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Abstract

The bounce-averaged quasi-linear equation for a non-relativistic mirror-confined plasma interacting
with electromagnetic waves is derived for use in the study of ECRH of the Constance II mirror experiment.
The derivations follows the more formal examples given by Berk' for electostatic waves and Bernstein and
Baxter 2 for relativistic plasmas. The validity of the theory is discussed by examining individual particle orbits
in an EM field. The local dispersion relation is found while deriving a sclf-consistent WKB theory which can
be used to estimate the power transferred from the launching horn to the plasma.
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1. Introduction .

Current plans to test tandem-mirror reactors require electron cyclotron heating to maintain the tem-

perature difference between the central-cell and plug electrons-3 ''. Bulk heating will be applied at the

fundamental cyclotron resonance to raise the confining potential of each plug. Second harmonic heating will

create a hot-electron thermal barrier which should insulate the plug from the central-cell electrons. In both

cases, ECRH is used to control the development of the electron distribution function. To be efficient, the

bulk heating must guard against tail heating, and the barrier heating must not permit "hot tail runaway" 3.

ECRH has never been used in mirrors for these applications, and, for this reason, Constance II is conducting

experiments to study the development of the electron energy distribution with ECRH6 .

This report derives the ECRH theory that will be used to analyze the data. The theory consists of two

parts: (1) the derivation of the correct expression for the resonant energy exchange between the waves and

particles, and (2) the WKB theory for the propagation of the wave energy from- the launching-horns to the

absorption layers. On the average, an electron gains energy from the waves only at a few local resonances

along its orbit. For collisionless particles, low electric fields, and narrow bandwidths, the particle's gyro-

phase with respect to the wave frequency is not random, and the electrons are purely reactive. As the

electric field increases, the bounce resonances overlap resulting in stochastic energy diffusion 7 . Lieberman

and Lichtenberg were the first to derive the.diffusion equation for a uniform, stationary electric field. Berkl

was the first to derive a self-consistent bounce-averaged quasi-linear theory which also included the correct

WKB theory for the propagation of electrostatic waves. Bernstein and Baxter 2 were the first to extend the

theory to relativistic plasmas and to electromagnetic waves. Finally, Porkolab, el aL.9 first performed ray

tracing calculations for ECRH in mirrors..

The contents of the report are organized into eight sections and an introduction. First, the geometry

of the particle orbits are discussed. Then, an expression for the diffusion equation is intuitively derived

for an imposed electromagnetic wave. The fourth section discusses the conditions for the validity of the

linear, stochastic theory. And, in the fifth section, the bounced-averaged quasi-linear theory is derived for

non-relativistic particles. The sixth section is devoted to the bounce-averaged resonance function used in

the quasi-linear theory. Next, the WKB theory for wave propagation is derived from the requirement of

energy conservation. This gives the geometric and physical optics solutions to the problem of estimating the

field intensity and power absorption at the resonance zones. Finally, the last two sections describe the local

resonance function used in the WKB theory and the bounce-averaged energy conservation equation.
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2. Geometry

For simplicity, the geometry of the plasma used in the kinetic theory is assumed to be locally

cylindrical. Non-axisymmctric cffects are ignored, and only trapped, bouncing particles are treated. The

unperturbed orbits used to describe the trapped electrons, bouncing in the mirror, are

3 = s,.. cos (wt + 0) (1)

y = Y() + p(s) sin (f wdt'+ ) + Vo D 9dt' (2)

x = X(O) + p(s) cos (.4 wedt' + k) + j D l dt' (3)

where p2 (s) = 2.B(s)p4/w(s) and VL, is the sum of the V 11 and curvature drifts. If the particles are deeply
trapped, then wc(s) = wc(1 + s2/L2), wB = LO/L0 , and s, = ViIo/wB. In general, B(s) is not

parabolic, so that wB is also a function of vil and s. For combination electrostatic and magnetic wells, wB
also depends upon <D(s). A particle's phasc-space is designated by the variables (E, i, 4, 4, X, Y) or equiv-
alently (E, i, 4, R), where (X, Y, s) represents the particle's guiding-center position on its drift surface, and
R = Xi + YY + si. 0 is the bounce angle and 0 is the gyro-phase. The total energy, E, the magnetic
moment, /y, and drift surface, X = X 2 + y 2 , are constants of motion. The velocity gradient and total time
derivative are

-= -VD+-- +-6X - (4)3 B 6L 8 E v._iO we C
D 9 1- (9

= + t-ll+ YDI (5)

The gradient term in Equation 4 can be written as (;0 /wc)9/YT with LD defined as 5 X 2. Furthermore, if
e is defined as tan (Y/X), then VD = ;,w0 X and VD - 7 = w0 /89 where wD = dq/dt. The average
particle distribution is assumed to be independent of 0, 4, and 9. This simple geometry is adequate for the
kinetic theory presented here since the resonant particle effects ultimately depend only upon local gradients.
See Horton, et aL'a for a formal derivation of a particle's motion in a mirror.

