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ANTENNA - PLASMA COUPLING THEORY
FOR ICRF HEATING OF LARGE TOKAMAKS*

A. Bers, L. P. Harten, and A. Rai, M.I.T. Plasma Fusion Center, Cambridge, MA 02139

The radiation impedance of, and field excitation by, current sheets external to
a large (minor radius) plasma are calculated. The finite-size antenna current
modeled by these current sheets is screened from the plasma by a sheath of
anisotropic conductivity which shorts out locally the toroidal rf electric field but
does not affect the poloidal rf electric field. - The plasma near the antenna is
modeled by its cold dielectric tensor having an inhomogeneous dens ty and ap-
plied magnetic field. The field analysis for the coupling and power flow is carried
out in a slab geometry.

In ICRF heating of tokamaks the coupling of external rf power to the plasma ii achieved by introducing
rf current carrying conductors near the plasma wall in the shadow of the limiter. Effective coupling is usually

-hieved when these rf current carrying conductors are shielded from the plasma by a metal screen which
shorts out the toroidal rf electric fields. The screen also prevents the plasma from penetrating to the rf current
carrying conductor. In an attempt at an analysis of such a coupling structure, the simplest model is to consider a
current sheet antenna which is placed between a highly conducting wall and a sheet of anisotropic conductivity
representing the screen, as shown in Fig. 1. The low density inhomogeneous (in x) plasma in the shadow of
the limiter is then assumed to exist to the right of this screen. The excitation of the fields in the plasma can be
studied by analyzing the radiation properties of this current sheet antenna structure. For this we assume that
the sheet current distribution on the antenna is given and that the fields excited in the plasma are absorbed on
a single pass. For large (minor radius) tokamaks the simplest analysis can be carried out in slab geometry and
the relevant plasma equations near the antenna can be solved in the WKB approximation with proper attention
given to any possible turning points that represent cutoffs in that vicinity. An outline of such a field analysis
was recently given.' We have now carried out the details of th; analysis and present here the results as well as
computations based upon these analytical results.

The elementary current sheet is assumed to carry a current in the y (poloidal) direction and to have a given
variation in the y (poloidal) and z (toroidal) directions at a frequency w:

K = PKof(y)g(z) +-+ PKOF(ky)G(k.) (1)

where K0 is the complex amplitude of the current (Amp/m), and F and G are the Fourier transforms of f
and g. The fields in the free space region, containing the current sheet, between the wall and the screen are
described by a superposition of the full set of TE and 'I'M modes.' The TEM fields related to the feed of the
current sheet are ignored. Just to the right of the screen the fields in the inhomogeneous plasma are described
byl

d 2 E
+ n ()Ey = 0 (2)

E= (K n) + K. /(n. - K) (3)

= kox with ko = w/c, n, = ny + nz, with ny = ky/ko, n, = k/kb, and K±() and Kx (E) are the usual
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normalized dielectric functions of the cold plasma dielectric tensor. Equation (2), appropriate for studying
the fast-wave excitation, ignores the EZ-ficld in the plasma and terms containing derivatives of the dielectric
functions. In the vicinity of the screen = (scr) we let n = al + a2 E, ai l ((ser) - scra2 and

a2 = (dn2/dE) at E =.scr The solution to (2) having outgoing waves into the plasma is then

1y = Eo[Ai(r) - i Bi(r)] (4)

where Ai and Bi are the usual Airy functions, and

= -(al + a2 )/a . (5)

The cutoff (n2 = 0) in the plasma near the screen occurs at ( = -1/a 2. In the following we shall assume
ihat the plasma density at the screen, although very small, is nonzero so that we can ignore the slow wave
resonance at n = K 1 P 1. Equation (4' together with the free-space fields around the current sheet can be
used to satisfy the boundary conditions at the wall, screen, and current sheet. There are nine such boundary
conditions, giving the complex field amplitudes E±a, Ha., Eb, Hab, and EO in terms of the current sheet
complex amplitude K. From these we can determine the radiation impedance of the current sheet antenna and
the fields and power flow into the plasma.

