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Abstract

The bounce-averaged quasi-linear equation for a non-relativistic mirror-confined plasma interacting
with electromagnetic waves is derived for usc in the study of ECRH of the Constance II mirror experiment.
The derivations follows the more formal examples given by Berk! for clectostatic waves and Bernstein and
Baxter? for relativistic plasmas. The validity of the theory is discussed by examining individual particle orbits
in an EM ficld. The local dispersion relation is found while deriving a sclf-consistent WK B theory which can
be used to estimate the power transferred from the launching horn to the plasma.

* Revised March 9, 1981.




1. Introduction .

Current plans to test tandem-mirror reactors require electron cyclotron heating to maintain the tem-
perature difference between the central-cell and plug clectrons®*3. Bulk heating will be applicd at the
fundamental cyclotron resonance to raisc the confining potential of cach plug. Second harmonic heating will
create a hot-clectron thermal barrier which should insulate the plug from the central-cell electrons. In both
cases, ECRH is used to control the development of the electron distribution function. To be cfficient, the
bulk hecating must guard against tail heating, and the barrier heating must not permit "hot tail runaway"3.
ECRH has never been used in mirrors for these applications, and, for this reason, Constance Il is conducting
experiments to study the development of the clectron energy distribution with ECRHS.

This report derives the ECRH theory that will be used to analyze the data. The theory consists of two
parts: (1) the derivation of the correct expression for the resonant cnergy exchange between the waves and
particles, and (2) the WKB theory for the propagation of the wave encrgy from the Taunching horns to the
absorption layers. On the average, an clectron gains encrgy from the waves only at a few local resonances
along its orbit. For collisionless particles, low electric ficlds, and narrow bandwidths, the particle’s gyro-
phase with respect to the wave frequency is not random, and the electrons are purely reactive. As the
clectric ficld increases, the bounce resonances overlap resulting in stochastic energy diffusion’. Licberman
and Lichtenberg® were the first to derive the diffusion equation for a uniform, stationary clectric ficld. Berk!
was the first to derive a self-consistent bounce-averaged quasi-lincar theory which also included the correct
WXKB theory for the propagation of electrostatic waves. Bernstein and Baxter? were the first to extend the
theory to relativistic plasmas and to clectromagnetic waves. Finally, Porkolab, et al? first performed ray
tracing calculations for ECRH in mirrors.. ’

The contents of the report arc organized into cight sections and an introduction. First, the geometry
of the particlc orbits are discussed. Then, an expression for the diffusion equation is intuitively derived
for an imposed clectromagnetic wave. The fourth section discusses the conditions for the validity of the
lincar, stochastic theory. And, in the fifth section, the bounced-averaged quasi-lincar theory is derived for
non-relativistic particles. The sixth section is devoted to the bouncc-averaged resonance function used in
the quasi-lincar theory. Next, the WKB theory for wave propagation is derived from the requircment of
encrgy conservation. This gives the gcometric and physical optics solutions to the problem of cstimating the
ficld intensity and power absorption at the rcsonance zoncs. Finally, the last two scctions describe the local
resonance function used in the WKB theory and the bounce-averaged cnergy consprvation cquation. '
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2. Geometry .

For simplicity, the gcometry of the plasma used in the kinetic theory is assumed to be locally
cylindrical. Non-axisymmetric cffects arc ignored, and only trapped, bouncing particles are treated. The
unperturbed orbits used to describe the trapped clectrons, bouncing in the mirror, are

8 = 5y, cos (wpt + ¥) - : (1)
¢ ¢ ‘ _
y=Y0) + de)sin( | watt +9)+ [ Vo-iar e
‘ ¢ t
= X(0) 4 p(s) cos (/(; wedt + @) +/0 Vp-zdt (3)

where p?(s) = 2B(s)u/w?(s) and V5 is the sum of the V B and curvature drifts. If the particles are deeply
trapped, then we(s) = weo(l + s2/L3), wp = V, o/Lp, and sn = V| o/wp. In general, B(s) is not
parabolic, so that wy is also a function of vy and s. For combination electrostatic and magnetic wells, wg
also depends upon ®(s). A particle’s phase-space is designated by the variables (E,p, 9,6, X,Y) or cquiv-
alently (E i, ¢, R), where (X, Y, s) represents the particle’s guiding-center position on its drift surface, and
R=Xz+Yy+ss ¢is Lhe bounce angle and ¢ is the gyro-phase. The total energy, £, the magnetic
moment, x4, and drift surface, X = X? + Y2, are constants of motion. The velocity gradicnt and total time
derivative are '

YJ_—Vpa a

s =g a + e +—-—$+ ch;; (9
D &

The gradient term in Equation 4 can be written as (8p/we)d/8X with 3 defined as § X %. Furthermore, if

B is defined as tan (Y/ X), then Vp = vpwpX and Vp - V = wpd/I© where wp = d6/dt. The average:
particle distribution is assumed to be independent of ¢, 1, and ©. This simple geometry is adcquate for the

kinetic theory prescnted here since the resonant particle cffects ultimately depend only upon locai gradients.

