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Particle Orbits and Diffusion in Torsatrons

by

Robert Edward Potok

Submitted to the Department of Nuclear Engineering on May 9,
1980, in partial fulfillment of the requirements for the
Degree of Doctor of Science in Nuclear Engineering.

Abstract

The orbit characteristics of thermal and high energy
particles in torsatrons are investigated with the aid of a

computer code utilizing guiding-center equations accurate to

second order in p. Multi-dimensional cubic spline interpo-
lation is used to calculate B, VB, and E in a highly effici-

ent manner. Background plasma rofilesof voltage, electron

temperature, and density are mapped onto the flux profile

within the separatrix, and these plasma properties are used

to calculate drag, E xB, and velocity diffusion forces.

An analysis of the vacuum orbits of 3.5 MeV a-particles
in torsatron vacuum fields shows that the particles may be

grouped into two general classes, well circulating particles

and blocked particles. Particles with V,, Vj. have suffi-

cient parallel energy so that they are never reflected by

the helical or toroidal modulations in the magnetic field.

Their orbits are characterized hy extremely periodic motion

on well defined drift surfaces. Blocked particles, on the

other hand, are reflected by the modulations in B, and they
can make frequent transitions amnong quasi-circulating,
tokamak-like banana, and helically trapped orbits. Because

of their non-periodic motion, their orbits do not conserve
the second adiabatic invariant J, and the randomness of the

phase of the bounce motion within a ripple results in varying
particle drift positions after successive poloidal orbits.

These particle orbits are contained in three-dimensional
drift "regions".

The alpha-particle containment properties for reactor
size torsatrons of various aspect ratios are computed by
analyzing single particle orbits. A coarse grid in a four-
dimensional phase space (three spatial directions and a pitch
angle direction) is created, and the confinement properties
of a test a-particle distribution are mapped onto this grid.
Then, each grid location is weighted with a source strength
corresponding to the fusion reaction rate for the local values
of nDT and Ti, and the field a-particle distribution function
and confinement properties are found, Results show an overall
a-particle percentage power in torsatrons of 99% for RO/a=12,
90% for RO/a=6, and 65% for Ro/a=3. From a plasma heating
point of view, such containment for moderate aspect ratio
devices (order of 90% - 99%) is quite acceptable.
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The ion thermal conductivity (Xi) in torsatron confi-
gurations is measured by analyzing the interaction of a test
particle distribution with a background plasma. For each
measurement, 360 test ions are launched on a given flux sur-
face. These test ions have a pitch angle and energy distri-
bution appropriate to an isotropic Maxwellian with tempera-
ture equal to that of the background ions, and are uniformly
spaced poloidally. The test distribution interacts with the
background distribution through pitch angle scattering,
energy scattering, and energy drag. The kinetic energ
distribution function Ui(X,t) = fd3 V f.(X,V,t) m. V is
created, and Xi is determined by:

l/t T dX (X-X U. (X,t)
Xi

= fdX U (X,t)

Numerical calculations of Xi show the presence of a
plateau regime extending over two orders of magnitude in
collision frequency. The value of the ion thermal conduc-
tivity is found to be approximately equal to the neoclassical
plateau value for an equivalent torus without helical
modulation. The theoretically predicted adverse l/Vii
scaling of Xi due to ripple trapping is not seen (vii = ion-
ion collision frequency). This discrepancy is attributed to
the difference between the theoretical and observed motion
of particles trapped in the local magnetic ripples.

Power losses due to bremsstrahlung, ions scattering
into unconfined orbits, and ion diffusion are calculated,
and compared with the power being deposited into the plasma
by thermalizing a-particles. Results indicate that a moder-
ate aspect ratio torsatron with Bzo = 5 tesla, <aplasma>=
2.1 meters, acoils = 4 meters, can meet or exceed ignition
criteria with T. 10 -20 keV.

Thesis Supervisor: Lawrence M. Lidsky

Title: Professor of Nuclear Engineering

:1 1
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Chapter I. INTRODUCTION

The family of plasma confinement devices that in-

cludes stellarators, torsatrons, and heliotrons is of

considerable interest for controlled fusion applications.

These are toroidal devices in which closed, nested magnetic

surfaces are generated in the vacuum magnetic field by a

helical configuration of the external windings. In this

work two vital physics areas fundamental to torsatron plas-

mas have been examined. Both are related to the energy

balance that would be maintained in a steady-state torsatron

power reactor. The analyses reported here were performed

for a torsatron magnetic field configuration because of the

torsatron's particular compatibility with the engineering

and plasma physics constraints of fusion power reactors.

The energy balance of the torsatrons studied was

based on the DT fusion reaction:

D + T + (He + 3.52 MeV) + (n + 14.06 MeV)

This reaction was chosen because of its uniquely large fusion

cross section at moderate plasma temperatures (~ 15 keV).

For steady-state plasma conditions, an instantaneous balance

exists between the energy lost by the plasma through all

mechanisms and the energy delivered to the plasma from ex-

ternal sources and fusion reactions. In the DT fusion

reaction, the neutron leaves the plasma unimpeded, and only

4the 3.5 MeV He particle can act as an internal energy
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source for the plasma. If these energetic a-particles

fail to balance the plasma's energy losses, the plasma

might still be driven into a steady state by an external

power supply, but it would be difficult to convert thermo-

nuclear heat into salable electric power economically if the

large power losses from the plasma had to be balanced by

reinjection. It is therefore of fundamental interest to

measure the energy loss rates of the torsatron plasma, and

to find to what extent these losses are balanced by energy

deposited by the a-particles.

