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3.3. Kinetic waves and instabilities in a uniform plasma 521

3.3.1. General dispersion relation

Introduction

This chapter presents a theoretical survey of the basic kinetic waves and instabili-
ties characteristic of a spatially uniform plasma immersed in a uniform, applied
magnetic field B0 = Boi.. Isotropic equilibria Fj( V2 ) that are monotonic decreasing
functions of v 2 are stable to electromagnetic perturbations with arbitrary polariza-
tion. In this chapter are examined a wide variety of kinetic instabilities in which the
free energy source for the instability is associated with nonthermal features of the
equilibrium distribution function Fj(v), ranging from the relative directed motion of
plasma components to anisotropy in plasma kinetic energy. The present stability
analysis, based on the linearization approximation, is instrinsically classical in that it
does not include the influence of turbulence effects on wave-particle resonances, nor
does it include the influence of stochastic particle motion on stability behavior.
Finally, it should be emphasized that the kinetic waves and instabilities selected for
analysis here have a broad range of applications to laboratory plasmas, space
plasmas, beam-plasma interactions, and magnetic and inertial confinement fusion.

The physical model utilized in the present analysis is based on the collisionless
Vlasov- Maxwell equations in which the one-particle distribution function fj (x, V, t)
evolves according to the Vlasov equation,

[a + Ex ) vxB(x,t)) - f(x,,t)=0, (I)

where E(x, t) and B(x, t) are the electric and magnetic fields, and e. and m are the
charge and mass, respectively, of a particle of species j. Here, fj (x, v, t) is the density
of particles of species j in the six-dimensional phase space (x, v). Moreover, the
electric and magnetic fields are determined self-consistently from Maxwell's equa-
tions in terms of the plasma current density,

J(x, t) = Yef d3vvf(x, V, t),

and charge density,

p(x, t) = Fef d f(x,V,t),

as well as external charge and current sources. Throughout the present analysis, it is
assumed that the plasma is immersed in a uniform, externally applied magnetic field
B0= B0a:, and that the plasma equilibrium state (8/at = 0) is characterized by
charge neutrality, E,Ae, = 0, and zero electric field E0 . It is also assumed that the
equilibrium plasma current (if any) is sufficiently weak that the corresponding
equilibrium self-magnetic field has a negligibly small effect on stability behavior in
comparison with the applied magnetic field Bo0 :.
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The organization of this chapter is the following. In the remainder of Section
3.3.1, use is made of the linearized Vlasov-Maxwell equations to determine the
general dispersion relation for electromagnetic wave propagation in a spatially
uniform, magnetized plasma. The analysis is carried out for arbitrary propagation
direction with respect to Boi., and arbitrary gyrotropic equilibrium F,( v2, v). The
general dispersion relation is also simplified in Section 3.3.1 for several limiting
cases, including wave propagation parallel to Boiz, perpendicular to Bosi, and in the
absence of applied magnetic field (BO = 0). In Section 3.3.2, a proof of Newcomb's
theorem is presented, which shows that monotonic decreasing equilibria with
aF ( v2 )/ aV2 < 0 (where v2 = + V ) are stable to small-amplitude electromagnetic
perturbations with arbitrary polarization. Specific examples of kinetic waves and
instabilities are examined in Sections 3.3.3-3.3.7, where the nonthermal equilibrium
features that drive the instabilities range from anisotropy in plasma kinetic energy to
the relative directed motion of the plasma components. The waves and instabilities
discussed in Sections 3.3.3-3.3.7 include: electrostatic waves and instabilities in an
unmagnetized plasma in Section 3.3.3 (e.g. bump-in-tail instability, ion acoustic
instability, strong two-stream instability, etc.); transverse electromagnetic Weibel
instabilities driven by kinetic energy anisotropy in an unmagnetized plasma in
Section 3.3.4 (e.g. electromagnetic instabilities driven by thermal anisotropy or
directed counterstreaming motion); transverse electromagnetic instabilities for wave
propagation parallel to Boi, in Section 3.3.5 (e.g. firehose instability, electromagnetic
ion cyclotron instability, and electron whistler instability); and electromagnetic and
electrostatic waves and instabilities for wave propagation perpendicular (or nearly
perpendicular) to Boi. in Sections 3.3.6 and 3.3.7 (e.g. ordinary-mode electromag-
netic instability, cyclotron harmonic loss-cone instability, convective loss-cone insta-
bility, ion-ion two-stream instability, and modified two-stream instability).

Finally, a brief list of references follows Section 3.3.7. This reference list, while
forming an incomplete bibliography, identifies several classical papers and early
treatises on the kinetic waves and instabilities discussed in Sections 3.3.1-3.3.7.

Kinetic dispersion relation for a magnetized plasma

Perturbations are considered about an equilibrium (8/rt = 0) characterized by
zero electric field and a uniform, externally applied magnetic field BO = Boi., where
BO = constant. It is also assumed that the equilibrium distribution function fj0(x, v)
for species j is spatially uniform with

f 0 (x, V)= A, F(V2 , V), (2)

where v, = (V2 + V2 )/2 is the perpendicular speed, and v. is the axial velocity. In
(2), ni1 = constant is the ambient density of species j, and FJ(v , v.) is normalized
according to

Sc
21rj d v Vjf_ dv.F =1.

In the present analysis, the electromagnetic wave perturbations. SE(x, t) and
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8B(x, t), are represented as Fourier-Laplace transforms

8E(xt)= d3kexp(ik-x) dwexp(-it)E(kw),

BB(x, t)= d3kexp(ik-x)f exp(-iwt)8-(kw), (3)

where Imw > 0 is chosen sufficiently large and positive that the Laplace transform

integrals 8E(k, w) = fo**dtexp(iwt)8E(k, t) etc. converge. In (3), the contour C is
parallel to the Re-w axis with Jcdw = f 0 dw and Imw > a. Neglecting initial
(t = 0) perturbations, Maxwell's equations can be expressed as

k X 8E = (w/c)8B, (4)

ik x 8B= (47r/c)8J-i(w/c)8E. (5)

together with

k -9B =0, (6)

ik -8E = 47r8p. (7)

In (5) and (7), the perturbed current and charge densities, 8J(x, t) and Sp(x. t), are

related self-consistently to the perturbed distribution function Sf,(x, v, t) by

SJ(x,t) = e f d X8fj(xvt), (8)

6p (x,t) = Ee, d f(x, V, t). (9)
J

Moreover, for small-amplitude perturbations, 8f, (x, v, t) evolves according to the

linearized Vlasov equation

a+V - + Bof(V.t)

A~ejvX B(xt)\ a
SE(xt)+ v -BF .( ,.v:), (10)

where e, and m, are the charge and mass, respectively, of a particle of speciesj. and c

is the speed of light in vacuo. Substituting (4) and (8) into (5), the V x 6B Maxwell

equation becomes

W_+~~ 4 1iw ef vA/kv o
k x (k x 81)+ 2E + e davv'f,(k, v )= 0. (11)

Making use of the method of characteristics, the linearized Vlasov equation for

8f,(xV.t)J= Jd'kexp(ik- x) f exp(-iwt)8f3(k.v.w)

52-3



can be solved for rf3(k, v, w) to give

rfj(k, v, w)= - f dt'exp[ik-x'- x)-iw(t'- t)]

x E + v'x (k X S'E) d V1 ( ",V;, (12)

where Im o > 0 is assumed, and initial perturbations have been neglected. In (12).

the particle trajectories x'(t') and v'(t') satisfy the orbit equations dx'/dt'= v' and

dv'/dt'= (e, /c)v'x Boi. with initial conditions x'(t'= t) = x and v'(t'= t) = v.
Making use of the fact that v' and v' are constant (independent of t') along a

particle trajectory in the equilibrium field configuration, it is straightforward to

show that the integrand in (12) can be expressed as

r' + v'x~ x -E ) ,(V'

=. .' SoE aFo , k) yfo~.v.yof,,

+8'$ ,(01,,)-- F(VLv)-E ' F,(Vi~, V) ,(1 -L

I ' 9V I v JF F~ z JVV) (13)

where the only explicit t' dependence in (13) occurs in the v' factors in v' SE and

k - v'. Introducing the cyclotron frequency

wcj = e.Bo/mc, (14)

and defining the perpendicular velocity phase p at t'= t by (v, v,) = (v, cos*,

v1 sin the solutions to the orbit equations can be expressed as

V' = V, cos(p- W, T), v' = v, sin( o - W ,T), V, = V., (15)

and

x= X - (vi /eC )[sin(P - WCT)-sino],

y' z'= + V.T, (16)

where r = t' - t. Without loss of generality, it is assumed that the wavevector k lies in

the x - z plane with (Fig. 3.3.1)

k = k i, + ki,4. (17)

The exponential factor occurring in the orbit integral in (12) can then be expressed

as

exp[ik -(x'-x) -i(or]= exp ik,v.,r- iWT+ ik-L [sin - sin(q5- -w,, T)l

kC)

-. fjk v±L J

xexp[i(m - n)p]exp[i(k. + nW- 1J ) T],

R.C Davidson524
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z

kLi,+kz6zBOi

0 -Y

X

Fig. 3.3.1. Coordinate system and propagation direction.

where J(b) is the Bessel function of the first kind of order n, and use has been made
of the identity

exp(ibsina)= Y J(b)exp(ima).
m -- C

Substituting (13), (15), (17) and (18) into (12), and carrying out the integration over r
with Imw > 0, it is straightforward to show that the perturbed distribution function
8y(k, v, w) can be expressed as

inije, J ( bj)exp[i(m - n)-]
Ff(k, v, w)= - m

Mi -0n 0 (Wa - nwcj - k v,)

X nJ,(b b _F kv F

+i J(b) a - (F ,

.nAw,,v.Ida.,

+ J,( bj) F + - a F) rE (19)

where b= k, v, /w.,, J'(b) denotes (d/db)J (b), and use has been made of the
identities J,. 1(bj)- J, 1(b) = 2J,,(b) and J, (b)+J,, 1(b1 ) = (2n/b,)J,(b,).

The form of the perturbed distribution function 8f,(k, v, w) given in (19) can be
substituted into the Maxwell equation (11) to determine the self-consistent develop-
ment of the field perturbations. In this regard, when evaluating the perturbed
current density in (11), the expression

Jdfv=2 df dv v dv.
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and the identity

E J( bj) 02rexp[i(m - n)s]( vicos $, o sin-o, v)

= [(nv/by)J,.(b,),-ivJ,(b,),tJ,(bj)]. (20)

are used. Substituting (19) into (11) then gives

D(k, w)-8E = 0 (21)

where the nine matrix elements D1 (k, w) are evaluated directly from (11), (19) and
(20). The condition for a non-trivial solution to (21) is that the determinant of the
3 x 3 matrix {D 1 (k, w)) be equal to zero, which gives the desired dispersion relation

det(D,(k, w))= 0, (22)

relating the wavenumber k and the complex oscillation frequency w. Substituting
(19) and (20) into (11) readily gives the elements of the dispersion tensor

c2k 2 ( n2/b2 ) J2( b)D,(k, ) = - - + Fd~ v

x F- - F , (23)

x a F - L vz F - v'aF

= - ( ,) (24)

,(~)ck, ki + d'o (c3VV n / bj) J,,2b,
I + (w nwcy-kv,)

x F + -+&(Lv, d F], (25)

c2 (k + k2 2 j (b) 2
,,(k,) - 2 +w) _ Id3VV,

W 2 W(- n ,, -kz,)

SW -I F - a , (26)

Dz(k, w)=- d I kv
no -c flcj -k:

X F+ - (27)
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3.3. Kinetic waves and instabilities in a uniform plasma

_k+v (n/b)J,2 (b,)
D.,(k,w)= 2 (w- fdnv

( n - - k )

X i-F -k-v -±LF Fl, (28)
dv. I W' a ~ d. V v.'}

2 J, ( bj)J'( bj)
D4,(k, w)= iF - f dv .

-(wnw- -k~

_ ko. v, F
x1 F j (29)

dvx j W dv V, dv.

c2k2  j (b )
D . (k , w) = 1 - 21 + f - v. d .

+ nw /V: a F - \]
- Fv.F0+-----F .F , (30)

where

d'v = 27 dv osj dv.f d fv2 0dvv 0
0 -o

b = k v, /wej, w2 = 4ejglm, is the plasma frequency squared, and 1mw > 0 is

assumed.
In summary, the dispersion relation (22) together with the definitions of Di(k, W)

in (23)-(30) can be used to investigate detailed stability properties of a spatially

uniform plasma immersed in a uniform magnetic field Boi. for a broad range of

equilibrium distribution functions F (V2, V'). In this regard, it is clear from (23)-(30)

that considerable simplification of the matrix elements D,1 (k. w) occurs in several

limiting cases, e.g. (a) wave propagation parallel to B0s-(k, = 0: k = k.i-). (b) wave

propagation perpendicular to Boa.(k. = 0; k = k i,). and (c) an isotropic plasma

with F, = F (V2 + v) and dF/av -(vi /v.)OFJ/d. = 0. For detailed applica-

tions in subsequent sections, (22)-(30) are now simplified for several cases of

practical interest.

Propagation paralel to Boi.

In this section, use is made of (21)-(30) to simplify the dispersion relation for

wave propagation parallel to Boi: with

k1 =0, k = ki.. (31)

Making use of JO(0)= 1, Jn(0)= 0 for In > 1 and J (b1 ) = b1 /2, for 1b1 < 1. it follows

directly from (25), (27), (28) and (29) that

D,,= =D, = D., = 0, (32)

for k1 = 0. Moreover, the remaining matrix elements for k, = 0 can be expressed as
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D,= D,=l- + dL

X + 1  (33)
t- we - kzv' W+ We - k,v,0

D,, = , d F - aFc - _

j ~ I .T, wdv, ' zav

=+ w- +dw (34)

- 2 +V k.dF>/t9v,:p' (35)
k 2 -k,

where Im w > 0 is assumed. Substituting (32)-(35) into (22) gives the dispersion
relation

( D.,,D, - DXD, )DY z =0. (36)

There are two classes of solutions to (21) and (36). The first class, with D.. = 0,
corresponds to longitudinal electrostatic perturbations with PEx = 0 =E, and per-
turbed electric field E = E:, parallel to the propagation direction k = ki.:. The
second class, with D D,, - DD, = 0, corresponds to transverse electromagnetic

perturbations with SE, = 0 and perturbed electric field 8E = +Exix+Ei, per-
pendicular to the propagation direction k = ki.

Electrostatic dispersion relation. To summarize, the wave polarization for electro-
static perturbations propagating parallel to Boi: is given by

k = (0,0. k:), 8E = (0,0, SE) (37)

and the dispersion relation D, = 0 can be expressed as

W 2 k, 3F /8
D.(k., w) =I+ - d3V = . /dv- 0, (38)

k2 f - k.v.

where Imw > 0. As discussed in Section 3.3.3, depending on the functional form of
F ( v2, v.), and the regions of w- and k.-space under investigation, (38) constitutes
the electrostatic dispersion relation for longitudinal ion waves, electron plasma
oscillations, two-stream instabilities, etc., for wave propagation parallel to Bo:..

