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TRAJECTORY ANALYSIS OF THE ELECTRONS IN A MAGNETRON-TYPE GUN
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ABSTRACT

In this report modification is introduced in the

Herrmannsfeldt electron trajectory code to analyze the trajectories

in magnetron injection guns with perveances in the range of

10- Perv. When tested on a particular magnetron gun, the computed

perveance agreed well with experimental data for values < < 0.006,

v Bu
the flow was nearly laminar with L values reaching 12%. For larger

voltages, both experiment and calculations indicate a "turbulent"

electron flow.



I. Introduction

The analysis of the detailed motion of electrons emitted

from a crossed-field gun is very difficult, especially if space

charge effects are important. The magnetron gun has found application

in strong beam-plasma discharge experiments and in gyrotron mm wave

oscillators. In the first case, the operation is usually space charge

limited and the perveance (I/V3/2) is in the range 5 - 15 x 10-6 A/V3/2

and the literature indicates little or no attention being paid to the

ratio of perpendicular velocity to parallel velocity (vj/vg ) of the

emerging beam. In contrast gyrotron guns are operated temperature

limited at fairly low perveance ('.10-6), and considerable care is

taken to achieve a uniform and desired value of v/v1 . The design

of gyrotron guns is usually based on computer calculations of electron-

trajectories. Various computer codes have been used, among them is

the Herrmannsfeldt trajectory program. [1]

In the beam-plasma experimental literature several experimenters

have noted that more efficient power transfer to the plasma occurs when

the incident electron beam has a significant value of vL/vI, (about

1/2 or so). These values were achieved by tilting the gun axis to the

magnetic field axis, or by using a magnetic lens.[2] However, in many

other experiments where it is implicitly assumed that vi./v, ~ 0, this

may not have been true. An example is the experiment by Klinkowstein

and Smullin [3] where the drift cyclotron instability was quenched by

injecting an electron beam into a mirror confined plasma. A magnetron



injection gun was located far outside the mirror peak. If the

initial beam had any significant amount of v1/v11 at the gun, this

would have been multiplied several times by the time it reached

the plasma where the field was some four times greater.

If electron beams are to be used for plasma heating or

stabilization it is important to be able to design them so as to

optimize the efficiency of the beam-plasma interaction. This was the

motivation for undertaking these studies.

The Herrmannsfeld SLAC program is a computer code [1] that

has been developed at Stanford Linear Accelerator (SLAC) to handle

problems involving the design of electron guns and particle trajectories

under static electric and magnetic fields.

In Constance I experiments [3] the electron gun was located

in a region having a strong magnetic field and consequently the

electrons emerging from the cathode start to bend due to Lorentz

force several tens of microns away from the cathode surface. This fact

which characterizes all electronic emission in magnetron guns is not handled

properly in the SLAC program.

In most applications using this code the magnetic field was

weak enough such that it was quite reasonable to assume that electrons

come out almost perpendicular to the emitting surface and remain in

this perpendicular direction for several mesh units, where the mesh

unit is chosen to be almost 1 of the cathode rAdias.

Consequently, the simple Child's law used to calculate emission

from the cathod surface, knowing the voltage at a surface drawn parallel

to the cathode and at a small distance, should be modified to account



for the complicated trajectory behind that surface.

In the next section, the electronic space charge limited

emission from a planar cathode under a strong magnetic field and

electric field is discussed, in Section III the algorithm used to

calculate the current of each ray being emitted from the cathode

as well as the three velocity compoents of the ray is outlined;

then in section IV the modifications we introduced into the code

are listed as well as the location of the FORTRAN statements

that are added to the program. Finally in Section V, a trajectory

analysis of the electrons in our gun is shown and general results

are drawn from the analysis.



II. Electronic Space Charge Limited Emission from a Planar Cathode

Under a Magnetic Field

Consider an emitting planar surface which emits electrons with

zero velocity and let us then apply a magnetic field B inclined to

the planar surface by an angle 0, and assume that an anode exists at

a distance d from the cathode with an applied voltage V (Figure 1).