See Horton, et a/.'9 for a formal derivation of a particle’s motion in a mirror..

3. A Monochromatic Wave .

The perturbations to this orbit due to an clectromagnetic wave can be analyzed in a manner similar
to Jacger, et al.!!. Consider an clectric ficld, constrained to be
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E = Fiexp{—iwt 4 1k - X)
and
dE du
T B = —EJ_ LI (6)

where clectron Tandau damping, for cases when Ej 5 0, is ignored. To solve Equation 6, the right hand
side is intcgrated along a particle’s orbit,

t
Allpounce = ——Ekz lc_,_p pwc eine exp(——z'/o‘ dt'vn(t)) dt (M

bounce

where

Valt) = w — nu(t) — kyuy(t) — k- Vo(t) )

- -and where y-axis has been aligned with the (assumed to be lincarly-polarized) electric field and k| = & _1_5.
The primed bessel function means differentiation with respect to its argument, or J/, = J,,_;—(n/k, p)J,
Fork, p « 1and n = 1, the primed bessel function is approximately ~ 1/2. When evaluating Equation
7, it is assumed that |Ap| < p since only the first-order change to the unperturbed orbit is evaluated.

Since the integrand is highly phase depcndcnt, the largest contributions to the integral arise when
(") ms 0. For parabolic, magnetic well and for Vp = 0, this is when

a2

Swng — nw,_.o

- ki = 0 A (9)

where wng = w — nwy, §° = s(t*), and v" w(t"). Figure 1 illustrates (v, s) phase space for Vp = 0,
fixed V, o and for ky, Swno 7 0. Particles with Vjj o << §w,o/ky have four stationary points. Particles with
larger Vj; o have only two resonance points, and those with Vjj 0 = Swno/ky have three. For cach resonance
crossing, the net change in the magnetic moment will be proportional to the product of an effective time in
resonance and a phase dependent term. To calculate the interaction time several cases are considered. When
the stationary points arc well separated, then (') & (#/ — ¢")/(t"), and the integral can be approximated
by the leading term
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Figure 1. [lustration of resonance points along bounce orbits of the.
particles in a parabolic well. Verticle axis is V}j 0, horizontal is s, For -
Vp = 0, fixed wg = 50Mrad/s, Nj = 0.4, w0 = 32Mrad/s, and
for Sw,g 7 0. This corresponds to 4kev electrons in Constance II. The
dashed lines are the resonance points, and the dotted line is the boundary
between the p << 0 and p > 0 bounce-resonances.

Re{Au’} m — L BT (ko) EEx! 1oy sin (ngp + 7/4) (10)

In this case, 777 = /(t")/2. All of the slowly varying quantitics are evaluated at t*. When /(¢*) < 0, then
the phase of the argument of sine changes by = /2.

When two successive resonances are separated by a time of the order of Tess, then /(%) = 0, and
the approximation lcading to Equation 10 breaks down. In this case, () = 1(t") + (¢ — ¢ }2/(t")/2 and

Re{Ap} = —L BT (k. ) 2ae27, psin (n + 7/ 2DAi(0 g7 (1)

where, now, r;',‘fa == /(t")/2 and A1 is the Airy function. When /' is negative, the real branch is used for
Tesy. For the parabolic well illustrated in Figure 1, 1/ = 0 whea s™ = 0 and vy = kywhL}/2nwe. Notice
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Figure 2. The magnitude of the the effective time in resonance per half-
bounce as a function of V}j o for the case shown in Figure 1. Verticle scale
is 10— 9%sec. The dashed line is the Airy approximation for the interaction
time. The solid line is the uncorrelated sum of the stationary phase ap-
proximation. The dotted lines show the p = 0 bounce resonance and the
turning-point resonance.

that Equations 10 and 11 are identical in form, the only difference being that the effective time spent in
resonance is redefined from (v°'/27) =12 to 2x(u™"/2) P Adly" (™ /2)~1/3]. In fact, Berk! used the Airy
function approximation at s” = 0 for all particles, since he considered only dwno =~ 0 and ky = 0. A more
gencral approximation is given by the rules: (1) when v) < Swo/kyws, then expand about s' = 0 for the
particles with |Vjo| > min {|uo/kywpl, V.. o(26wp/nue)"/?} and expand about vy = kwhLp/2nwo
for the remaining particles, and (2) when vl'l > wo/kywp, then cxpand about s° = 0 for all particles.
Finally, it should be noted that both approximations breakdown when v = / = V" = 0. This happens
when V) o = Swno/ky = »". In this case, the time intcgral is proportional to I'(1/4)r.sssin (né + 37/8),
where T;}} = "(t")/3. Figurc 2 summarizes these last two paragraphs. Here, the cffective time in
resonance is plotted for the particles shown in Figure 1. The oscillations shown in the figure result from
retaining the phase information between two successive resonances for the Airy approximations. For some
particles, the two interactions cancel. Both of the Airy approximations, at s* = 0 and vy = kw}L}/2nmuweo
are included. The figure corresponds to nw.o/wg ~ 600 which corresponds to 4kev electrons in Constance