In this thesis, the power deposition profiles of

a-particle distributions were measured through numerical

simulation of particle orbits. Tracking an a-particle in a

torsatron from its fusion birth to thermalization (typically

~ 5000 poloidal orbits in helical toroidal fields) requires

an exceedingly fast and accurate particle-following routine.

In this thesis, the tracking code utilized guiding-center

equations accurate to second order in p, the adiabatically

conserved magnetic moment of the particle. An efficient

method for finding B, V B, and E within the torsatron was

also required. The magnetic field was calculated from a

set of specified external conductors. This method was

used, instead of recourse to a model field, in order to

ensure that no significant oversimplifying assumptions

regarding field configuration were made. Field quantities

were calculated on a three-dimensional mesh, and multi-

dimensional cubic spline interpolation was used to calculate
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B, VB, and E at arbitrary points within the spline grids.

This interpolation method was used because it represents

B, VB, and E as smooth and continuous functions (a require-

ment for accurate tracking). The tracking code could

perform ~ 106 evaluations of B and VB per CRAY CPU minute,

over 100 times faster than codes that evaluate B and VB

directly from the set of external conductors.

Numerous a-particles were tracked in each of the

torsatrons studied, and the orbit characteristics of par-

ticles at various pitch angles and spatial positions were

found. An a-particle distribution and energy deposition

profile were found by combining the data of a set of a-par-

ticle orbits which filled a coarse grid in a 4-D phase space

(three spatial dimensions and a pitch angle direction).

This led to an accurate calculation of the percentage

confinement in the plasma of the a-particle energy.

The diffusive energy loss rates in a torsatron plasma

were determined from measurements of the ion thermal conduc-

tivity (Xi). For each measurement, a test particle distri-

bution (with a pitch angle and energy distribution appro-

priate to an isotropic Maxwellian with temperature equal to

that of the background ions) was launched on a given flux

surface. X was determined by measuring the rate of

diffusive spreading of the test particle distribution. The

energy loss rates due to diffusing ions and bremsstrahlung

were calculated, and compared with the power deposited in

the plasma by thermalizing a-particles.
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The observed scaling of the diffusive power loss

was also compared with that predicted by neoclassical

transport theory. A fundamental feature of the torsatron

(and the entire stellarator family) is the presence of a

strong helical modulation, or ripple, of the field strength

on the flux surfaces. Neoclassical transport theory has

associated with this ripple large transport coefficients,

due to the particles which are trapped in the helical

magnetic wells. The 1/v dependence of these theoretical

coefficients (with v ion-ion collision frequency) imposes

serious constraints on the plasma regimes in which a torsa-

tron can economically operate. Another goal of this thesis,

therefore, was to check the validity of ripple transport

theory in the torsatron magnetic geometry. This checking

was done on two levels: 1) comparing the theoretical and

observed scaling of the transport coefficients, and

2) comparing the theoretical and observed behaviors of

particles trapped in rippled magnetic fields.

The main body of this thesis work is given in

Chapters II, III, and IV. Chapter II describes the charac-

teristics of single particle orbits within a torsatron;

Chapter III describes the a-particle distributions and energy

deposition profiles; and Chapter IV describes the ion

thermal conductivity scalings. In each chapter, the models

used in the analyses are first developed; then the details

of the analyses themselves are given; and, finally, the

results and conclusions are presented. Chapter V contains
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an abbreviated summary of the major results, and the

appendices provide information on the numerical and mathe-

matical techniques used in this thesis. Of particular

interest are the descriptive examples of multi-dimensional

cubic spline interpolation given in Appendix C, which I

present because of the lack of such documentation in the

current literature.
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CHAPTER II. CHARGED PARTICLE ORBITS -- GUIDING-CENTER
FORMALISM AND ORBIT CHARACTERISTICS

This chapter describes single particle motion in

static magnetic fields. It is divided into three parts; the

first two contain the derivation of the guiding-center equa-

tions and describe how these equations (along with drag and

velocity diffusion and electric forces) were included in the

orbit tracking code TAPIR. The third part describes single

particle confinement and conserved particle quantities for:

1) helically axisymmetric systems

2) torsatron systems.

A. Development of Guiding-Center Equations

When writing a computer code that will track a par-

ticle's orbit, a decision must be made whether to track the

particle itself or its guiding-center. Advantages of par-

ticle tracking are that the phase of the particle orbit is

available, and the equation of motion is generally easier

to code, compared with guiding-center tracking. The domi-

nant advantage of a guiding-center code is that it allows

a longer time step to be used (compared to particle track-

ing), since the high frequency cyclotron motion of the

particle is not followed. In this thesis, the phase infor-

mation associated with the particle orbits was not needed,

and the large amount of computation required dictated that

a guiding-center tracker be used. In a preliminary study,

a fourth-order Runge-Kutta particle tracker was written to
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check the drift surface plots produced by the guiding-

center code TAPIR. It was found that a step size of

At < .05 was needed in order to track a particle accurate-

ly through a single poloidal drift orbit, with wo= cyclotron

frequency. The guiding-center code TAPIR used a step size of

W At = 3 to 10, depending on the guiding-center's pitch angle,

and tracked guiding-centers accurately through several

thousand poloidal orbits.