It is assumed that the end effects of both the cathode and

anode can be neglected, so that the actual configuration approaches

the infinite electrode picture; hence due to symmetry in the x-z plane,

space charge density, velocity and voltage depend on y only.

The force equations for a single electron are:

dvxeB sin e 
(1)

dt m z()

dv e
- eE y) eB os0 2

d v sin 0 + vY cos 0 (3)

For a steady state flow the current density J is constant along y

and consequently the space charge density p(y) is given by:

p(y) (4)
vy()

From Poisson's equation



dE(y) J (5)
-dy Cov;Fy)

Hence

SdE d -J__ (6)
Rdt y dt "

From equations (1), (2), (3), and (6) we can get the following

set of equations

+ sin2 2 - 2 sin O cos 0 v, =0 (7)

dy 2 2 2. _J

d2 + wc Co V - WC sine0 cos m0(8

i~h~ dv x (9)z wC si n 0 7F

where = eB

Assume that each electron is emitted at time t = 0, so

the initial conditions of the above three equations are v (0) v (0) =

vz(0) = 0. The solution is easily found to be:

v x = sin e cos wct + p sin - (10)

(L t)2 2
V (t) = yCos 6 Cos W Ct + p cos 0 -2 tan20 + 1(1



vz(t) = -P sin wct + P()ct)

Let x(O) = xo, y(0) = 0, z(0) = z

Hence the parametric equations describing the electron trajectories are:

Wc ( -x) = x sin 0 i

W = y cos 0 -sin Wct

Wc (z - z 0) = Cos Oct

(w t)3
in w t + .c6

c 6 -

(w t)3
+ - tan 26 +

+ ( C t) 2

2.1

where y=- eJ cos e
me W 20 c.

Now let us derive the electric field and voltage at position y

at time t. From equation (6)

E(t) i (16)Co0

dV= -E i t
C 0

t'v (t')dt'

V(t) = p 0 tan20
(Oct)

2

+ 2 - Nc) sin (wct) + 1 - cos (Wct)

(17)

at t = 0.

Wcjt

wc]

(13)

(14)

(15)

(12)

t
V = - 0



T = , and we assumed that the cathode voltage is zero.

The above set of equations are found in [5], but a more

comprehensive discussion of the theory of the planar magnetron was

originally given by Brillouin [6].

III. Algorithm for the Starting Conditions of Each Ray

The SLAC program draws a starting equipotential surface parallel

to the cathode; and the distance d from the cathode to the position

where each ray emerges is computed for each ray. The starting surface

is divided into small sections and each ray emerges from one section and

is supposed to carry all the current emitted by it.

For each ray we have three available parameters:

i. V the potential energy at the point where the ray emerges

which is denoted by the FORTRAN matrix element PU(6).

ii. The normal separation of the starting surface from the

cathode at this same point d which is denoted by

XO(7,K) & PH1.

iii.The width of every section DLR.

The first step to calculate the emission using the set of equations

(10 through (17) is to calculate the inclination of magnetic field

to the starting surface e.

Having determined 0, equations (14) and (17) are used to

solve for t and p. Let us put wct = T, hence from (14) we get

Wcd = I cos 0(6 tan 28 + T - sin).



and hence

22[4 2T

- d( tane + - sin T + 1 - cos T

V S - V C 2 (8

Y cos2e tan2e + T - sin T

VC is the cathode voltage, V5 the starting surface voltage.

Equation (18) can be solved numerically to find T in terms of

V- VC and note that for the case of a tangential magnetic field

(0 =0) equation (18) has no solution for (Vs - Cbut
(0 vC) < nCOS20 I u

for 0 0 there is always a solution. The physical reason we get no

solution for the above conditions is that we get a Brillouin flow for

small voltages and the rays may never reach the starting surface. In

this case the starting surface should be chosen closer to the cathode.

Once equation (18) is solved for T, we can substitute in (14)

to find y1 and the current density |J|; also by substituting in equations

(10), (11) and (12) the three components of velocity v , vy, vz are

found. This algorithm is used for each ray provided that T > 1 and

this requires that

v Mesh unit
- oc

|jIav is put equal to the estimated maximum current density DENS.