Electromagnetic dispersion relation. The wave polarization for transverse electromag-
netic perturbations propagating parallel to Bia is given by

k = (0,0, k:), E = (.B , SE,,0), (39)
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and the dispersion relation D,,D - D,,, D,=D +D =(D, +iDp)(DX -
iDx,)= 0 reduces to

c~2k~ 2 ~ [2 d a.~ Fj
D*(k, I=- + d3 'vE a -- _

22 O v~ j' W dv -

x =0, (40)
(Wk±Wa - k,v.

where Imw >0, and D' = D +iD =0 and D= D, -iD, =0 correspond to
circularly polarized electromagnetic waves with right-hand (8Ex = -iE,) and left-
hand (Ex = +i8E,) polarizations, respectively. As discussed in Section 3.3.5, de-
pending on the regions of w- and k:-space under investigation and on the functional
form of F1( V2, V'), (40) is the dispersion relation for electromagnetic waves propa-
gating parallel to Bo,, including Alfven waves, the firehose instability, ion cyclo-
tron waves, the Alfven ion cyclotron instability, electron whistler waves, electron
cyclotron waves, and (Weibel-like) transverse electromagnetic instabilities driven by
an anisotropy in plasma kinetic energy with EAjf d3V(m V2 /2)F, exceeding
E)njf d3V(m v?/2)F by a sufficient amount.

Propagation perpendicular to BO&

As a second limiting case, in this section (21)-(30) are examined for wave
propagation perpendicular to Boi, with

k,=0, k=k i'. (41)

In addition, to simplify the analysis, it is assumed that there is zero average flow of
species j along the field lines with

d v,.F,( v' ,v.) =0. (42)

Substituting (41) and (42) into (25), (27), (28) and (29) readily gives

D,.= D:.= D,.= D =0 (43)

for k. = 0. Moreover, the remaining matrix elements for k, = 0 can be expressed as

W 2 0 (n/b ) j"2by)
D,, + Ed 3vVI ' a F. (44)

2 (n /b)Jn(b,)J,'(b,) a
il -- d 3 V -F, (45)

DW = - + d w - ' , )4dv6

C2  [2J,(b,)] a
D.,=l---- E2 f dV V I ~- n dv Fj (46)

c 2k 2  Wn., J( b ) E OF
D.. =I - + fd (47)

W2 2 2 n-- w-n. La L
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where use has been made of !dv.v.dF/d.= - / dv .F to simplify the expression
for D_. For k = kg is, note from (44)-(47) that the perpendicular particle dynamics
plays a very important role in determining detailed wave propagation properties as
manifest by the cyclotron resonances in (44)-(47) for w = n w.., n = 1, 2, . . . .
Substituting (43)-(47) into (22) gives the dispersion relation

( PD.D, - DD, )D. =0. (48)

As for the case of parallel propagation, there are two classes of solutions to (21) and
(48). The first class, with D,. = 0, corresponds to transverse electromagnetic perturba-
tions with rE = 0 = E and perturbed electric field 8E = 8SE:i,. This is usually
called ordinary-mode wave propagation. The second class, with D. D,, - D, D, = 0,
corresponds to the extraordinary mode of wave pro agation, which generally has
mixed polarization. That is, with 9E. = 0 and 8E= xi, + 8E,,, the electric field
perturbation generally has components both parallel and perpendicular to k = k, ix.

Ordinary-mode dispersion relation. To summarize, the wave polarization for
ordinary-mode transverse electromagnetic wave perturbations propagating per-
pendicular to Boi. is given by

k = (ki ,00) E = (0, 0, ),(9_L , , 0) BE,(49)
and the dispersion relation D. = 0 can be expressed as

cz2 2 2: 1 nwc J,-(b,) V2 dF
D w (k_ =1- Y2k - d + d- -E _'=0

W 2 W 2 W 2 w -nw 1  vi. a v_

(50)

As discussed in Section 3.3.6, for a cold plasma. or for a moderately warm, isotro-
pic plasma with 1b1 <1, (50) gives the familiar ordinary-mode dispersion relation
(for w - nw ,) 2 =C2 k1 +Ew(, plus small thermal corrections. On the other
hand, for parallel plasma kinetic energy density EA .d 3v(m 1 !/2)F exceeding
Eijfd 3V(mJv2 /2)F by a sufficient amount, (50) can lead to the (Weibel-like)
electromagnetic filamentation instability.

Extraordinary-mode dispersion relation. In general, the wave polarization for ex-
traordinary-mode propagation perpendicular to Boi: is mixed. That is,

k = (k. ,0,0), BE= E,, E,.0), (51l)

and the wave perturbation has both longitudinal (8E) and transverse (§Ev)
components relative to the wavevector k = kg i,. Moreover, the dispersion relation is
given by

DrD, - D D, = 0, (52)

where the matrix elements D are defined in (44)-(46). In the general case, (52) does
not simplify further. However, there are two limiting regimes of considerable
practical interest which are now considered. The first corresponds to longitudinal
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3.3. Kinetic waves and instabilities in a uniform plasma

(electrostatic) Bernstein waves, and the second to extraordinary-mode transverse
electromagnetic waves.

Bernstein waves. For w and kg corresponding to large perpendicular index of
refraction with

Ic2 k /o 2 1> 1, (53)
it is straightforward to show from (44)-(46) and (53) that ID ' DXI and that D,
and D, are of comparable magnitude. It therefore follows from (44) and DL,,D -
DD,, = 0 that

2j n 2lb( n2/b ) J2(b) aD,,( k, , w) I + W - f d'v . w -F

+ 2 * J 2(bj) nwcj dF

k f. ' w -nwc v dv (54)
j k'n-0 1J 1.

is a good approximation to the dispersion relation (52), where use has been made of
nJ2(b) = 0. In this case, E,= 0 and the wave is primarily longitudinal

(electrostatic) with electric field perturbation 8E = 8EXi, along the direction of
propagation k = k, i. The Bernstein wave dispersion relation (54) clearly includes a
wide range of wave propagation behavior ranging from hybrid oscillations for a cold
plasma. where 1 = 2 /(W 2 

- 2 ) + W2/( 2 - W2), to cyclotron harmonic waves
(w nwcj) when plasma thermal effects are important. Detailed applications and
examples are discussed in Section 3.3.6.

Extraordinary -mode electromagnetic waves. For the case of a tenuous plasma with

w,:/c 2 ki < 1, (55)

and high frequency perturbations with

Io2/c 2 ki I of order unity, (56)

it is straightforward to show from (44)-(46) that the term D. represents a small
contribution to (52), and the dispersion relation ,D, - D," D, = 0 can be ap-
proximated by

D.D,, = 0. (57)

For D, = 0, the wave polarization corresponds to k = (k. ,0,0) and E = (27,,0.0).
and the dispersion relation reduces to the Bernstein mode dispersion relation
D, = 0 discussed in the previous paragraph [Eq. (54)]. On the other hand. for
D, = 0, the wave polarization is given by k = (kI ,0,0) and 8E = (0, 8E ,0) which
corresponds to transverse electromagnetic wave polarization with W and k. related
by

D,(k ,W)=I-c 2 k + d v (b)] -2  F=0. (58)W 3 w-v wc dv,

1MM1MWMWM
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Equation (58) supports solutions ranging from c2 = c 2 k' +E W2 /( 2 - w' ) for a

cold plasma to significant harmonic structure (for w = nwcj) when plasma thermal

effects are important.

Electrostatic dispersion relation for a magnetized plasma

In the last two subsections, it has been noted that under special circumstances
(e.g. large index of refraction Ic2k 2 /W 1 :*. I or low density/short wavelength per-
turbations with w,/c 2 k 2 C 1), the properties of the dispersion relation (22) are such
that electrostatic (longitudinal) mode can decouple from the mode with transverse
electromagnetic polarization. In this section, use is made of (7) and (19) to determine
directly the dispersion relation for electrostatic wave perturbations with k x rE= 0
and k= - ikQ - -i(ks ,0, k,)r, where 80 is the perturbed potential, and k has
an arbitrary direction with respect to Boi,. The Poisson equation (7) becomes

41r~p 13j
85= = 4,f F ej d av,
(k' + k') j ( 2k + k,2)

where 8f, is given by (19). Substituting Af- - i(k ,O, k,)8 into (19) then gives

DL (k, w)4o= 0, (59)

where the dispersion relation for electrostatic perturbations is given by

W 2 -10 3V-j. 2 (bj)
DL(k, w) =I+~ T, - 7 f dv(-n~kv)

D2 3
k (w - nw, - k,v,)

| F nwd; F
x .kF + !-O' 'Fj 0, (60)

where k 2 = k2 + k , and Imw > 0 is assumed. Equation (60) reduces directly to the
electrostatic dispersion relation (38) for parallel propagation (k, = 0) and to the
Bernstein mode dispersion relation (54) for perpendicular propagation (k, = 0). As
discussed in .Section 3.3.7, depending on the form of F(v, v,) and the region of w-

and k-space under investigation, (60) can also support unstable solutions (Im W > 0)
corresponding to the modified two-stream instability and the mirror convective
loss-cone instability.

Dispersion relation for an wunagnetized plasma

In circumstances where the perturbation frequency is sufficiently high and the
perturbation wavelength sufficiently short that

IwI > 1wrl, Ik, v, /wc.I 1, (61)

the particle dynamics is unaffected by the applied magnetic field BO on the time and
length scales of interest. In this case, the particle dynamics and wave propagation
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3.3. Kinetic waves and instabilities in a uniform plasma

properties correspond to an unmagnetized plasma with

B0=0 (62)

and free-streaming particle orbits

x'= x + vr, V,'= V, (63)

where r = t'- t. Assuming B0 = 0 in the present analysis, without loss of generality a
Cartesian coordinate system is chosen with i, aligned along the wavevector k, i.e.

k = k.i.. (64)

In addition, for B0 = 0, perturbations are considered about the class of equilibria

f)(x, v) = Fi1 (v), (65)

where v= (v, v, v.), and F(v) is normalized according to fdivF(v)=1. Parallel-
ing the analysis leading to (19) and making use of (62)-(65), it is straightforward to
show that the perturbed distribution function can be expressed as

.Ajej I aF - k., ) FF k v F
'7J (k, v, w ) =-i- -- E + I - - 8 + E,

m w - k :v. aV. - I V) kW av.

r kv \ F k.v~ aFL...
+ 1+ TI 8  (66)

Moreover, the V X 6B Maxwell equation (11) reduces to

( - £ E + 7 si) e f d3vtI(k,v, w) =0, (67)

where ](k, v. w) is given by (66).
One of the most important instabilities in an unmagnetized plasma is the

electromagnetic Weibel instability driven by energy anisotropy in which the plasma
kinetic energy perpendicular to k = kzi exceeds the parallel kinetic energy by a
sufficiently large amount. The free energy source for this instability can be provided
by an anisotropy in directed kinetic energy (associated with the average motion of
speciesj) as well as an anisotropy in thermal kinetic energy. To simplify the present
analysis, average motion of species j in the z-direction is allowed for, but it is
assumed that

dv', F(v)=0= dvv, F(v). (68)

That is, the net average motion of speciesj perpendicular to i. is assumed to be zero.
However, the analysis does allow for directed motion perpendicular to i: provided
the motion is symmetric, e.g. equidensity counter-streaming electron beams. Sub-
stituting (66) into (67) and making use of (68), it is straightforward to show that

,= D,= D,, = D,,= D,,= D., =0,
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and the remaining elements of the dielectric tensor (D1 (k,, w)) can be expressed as

c 2k 2 2  V k. F k 1F

D1,,(k:, w) = - + S d3'v k If v V:F k , L"F
W 2 W- kW W 0 v dv,

(70)
C2_k_2 2 k, + k v F

D (k.,w)=- + d3. d
" 2 - kW a0 iv _W

(71)

D.,(k., w)=I + dfv ---
W- k, v, v,

=k+ d ./d~, (72)k k a-kv

where w = 4 7rn, e,2/mj, and Im w > 0 is assumed.
Making use of (69)-(72), the dispersion relation det(D,(k,, w))= 0 for an unmag-

netized plasma can be expressed as

D,,D,D,: = 0. (73)

There are two classes of solutions to (73). The first class, with dispersion relation

c2k 2 3VV kv.d F k. aF]
(k, , 1- + - d. I - - - + k-- v,

2 W w-kk,0v W dv, d : j

= 0, (74)

or

c2k2 w2  Vkr/kv dF kv dF1
D,(k., ) =1- + dPj f +3

2 W-kv.L W a V W av.

=0, (75)

corresp onds to purely transverse electromagnetic branches with plane wave polariza-
tions 8E = (8Ex,0,0) and E = (0, 8E,0), respectively. The second branch, with
dispersion relation

D:.(k:, )=+ E J -- d3 ~J/~ =0, (76)
k w - k,v.

corresponds to an electrostatic branch with longitudinal polarization k = (0,0, k.)
and =(0,0, 24. Depending on the choice of F,(v), (74)-(76) support a broad
range of electromagnetic and electrostatic plasma waves and instabilities characteris-
tic of a spatially uniform, unmagnetized plasma (Sections 3.3.3 and 3.3.4).
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3.3. Kinetic waves and instabilities in a uniform plasma

To conclude this section, the special case is considered where F(v) is isotropic in
the plane perpendicular to a.. i.e.

F (v)= F ( v , v ,), (77)

where v' = v2 + v2 . In this case, D, and D,, can be expressed as

D,(k,w) =D,(k,W)

2z 2 2
=I ck + fd 3 1

2 2 -k.v,

x (I- )F ( vzz)+ W.V- F( ), (78)

The definitions of DXX and D,, in (78) are a special case of (74) and (75), valid for
distribution functions Fj(v , vz) isotropic in the plane perpendicular to i,. The
difference in wave propagation is evident. For general F(v) subject to (68), it is clear
from (74) and (75) that the two transverse electromagnetic dispersion relations,
D,, = 0 and D,, = 0, correspond to two independent plane-wave polarizations (with
r, * 0 and 8E, 0, respectively) with different wave propagation properties. For
FI(V) = FJ(V2, v,), however, it follows that D,, = D, [Eq. (78)], and the dispersion
relations D, = 0 and D,, = 0 are identical. The wave polarization in this case is
elliptical with k = (0,0, k,) and 8E = (8E,, 8E,0), where the ratio E,/8E, is
arbitrary.

Electrostatic dispersion relation for an unmagnetized plasma

In circumstances where B6 0 and the wave polarization is assumed to be
longitudinal with k x 8E = 0, the derivation of the electrostatic dispersion relation
simplifies at the outset. Expressing 460= - ik where 9 is the perturbed potential,
(12) reduces to

A e k-FJ/dv
Sf, (k, v, w ) = I / ro(k,wo). (79)mj (w-k-v)

Poisson's equation k 2ro= 4r~1 e1jf d'v then becomes

D(k, w)8'= 0, (80)

and the Landau dispersion relation for longitudinal perturbations is given by

92 k- dF/dD(k.w) =1+ -f d3v k Fdv =0, (81)
k k2 w -k- v

where Imw > 0 is assumed. Of course, (76) is a special case of (81) with wavevector k
prescribed by k = ki.. Depending on the choice of distribution function F,(v) and
on the regions of w- and k-space under investigation, (81) supports a wide variety of
electrostatic plasma waves and instabilities, including ion waves, the ion acoustic
instability, electron plasma oscillations, electrostatic two-stream instabilities, etc.
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Specific examples of waves and instabilities associated with (81) are discussed in
Section 3.3.3.

