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The time-dependent Fokker-Plank code which is used to model the development of the electron

velocity distribution during FCR H of the Constance 2 mirror-confined plasma is described in this report.

The ECRH is modeled by the bounce-averaged quasilinear theory derived by Mauel'. The effect of colli-

sions are found by taking the appropriate gradients of the Rosenbluth potentials, and the electron distribu-

tion is advanced in time by using a modified alternating direction implicit (ADI) technique as explained

by Killeen and Marx2.The program was written in LISP to be run in the MACSYMA environment of the

MACSYM A Consortium's P1 )P- 10 computer.



I

This report describes both the timc-dependent, partial diffcrential equation used to describe the
development of the electron distribution during ECRH of the Constance 2 mirror-confined plasma and the
method by which this equation was solved. The electrons are modeled in (v; 0) phase-space, where 0 =

sin~-(vil/v). The ion distribution is considered to be a Maxwellian with known density and temperature.
'The ECRII is modeled with a bounce-averaged quasilinear equation which is strictly correct only for linear

heating of confined particles. However, since the magnetic field is assumed to be parabolic, the heating can
be txtended" into the loss cone when the potential is positive. Changes in the particle energy are assumed
:o occur randomly, over several passes through resonance. The potenti4l of the plasma is also assumed to be
parabolic and a known function of time. Those particles within the loss region of velocity-space are loss at
a rate detennined from their transit time. Each point in velocity space is advanced in time using a modified

Alternating Direction ImpIkit (ADI) technique used by Killeen and Marx2

The report is organized into six sections. The first section describes the Fokker-Plank model for
electron-electron and electron-ion collisions. The second section describes the loss-cone term from which
the electron loss current is calculated. The third section describes the programming of the ECRH term.

The fourth section describes the numerical method used to solve the part al-differential equation. The fifth
section lists the diagnostics available to evaluate the code's performance. And, the final section gives some

examples and checks of the operation of the program.

1. Collisions

1. 1. Rosenbluth Potentials . The electron-clectron and electron-ion collisions are given by the Rosenbluth

formulas,, or
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8Fe(v)()= -Di(J~, + J'..)

where J = [,,e(v)DIii3(v) - IDj(F(v)DiDtG,(v)) 
(2)

and where the potentials H3 and Gp satisfy Poisson's equation

V2H(v) - -4x F,(v) (3)

V2GO(v) = 2''"HO(v) (4)
Me

and I' = 4ne2e#Aep/m2. Mc,,L is the reduced mass, or mem,3/(m, + mi). Note that the derivatives, Di,
in Equations 1 and 2 are covariant derivatives. This insures the obvious result that the scaler formed from the
divergence of the vector Ji is invariant to changes in the description of the coordinate system. The integral
solutions to Equation 3 and 4 are

G(v) = dav'Iv - vFe(v') (5)

I (= dv' F"() (6)
IMet) f V--V'l

As will be shown in the next subsection, only G,.l((v, 0) need be numerically integrated. Since for
each phase-space point, this integration involves a summation over all grid points and is very time consum-
ing. Therefore, all of the coeflicients for the integration is saved on disk2 . Equation 5 can be expressed in
terms of the elliptic integral of the second kind, or

G,1(v,0) = fo v'2dvfo sin 0'd'4Va'+ bE(a b '(7)

where

a = v2 + v, 2 - 2vv'cosOcosO'

b = 2vv'sin0sinO'
d/2

E(mn) = d 0/V - mai in9
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1.2. Reduction of the Fokker-Plank Equation . For this program, the electrons arc placed in a (v, 0, 0, 0)

coordinate system, and Equation 1 must be expressed in terms of these coordinates. The electrons are

assuned to be indepcndent of gyrophase, 0, and the collision term is trivially bounced-averaged over the

bounce-phase, V, by assuming a square-well. ('hc ECRI-l and endloss terms assume parabolic magnetic and

potential profiles.)

Equation 1 becomes

I~ ajj F ()(9'H) - FeV 2 H

+ ~{(DiDjF)(DDiGg) + 2 (2Fe)(!V 2 ) V22GO (8)
or

-4FF-(1 - me (OFJ)(O ?H - + I(DiD F )(D D G) (9)
Me m Mcm 2

The electron and ion terms are therefore

I F 41FrFe+ I(DiDjFe)(DD3Gele) (10)
f ee Y 2 (DlG,,

I OF, 4rm, 4 M+ "(I - m /mi)(Fe)(O1 f n)+ (D D Fe)(DDiG .. ) (11)
r, ion Mi me

The metric in the (v,0) coordinate system can be found by transforming the metric of spherical

coordinates to obtain

gij = vv+v 20# + O2sin20 p4 (12)

The most complicated term is the tensor formed from the covariant derivative of the velocity-space

gradient, which, in terms of ordinary partial derivatives, is

D,DjFe = (13)
w0Cb d O m m

whec 1) is ihcalioc ineciwtof or (7hrivqffr/ ,.~'nbof) and is defincd fiom1 fihe Metric as
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1j 2

Since Fe is independent of the gyrophase, then only tpe matrices r and Ie need be calculated. They are
lit,3

r?. = -vpp -vsin2O

r= + I p; - sinOcos0*'

This gives

D2Fe

OVC90 V L90

0.