If this condition is not satisfied the algorithm is still correct but

in order to save computation time the original algorithm is used in



which Child's law of a planar diode is applied and the velocity of

the emitted electron is assumed perpendicular to the starting surface.

IV. Modifications to the Original Program

The source of modifications are equations (10), (11), (12),

(14) and (18).- They are introduced into subroutine CHILDA and in a

new subroutine that is called CHILDC. Let us state these modifications

in some detail.

1. Subprogram CHILDA is used to evaluate the initial

conditions of each ray using the given parameters: Voltage

on the starting surface, and the separation of the point

of emission of the ray from the cathode. .

A transfer of control to our algorithm is introduced by

satisfying the condition TI DENS << Mesh Unit, otherwise
CWo c

the calculations of the initial conditions proceed as

usual, The new array element CRl(K) is used to determine

for ray K-whether we use CHILD's law or equation (18) to

find the current; CR1(K) = 1 DENS

eo w(Mesh size)

2. A new subroutine CHILDC (BR, BZ, K, TAU, & 420) is used to

calculate SINE = sin 0 and COSN = cos 0 using BR & BZ the

components of the magnetic field along the radial and

axial directions of the gun, and also the inclination of

the starting surface which is contained in the direction

cosine of the electric field PU(l), PU(2). Then using



the bisection method one can solve equation (18) to find T,

and from T, the current density, v , v , vz are calculated.

The velocity components along the radial, axial directions

are calculated by rotating the x-y coordinates by an angle

81 where 81 is the angle between the starting surface and

the axial direction

XO(4,K) = vy cos Ol vx sin 0

XO(5,K) = vX cos 1 + vy sin 0

XO(7,K) = vz

This subroutine returns the values of XO(4,K), XO(5,K),

X(6,K) as well as the current density Jc at the position

where ray K emerges.

3. The amount of current emitted by the section per radian from

which the ray K emerges is given by Jc DLR X0(l,K), where

DLR is the width of the emitting section and XO(l,K) is the

radial distance of that section.

The amount of space charge inserted behind the starting

surface is kept untouched.

At the end of this report a listing of the added statements

is given as well as the new subroutine CHILDC., new lines

ormodified lines are clear in the listing.

F



4. An external routine is stored on file to process the

plotted output of the program on the Calcomp machine of

IPS at MIT.

V. Results of the Trajectory Analysis of the Gun Used in Constance I

Experiments

In figure 2 a sketch of the gun used in [3] is

given, more details about the gun can be found in [7].

The perveance was found to vary for different ± ratios.
B2

The trajectories were almost laminar for V/B2 up to 0.00612

Volt/Gauss 2.

At higher voltages the flow becomes nonlaminar and the

program cannot handle this case with a moderate mesh size,. In this

situation the flow becomes very turbulent and this might be the source

of large level of noise observed in [7] for this gun. The modification

used in this program gives excellent results for very strong magnetic

fields and the criterion we can use to find this condition is that the

parameter 1 should be much smaller than the mesh size.

It-is worth mentioning that in this code it is not advised to

decrease the mesh size without limits since the cost of running the

program will increase exponentially while the stability of the solution

may deteriorate.

In our gun with a mesh size of 1 mm, L becomes larger than
c

1 mm for V/B2 higher than 0.00612 Volt/Gauss and the program doesn't

converge in this region.



However for anode voltages less than 0.00612 Volts/(Gauss)2
B2

the solution is convergent and is characterized by the following features:

1. The perveance is 12 y1P at V = 0.00204 Volt/(Gauss)2 and

increases to a maximum of 18 11P at B = 0.00612 Volt/(Gauss)2
B2

which is consistent with the experimental results found

in [7].

2. The beam thickness increases with voltage.

3. The average velocity in the perpendicular direction is

almost 4% of the axial velocity for = 0.00204 Volt/(Gauss) 2

and increases to 8% at = Volts/(Gauss)2 to
B 2

almost 12% at 0.00612 Volts/(Gauss)2, which shows that the

perpendicular energy increases as the voltage is increased.

4. With increased voltage the spread in the perpendicular
Va

energy increases also especially near - 0.00612 Volt/(Gauss)2
B

which is the limit beyond which the flow becomes turbulent.