3. A Monochromatic Wave

The perturbations to this orbit due to an electromagnetic wave can be analyzed in a manner similar
to Jaeger, et al.". Consider an electric field, constrained to be
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E = Ek exp (-iwt + ik - x)

and

dE d = q
B dt m

(6)

where electron Landau damping, for cases when Ell / 0, is ignored. To solve Equation 6, the right hand

side is integrated along a particle's orbit,

Albounce = E f J',(kp) e"6 exp (-i dt'd(t'))dt
bounce B

(7)

where

(8)

and where i-axis has been aligned with the (assumed to be linearly-polarized) electric field and k± = kis.
The primed bessel function means differentiation with respect to its argument, orJ' = J_- (n/kip)Ja.

For kap < I and n = 1, the primed bessel function is approximately ~ 1/2. When evaluating Equation
7, it is assumed that 1I A < p since only the first-order change to the unperturbed orbit is evaluated.

Since the integrand is highly phase dependent, the largest contributions to the integral arise when
v(t*) * 0. For parabolic, magnetic well and for VD = 0, this is when

LB
(9)

where 6wO = w - nwco, s' = s(t*), and v* = v(t'). Figure 1 illustrates (vi1, s) phase space for VD = 0,
fixed V ,o and for k1l, 6w, 3 0. Particles with Vjlo < 6w1o 0/kl have four stationary points. Particles with
larger Vio have only two resonance points, and those with V'jo = 5w,,o/kll have three. For each resonance
crossing, the net change in the magnetic moment will be proportional to the product of an effective time in
resonance and a phase dependent term. To calculate the interaction time several cases are considered. When
the stationary points are well separated, then v(t') (t' - t*)V(t*), and the integral can be approximated
by the leading term

3

v,,(t') = w - nwc(t') - klgvI(t') - kL -VD(t')
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Figure 1. Illustration of resonance points along bounce orbits of the.
particles in a parabolic well. Verticle axis is V1j,o, horizontal is s,. For
VD = 0, fixed w9 = 5OMrad/s, N11 = 0.4, wc0 = 32Mrad/s, and
for 5wO. 34 0. This corresponds to 4kev electrons in Constance II. The

dashed lines are the resonance points, and the dotted line is the boundary
between the p < 0 and p > 0 bounce-resonances.

.y B-- 1(kip)d y2rIf sin (no + ir/4)M B

In this case, rjf = L'(t*)/2. All of the slowly varying quantities are evaluated at t*. When d'(t*) < 0, then
the phase of the argument of sine changes by ir/2.

When two successive resonances are separated by a time of the order of -y, then V(t*) * 0, and
the approximation leading to Equation 10 breaks down. In this case, v(t') s v(t') + (t' - t*)2 /(t*)/2 and

ReAA.} w -iEtJ(kAp)!.±27rrff sin (no + ir/2)Ai(riz.';)
m n B

(11)

where, now, rT7 = d'(t*)/2 and Ai is the Airy function. When V" is negative, the real branch is used for
rell. For the parabolic well illustrated in Figure 1, 1' = 0 when a = 0 and v = kjw2L4s/2nwo. Notice

(10)

.......................

.
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Figure 2. The magnitude of the the effective time in resonance per half-

bounce as a ftinction of V,o for the case shown in Figure 1. Verticle scale

is 10- 9sec. The dashed line is the Airy approximation for the interaction

time. The solid line is the uncorrelated sum of the stationary phase ap-

proximation. The dotted lines show the p = 0 bounce resonance and the

turning-point resonance.

that Equations 10 and 11 are identical in form, the only difference being that the effective time spent in

resonance is redefined from (v*/21r)-'/ 2 to 27r(v*"/2)--/3Ai[v*(v*"/2)- 1 /31. In fact, Berkl used the Airy

function approximation at a = 0 for all particles, since he considered only 6wno s 0 and k = 0. A more

general approximation is given by the rules: (1) when v* < 6wo/kpgw, then expand about s* = 0 for the

particles with IV1,ol > min {6wo/kjjwp, VLo(26 oo/nW.o)'/ 2 } and expand about v* = ktiWbL,/2nwco

for the remaining particles, and (2) when v* > 85om/kjjwu, then expand about s* = 0 for all particles.