Guiding-center equations used in TAPIR

Starting from the equation of motion, I derive a

set of equations accurate to second order in p for curl

free regions in B. These equations are shown to conserve

energy to second order, and also to satisfy the drift kine-

tic equation:

V -Vf = 0 [II-A-i]

Following this derivation, a description of the inplementa-

tion of these guiding-center equations in TAPIR is included,

along with the results of the verification tests on tracking

accuracy. The nonrelativistic equation of motion is:

m r= r x B(r) [II-A-2J
e

(1) m
As shown by Northrop, = can be considered as a

m V
smallness parameter, just as e B L (the ratio of the radius

o B

of gyration to LB, the characteristic distance over which

the magnetic field changes) is a smallness parameter in an

adiabatic approximation of a dimensionless equation of

motion.
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Northrop shows that, in zero order, the guiding-

center e.o.m. is:

V2 _ 2 (E -<p> B) + o (e) [II-A-31
m

2 V + 0(2)

[II-A-4]

dV_ -<> b - V B + o (E) [II-A-5]

dt m

Notation

V9, V = guiding-center velocities

vI ,v = particle velocities

W= Larmor velocity of particle, that is

vk = w + V .

Coordinate system used is a right-handed Cartesian system

(el, e2 , b).

By keeping first order terms in the guiding-center equation

of motion, I will show that

2
o(E) term of V is zero when V x B = 0

o0(E) term of dV11 is zero when V x B = 0
dt

From p. 69 of Northrop,

at 8 -6
G__ C
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-~ E ( ~X (V YL

(II -A-63
I will now average p over a cyclotron period.

Yv*L

- < Ar
term 1

L Kterm 2

i-VIIvII
-3

S Y term 3

[II-A-7]-

G 3

- V
'I

o( [Il-A -8]

tII-A-9]

\ it s t t) + v \

-L+

o(e-

C os

+ o()

{II-A-10]

So~e )

_ V \ I

13"

<11 9

since

term 1

Ar

Z rr. [II-A-1i)
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h'

_Ar

A

(~ 2 ~
+

+ 0 (tZ
[II-A-12]

Proof:

but (

K rv~~L~(Ly:3r.~L

k/~

A

x_

vJ~ + 0 ()

since V is of

order e

[II-A-13]

)

A
(i x

9 ( xs,)s(A t)
A (N]

- co~

[II-A-14]

A

VL>
A

CoS t (( p

VI- A

[II-A-151

Since <sin(Qt) cos(Qt)> = 0 and

<sin2 (t)> = <cos2 (t)> = .5, I get:

term 2
A

<rv- *(~
-4-

F- I .(
A A

~x~i

Cos (k () ]

vl

A

CI

C

x
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/- 5 v r ' 

(
C) J)~ ['II-A-16]

Noting that:

A -

1) (~* e

2) - ( A
I -

A

[II-A-17]

A

A

[II-A-18]

A A

and 3) L x =
A

C. [II-A-19]

equation [II-A-16] can be expressed as:

< X n)

Now, note that:

V > [II-A-20]

0 =A

13 7 X A + V 13 K A

A

V D xL

B

[II-A-211

(II-A-22]

Thus, since ( VB x b) is perpendicular to b

A

C
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_ a
Ii

- V (v~~)
[II-A-231

So, finally, it can be seen that

2term 2 =zero + o(E [II-A-241

2
term 3 = -21 , < (b x v.) > * V B

B3

< X > < xw, >

[II-A-25]

[II-A-26]

(Since term 3 is already of order e, only the zeroth order

part of v, need be kept.)

x

f V ~I )Cos~ )
= o

[II-A-27]

Using these results in equation II-A-7 , we get:

WYL '3
GC

+ ('54)
[II-A-28]

Now, let us write the energy equation:

f I~ 1,

t -~

(II-A-29]

L =7 Q aAr 1

vi'

L

+ 0(6 )

+ o(
/

(I + <poBG C
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Solve for V2 :

V1, -<A > 1G-c ) SO( [II-A-30]

- (v -v

4 v
[II-A-31]

E> + ((z)r=

-)~ V v \1
[II-A-32]

Therefore

+II 0) (6-)
[II-A-33]

(V A

[II-A-34]

I will now show that Y-L - V V, is of 0 (62)

Rewriting equation II-A-4, and factoring out an e term:

L 1 4- v~N
V1,

term I term 2

+ 0(6)A

[II-A-351

tiV ') v 11

v vI

-f

V
-J.

(V it A

<7A >

+ Y, ) - vV
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Considering term 1:

3V LS J do V le

Y B) s ( Z x( &r,' I VII

Considering term 2:

VV S // O

0

0

x

[II-A-3 6]

xsince; 1)

A

2) _ x

A

Thus b x term 2 is also perpendicular to Vfl,

and so (b x term 2) - VV = 0
[II-A-37]

Using these results in equation II-A-35, I get:

[II-A-381

+ 0 ( )

As pointed out by Allen Boozer, for the guiding-

center equations to be physcial, the drift kinetic equation

V - Vf = 0 must conserve particles ( V * fV f d 3 V= 0),

with

j V =iFB
M4, VII v

[II-A-39]

dv
Jt

A AA

X- L 2 )

A3

J E J
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where a = VIA VI I = ±1 .