3.3.2. Sufficient condition for stability of spatially
uniform equilibria

In this section, the general class of isotropic equilibria

Fj(v ,v.) = F( v' +v ) (82)

in a magnetized plasma are considered and use is made of the Vlasov-Maxwell
equations to derive a sufficient condition for stability of the equilibrium to small-
amplitude electromagnetic perturbations with arbitrary polarization. The starting
point in this analysis is the nonlinear Vlasov equation

+ a e, v x [Boi.+ SB(x, t)] \S~~) j3 ,v )=0

(83)

where SE(x, t) and 8B(x, t) are determined self-consistently in terms of f4(x. V, 0
from Maxwell's equations. Here, the distribution function is expressed as its equi-
librium value plus a perturbation, i.e.

fj (x, v,t) =ii)F,(vj + j()+8f1(x,v,t), (84)

where A, = constant is the ambient density of species j. An exact consequence of the
fully nonlinear Vlasov-Maxwel equations is the conservation of total (field plus
particle kinetic) energy integrated over the region of phase space (x. v) occupied by
the plasma. In addition, it is readily shown that (d/dt)fd'xf dvG(f,) = 0 is an
exact consequence of (83), where G(f 1 ) is a smooth, differentiable function of f4.
Making use of energy conservation and fdxf d vI(f ) = constant. it is straightfor-
ward to construct the conserved quantity C defined by

fd3 (8E) 2 +( 8U) 2

CJUd x ( 81r

+fd 3V m(v' +v')(f,-4,F,)+G(f 1 )-G(AJF)), (85)

where dC/dt = 0. In (85), f - A F + 8f , and the arguments of SE(x. t). BB( x, t),
f1 (x, v, ) and F(v2 + v3 ) have been suppressed. Note that the constancy of C is an
exact consequence of the fully nonlinear Vlasov-Maxwell equations.

Now consider small-amplitude perturbations. Taylor-expanding G( f)) = G(A JF +
8f)) for small 8f) gives

(8f,)2
G(f,))= G(AF)+G'(h))f +G"(AF))2 + (86)
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3.3. Kinetic waves and instabilities in a uniform plasma

Correct to second order in the perturbation amplitude, (85) can be expressed as

(SE) 2+(8B) 2 +

C (2)=Jdx+ + f d+' F +f,

(Sfy)2]
+ Efd3vG"(fiF,) 2 . (87)

The function G(h F), which has been arbitrary up to this point, is now chosen to
satisfy

G'(AF,)= -4mj(v' + v). (88)

Equation (88) implies that the term linear in 8f, vanishes in (87), and C2 reduces to

C(2)=fd3x (SE)2(8B) +Efd'vG"(jF,) 2 af . (89)

Differentiating (88) with respect to tiF gives

- m1 /2ti
G"(f) - a/ 2  (90)

where v2 vf +V1. Substituting (90) into (89), CQ2) can be expressed in the
equivalent form

C = d 3 x )2+(B) (91)
c(2 = + E - T-jvoii i

81 I f ' \8,' d F>/dV2 (91

If

8F,/av 2 < 0, (92)

it follows from (91) that C 2 1 is a sum of non-negative terms. Since C is a constant.
the perturbations OE(x, t), SB(x, t) and 8f, (x. v. t) cannot grow without bound
when (92) is satisfied. Therefore. a sufficient condition for linear stability can be
stated as follows: If F (v2 + v3) is a monotonic decreasing function of ( v2 + v2) for
all plasma components j, the equilibrium is stable to small-amplitude electromag-
netic perturbations with arbitrary polarization. This is a statement of Newcomb's
theorem for perturbations about a spatially uniform plasma immersed in a uniform
magnetic field Boi..

Important generalizations of the preceding analysis can be made. For example. the
stability theorem can be extended to show that- aj / av2 < 0. for each j, is a
sufficient condition for nonlinear stability of F to arbitrary-amplitute perturbations.
In addition, for a radially confined, fully nonneutral electron plasma column it can
be shown that df( H - WP,)/8( H - , P,) <0 is a sufficient condition for stabil-
ity, where H is the energy, Pe is the canonical angular momentum, and W, = constant
is the angular rotation frequency.
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3.3.3. Electrostatic waves and instabilities in an
unmagnetized plasma

It is evident from the discussion in Section 3.3.2 that instability (ImW > 0) is
necessarily associated with nonthermal equilibrium features in which the distribution
function F,(v) departs from being a monotonically decreasing function of v 2 . That
is, the free energy source for wave amplification is provided by the relative directed
motion between plasma components and/or an anisotropy in plasma kinetic energy.
In this section, a variety of longitudinal plasma waves and instabilities in an
unmagnetized plasma are investigated, making use of the electrostatic dispersion
relation (8 1).

It is important to note that the stability analysis presented in Section 3.3.3 is also
valid for the case of electrostatic waves propagating parallel to a uniform magnetic
field BO = Boi. with BO - 0. This follows since the longitudinal dispersion relation
D..(k, w)= 0 in (38) is identical to (81) for k = kra. and F(v) = F(v', v.).

Weak electrostatic instability

Defining w = w, + iy, where w, = Re w is the real oscillation frequency and y = Im W
is the growth rate, with y > 0 corresponding to instability, the electrostatic dispersion
relation (81) for an unmagnetized plasma can be expressed as

D(k, w,+jy)= 0, (93)

where the Landau dielectric function is defined by

I2 k - F/0v
D(k, w, +iy) = + w d3v j (94)

k 2 f , -k - v+iy

for Imw=y>0. Defining D,=ReD(k,Wr+iy) and Di=ImD(k,Wr+iy), and
Taylor-expanding D = D, + i Di = 0 for weak instability (small y and Di). it is
straightforward to show that the dispersion relation (93) can be expressed as

0=D,(k, )+i y Dr(k, w,)+ Di(k, w,) + - - - (95)

Making use of

lim I P -i1r8(W, - k - v), (96)
y-O w,-k-v+iy w,-k-v

where P denotes Cauchy principal value, and setting the real and imaginary -parts of
(95) equal to zero gives

D+k -kOF 
(97D,(k, w,) = I+ w - P L 'V =0, (97)
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3.3. Kinetic waves and instabilities in a uniform plasma

and

Di(k, w,)

OD,(k,w,)/aw,

F A k-dF /dv
= k 2 ) v6(,-k-v)k- - Pf dav(,-k-)

(98)

For specified equilibrium distribution F1(v), (97) determines the real oscillation
frequency w, and (98) determines the growth rate y for the case of weak instability
or damping (e.g. ly '<r I'rI or IkV, where V is the characteristic speed of speciesj).
Two important symmetries follow directly from (97) and (98). In particular,

,( - k) = - W,(k ), y(- k) = y(k ), (99)
are self-consistent consequences of (97) and (98) and are directly related to the fact
that the perturbed electric field SE(x, t) is a real-valued function in (3).

Equations (97) and (98) will be used later in Section 3.3.3 to determine the (weak)
growth and damping increments for a variety of electrostatic plasma waves and
instabilities including electron plasma oscillations, the bump-in-tail instability, ion
waves, and the ion acoustic instability. For present purposes. we summarize the
implications of (97) and (98) in circumstances where F(v) is isotropic with

F,(v) = F(v 2 ), (100)

where v= + V2+ V. Makinguseof k-aF,(v%)/8v=2k-v(aF /V 2 ), (97) and
(98) can be expressed as

W_ 2k -v{ 8F/V2 )
D,(k, U)=l+E P d-3 0, (101)

and

2j( ~ ( /k2 ) d -v8( ,-k-v)8F/dv2
.Y = i (102)

For positive energy waves with WrdD,/dw, > 0, it is clear from (102) that dF,/8v2
< 0 is a sufficient condition for stability (y < 0), which constitutes a direct proof of
Newcomb's theorem (Section 3.3.2) in the special case where B0 = 0 and the wave
polarization is electrostatic.

The plasma dispersion function

In many applications of interest. the distribution function F,(v) can be approxi-
mated by a drifting Maxwellian

F(v) = L 3 / 2exp - ( -V,), (103)

5 39



R. C. Davidson

where V= f d3vvF is the mean velocity, and T = jf d3v(mj(V - V)/2]F is the
temperature of species j. In this case, the velocity integral in the electrostatic
dielectric function D(k, Wr + iy) defined in (94) can be expressed as

2 3k-dF 1/av 2w2

d1f -wk-V+iY= - [ 1+ z( 1), (104)

where

Z( ) 1/2 dx exp( ) (105)
- c 6j

and

x,-k - V+i-y61 = kvir (106)

with y = Im w > 0. In (104)-(106) k = ki. has been chosen without loss of generality.
Moreover, vT1 =(2T7/M)'/ 2 is the thermal speed of speciesj. The function Z(6.)
defined in (105) is referred to as the plasma dispersion function. Important for
subsequent applications are the asymptotic expansions of Z(6j) for large and small
values of 1IJ. i.e.

Z(6) )= - I- - - -for 11l 1, (107)

and

Z(.)=-2( + - - - 1 i k 2exp(-(1 ), forI 1. (108)

Note that (107) is a valid approximation in the cold-plasma limit with VT =
(2T,/m,)1/2 -0. or in the limit of large relative phase velocity with IW, k k- V +
iyl/IkvTjl > 1. Equations (104)-(108) will be used to investigate detailed stability
properties for drifting Maxwellian distributions in a variety of regimes of practical
interest.

Electron plasma oscillations and the bump - in - tail instability

As a first example, consider the case of a weak electron beam drifting through a
background plasma of Maxwellian electrons and ions with distribution functions

(Fig. 3.3.2):

F,(v)= H _c) 23exp - + . 3 )

(109)

F(v) = IMI 32exp - ,-V (110)
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3.3. Kinetic waves and instabilities in a uniform plasma

fdvd vy F, (v)

Range of Wr/kz
with y >0

0T
Vbz vz

Fig. 3.3.2. Plot of reduced electron distribution functions fJT d v, f d v, F (v) versus v: for bump-in-tail
instability [Eq. (109)].

where e = ni lA <1 and IVb > VTe = (2T,/me)/ 2 are assumed. Without loss of
generality, the wavevector k is taken to be in the z-direction with

k = ka., (111)

and the component of Vb along 1z is denoted by Vbz = Vb i.. In this section,
high-frequency perturbations are considered and the positive ions are treated as a
stationary background with

mi -+ 0, ICI - oo. (112)

It is also assumed that the waves are weakly damped or growing,

1-t ,< 1 , (113)

and that the wave phase velocity is large in comparison with the bulk electron
thermal speed, i.e. 1el > I and

w /kl > VTC = (2T,/m,)/ 2 . (114)

Weakly damped electron plasma oscillations. In the absence of electron beam,

(= nbIA, = 0, (115)

it is straightforward to show from (97), (104), (107) and (109)-(114) that the real
oscillation frequency w, is determined from

2 4

Dr(k, Ir)= - - 3k DA --- = 0, (116)
r r

where X2 = T,/47ne 2 = V2/2 W2 is the electron Debye length squared, and k 2Xi
< I is assumed. Solving iteratively for w,. (116) gives

Wr = C (1+3k2D +- -), (117)

which is the familiar Bohm-Gross dispersion relation for electron plasma oscilla-
tions with (weak) thermal corrections. Moreover, for e = 0. m1 -o o and k 2 D < 1, it
follows directly from (98), (109) and (116) that the Landau damping increment
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(Y < 0) is given by

YL4 exp (118)

For w = W2(1+3k 2 X2 +-) and k 2 
2 < 1, (118) can be approximated by

YL 1T~/2 k2k x3p( k2 ' (119)
-P k * 2k 2 -2 2

Note that the damping is weak with IYLI - 1. Moreover, W /k 2v 2  2
D)

>> 1, and the wave phase velocity is large in comparison with the bulk electron
thermal speed, as assumed in (114).

Bump-in -tail instability. Electrostatic stability properties in the presence of a weak
beam are now examined with *0, where (=nb/A,<K and IV>> ,re=
(2 T,/m,)/ 2 are assumed. Paralleling the analysis in the previous paragraph, it is
straightforward to show for e < 1 that the real oscillation frequency is determined to
good accuracy from (116) and (117). Moreover, for ly/w, r 1, substituting (109)
and (116) into (98) with dD/ar =, it is readily shown that the growth
rate y can be approximated by

Y =L + 'Yb

1/2 ()IMe() 3/2 W4 {me£ex(
- ( -(I )exp -

+e /2 kV - W. kV 1 (120)

where w4 = w2 (1 +3k 2?2D + and k Vb = kVb,. The first term YL on the right-
hand side of (120) corresponds to Landau damping (YL < 0) of the electron plasma
oscillations by the bulk electrons [Eq. (118)]. The second term Yb on the right-hand
side of (120) is associated with the beam electrons and corresponds to wave growth

(Yb > 0) whenever the phase velocity W/k is smaller than the r-component of the
beam velocity Vb, (Fig. 3.3.2). Indeed, it follows directly from (120) that

Yb > 0  for kVbz,/r Z I. (121)

Note also from (120) and (121) that the beam contribution corresponds to damping
(Yb <0) when the direction of beam propagation is perpendicular to the wavevector
k = k., i.e. when Vb, = 0.

Because W /k 2 4, = w'I/k2'v = 1/(2k 2 D) >> I. it follows that the bulk electron
contribution in (120) is exponentially small. Therefore. for wave phase velocity
comparable with Vb:, for example (,/k - Vb :s 2

VTb = 2(2Tb/me)'/2. it is clear
that the beam contribution in (120) dominates for modest values of c, and the
growth rate y can be approximated by

"'=K - 1 exp ( - (Wr (122)
ne k 2 klvr \ , kr
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3.3. Kinetic waves and instabilities in a uniform plasma

where VTb = (2Tb/me)'/ 2 and (4 = W2 (I+ 3k2X + It is clear from (122) that
the maximum growth rate occurs for

Vbz - W,/k = + VTb/ , (123)
and the characteristic maximum growth rate is given by

77 1/23 - 2 1/2 y2_
Yl max I A k 2b2

(124)

where w 2 - W and w2 - k 2 V, have been approximated in (124). Strictly speaking,
the maximum growth estimate in (124) is valid for Vb . . Moreover,
(nb/Ae),X TOZ/2) 1 is required to assure validity of the assumption that the
instability is weak with ly/w, < 1.

Ion waves and the ion acoustic instability

In this section, electrostatic stability properties are examined in circumstances
where there is a (small) relative drift between the plasma electrons and ions. It is
assumed that the equilibrium distribution functions can be represented as Maxwel-
lian electrons drifting through a stationary Maxwellian ion background (Fig. 3.3.3),

F,(v)= 217Texp( - 2 T )2 (125)

Fi(v)= 2 )3 exp(- 'v v), (126)

where

.1=(2T/m,) (127)
is assumed in the low-drift-velocity regime. As in the subsection on the plasma
dispersion function, it is assumed that the growth rate is small with Iy/Wrl < 1, and

fdv f dv y F I(v)

Electrons

I J on s Range Of Wr/kz
1 with ye > 0

0'
Cs Vez vz -

Fig. 3.3.3. Plot of reduced electron and ion distribution functions ,dvJ, J" dvF,( v) versus v. for ion
acoustic instability ((125) and (126)1.
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the wavevector k is taken to be in the z-direction with k = ka.. Moreover, consistent
with the assumption of weak growth (or damping), it is assumed that the electrons
are hot in comparison with the ions in the present analysis, i.e.

