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ABSTRACT

Both 1-D slab and cylindrical models are used to examine second and
third harmonic ICRF heating of FED. The slab model, which divides the
plasma into 1500 thin uniform slabs, uses a full-wave treatment to examine
the effects of mode conversion. The RF power profile and the amount of
energy absorbed per radial pass are also calculated. The 1-D cylindrical
model uses WKB theory and is incorporated into a 1-D cylindrical multi-
species time-dependent fluid code to examine the temporal behavior of
ICRF and to estimate the RF power needed to heat FED. Both models
use the full 3 x 3 hot plasma dispersion tensor. We find that heating at
the second harmonic of deuterium, (f = 55 MHz) with k = 0.1cm--
appears to be the most attractive scenario. Over 90% of the RF power
is damped within one radial pass. Most of the power is deposited at the
center in the ions. From the space-time results we find that 40 MW of
RF power supplied for 500 ms will heat FED to operating temperatures
assuming Alcator-type scaling.

Several tokamaks [1-3] have been heated using radio frequency waves at the Ion Cyclotron Range of

Erequencies (ICRF) with heating efficiencies comparable to those of neutral beams. Multi-megawatt ICRF

experiments are planned for PLT, TFR and Alcator C. Since megawatt level power supplies are now available

and high powered ICRF heating experiments have been successful, we investigated the feasibility of using

ICRF to heat FED.

A 1-D slab model with a full-wave treatment is first used to determine the spatial behavior of ICRF and

the importance of mode conversion. Then a 1-D cyclindrical model using a WKB treatment is incorporated into

a time-dependent fluid code to determine the amount of RF power needed. Both models assume a local RF

dispersion relation. The full 3 X 3 hot plasma dispersion tensor is used to determine complex k± given real w

and kl (fixed in radius) for both the fast magnetosonic and Ion Bernstein waves [4].

In the time-independent -D slab model [5] the plasma is divided into many (up to 1500) thin, uniform

slabs lying in the yz plane with B, in the z direction. The local dispersion relation is solved in each slab for four

modes, a fast wave (±k±1 ) and an Ion Bernstein wave (±kI.B.) which propagate in both directions. In each

slab the RF wave field is the linear combination of the individual mode fields,
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E = EmeCk_'r, B = TBmeikm-. (1)
i==I . i==I

The amplitude coefficients Em and B,, are calculated from the total tangential E and B fields, which are

continous across a slab interface. The boundary conditions for the two plasma edge slabs are detenrined by the

launching conditions. For FED, we assumed that a fast wave is launched from the low field side. To find the
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electric and magnetic fields, a large (4S00 for 1200 slabs) set of complex equations is numerically solved using

a band matrix solver. For accurate solutions k_1 Ax < 1, where Az is the slab width. Since k± for the Ion

Bernstein wave becomes large near the plasma edge, only the central 200 cm of plasma width (0 < r < 100

cm) can be used in the analysis. We do not examine the antenna-plasma coupling problem. However, our

region of analysis is wide enough to contain all of the ion and most of the electron heating zones.

After solving for the E and B fields, we can calculate the total radial Poynting flux

P = _CRe(E X H*). (2)8xr

The change in P from the low to high field side gives an estimate of the amount of RF power absorbed per

radial pass.

To calculate the amount of RF power absorbed by each species, we use the weak damping formula

P F= uLE*.-(EL(;A Em) (3)

where KA is the anti-hermitian part of the dielectric tensor, 77 the mode, and s the species.

In Table 1 we list the assumed FED parameters. In Table 2 we summarize our results from the 1-D slab

calculations for different RF frequencies. For a 50-50 D-T plasma, when f = 22.5 MHz, the ion-ion hybrid

resonance is located at the plasma center. However, the fundamental resonances of deuterium (at 587 cm) and

tritium (at 391 cm) are located near the plasma edges. Therefore, if fundamental deuterium or tritium, or ion-

ion hybrid resonance heating is attemped, edge heating may occur.

The most attrative heating scheme appears to be second harmonic deuterium (2 fcD), third harmonic

tritium (3 fcT) heating when f = 55 MHz. However, higher harmonic deuterium heating (3 fcD) also leads

to strong ion absorbtion near the plasma center and using the higher frequency could reduce the launching

structure size. Second harmonic tritium (2 fcT) can be used to selectively heat tritium near the plasma center if

desired.

Figure (1) shows the RF dispersion relation for both the fast and Ion Bernstein waves when f = 55 MHz

at t = 0.0 ms with parabolic density and temperature profiles. At t = 0.0 ms, Fig. (2) shows that almost 94%

*of the incident RF is absorbed in one radial pass. At the time the RF is turned off at t = 500 ms, the hotter

plasma temperatures produce nearly 100% absorption in one radial pass. Figure (3) shows that nearly 86% of

the RF power is absorbed by the deuterons at die plasma center where the second harmonic resonance occurs.

Figure (4) shows that only 1% of the RF power is absorbed directly by the tritons. The remaining RF power
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(- 14% ) is absorbed by the electrons through Landau and transit timc damping as shown in Fig. (5). The very

small amounts of negative RF power absorption shown in Figs. (4-5) result from the slight inaccuracy of the

weak damping formulation. In this case, second hannonic damping is strong.