For an arbitrary distribution f, particle conservation

implies V ( 3 V 0

V-I (II-A-40]

and thus
VI G'- /V1 j (x N)

with [II-A-41]Y~ l / e
For this to be consistent with the second order accurate

derivation, ( V x ( p B)) = 0. For curl free fields, this

is indeed the case, since Vx ( p B) = Vp x B , and

(Vp 1 x B)..L B

The proof that second order accurate guiding-center equa-

tions also conserve energy to second order is equally

straightforward:

A

_ -) -2V + +i 0 64
Ii II

5h( C~ VL 7 0)

- -ix'~ ~*\78
V'I 4 C ( A I

[II-A-42]

p V J8
S -dt + EK, =v.V V = B <' yjT

[II-A-43]

_"RII 
=
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(since, for static fields, 0 )

It
[II-A-44]

Q.E.D.

B. Code Implementation of the Guiding-Center Equations

The orbit integration program used basically the

same predictor-corrector scheme that was used to track the

vacuum field lines (see Appendix D). The magnetic field

,( r) was again evaluated by multi-dimensional cubic spline

interpolation. The use of cubic spline interpolation was

strongly motivated by code requirements of speed and

accuracy. In tracking an a-particle from its birth to

thermalization, approximately 106 evaluations of B(r) and

VB( r) are needed. It would be prohibitively expensive (in

terms of CPU) to evaluate B this number of times from a

specified set of external current segments. Also, approxi-

mating 1(r) with a model field might entail making an over-

simplifying assumption about the nature of B( r). Both of

these problems are avoided if B(r) is first evaluated at a

fixed number of grid locations from a set of current seg-

ments, and then evaluated during particle tracking by grid

interpolation. A common problem associated with interpola-

tion schemes based on Taylor expansions of the evaluated

function is that the finite difference approximations
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introduces a numerical divergence in the functions. It was

found that this problem did not occur with cubic spline

interpolation, and that orbits tracked with spline evalua-

tion of B(r) matched orbits tracked with B(r) evaluated

directly from the current segments.

A set of two-dimensional spline grids, equally

spaced toroidally along a module, was created, and B( r)

evaluated by two-dimensional spline interpolation. This

approach was chosen, as opposed to the creation of one

large three-dimensional grid, because two-dimensional

spline interpolation is four times as fast numerically as

three-dimensional interpolation, and the two-dimensional

interpolation could be done in a simple Cartesian geometry.

The two-dimensional interpolation scheme did require that

B( r) be evaluated only at the 4 values of the grid locations,

and the tracking algorithm was developed accordingly.

The guiding-center following code is very similar

to the field line following code (see Appendix D), the main

differences being that now:

1) the velocity vector is the instantaneous guiding-
center velocity, rather than a unit vector in the
6 direction;

2) plasma electric fields add an E x B /B velocity
to the perpendicular guiding-center velocity;

3) the corrector step is iterated from 2 to 4 times,
in order to obtain sufficient accuracy for ex-
tended tracking (alpha particles may make thou-
sands of poloidal orbits while slowing down);

4) particle reflection is included in the tracking
algorithm.
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I present now a detailed description of the pushing

algorithm , first without the possibility of particle

reflection.

At time t= 0, the following particle quantities are

known: p, V (0), r(O). The magnetic and electric fields

are calculated at r(O), and V (0) is calculated from the

guiding-center equations. The guiding-center is launched

along its initial velocity direction, keeping toroidal

and radial velocity constant (see appendix D). The time

Atpred for the guiding-center to intersect the next $-plane

is found, as is the intersection point r(Atpred ). The

magnetic and electric fields are found at this point, and

V (Atpred) is calculated from the energy conservation

equation:

(k(rv-> ~+ 0~

_II-B-i}

It should be noted here that, in calculating the magnetic

moment, the perpendicular velocity must be that observed

in the frame of reference moving at the guiding-center

velocity -- (GC E x B In the presence of an electric

field:(I)

r~ 
_ - E[II-B-2]

Thus:

- v (t Fr1) [II-B-.3]
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with

Etotal 3 o + e (o

(II-B-4]

[II-B-51

with C- / vii
[II-B-61

Knowing VU (AtPred), V (Atped) is calculated.

The guiding-center velocity at Atpred is then averaged with

the original guiding-center velocity at t =0, and this new

velocity vector is used to push the particle from r(t =0)

onto the next 0-plane. The new intersection point is the

corrector point r(At corr). As before, energy conservation

is used to find Vl (At corr). The simple predictor corrector

push is now complete.

it was found that this simple predictor-corrector

push was not accurate enough to track alpha particles

through many poloidal orbits. Long tracks of particles in

vacuum fields showed the effect of a numerical drift which

tended to push the particle drift surface in toward the

magnetic axis (see Figure II-B-1). This numerical drift

was eliminated by iterating the corrector step of the

pushing algorithm. This involved treating the corrector

point as an updated value of the predictor point, and

then repeating the process of finding the (new) corrector
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Figure 1I-B-2. No numerical drift was observed with an iterated

predictor-corrector tracking algorithm.
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point. This corrector iteration can, in general, be

repeated as many times as desired. The track will converge

on some value as the number of iteration steps is increased.

Whether this value is close to the true solution to the

differential equations being integrated is an open question.

In this thesis, the strong closure of the vacuum-field

orbits was taken as confirmation that the guiding-center

equations were accurately integrated (see Figure II-B-2).