T, T. (128)

Substituting (125) and (126) into (94) and making use of (104), it is straightforward
to show that the electrostatic dispersion relation (93) can be expressed as

2w 2  2w 2

D(k,,+y) = 1+ k2 + i Z(0)+ k2W [1+ Z()] = 0, (129)
Ti Te

where Z(Ci) is the plasma dispersion function defined in (105), and 6, and j are
defined by

,- kV+iy , + iY (130)

where VT = (2T /mj)1/ 2 and k - V, = k V,,. Within the context of (127) and (128), the
dispersion relation (129) supports weakly growing or damped solutions with ly/w, <
I for phase velocities in the range

lw,/kl> i, r/k - V,.1 :r ve (131)

Making use of the asymptotic expansions of Z(C,) given in (107) and (108) for
Ijil i I and JQ < 1, it is straightforward to show that the real oscillation frequency
w, is determined from the approximation dispersion relation

D,(k, ) - + k2+ 2= 0, (132)
r~ k XD

where Dr(k, w,) is defined in (97), and AXD= T/4lee is the electron Debye length
squared. Solving (132) gives

W2 . s2X= X2 (133)
1 1+I/k2D I +k2D

where c, = (T,/mi)1
/

2 is the ion sound speed. It is clear from (133) that the (low)
oscillation frequency ranges from w2 = k c for k 2X < 1. to W2 = W fork 2X2 >> 1.

To evaluate the growth rate y for the choice of distribution functions in (125) and
(126) use is made of (98) and (132). This readily gives

2 2-k 2 J-av.k

w\8 lklc, k2i 2D T kr

+ i I exp re , (134)
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3.3. Kinetic waves and instabilities in a uniform plasma

where X2, = T /4nAe 2, e = Zie is the ion charge, and use has been made of
equilibrium charge neutrality, AiZie+e(-e)=0. Making use of (131) to ap-
proximate the electron exponential factor in (134) by unity, the expression for y in
(134) reduces to

Y 1r/2 T 3/2 T
/= -Z - exp -

8 ( +kT)32 2T( D+k )

+ m e /2 k(135)

where use has been made of wr = k 2cl/(l + k 2 D).

Note from (135) that the ion contribution to the growth rate y (denoted by yj)
always corresponds to damping with y, < 0. Moreover, for kI XD: I and T. > T;,
the ion Landau damping in (135) is exponentially small. On the other hand, as T /T,
is increased to values of order unity, the ion waves are heavily damped with
Iyi/wrI = 1, and the assumptions leading to (135) are no longer valid.

The electron contribution to the growth rate y in (135) (denoted by y,) corre-
sponds to growth or damping depending on the sign of k V,/W, - I. In particular,

y, ><0 for kVy/w, < 1 (136)

follows directly from (135).
To conclude this section. we briefly summarize the growth rate properties for

stable ion wave oscillations and the ion acoustic instability in circumstances where
T > T and the ion Landau damping contribution in (135) is negligibly small.

Weakly damped ion waves. For T, >> T, and zero relative drift between electrons
and ions,

Ve = 0, (137)

the growth rate y in (135) can be approximated by

y ) 1/2 _=_ (7m),12 Ik~c, (138)
8mi (I+ kX2 )3/? \i ( + kXD

where w, = k2 c /( + k VD). Equation (138) corresponds to a weak damping (Y/-wl
< 1) of the ion waves by the background plasma electrons.

Ion acoustic instability. For T >> T and V: - 0, (135) predicts instability (y > 0)
whenever the relative drift between electrons and ions is sufficiently large that
k V, /w, > 1. Moreover the growth rate y can be approximated by (Fig. 3.3.3)

(mi I rI kV - (139)
w e m /(I + k 2  Itr

where w = k 22 /(I+ k 2DX. Introducing the angle 0 between k = ki. and V, the
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quantity V, can be represented as V, = V cos 0 where V, = 1 . For kIXD < 1. it

then follows from (139) that instability exists within the cone 0 < 6 < 60, where

cos 28 > cos26 = c2/V2, (140)

which requires V, > c, for existence of the instability.

Electron-ion two-stream instability

In this section, the electrostatic stability properties are considered for electrons
drifting through background plasma ions in circumstances where the relative stream-
ing velocity is large (Fig. 3.3.4)

1V, I >> V, Von, (141)

and the corresponding instability is strong. As in the previous subsection, it is
assumed that the electron and ion distributions are Maxwellian [(125) and (126)],
and the electrostatic dispersion relation is given by (129). It is further assumed that

e,+iy o-kV +iy
il = >1, teI= - eV >1, (142)

kvri kvT,

and resonant wave-particle effects are neglected in the region of W- and k-space
under investigation. Making use of (142), and (107) with Z(Q1 )= - 1/6 - 1/2 ), it
is straightforward to show that (129) can be approximated by the cold-plasma
dispersion relation

2

D(k,r+iY)=I 2-PC 2=0, (143)
(w,+ iY) (w, - k Vz+ iy)

where k = ki. and k -V = kV.
For V, - 0, (143) has four solutions for the complex oscillation frequency Wr + 'Y.

Two branches correspond to stable oscillations with y = 0. The other two solutions
for r + iy form conjugate pairs. After some straightforward algebra, it is found that

fdv fd vy Fj (vl

Electrons
Ions

Range of wr /k z
for y > 0

0 Ve vz ~

Fig. 3.3.4. Plot of reduced electron and ion distribution functions f dvf'xdvF,(v) for strong
electron-ion two-stream instability.
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3.3. Kinetic waves and instabilities in a uniform plasma

the unstable branch exhibits growth (y > 0) for k in the range

0 <lkV.J< w I+(o W ) . (144)

Moreover, maximum growth occurs for k2 = k- w2 /V, with corresponding real
oscillation frequency and growth rate at maximum growth given by the approximate
expressions

[Wr/k]max = i 2 ) = ( / (145)

[.. = / ) = weI (Zime/2mi), (146)
where e, = Zie is the ion charge, and use has been made of equilibrium charge
neutrality, hi(Zie)+ A,(-e)=0. Note from (146) that the growth rate for the
electron-ion two-stream instability can be substantial, with [Yl] =w, /18 for
hydrogen ions with Zi = I and me/mi = 1/1836.

Finally, in (143), resonant Landau damping by the plasma ions has been neglected
within the context of the assumption il = (w, +iy)/kTiI > 1. From (145) and
(146), this is a valid approximation provided the ions are sufficiently cold that

(Zi m/2m)2ni )*>2' T/ = 2Ti/mi,. (147)

Necessary and sufficient condition for instability

In this section are investigated the properties of the dielectric function D(k, w)
defined in (94) for general F(v) to determine the necessary and sufficient condition
for electrostatic instability. The resulting condition, known as the Penrose criterion,
can be used to determine stability behavior, range of unstable k-values, etc., for
various choices of F(v). It is useful to introduce the one-dimensional distribution
function F(u) projected along the wavevector k,

P(u)=fd'va u - )F,(v)+ ZmeFi(v)) (148)

where fkl= k, Zim,/mi = 4 /w2, and use has been made of equilibrium charge
neutrality, Ai(Zie)+A,(- e)=0. From (148), note that F(u) is a weighted com-
posite of F(v) and Fi(v), with the ion distribution function being weighted by
W /W2. Making use of (148), it is straightforward to show that the dielectric
function D(k, w) defined in (94) can be expressed in the equivalent form

D(k,w)=I+ du (U)/u (149)
k2 w/lki-u 

where w is complex, and Imw > 0 is assumed in (149). For future reference, the real
and imaginary parts of D(k, w). evaluated for real w. can be expressed as

P ap(U)/dUDr(k.wr) =I+--f C du ,u) -au (150)
k2 J, dW,/Ik-u~

Di(k, w,) =  - -r -U (151)
k 2 a U Id
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where w, = Re w, and use has been made of

lim -= P - TS u -
* -O. (w,+iy)/IkI- U kr/k- u -kj

where P denotes the Cauchy principal value.
An outline of the derivation of the Penrose criterion proceeds as follows. Assum-

ing D(k, w) is an analytic function of w in the upper half w-plane, the number N of
solutions to the dispersion relation D(k, w) = 0 with Imw > 0 (i.e. the number of
unstable modes) is given by

N= I f dw a D(k,), (152)
2N i JC D(k, w) - w

where D(k, w) is defined in (149). In (152), the contour C proceeds along the Re-w
axis from w, = - oo to w, = + oo, and closes on a large semicircle (with Iw -+ 0) in
the upper half w-plane. From (149), D(k,lwl - oo) = 1, and the only contribution to
(152) occurs along that portion of the contour C along the real-W axis where

D(k, W) = Dr(k, r)+iDi(k, w,). (153)

Equation (152) therefore reduces to

N = I l(D(kr + ) (154)
21ri D(k, w,= -0

Choosing the phase of D(k, Wr) such that D(k, w, = - )= + 1, it is found that
D(k, Wr = + oo) = exp(2riN). That is to say:

The number N of unstable solutions (with Imw > 0) to D(k. w) = 0 is
equal to the number of times that the contour F = D,(k, wr)+ iDi(k, w,)
encircles the origin in the complex D, + iD, plane as w, ranges from - Oc
to + 00.

The preceding statement constitutes a very powerful means to determine the
necessary and sufficient condition for instability of F( u). For present purposes, the
case is considered where F(u) is a double-peaked distribution function (Fig. 3.3.5)

F (u )

U Uo U0 2 U-

Fig. 3.3.5. Double-peaked distribution function F(u) assumed in derivation of Penrose criterion.
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3.3. Kinetic waves and instabilities in a uniform plasma 549

with a single minimum (excluding u = ± oo) at u = uO, a primary (largest) maximum

at u = u,, and a secondary (smallest) maximum at u = u2. Tracing out the curve

F = D,(k, WO+,)+iDi(k, w,) in the complex (D,, Dj) plane for Wr ranging from Wr = - 00

to Wr - + 00 gives the general behavior illustrated in Fig 3.3.6. Note from (150) that

Dr(k, wr) can be expressed in the equivalent form

Dr(k, w,)=I-- J du 2 (155)
k2 -00 (u -w,/1k|

It is straightforward to show from (155) and Fig. 3.3.6 that

D,(k, w,k -klui) >1,

Dr(k, wr = Ikju 2) > D,(k, wr = Jkfuo). (156)

From Fig. 3.3.6, the condition for instability (that r = D, + iDi encircles the origin)

therefore becomes Dr(k, Wr = Ikluo) < 0 < Dr(k, w, = IkIu 2 ), which can be expressed

as

0 UF(u)- F(u 2) k2 <W2 F(u)- F(uo)
2 du U 2 ) 2  < k _du U ) 2  (157)

It is clear from (157) that a necessary and sufficient condition for instability is given by

du Wf2(u)-f(uo)(5I( _d )U = UO) d> 2 ' (158)
- o (u -uo) 2

Equation (158) is known as the Penrose criterion for instability. Note from (158) that

the depression in F(u) as measured by F(uo) must be sufficiently large for P(F)> 0

to be satisfied. In addition, it is clear from (157) and Fig. 3.3.6 that if the secondary

D,

r= or+iDo

/w=k 1U2 \ r z ki u ,

Fig. 3.3.6. Plot of Penrose curve r = D, +i D i((5 1) and (155)] in complex (D,. D) plane for w, ranging

from - : to + oc. Here, D,(k, , - kluo) < 0 < Dr(k, Wr - k u2) is required for existence of instability

( > 0).
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maximum F(u 2 ) is sufficiently large, the inequality D(k, w, = IkIu2 )> 1 pertains,

and hence

(4)2 du P() (2) < 0,
- (u-u 2 )2 <0

may be satisfied. We therefore conclude, whenever the Penrose criterion (158) is

satisfied, that the range of unstable k-values (where y > 0) is given by

km<k 2 <k2, (159)

where k and kg are defined by

k'=w2 du 2(u)(O)' (160)
-0 (u-uO)

2

and kg is the maximum of 0 or k 2, where

2=, P(U)- P(U2)(6)
k=e du (161

-_ (u-u 2 )
2

To summarize, (158)-(161) can be used to investigate stability behavior for a

variety of choices of distribution function F(u). Although (158) does not provide

detailed information on the size of the growth rate y, it does determine whether or

not a given F(u) is unstable, and the corresponding range of unstable k-values [Eq.

(159)J when instability exists. We reiterate that (158) has been derived for a

double-peaked distribution function with maxima at u = u, and u = u2.Of course,

the techniques outlined here can be extended to the case where F(u) has multiple

maxima.

Penrose criterion for counterstreaming electrons and ions

As an interesting practical application of the Penrose criterion (158) derived in the

previous subsection, the case is considered where F(u) corresponds to Maxwellian

electrons drifting with velocity V through a Maxwellian ion background,

P(u) = exp- 2 Zme re e -- U , (162)
V'Ve1 Ve m2 V2T
ire T Mi Vri \ 1

where vr, = (2Te/m.)/ 2 and VTi = (2T/mi)/2. From (162), the distribution func-

tion F(u) has a minimum with aF(u)/au = 0 at u = uo, where

[ _____ [ _(U0-d
2 ' _ 2

1V x - UO (up d)2 i 0 exp U . (163)

\ Tr / \ Te IV Ti

Equation (163) can be used to determine uo = uo(Vd/rC, T,/Ti, mC/mi) numeri-

cally for a wide range of system parameters. Introducing the dimensionless quanti-

ties Vd = Vd/rvT, and a. = uo/ /T, and the dimensionless velocity variable a = u/vr,
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3.3. Kinetic waves and instabilities in a uniform plasma

the Penrose function P(F) defined in (158) can be expressed as

PC
+~) -rr- ) da exp !!( a 2 2x

mi T T me T m,)

(164)

for the choice of distribution function in (162). In (164), 40 = uo/Tre is determined
from (163). For specified Zi and m/mi, (164) can be solved numerically to
determine the region of Vd/vTe and T/Ti parameter space corresponding to
instability with P(F)> 0, and hence y > 0. The results are summarized in Fig. 3.3.7
for hydrogen plasma with Zi = I and me /mi = 1/1836. The solid curve in Fig. 3.3.7
corresponds to marginal stability with P(F) = 0 and y = 0. The region of
(Vd/vT,, T I) space above the curve corresponds to instability with y > 0, whereas

10

10

DTM -TMTR

P(F) -0

UNSTABLE

STABLE

I I I iii10-3 1
10- 2 I0-1

I ! Il11l 1 1l1ll1ll 1111111

1 10
Te /Ti

10 2 )03

Fig. 3.3.7. Plot of Vd/vT versus T/T, marginal stability curve (y -0) obtained from P( F) - 0 for
counterstreaming electrons and ions [Eq. (164)] where Z, = I and me/mi - 1/1836 are assumed. Region

above the curve is unstable (-y > 0). (Numerical results due to Dr. Robert D. Estes.)

,
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the region below the curve corresponds to damped oscillations. Note that the ion
acoustic instability and the strong electron-ion two-stream instability occur in rather
restricted regions of parameter space in Fig. 3.3.7. Equation (164) and Fig. 3.3.7 of
course delineate the entire region where instability exists for a continuum range of
Vd/vTe and T/Ti.

