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The time-dependent Fokker-Plank code which is used to model the devclopment of the electron
velacity distribution during ECRH of the Constance 2 mirror-confined plasma is described in this report.
The ECRH is modeled by the bounce-averaged quasilinear theory derived by ‘Mauel!. The effect of colli-
sions are found by taking the appropriate gradients of the Rosenbluth potentials, and the clectron distribu-
tion is advanced in time by using a modificd alternating direction implicit (AD1) technique as explained
by Killeen and Marx2 The program was written in LISP to be run in the MACSYMA cnvironment of the

MACSYMA Consortium's PDP-10 computer.




This report describes both the time-dependent, partial diffcrential equation used to describe the
development of the electron distribution during ECRH of the Constance 2 mirror-confined plasma and the
mcthod by which this equation was solved. The clectrons are modeled in (v, 8) phasc-space, where § =
sin~ (v /v). The ion distribution is considered to be a Maxwellian with known density and temperature,
The ECRH is modeled with a bounce-averaged quasilinear equation which is strictly correct only for linear
heating of confined particles. However, since the magnetic field is assumed to be parabolic, the heating can
be txtended” into the loss conc when the potential is positive. Changes in the particle energy are assumed
:0 occur randomly, over several passes through resonance. The potentis] of the plasma is also assumed to be
parabolic and a known function of time, Those particles within the loss region of veloeity-space are loss at
a rate determined from their transit time. Each point in velocity space is advanced in time using a modified
Alternating Direction Implicit (ADI) technique used by Killeen and Marx?2,

The report is organized into six sections. The first scction describes the Fokker-Plank model for
clectron-clectron and clectron-ion collisions. The sccond section describes the loss-cone term from which
the clectron loss current is calculated. The third scction describes the programming of the ECRH term.
The fourth section describes the numecrical method used to solve the part:al-differential equation. The fifth
section lists the diagnostics available to evaluate the code’s performance, And, the final section gives some
examples and checks of the operation of the program.

1. Collisions .

1.1. Rosenbluth Potentials . The clectron-ciectron and clectron-ion collisions are given by the Roscnbluth
formulas?, or
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OF(v)

= DIy + L) (1)

cle
where )
73 = T FIDT0) — J0,FAIDDG,0)) (2

and where the potentials Hg and G satisfy Poisson’s cquation

V2Hp(v) = —4r A’ZnFﬂ(v) (3)
VGsl) = 2H) (4

andTp = 4me’elA.p/mE. M.y, is the reduced mass, or mem;z /(m. + myg). Note that the derivatives, D;,
_in Equations 1 and 2 are covariant derivatives. This insures the obvious result that the scaler formed from the
divergence of the vector J;; is invariant to changes in the description of the coordinate system. The integral

solutions to Equation 3 and 4 are

6o = [ a*ly —viFu(w) | ®)

As will be shown in the next subsection, only Gye(v,#) need be numerically integrated. Since for
each phase-spacc point, this integration involves a summation over all grid points and is very time consum-
ing. Therefore, all of the cocflicicnts for the integration is saved on disk?. Fquation 5 can be expressed in
terms of the elliptic integral of the second kind, or

Geie(v,0) =/(; v’2dv’[; sinB’d0’4\/a+bE(;2_|-(}E)FL;e(v’,0') (7

where

a = v2 4 o2 — 2uv'coslcost’

b = 2uv'sinfsing’

% /2 e
E(m) :=/U d¢y/1 — msinip
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1.2. Reduction of the Fokker-Plank Equation . For this program, the clectrons are placed in a (v, 6, ¢, )
coordinate system, and Equation 1 must be expressed in terms of these coordinates. The electrons are
assumed to be independent of gyrophase, ¢, and the collision term is trivially bounced-averaged over the
bounce-phase, 9, by assuming a square-well, (The ECRH and cndloss teris assume parabolic magnetic and
potential profiles.)

EFquation 1 becomes

1 6F.] , 2pr
( i—-—-—gt—l -—((9F)(9Hg)-——FV Hp

+3{P0ORIDOIG) + 20RIOVGs) + FIVG) ®
or
(D'D'Gg)  (9)

e A/{cm - 1
= —4aF AL — 175) + OO H)(!