The numerical drift was associated with an inaccuracy in

calculating the curvature of the magnetic field. Accord-

ingly, the error was more noticable for particles orbiting

near the separatrix, where the field curvature is much

greater than near the axis (by about two orders of magni-

tude). In general, more accurate tracking can be obtained

either through a smaller step size or a higher order track-

ing algorithm. In the TAPIR code the step size was fixed

by the spacing of the spline grids, so an iterated pushing

algorithm was implemented. The following scheme was found

to track all orbits within the spline grids accurately:

tr) t (separatrix) number of corrector
iterations

0% - 50% 2

50% - 75% 3

75% - 100% 4

outside separatrix 4

Table II-B-l

Confirmation of accuracy in the tracking of alpha particles

during their thermalization is given in Figures III-B-l, 2,
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3. The effects of drag and scattering are present, but

there is no systematic numerical drift towards the magnetic

axis.

As previously mentioned, this tracking algorithm

conserves the particle's energy. While designing the track-

ing procedures, another algorithm was tried, one in which

the particle's energy was a free variable, and the time push

of V was done by a numerical integration of dV /dt. It

was found that the simple predictor-corrector method pro-

duced a drift in the particle's energy of about .037 percent

E per poloidal orbit, due to the inaccuracy of the V

integration (see Figure II-B-3). In an attempt to reduce

this fluctuation, a multiple iteration predictor-corrector

scheme was tested (see Figure II-B-4). This method did

reduce the energy drift by a factor of 50, but I finally

decided to avoid the drift entirely by incorporating energy

conservation into the pushing algorithm directly. This is

acceptable since, as previously shown, the guiding-center

equations conserve energy to at least second order. The

energy drift is due to a numerical inaccuracy of the V time

integration; it is not intrinsically a part of the guiding-

center motion.

So far I have described the pushing algorithm for

non-reflecting particles. A reflection will appear in the

algorithm as a negative value for the predicted or corrected

2
value for V . When this occurs, the pushing algorithm

abandons its attempt to push the particle onto the adjacent
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p-plane grid. Instead, it calculates the point on the

original -plane at which the particle will arrive after

its reflection. I will now describe the procedure used

to calculate this point.

With the field quantities and guiding-center

velocity at the original point r(t =0) known, the guiding-

center acceleration can be found by:(1)

it i - Jt
[II-B-7]

The V term is much smaller than the <p> term for

a-particles where E -1 MV/meter, hence the VEx B term was

neglected for this bounce calculation. (Note that for

the time steps in which the particle is not reflected, the

YExB term is represented in the energy equation [II-B-3].)

Defining the acceleration vector as:

A _ (~ V,,
i=o [II-B-8]

the time At for a particle to reflect and return to the

original $-plane is:
A

[II-B-9]

where $ is the unit vector in the toroidal direction.

The intersection point is:

[II-B-10]
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V (At) is found through the energy conservation equation,

and:

o (At) = -(0) [I-B-1L]

The mirroring push is now complete.

There is a very small region in velocity space where

this mirroring algorithm will not work. This occurs where

a particle has almost no parallel energy, and is at the

bottom of a magnetic well. In this case, the possibility

exists that the particle will mirror twice between two <p-

planes.

true orbit

calculated orbit

This deviation between the calculated and true orbits ap-

pears as a negative value for 2 (At). It occurs only when

the bounce orbit lies almost exactly on a MOD B contour,

so that b - V B (and hence dV / dt of the guiding-center) is

almost zero and is fluctuating in sign. When a negative

value appears for V 2 (At) in the mirroring push, mV (At) was

arbitrarily set at 1 eV. This had the effect of "jiggling"

the particle's total energy from 0 to .005 percent. The
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area on the velocity sphere where energy jiggling could

occur is small, about 1o-5 of the total surface, In addi-

tion, the particle's orbit must lie close to a MOD B contour

for energy jiggling to be required. In general, this would

occur in the (-plane where the modulating B field is at a

minimum. With 32 4-planes per module, one would thus

expect energy jiggling to be required about once every

32/10-5 iterations during all the tracking runs.. With the

average a-particle requiring about 105 iterations, about

1/32 3.1 percent of the particles should require an energy

jiggle. In reality, 5.3 percent of the alpha particles

tracked required energy jiggling (with 30 percent of these

requiring two or more jiggles), and 60 percent of the

jiggling occurred with the alpha particles almost fully

thermalized, when T poloidal orbit ; and the particles

were making large excursions on the velocity sphere.

I will now compare the effect of energy jiggling to

the effect of neglecting ion-alpha energy scattering

during the alpha particle's thermalization. As is dis-

cussed in Chapter IV, this energy scattering is:

[II-B-12]

where G(X) 1 for X>>l

2X2

Defining the energy scattering correlation time as:
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E 5 N- __IV-__

[II-13-13]

I find that, for a background plasma with n. =3-1020/meter,

T 8000 eV, and m. = 2.5 u , TE scat= 1 6 3 0 sec for a 3.5

MeV a-particle. For 1 msec of tracking,

E V (- 30 seL [II-B-141

Thus we see that the effect of an energy jiggle,

(AE/E) m .005 percent, is much less than the effect of

neglecting ion-alpha energy scattering for a msec of

particle tracking. (Ion-alpha energy scattering was

neglected in the tracking code because it is so small

compared to the electron alpha drag term, where AE/E > 2%

for 1 msec.) The implementation of energy jiggling in

the tracking code could therefore not have affected the

confinement results to a marked degree.

As a particle approaches a reflection point, the

direction of VGC changes rapidly, and it is no longer

appropriate to assume it is constant during the time

required to reach the next $-plane. Therefore, when

V | < IV_, the predictor point of the pushing algorithm

is found by following the local B field line to the next

p-plane. This results in a more accurate average of the

particle's motion between the two p-planes.