Finally, it should be noted that both approximations breakdown when v = v' = V" = 0. This happens

when Vo = 6w7 o/ki = v*. In this case, the time integral is proportional to '(1/4)reff sin (no + 37r/8),

where r- = L11(t*)/3. Figure 2 summarizes these last two paragraphs. Here, the effective time in

resonance is plotted for the particles shown in Figure 1. The oscillations shown in the figure result from

retaining the phase information between two successive resonances for the Airy approximations. For some

particles, the two interactions cancel. Both of the Airy approximations, at s* = 0 and v= k11wL /2nwco

are included. 'The figure corresponds to nwco/w~ 600 which corresponds to 4lcev electrons in Constance

II.
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4. Conditions for Stochasticity

As explained by Lieberman and Lichtenbergs, when the phase, #, at each resonance crossing is
random and with AA < A, then dhe magnetic moment under goes stochastic diffusion. (AA) = 0 and
D;, ~ j:(A*) 2/Tr. The diffusion equation is

8fo 1 82
f I-,Dyfo (y, t) (12)

and

A |EI2ff Y2 (13)
tee

Note that, from Equation 6, the diffusion paths in (E, A) phase space is given by DE - B*2D. When 0 is
not random, the electrons are superadiabatic7 , and no average energy is exchanged between the waves and
the particles.

Three conditions may make 0 random: (1) collisions, (2) the prdscnce of many, uncorrelated waves,
or (3) the overlap of the wave-particle bounce resonances. For electron temperatures greater than - 200eV,
collisions will induce difflusion on a time scale t > 10rB which is usually the weakest of the three effects.
Since the bandwidth of typical microwave sources is Aw/w ~ 10-4, the statement "many uncorrelated
waves" refers to a broad k-spectrum. However, since die RF is launched from a single horn, k(r) is fixed
by geometry, and the k-spectrum is not broad if the power is absorbed on the first pass. Note, that even
though the resulting resonances for each particle do not look like those in Figure 1 (since k(r) is a function
of position) each particle still experiences a finite number of distinct resonances, and, in general, stochastic
diffusion will not result. (Of course, density and temperature fluctuations change the ray geometry, but these
effects are usually slow compared to a bounce time for moderately energetic electrons.) On the other hand,
when the first pass absorption is poor, the microwaves will bounce several times within the over-moded
vacuum chamber. Now, the k-spectrum would be very broad, and 0 should be random. Figure 3 illustrates
the many resonances for a weakly absorbant plasma.

The final condition for stochastic diffusion is the overlap of bounce resonances. For Constance II and
other mirror ECRH experiinents, this is the major justification for the use of the quasi-linear equation, since
high, first-pass absorption is expected. To estimate the size of the electric field producing stochastic orbits,
the particle motion in (A, 0) space can be written by a set of coupled, difference equations, and KAM theory
(Kolmogorov-Arnold-Moser), as summarized by Lichtenberg , can be applied. In general, the difference
equation is fourth-order. However, when both dw,1o 0 and Vj1,o < 8w,,o/k, then for most particles
Li* ~ -/ 0, and Equation 12 can be used for A4s for each pass through the midplane. The effective

I



CoNDrrioNS FOR STOCI[ASTICITY 7

Itu

Il .Il 
1  

1/

I,

*v \' it j

is '
ji

I I It ll

Figure 3. An example of a br oad k-spectrum . Each dashed line represents

one of many waves propagati n g through a ve ry tenuous, weakly absorbant

plasiha. Axis same as Figure 1

interaction time is r- = nwcoV /L , and A : i(O) : 0.35. 1 k further simplification is to assume Ai < y,
then the change in gyro-phase, #, due to the re ;onant electric field can be ignored7 .The approximate second

order difference equation is

/An+1 =='n+ AO(A n+1)
(14)

where

dtA0 lU (w - -)dt
. pouen, dt

2
X nwco am
2 wB Ll

In the last expression, the magnetic well was as s umed to be pa rabolic.(ps, 4) are the magnetic moment and
phase before the nth resonance crossing.
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0 -T2 -3 -4

Figure 4. . Primary bounce resona nces for a parabolic,. magnetic well.
Shown are p = 1, 2 and p = 0, - 1, -2, -3, -4. The verticle axis is
VLo, and the horizontal is V0. Th e inner, dotted lines are the turning-
point resonances. The outer are the lo ss-cone boundaries.