‘The clectron and ion termns are therefore

—1——@ = 47F F, + (D D;Fe)(D'DIGee) ‘ (10)
1 a}‘ - dme : M i ‘g
Tootl, = m FeFit - (I = m/m;)(GF.)© H,,,,;)+ (o D;F)(D'DIGior) (11)

The metric in the (v,8) coordinate system can be found. by transforming the metric of spherical
coordinates to obtain

=0+ 20+ szn20ﬂn/) , (12)

The most complicated term is the tensor formed from the covariant derivative of the velocity-space
gradicnt, which, in terms of ordinary partial derivatives, is

Y
Db;Fe dvidvd -1 gy (13)

where '}, is the affine connection or Christeffel symbol® and is defined from the metric as
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L
,

Y= —y”‘{dgu + jons —49::}

14

Since F, is independent of the gyrophase, then only the matrices Iy and I'f; nced be calculated. They are

Iy = ——vbﬁ — vsin®0d¢

(15)
I = -tp+ - pv——am&cos(?% (16) ,
- Thisgives
SR SR_1OF g
| or 1or, B o '
D;DF, = e ¢ ‘ : ' 17
JF SO v 602 + oF, ’ F an
0. 0 vsin’ B +sm0co oF,
and the tensor product of the two double gradients become
oy P &FFe
Y 2)g"°g"(D,~D,-F,_.)(DszG) B—— + C' -I-D 0:: + Ef:: +F . (18)

where

"%

* 86 o)
28""—{604! + 2 +c¢na-—}
1 {2—co32062G

. &G oGt
= Vsind)  vsind. 60° 2sm0<_9~;;9§ + cosoqu }
8°G '

. 2feq 168G
= {m - "ao}
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For the ions, IT and G are independent of pitch-angle which allows an analytic expression for the
electron-ion collision term and simplifics the tensor term abave,

1.3. The Electron-lon Term . Although for electron-clectron collisions, the potential, G,y.{v, 8), must be
calculated from the evolving electron velocity distribution, the ions are assumed to be Maxwellian. Their
potential can be calculated analytically,

Assuming,

n.
F' ('U, 0, ¢) = _,_19_7_1_1_6——(‘0/!)::,;)2
ion 3 /20?;"-

a]'jian 6Gion aQGion

where v} = Tion/m;. Only, the terms S’ By Bl need be calculated.
6];:,,. can be found from Gauss’s law and Equation 3,
a}]:l'oﬂ — mc nwn ‘
o 2Mcm VPhi Glolom) . 1)

where

Glz) = erf(z)— (2//7)ze™*

2z2

and, likewise, for Gon

6Gion — 2 Mm/ N, /2
S Hion(v')v"dv’

— —Z_M--pn 1 3 / [36]{1()71 »
T v om, {3 Hian{v) — 3Jo v il (20)

But, Hipn(v — 00) — 0, s0

f]im,(‘l)) — _/ 0(]){.;nd /
ke
7”‘ nll)"

= erf(v/v,h;) ‘ | (21)
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Furthermore,

sann ey me \ -~ pv/ung 3é J

N T
= =iV {erf (‘U/ vlht) - 3G(v/ u”“)}
2Mcm
which gives
- 8G;
“a";oﬂ = nzon{erf (‘D/ ”lh:) hunt G(v/ ”Mn)}

and

azaion — 2nzonG(

= v/vm)

1.4. Summary of Collision Terms . The Fokker-Plank collision terms can, thus, be summarized as

P:‘l%‘i collisi = (Aec + Act)Fe +(Bee +B€1) + (Cee + C")”— '
2
+Dee +Dc,)"2 B b Bt B 4 R

where

A = 47F, ,
1 |8%G G
B,. = 5 3{ +2 — + tn()—a-'?—}

. — 2 2
1 {2 0sHSG _, . FC +coso‘.’§}

Cee = 35int| vsind O &
182G
Dee= 5507

&G . 8G
Eee = 2v"{<90‘ v (9v}

e 1 [oG 106
€« 202 100 . v

(02)

(2'3)

(24)