This completes the description of the vacuum orbit

particle tracker. Its design was dictated by the nature of
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the numerical problems of the orbit integration. Direct

computation of local fields by integrating line current

segments would have been 200 times slower than the spline

calculation. Given the requirement of computing B from a

grid, only spline interpolation was found to give the

accuracy needed for such extended tracking as 5000 poloidal

orbits. Two-dimensional interpolation was chosen since it

is four times faster than three-dimensional interpolation,

and this decision made the time At between steps a varying

quantity. This in turn precluded the use of a Runga-Kutta

or past-history integration scheme, since these require

fixed time steps. The multiple-iteration predictor-correc-

tor algorithm was the tracking method implemented because

it allows a varying time step.

Mapping of Plasma Parameters onto the Flux Surfaces

In studying the alpha particles' interaction with

the background plasma, the plasma parameters of voltage,

density, and electron temperature had to be known along

the particles' orbits. This was done by mapping the plasma

profiles onto the toroidal flux surface profiles. As

discussed in Appendices C and D, tr. and V$ .toroidal toroidal

could be calculated anywhere within the separatrix. The

plasma parameters were then calculated with the following

equations:

[(density profile)
C~jJ j Il-B-15]
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C K
(voltage profile)

(II-B-16]

p
C ( I II

E(~V -~?

(temperature profile)
[II-B-17]

(electric field profile)

CK1

cl P t

1cx

[II-B-18]

with CR "critical= toroidal flux at separatrix, pn' p '

and pTe are constants that determine the flatness of

the parameter profiles. Once n (r) and T (r) are known,

electron and ion drag and ion pitch angle diffusion forces

are calculated. Electron drag on alpha particles has been

derived by Chandrasekhar and discussed by Spitzer.(4 )

In the tracking code, a good approximation of their results

was used, which was given in Rose and Clark. (5) The approx-

7o

t
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imation is:

1K

V
o kTT

F T [II .B-1

L7T k k r"
(MKS units)

/ a e [II-B-20]

As disciussed in Chapter IV, the ion-alpha pitch

angle diffusion coefficient may be written as:

'_' () 9> I A-L

[II-B-211

where 4(X) -G(X) 1 for X >> 1. The time to scatter one

radian is;

3

z Q. e r A [II-B-22]

The ion-alpha drag term may be written as:

Y 4 L q
4< - N-i rL CQv )

[II-B-23]

where G(X) for X >> 1
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The energy loss rate due to this drag is:

E__ ______ Av, rO,

{II-B-241

The energy slowing down time is:

ft
E 6 LQ

fl>~( (VU

b E1~ 17 Er

-3

I-* _

(. - )

[II-B-25]

S 3 I35 [II-B-26

I will now describe how drag and pitch-angle scat-

tering forces were included in the tracking code. After

the particle has been pushed from one $-plane grid to

another in time At, the energy given to the electrons and DT

ions is calculated from the equations:

Qe = -At dU4/dt Ielectron drag [11-5-27]

Q. = At U a/(.385 - scat) [II-3-28]

Q and Q are then subtracted from the particle's

kinetic energy, while keeping the velocity space direction

M .5 uI
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fixed. Then, this direction is changed slightly by the

scattering algorithm. This algorithm works by scattering

a point from the V,, =V point on the velocity sphere, rotat-

ing the VU =V point to the particle's velocity space

position, and then moving the scattered point with the

same rotation transformation (see Figure II-B-5). Working

in spherical coordinates, the coordinate relationship is:

z = cos e [II-n-29]

X = sin 8 cos $ [II-B-30)

Y = sin 0 sin $ [II-B-31]

The location of the point scattered from the V IV point

is:

ascat pt = [/2 + E [II-B-321

scat pt = [/2 + E 1-B-331

VV

X /.

Figure II-B-5
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where e1 = Ise sin(e)

2 = lei cos(^)

[II-J-34]

[II-B-3 51

e = random angle from 0 to 2rr

Ie = /At/T ;cat

w E scascatwhere Ts = 1 radian scattering time.

Making use of the following identities:

sin (N/2 + X) = cos X

cos (n/2 + X) = -sin X,

[II-B-36]

[II-B-37]

[II-B-38]

the rectangular coordinates of the scattered point are:

Zscat pt = -sin c [II-B-39]

xscat pt _ -cos S sin E

Yscat pt = cos 6 1Cos E2

[II-B-40]

[II-B-41]

The scattered point is rotated toward the particle's

original position by the equation:

Yscat pt - Yscat pt cos Y - Zscat pt sin
new o 0

[II-B-42]

The new value of V is then found by the equation:

new scat ptcos Y = Ynew = COS E; cos E cos Y

+ sin e1 sin y

with V new = V Cos Ynew

III-B-431

[II-B-44]
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D-T Ions (Ui/U) vs Electron Temperature, if the a's are Fully Thermalized.

(plotted points are the tracking code results)
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The particle's value for ji is then recomputed so as

to be consistent with the particle's new values of kinetic

new
energy and Vn. This completes the drag and scattering

portion of the tracking procedure.

In order to test the slowing down algorithm of the

tracking code, several runs were made with varying values

of T , and the energy deposition ratios to ions and elec-

trons for fully thermalized alphas were obtained. These

values are plotted in Figure II-B-6, along with the correct

energy deposition curve. The tracking code accurately

(6)matches the correct curve.

