and stability of the plasma.

Three issues of interest will be examined here: first, the different ignition requirements for the local
and non-local cases; sccond, the difference in the time evolution of the temperature profiles; and third,
the stability of the local and non-local cquilibria will be studied. |

Thel = 3 torsatron plasma studicd here has the physical parameters of the A-machine described
in reference 1: major radius= 48 m, winding minor radius== 4 m, toroidal flux at thc scparatrix= 82.8

Wb, average minor radius of the scparatrix= 2.1 m, and the magnetic ficld on the axis= 5.5 T.

Section 2. The Energy Balance Equations
The energy balance equations are obtaincd by taking velocity moments of the Vlasov equation. The
result is/23;
3 6T

snar =Q+V-kVT (1)

where k is the thermal conductivity and @ is the net heat source.The assumption is made in the deriva-
tion is that u, the average species velocity, is zero. Also, the magnetic flux surfaces are assumed to
remain fixed in space.

Equation 1 can be reduced to one-dimensional form by flux surface averaging!43]. The approxima-
tion that no temperature or density gradients can exist along field lines is made. Because the ficld lines
lie on surfaces of constant flux, both the temperature and the density will depend only on the flux. The

flux surface averaged equation ist3):

_%o 20V oT

where V is the volume enclosed by the flux surface.

2.1. Diffusion Coefficients
The ion thermal conductivity in torsatrons is predicted to exhibit a plateau-like behaviorlll over

a wide range of collision frequencies. This is very similar to the neoclassical theory for axisymmetric
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systems. The calculations of reference 1 were done at an ion temperature of 8 keV; to use these results
for the ion and clectron thermal conductivities, the scaling of the diffusion cocfficient with temperature
and particle mass must be determined.
The neoclassical ion diffusion cocfficient in the perpendicular dircction is given byl®):
XoLi= 3y’ Ty 3)
A 2(6jr eH,
where e = a/R is the aspect ratio, H, is the toroidal magnetic field,© = ir/2xR, 1 is the rotational
transform, and r.; = v/we; = ¢/2T;m;/eB is the ion Larmor radius. The only temperature de-
pendent factors are T; and r.;. Together they give x ; ~ T,-g. From reference 1, we know that
X1 i(8keV) = Dy, the plateau level. Thus we can write
7,\}
XJ_i(Ti) = Dplat ‘8‘_’ (4)
For the electrons, an equation similar to equation (3) can be written. The temperature scaling

remains the same, and the only mass dependent quantity is the Larmor radius. Thus the electron

diffusion cocfficient is smaller than the ion diffusion coefficient by a factor of the square root of the mass

i
[me( Te
Xe = Uplat %(g‘) (5)

There is some experimental evidence which shows that the clectron diffusion coefficient may be larger

ratio.

than that given by this ncoclassical scaling.
To obtain the thermal conductivities from the diffusion coeflicients, equations (4) and (5) must be
multiplied by the ion and electron densities, respectively. Because the thermal conductivity depends on

% through the temperature and the density, it must remain inside the ¢ derivative in equation (2).

2.2. Radiation Losses and Energy Transfer

Two radiation processes are included in the energy balances; these are bremsstrahlung and
cyclotron radiation. Line radiation has been neglected because impurity effects are not included in this
model. At the temperatures which will be of interest in this work, recombination radiation is negligible
compared to bremsstrahlung!®. Also, ion cyclotron radiation will be neglected in comparison with

electron cyclotron radiation.
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The cnergy lost per unit volume by the clectrons due to Bremsstrahlung can be expressed in terms

of the specics densitics and the electron temperaturel?:8),
Wirem = 4.85 X 10_37Te%zefjne2 (6)

where Te is in keV, n is in m—3 and nZe;; = n; -+ 4n,.
The energy loss due to clectron cyclotron radiation can be expressed’®9 in terms of the magnetic

ficld and the electron temperature and density.
Weye = 2.02 X 10719825 4 T.2Ry— (7)

where B is the magnetic ficld in tesla and Ry is the major radius in meters.
The clectron and ion temperatures are coupled through two terms. The first is the alpha heating
term, which will be discussed in the next subscction. The sccond is the direct collisional transfer of

encrgy. The energy transferred can be written ast®8l:

Wei = 2.4 X 10~ Pn._n, log A(l:g——T—) (8)
€
where ;
4.897 x 10'7 T,
log A = lo =
¢ g( Zess \/n_e)
is the Coulomb logarithm, and
nZ 2 n;
n: T 2 + € + L

species

with A being the mass number and ¢ is the tritium ratio. (It should be noted that the alpha particles are

assumed to be in thermal cquilibrium with the ions after they have lost their initial 3.5 MeV.)

2.3. Alpha Particle Heating

In the torsatron plasma considered here, the only source of energy is the thermalization of the alpha
particles born in the fusion reaction. External heating has not been considered. It will be assumed that
the alpha particles are thermalized instantaneously. In this discussion of alpha heating, there are three
important elements: the reaction rate, the partitioning of the energy between the electrons and ions, and

the spatial distribution of the alpha energy.
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The alpha encrgy source term is just the product of the reaction rate density and the energy of a
single alpha particle:
W, =56 X 10~ n;%(l —¢) <ov> (9)

where ¢ is the tritium ratio. (Note: all of the encrgy terms are in units of Watts/meter® throughout this
paper). W, depends on the ion temperature through << ov >, which has a broad peak at approximately

70 keV. A numerical expression for << ov > is given in reference 5.

3.68 X 10~'8 exp(—19.94/T,233)
T,%%%(1 4 T;/70)1-33

< ov >= (10)

Equation (10) is a numerical fit to experimental data. It differs from the data by 10 to 30 per cent, which
* is comparable to the experimental error in the cross section measurcments.

To quantify the partition of cnergy between the jons and clectrons, two parameters are defined; f.
is the fraction of energy which gocs to the clectrons, and f; is the fraction which gocs to the ions. f; and
f; are defined such that f; 4 f; = 1. The fraction of encrgy which escapes from the plasma will be
considered as part of the spatial factor.

A relation for f, is given in reference 10. The expression given is not a simple algebraic formula so

the following equation!® is used instead.

S 1 2
SRILIEA R SO v S B (1) (11)

— —tan—!{ —

=t +5* )~ v vi |Tva

11 log
2z 6
where z == 0.0093T. This expression gives values for £, within 2.5 per cent of those given in reference
10, for T, << 40 keV. At higher temperatures, equation (11) will underestimate the energy given to the
electrons by as much as 25 percent,

Equations (10) and (11) make it apparent that the alpha heating term in both the clectron and ion
energy equations is a function of the electron and ion temperatures.

The object of this work is to determine the effect of the non-local alpha energy deposition., To
model the spatial effects, a matrix is used to quantitatively define the relationship between the region
where the alpha particle is born and the regions where it deposits its energy. To calculate the matrix,
alpha particle orbits are simulated by numerically integrating the particle guiding center equations (see
reference 1). The particles are followed from birth until thermalization for the confined particles, or until

the particle escapes from the plasmu. For a confined, well circulating particle, this means following the
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particle for /5000 poloidat orbits!!, A four dimensional phase space grid (three flux coordinates and
the cosine of the pitch angle) was used to keep track of the phase space regions in which the particle
lost encrgy as it slowed down. For each initial location in phase space, many particles were followed and
their energy deposition profiles were averaged. For our purposcs, two of the flux coordinates and the
pitch angle are integrated out, and the encergy deposition profile gives the relationship between the initial
% grid location and the amount of energy deposited at cach 4 grid point.

The calculation was done for a grid with 4096 locations per reactor module. There were 4 steps in
the toroidal direction, 8 steps in the poloidal direction, 16 steps in the cosine of the pitch angle and 8
steps in the flux dircction. By considering alpha particles starting at cach of the 8 ¢ locations, the energy
deposition profiles give the cight by eight matrix shown in Table 1. Recading along the ith row gives
the fraction of the alpha energy produced in region ¢ which is deposited in cach region. The sum of
the entrics in any row is always less than 1. This is because some of the alpha energy escapes from the
plasma, due mostly to the birth of alpha particles on unconfined orbits(Y].