IL




6 ECRH IN CONSTANCE 11

4. Conditions for Stochasticity .

As explained by Licberman and Lichtenberg®, when the phase, @, at cach resonance crossing is
random and with Ap < u, then the magnetic moment under goes stochastic diffusion. (Au) = 0 and
D, ~ Y (Ap")? /7. The diffusion cquation is

1 & -
29% =352 D, fo (i, t) (12)...
and
a2 w p ’ .
Dy= 3 o B 7l 5 7 | - (13)

Tes

Note that, from Equation 6, the diffusion paths in (£, 4) phase space is given by Dg ~ B*?D,. When ¢ is
not random, the electrons are superadiabatic’, and no average encrgy is exchanged between the waves and
the particles.

Three conditions may make ¢ random: (1) collisions, (2) the presence of many, uncorrelated waves,
or (3) the overlap of the wave-particlc bounce resonances. For electron temperatures greater than ~ 200eV,
collisions will induce diffusion on a time scale ¢ > 107g which is usually the weakest of the threc cffects.
Since the bandwidth of typical microwave sources is Aw/w ~ 104, the statement "many uncorrelated
waves” refers to a broad k-spectrum. However, since the RF is launched from a single horn, k(r) is fixed
by geometry, and the k-spectrum is not broad if the power is absorbed on the first pass. Note, that even
though the resuiting resonances for each particle do not look like those in Figure 1 (since k(r) is a function
of position) each particle still experiences a finite number of distinct resonances, and, in general, stochastic
diffusion will not result. (Of course, density and temperature fluctuations change the ray geometry, but these
effects are usually slow compared to 2 bounce time for moderately encrgetic clectrons.) On the other hand,
when the first pass absorption is poor, the microwaves will bounce several times within the over-moded
vacuum chamber. Now, the k-spectrum would be very broad, and ¢ should be random. Figure 3 illustrates
the many resonanccs for a weakly absorbant plasma. : :

The final condition for stochastic diffusion is the overlap of bounce resonances. For Constance ITand
other mirror ECRH experiments, this is the major justification for the use of the quasi-lincar cquation, since
high, first-pass absorption is expected. To estimate the size of the electric ficld producing stochastic orbits,
the particle motion in (i, ¢) space can be written by a set of coupled, difference equations, and KAM theory
(Kolmogorov-Amold-Moscr), as summarized by Lichtenberg!2, can be applicd. In gencral, the: difference
equzmon is fourth-order. However, when both dwyg = 0 and Vo < w,o/ky, then for most particles
v' ~ /* ~ 0, and Equation 12 can be used for Au for cach pass through the midplane. The cﬁ‘cctwe
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Figure 3. An example of a br- oad k-spectrum . Each dashed line represents
one of many waves propagati nig through a ve ry tenuous, weakly absorbant
- plasia. Axis same as Figure 1 .

interaction time is 757} = nwoV7/L3, and A.:i(0) ~ 0.35. /\ further simplification is to assume Ap < &,
then the change in gyro-phase, ¢, due to the re ¢;onant electric field can be ignored’. The approximate second
order diffcrence equation is

Pnt1 e= py + Ap(t ny $n)

Pnt1 2= bn+ Ad ag1) (4

where

d¢é
A — =2)dt
: % fe® ™ D)
2
T Ne0 S
~ 2 wg L%

In the last expression, the magnetic well was as s.umed to be pa rabolic. (1., $») are the magnetic moment and
phase before the nth resonance crossing.
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012 34

Figure 4. Primary bounce resona nces for a parabolic, magnetic well.
Shownarep = 1,2 and p = 0, — 1, —2, —3, —4. The verticle axis is
V0. and the horizontal is ¥} o. Th ¢ inner, dotted lines are the turning-

point resonances. The outer are the lo ss-cone boundaries. e

The first-order fixed points, (ug, #o), of Equa tion 14 are the bounce resonances, They are the solu-
tions of A¢(up) == 27p and cos (ngp) = 0. Figure 4 illustrates the bounce resonances. Note, that for a real
trap, wg — 0 at the loss-cone boundary. Linearizing a bout the fixed points give

. q-
. Vi b

nWep 1,0 n

. $ = 3 + x @b (V_L,O) ﬂo_ o (15) o

ﬁn-,\-l = pin+ K sin(ng,)

where

Kny qu_l 'J—k- ﬂg:ofeff

and pin = o + 2,,. From Lichtenberg!?, the conditio n for stochasticity is
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2 | '
2 v,
3IrKn wco( n,o) >1 (16)

o we \Vip

which was determined both numerically and analytically from solutions of the standard mapping of the
Fermi accelcrator. As cxplained by Lichtenberg, Equation 16 is actually a factor of two less severe than the
condition of primary resonance overlap (given by Kp + Kj-1 > ptp — pip+1 for all p £ 0) bccausc of the
overlap of higher-order bounce resonances. Equation 17 can be re-written as