Penrose criterion for counterstreaming plasmas

As a second application of the Penrose criterion (158), the case is considered
where the distribution function F(u) corresponds to equidensity, Maxwellian plas-
mas counterstreaning with drift velocities ± Vd,

(u -V)2 (u+Vd) 2

-(u)= exp - exp -
20ere V27 vre

Z vr exp - u 2 + Z!iLa - ( 2 d)2

i V~i 4i ] i mVTi \VTiJ

(165)

where VrT = (2T2/m 1 )/ 2 for j= e,i. It is clear from (165) that F(u) has a single
minimum at u = uO = 0. Moreover, substituting (165) into (158), the Penrose func-
tion P(F) can be expressed as

+Z exp (d-)2)

dx 1/ ( d)2] +exp[ )2] - exp(66)

where Vd Vd/VTC and a = U/Ve. For specified Z1 and me /mi. (166) can be solved
numerically to determine the region of 2Vd/ Vre and T,/T parameter space corre-
sponding to instability with P( F) >0 and y > 0. The results are summarized in Fig.
3.3.8 for counterstreaming hydrogen plasmas with Z1 = I and ms/mi = 1/1836. The
solid curve in Fig. 3.3.8 correspond to marginal stability with P( F) = 0 and y = 0.

3.3.4. Electromagnetic waves and instabilities in an
unmagnetized plasma

Introduction and dispersion relation

In Section 3.3.1, it was indicated that a sufficiently large anisotropy in plasma
kinetic energy can provide the free energy source to drive plasma instabilities with
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3.3. Kinetic waves and instabilities in a uniform plasma

Electron -Electron

Electron - [on

UNSTABLE

STABLE

P(F)= 0

I ]! ! 11 i ! I i !l 1

1 10
T, / Ti-+

I1n-lon

I I I I I I! ! ! ! 1

102 103

Fig. 3.3.8. Plot of 2
Vd/vT, versus T,/T marginal stability curve (y -0) obtained from P(F) - 0 for

equidensity counterstreaming plasmas [Eq. (166)] where Z - I and m,/mi - 1/1836 are assumed.
Region above the curve is unstable (y > 0). (Numerical results due to Dr. Robert D. Estes.)

transverse electromagnetic polarization, i.e. with electric field perturbation St per-
pendicular to the wavevector k. In the present analysis, an unmagnetized plasma
with BO = 0 is considered, and use is made of the electromagnetic dispersion relation
(74), which corresponds to the plane wave polarization

k = (0,0, k), BE= (8E,0,0), (167)

with wave propagation in the z-direction k = ki.. Denoting w = + iy, the disper-
sion relation D,,(k, Wr + iy) = 0 in (74) can be expressed as

c 2k 2  W2
D(k,w,+iy)=lI-2 2

(w,+iY) ( rk+i-Y)

= kdF(/d8.)

J (Wr +'-Y)2 '-k,

10-

10 -2

10-I
.
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where y = Imw >0 is assumed, and use has been made of f d3VV, /ddv, = - 1.
Moreover, the short-hand notation D,, = D has been introduced in (168).

It is important to note that the electromagnetic stability analysis presented in
Section 3.3.4 is also approximately valid for a magnetized plasma with B. - 0
provided the perturbations have sufficiently short wavelength and sufficiently high
frequency that the plasma species are effectively unmagnetized, i.e. provided l/w 3 I
> I and Ik± VTj/WcjI > I.

As indicated in Section 3.3.1, one of the most fundamental instabilities associated
with (168) is the electromagnetic Weibel instability driven by energy anisotropy in
which the plasma kinetic energy perpendicular to k = ki, exceeds the parallel kinetic
energy by a sufficiently large amount. To illustrate basic stability properties, for the
sake of definiteness the case is considered where thejth species distribution function
corresponds to equidensity, anisotropic Maxwellians counterstreaming perpendicular
to the propagation direction with

1 ,\/2 {MyoV m

Fyo) 22T 2T11 21rTy

x exp- (o - V)2+(V, - U)

J))2] )]+exp - (+ +(,+ . (169)

After some straightforward algebra that makes use of (104), the dispersion relation
(168) can be expressed as

C2 k 2  
_ 2

D(k, w,+iy)=I - - p2 2i

(w"+iy) j (Wr+iy) 2

2 T +mV2

(+ r+ i.Y) T

0, (170)

where Z(fj) is the plasma dispersion function defined in (105), and is defined by

ii = (w, +iy)/k 1, (171)

where VTj =(2T,/m 1 )'/ 2 is the parallel thermal speed of species j. For the sake of
completeness, note that the dispersion relation D,,(k, Wr +iy) = 0 in (75) is identical
to (170) with the replacement V2 U, where UL are the directed streaming
velocities in the y-direction.

Equation (170) supports two classes of solutions. The first class corresponds to
fast (Wo/k 2 

> c 2 ), stable (y=0) electromagnetic waves propagating with phase
velocity exceeding the speed of light. The second class corresponds to purely growing
(or purely damped) solutions with w, = 0 and y * 0, whenever the anisotropy
condition (To + m )/T 11 > I is satisfied.

These two classes of solutions are now considered in more detail.
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3.3. Kinetic waves and instabilities in a uniform plasma

Fast - wave propagation

For fast electromagnetic wave propagation with

Iw2/k 21> c2, (172)

it follows for a nonrelativistic plasma that *j > I for j = e, i. Approximating
Z(j) )= - 1/ j - 1/2 ' - - - - [Eq. (107)], the dispersion relation (170) supports
purely oscillatory solutions with y = 0 and w, determined from

C2k22 T + m V2 k 2 11
2 2 j T 2 . (173)
r j Wr j Wr jil M Wr

Solving (173) iteratively for Wr gives

2 22(T, /m c2 jy2c
W c2k2 + E(/ +mj cc (174)

For the nonrelativistic plasma regime assumed here, note from (174) that the
correction term proportional to (T /m c2 + J/c 2 ) is small, and the cold-plasma
dispersion relation w2 = c2k 2 +E 2 is an excellent approximation to (174). This
conclusion is independent of the degree of anisotropy.

Necessary and sufficient condition for instability

It is relatively straightforward to generalize the electrostatic Penrose criterion
derived in Section 3.3.3 to the case where the wave polarization is electromagnetic
and the dispersion relation is given by (168). To avoid a double pole at W = 0, define

b(k,w) = W2 D(k, w)
k 2 F / av,

= w2 - c2k 2- E 2 + dW fd 3V 4-k.', (175)
I I

where Im w > 0, in (175). Introducing br + ibi = b(k, w), where b, = Re b and
bi = Im b, it follows from (175) and

lim I = P 1 - inS(w, - kv,), (176)
Y . Wr -kv, +1 iy ,W - kv.

that

kdF/dv.
b(k,w,)=w c2k2-W2 + EWPfd3V V W (177)

dF
b(k, w,)= W d'vv.(w, - k)k , (178)

where P denotes Cauchy principal value. For the class of symmetric equilibria with a
single maximum at v, = 0 [as in (169)], it can be shown that

A.(k, w..= 0) > 0 (179)
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is required for existence of unstable solutions to D(k. w, + iy) = 0 with y > 0 and
r = 0. Equation (179) determines the necessary and sufficient condition for instabil-

ity,

P(F)= -W I +Pf d' ) >0, (180)

as well as the range of unstable k-values corresponding to y > 0, i.e.

O< k2 <kg, (181)

where

22 Lk - 1+Pfd3v . (182)

Use is now made of (170) and (178)-(182) to investigate detailed electromagnetic
stability properties for the anisotropic counterstreaming Maxwellian plasmas de-
scribed by (169). Making use of (169) and (180), the necessary and sufficient
condition for instability can be expressed as

IT + m V 2

J 2 ' -.l)>0, (183)

and the range of unstable k-values is given by

22/ T, +m V2

0 <k2 < k -2 Tl 1 (184)

whenever (183) is satisfied. Note from (183) and (184) that both thermal anisotropy
(T, /T > 1) and anisotropy associated with directed kinetic energy (m, j /7T > 1)
can provide the free energy source to drive the instability. In the special case of an
isotropic plasma with V = 0 and T, = T, it follows from (182) that k2 = 0 and the
system is stable. The necessary and sufficient condition for instability given in (183)
can also be expressed as

Te+ m V2 ,T' + MiVi m
+ ZT m > me Z-, (185)T7 e mi T1 m

where ej - Zie is the ion charge, and use has been made of equilibrium charge
neutrality hi(Zie)+Ae(-e)=0 to express W2 1 /W = Zim/m,. Making use of
(185), the region of (Te + m IT,)/T versus (T, + miVi2 )/T 1 space corresponding
to instability is plotted in Fig. 3.3.9. For specified (T, + mIT)/T, we note from
Eq. (185) and Fig. 3.3.9 that a relatively large value of ion anisotropy (T.
+ MiVi2)/T is required to drive instability.

Weibel instability for weakly anisotropic plasma

As an example, in this section the case is considered where there is no streaming
motion of the plasma (V, = V1 = 0), the positive ions are isotropic (T, = Till), and
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t

Unsta ble (ye > 0)
E

Stable

0
(TU + Mm V12 )/T -..

Fig. 3.3.9. Necessary and sufficient condition for Weibel instability in equidensity. counterstreaning
plasmas (Eq. (185)]. Region above the curve corresponds to instability ( y > 0).

the electron thermal anistropy is assumed to be weak with

( T, - Tg )/ 1. (186)

From (184), the range of unstable k-values is given by

2'

0<k 2 <k=- -2 -l -) (187)

where k c2 / -K 1. In addition, the ions are treated as infinitely massive with
m - and IJ I > 1. Assuming w, = 0, and neglecting the displacement current

(T < c2k2 ) in (170), the dispersion relation can be approximated by

0 = c2k2 + P I - - W L (eZ( '), (188)
\cTIellIle

where e. = iy/kvre and VT, = (2T71 /m,)/
2 .For the case of weak anisotropy, (188)

supports weakly unstable solutions with Ie < 1. Approximating, Z(,) - 2e, [Eq.
(108)], it is found from (188) that

, V2-, Thi Te 2 k2 k2

7-= W2 - - L -L k - 1-- (189)
2 c2 I T, T.11 ko ko

for 0 < k 2 < k2 (Fig. 3.3.10). In (189), maximum growth occurs for k 2 = k2/2, and
the corresponding maximum growth rate jy ma is given by

TT1 el 1/2 T
[7]a= -w? 8TL Tl

kovr( T (190)
T, ll

Equation (188) can be solved numerically for the case of arbitrary anisotropy. When

T /T - I is of order unity or larger, the maximum growth rate of course exceeds
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4 .0

ti

0 0.5 0.707 1.0

k/k j -+
Fig. 3.3.10. Plot of growth rate y versus Ik /k0 for weak electron Weibel instability ((189) and (190)].

the value in (190). The range of unstable k-values, however, is still given by the
expression (187).

Strong filamentation instability for counterstreaming ion beams

As a second example that illustrates several important features of electromagnetic
Weibel instabilities, the case is considered where the energy anisotropy is provided
by cold, counter-streaming ion beams with directed x-velocities + Vi, and

Ti - 0, T.L - 0. (191)

It is further assumed that the ion beams propagate through a hot, isotropic electron
background with V, = 0 and 7,2 = Te = T. Assuming w, = 0 and that the electrons
are sufficiently hot that ,j = liy/kvTI <z 1, it is straightforward to show that the
dispersion relation (170) can be approximated by

0 = c 2k 2 + E + 72 -2 iVik2, (192)
- E p" kvTCI22

where use has been made of Z( ,)= -2 , and Z( 1 ) -1/ j - 1/22 and the
displacement current has been neglected in (192) (y2 < c2k 2). Neglecting

W.y 2 /k vT, in comparison with wp, (192) gives the approximate result (Fig. 3.3.11)

W 22

2 i2P (193)
(I (+,EJW /C2 k2)

Since T1 - 0 has been assumed, the range of unstable k-values in (193) corresponds
to O < k 2 <k2 - oc, which is consistent with (184). Moreover, maximum growth

occurs for c2k 2 >> We, with

[Y max = (i/c)Opi. (194)

Of course, a modest value of Ti will cause the y versus k curve in Fig. 3.3.11 to turn

11
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over, and the growth rate y approaches zero for k = ko where c2k/wi=(T
+ mjVj2)/Tij - I [Eq. (184)].

To conclude Section 3.3.4, it is evident that two rather extreme examples of
electromagnetic Weibel instabilities have been examined in the last two subsections.
It should be emphasized. however, that the dispersion relations (168) and (170) can
be used to investigate anisotropy-driven electromagnetic instabilities for a wide
range of circumstances.

[Y]MAX wpi Vi /C

0 1 2 3 4 5

clkI/wpe -
Fig. 3.3.11. Plot of growth rate y versus clkI/w,, for strong counterstreaming ion Weibel instability [(193)

and (194)].

3.3.5. Waves and instabilities for propagation parallel to B0

Introduction and dispersion relation

In Section 3.3.1 were derived the electrostatic dispersion relation D.. (k., ,) = 0
[Eq. (38)] and the transverse electromagnetic dispersion relation D =(k., W) = 0 [Eq.
(40)] for wave propagation parallel to a uniform magnetic field BO = Bo0 .. The
analysis in Section 3.3.1 was carried out for general equilibrium distribution function
F ( V2 , v.), and wavevector

k = k.i.. (195)

From (38), it is clear that the electrostatic dispersion relation for waves propagating
parallel to the magnetic field is identical to the familiar electrostatic dispersion
relation for an unmagnetized plasma given in (81) and studied extensively in Section
3.3.3. That is, as expected, for wavevector k parallel to Boiz. the electrostatic stability
properties are unaffected by the presence of the magnetic field. Therefore, throughout
the remainder of Section 3.3.5, stability properties associated with the transverse
electromagnetic dispersion relation D l(k., w) = 0 in (40) are investigated.

5 59



R.C. Davidson

Integrating by parts with respect to v, in (40), the dispersion relation can be
expressed as

c 2k2
D: (k:,,w, + iy) = _ I -2

(Or +iy)±

(196)

where

f d3V = 21f dvf dvo V.,
-0 0

w + i y is the complex oscillation frequency, w., = e, BO /mj c is the cyclotron
frequency, and Imw = y > 0 is assumed in (196). The wave polarization associated
with (196) is given by

k = (0,0, kz ), S-= T~F i ,, ,,,0) , (197)

where D + = 0 and D = 0 correspond to circulary polarized electromagnetic waves
with right-hand (8, = - i,) and left-hand ( S = + iSr) polarizations, respec-
tively. It is evident from (196) that the detailed dependence of F( V2, V,) on v2 does
not have to be specified in analyzing the dispersion relation. Therefore, for present
purposes, it is assumed that F;(v2, v,) is of the form

Fj (v 2mj 1/2 mi- ol v2(18(V )= 2T 2T G ,(198)

where

2 fr d vVGj(v )= 1.
0'

Because the V2 moment of F occurs in (196), the effective perpendicular temperature
is defined by

T = 21rj dv v m v(v2)Gj(v2. (199)

Substituting (198) and (199) into (196) then gives the dispersion relation

D +(k., r+j ~ ic
2k2 + __

S ()) , (Wr' ++ i )
2

+ + iy) Z (w,+ T1)
xIz)- I- (,+, z( t )) =0,

(200)
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3.3. Kinetic waves and instabilities in a uniform plasma

where VT, = (2T 1/m )1/2 is the parallel thermal speed, Z(,! ) is the plasma disper-
sion function defined in (105), and if is defined by

ij, = (w, ± WCj + iy)/kvTr . (201)

Depending on the region of w- and k.-space under investigation, and the degree
and nature (T, > T ) of the temperature anisotropy, the electromagnetic dispersion
relation (200) supports a wide variety of waves and instabilities including the
firehose instability, the electromagnetic ion cyclotron instability, and the electron
Whistler instability. These instabilities are examined in detail in the last three
subsections of Section 3.3.5. To orient the reader and establish the basic normal
modes of the system, in the next subsection (200) is considered in the limit of a cold,
isotropic plasma.