Table 2 contains the matrix used in .thc local energy deposition case. This matrix was derived from
the non-focal matrix by adding the cocfficients along cach row, to get the alpha “non-escape” probability
for each region. The non-escape probability was then placed on the diagonal of an otherwise zero
matrix. The result is that the alpha particle either is lost, or it deposits its cnergy in the region in which
it first appeared. By deriving the local matrix in this manner, the percentage of alpha encrgy confined is

the same for both cases; the only difference is in the spatial distribution of the energy.

2.4. Density Related Terms

For cach region there will be threc additional terms in the energy balances. The first is the energy
lost or gained because the particles supplicd in the refueling process have a different temperature than
the local species temperature. The second is the loss of energy due to particles diffusing out of a region.

The third is the gain in energy due to particles diffusing into a region.
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Table 1: Non-lLocal Energy Deposition Matrix

0.6687 0.1620 0.0486 0.0342 0.0271 0.0264 0.0222 0.0088
0.2426 0.4238 0.1944 0.0468 0.0377 0.0245 0.0188 0.0092
0.0797 0.2385 0.3761 0.1934 0.0440 0.0290 0.0240 0.0139
0.0590 0.0754 0.2091 0.4047 0.1755 0.0314 0.0246 0.0164
0.0488 0.0521 0.0488 0.2137 0.4577 0.1204 0.0282 0.0249
0.0383 0.0510 0.0401 0.0784 0.2243 0.4212 0.1058 0.0219
0.0288 0.0370 0.0370 0.0823 0.0905 0.2015 0.3373 0.1193
0.0286 0.0286 0.0287 0.0287 0.0573 0.0287 0.1146 0.5157
Table 2: Local Energy Deposition Matrix

0.9980 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.9978 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.9986 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.9961 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.9946 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.9810 0.0000 0.0000
0.0000 0.00060 0.0000 0.0000 0.0000 0.0000 0.9337 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.8309
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Section 3. The Particle Density Equations

In this work, there arc four species which must be accounted for: clectrons, deuterons, tritons
and alpha particles. The alpha particles are assumed to deposit their energy in the various regions
instantancously. Thus we will be concerned only with the thermal alpha particle diffusion. The problem
is simplified by defining the ion density to be the sum of the deuteron and triton densitics. To retain
information about all four specics, the tritium ratio ¢ is defined as the ratio of the tritium density to the
ion density. In this paper e will always be = 1 /2.

As shown in section 3.1, the clectron thermal diffusion cocflicient is much smaller than the ion
thermal diffusion cocfficient. The same is true of the particle diffusion cocfficients, which are related to
the thermal diffusion cocfficients. 1t will be assumed that the electron particle diffusion is negligible, and

" the clectron density may be found from the quasi-neutrality condition.
ne = n; + 2n, (12)
The equation which describes the evolution of the density profile of a given species is:
an
i ' =S8 13
R AR (13)

which is just the continuity equation with ' = nu and a source term S. T, the particle flux, can be

expressed in terms of the density gradient using Fick’s Law. In flux surface coordinates this becomes:
on
I' = —-D(V¢)— 14
(V)55 (14

where D is the particle diffusion coefficient.

The particle diffusion coefficient is related to the thermal diffusion coefficient. As electron particle
diffusion has been neglected, expressions for only the ion and alpha particle diffusion coefficients are
needed. Experimentally, it has been found that the particle confinement time is larger than the energy
confinement time by a factor of between 3 and 8. This implies that the particle diffusion coefficient is
smaller than the thermal coefficient by the same factor. It turns out that the particle diffusion effects
in the regime of interest are insensitive to the value of this constant. Thus the ion particle diffusion

coefficient can be expressed using equation (4).