2
V_L'Q )
o) &

which, for V o/Vj 0 ~ 4 and n = 1, requires E; > 0.005V/cm for T, == lkeV,and E, > 2.3V/cm
for T, = 100keV. Except for very small ficlds and very high temperatures, supcradiabatic motion should
not be expected in Constance 1. The condition Ap <« p gives the upper bound on Ej; as 50v/cm and
3kV [cm, respectively. For ECRH in Constance II, the heating is initially highly non-linear (T, < 15ev
before heating). In this case, the unperturbed orbits cannot be used to calculate Ay, and (Ax) no longer
vanishes since the particles will change their phase and larmor radius as they accelerate. The non-linear
heating rate is approximately given by {Ap)/7g which scales roughly as Plf instead of the P, scaling for
linear heating. In Constance II, the quasi-linear theory should become valid after a few microseconds for
powers not greater than a few kilowatts.

5. 'Bounce-averaged quasi-linear theory .

The bounce-averaged quasi-linear equation is written symbolically as

dy q Sk
fim P <th°(E’ ’R)> = T m Joounce 27 <E Skt M BL =% > (18)
"]

where
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g e W v
M,J:é’(l—;-N)-}-N? : (19)
E|= Ei(r, t) exp [—jwt + iA(r)] (20)
and .
S ,
_ 1 IARLTOHN T4
fe= f dt' Mg (t)E (t)av (t’) | (21).

The first equation above is the bounce and gyro-average of the clectron response to the RF fields. Strictly
speaking, the diffusion duc to untrapped, streaming plasma must be added to the right-hand side of
Equation 18, but this is ignored. The delta-function, 6—iw x implics the random-phase approximation
which is not exactly true in an inhomogencous plasma. The various ficld components will couple within
bandwidths of the order of Ak ~ V(In [f(r)]), but this effect is ignored in this treatment. In the time-
' integral, in Fquation 21, the initial condition at { — —oo has been ignored, and when evaluating the inverse
Fouricr transform, w is assumed to have a small, positive imaginary part in the normal manner. The spatial
phase, \(r), is the geometric optics approximation to the wave number of the waves, and k(r) = V A(r). The
 index of refraction is N* = ck?/w. E} is a slowly changing function of spacc and time, and w is constant.

In Equation 21, the integral over ¢ is along the unperturbed particle orbits as in Equation 7.
However, in Equation 18, this orbit integral is multiplied by the complex conjugate of the clectric ficld at
¢ = t, and this phase-dcpendent product is then averaged over a full bounce. The resulting average is
highly oscillatory unless the end-point corresponds to a stationary point, v(t) ~ 0. Said in another way,
the orbit-integral is the sum of contributions from past stationary points (¢ < t) and from those near the
end point (' ~ t). The phases of these terms arc then added to the phasc of the electric field which nearly
cancels the phase of the end-point. Now, when the total phase of each term is bounce-averaged, then (1)
the real part of the terms from past stationary points are zero, and (2) the real part of the end-point term is
also zero except when the phase of the end-point and of the clectric-field exactly cancel for a finite period
of time. The time during which this cancellation takes place is 7ess. Therefore, the major contributions to
the bounce-averaged quasi-linear equation are when %(2) is near a stationary point. Note, that in this theory,
the history of the particle has begn truncated. The original global equation has been reduced to a sum of
local wave-particlc resonances. This is the same premise used to justify Equation 12. In a lincar, bounce-
averaged theory, if the phase information of the past resonance crossings were retained, supecradiabaticity
would result . ;

Keeping the remarks of the last paragraph in mind, the averages and integrals in Equations 18021
can be performed by expanding the field about (X, s, t), the current guiding-center pasition and the current
time. This gives '
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Ej(7, ) = exp [—iwt + ik(k)]{z:'ﬁ(n,' £+ (F — R)- VEUR, £) + (' — t) (%E_i(R, t)}
' : v (22)
X (1 4 %(H —R)(Y—R):V k) exp {—zw( —t) 4 / d"y’ - k(l{)}

Notice that the variation of k along the orbit is assumed to be slow enough such that (F—R)-V{In [k(R)]) «
1, and the cxponential containing Vk can be cxpanded. The double dot-product is (r¥ — R¥)(rd! —
RY)(6K’ AR where the repeated indices arc assumed to be summed. Equation 22 can be re-written as

O 5

+’atau

Ej(, t') = exp [—iwt + 1.)x(R)]{E’J —1 VEi E

(23)

zEJ Vk: 6k66k} exp [—iw(t’ — t) + i(’ — R) - k(R)]

The electric ficld, when ¢ = ¢, can be expanded similarly as

a

. . ) g
E](r, t) = exp [—iwt + z}\’(R)]{Ek, i VE,c, 6k’ Ek,V K: 6k’c9k’} exp [i(r — R) - K'(R)] (24)