It should be noted that in the experiments [3] the ratio of the magnetic

field at the mirror center to the magnetic field at the gun ~m '
gun

The ratio between the perpendicular energy of the electrons at the mirror

center to their energy at the gun is given by the above magnetic field

ratio.

m B

-gun gun



vaThus for V/B 2=0.006, the ratio 'L is almost 24% at

the center of the mirror in the above experiment.

The results were obtained for slightly higher ratios of

V/B2 so that we conclude that the ratio 0.24 is only a rough estimate

of the quantity in [3].

r
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MODIFICATIONS IN SUBROUTINIE CHILDA

C **************************** CHILDA *************************

180 DC 220 K = 1 , iAY,KRAY
X01 = XO(1,K)
X02 = XO (2,K)
XC(3,K) = 0
CALL PETIAL (XC1,X02,PU,&420)

PHI = XO(7,K)
DLR=XO(8,K)
DEN DENS * DLR
ERV = PU(6) - POT(1)
II(K)=0.O
IF (EEV.LI..0,0) GO TO 220
RHO = XO(1,K)
ZETA=XC(2,K)
IF (RECT) GO TO 185
IF (.NOT. AG) GO TO 185
30O2=0.0
IF (MAG) CALL CHILMG(B0B02,6420)
BT=DSQET (rZ*BZ+BR*BR)
CI (K)=3. f511&-6*DENS/ (ET*BT*BT)/(UNIT* UNIT* UNIT)
IF (CRI(K).GT.1.0) GO TO 185
CALL CHILEC(EFSBZ,K,TAU,&420)
II (K) =DLR*II (K) *(RH0+IAX)
GO TO 205

185 CRI(K)=2.0
IF (XO(9,K) ,NE, 0.0) GO TO 200
IF (BETA2 .EQ. 0.0) GC TO 190

IF (RECI) RHO = RAD + PHI
BETA2 = DLOG(RHO/(FHO-PHI) )
BETA2=(BETA2*(1.0-0.4 $BEIA2+0.O916667*BETA2*BETA2
-0,01424242*BETA2**3))**2

DO 370 K = 1, RAYXRAY
X01 = XO(1,K)
XC2 = XO(2,K)
IF (PEEVL .NE. DABS(PERVO)) GO TO 290

10(K) = II(K) ' PROPO
GO TO 300

290 IO(K) =0.5*(IO(K)+II(K) )
300 CALL PRTIAL (XO1,X02,PU,&420)

IF (CPI(K).LT.1.0) GO TO 305
EEV =DSQRT( EU(1)*PU(1) + PU12)*PU(2) )
IF (EEV .EQ. 0.) GO TO 420
SINE = PU(1) / EEV
COSN PU(2) / EEV



RHO = XO(1,K) - SINE*XO(7,K)
ZETA = XO(2, ) - COSN* XC(7,K)
DORC2=0. 0
IF (MAG) CALL CHILMG (B0i02,6420)

305 RHO = XO (1,K)
DEN=DENS*XC (8,K)
IF (,NOT, ELCT) GO TO 310

10(K) = AEIN1(I0(K),DEN )
GO -0 320

C ------
310 TERM1=IO(K)

LdE:5=DEN+ (RFHO+IAX)
10 (1) = D iI1(TERM1,!IEFM5)
IF (CI(K)-1.0) 315,320,320

315 X04=XO(4,R)
X05=XC(5,K)
SIuE= XC4/ESQRT (XC4*XC4+XG5*XC5)
COS U=X5/DSR T (XO4*XC4+XO5*X05)
GO TO 325

C-------
320 = IDINT(RHC)

ZETA = XO(2,K)
Z=IDIiT (ZETA)
BZ?2=0,0
IF (MAG) CALI CHIL:G(BZE2,9420)

C *t BUSCH'S THEOREM
XC (6,K) = UNIT *EGM, (3ZER2-DORC2)/(2.0* (RHO+IAX))