1 1 T\
D; = §X4.i = 3 plat(-s-") (15)
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The thermal alpha diffusion coefficient is related to the ion coefficient by the mass ratio.
D= ‘/—"—z‘lD,- (16)
m;

The net source term for the ions is simply the difference between the loss of ions in the fusion reac-

where T, = T; has been assumed.

tion and ions added by rcfucling. The alpha source term is the number of alpha particles created. It will
be assumed that the number of thermalized alpha particles deposited in onc region can be determined
by the same matrix which describes the energy deposition. Thus the fraction of particles deposited in
region 7 which were born in region ¢ is the same as the fraction of energy due to particles born in region

¢ which is deposited in region 7.

Section 4. Ignition Requirements

In this section, the initial values of the temperatures needed to insure ignition of the plasma are
compared for the local and non-local cases. In this discussion, a plasma is ignited when the encrgy
density increases over a finite period of time. A difference between the local and non-local cases is
expected on the basis of Tables 1 and 2. In the non-local case, the inner regions produce more cnergy
(sum along the rows) than they receive (sum along the columns). Intuitively, one expects that higher
initial temperatures will be needed for this case; the greater reaction rate will offsct the non-local losses
in the inner regions.

The computer code TORSER! was run for different initial values of the temperatures until the point

at which the plasma is ignited is found. The initial conditions are of the forml!l:

P, Pr
n= no(l _ ¥ ) and T = To(l — ¢¢ ) (17)

sep sep

where T, n, are the values on the axis; and P,,, and Pr are parameters which determine how peaked the
profiles are. The values used here arel!l: P,, = 0.13 and Pr = 0.39. The same values of T}, n, P, and
Pr are used for the electron and ion initial conditions.

The procedure used was to vary T, in equation (17). The density profiles and the peaking
parameters of the profiles were left unchanged. The “default refueling” mode of TORSE was used; the
ions are replaced as fast as they are lost. The refueling temperatixre was set to zero, to simulate cold

refueling.
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For the local casc, ignition was obtained at T, = 6.9 keV. For cach valuc of T, that was tried, two
plots were generated: the integrated ncutron power vs. time and the maximum ion temperature vs. time
(the electron temperature shows the same behavior as the ion temperature and will not be considered
here). Figure 1(a,b) contains these plots for 7, = 6.8 keV. The neutron power, W, dics away rapidly,
but the ion temperature shows an initial rise. This is because the regions near the axis are heating up,
but the bulk of the plasma is not ignited. Finally, the thermal diffusion between regions causes the
maximum temperature to fall (the horizontal line in the temperature plot indicates that the maximum
temperature is at the separatrix—this is held constant as one of the boundary conditions). Figure 2(a,b)
shows the same quantitics as in Figure 1, except that the initial conditions were gencrated with 7, = 6.9

keV. The growth of the ncutron power and the temperature indicates that the plasma is ignited.

For the non-local case, the centerline temperature had to be raised to 7.3 keV before the plasma
was ignited. Figdrc 3(a,b) was generated with 7, = 7.2 kev and for Figure 4(a,b) T, = 7.3 keV. In
Figure 3, the plasma is not ignited, the behavior of the temperature is as described in the local case at
6.8 keV. When the temperature is raised, it is apparent that the plasma is ignited with T, = 7.3 keV. As
expected, the non-local energy deposition is not favorable from the standpoint of ignition. The plasma

temperature has to be raised by approximately 0.4 keV to overcome the non-local cffect.

So far we have considered only a relatively high centerline density of 3X102°. m—3, The ignition
requirements for two other densities were also investigated. With the density on axis set to 1x 1020
m—3, neither the non-local nor the local encrgy deposition case was ignited. This is for centerline
temperatures between 6 and 32 keV. With the density increased to 2 X 1020, the local case is ignited at
94 keV. The centerline temperature was varied between 6 and 32 keV but the non-local case did not

“ignite. Thus, the non-local alpha energy dcpositioh has a greater impact on the ignition requircments at

lower densities.