Our 1-D slab calculations show that mode conversion does not seem to play an important role. Over 98%

of the total RF heating results from the incident fast wave. In addition, since the fast wave wavelength is

large compared to the scale length of plasma parameter changes, a WK3B treatment of fast wave heating should

be accurate. Consequently, we used a 1-D cyclindrical WKB model conncected to a 1-D multi-species, time-

dependent fluid code [6] to examine the temporal behavior and determine the amount of ICRF power needed.

Again Eq. (3) is used to calculate the amount of RF power going to each species with m = I since only

the incident fast wave from the low field side has significant amplitude. The electric field is taken to have the

following WKB form [6-71

E a eif kj-.1 .d (4)
k1/2

_Lf

From this code, we find that 40 MW supplied for 500 ms is enough power for FED to reach operating conditons

assuming Alcator-type scaling [6]. Figures (6-7) show the temporal behavior of the ion and electron tempera-

tures. Figures (8-9) show the RF power deposited in the ions and electrons averaged over the flux surfaces. As

the plasma is heated, the ion heating zone spreads out and begins to shift toward the low field side. In addition,

the amount of RF power deposited in the electrons increases.

1-D slab model results are again shown in Figs. (10-12). In this case, we have used the ion and electron

temperature profiles at t = 500 ms as determined by the space-time RF code. Figure (10) shows that the

heating zone has spread, as determined from Im(kLJj) 2. This greatly enlarged heating zone produces essentially

complete absorption of the RF in one radial pass. Figures (11-12) show that the amount of electron absorption

increased to 36% while second harmonic absorption decreased to 61% . The remaining 3% is deposited in the

tritons over the region 0 < r < 26 cm. Even with the spreading and shifting of the heating zone, both the ion

and electron temperatures remain center-peaked.

We conclude that for a 50-50 D-T FED-type plasma, 40 MW of ICRF power for 500 ms with f s 55

MHz (corresponding to second harmonic deuterium and third harmonic tritium heating) would be needed,

assuming Alcator scaling. The absorption is peaked toward the center with the ions receiving more than 85%

of the incident power. The absorption is quite strong with more than 94% of the incident fast wave power

absorbed in one radial pass. Mode conversion should not play a significant role. Over 98% of the RF heating

comes from the incident fast wave launched from the low field side.
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Table 1

FED Parameters

R. (cm)

a (cm)

nD (0) = nT (0) (cm)

nD (cdgc) = nT (edge) (cm)

B (kG)

Ti (0) (keV)

Te (0) (keV)

T (keV)

Te (keV)

= 480

= 130

= 7.8 X 1013

= 7.8 X 1012

= 36.2

at t = 0.0 ms

= 2.0

= 2.0

= 1.0

= 1.0

at t = 500 ms

33

25

6.7

5.3

RF Parameters

PRF (MW)

k1 (cm-')

a (1-D slab model) (cm)

Ax (1-D slab model) (cm)

tRy (space-time model) (ms)

40

0.1

100

0.2

500
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Tiihle 2

Summary ofI-D) Slab Modd Results

Harmonic

2fc-T

3fc D

2fcD = 3kT7(f = 0.0 1ms)

2fUD = 3fCT(1 = 500 Ins)

f

M, iz

36.7

82.5

55

55

42

30

94

100

55.9

17.2

13.5

35.8

74.3

85.8

61.0

pT
RF

44.0

8.5*

0.7

3.2

* When f = fCD = 82.5 MIH z at 480 cm, the fiuith harnonic of tririum (f = 4fc.7) is at r = 427 cm.
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Figures

Fig. 1. Real (solid lines) and imaginary (dashed lines) parts of (k)1/5 for both the fast (f) and Ion Bernstein

(I. B.) waves for parabolic temperature and density profiles at t = 0.0 ms with f = 55 MHz and

kii = 0.1 cm-.

Fig. 2. Radial Poynting flux (PT) at t = 0.0 ms. The negative value indicates propagation from the low field

side. The slope indicates strength of absorption. The gradual slope at the low field side, caused by

electric Landau and transit time damping, gives way to the strong ion absorption at the center.

Fig. 3. RF power to deuterium at t = 0.0 ms (85.8% of total RF power).

Fig. 4. RF power to tritium at t = 0.0 ms (- 1% of total RF power).

Fig. 5. RF power to electrons at t = 0.0 ms (13.5% of total RF power). The much smaller values on the

higher field side again indicate that the ion absorption at the center is very strong and the wave energy

which tunnels through is greatly reduced.

Fig. 6. Time-dependent electron temperature determined using Alcator scaling from the 1-D fluid code using

40 MW of RF power for 500 ms.

Fig. 7. Time-dependent ion temperature.

Fig. 8. Time-dependent electron heating RF profile. The heating increases and shifts toward the low field

side due to the increasing elcctron Landau and transit time damping.

Fig. 9. Time-dependent ion heating RF profile. The ion heating zone spreads out and shifts toward the low

field side as the temperature increases. However, both the electron and ion temperatures remain

center-peaked.

Fig. 10. Real (solid lines) and imaginary (dashed lines) parts of (k2)1/ 5 for both the fast (0 and Ion Bernstein

(I. B.) waves at t = 500 ms.

Fig. 11. RF power to deuterium at t = 500 ms (61.0% of total RF power).

Fig. 12. RF power to electrons at t = 500 ms (35.8% of total RF power).
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