C * INCLUDE PE EV INITIAL EN-EGY
325 EEV = ?:J(6) - PCT (1)+PE

EEV = ZEV - (XC(6,K)/SEOM)*(XO(6,K)/SEOM)
IF (EEV .LT. 0.) GO TO 360

aBETZ=EEV* (EE V+2.0LAM) /(EEV+L AM)**2-

END
C * ENr C1IIDA ***********************

ED CF SUBECUTINE CHILDA



SUBROUTINE CHILEC

C ********** CHILDC ****************************
C CHILJC IS USED TO CALCULATE THE EXACT ELECTRON TRAJECTORY BEHIND THE
C STARTING SURFACE

SUBRCUTINE CHILrC(DRBZ,K,TAU,*)
IMPLICIT REAL-8 (A-H,O-Z)
REAL JC,!I,XO,IC
REAL*8 LL
COMMON /A.EAY/ lL(51),0o(51),II(51)
COMMON /EOIXO/ UNI T,EEV, PHI, ALP H, APS,EAD,EOM,SECM,

C PE,PERVO,XO(9,!1)
CCMMO1 /FHZET/ BHC,ZEIA,PU(6)
EEV 1= DSQET(PU (1) PU (1) +PU (2)*PU (2))

SINE1=PU (2)/EEV1
COSN1=PU(1)/EEV1
BT=DSQRT (BZ B Z+BB'BBR)
SINE2=BE/BT
COSN2=BZ/BT
SI11E=SIN11CO SN2+SINE2*COSN1
COSN=COSN 1-COSN2-SINE1'SINE2
IF (S1INE.LT.0.005) SINE=0.5D-2

5 I=0
TAU1=0.0 1D1
TAU2=90. 3D+1 -

10 IF (I.GT.100) RETURN 1
I=i+1
TAU= (TAU1+TAU2)/2. 0
JC=PHI/(3.654449D- 6*CSN*CCSN/(UIT* UNIT*UNIT)* (TAU*TAU

1 TAU!SINi3SINE/ (COSN*COSN)/6. +TAU-DSIN(TAU))(BT*BT*BT))
F2=2. 349 4112D- 8*CCSN*COSN-JC*JC/ (BT* DT* BT EBT)/ (UNIT*UNIT

1*UNIT1UNIT)* (TAU TAU+TAUETAU*SIN*SINE/(CCS N*COS N)/8.0+TAU*TAU/2.0
1-TAU*DSIN (TAU) + 1. O-DCOS (TAU) ) -EEV+PE

C SOLVE FOR JC AND TAU USING THE BISECTION METHOD IETHOD
EPS=F2/EEV
IF (DABS(EPS) .LT.0.001) GO TO 18
IF (F2) 16,18,17

16 TAU2=TAU
GO TO 10

17 TAU1=TAU
GO TO 10

18 CCNTIiUE
VX=0.64289069D+2*JC/(UNITUNIT)*SItiE*CCSN*(TAU*TAU/2.0-1.0+rCOS(TA
1U))/(3T*BT)
VY=0.64289J69D+2-JC/(UNIT*UNIT)*CCSNrCOSN*(TAU*TAU*SINE*SINL/(COSN
1*COSN)/2.0+1.0-DCCS(TAU))/(BT*B7)
XO(6,K)=0.6 42890691+2AJC/(BT*BT)* (TAU-DSIN(TAU) )/(UNIT*UNIT)
XO (4, K) =VY*CCSN 1-VXA SINE1
X0 (5,K) =VY* SIN E1+VXCOSN1
IF (ABS(XO(5,K)/XC (4,K)).GT.0.05) GO TO 28
EEV=0.91*lEV
GO TO 5



28 II (K) =JC
30 RETURN

END

END OF CHILDC

wommododomm"



PROGRAM FOR PLOTTING OUTPUTS CN THE CALCOMP PLOTTING MACHINE

REAL XFCTYFCTXPAGE,YPAGE
XFCT=1.0
YFCT=1,0
DIMENSION X (1000),XArrAY (1000),Y (1000),YARRAY(1000)
CALL PLOTS (ID,ID,11)
WRITE (6,1)
XPAGE=0, 0
YPAGE=0. 5
IPEN=3
CALL PLOT (XPAGEYPAGE,-IPEN)