(25)
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and

Aei = 47" Fwn

B, = Mien { erf{v/um) — Glv /v,,,,)[l +2(1 —m, / mx)(v/ vuu)z]}

C = ;zo;c‘::o {er f(v /Uthn) -G (v/ ”ths)}

Dy = Ton - G(v/vni)
Ey = ion {CTf (v/vini) — G(v/vns)}

1.5. A Simple Check . Asacheck of the fofmula, the function Fe(b, ) ~ e"“"f wne) must be a stationary
solution to the Fokker-Plank collision operator. Ignoring the slower, clectron-ion collisions,

aF, IF, 02F
s = 4o}, F? + 2{erf(z) —G(z )} o G( ) 5 (26)
But,
LI
wslzv?hc
2% = 2k, | (27)
2% — —9F, 4 457F,

_ . . . . . IF, L
so that, when Equation 26 is substituted into Equation 25, a—’ == 0. It is also casy to show that when

T. = T, the electron-ion tenn vanishes,

2. End Losses .

For particles in the loss-cone, the particle loss rate is given by

e =t (28)

A losacone Teransit
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Where Ty,ansit i the time for a particle to go from the midplane to the mirror-peak.

The loss-boundary is given by vy(s = s,np) = 0, or

1
I“Bmp - "r%q)mp = IABO + ivﬁ"’ ~ %4’0 } (29)
or . : ) .
2
V2 (1l —Rm)+ V3= —ﬁ‘QAfb S ‘ (30)

where A® = &g — &,;,p, and R,, is the mirror ratio. In (v, 8) phase-space.
2 .2 2 :
{1 — R, sin“0p = ;;;A‘b - , (31)

The condition of being within the loss-region is

oo [(2g/m)Ad o
v > 1 — R,,sin% (32)
for particles such that |sinf| < \/1/R,,, and _

1 R,,sin0

for particles such that |sing| > \/1/Rp,. As can be scen, for p‘ositii'c A, only the first incquality is used,
and for negative A®, only the second is used.

The transit time is obtained from the cquations of motion. Since

2

B(s) =Bl + 3) | (34)
®(s) = AD(L — If;_) | - (35)

then

Yio ‘
s(t) = P sin (wpt + ¢) (36)
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where
9 2
Wy, = E(ﬂBo + (g/m)Ad)
visin2 | 2qAd
L2 + mL? (37)
Therefore,
S L L
Tiransit = wBsm (vcosﬁ) (38)

When wg < 0, then Tyransir ~ sinh—}(Lwp/vcosf). Note that Yushmanov particles are not included in
this analysis.

Finally, a Maxwellian electron source is often added to the code to maintain the density constant,
balancing the loss cone term. When the source temperature is low (< 10ev), this acts to model a cold-
plasma stream or an entering flux of secondaries.

3. The ECRH Term .

3.1. The Diffusion Paths . The :CRH term used for this code was derived by Mauel!. In this model, only
linear heating of trapped, electrons are heated. Since the effect of the heating is bounced-averaged, particles
in the loss region of velocity-space are not heated.

‘The bounce-averaged diffusion equation is

; 8 . 8.
= alzl Z(pf-ﬂ“)c)fesé;Drrsé;I'e (39)

oF,
ot

ey

14¢ . . . .
where a? =3 _@_2 |E'”|2 is the square of the right-handed, clectric acceleration, and
m :

1

Dr(s = (P/Jwr)RC{Qn }J?l(pk_L) (40)
ad 1 9 a

o " Bodu T OB | ()
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For the program, two diffusion cocfficicnts are defined. These arc Dy = Y (ppwe)Dyes and Dy =
3 (Pwe)ODres [Ox, which gives )

2
‘%m{ aI;+D2 } (42)

The gradicnt along the diffusion path, 8 /c?x. can be wrmcn in (v, p) coordinates by using the
identities :

f(E,p,v,0)=E— %02 =0

9(E, p,v,0) = Bopp — %vzsin20,= 0 | (43)

and the appropriate Jacobians. For instance, -

A/, 9)
& _ _OE,v) __ _tan® _
T oy W (44
8(6,v) -
and, likewise,
& By
Sp v2sinficosd (45)
- 1
‘ZE =3 (48)
v i
5= 0 (47)
This gives the gradient along the diffusion paths as
g
o = 'v 5 + E" (48)