Waves in a cold pLasma

For a cold, isotropic plasma with T, = T = T -+ 0, consider (200) with ( I =
(w, ± wcj + iy)/kvrrl > 1. Approximating Z(J± )= - l/(j [Eq. (107)], the disper-

sion relation supports only solutions with real oscillation frequency (y = 0), and
(200) reduces to

c2k2 2 2

Dp(k.,) -W 20 (202)
Wr W,(Wr±(ee) W,(Wr±Wci)

for a two-species plasma. For each sign (+ or -), (202) supports six real solutions
for wr. For present purposes, it is useful to briefly consider (202) in several limiting
frequency regimes.

Alfv n waves. Assuming low-frequency perturbations with

IWr « << iI'IWeI, (203)

and making use of equilibrium charge neutrality, w /( ± Wee) + W /( Wi) =0,

(202) can be expanded to O(1/wlj) for strong magnetic field to give the approximate
dispersion relation

W2 kic2  k V. (204)
+ /2 1+ V/C2'

where the Alfven velocity VA is defined by c 2/ - =A E4Wr2 myc 2/BI.

Note that c2/VA = c/ 1 for typical plasmas, so that W= k:Vi isa good
approximation to (204).

Later in Section 3.3.5, assuming a warm, anisotropic plasma with T, exceeding
T by a sufficiently large amount, it will be seen that the low-frequency Alfven
branch exhibits strong instability (called the firehose instability).

Ion cyclotron waves. Assuming strongly magnetized electrons with

(205)lWri K lWCV,
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but allowing for wr to extend to the ion cyclotron range of frequencies, (202) can be
expanded to O(1 /m) to give

c2k2 w2 _ 2 _ 2
D(k:.r)= 1---f+ - Pl_ =0 (206)

r We Wr(±Wce) (20r6) W)

Making use of equilibrium charge neutrality, wp /(± we )+w /(± w)=0, Eq.
(206) can be expressed in the equivalent form

c 2k2 w2

0= - + + (207)
r2  cc (Wci)(Wr± Wc

For 1, -< jwej, (207) reduces directly in the Alfven wave dispersion relation given in
(204). For IWA 1 :1ci 1, use is made of the fact that the final term in (207) is large in
comparison with I + w /wi2 (assuming 4i IW2>1), and (207) can be approxi-
mated by

Wr= + l kz ) (208)

where V/c 2 = w/4. For II < wi1, (208) gives W2 = k, V2, as expected. For
increasing values of 14,I, the ion cyclotron branch in (208) asymptotes with Wr - (Wi
when k2 V /Wi 1.

Later in Section 3.3.5, for a warm anisotropic plasma with T, exceeding Tl by a
sufficiently large amount, it will be seen that the ion cyclotron branch exhibits a
strong (Weibel-like) electromagnetic instability with characteristic growth rate of
order wa when the anisotropy is large.

Electron cyc!otron (Whistler) waves. For high-frequency perturbations with

1W W Wci, (209)

and c2 k > wl 4, the ion term is negligibly small in (202), and the dispersion relation
can be approximated by

0 = 1 - c2k'/w' - wg/[wr ± W.)]- (210)

Equation (210) is the dispersion relation for electron cyclotron (or so-called electron
Whistler) waves. For a moderately dense plasma with w, /WC > I and perturbation
frequency 1w,j comparable in size with Iwc j, the contribution by the displacement
current in (210) is negligibly small, and the dispersion relation can be approximated
by

Wr = +Wec2k/(e + c2k :). (211)

It is clear from (211) that the real frequency Wr can span a large range, with wr
asymptoting at T wce, for c2 k' > w.z PC.

As for the ion cyclotron branch, it will be seen later -in Section 3.3.5 that the
electron cyclotron branch exhibits a Weibel-like instability for T, > T.

Fast electromagnetic waves. For completeness, at very high frequencies with

14 > klwil, (212)
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3.3. Kinetic waves and instabilities in a uniform plasma

the dispersion relation (202) can be approximated by

W = c2k2 + x2 . (213)

As expected, (213) is identical to the cold-plasma dispersion relation for electromag-
netic wave propagation in an unmagnetized plasma (Section 3.3.4).

Firehose instability

The full dispersion relation (200) is now considered, allowing for energy anisot-
ropy with T * T. Expanding (200) for long axial wavelengths with

1Z I = (w, c± w,: +iy)/krvjl >: 1, (214)

and retaining terms to O(k.,/(w, ± wc +j i) 2 ], the dispersion relation (200) can

be approximated by

D *(k., ,+iy)= I -_
(Wr+iY) 2  (,+iy)(riW

2 2
+ T ) (k.0/mj 20, (215)

J (wr+iy) j W r ±i c+iY)2

where use has been made of Z(z ) - - 1/ - 1/2 J [Eq. (107)]. Paralleling the
analysis in the previous subsection that led to the Alfven wave dispersion relation
(204), it is assumed that the perturbation frequency is low with lWr + iY < ciWe,
Expanding (215) correct to O(l/,), and making use of equilibrium charge neutral-
ity, W/(±i Wc)+ 2 ,/(±we,)= 0, gives

c'k 2  2
2 f k2(T - T )/m

0=1- _ 2+_+-- "~ (216)

where
c2/V2 - 4'nimyc2/B2,

( - T )/m = 4,i(T 11 - T )c 2/B 2 = (41c/BJ)( P1l - P).
I Ij(1r B

Here, PH En T is the parallel pressure, and P, = Eg T is the perpendicular
pressure. Solving (216) gives

(kV, + iPY) - (217)
l +VA/c 2  B /42

For an isotropic plasma with P., = Ps, (217) reduces to the Alfven wave dispersion

relation with y = 0 and w2 = kV/(1+ V/c 2 ). On the other hand, for

(218)# 11> P + 2,
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where 9,1 = 817Pjj/B2 and /, = 8rrP, /B2 are the parallel and perpendicular plasma
betas. respectively, the dispersion relation predicts purely growing (and purely
damped) solutions with , = 0 and

1 k V 2  (219)

Note from (219) that the lowest-order growth rate diverges for large k:. If
higher-order contributions in kvTj /(± we) are retained in expanding the dispersion
relation (200), finite-Larmor-radius corrections to (216) are obtained that are quartic
in k.. These corrections are of such a nature that the growth rate y passes through a
maximum (as a function of k.) and goes to zero at some sufficiently large
wavenumber ko. In addition, the oscillation frequency Wr is nonzero to this accuracy.
After some straightforward algebra, it can be shown that y and Wr are given by the
approximate expressions

"Y =4yk(1-kZ/k) Wr= lkf/k , (220)

for 0 < k' < k'. In (220), yo is the lowest-order growth rate calculated in (219), and
the cutoff wavenumber ko is defined by

k2= 4(yo/k,)2( + 4 2)2

X ( j [(yo/k,)2+(2T -3Tg)/m +O(1/-3,) T. (221)

In obtaining (220) and (221), it has been assumed that the plasma beta, =

8vE 1(Tj + T7 )/BJ is large (R > 1). Of course. 0 >/ + 2 is already required
from (218) for instability to exist. From (220), the growth rate satisfies y = yo for
k< 1k.1, passes through a maximum at k] = lko/2_, and goes to zero at
k.l = Ikol (Fig. 3.3.12).

X 1.0- -- -- - - - - ----- MAX* O ('0V)

0.5 -

0 0.5 1.0
0.707

z /kI -

Fig. 3.3.12. Plot of growth rate y versus k:/kol for firehose instability [Eq. (220)1. Here [y]a-
yo(k. - k0 /V2 ), where yo is defined in (219).
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3.3. Kinetic waves and instabilities in a uniform plasma 565

Electromagnetic ion cyclotron instability

The dispersion relation (200) is now considered in the ion cyclotron range of
frequencies. For present purposes, it is assumed that the electrons are isotropic with

T, = TC= T, and strongly magnetized with Iwr + iy1 < I,I and IkvTeJ : " Ir i Wce
+ iyl. An ion energy anisotropy, however, is allowed with

Tl > T . (222)

The electromagnetic (Weibel-like) instability, which is driven by excess perpendicu-
lar ion kinetic energy, can play a very important role in magnetic mirror configura-
tions with perpendicular neutral beam injection. Mirror systems also have a natural
tendency to lose ions with sizeable kinetic energy along the field lines, so that Ti
can often exceed the effective parallel temperature. Making use of the approxima-
tions enumerated above, the dispersion relation (200) can be expressed as

c2k 2  2 W2
D ±(k.,Wr +i) - + 2 " 2

(w,+iy) 2  We, (w+iy)( ± e)

w (w, +i-Y)( )-I- Ti. 1+j z( ) 0,(+__ ) : T(6 ]( (Or +iY) vi Till(223)

where vri= (2Ti/mi)1/ 2 and Ji* =(w ± w6 + iy)/k:Vri- In (223), Ze /(± We)=
- w i/(± wei) follows from equilibrium charge neutrality. For isotropic ions with

T. = Til, (223) permits only stable solutions with Imw = y < 0. For T, > Ti, and
f3i = 8fi T /B of order unity, however, (223) has an unstable branch with
characteristic frequency 1w, + iyI -wjl and characteristic wavenumber 1k. I -j pi /c.

Before discussing detailed solutions to (223), it is instructiv to simplify (223) in
the limiting case T - 0. Expanding with 1* I 1 I, the dispersion relation (223) for
Ti - 0 becomes

c2kg wp2o
0=1- + PC

(w,+iy)2  W2, (W+iy)( W)

2 [ (Wr+iy) (k Tu./mic2)- p O~. (224)
(wr+iy) 2  (W ± Wi+iy) (W ± w +iY)

Because Ic 2k/(w, +iy) 21 > + W2/w2 in the region of w- and k:-space under
investigation, the dispersion relation (224) can be approximated by

m2 (o+y2 1 W 1
0- 2 ~ wpi (Wr +'Y) 2  .Ic~k 2 (225)0 =-c2k, + (±ack ' 25(wci) (W ±Wc+iy) 2 (Wr & +iy)2

where 3- =80i Ta /B=( _ /w)(2T 1 /mic 2 ), and use has been made of
,/( ± We,)_= - Wo /( ± wci). The cubic equation (225) can be solved exactly for the

complex eigenfrequency w, + iy. Moreover, it is straightforward to show that maxi-



R.C. Davidson

mum growth occurs for c2k2 >> W2 where r wci and

[y m.= (/3 /2) w 1 . (226)

This gives a good estimate of the characteristic frequency and instability growth rate
in the limit of extreme energy anisotropy.

Although maximum growth when Ti =0 occurs for very short wavelengths
(c2kf :> 2 I), it should be emphasized that when the full dispersion relation (223) is
solved for the case T - 0 the instability bandwidth is finite with characteristic
wavelength k-' c/wpi (Fig. 3.3.13). Assuming 1c2k/( w + iy) 2 > + / the
dispersion relation (223) with T, * 0 can be expressed as

(Wr +iY)D:(k:, Wr+Y)(W,+iy)2= -ck2 + w7

+ ( Z( )+ i- [I+ zZ( t) =0, (227)

where use has been made of W/( c)= - i /( ± ). Numerical solutions to
(227) are presented in Figs. 3.3.13 and 3.3.14, where normalized growth rate y/wes
and normalized real frequency lrl/w&ci are plotted versus clkj1/Wpi for hydrogen
plasma with Zi = I and me/mi = 1/1836, and perpendicular ion beta li/ = 1. For
increasing values of T, /TII, it is evident from Fig. 3.3.13 that both the growth rate
and bandwidth of the instability increase substantially. Moreover, for sufficiently
large anisotropy T, /Ti, it is found that the characteristic maximum growth rate
[y a,, obtained from (227) scales as (P, /2)'1 w, (see also (226)]. Finally, although
cold, isotropic electrons with T, = Te = T - 0 have been assumed in (227), it can
be shown that the instability results are insensitive to the choice of T, as long as the
electron beta satisfies e < (Mi /Me )/.

0.4

0.3 T,,/T,,=20

wCi 0.2 - k ,/7_-5

0.1 -

0
0 .0 2.0 3.0 40

cIkz I /-pi

Fig. 3.3.13. Plot of normalized growth rate y/w, versus cLk:I/wP, for electromagnetic ion cxclotron
instability assuming , 8iT, ./B2 - I and hydrogen plasma with Z, = i and rn/m, = 1/1836 [Eq.

(227)]. (Fig. 2 from Davidson. R.C., and J. Ogden. 1975. Phys. Fluids 18. 1047.
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I I T. /T z10

t o 1. - /T, =20

wrl 0.75

W6 0.50 - T /Ti. = 2.5-

0.25

0
0 1.0 2.0 3.0 4.0

c ~I / pi -W

Fig. 3.3.14. Plot of normalized real frequency Iwr/wi versus cjk.I/Wpj for electromagnetic ion cyclotron
instability assuming hydrogen plasma and #II = I [Eq. (227)]. (Fig. 3 from Davidson. R.C. and J. Ogden.

1975. Phys. Fluids 18, 1047.)

Within the context of the approximations in (227), it is straightforward to deduce
the values of w and k: at marginal stability. The conditions

lim ReDz(k:,Wr+iy)=0= lim ImD*(k,,wr+iy) (228)

readily yield (Wr, k:) = (0,0) and (Wr, k.)= (wo, ko), where

0= C ( - Ti/T )2 (229)

and

2 (Ti - T)
2

k = - . (230)
c2 T Tu

The values of k. and wo obtained from (229) and (230) are in excellent agreement
with those obtained from Figs. 3.3.13 and 3.3.14, where ko refers to the right-most
y = 0 intercepts in Fig. 3.3.13. In this regard, it is important to note that the growth
rate for 0 < cjk4j/~w~ : 0.5, although exceptionally small in units of wrj (Fig. 3.3.13),
is nonzero except in the limiting case Ti = 0.

Electron cyclotron (Whistler) instability

In this section, the dispersion relation (200) is considered in the electron cyclotron
range of frequencies. For T, > TI, (200) supports a Weibel-like instability driven
by the electron energy anisotropy. The mechanism for this instability is similar to the
mechanism for the ion cyclotron instability discussed in the last subsection. Treating
the ions as infinitely massive with m1 - oc and : I > 1, the dispersion relation
(200) becomes

c2 k
D (k:, Wr iy) = 1 i 2

(_ _ +iy)

+ (W CZiy)Z k I1+ ± Z(je=i) 0, (231)
+ )2 k.. vTC
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where vT = (2Te/m,)'12 , (e = (w, ± wce + i-y)/kvre, and Z((e ) is the plasma
dispersion function defined in (105). For present purposes, the case of weak energy
anisotropy with

|( T,: - T'10)/Tg|1 < 1 (232)

is considered, assuming that the instability growth rate is small with

lyI < Ikv Tel 1w, ± Weel. (233)

Defining D,- (k:, wr) = lim Y - 0 Re D(k,, Wr + iy), and D± (k, ,) =
limy _ 0.Im D(k., w, + iy), it is straightforward to show that

c2k2  T (02 k T,/m,
D, C(k, ,) - + P! - PC

r 'r( Wr r(ce) T 2

c2k!
- -2 - ,(234)

and

|k:\vre \2 T Wr k 2v2r ~e r[ell ~J~ Te

(235)

The final term in the first line of (234) has been neglected by virtue of the
inequalities (232) and (233).