2

Then, Equation 18 can now be written as

d /Oh , . I _Q2)[d¢ i
ot ”!'a:>¢, = 7;<2 M

Py,
B_ive, 9 _ipgp. 29
X B iVE 55— 35 VK g
) t .
o / dt' M™(¢) S (25)
Epd imm, 80
{E" —iVE/ 'ak+’—$ ok VK 0k6k}

ll
X exp|—i /; (w — ¥(t") - k(R))dt" | - 6_%75>
| ¢
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where the argument of the clectric ficld is (R, t), and where & = —k’ and w = —uw’ were used to
express the phasc in the last exponential. Using Equations 2 and 3, the phase-dependent exponential can be
simplificd, since

¢
(r—R)-k_,_=pk_Lsin(/0‘ wedt" + ¢ — €+ n/2)

where the local wave-vectoris k = kys + k__(cos €z + sin £y), then the standard bessel cxpansion allows

Yy
exp [—1 / (w—v-k)dt"] = Z T 187/ D(n—7) g—ilEn—g'n)
¢ 4
n, v (26)

¢
X exp [—t / vt
t

wherev,,(t) is given by Cquation 8. The argument of the bessel function is & _p.

Before making any further progress, Equation 25-can be greatly simplified by transforming to the
complex basis defined by (z, y, 2) — (r, I, z) where r = (z — iy)//2, | = ¢°, and z = z. The
~ symbol, * or "star”, denotes the complex conjugate. In this basis, if Efc = E% = 0, then the clectric field
is right-hand circularly polarized in the direction of the magnetic field. A dot-product in the real, cartesian
coordinate system is re-written in the new, complex basis as A - B — A - B*. Then, suppressing the gradient
terms containing the dot and double-dot products, then right-hand side of Equation 25 can be written as

ZE k’kz f‘w(M‘J 6%{—';-}{3—’"‘"-}

. ¢
X f d¥ M T @7/ n—) g—ilEn—En) oy | g / vt | . 2B
—co 3
L]

Note the location of the conjugated components. The only ¢/ dcpcndcncé besides the phase integral is the
product Mi? 8/8v™", but with some algebra and Equations 4 and 19, this is

@n
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m im*
Mop n— M av‘, (28)
whose companects are
r‘ pwc i€ VD 1(9-}-1/‘2) 6
gY@y LO 1 O
vz B Vpuegx
Mg;) n= M;p n
. 148
M:pn U”ax -vllfanBa
. and where
g 138 5] ) Vb - 1.8
o BataE" (N“: TN ‘:)Ea; TN ax
ko kYoo g, |
ﬁn =1 - -_
w w w

.

The operator 8, »4.1 acts to raise or lower the order of the besscl function designated by n. This gives
the identity &, n4-1 =+ On,n—1 = 2n/k, p which was used to obtain these expressions. Note that the time

dependence of Mop,» has been replaced by using these operators. This is because the operation of &p n—1
is equivalent to multiplication by exp [i( f:wc t" 4 ¢ — ¢ + w/2)] and then re-defining the sum over n.
Therefore, the complex conjugate of 8, o1 IS 8, n— . The same operators can be used to express M? opnt =
M;c-;' 6/(91)‘ except, here, after complex conjugating the cxpression for Mop in Equation 28, the direction of
the 8,41 Operators must be reversed due to the opposite sign of &', Physically, the operators, Mgp, give the

diffusion paths of the electrons in (E, 4, X) phase-space.

Then, in the complex basis, and after rc:placmg the time-dependances of the gradient operators by
the delta-opcrators, Equanon 251is -

16} 2 [dy | T £ =m * | '
g = # 2—:{» 226—k’,k <Mgp,n'{EL - - ‘}{Ek e }Q;—'!;'MO"; nf>¢ (29)

n,n’ ki

where
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0 : i Iy
Q= At T, P+ 7/ Bn—r) g—ifn—8n) oyny [ / Vn dt”] (30)
0

——

Note, that the term containing /8¢ in 8/Sv* has been excluded since, when the averaged over @, this
term is highly phasc dependent and therefore does not contribute to diffusion. Also, the bounce and gyro
averages of Dfy/Dt leaves only the derivative of f with respect to slow time changes since f) is independent
of ¥ and ¢. Furthermore, since the only ¢ dependances in Equation 29 are contained in Q,, v, the gyro-
average sets n to /. (However, the convcntions cxplained in the last paragraph, between the raising and
lowering operators, 8, n4 1. designated by M 2w and { ";' are still maintained.) Finally, the average over ¢
is calculated as in Equation 8. The real-part of the integral will be dominated by the rapidly varying phase in
the exponential which will give non-vanishing contributions only when 4 corresponds to a stationary point.
Thus, resonant encergy exchange is the sum of local interactions. The imaginary part of the average is global,

since it represents the average "sloshing” wave cnergy along the particle’s bounce path.
Following Berk!, the gradient terms can now be inserted and the sum over k and &’ completed. Note

that

.0 -k 3 k9 a k: 8
a’? e ok, R aeH' (k k. kg,_a'é) ‘ (31)