The radiation impedance of the antenna, ZA = RA + iXA, is obtained by applying the complex Poynting
theorem at the surface of the radiating current sheet:

ZA [ dy dzEHDA

k. (ky)G(k.) -(Ey(ky, k.) (6)
= dkyf dk2z ,,K

The first term in the integrand depends only upon the dimensions of the current sheet and the chosen variations
of the current with y and z. The second term [-Ey(ky, kz)/Ko]A _ Zk may be called the intrinsic spectral
impedance of the antenna; it is found to be given by (in MKS units):

1- 1
(e 2 A _ ) 2B -__2

LZ k= 2,2B - 1 - 2e 2B(e 2A
2(e2C -1) -)-()

where

D = (e2 C + 1) (n, - 1)9 - n01G tanh C (8)

_________2 - K ( 1/3Ja2 gi= 22 K(sr)nyKx (scr)9 + n a3 (9)
n z - L Iscr) ='

A' -ij(rcr) ; Tscr = al -S/=d_ (10)l~scja'' -/ r
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= - n2)" 2, andA = -ikonta, B = -ikonab, C = A + B.

The spectrum of the electric field excited in the plasma, as given by (4), is found by determining E!O; the
result is

(e2 ' - 1)e F(ny)G(n.) (11)

The time-averaged power flow density spectrum into the plasma (x-direction) is given by

S >= -( n2-K ImE*- (12)< >2 po fl Kwj_ Y d

and asymptotically in e (i.e. beyond the cutoff near the screen) hrn(E*dE./dE) s (a/ 3 /r)Eo1 2. The total
time-averaged power flowing into the plasma is then P, = f (dky/21r) f (dkz/27r) < s, >.

The results will now be applied to an ICRF antenna for a large tokamak such as JET: major radius
= 3m., minor radius (to the screen) = 1.27 m., parabolic density profile with peak density = 5 X 10" cm- 3 ,
density at the screen, n, = 2 X 1011 cm 3 , toroidal magnetic field = 35kG, w = 2 QDO = 3.35 X 10 8sec- 1.
For a = 5 cm and b = 3 cm, the intrinsic spectral impedance, Zk, is shown as a function of ny and n2 in
Figure 2. In order to maximize ZA, Fig. 2 indicates the Fourier spectrum of the current profile has to extend
uniformly over a wider range in ny than in n. The major contribution to Zk from n, is seen to be limited
to In,,_<5. Figure 3 shows Z as a function of n, for various ny. It is symmetric about n, = 0. Choosing
LY = 60 cm, L, = 40 cm and a uniform current profile in the y-z directions, we find ZA F 210, and the
electric field spectrum in the plasma as shown in Fig. 4. If, instead, we use Ly = (No/4) = (.rc/2w) z 140 cm
and L, = 6 cm with a uniform current profile in the z-direction and a quarter sine-wave in the y-direction,
there is no significant change in the value of ZA. This is an indication of the narrow spread in n, of Zk.

The impedance, ZA, is sensitive to the dimensions a, b and the density at the screen. If we choose a =

5 cm, b = 3 cm, Ly = 60 cm, L2 = 40 cm and a uniform current profile in y-z directions but change n,
to 5 X 1 l cm- 3 the impedance drops to 12 0. ZA increases with increasing a until it reaches a maximum
value of 48 £2 (for n, = 2 X 10" cm-3). Keeping a = 5 cm and increasing b to 10 cm, ZA drops to 5 Q (for
n, = 2 X 10" cm- 3).

From our numerical calculations we find that ignoring ny in the evaluation of the impedance has a
significant effect. If we let ny = 0, then for the case of the uniform current profile with L, = 40 cm,
a = 5 cm, b = 3 cm, and n, = 2 X 1011 cm- 3, the impedance per unit antenna length in the y-direction
is 6.7 £/m. This gives an impedance for Ly = 60 cm of 4 0 compared to 211£ when we account for the
appropriate spectrum in n.
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Amplitude of the electric field inside
the plasma.
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