O2Fe MFe

0 2

and the tensor product of the two double gradients become

(1/2)gikg (DjDjF )(DkDjG)= B 0c + O2F,j-+ +-7D 3 + '

where

2B= + 2v +cnB}

2C I (2-cos2Od92G 2 G +C2C-=vsn van -2sin0- + cOi't 3Sino Vj 002w coO

o2 a
2D=

2E= + -

2F=2-2 { (12 1- X

(14)

(15)

(16)

(17)

+FC (18)
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For the ions, II and G are independent of pitch-anglc which allows an analytic expression for the
elcctron-ion collision term and simplifies the tensor tenn above.

1.3. The Electron-Ion Term . Although for clcctron-elcctror collisions, the potential, G,,i,(v, 0), must be
calculated from the evolving electron velocity distribution, the ions arc assumed to be Maxwellian. Their
potential can be calculated analytically.

Assuming,

Fio(V, 0,.) "io, ef"(v/vth02
73/2 V'hi

where vo = 2 on/mi. Only, the terms *9-h0  *Gaf OG2O, 1 need be calculated.

" can be found from Gauss's law and Equation 3,

2 nG(V/Vh) (19)

where

G _- erf(x) (2/ ijzzr 2

2X
2

and, likewise, for Gion

8Gio 2 M,

- v2  me f I4 021(v')v'2dv'av v2Me 0

__2 Mf(,,,, I 1,1(V) -I f' 13aHq,, 20
Sdv 20)

3ut.IH 0,,(v -+ o) -* 0, SO

H o~v =- d9I

ni i)) rf(V/111hi) (21)
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Furthermore,

m2 2 vI
V 32TIninofh = Z30(x)dz

-2Te n V2 {erf(v/v h) 3G( (22)
2Mcm

which gives

- On, 0{erf(vi/h) - (23)

and
* =io 2n**" G(VlV) (24Ov2  (24

1.4. Summary of Collision Terms . The Fokker-Plank collision terms can, thus, be summarized as

(A. + Aj )F +(B e + BeJK (C + Cc
e collisions (+ (25)

OFe 2 2 OF, 25
+(Dee + D, F,,+ F

where

A= 41rF.

I 62G OG 09 G
Bee= p+ 2 2- ctnOJ

C",= -1 f tO 2sinO + cosB

1I 2G
2 490

I (&G +9G
E , W4 = 2?. v J

]f(92G I0 '1
Cr ---7-
2v2

. V6~
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and

Bej = n/rf(Vlhi) - G(v/va) 1+ 2(1 -Mj )(V/qhi

Cei =2v3sinO {erf(v/vthi) - G(v/Vua)}

Dj = n G(vfvhj)

Eei = {e(Crf(V/qi) -G(v/vtghd

1.5. A Simple Check . As a check of the formula, the function Pe(v,O) ~-v/1"h-? must be a stationary
solution to the Fokker-Plank collision operator. Ignoring the slower, electron-ion collisions,

47rv nF2 + n {erf(x) -G(z)} + - G(x) (26)

But,

73/ 2 V-'h
6F,

= 2xFe (27)

(92F,82
-92 2F, + 4x2F

so that, when Equation 26 is substituted into Equation 25, 0. It is also easy to show that when

T, = Ti, the electron-ion tenn vanishes.

2. End Losses .

For particles in the loss-cone, the particle loss rate is given by

OF- - (28)
(7e - rra figit
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where ma,, is the time for a particle to go from the midplanc to the mirror-peak.

The loss-boundary is given by v (s = srp) = 0, or

- = pBo+! V, - UO (29)
or

V2 -(1 mR)+ V A (30)

where Al = 4o - ,,P, and R,, is the mirror ratio. In (v, 0) phase-space,

V2{ -Rsin29} = (31)

The condition of being within the loss-region is

V2 >(2/m)A4 (32)
1 -- Rlnsin2 p

for particles such that Isin.l < vfIR7, and

2 (2q/m)AbV2 < - RmSin2  (33)

for particles such that IsinBl > VIR7 . As can be seen, for positive 4, only the first inequality is used,
and for negative A, only the second is used.