%’IQ

since k%_= k2 + k2 and ¢ = tan ~!(ky/k;). Remember, also, that the derivatives with respect to w and k

. .
act only upon ;1. Then, since the terms proportional 0 E?_, VE," — E7' VE"_, sum to zero, the only
first-order contributions come from the derivatives with respect to € and £. In other words, since

1o_ _16_ _in
k; 3¢ k, o¢ ki

the final form of the quasi-lincar cquation is a sum of resonant intcractions and a gradicnt term which acts
on the clectric field and the resonance function. The result is

Fo(E u X, 1) =-?2_22}“_, {1.;5.(,:‘_2.1 VIHET E™ Re(T, YM™ Fy | (32)
. res k,n )

The gradicnt term can be considered as the correction to the ficld intensity and its interaction which results
from cxpressing the ficld in guiding-center coordinates. As in Berk!, Fy is the average particle distribution
after subtracting the “sloshing” cnergy due to the non-resonant wave-particle interactions, and ftl is the
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bounce-averaged resonance function. Finally, the sum over resonances does not necessarily refer to a sum
over definite resonant layers in space. In general, &y 7 0, and the resonances for each region of velocity-
space will occur in different regions of coordinate-space.

Fyisgiven by

_ 1 q d‘l,b 57 —m a 7nt
Fy= E—QZ‘f MiEE ] kg Im{QT M (33)

In Scction 8, F;y will be shown to represent the particle kinetic energy after the "sloshing” wave energy is
subtracted. '

It should also be noticed that only the hermitian part of the matrix operators M jp...Mg; enters
Equation 32, since all of the anti-hermitian terms contain 3,, and are not resonant. Therefore, Equation 32 is
real. The terms containing 8, are non-resonant because

v ' ¢
d
—1 —T /i —_— —— /
twf, exp | z/; v dt"] = 7 exp | z/(; v, dit”]

and the initial conditions at { — —oo have been igndred.

Finally, for the simple example discussed in Section 3, Vp == 0, E = ¢E, £ =0, andd/5X = 0.
Then, the sum of the terms containing [E” E'|, |E' E'}, |E” £, and [E" E"| give

% _ 22 pal 22 g’,;)rﬂ‘zlu?Re{nl by o+ 3m)Fo (34

B 6;4

where terms of the order of v/c < 1 have been ignored, and the slowly varying quantitics which dcfine the
diffusion paths are evaluated at the resonances. The identity §n n—1 — 0n,n41 = 2J/, was uscd. Note that
Equation 34 is the equivalent of Equation 12 derived from via the Maxwell-Vlasov equations.

6. Bounce-averaged Resonance Function .

To calculate the bounce-averaged resonance function, Wl, the techniques used in Section 3 are
uscd again. First, v,(¢, t”) is expanded about t” = 0 and ¢ = ¢, such that (3", 0) = 0. Then,
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¢ ¢ '
i [ vt =i [ N = s+ )
il (0 — Vol i — 0 (3

and, for cases when v/, &~ 0, then

~ —ifu (")t + rafjw%(w — 9"+ twp/2)? 4 777 £/12) - (36)

In the above cquation, the identity wpd/dy = &/8t was used. [n the first case, integrating first over time
and then over bounce angle gives

Ry = AR @

while, in the second case, the first integration is over ¥, and the second over ¢/, which gives

exp —ifu, t' + Tt t’3/12]

Rl e DA 2t [
, Varidd (38)

~ ZWB e,,[Az (VaTess) — iAi(v,, reu)Bz(V Tesf)

using the Pearlstcin identity’. The value of the resonant interaction is the same as that calculated in

Equations 10 and 11. ] : )

It is also informative to calculate the resonance function in a manner which illustrates t!hc points of

. Scction 4. If we take a simple example, with ky = Vp == 0, then the exact orbits for electrons decply-
trapped in a magnctic well give : '

%
bugy, — T:ffwb'z/z — 2puwg

-Zﬂ Iy ,,,w:;’/4) (39)

where f,,, = nwcoVﬁ o/ L%. The bounce resonances are those shown in Figure 4. The resonance function
can be considered to represent the wave-particle interaction in the limit that E — 0and¢ — co. Those
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particles which do not have cxactly the same phasc during cach pass through resonance cannot gain energy
ast — oo. Of course, this condition is also the condition which defined the fixed-points of Equation 14.