The ignition requirements are also affected by the relative magnitude of the diagonal and non-
diagonal terms in the energy deposition matrix. As a limiting case, a uniform energy deposition matrix
was used. In this matrix, each coefficient was set to 0.11. This case was studied, using n, = 3.0X 102,

and with the centerline temperature as high as 30 keV, and it was found that the plasma did not ignite.

Further studies of the ignition requirements were made with the matrices in Tables 3 and 4. These
are the non-local and local matrices calculated in reference 1 for a torsatron with a major radius of 24 m,

as compared with the Ry = 48 m torsatron we have considered so far. Comparing the local matrices in
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Tables 2 and 4, it is apparent that the alpha particles are not as well confined in the smaller tofsatron. A
comparison of Tables 1 and 3 shows that the non-local nature of the energy deposition matrix is more
pronounced in the smaller machine, i.e. the relative magnitudes of the diagonal cocfficients are less for
the Rg = 24 case.

Using a centerline density of 3 10%%; the centerline temperature is varied to find the minimum
temperature at which the plasma is ignited. In the local case, the plasma is ignited at 7.3 keV. This is
0.4 keV higher than the previous local ignition temperature. The increase is due to the poorer alpha
confinement, which reduces the heat source. The non-local case is ignited at T}, = 8.0 keV, which is 0.7
keV higher than the local casc. In the Ry = 48 casc, this diffcrence was only 0.4 keV.

(Note: in using the matrices calculated for the Ry = 24 case, the change in the diffusion cocfficient
Dyyqy was neglected, so that the only difference between the two cases was in the alpha hcating term.
From reference 1, Dpgq for the smaller machine is approximately twice the value in the Ro = 48
machine. With the higher value of Dpyq, it is found that the smaller torsatron is not ignited for tempera-

tures on axis of between 8 and 32 keV.)
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Table 3:

o O O O O o o o

.43040
.26640
.13610
.04890
.04210
.04530
.04430
.02380

Table 4:

O O O O o o o o

.95700
.00000
.00000
.00000
.00000
.00000
.00000
.00000
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Non-Local Energy Deposition Matrix

Major Radius=24 m

0.27830 0.13070 0.04290 0.02680 0.01570
0.29800 0.22610 0.05520 0.02800 0.02320
0.20830 0.26560 0.19720 0.04440 0.02270
0.08230 0.18900 0.30610 0.19420 0.02900
0.04430 0.06920 0.19340 0.31660 0.16430
0.04350 0.03980 0.03440 0.17010 0.34930
0.04030 0.03220 0.02020 0.02020 0.09660
0.02380 0.02390 0.02390 0.02390 0.02390
Local Energy Deposition Matrix

Major Radius=24 m

0.00000 0.00000 0.00000 0.00000 0.00000
0.92330 0.00000 0.00000 0.00000 0.00000
0.00000 0.89700 0.00000 0.00000 ©0.00000
0.00000 0.00000 0.87320 0.00000 0.00000
0.00000 0.00000 0.00000 0.84940 0.00000
0.00000 0.00000 0.00000 0.00000 0.81800
0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000

0O O O O O o o o

0O O O O O 0O o o

.01540
.01410
.01270
.01340
.01190
.12840
.43480
.09540

.00000
.00000
.00000
.00000
.00000
.00000
.76100
.00000

O O O O O o o o

0o O O O O O o o©

.01680
.01230
.01000
.01030
.00760
.00720
.07240
.40510

.00000
.00000
.00000
.00000
.00000
.00000
.00000
.64370
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Section 5. Time Evolution of the Temperature

In this section, the time behavior of the temperature and density profiles for the local and non-local
cascs is examined. We consider here a plasma with a centerline temperature of 8 keV and a centerline
density of 3.0 X 102 m—3, With these initial conditions, the plasma will be ignited for both cases.
The default refucling mode of TORSE is used. The cffect of using this refueling mode is to keep the
energy loss associated with refucling small by adding only as many particles as are lost, while keeping
the reaction rate from decreasing. This effectively prevents the density from decreasing at every mesh
point. In the outer regions of the plasma, the density will actually increase, because the increase in
temperature of the inner regions will increase the particle diffusion rate near the center, which leads to

accumulation ncar the edge. As before, the refucling temperature is set to zero.