The first-order fixed points, (p0, #o), of Equa tion 14 are the bounce resonances, They are the solu-
tions of AO(po) = 21rp and cos (nto) = 0. Figure 4 illustrates the bounce resonances. Note, that for a real
trap, wE - 0 at the loss-cone boundary. Linearizing a bout the fixed points give

31ro Vo p '(15)

n+j= + K sin (n4,)

where

K w 1. 1 . _ refn% B

and A, o pe + j,.. From LichtcnbergI 2 ,.the conditio n for stochasticity is

-
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37rK n 2 'O Vji 2>

j~~w>V, 1(16)ito WB VL'O

which was determined both numerically and analytically from solutions of the standard mapping of the
Fermi accelerator. As explained by Lichtenberg, Equation 16 is actually a factor of two less scvcre than the
condition of primary resonance overlap (given by Kp + K+, > Mp - Mp+1 for all p 4 0) because of the
overlap of higher-order bounce resonances. Equation 17 can be re-written as

-iEkTeff> V1 ,O (17)
M n2 1, y

which, for VLo/Vj,o - 4 and n = 1, requires Ek > 0.005V/cm for Ti = 1keV, and Ek > 2.3V/cm
for TL = 100keV. Except. for very small fields and very high temperatures, superadiabatic motion should
not be expected in Constance 11. The condition AM <. gives the upper bound on E as 50v/cm and
3kV/cm, respectively. For ECRH in Constance II, the heating is initially highly non-linear (Te < 15ev
before heating). In this case, the unperturbed orbits cannot be used to calculate AM, and (Ap1 ) no longer
vanishes since the particles will change their phase and larmor radius as they accelerate. The non-linear
heating rate is approximately given by (Ap)/r, which scales roughly as P1/ 2 instead of the P,. scaling for
linear heating. In Constance II, the quasi-linear theory should become valid after a few microseconds for
powers not greater than a few kilowatts.

5. Bounce-averaged quasi-linear theory

The bounce-averaged quasi-linear equation is written symbolically as

Jfo(E, g,\). . MR)E. (L

where
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M3 
- Jii(1 - N) + N(19)

C C

E= (r, t) exp [-jwt + iN(r)] (20)

and

fk - q dt'Mt'(L')E.(t') (9)2

The first equation above is the bounce and gyro-average of the electron rcsponse to the RF fields. Strictly

speaking, the difFusion due to untrapped, streaming plasma must be added to the right-hand side of

Equation 18, but this is ignored. The delta-function, 5_.rk implies the random-phase approximation

which is not exactly true in an inhomogencOus plasma. The various field components will couple within

bandwidths of the order of Ak - V(ln [fk(r)]), but this effect is ignored in this treatment. In the time-

integral, in Equation 21, the initial condition at t -+ -co has been ignored, and when evaluating the inverse

Fourier transform, w is assumed to have a small, positive imaginary part in the normal manner. 1The spatial

phase, X(r), is the geometric optics approximation to the wave number of the waves, and k(r) = V X(r). The

index of refraction is Ni = cki/w. Et is a slowly changing function of space and time, and w is constant.

In Equation 21, the integral over t' is along the unperturbed particle orbits as in Equation 7.

However, in Equation 18, this orbit integral is multiplied by the complex conjugate of the electric field at

t' = t, and this phase-dcpendcnt product is then averaged over a full bounce. The resulting average is

highly oscillatory unless the end-point corresponds to a stationary point, w(t) - 0. Said in another way,

the orbit-integral is the sum of contributions from past stationary points (t' < t) and from those near the

end point (t' ~ t). The phases of these terms arc then added to the phase of the electric field which nearly

cancels the phase of the end-point. Now, when the total phase of each term is bounce-averaged, then (1)

the real part of the terms from past stationary points are zero, and (2) the real part of the end-point term is

also zero except when the phase of the end-point and of the electric-field exactly cancel for a finite period

of time. The time during which this cancellation takes place is r611 . Therefore, the major contributions to

the bounce-averaged quasi-linear equation are when 0(t) is near a stationary point. Note, that in this theory,

the history of the particle has bcn truncated. The original global equation has been reduced to a sum of

local wave-particle resonances. This is the same premise used to justify Equation 12. In a linear, bounce-

averaged theory, if the phase information of the past resonance crossings were retained, superadiabaticity

would result.