Paralleling the analysis in the first subsection of Section 3.3.3, the real oscillation
frequency w, is determined from

c2k2 W2

Dr (k,Wr)=l- -1 =0, (236)
W ,or 'or±ce)

and the growth rate y is given by

Di (k), (,)
aD,(k:,a W)/d8

x 1+ k + PI , (237)
r7 (ori± ce)

where use has been made of (236) in determining aDr/aWr in (237).
For an isotropic plasma with T = T,1, it is clear from (237) that y < 0 and the

waves are weakly damped by resonant electrons with k:v, = Wr w,, On the other
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hand, for T, > T,, the energy anisotropy can cause wave growth (y > 0) in (237).
To illustrate this effect, consider the moderate density regime where W / >>1,
and the displacement current is negligibly small in (236). In this case, (236) gives

2

%r ± (e =(4ce 2 , (238)
PC + c2 k'

and (W r± W,)/w = -(W /c 2k2). It follows from (237) that instability exists
(y > 0) whenever the inequality

WP / T\
k< -( 1 (239)

is satisfied.

3.3.6. Waves and instabilities for propagation perpendicular to BO

In Section 3.3.1 the ordinary-mode and extraordinary-mode dispersion relations
[(50) and (52), respectively] were derived for wave propagation perpendicular to a
uniform, applied magnetic field BO = Boiz. The analysis in Section 3.3.1 was carried
out for wavevector

k = k i,, (240)

and general equilibrium distribution function F ( V2, v) subject to zero average flow
in the axial direction, i.e., fJ. dvov F(VI, v') = 0 in (42). In this section, plasma
stability properties are considered for wave propagation perpendicular to Boi, with
particular emphasis on ordinary-mode electromagnetic instabilities driven by energy
anisotropy and on electrostatic instabilities associated with the Bernstein-mode
dispersion relation (54) when there are nonthermal loss-cone features associated with
the equilibrium distribution function F (vi, vi)-

Ordinary-mode dispersion relation

Assuming wave polarization

k = (k ,,0), 87 = (0, 0, )E' (241)

and expressing W = r+ iy, the ordinary-mode dispersion relation (50) can be
expressed as

c2k2 2
D :(k1,, r+-Y)=- I 2 -'WP

( W+i)2 (r+iY)

Oc W2 nw' 2 dF
where J = 0, (242)

J -- x e+ iy)2 re+qnc, a = k] f /'v A s indicated

where wcj = ej BO /m, c is the cyclotron frequency, and b, k, v. /wc . As indicated
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in Section 3.3.1. the dispersion relation (242) predicts an electromagnetic Weibel-
like instability when the plasma kinetic energy along the magnetic field. ijf d3V
(m ;/2)F,, exceeds the perpendicular kinetic energy, jf d3V (mjv2 /2)F, by a
sufficiently large amount. To illustrate the essential features of this ordinary-mode
electromagnetic instability, consider the case where the equilibrium distribution
functions are bi-Maxwellian,

F .= ( r 2 r 2T 2expT 2 v (243)

Substituting (243) into (242) gives the dispersion relation

(w,+iy)2 =c2k + + E W exp(- ) )

(244)

whereX1 -,kiT) /myIi , and In(Xj) is the modified Bessel function of the first
kind of order n. If F(v2, V.) in (243) is replaced by equidensity bi-Maxwellian
plasmas counterstreaming with velocities ± V in the z-direction, the resulting
dispersion relation is identical to (244) with the replacement T - + my 2

As for the case of an unmagnetized plasma (Section 3.3.4), the dispersion relation
(244) supports stable (y = 0) fast-wave solutions with W2/k2 > c 2 . Moreover, except
very close to cyclotron resonance (w, = nwcj), the thermal corrections in (244) are
small for a nonrelativistic plasma, and the fast-wave ordinary-mode dispersion
relation is given by w2 = c2 k2 +E l to good accuracy.

Depending on the degree of energy anisotropy, the ordinary-mode dispersion
relation (244) also supports purely growing (or damped) slow-wave solutions with
w, = 0 and y - 0. This case is now considered in more detail.

Ordinary -mode electromagnetic instability

Assuming

W, = 0, (245)
and making use of I-.,(X)= I,(A1), the terms in (244) can be rearranged and the
dispersion relation expressed in the equivalent form

y2L(k 1 ,y 2 )=R(k 1 ) (246)

where

L(k ,.Y2)=l+ ELI E WP* 2xp(~- X) X(), (247)
, T -0 .nz lyj

and

R( k )I= E - - exp(-Xi)Io() -c ki. (248)
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Since the dispersion relation (246) depends on y2 , the solutions ± y occur in
conjugate pairs. Moreover, since L(k , Y2) is manifestly positive, the necessary and
sufficient condition for instability is given by

R(k. ) >0. (249)

Equation (248) determines the condition on system parameters T% / T , e , etc. for
instability to exist. Moreover, the range of unstable k. -values is given by

kil< k,2 < k 0, (250)

where ko and kmn solve R(ko)=0= R(kg) with y(ko)=0=y(km). For an
isotropic plasma with T = Tj,, note from (248) that R(k, ) < 0 for all values of k1 ,
and the plasma is stable. Indeed, it is clear from (248) and (249) that instability
exists only if 7% exceeds T, by a sufficiently large amount for some plasma species
j. Because L(k,, 9) ; L(k, 92 = 0) follows from (247), a lower bound on the
growth rate in the region R(k, ) 0 is readily obtained, namely

Y2 > R(k, )/L(k, ,0), (251)

for k < k' < k.
As a simple example for direct computation, consider the case where the ions are

isotropic with Ti = T, and O(m,/mi) terms are neglected. Extension of the
analysis to include ion anisotropy and finite ion mass is straightforward. Retaining
only electron terms, (248) can be expressed as

R(k. )=w2J (l- - G(AN)J, (252)

where

G( X,)= (2/#811)Xe +exp( - Xe)I 0 (Xe). (253)

In (253), 2 = ki Te /mewi, and 2= 87rnT/B2 is the parallel electron beta. The
quantity G(X,) is plotted as a function of X, for various values of the parameter #
in Fig. 3.3.15. For an appropriate choice of T /Te <1, it is clear that the constant
function (1 - T /T) will intersect the curve G(X,) at two values of X, when

#, > 2. These intersection points determine the marginal stability point, k , and
ko, where y = 0. The unstable region of (T, /T, e1) space is illustrated in Fig.
3.3.16. In the limiting case where 0, >> 1 (weak magnetic field), it is straightforward
to show that X0 = k'T, /m w' is determined (approximately) from X0 = (11/2)(I
- T /T,,), or equivalently k' = (w I/c 2 )(T'./1T - 1), which should be compared
with the unmagnetized result in (187).

Electrostatic dispersion relation for propagation perpendicular to BO

Circumstances are now considered where the extraordinary-mode dispersion rela-
tion (52) factors approximately into longitudinal (D, = 0) and transverse (D, = 0)
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Fig. 3.3.15. Plot of G(A,) versus X, for various values of -81rn,T/B2 for ordinary-mode elec-
tromagnetic instability [Eq. (253)].
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Fig. 3.3.16. Region of (T, /,Th, 1 ) parameter space for ordinary-mode electromagnetic instability.

branches. In particular, the longitudinal branch with electrostatic wave polarization

k = (kL ,0,0), ST= (SE.,o,o) (254)

is considered. The dispersion relation D,,(k, , )= 0 in (54) can be expressed as

2 o n2W2 j 2 (bj) aF
D,(k, ,+ iy) = I+ 2 f fd3V C ' 2, V d = $ 0'

k' n-, (r+iY) n2W,

(255)

where W = Wr + 'y is the complex oscillation frequency, and b = k, v, /'cj. Setting
real and imaginary parts of (255) separately equal to zero gives, after some
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straightforward algebra,

2wI (2_n2 2y2)n2W2

nk I (n r-n )2+y2 (w+nwj)2+y2

x fdavJ (b) , (256)

and

n- n2, 2 j +y

S [(WrnJ)2+y2 I(r +nw)2+2

Xf d 3Vj2( b ) -F (257)

Assuming w, - 0, it follows from (257) that aFj/av < 0 is a sufficient condition
for stability. That is, if Fj(vI, v,) is a monotonic decreasing function of V2 with

Fj / -L < 0, every term in the summation over n in (257) has the same sign, and
the only allowed solution to (257) is y = 0, which corresponds to stable oscillations.
In circumstances where y = 0, (256) reduces to

E 2 2= n 1 F
0 = 1 + E 2 _ 2j d dv J,,2 (bj) av, (258)

which determines the real oscillation frequency Wr as a function of k, and equi-
librium plasma properties.

It is evident from the discussion in the preceding paragraph that aF/dV2 > 0
over a sufficiently large region of v,-space is a necessary condition for instability to
exist. In this regard, when OF/8V2 > 0 over a large enough region and the plasma
density is sufficiently high, it will be shown later in Section 3.3.6 that (256) and (257)
support purely growing (or purely damped) solutions with -y - 0 and W, = 0. In this
case, the dispersion relation (256) reduces to

2w2 * n218
0=1- n 2 2 + d2J (b)i dv , (259)

which can be used to calculate the growth rate y.

Stable cyclotron harmonic oscillations

As a simple application of the electrostatic dispersion relation (255) corresponding
to stable oscillations with y = 0, consider the case where FJ (v2. v;) has a Max-
wellian dependence on v., i.e.

F(vi, V)= 21T 2> )G(:.), (260)

573



R.C. Davidson

where f d v.G(v.)= 1. Substituting (260) into (255) or (258) gives

2 n2 w2

0 =1 - PJ ex 2 "p( - X'), (261)
Swg 1 nI IW2 - n IWCZ

where X, = kT /m1 w 2 ,, and I,(A,) is the modified Bessel function of the first kind
of order n. Since F /aIv 2 0, the growth rate y = 0 follows from the discussion in
the last subsection, and (261) can be used to determine the real oscillation frequency

Equation (261) simplifies in several limiting cases. For purposes of illustration,
two examples of stable oscillations are considered here.

Hybrid oscillations in a cold plasma. For T- 0 and/or sufficiently long perturba-
tion wavelength that

N= k 2- k 2 2 ' 2 1, (262)
2 -L W2 2 1 i

Cj

only the n = I term in (261) survives. Making use of exp(- NJ)I,(Xj) Xj /2 for
, < 1, (261) reduces to

2 2 2
0 = I- -Pi .p (263)

r WCi Wr Wc~

Equation (263) supports high-frequency (w. > wci) and intermediate-frequency (wi
< W2 < w) solutions given by

w2 
=w

2 + W ,= 2Wr P - (UH,(264)

and

2

r = 2 Ll, (265)
1+ c/wope, (

where wUH and W LH are upper hybrid and lower hybrid frequencies, respectively,
and w >> w. has been assumed.

Cyclotron harmonic oscillations in a warm plasma. Note from (261) that the inclusion
of thermal effects leads to a rich cyclotron harmonic structure in the dispersion
relation. For present purposes, high-frequency perturbations with W2 > w2 are
considered, and the positive ions in (261) are treated as an infinitely massive
background with m, -+ c. In addition, the plasma density is assumed to be suffi-
ciently low that

P ,/W <1. (266)

Within the context of (266), the individual harmonic terms in (261) are isolated from
neighboring harmonics, and the solutions to the dispersion relation (261) can be
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approximated by

W n I +2 exP(- Xe), n=1,2,3--. (267)

For X. < 1, the first harmonic (n = 1) solution in (267) reduces to the upper hybrid
oscillation in (264) with w2 = W2 + w'. Unlike a cold plasma, the striking feature of
(267) is that the warm plasma dispersion relation permits wave propagation near all
harmonics of w.. For a tenuous plasma with w < K1, the propagation band-

width is narrow, but increases with increasing w /w.
For W2 /W

2 > 1, the approximations used in deriving (267) are no longer valid,
and it is necessary to retain several adjacent harmonic terms when analyzing the
dispersion relation (261) for a given range of Wr. Since dFj/aIv ; 0 for the choice of
distribution function in (260), we reiterate that all solutions to the dispersion relation
(261) have zero growth rate y = 0 independent of the size of 42/W .

Cyclotron harmonic instability for loss -cone equilibria

In this section, use is made of the electrostatic dispersion relation (255) for
propagation perpendicular to Boi, to investigate cyclotron harmonic instabilities in
circumstances where F,( v2, V.) corresponds to a loss-cone equilibrium with
dF /dV2 > 0 over a significant region of vo-space. For purposes of illustration, the
ions are treated as an infinitely massive background with m, - oo, and the nonther-
mal equilibrium features are associated with the electron distribution function
F,( V, V.). The electrostatic dispersion relation (255) can be expressed as

2 a n2 2

Dt.(k +iWY) =I- "en 2  X(k)=0, (268)
ei~ ~~~ cc or+y -ne

where X,(k±) is defined by

X,(k,) = - f d3J,2(b.)- d , (269)
k 2 V. a _

with b, - kg v, /w.. As an extreme example of a loss-cone equilibrium. consider the
electron distribution function

FV ) .(v.L - 0,)G(v.), (270)
(27m., )

where J. dv.G( V)=I. Note that the equilibrium specified by (270) is empty
(F, = 0) for small perpendicular velocities v, < vo. Substituting (270) into (269)
gives

2 d
X,,(k. )= b' dbo[J" 2b '] (271)
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where b2 = k' V2/W2, and the dispersion relation (268) can be expressed as

n22 n / 2 d
0 =1 - E - -c J2(b) (272)+ - Y i , )2- n2 02 bo dbo

n-I (Wr+1 -noe Wce

For a tenuous plasma with w2I/W < 1, it is clear from (268) and (269) that the
dispersion relation supports stable cyclotron harmonic waves with y = 0 and

r n c + Xn(k) n=1,2,3,... (273)
ce

Equation (273) is an extension of (267) for general distribution function F(v2, V.).
As indicated in the last subsection, for w2/w 1, the bandwidth for each
cyclotron harmonic is narrow. However, depending on the sign of X,, propagation
may be above (Xn > 0) or below (Xn < 0) the nth harmonic W2 = n2 I

As w2 /W is increased, the mode structure becomes increasingly broad-band,
with significant departures from (273) and sharply defined oscillations at harmonics
of w. A careful examination of (268) and (271)-(273) shows that

X,>0 and X.+I<0 (274)

are necessary for instability (y > 0) for waves propagating in the frequency range

n2 <2 < (n + 1)2W, n > 1. (275)

Making use of (271) and (274) gives the range of unstable k,-values,

an.m <k, vo/wce,< an, I., (276)

where an, is the mth zero of J.(x) = 0. A detailed numerical analysis of (272) shows
that

w /, > 6.62, (277)

is required for onset of unstable solutions to (272).
As C/ is increased above the value in (277), the growth rate y becomes larger,

and the real frequency mode structure becomes increasingly broad-band. Eventually,
for sufficiently large wIW = 17.02, the n = I mode is depressed to zero frequency

(W, = 0) for Ik, vo/weI= 3, and there is the onset of purely growing (and purely
damped) solutions with y - 0 and or = 0. For Wr = 0, the dispersion relation (272)
can be expressed as [see also (259)]

0 = 1 - 'ce _, J2(bo)- 2 J2 ( bo ). (278)
2 e Zdb o _2+_n 2e bo d bo

A careful examination of (278) shows that Xo > 0 and XI <0 are necessary for
instability, and the corresponding range of unstable k -values is given by aonm <Ik/
vo/wce,< a,,.. Making use of (278), the density threshold for instability with , = 0
is determined from

- _j02(bo) > 1, (279)
W 2 bo d bo
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which gives

2 / 2,> 17.02, (280)

for onset of instability.
To conclude this section, note that a similar stability analysis can be carried out

for unstable ion loss-cone equilibria F(v2, V').