C. Single Particle Confinenent in Helical Systems

This section begins by showing that helical momentum

is an absolute invariant of particle motion in helical

cylindrical systems, and that particles in such systems

are therefore well confined radially. The section concludes

with an analysis of the trapped and circulating regions in

phase space of particles in helical toroidal systems.

The first step in calculating the canonical momentum

in a helically symmetric system is to find the system's

metric. The right-handed coordinate system (r, a, ) is

defined by Figure II-C-l.
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C7 P
0

N A

ta

-i

d6 _ 2 7Tr
d Z p

[II-C-1

Figure II-C-1

P = P(r, e, Z) = P(r, a, 6)

In this reference frame, is in the direction of helical

symmetry (with A = 2= + AZ = one pitch length), r is the

distance from the helical axis, and a = x r (a measured

from 0 to 2x). A point's (a, ) location may be obtained

from its (e, Z) values through the following equations:

Z/cos Ej

e = - sin = cx0 r

e 2 7 r -
p

q + (

[II-C-21

[II-C-3]

[II-C-41

[II-C-5]

27 (9 + r 8 sin ()
pg

27T (Z cos + r e sin )
pg

[II-C-61
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Figure II-C-2

The inverse transformations are:

- ~

{II-C-7]

___

[II-C-81

The metric in cylindrical coordinates is:

(ds)2 = (dr)2 + r2 (dO )2 + (dz)2 I II-C-9]

Substituting the transformations to helical coordinates,

the helical metric is: 2

(ds) 2 = (dr) 2 +( (d) + [II-C-101

This metric will now be used to derive the helical momentum

(p,) of a particle in a helically symmetric magnetic field.

The non-relativistic Lagrangian for a charged particle is:

I- ~
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+x'

Z2Er& ~(&~ +

[I I-C-i I

The canonical momentum p conjugate to the position

coordinate X is obtained by the definition:

[I-C-12]

Thus, the helical momentum may be written as:

=

[II-C-131

Since - 0, the Euler-Lagrange equation of motion

o implies that

0 , thus p is an absolute invariant of the motion.

A in equation II-C-13 may be expressed in terms of the

helical flux function (note helical -- must not be confused

with the toroidal flux function t used elsewhere):

rrL X

+
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[I.1-C-14].A - d
a helical path.

[I

Figure II-C-3

(In a right-handed coordinate system, path of integration

is as shown in Figure II-C-3, a positive 'c points in

direction of positive a .)

By setting the gauge of A such that Af =0 on axis,

equation II-C-14 may be written as:

N-K (r-0

f~ Jt-

0

lr

0

+ Jr
0
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= =7

[II-C-15]

Along the outer helical path, AS is a constant, since all

quantities are symmnetric with respect to 3. Thus:

1(r, c4) = -Ag(r, a ) pq [II-C-16]

Substituting this relation into equation II-C-13 gives:

A

(V

-O r&

~-7IT

[II-C-17]

I will now show that charged particles near the

helical axis are radially confined when the following

condition is satisfied:

P T - < a ' [II-C-18]

where ac is the radius of the windings.

Assume a particle near the axis makes a small radial

displacement. Conservation of p requires:

49rc = ( '

[II-C-191

A-Id r

7
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Near the magnetic axis, the helical flJux function may be

approximated by:

S(r, a) =T -r2 BZO [II-C-201

where B -

= number of windings

I = current per winding

The exact equation for $a (r, a) is given by equation

II-C-25. Viewed longitudinally, a helical ribbon of radius

r extending one pitch length in Z covers a circle of radius

r. Near the magnetic axis, B = B Z, hence the form of

equation II-C-20. For a system with Z= 3 and 2Tr a c/p

.889, it was found that this approximation had a 6.3%

error at r =.125 a and a 13% error at r = .25 a

Conservation of energy limits the maximum A [vz + tan v e]

to 2V, where V is the particle's speed (assuming tan ( - 1).

When conservation of Ii is considered also, the maximum

change in [vZ + tan Ev I is more accurately 2V tang , since

B = B Z near the magnetic axis; hence the magnitude of V
oz

and V are approximately constant. An expression for the

maximum radial displacement may be written as:

71-I r i3l MAX Q
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B i a r- ) AX
!M Wl (Q \)

e- ft
-0 (II-C-21

The particle is limited to a radial displacement of the

order of a Larmor radius. This limit should be valid when

r .25 ac *

In order to verify this approximate result, a

computer code was written which incorporated exact values

for the helical field:

£3 == #

r

1~~t J 7T t- C 0().5~ 7

C it

IL') (4 2k)
AL -J II-C-22-25]

-YTFr

(6 A X
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with X windings occupying a total fraction of f0 of the

r =a surface, and:

C V

Three equations

may enter:

1) E T

2) _)A

3) );=N

limit the regions in phase space a particle

n Car.j / t

YL V

i- rrj

G-.t + r TT T

[Il-C-27]

{II-C-28]

[1I-C-29]

The computer program would start a particle at an

initial spatial location and pitch angle, and then search

both radially and poloidally for possible values of

(vz VIr) that would satisfy all three equations, An

exhaustive search of pitch angle and configuration space

(for r < ac ) was made with the following fixed parameters:

a

f
0

B z

4 meters

3

30%

6.67 tesla

p

particle type

28.27 meters

3.5 MeV a-particle

The results of the scan showed that the extent of

radial excursions was insensitive to r and a, and moderately

dependent on the particle's pitch angle. Well circulating

L -- 2L6J
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a-particles (V., V ) had maximum radial excursions of ,5

to 2.0 cm, while particles with V >> V had maximum radial

excursions of 1.0 to 3,5 cm. These exact results are well

within the limits given by the approximation in equation

II-C-21.