Keeping the remarks of the last paragraph in mind, the averages and integrals in Equations 18 to 21

can be performed by expanding the field about (X, s, t), the current guiding-center position and the current

time. This gives
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E (r, t') = exp [-iwi + i(R)1{E (R, t) + (r' - R) V .(R, t) + (t' - t)-

r, (22)
X (I + (a - R)(r' - R) : V k) exp -iw(t' - t) + i dt"v" - k(R)

Notice that the variation of k along the orbit is assumed to be slow enough such that (r'-R)-V(ln [k(IR)]) <
1, and the exponential containing V k can be expanded. Tihe double dot-product is (ri' - Ri)(ri' -
Ri)(aki/9Ri) where the repeated indices are assumed to be summed. Equation 22 can be re-written as

Ek(', t') =exp [-iwt + iN(R)] E--iv .. + (

(23)

-E a k: exp [-iw(t'- t) i(e -R) -k(R)]2 (k k)

The electric field, when t' = t, can be expanded similarly as

E tr, a) = exp [-iVt + ' a.- Ok. - k exp [i(r - R) - k'(R)] (24)

Then, Equation 18 can now be written as

fd af(Q + vOfo~ q i

X -iV ,k k

- dt' M'"(t) (25)

X e( -E a ( k a

X exp -- w-vt)-k(R))dt" - f
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where the argument of the electric field is (R, t), and where k = -k' and W = -W' were used to
express the phase in the last exponential. Using Equations 2 and 3, the phase-dependent cxponential can be
simplificd, since

(r - R) - k± = pk_ sin (f wdt" + -(+ r/2)

where the local wave-vector is k = k1. + k±(cos ( + sin cy), then the standard bcssel expansion allows

exp f-i j (w - v k)dt"l = JJV ( e- -'n'

'n, (26)

X exp f-i f/ L(I')dt"

where un(t) is given by Equation 8. The argument of the bessel function is k p.

Before making any further progress, Equation 25 can be greatl simplified by transforming to the
complex basis dcfined by (z, y, z) -+ (r, 1, z) where r = (z - iy)/v2, 1 = r*, and z = z. The
symbol, * or "star", denotes the complex conjugate. In this basis, if Ek = Ek = 0, then the electric field
is right-hand circularly polarized in the direction of the magnetic field. A dot-product in the real, cartesian
coordinate system is re-written in the new, complex basis as A - B -+ A - B*. Then, suppressing the gradient
terms containing the dot and double-dot products, then right-hand side of Equation 25 can be written as

7, M2 21 k -... Ek--.
k,k' n,

X d'M"'J..,(4w/Xn-9 -ien-tn9ex - undt"l a, -2)

k/ 2

Note the location of the conjugated components. The only t' dependence besides the phase integral is the
product Mik' /Ovi, but with some algebra and Equations 4 and 19, this is
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M,-,* MM a (28)ap,n= k -VI

whose compancts are

oB, V e 18

_,3n + 1 e9
11/2- I~ i a

op, n Mop,n

Mo,,, =V11- - V11#"Biop8 18

and where

a I a a VD) I a i a
T ---- + Nll.-+N.- - +N-v; --8x By 1, E C c Bi I + C-+

klII k- -VD W
,8n= I - -

The operator 5n,n4- acts to raise or lower the order of the bessel function designated by n. This gives
the identity 6 n,n+ + Snn-l = 2n/kp which was used to obtain these expressions. Note that the time
dependence of Mo,,n has been replaced by using these operators. This is because the operation of kn-j
is equivalent to multiplication by exp [i(fo wedt" + - + r/2)] and then re-defining the sum over n.
Therefore, the complex conjugate of6 ,n+i is Sn,,_i. The same operators can be used to express =

M'jfl/9vi except, here, after complex conjugating the expression for M'* in Equation 28, the direction of
the 67',w't operators must be reversed due to the opposite sign of k'. Physically, the operators, M0,, give the
diffusion paths ofthe electrons in (E, p4, X) phase-space.

Then, in the complex basis, and after replacing tie time-dependances of the gradient operators by
the delta-operators, Equation 25 is

- , M { -. . .}{E -. . .}o;;-',Mo,*,fo (29)
nW m ~ ')

where
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;, J d ' JJ, e('+ "-I') e--("--?"') exp f-i vun dt"j (30)

Note, that the term containing O/&k in 8/8vi has been excluded since, when the averaged over 0, this
term is highly phase dependent and thcreforc does not contribute to diffusion. Also, the bounce and gyro
averages ofDfo/Dt leaves only the derivative of f0 with respect to slow time changes since A& is independent
of V) and 0. Furthermore, since the only 0 dependances in Equation 29 arc contained in , the gyro-
averagc sets n to n'. (However, the conventions, explained in the last paragraph, between the raising and
lowering operators, Jn,n-I, dcsignaied by M1,, and M", are still maintained.) Finally, the average over k
is calculated as in Equation 8. The real-part of the integral will be dominated by the rapidly varying phase in
the exponential which will give non-vanishing contributions only when k corresponds to a stationary point.
Thus, resonant energy exchange is the sum of local interactions. The imaginary part of the average is global,
since it represents the average "sloshing" wave energy along the particle's bounce path.