The transit time is obtained from the equations of motion. Since

2
B(s)= B)(1 + ) (34)

2

I(D) 44)(1 - f2) (35)

then

s(t) = - sin ( t + (36)
Wil
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where

2 2
b -(p o + (q/m)AcI)

= v2 sin 2 o+LA! (37)
L2 mL(

Therefore,

.ransi = sin- ( Lw(38)
WB kcosO

When wB < 0, then rans ~ sinh-1(Lwn/v cosO). Note that Yushmanov particles are not included in
this analysis.

Finally, a Maxwellian electron source is often added to the code to maintain the density constant,
balancing the loss cone term. When the source temperature is low (< 10ev), this acts to model a cold-
plasma stream or an entering flux of secondaries.

3. The ECRH Term

3. 1. The Diffusion Paths . The ECRI-I term used for this code was derived by MaucLi. In tlhis model, only
linear heating of trapped, electrons are heated. Since the effect of the heating is bounced-averaged, particles
in the loss region of velocity-space are not heated.

The bounce-averaged diffusion equation is

p)2 je., Drrsa F (39)

where aR - E-2 is the square of the right-handed, electric acceleration, and

Ds, = (puw)Re{fl, } J (pk) (40)

--- + - (41)0x - rBt.,IL (4E
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For the program, two diffusion coefficients are defined. These are D, = E(pBaW)D,.e. and D2 =

E(pBwc)9D,./OX, which gives

= C2 DI + D2 (42)

The gradient along the diffusion path, 4/X, can be written in (v, p) coordinates by using the
identities

f(E, A, v, ) = E -- v2 0
. 2

g(E, /, v, 0) =Bo- v sino 0

and the appropriate Jacobians. For instance,

9(f, g)
4(E, v)

0(0, v)

and, likewise,

Op v2sincos0

av 0

00s

This gives the gradient along the difflusion paths as

0 10 0
l (

where (I(IR,., - sin2 7)/V2COSOs int. Also, after some algebra,

(43)

tan20
(44)

(45)

(46)

(47)

(48)



02 1 02 1 0 2 2±2 02 0' 2cos2 -,1 +
Ox 2 = --0 2  -0 + v v0 a02 sin0cosO V2 M

The ECRIH tcrm can then be summarized as

I OFe
a IECRH

aF (9F 2F a2F 02F
B+CEc)?,JI + 0CR2 +ECRHZ + +FECRJI---5h RH- + FECII-a

where

I E
BEcRjIj D2 - -Di

2cos2o 4
CECIUI = ID2 -- A 1 snCS 2

1

EEC~IJ = D2I

FECRH = D

3.2. The Resonance Function . In this section, the rulcs used to evaluate D, are explained. Since
pjk_ < 1,

-- i . 1,
Dre, = (pBpe resRe{f2,.1,2} (1/4)A:2p2,

if n = I
if n = 2 (51)

where

{ 7 WAeff
Refi 7 } 27rw/37- 2Ai 2(u 1 ~

(where r--= t/,,/2)

(whcre r;- = i/,'/2)

and where v, = w - nw, - k1v11. I lore, all quantities arc evaluated at the point of rcsonance. Equation 51
is used for "simple" resonance points (e. when t1 , -+ 0 while t' remains finite): and Equation 52 is used for
"Airy" resonaiice points, which occur when both v." and, -+ 0.

Ti Il' CRI TERM 11

(49)

(50)

(52)

(53)
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Figure 1. Diagrams of the three classes of bounce-orbits used to detennine
the sum of the bounce-averaged, resonant wave-particle interactions.

The type and number of resonance points depend upon R,.., k1j, and the actual bounce-orbit of the
electron. For the program, these variations can be classified into three categories which are shown in Figure
1. The mirror is assumed to be symmetric for interchange of s with -s.

4. Numerical Methods

The Fokker-Plank equation (Equations 24, 27 and 38) is solved by the modified Alternating
Direction Implicit (AllD) method used by Killeen and Marx2 . A grid in the (v,0) phase space is defined
with variable spacing in the v-direction to provide a wide energy resolution and in the 0-direction to allow
quadrature integration. Typically, the grid has 45 v-points and 16-theta points. Integration in the v-direction
is performed with Simpson's nile modified to for variable grid spacing 2.

The ADI solution consists of kplitting" the 2-dimensional partial diffierential equation into two parts
so that the v and 0 differences can be taken separately. 'his gives two equations which can be solved
implicitly.
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Fi+di/2 _ Ft 1 IFt+"'/ 2  a 2 F +d/ 2  1 2Fj +t/2
r S + AFC+dt/ 2 + e + D - 2- -+-F" (54)

At 2 2 2v4 OtVOO
FL+dt - Ft+dt/2 1 + OfId 82F1+dt I ____+dt

C_-_ S + AFe+u +C--C + + F (55)
At 2 2 M +E2 + avF

If, in each equation, central diffcrences are taken for each derivative (except for a backward derivative for
the mixed term), each equation can be written as