The computer code is run until a stcady state regime is reached. Because the cquilibria are calcu-
lated by following the time evolution of the encrgy and density equations for over 100 scconds of model
time (steady state is reached after approximately 30 scconds), the equilibria will be stable. Stability

against finite perturbations in the elcctron temperature will be examined in the next section.

Figure 5(a,b,c) consists of three plots, the integrated neutron power, maximum clectron tempera-
ture, and the maximum ion temperature, as functions of time, for the local casc. The steady state
conditions are given in Table 5 (The very large thermal output in both Tables 5 and 6 is duc to the
relatively high temperatures and densities, it is more useful to think of this quantity as being related
to the reaction rate averaged temperature). All three graphs show similar behavior; a period of slow
growth,‘followed by a rapid increase to a maximum, and a gradual decrease to the steady state. The
transition from slow to rapid growth is due to the temperature dependence of << ov > and f. As the
ion temperature increases, the reaction rate, and hence the alpha heating source, increases as well. This
drives both temperatures up, which leads to an increase in f;, the fraction of the alpha cnergy which
goes directly to the ions. However, the electron temperature is retarded by the radiation losses, and in
both encrgy equations, the refucling term becomes larger as the reaction rate increases. Also the particle
diffusion terms increase. These effects cause the temperatures to stop growing. At this point, the alpha
particle density has not gone into steady state. The alpha density affects the electron energy balance
through the radiation losses. The loss terms increase until the alpha density reaches steady state-this is

the cause of the gradual decrease between the maximum temperatures and the steady state regime.

Qualitatively, the behavior of the non-local case is the same as the local case; see Figure 6(a,b,c)
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and Table 6. The period of slow growth lasts longer in the non-local case. This is duc to the same
factor which causcs the difference in the ignition requirements. Near the center of the plasma, the alpha
heating source is not as intense in the non-local case as in the local case, because the center regions
produce a larger fraction of the confined alpha cnergy than they absorb. Thus the temperatures will not
increase as fast near the center, and the non-local case shows a longer period of siow growth. This same
cffect is also responsible for the lower growth rate of the non-local case once it reaches the rapid growth
phase. ‘ '
The growth rate for a quantity L is defined by:

=1 18)
The reciprocal of <, corresponds to the “e-folding” time. In both the local and non-local cases, the
maximum clectron temperature growth rate occurs at £ = 0. This is because the initial ion and clectron
temperatures are the same. Thus W,,, the collisional transfer term, docs not retard the electron tempera-
ture initially. This initial jump in the electron temperature is of short duration and the associated growth
rates for the two cases are within 2 per cent of cach other. For the local case, the maximum growth rates
are: yw, = 0.393 sec! at ¢ = 5.38 seconds, and 1, = 0.160 sec—! att = 5.80 scconds. Evaluation
of the non-local data gives y, = 0.330 sec—! at¢ = 7.21 seconds and Y, = 0.141 sec—! att = 7.51
seconds. As noted above, the time evolution of the non-local case is retarded with respect to the local
case, here the time lag is about 1.7 seconds. Comparison of Tables S and 6 shows that the difference in
the equilibrium values of the two cases is 4 percent or less. The major quantitative difference is between
the growth rates; v, and ~yr, are 16 and 12 percent smaller, respectively, in the non-local case.

The time behavior of some other cases was also studied. First, we will consider the lower density
case; for these calculations the density on axis was 2 1020, In the local case, the the growth rate is
smaller than before because the reaction rate is lower, due to the low density. Because the growth rate
is smaller for lower densitics, the alpha particles build up gradualiy, and there is no overshoot of the
equilibrium. Also, the instability will saturate at a lower level because the heat source is smaller. In
the non-local case, the plasma is not ignited, but it does show a plateau-like behavior for a considerable
period of time. The non-local case does not ignite because the greater temperatures needed to offset the
non-local effect and the lower reaction rate increase the loss terms in the energy balance equations.