Following Berk 1, the gradient terms can now be inserted and the sum over k and k' completed. Note
that

0 a k, a kg a kj a k, a- = s f i )+0 + )(31)Ok 8FFk k kfi kk8kk kkL2 (31)

since k2 k2 + k2 and E = tan ~(k 1 /k,)..Remember, also, that the derivatives with respect to w and k

act only upon 2-1. Then, since the terms proportional to kV E' - E' VEL, sum to zero, the only
first-order contributions come from the derivatives with respect to e and ('. In other words, since

1 18 in
kL(5e kaJ i-'

the final form of the quasi-linear equation is a sum of resonant interactions and a gradient term which acts
on the electric field and the resonance function. The result is

Po(E, A, ,MGe{1 -6 -( X V)}IkRc{}M'*pFO (32)
fee k,n

The gradient term can be considered as the correction to the field intensity and its interaction which results
from expressing the field in guiding-center coordinates. As in Berk', Fo is the average particle distribution
after subtracting the "sloshing" energy due to the non-resonant wave-particle interactions, and f' is the
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bouncc-averagcd resonance function. Finally, the sum over resonances does not necessarily refcr to a sum
over definite resonant layers in space. In general, kl 7 0, and the resonances for each region of velocity-
space will occur in dilercnt regions of coordinatc-spacc.

FO is given by

Fo =fo + OMj ,E E7'j Im{Q;4}M,*Fo (33)

In Section 8, FO will be shown to represent the particle kinetic energy after the "sloshing" wave energy is
subtracted.

It should also be noticed that only the hermitian part of the matrix operators M, ... M enters~p* OP

Equation 32, since all of the anti-hermitian terms contain 0, and are not resonant. Therefore, Equation 32 is
real. The terms containing #4 are non-resonant because

-iwh, exp [-i v,,dt" = exp [-i Lndt"l

and the initial conditions at t -+ -co have been ignored.

Finally, for the simple example discussed in Section 3, VD = 0, E = = 0, and/al = 0.
Then, the sum of the terms containing pErj j1*I 'I, E E J, and 19E EI give

= 2 0( a+ - 21 -J+Re{Ui }pc(B 1 ~')Fo (34)

where terms of the order of v/c < 1 have been ignored, and tl'c slowly varying quantities which define the
diffusion paths are evaluated at the resonances. The identity - ,+ = 2J' was used. Note that
Equation 34 is the equivalent of Equation 12 derived from via the Maxwell-Vlasov equations.

6. Bounce-averaged Resonance Function

To calculate the bounce-averaged resonance function, an 1, the techniques used in Section 3 are
used again. First, un(O, ") is expanded about t" = 0 and 0 = t*, such that v(o*, 0) = 0. Then,
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-if v dt" -i [- P')/w + tL/(4*)I

P f-ifT2 +(ik - k*)/wB] 2 + ir2 *)2/W- (35)

and, for cases when i, / 0. thcn

-ifva(4*t + 2(4 - V + two/2) 2 + r- t0/121 (36)

In the above equation, the idcntity wjBaI/P = a/81 was used. In the first case, integrating first over time

and then over bounce angle gives

Ref{G } = J1 ' (37)
res

while, in the second case, the first integration is over 4, and the second over t', which gives

2_ WB ' ii/ dt'0/2

using the Pearistein identity1. The valuc of the resonant interaction is the same as that calculated in
Equations 10 and 11. - -

it is also informative to calculate the resonance function in a manner which illustrates the points of

Section 4. If we take a simple example, with kl = VD = 0, then the exact orbits for electrons deeply-

trapped in a magnetic well give

= J2 j2(r- 3 W 3 /4) (39)
pa e -! B wf-2/2 - 2ptW

where re] = nwcoVjj/L. The bounce resonances arc those shown in Figure 4. Thc resonance function

can be considered to represent the wave-particlc interaction in the limit that E -+ 0 and I -+ co. Those
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particles which do not have exactly the sarne phase during each pass through resonance cannot gain energy
as t -- o. Of coursc, this condition is also the condition which defined the fixed-points of Equation 14.