where € = (1/R, o — $in’0)/v?cosfsind. Also; after some algebra,
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i
& 1 2 10, 268 202 2c08%0—1 , 4|06 |
5 = et v T vame T T e T 02 (0 (49)
The ECRH term can then be summarized as
1 OF, &F, &°F &°F,
a8 O |y Bacmr +CECRH ° 4 Dporis ") F + Excrir oy 5 +FEcrm e (50)

where

1
Becrii = —Dz - —'Dl

2c08%0 —1 . 4
Cecrui = £{D2 — D [GW + ;5}}
1
Decri = -v—ng

Egcri = €2D

2
Fpcriy = _ngl

3.2. The Resonance Function . In this scction, the rules used to evaluate D, are explained. Since

ifn=1
res = (pliwc)rcsRe{Qn—-l 2} {(1/4) k_LpB’ ifn=2 . (51)
where
o1 1 -
Re{l, }= Zwmf” » (where 7,77 = 1/,/2) | (52)
Rc{ﬁ;—l}-—-—— 27rw/;1'3”/1i2(u,.1}.”) (where 'r;;}' =/ [2) (53)

and where vy, == w — nw, — kyvy. Here, all quantitics are evaluated at the point of resonance. Fquation 51
is used for "simple™ resonance points (je. when,, — 0 while / remains finite): and Fquation 52 is used for
"Airy" resonance points, which occur when bothw,, and uﬁ, — 0.
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‘BEAR TUMING POINT
FAR FRON TURNING POINT .
ALSORANCE

10 l"

Figurc 1. Diagrams of the three classes of bounce-orbits used to determine
the sum of the bounce-averaged, resonant wave-particle interactions .

The type and number of resonance points depend upon R,.., ky, and the actual bounce-orbit of the
electron. For the program, these variations can be classified into three categories which are shown in Figure
1. The mirror is assumed to be symmetric for interchange of s with —s.

4. Numerical Methods .

The Fokker-Plank equation (Equations 24, 27 and 38) is solved by the modificd Alternating
Dircction Implicit (A1) method used by Killeen and Marx2. A grid in the (v,0) phase spacc is defincd
with variable spacing in the v-direction to provide a wide energy resolution and in the #-dircction to allow
quadrature integration. Typically, the grid has 45 v-points and 16-theta points. Integration in the v-direction
is performed with Simpson’s rule modificd to for variable grid spacing?®.

The ADI solution consists of §plitting™ the 2-dimensional partial differential cquation into two parts
so that the v and @ differences can be taken separately. This gives two cquations which can be solved
implicitly.
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F:+dl/2 Ft 1 t GFt+dt/2 O Ft+dL/2 1 PRFtLdt/?
Te e 2 +dt/2 e_ e o Al R
At =3 S+ AF +8 S +D Av? +2F %) (54)
Firdt _pitd/2 gL+t QFiHat Gt
At‘ §s+ AF'+‘“+C = + E- 7 + F‘ g (55)

If, in cach cquation, central differences arc taken for each derivative (except for a backward derivative for
the mixcd term), cach equation can be written as

A"Fp=Y 4 BFR 4 CFrH = W 7 (56)
where, for the v-split
At 1 F
nt ___ bl
Ay AU(B + 4 Ao_) :
1 2AtD 1 1
n,l =
By =1 2AtA+ (Av + Av...)
At
nl
¢ = Av( 4A0 .
AtF '
nl n { _=|w n—-l,l-—-l — fr14—1
AU:' nLi] n—li—l _prelitl __ petliel
»and. for the 8-split,
At
nl__ ot
A= AO( + 4 Av )
1 2AtE 1
- i ——— —
BM =1 2AtA 4+ ( + vh
nl i
CO ( _+ + Av.-
1 AtF n
nl . ol n—11—1 n—-1,'4-1
Wil = il 4 AtS+4AoA (T —F" )
ALl Rl -} ane—1,l— - — ne—
4o (] v _I__I,cr 1,—1 __},cl +1,0—1 ___I,Cl l.l+l)

12040,

where
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Ap™l = v,m,: — =M
A‘U’_;_’_' — vn—}-l,l ___'vn,l

Avn,l — vn,l‘__ vn-——l,l

and similarly for Af, A6y, Af_. In the above equations, the index n refers to thé v-direction and the index
{ refers to the 8-axis. e