1 FORMAT(1El1,'STAFTING TO PLOT')
10 RE.AD (1) , L, A, BC,D, (X(J) ,J=1,I) , (Y(J),J=1,L)

IF (I.LT.0.CR.I.GT.8) GO TO 190
IF (I, Q.4) GO TO 200
IF (I.EQ.3) GO TO 180
IF (I.EQ.0.O.I.EQ.7.OR.I.EQ.8) GO TO 170
IF (I.EQ.5) GO TO 160
IF (I.2 Q.1) GO 'O 150
IF (.EQ.2) GO TO 140
IF (I.EQ.6) GO TO 130

C S2' SCALE FACTORS
130 XFCT=C/A

YFCT=D/B
CALL DFACT(XFCT,YFCT)
GO TO 10

C DRAW A Y AXIS
140 XPAGE=0.0

YPAGE=0,0
NC HAE=6
AXLEN=A
ANGLE=90.0
FIRSTV=D
DELTA= 8
NBR=1
K=0
DIST=1.0
IF (M.EQ.0) GO TO 141
XPAG=-1. 0
CALL AXISl(XPAGE,YPAGE,'B AXIS',NICHArI,AXLEN,ANGLE,FISTV,DELTA,NBR

*, K, DIST)
XPAGE=0.0
YPAGE=0.0
IPEN=3
CALL PLOT(XPAGE,YPAGE,-IPEN)
GO TO 5

141 M=1
CALL AXIS1 (XPAGE,YPAGE,'R AXIS',NCHARAXLEN,ANGLE,F.RSTV,DELTA,NBR
*,K,DIST)

5 WIE(6,2)
2 FORMAT(1H1,'Y AXIS')
GC TO 10



C DRAW AN X AXIS
150 XPAGE=0.0

YPAGE=-0. 0
M=0
NCHAR=6
AXLEN=A
SX=A
ANGLE=0, 0
FIRSTV=D
DELTA=B
N BR= 1
K=0
DIST=1.0
CALL AXIS1(XPAGE,YPAGE,'Z AXIS',NCHAR,AXLEN,ANGLE,FIRSTV,DELTA,NBR
*,K,DIST)
WRITE (6,3)

3 FCRMAT(11ii,'X AXIS')
GO TO 10

C PICT 2CINTS
160 CALL DIVIDE(A,B,L,X,Y,XARRAY,YAPEAY)

NBRPTS=-L
SIZE=0
CALL GEAPH(XARRAY,YAtRFAY,NBRPTS,SIZE,INTEQV)
GC TO 10

C PLOT A LINE
170 CALL DIVIDE (A,B,LX,Y,XARRAY,YAREAY)

NBRPTS=L
SIZE=0
CALL GRAPH(XARRAY,YAPAY,NBEPIS,SIZE,INTEQV)
GO TO 10

C GET A CLEAN AREA OF PAPER
180 XPAGE==XFCT4SX+3.0

YPAGE=0. 0
IPEN=3
CALL PLOT (XPAGE,YPAGE,-IPEN)
WEITE (6,4)

4 FOEMAT(1H1,'END OF GRAPH')
GO TO 10

C GET AN ERIOR MESSAGE
190 WRITE(6,195)
195 FORMAT(111,'UNEXPECTED VALUE FOR I ,EXECUTION TERMINATED')
200 CONTINUE

XPAGE=5.0
YPAGE=0.0
IPEN=3
CALL PLOT(XPAGE,YPAGE,-IPEN)
XPAGE=0.0
YPAGE=0.0
CALL ENDPLT (XPAGFYPAGE,999)
WRITE (6,210)

210 FORMAT(1H1,'END OF PLOT')
E ND
SUBROUTINE DIVIEE(A1,B1,L1,X1,Y1,X2,Y2)
DIMENSION Xl(1000),Y1(1000),X2(1000),Y2(1000)
DO 25 J=1,L1



X2 (J) =X1 (J) /Al
Y2 (J) =Y 1 (J) /B 1

25 CONTINUE
RET MN
END

END OF PLOTTING