However, when thc electric field is finite, then the resonances overlap, and Equation 39 should be
equivalent to Equation 38. To show this, a broadening term is added to the resonant denominator, so that
the real part of Equation 30 is

Re{ff } J J,(rJo)el /4) (&LUjfl -
2 pw0) 2 + 772 (40)

( -/ff 8

where 7k can be considered to be defined from

77k A2 2 9 AM2

kk(E,p) I 2 2 + B2 k(E~p
2 A7 9E res

as in Equation 12. Then, since J,[p(1 + zp- 2/)] - (2/p)'/ 3 Ai(-21/ 3z) as p -+ oo, Equation 40
becomes

Re{ } J 4r2 2 Ai 2(-6Mnfle) (41)
p<O

for p less than zero, and

Re{F'} F J2 12 2p Ai2[( -W273f]

P>G 
(42)

wB(p - 8Mn/ 2wD + 1/4T3 3 2+172

for p greater than zero. To obtain these equations, the argument of the bessel function was evaluated at
resonance, or when

I + 8"n (43)

Then, as p -+ ±oo, 4r 3 1 1 ~ -1/p. Also needed is the cube root of p which, when evaluated,
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the real branch is used. For large Ipl, the sum over p is converted into an integral, and assuming that

17 > (6uoa/ 2wB - l/4-rfij%)2, then the bounce-avcraged rcsonance function is approximately

Re{T '} J' ?rr' 3Ai 2 (-6Omrefi) (44)

for those particles with Vjo > Viu(2&o,/nwco)I/ 2 , and

J ;7TffA[(&bJn 8 - (45)

for those particles resonant near their turning points. Equations 44 and 45 are independent of 1k. Note,
that these results are the same as those obtained from Equation 38. Finally, when p - 0, the particles are
resonant far from the bounce phases when either s - 0 or v* ~ 0. In this case, no simple expression for
?~~I can be found independent of 7.. For these particles, Equation 37 is the only simple way to calculate the
resonance function.

7. WKB Theory

In this section, the WKB theory for the wave propagation froiti the launching horn through the
plasma is discussed. The fundamentals of the theory of electromagnetic waves in an inhomogeneous plasma
are well.known (see, for example, Budden, 1961). When combined with the quasi-linear equation of Section
4, the theory presented in this report is the simplest, self-consistent model of non-relativistic clectron-
cyclotron heating in a mirror that conserves energy.

Two types of equations are needed. First, the local equation of energy conservation is derived which
determines the geometric and physical optics solutions for the propagation of electromagnetic waves. The
second is the bounce average of this equation, which gives the energy conservation equation for the trapped
particles. Regenerative effects due to the "phase-memory" of bouncing particles is ignored (see Berk and
Book, 1969).

From Maxwell's equations, Poynting's theorem is

*(IL- X ) +1 +(l I ) + -Re{E k Jk} =0 (46)

which can be written as

roa al 1 --
- V -. {w(1 - N2)8,, - wNN'} IE'E'lk = 41rRe{L.Rt -Jk} (47)

lot 6Jc~ 2
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The last term is

47rq 2  dEdli v ri
41rRe{Fk .Jk} = -- Re E B v Ek

0 e (48)

X ' " , ) exp [-i j dt"(w - k- v)(

The sum over ± refers to the direction of motion along the field lines. The time dependence of M'LaO/vI
can be treated as those in Equation 27 by transforming to the complex basis. E7 can be expanded as in
Equations 23 and 24, except in this case, the field is expanded about (r, t) instead of die guiding-center

coordinates since the local currents are to be found. In addition, fo(Y, s) can be expressed in terms of r as in
Equation 32, which gives

fO(E' , y ' s) {__ '+ nk -( x V)}fo(E, M, r)

Then, with vi = (6n,n,-,pWce-iIV+Voei(+r/2)/sA, / v1l),
Equation 48 becomes

4xRe{E_. -jk} =Re{1 - +E

4 f dEdgB i Mm{I+6 ( X V)}fo(49)

Which, when combined with Equatiod 47, gives the local, energy conservation equation

V O(_M 1 1V-J a (aDc ( 1[ri\ i t~
+ D'k2I~ r.) + 1k 0 (50)

where Dj' = Dj + iD3 is the local dispersion tensor
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ii = (1 - N2 )J3 + N N'

- 1dEsBw-{l+ - ( X V)}fo (51)

Equation 50 contains the first terms of a WKB thcory for electromagnetic wave propagation in an
inhomogencous plasma. This is a generalization of the one-dimensional. electrostatic WKB thcoiy derived
by Berk and Book, 1969. For electromagnctic waves, the dispersion relation to all orders is

J d3 r' Dii(r' - r, (r' + r)/2) ()-iM'-r) = 0

or, if Dij andE vary slowly over a wavelength,

2r (air '.a O )8 O ) ( 9r a7 D1 (k(r), r) 19 E (r) = 0 (52)

The zeroth-order equation, D rE'i = D ,e(kd e, w)' 2 = 0, is an eigenvalue equation. The

matrices DW and D. are hermitian for the same reason that Equation 33 is real. Furthermore, it can be
shown that, when mode-coupling due to the plasma geometry is ignored, DII and D2 commute so that
they can be simultaneously diagonlized. The solutions to this equation give geometric optics. This is used
to determine the path of mode-energy flow. However, the first-order terms are needed to show energy
conservation. The eigenvcctors are the polarizations of the local modes, and the eigenvalucs are the solutions
toDi mo= 0, or k,,,M. = V )X,je(r).