Using boundary conditions, these difference equations define a tri-diagonal matrix which can be

casily transformed into upper triangular form. For cxample, the matrix defined in Equation 56 becomes " 5
(B8 ¢t ) [ FL) (W)
A? B? C? F? w2
3 p3 3 F3 3
A’ B C . < = W . (57)
AN.—I BN-—I CN——-l FN.-—'—I Wh}—l
. (4
\ vy JURY ) U
which is equivalent to

1
(1 E! ) ( F ¢ Y ()
1 E2 v Fc Y2
3 F3 3
tE 1=l " (58)
1 EN—1 F‘{\;’l Y:’\;—l
\ 1 J\Fm ) \y)
where
Cl Wl
B'= g Y=g (59)
c" . W" — Anyn—!
En: Bn___.AnEn——l Yt = B" -—A“E""‘i (60)

After the cocfficients E™ and Y™ have been found, the solution is trivial:

FN=yN
| F:—-I — Yn»—-l ——E"""lF';' (61)
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The boundary conditions of the program are

IF.

— =0 due to azimuthal symmetry. FO'! = F1.1,
W |y pns2

3. F% is independent of { (je. 0).

4. oF = 0 due to azimuthal symmetry, F»E—1 = FnL,
& 0=0,x
OF. N

5. — == () from bounce-direction symmetry.
N =x/2

These boundary conditions are used to combine or eliminate terms in the upper left and bottom
right corners of the matrix. In this way, the initial conditions for the sweep out and back through the grid
- indices are determined.

Finally, note that all of the gradicnts of G.1(v,0) needed for the clectron-clectron collision term can
be found using ceatral differences since all of the boundary points are obtained implicitly from the interior
points and the boundary conditions.

5. Diagnostics .

The following diagnostics are available to analyze the program’s results during simulation of ECRH
of Constance 2: 1. Fy(v,0), 2. F.(E) and F(0), 3. (E)(t), 4. n(2), 5. Lioss,e(t), and 6. figss, o E).

6. Examples and Checks .

Figure 2 shows an cxample of the relaxation of a non-Maxwellian clectron population due to
clectron-clectron collisions. Four contour plots of (V, V) phase-space are shown fort = 0, 5, 10, and
20usec. 'The encrgy and density were constant to within 0.5%.

Figure 3 gives an example of the change in the average clectron energy and total endloss when
BECRIT s applied. The ECRH parameters were Ny == 2.0, |E,| = 10v/e¢m. and It,,, == 1.06. 'The density
was fixed at 2.0 X 10%em3, the potential fixed at 25V, Ty, == 170¢v, R}, = 2, and a cold clectron
sotrce (Type == 10cv) was added with i current equal to one-tenth the the total loss current. Figure 4
shows the development of the electron energy distribution, and Figure 5 gives tour examples of the resulting
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L]

b

1.5

L)

1.8,

Figure 2. The development of the electron distribution for a relaxing non-
Maxwellian distribution duc to electron-electron collisions. n, = 2.0 X
10'2cm—3, and T, = 255eV. The density and energy remained constant
to within 0.5%. 20 equally-spaced contours were drawn for cach plot.

Tie step

L4 06

Tirm steo

Figure 3. The change of the average clectron energy and the total endloss
with time. ‘The run lasted 20usec with the ECRH [10usec long. Many
features of the run are similiar to those observed in the experiment, such
as the enhanced endlosses, the “FCRH equilibrium™, the non-maxwellian
cnergy distribution, and the energy distribution of the endloss.
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1(s))

=00

Te45

LU

~

Figure 4. The change in the clectron energy distribution due to ECRH.
w/weo = 1.06, |[E,| = 10.0V /cm, and N = 2.0. Fort = 0, 4.5, 12,

and -.-usec.
3y

3.
T=0.0 T=4.5
_{f
4D
RN ,
3. 3.
T=12.0 T =20.0
Liby
1
318 C'[\ﬁ o . T -

Figure 5. 'I'he electron phase-space corresponding to the four times shown

in Iigurc 4,




velocity-space distribution as the run progressed. Many features of the run are similiar to those observed
in the experiment, such as the enhanced endlosses, the “ECRH cquilibrium”, the non-maxwcllian energy
distribution, and the encrgy distribution of the endloss.
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