3.3.7. Electrostatic waves and instabilities in a
magnetized plasma

Introduction and dispersion relation

In this section, use is made of the electrostatic dispersion relation (60) derived for
a magnetized plasma in Section 3.3.1 to investigate several important instabilities
driven by strong nonthermal equilibrium features of the distribution function
F ( V, v.). The starting point is (60), which can be expressed as

0 = D(k. w, +iy) = I + Xe(k,Wr +i-,)+Xi(k, w, +iy)

I r * J)( oc 3V J,,nw (F )
+ fd3V k. k - + -L- ,

_kz 2._ ( -na k +i-Y) a. , a V. '

(281)
where k2 = ki + k , b = k, v, /wc 1 , w = w, + iy is the complex oscillation frequency,
X, and x i are the electron and ion dielectric responses, respectively, and Im w = y > 0
is assumed in (281). The wave polarization corresponding to (281) is given by

k = (k. . 0,k), SE=-i(k ,,,k) , (282)

where ro is the perturbed potential. The dispersion relation (281) is valid for
arbitrary angle of propagation with respect to the applied magnetic field BO = Boiz.

Equation (281) supports a broad range of electrostatic waves and instabilities
associated with nonthermal features of Fj( V2 , V'). In the special case of propagation
parallel to B0 i, with k, - 0 and k = kyi:, (281) reduces to the familiar electrostatic
dispersion relation for an unmagnetized plasma given in (81) which was studied
extensively in Section 3.3.3. That is, as expected, for wavevector k parallel to Boi.,
the electrostatic stability properties are unaffected by the presence of the magnetic
field. In contrast, for k. v 0, the presence of the magnetic field as well as the choice
of distribution function F,( v2, v.) have an important influence on determining
detailed stability properties.

For purposes of illustration, in the remainder of Section 3.3.7, (281) is considered
in circumstances where the propagation is nearly perpendicular to Boi: with

k 2/k2 < 1. (283)

In addition, it is assumed that the electrons are strongly magnetized and the ions are
unmagnetized in the region of w- and k-space under investigation. Within the
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context of these approximations, the specific instabilities investigated later in Section
3.3.7 include the convective-loss-cone instability, the ion-ion cross-field instability,
and the modified-two-stream instability, all of which are driven by nonthermal
equilibrium features of the ion distribution function.

Strongly magnetized electron response

For present purposes, it is assumed that the electron distribution function is an
isotropic Maxwellian,

F( v' , v.) = n "exp( - (V, + V? ) .(284)

Substituting (284) into (281) gives, after some straightforward algebra and rearrange-
ment of terms, the electron dielectric response

x,(k, Wr +-Y) = k - 1+ exp(- kzvoA, r kzvg r,k 2  2 Ve V k e

+ ex(- .)I( A)Z (285)

where vre = (2T/m)/', X, = k2 T,/m ,2 , k 2 = k + k 2, Z( ) is the plasma dis-
persion function defined in (105), I,,(X,) is the modified Bessel function of the first
kind of order n, and E, - implies deletion of the n = 0 term from the summation. In
(285), no approximation has been made that k. is small or that the electrons are
strongly magnetized.

It is now assumed that the electrons are strongly magnetized with

1w, + iy < w,, (286)

and that the axial wavelength is sufficiently long and/or the electron temperature is
sufficiently low that

Ikv,.rl 4 1w, + iyI. (287)

Expanding Z(ee) -I/j, - 1/2 ' in (285) for j >> I then gives to lowest order

w2 ki2 [I -exp(- )10(AJ)
X,(k, r+ iy) = e k2

k2 Ic2

- * exp( - )I(X,) (288)
k ( W, + i-Y )'2

If, in addition, it is assumed that the perpendicular wavelength is long in comparison
with the thermal electron Larmor radius rLe = VT /IlWcel, then

578 R.C Davidson
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and (288) can be approximated by

k2 PC
xe(k,wr+)=-V --- " ,.(290)

o;, k' (o + +iy)'-

In obtaining (290), use has been made of exp(- X,)1 0 (,) =1 - X, for X, < 1, and
k' /(k + k ) 1 for k' < k2. The frequency-dependent dielectric response in
(288) and (290) is proportional to (kI2/k 2)Wje/( Wr + iy) 2 and is associated with the
parallel electron motion. The frequency-independent dielectric response in (288) and
(290) is proportional to we /e2, and is associated with the perpendicular polariza-
tion drift of an electron fluid element.

Although X, < I will be assumed in the applications considered later in Section
3.3.7, it should be emphasized that the expression for Xe given in (288) is also valid

when X, is of order unity or larger, provided the inequalities (286) and (287) are

satisfied.

Unmagnetized ion response

For present purposes, perturbations are considered with perpendicular wavelength
short in comparison with the characteristic ion Larmor radius, and frequency large
in comparison with the ion cyclotron frequency, i.e.

Ik v /w1 1, ('r+i y)/c >>l. (291)

Rather than consider the weak magnetic field limit of the ion dielectric response in
(281), it is expeditious to make use of the fact that the ions have straight line orbits
x'= x + vr and v'= v on the time and length scales of interest. A direct calculation
of the perturbed ion distribution function 8f then gives (see last subsection of
Section 3.3.1),

fe k-dF/dvk-F pei, (292)
mi Wr-k-v+iy(2)

and the ion dielectric response can be approximated by

3k -Fl dv
x (k, jr +iY) d3 w -k-Viy (293)

where k = k2 + k2 and k = k i,+ ki..
Equation (293) is a valid approximation to X, within the context of the inequalities

(291). Strictly speaking, it is not necessary to assume in (293) that the ion distribu-
tion function is isotropic in the plane perpendicular to B04. with F,(v) = F(v, . .).
That is. (293) can also be applied for general F (v) on a timescale shorter than jwj-
after formation of the plasma.

To summarize, for strongly magnetized electrons (IWr + iyI < Iw,:I: Ik vre/wce I<

1), and unmagnetized ions (lWr +7iyl >> I"W; 1k, VTi/Wil >> 1), the electrostatic dis-
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persion relation (281) can be approximated by

'4r k-dF/av w 2  k| 4
D(k, +iy)=1I+- d3 v v + 0, (294)

Sk2  w, -k- v+iy w k2 (wr+iY) 2

where Ik:vTI 4 w, + iyj and kf < k. are assumed in (294). Specific applications of
(294) are now considered.

Convective loss -cone instability

Consider the ion loss-cone equilibrium illustrated in Fig. 3.3.17. Note that

G(v. .)= if dvF(v',tv.) (295)

shows a depletion of particles with small perpendicular speed v,. In (295), the scale
factor vTi is the characteristic ion thermal speed. The distribution function shown in
Fig. 3.3.17 can arise in a magnetic mirror where particles with small v2 and large v'
are lost out the ends of the device. Since k'< k2 is assumed, the approximation
k = kg i, is made in the ion dielectric response in (294). Paralleling the analysis in
Section 3.3.3, it is also assumed that the growth (or damping) is weak with

|Y/W1 < 1. (296)
Making use of (96) and (294), the quantities Dr=ReD(k,w,+iy) and Di=
Im D(k, Wr + iy) are evaluated in the limit y ->0 . This gives

2w2 d2v 2k - v 3dG/d1V w 4 k 2 W
D(k,Wr)=i+ P + , (297)

kz22 ('21) w,- -v 1 W 2 k 2W

2W2
1  d2V 8G,

Di(k,W,)= 1 _ 8 (wr -k, v )2kv -v.-

= -2Wr T-, 8J(wr- k. vcos ) co , (298)
kv 2 (2 ) V

Resonant region of v1- space

Range of wr / k

0
V.1.-

Fig. 3.3.17. Plot of reduced ion equilibrium G(cv )- rv d. v.) for convective loss-cone
instability.
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where f d2v = 2 do fo d v1 v,, P denotes Cauchy principal value, and k, - v, = k,
Vi cos 4p with v, cos 0 = v,. After some straightforward algebra, the integrations over
( in (297) and (298) can be carried out to give

D,(k, w,)= l+ + G(0)+(I, -- + , . (299)
k22 k 2k k2 o

and

[sg _ ,8G( v2 f/dV2
Di (k, W,) = I -SP r 0 de , (300)

k 2\ /k 2 k2 J /2 -2 IW 1/2

where X 2  /2 p , and the real ion response Ir is defined by

= w fW2/k2 dG( V2 /Ov2
Ir r G ) (301)

k 0 ~(1 -ki 2i V2I/2

From (300), note that the resonant region of v, -space satisfying W, k, v, cos 0
covers the entire region vI > w/k., whereas the nonresonant (principal-value)
contribution with r - k1 vi coso corresponds to vj2 <W2/k in (301). Solving
D,(k, Wr) = 0 for the real frequency Wr gives

2 2 k __ __ __ __ __ __ __ _

r= k2X i. (302)
P[k 2i(I+ Ww. ) + G (0) + Ir

Moreover, the growth rate y = - Dj/(dD,/dWr) is given by

d G( V 2 /8,2
Y=~ilr~f , a(f/V [k2MAt(l+Wi/Wi)+G(o)+ 'r] .--/Y (ki -i/ -L Di(I)2

(303)

In obtaining (303) the aI,/ad, contribution to dDr/dW, has been neglected in
comparison with (a/dw,)(k2W /k 2W ). Note from (303) that instability exists
(y > 0) provided dG/1 > 0 over a sufficiently large region of v -space, i.e.
provided the loss-cone depression in G( V2) is sufficiently deep and wide.

Ion-ion cross - field instability

As an example of a strong electrostatic instability, consider the case where Fi(v)
corresponds to counterstreaning ion beams propagating perpendicular to the mag-
netic field B0i.. Assuming

k.= 0, (304)

the electrostatic dispersion relation (294) for strongly magnetized electrons and

unmagnetized ions can be expressed as

W 2 2 3 k, -8F(v)/dv
D(ki,Wr+iy)=l+ Y +- fd kv k ') =0, (305)

Wce k" ,- V.+iY
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where k1 = k1 i,. As a simple example that is amenable to direct calculation, it is
assumed that the ion distribution function Fi(v) corresponds to equidensity, sym-
metric ion beams counterstreaming with mean velocities ± Vd in the x-direction,

Fjv) =~;: 'a' - Id 2  + ) )G)(306)2,,c) V) 2 + G2( V,)G&(2) (06

where f" dyG2(V)=I= f', d G3(v,), and fd 3vF (v)=1. In (306), A i models
the effect of finite ion temperature.

Substituting (306) into Eq. (305) and carrying out the required velocity integration
gives

(J2. ( e /2)
D (kj. .W,+ i )=+ -

(W2 i/2) 2 = 0. (307)
(w, + k, V +iY + ilk il)

Because of the symmetry in (307), it is straightforward to show that the unstable
two-stream solutions to (307) necessarily have w, = 0. Introducing the lower hybrid
frequency defined by

02
2i. 2W + W2/W (/08)

(307) can be expressed as

=2H dA) 2  (309)
[k V +(y +1k, I)I

for w, = 0. From (309), the threshold for instability is given by

vi > Y. (310)

That is, the drift velocity must exceed the characteristic ion thermal speed. Solving

(309) for the growth rate y of the unstable branch gives

S + k2 V2 1/2 k v - (/2

where Vi' > A2 is required for instability (y > 0) at small kI,.
In the limit of negligible ion thermal effects (,1 - 0), the growth rate y in (311)

assumes its maximum value

(YImax = WLH/22, (312)

for k 2 =k. g=)k , where

ko = WLH/VJ. (313)

Here, ko corresponds to marginal stability with y( ± ko ) = 0 in (311) when I = 0.
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From (312), it is evident that the ion-ion cross-field instability can have very large
growth rate in a parameter regime where the electrons are strongly magnetized

(WLH < Iwej;kovTe/wce < 1), and the ions are effectively unmagnetized (wLH >
Iw:d; IkovTi/wCi >> 1)- In this regard, note that 'LH - i 1/2 follows from (308)
for w 2 /w 2 >> 1.

Modified two-stream instability

For the modified two-stream instability, allowance is made for k.* 0 in (294),
and it is assumed that there is a single component of ions drifting with velocity Vd in
the x-direction,

Fi( v) = 21j /ep-2 d2 )G2 ( v,) G3( o), (314)

where f *d v G2 (vY)=1 =1 f d , G3 (v). Assuming k < kL, the approximation
k = ki ix is made, in the ion dielectric response (294). This gives the dispersion
relation

2w 2  w2  k2 w 2

D(k, w, +iy) =1+ k [1+2v2 Z( )]+2---2 =0, . (315)
Lre ki (Wr+iy)

where vri = (2T /mi)1/ 2 , j = (w, - k, V + iy)/k, ri, and Z( 1 ) is the plasma
dispersion function defined in (105). In the limit where

Jijj = 1(w, - k, V + iy )/kL vrjj m: 1, (316)

the approximation Z(ji)= - 1/C - 1/2 is made and (315) reduces to

W2 2

0=1- wLH - i k_ LH (317)
(r -kd V 6)2 k Zim (, +iy)2

where wLH = W~/(l + WPC2,), wj 1/w2 = Zim,/mi, ej = Zie is the ion charge, and
use has been made of equilibrium charge neutrality, ni(Z ie)+ h,( - e) = 0.

The dispersion relation (316) is identical in form to the electron-ion two-stream
dispersion relation (143) with the replacements in (143)

W 2 + W 2i 2 0 W 2 (318)wPCwLH ~ P k2 ZM LH,

One of the important features of the two-stream instability is that maximum growth
rate occurs for equidensity streams. Therefore, from (318), maximum growth occurs
for k. determined from

[k2/k m = Zi(me/m) < 1. (319)

Moreover, when (319) is satisfied, making use of (317), maximum growth occurs for

(320)
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Consistent with (319) and (320), the maximum growth rate [y]ma is given by

[yTimax = WLH (321)

for [k21.a =I k, where y(± ko) = 0, with ko = F WLH/d.
Like the ion-ion cross-field instability, the modified-two-stream instability ex-

hibits strong growth with [y]ma > lw ,' and [hy]ax .< l'eI, which is consistent with
the assumptions of strongly magnetized electrons and unmagnetized ions.
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