Briefly, the procedure for computing the ray path is as follows. First, the ray path is considered to be
sub-divided into many small segments Ar. Within each segment, the dispersion tensor is diagonalized, and
the dispersion relation and polarization for each of the cigenvectors, or modes, is found. The electric field at
the back-side of Ar is then expressed in the basis formed by the mode polarizations. Finally, each mode then
propagates at its group velocity to the front-side of Ar, and the process is repeated. The group velocity is

S= -k ) (53)
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and, from its role in Uquation 50, the group velocity is the velocity of energy flow. Furthermore, since

D = 0 for each mode, the change in k after crossing Ar is given by

-= VD (54)

Together, Equations 53 and 54 can be considered as the velocity of the modc-energy in (r, k) phase-space.

Note that Equation 54 incorporates Snell's law, since k only changes in the direction of the gradient ofDR.

To obtain the physical optics solution to the problem of the wave propagation, the next-order terms
of the WKB dispersion equation are used. These are equivalent to the energy conservation equation already
derived (ie. Equation 50). This equation can be put into the familiar form if D' is diagonalized as before and
if the total energy per mode is defined as

Wk = T (55)

This gives

OWL
W ) + -9WI 2ki - Wk= 0 (56)

where k, is the imaginary part of k given approximately by

k =-D}

The solution to Equation 56 for each mode gives the physical optics solution to wave propagation. If
the medium is loss-free, then the field intensity increases as- 1/v along its ray path. When v* -+ 0, higher

order derivatives of the field must be added to Equation 50. If the turning point is linear, then the Dh can be
expanded about r w ro, giving

DR: V V E - (r -ro) -(V D )1 w 0 (57)

Then, assuming that the spatial dependances are locally separable, then this equation is an Airy equation for
that component of propagation along the gradient DX. In this way, the standard WKB connection formulas
and.reflection coefficients can be calculatcd' 3 .
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8. The local resonance function .

The local resonance function used in dhe WKB theory function differs from the bounce averaged

version used to determine thc electron cncrgy evolution. The local resonance function includes both the

reactive, induced plasma currents and the local, resonant dissipation. The induced currents determine the

real part of tie dispersion relation which is uscd to calculate k = V X(r).

The local resonance function has three forms. For particles far from a stationary point. the resonance

function is

At this location, these particles are purely reactive.

When, a particle is near a stationary point, then

n 1 fl 7rtfGffr

And, when s t L/ I 0, then Re{;-1} m J2 zrffAi(L'7,r;f), and Im{1;-'} d j raeGi(vnff)

where Gi(z) - 1/ rz and Gi(-X) ~ x-1/2.--1/3 cos (2x 2 / 3/3 + 7/4) for large z.

9. Bounce-averaged energy conservation

The local, energy conservation equation can be bounce-averaged to show the self-consistency of the
approach used in the reporL The total loss of wave energy averaged over the bounce motion of the trapped

particles is equal to the bounce-averaged change in particle kinetic-energy.

The bounce-average of Equation 50 is

J W+ 1W =- Ell (60)

What is meant by the bounce average of the left-hand side is that the integral over velocity-space within each

term is to be carried out after the bounce average. The equation states that the average of the divergence
of the Poynting's flux and the time rate of change of the electric energy along the particle's orbit is equal

to the loss of particle kinetic energy due to the local resonances. The integral on the left-hand side will not
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be evaluated. However, the right-hand side is consistent with the bounce-averaged quasi-lincar equation,
previously dcrived..To show this, the time rate of change of the electroi kinetic energy is

(9y d~dgB I V (9FO
f |VJ B E Fo f dv 2m yy (9

t2

d v 1v -v Mj Re{f~~ }Ii E kA'I Fo
tes

Equation 61 is now integrated by parts which is performed most easily when the left-most difflusion operator
has been re-expressed in terms of a real, cartesian coordinate system. This gives

8 dEd E% = I vi { od

(62)
= r (D'E Ejl

res

Therefore, the increase in trapped particle energy is equal to the loss of wave energy. For each region in
velocity-space, the energy is exchanged at1ocal, resonant interactions.
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