However, when the clectric ficld is finite, then the resonances overlap, and Equation 39 should be
equivalent to Equation 38. To show this, a broadening term is added to the resonant denominator, so that
the real part of Equation 30 is

_ _3 _3 Y3
Re{Q), } J? Z Jp ares/ (5010n — 1 7jwE /2 — 2pwp)? 4+ nf o)

where 7 can be considered to be defined from

352 Z —Tl‘a—ﬁc(Eyl—‘)

Tes

2
M fi(E, 1) =~ 1[ +B? & ] (Ap),

as in Equation 12. Then, since Jolp(1 + 2p= 23] ~ (2/p)/3 Ai(—21/32) as p — oo, Equation 40
becomes

o .
Re{Q, } s ) J2 412wl AiH(—BunnTery) ‘ (41)
PO

for p less than zero, and

Re(, '} s 3 22 A% (B — Wz o]
p>0 ' (42)
Nk

X Sl — buton] Zer + L] 473, ) R

for p greater than zero. To obtain these equations, the argument of the bessel functxon was evaluated at
resonance, or when

1 Sy | | e
]y Yubn 43
dprd, wh + 2pr | (43)

Then, as p — 4-co, 41'3 /‘-"B ~ —1/p. Also nceded is thc cube root of p whnch when cvaluated,
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the real branch is used. For large |p|, the sum over p is converted into an integral, and assuming that
1% > (Buwon/2wp — 1/473, wh)?, then the bounce-averaged resonance function is approximately

Re{fl} ~J2 wrfffuBAﬁ('—é'wgnreﬁ) ‘ ' (44)
for those particles with Vi 0 > V. a(26wyr/nwe)'/?, and

~ Jﬁ erUwBAiz[(cSwu,, —_ w52r:f}’)re”] (45)

for those particles resonant near their turning points. Equations 44 and 45 are independent of m,. Note,
that these results are the samne as those obtained from Equation 38. Finally, when p ~ 0, the particles are
resonant far from the bounce phascs when cither s* ~ 0 or v° ~ 0. In this casc, no simple expression for
ﬁ:l can be found independent of m.. For these particles, Equation 37 is the only simple way to calculate the
resonance function. '

7. WKB Theory .

In this section, the WKD theory for the wave propagation from the launching horn through the
plasma is discussed. The fundamentals of the theory of electromagnetic waves in an inhomogeneous plasma
are weil known (sce, for cxample, Budden, 1961). When combined with the quasi-finear equation of Section
4, the theory presented in this report is the simplest, self-consistent model of non-relativistic clectron-
cyclotron heating in a mirror that conserves energy.

Two types of cquations are nceded. First, the local equation of energy conservation is derived which
- determines the geometric and physical optics solutions for the propagation of clectromagnetic waves. The
second is the bounce average of this equation, which gives the energy conservation equation for the trapped
particles. Regencrative effects due to the "phase-memory” of bouncing particles is ignored (see Berk and
Book, 1969). '

From Maxwell’s equations, Poynting’s theorem is

V(B X Be) o+ 5 2 (BE + B + T Re(E- T} =0 ()

)
which can be written as

[%g% -V -,%]{wu — N2 — NN} S[EE), = dnRe(E_s- T} (47)
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The last term is

iR T = — e z( [ 4B pt,

(48)

0 (3
X /;mdt’wl'"(t)Ek (t’) 57 )jb(E s s R)exp[—z/(; dt"(w — k- v)]

¢

The sum over 4 refers to the direction of motion along the ficld lines. The time dependence of M fc"‘c?/é‘v’
can be treated as thosc in Equation 27 by transforming to the complex basis. E",:" can be cxpanded as in
Equations 23 and 24, cxcept in this case, the ficld is expanded about (r, t) instead of the guiding-center
coordinates since the local currents arc to be found. In addition, ]{,(Y, s) can be cxpressed in terms of rasin
Equation 32, which gives

BE. . X,) mo {146+ (3 X V(B 1)
L .

~ Then, with v; = (6, w—1pwce ¢/ V2+:Vpe O+ D [/, b s e’/ ﬁ+VDei(§+”/ V2, w),

Equation 48 becomes

- = 13 td 4
dnRe{E_j - Ji} —.Re{[l - —2-éi-_V 2&'&]@ E™: o
| (49)
4 dEd v Q=1 pm
g 22/ A M LB (B X V)
Which, when combined with Equation 47, gives the local, energy conservation equation
0¥ 1 8 [o0i 1 it it |
V=% 5|E e + 5l 53 Ek|+DdEE =0 (50)

where D" = D" 4 ¢D}" is the local dispersion tensor
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DY =we'd
€7 = (1 — N}§'7 + N'N7’

- ﬂZZded“B MEQT L6 (2 X V)t

Equation 50 contains the first terms of a WKB theory for electromagnetic wave propagation in an
inhomogencous plasima. This is a generalization of the one-dimensional. electrostatic WKB theoiy derived
by Berk and Book, 1969. For clectromagnctic waves, the dispersion relation to all orders is

/ &3 DY — 1, (¢ + 1)/2) E'()e—MN"—D = 0

or, if D*/ and E vary slowly over a wavelength,

q,f . . et

The zeroth-order equation, D¥ |E” E'|, = D}, imodelkmades W)|E |} = 0, is an cigenvalue equation. The
matrices Djj and D} are hermitian for the same reason that Equation 33 is real. Furthermore, it can be
shown that, when mode-coupling due to the plasma gcometry is ignored, D and Di" commute so that
they can be simuitancously diagonlized. The solutions to this equation give gcometric optics. This is used
to determine the path of mode-cnergy flow. However, the first-order terms are needed to show energy
conservation. The eigenvectors are the polanzauans of the local modes, and the eigenvalues are the solutions
10D} rmade = 0, OF Kmode = 7 Minaae(T).