A"F'- + B"Fn + CnF n+ W (56)

where, for the v-split

At 2D I F
AV E"- i ZOE.+A0

V 2i ,EV- V+'Av-

rnj _At(B+ 2D 1 F
V 2v E v± 4 AOL

B -± A + A t
S!Ats+ ---- (F"-' ~- IF /+

4A0A-...
ATF

+t- (F"+11+1 +F," ~Fn +1 F+ -
4AvAO+

and, for the 0-split,

At 2E I F
AOC-+4 Av)

B? I- A 2AtE ( I
B 1 EAtA ( + YO-)

Ct- At 2E F
C i C+ + AV

W F"1 + IAtS + AtF(Fn1 1 1 -F- 1+0 e 2 'IAOAV.-

+ -- --( + _+1+ - F"+il 1i - 1+1)

where
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AvO = V"n+11V - I,

-vp v'n+' - vn'1
An = V1n+jl - n

A0":. = V"' - V n- ,j

and similarly for AO, Ao+, AOL. In the above equations, the index n refers to the v-direction and the index
I refers to the 0-axis.

Using boundary conditions, these difference equations define a tri-diagonal matrix which can be
easily transformed into upper triangular form. For example, the matrix defined in Equation 56 becomes

rI C F WI

A2  B2 C 2  F W2
A3  B 3  C3  F 3

- (57)

AN-i BN-1 CN-1 N-1

A N F WN

which is equivalent to

I E, F, yl

1 E 2  F y2
1F E3Py3

(58)

1 EN-I F YN -
e

where

E1=_C Y1 W (59)

En= 11Y" = wn-Ay-60)
Bn - AnE'n- 1  B" - AE (60)

After the coefficientsE" and Y" have been found, the solution is trivial:

FN yN

F -I = - (01)
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The boundary conditions of the program are

1. = 0 due to azimuthal symmetry.Fo" = F'.
v=0,0=w/2

2. F(n = N) = 0.

3. FO' is independent of I (ie. 0).

4. - 0 due to azimuthal symmetry.F. 1 Fn

5. 0 from bounce-direction symmetry.
0=w/2

These boundary conditions are used to combine or eliminate terms in the upper left and bottom
right corners of the matrix. In this way, the initial conditions for the sweep out and back through the grid
indices are determined.

Finally, note that all of the gradients of Gt, (v, 0) needed for the electron-clectron collision term can

be found using ceatral differences since all of the boundary points are obtained implicitly from the interior
points and the boundary conditions.

5. Diagnostics

The following diagnostics are available to analyze the program's results during simulation of ECRH

of Constance 2: 1. F (v, 0), 2. F(E) and Fe(0), 3. (E)(t), 4. n,(t), 5. I188,(t), and 6. It0 ,(E).

6. Examples and Checks

Figure 2 shows an example of the relaxation of a non-Maxwellian electron population due to

electron-clectron collisions. Four contour plots of (Vi, V11) phase-space are shown for I = 0, 5, 10, and

20psec. The energy and density were constant to within 0.5%.

Figure 3 gives an example of the change in the average electron energy and total endloss when

FCRI I is applied. The ECRI I parameters were N = 2.0, IT3r= 10)/cn. and R,,, = 1.06. The density

was fixed at 2.0 x 10"cmni. the potential fixed at 25V. Ti,,, = 170ev, R, -= 2, and a cold electron

SOURC (7'. = 0cOi) was added with a cUrrent eqimal to one-tenth the the total loss current. Figure 4

show s the developiment of the electron energy distribution. and Figure 5 gives Four examnples of the resulting
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Figure 2. The development of the electron distribution for a relaxing non-
Maxwellian distribution due to electron-electron collisions. n. = 2.0 X
101 cm-3, and Te = 255eV. The density and energy remained constant

to within 0.5%. 20 equally-spaced contours were drawn for each plot.

Figure 3. lhe change of the averagc elcctron energy and the total endloss
with time. The run lasted 20pscc with the ICR H 10pscc long. Many
features of the run are similiar to those observed in the experiment, such
as the enhanced endlosses, the "ECRH equilibrium". the non-maxwellian
energy distribution, and the energy distribution of thc endloss.

LLA--

ru

.1k MA



T . 0.0

12.0

. v. - w

Figure 4. Thc change in the electron energy distribution due to ECRH.
w/wco = 1.06, |E,. = 10.0V/cm, and Nji = 2.0. For t = 0, 4.5, 12,
and psec.

T 0.0

T * 12.0

T - 4.5

-. .- . .

T * 20.0

1igure 5. The electron phase-space corresponding to the four timelCS shown
in Figure 4.

17EXAMPlES AND CHECKS
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T=20.0



velocity-space distribution as the run progressed. Many features of the run arc similiar to those observed

in the experiment, such as the enhanced endlosses. the "ECRIH equilibrium", the non-fnaxwellian energy

distribution, and the energy distribution of the endloss.
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