Next, we will consider the effects of using the energy deposition matrices given in Tables 3 and

4. The temperature and density on axis were 8.0 keV and 3 10?® m—2 respectively. Figure 7(a,b,c)
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gives the local case and Figure 8(a,b,c) is the non-local case. As in Figures S and 6, there is an initial
period of slow growth, followed by rapid growth to a maximum, then a gradual decreasc to equilibrium.
However, the maximum growth rates are srﬁaller than before. This is due to the smaller alpha heating
source, which is a consequence of poorer alpha particle confinement. This is also the reason that the time
of maximum growth occurs later in Figure 7 than in Figure 5. The equilibrium temperatures also reflect
this; they arc about 3 keV lower on axis,

The non-local case shows similar behavior. The larger non-local effects have increased the time lag
between the local and non-local cases to about 15 seconds for this Ry = 24 case. Also the difference
between the maximum growth rates in the local and non-local cases is approximately 25 per cent. In the

Ry = 48 casc, above, we found the difference to be about 15 percent.
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Figure 5: Local case T, = 80keV = Figure 6: Ndn*Local case T, = 8.0 keV
Figure 5(a): W,, vs. time =~ | Figure 6(a): W, vs. time
Figure 5(b): T, vs. time Figure 6(b): T, vs. time

Figure 5(c): T; vs. time Figure 6(c): T; vs. time




Tabte 5: Local Equilibrium Conditions

TIME= 128.23019

TI TE DNT DNE _ DNA RT
1 25.631 29.519 2.9876E+20 3.4953E+20 2.5386E+19 0.500
2 23.841 27.109 2.9481E+20 3.4431E+20 2.4750E+19 0.500
3 22.140 25.141 2.8895E+20 3.3708E+20 2.4063E+19 0.500
4 20.342 22.829 2.8216E+20 3.2884E+20 2.3342E+19 0.500
5 18.419 20.274 2.7407E+20 3.1918E+20 2.2555E+19 0.500
6 16.334 17.835 2.6394E+20 3.0738E+20 2.1722E+19 0.500
7 13.9256 ~ 15.836 2.5110E+20 2.9261E+20 2.0755E+19 0.500
8 10.472 11.747 2.3631E+20 2.7545E+20 1.9567E+19 0.500
9 1.883 1.883 2.0089E+20 2.3409E+20 1.6603E+19 0.500
THERMAL OUTPUT 3.3746E+10 WATTS
Table 6: Non-Local Equilibrium Conditions
TIME= 133.97697

TI TE DNI DNE DNA RT
1 25,195 29,253 2.9876E+20 3.4814E+20 2.4688E+19 0.500
2 23.307 26.452 2.9481E+20 3.4288E+20 2.4034E+19 0.500
3 21.580 24.146 2.8895E+20 3.3564E+20 2.3347E+19 0.500
4 19.837 22.041 2.8216E+20 3.2744E+20 2.2639E+19 0.500
5 17.994 19.871 2.7407E+20 3.1784E+20 .2.1887E+19 0.500
6 15.968 17.395 2.6394E+20 3.0605E+20 2.1057E+19 0.500
7 13.638 15.464 2.5076E+20 2.9100E+20 2,0120E+19 0.500
8 10.292 11.681 2.3561E+20 2.7351E+20 1.8948E+19 0.500
9 1.883 1.883 1.9959E+20 2.3167E+20 1,6042E+19 0.500
THERMAL OUTPUT 3.2605E+10 WATTS
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Figure 7: Local case Rg = 24 m T, = 8 keV  Figure 8: Non-Local case Rg = 24 m T, = 8 keV
Figure 7(a): W, vs. time Figure 8(a): W, vs. time
Figure 7(b): T, vs. time Figure 8(b): T, vs. time
Figure 7(c): T; vs - time Figure 8(c): T; vs. time
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Section 6. Stability of the Steady State Regimes

In this scction, the stability of the cquilibria found in the previous scction, against a step perturba-
tion in the electron temperature, is studied. The method employed is to use the equilibrium values
(sec Tables 5 and 6) for the input data, with the values of 7. increased by 10 per cent everywhere
except at the separatrix. The code TORSE is used to follow the time behavior of the electron and ion
temperatures, and the integrated neutron power.