Briefly, the procedure for computing the ray path is as follows. First, the ray path is considered to be-
sub-divided into many small scgments Ar. Within cach segment, the dispersion. tensor is diagonalized, and
the dispersion relation and polarization for cach of the cigenvectors, or modes, is found. The clectric feld at
the back-side of Ar is then expressed in the basis formed by the mode polarizations. Finally, cach mode then
propagates at its group velocity to the front-sidc of Ar, and the process is repeated. The group velocity is

| . R |
. _ D (oD} . '
= (_du ) o (53)
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and, from its rolc in Equation 50, the group velocity is the velocity of encrgy flow. TFurthermore, since
D}'I == () for cach modc, the change in k after crossing Ar is given by

' N | .
D
‘;:‘ = VDR( awn) . (54)

‘Together, Fquanons 53 and 54 can be considered as the \clomty of the mode-energy in (r, k) phasc-space.

Note that Equation 54 incorporates Sncli's law, since k only changes in the dircction of the gradicnt of D,

To obtain the physical optics solution to the problem of the wave propagation, the next-order terms
of the WK B dispersion cquation are used. These are equivalent to the energy conscrvation cquation already
derived (ie. Equation 50). This cquation can be put into the familiar form if D” is dmgonallzcd as before and
if the total energy per mode is defined as

' 8Dk
Wi |E (e - N )
This gives

oW}

v wi) + 2k

— 2 VWi =0 (56)

where k; is the imaginary part of k given approximately by

. a1
GD‘

The solution to Equation 56 for cach mode gives the physical optics solution to wave propagation. If
the medium is toss-free, then the ficld intensity increases as ~ 1/ v; along its ray path. When v; — 0, higher
order derivatives of the ficld must be added to Equation 50. If the turning point is lincar, then the D, can be
expanded about r = g, giving "

190 i oo (9 P '
2xakk: YV E = (=) (VDRE" 0 B (57)

Then, assuming that the spatial dependances are locally scparable, then this cquation is an Airy equation for
that componcnt of propagation along the gradicnt D, In this way, the standard WK B connection formulas
and reflection cocfficicnts can be calculated!,
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8. The local resonance function .

The local resonance function used in the WKB theory function differs from the bounce averaged
version used to determine the clectron cnergy evolution. The local resonance function includes both the

reactive, induced plasma currents and the local, resonant dissipation. The induced currents determine the -

real part of the dispersion refation which is used to calculate k = V \(r).

The local resonance function has three forms. For particles far from a stationary point, the resonance
function is '

_ i |

At this location, these particles are purcly reactive.

When, a particle is necar a stationary point, then

Q:l ~s J?; e“'“ﬁreH ‘ | (59)

And, when v =~ / = 0, then Re{Q'} =~ J2 7 Ai{vntesy), and Im{Q7 1} ~ J2 wreffGi(z)nr,ff)
where Gi(z) ~ 1/7z and Gi(—z) ~ 7~ 2z=1/3 cos(22%/3/3 + =/4) for large z.
9. Bounce-averaged energy conservation .

The local, encrgy conservation cquation can be bounce-averaged to show the seif-consistency of the
approach used in the report. The total loss of wave energy averaged over the bounce motion of the trapped
particles is equal to the bounce-averaged change in particle kinetic-cnergy.

The bounce-average of Equation 50 is
dswg iwi s Owil 1 i i |

What is meant by the bounce average of the left-hand side is that the integral aver velocity-space within each

term is to be carricd out after the bounce average. The equation states that the average of the divergence
of the Poynting’s flux and the time ratc of change of the clectric cnergy along the particle’s orbit is equal -

to the loss of particle kinetic energy due to the local resonances. The integral on the left-hand side will not
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be evaluated. However, the right-hand side is consistent with the bounce-averaged quasi- lmcar cquation,
previously derived. To show this, the time rate of change of the electron kinetic cnergy is

dEduB . / 3 1 AFy
&2/ Tl dogmy-va

. (61)
< 1 e S S :
= ‘IE Zu: / d*v 5V VMU Re(T,}|E E'LWMIFy

Equation 61 is now integrated by parts which is performed most casily when the left-most diffusion operator
has been re-expressed in terms of a real, cartesian coordinate system. This gives

22 dEd#BEFO Z /dEduB ‘Re(TT, }IE'1 JlkMJ Fo
o) |l |l

» (62)
"B,

= — ZDH'

res
Thercfore, the increase in trapped particle energy is equal to the loss of wave cnergy. For each region in

velocity-space, the encrgy is exchanged atlocal, resonant interactions.
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