With this step perturbation in T, W,; will incrcésc and f. will decrease. The result of these two fac-
tors is first an increase in Tj, which will raise W,,, and a decrease in T,.. Thus, if the system is stable, the
perturbation in T, should be damped and the system should return smoothly to the cquilibrium!!!12),
This is indecd the result. For both the local and non-local energy deposition cases the temperature and
density valucs return to within 0.5 per cent of the cquilibrium values. Comparison of the two cases
shows that the perturbation is almost completely damped out after 4 scconds. The damping rate is
slightly larger in the local case. The rise times of W,, and T do not differ significantly in the two cases.
There is a slight undershoot of the equilibrium, buf it is very small for both cases. Thus there is little

difference between the two cases in their stability against electron temperature perturbations.

Section 7. Summary and Conclusions

Thus far, a comparison of the non-local and local energy deposition cases has been made in the
areas of ignition requirements, growth rates of the thermal instability and equilibrium values of tem-
perature and density, and stability of the equilibria against a perturbation in the electron temperatures.
The higher temperaturcs needed for ignition in the non-local case are expected because of the greater
loss of alpha energy from the central regions, compared to the local case. The difference in the growth
rates of the thermal instability can be explained by the same mechanism.

There appears to be little difference in the equilibrium states or in the response to the perturbation
in the electron temperature,

We have found that the plasma achieves stability when the peak ion temperature is between 25 and
26 keV. In reference 12, a similar analysis of the energy balance equations is carried out for different
diffusion models; the Bohm diffusion coefficient, a constant coefficient, and the classical diffusion
coefficient. The critical temperature is defined as the centerline ion temperature above which the plasma
is stable. The classical case gives a critical temperature of 38 keV, the Bohm scaling gives 14 keV, and

the constant diffusion coefficient yields a critical temperature of 24 keV. A value of 28 keV is found




for the constant cocfficient case in reference 13. Our value of approximately 25 keV is much less than
the classical 38 keV, which is to be expected, because of the use of ncoclassical platcau scaling in the
diffusion cocfficient. The value of 25 k¢ 'V is larger than the Bohm diffusion derived 14 keV, but this also
to be expected from the diffusion scaling that we employed. In reference 14, the critical temperature is
cxamined as a function of the poloidal 8. The values of the critical temperature lic between 20 and 30
keV. In reference 15, thermal stability is achieved for T; =~ 50 keV. Here the cyclotron radiation loss
and the build up of alpha particles have been neglected, so the critical temperature would be expected to
be higher than those found in this paper. Thus the critical temperatures for both the local and non-local
cascs arc in gencral agreement with the literature.

We have also considered lower densitics plasma densities and other energy deposition matrices. At
lower densitics, the non-local effects were found to increase in importance. The other sct of energy
deposition matrices model the cffects of poorer alpha confinement and an increase in the non-local
nature of the energy deposition. The poorer confinement of the alpha energy results in a higher tempera-
ture needed for the plasma to be ignited. Also, the difference in ignition temperatures for the local
and non-local cases is larger. This is because of the relatively larger off-diagonal elements in the encrgy
deposition matrix. The increase of the non-local effects is also seen in the larger difference between
the local and non-local growth rates. This is an important consideration, because in an actual torsatron
reactor, there may be factors, such as bumpy ficlds due to the modularity of the coil design, which could
increase the non-local nature of the energy deposition.

In conclusion, it seems that non-local alpha energy deposition has both disadvantages and ad-
vantages. The non-locat effect will require the plasma to be heated externally to a higher initial tempera-
ture than would be needed if the energy deposition was local. Once the plasma is ignited, and auxiliary
heating is no longer needed, the non-local effect is favorable. The thermal instability takes a few seconds
longer to exhibit rapid growth than the local case, and the maximum growth rates are lower than local

case. This is a positive factor from the standpoint of fusion reactor control.
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