Helical, Toroidal Systems

The motion of guiding-centers in helical toroidal

fields is complex. Unlike tokamaks or linear torsatrons,

there is no direction of symmetry in the magnetic field

and this lack of an ignorable coordinate hinders the

analytic categorization of particle orbits. Nevertheless,

several observations can be made on the types of particle

orbits by examining the orbits of some test particles. In

order to simplify the analysis, these particles were

launched in a torsatron without a background plasma density

and voltage profile. In a scan through pitch-angle space,

a set of 3.5 MeV a-particles was launched in the torsatron

B machine (ro/ac = 6) at the minor axis (R = Ro = 24 meters).

The orbit tracks are.shown in Figure II-C-4..

Well circulating particles exhibit periodic motion

on well defined flux surfaces. For a particle launched

on the minor axis, the B x VB drift is initially in the

downward direction. Once the particle leaves the weakly

sheared fields of the axis region, it will follow the local

curvature of the magnetic field, drifting to either the

inside or outside of the torus. For the torsatrons of
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this study (having a right-handed helicity), the co-stream-

ing particles will make counterclockwise poloidal orbits,

while counter-streaming particles will make clockwise

poloidal orbits. It was-found that drift surface positions

are fairly independent of. the initial pitch angles of

well circulating particles, and that the drift surfaces

enlarge when circulating particles are launched near

bounce regions. This effect is attributed to the barely-

circulating particles having less V11 than the well circu-

lating particles. Thus the poloidal orbit time, scaling

as 1/V, , is longer for barely circulating particles, and

the curvature drifts thus have a longer time to accumulate

their effect. It is these drifts which cause the flux-

surface excursions of the particles, and greater flux-

surface excursions result in larger drift surfaces.

The motion of the trapped particles is more complex

and non-periodic than the well circulating particles, and

is dependent on the pitch angle position of the particles

and the structure (rotational transform and shear) of the

vacuum magnetic field. Generally, particles with insuffi-

cient V to circulate freely become trapped in the helical

ripples on the inside of the torsatron, where the magnetic

field is relatively large. (8) Most of these trapped parti-

cles precess along the helical grooves in MOD B, following

the pitch of the torsatron's helical conductors. As a

helical groove passes the outer side of the torsatron,

I
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the decreased magnetic field there no longer reflects

the particle, and the particle begins to circulate toroi-

dally. Eventually the rotational transform of the field

lines moves the particle back to the inside of the torsatron,

where it again becomes trapped, generally in a different

helical ripple. The longitudinal motion of these particles

is therefore non-periodic, and a simple longitudinal

invariant for this motion does not exist.(9) In addition,

Figure II-C-4 shows that the motion of the blocked particles

depends on the phase of the bounce motion near the

transition points. When a particle is reflected by a

helical ripple, it can either become temporarily trapped in

the ripple, or retrace the path it made before reflection

and leave the reflection region. In the latter case, the

orbit resembles the classical tokamak banana orbit. Whether

a particle will become ripple-trapped or be reflected from

the ripple is determined by the structure of the magnetic

field and the curvature drift of the particle. Generally,

it was observed that deeply-trapped particles (those

launched with V 1 0) tended to remain trapped in helical

wells, with short spans of quasi-circulating motion as the

particles moved from one ripple to another (see Figure

II-C-D). Particles launched nearer circulating regions in

velocity space tended to exhibit both ripple trapping and

tokamak banana motion (see Figure II-C-9). These different

types of motion are caused by the different positions of

forbidden space for deeply trapped and barely trapped
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particles. The helical ripples on the outside edge of a

torsatron can reflect deeply trapped particles, and often

the helical groove in MOD B is the only path available

to these particles. Barely trapped particles, on the other

hand, can pass through the weak ripples on the outside

edge and are only reflected by the stronger ripples on the

inside edge of the torus. After reflecting, a barely

trapped particle can, except for the grad B drift motion,

retrace its path along the field lines and leave the

reflection region. The orbit resembles a tokamak banana

orbit (see Figure II-C-8).

One attribute of the trapped particle motion is

that the phase of the bounce motion within the helical

ripple varies from one trapping to the next. The exact

location a particle will successively enter a ripple varies

by a distance comparable to the drift displacement during

one module transit. This "phase" determines the position

at which the particle will leave the ripple. The "random-

ness" of the phase causes a particle to vary its drift

positions from one poloidal orbit to the next, and the

drift "surfaces" of these particles are actually three-

dimensional drift "regions" (see Figure II-C-9),

As discussed in part B of this chapter, the addition

of an electric field adds an E xB drift to the guiding-

center motion. In order to observe the effect of this

drift, a voltage profile of the form:
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t ).4
V(4)t V I(

V(t axis $ se

was arbitrarily chosen, and a scan through Vaxis space was

made on a deeply-trapped and well circulating orbit of a

3,5 MeV alpha particle. The results are shown in Figures

II-C-5 and II-C-6. The orbit of the well circulating par-

ticle was insensitive to the voltage profile, even for an

axis voltage of 1 MV. This is consistent with the earlier

observation that the drift surface position of well circu-

lating particles is very insensitive to particle energy.

As the particle orbited from the axis region to the lower

voltage region near the inside edge of the torsatron, it

gained about 100 kV of parallel energy, but this did not

affect the drift surface position by a noticable amount.

On the other hand, voltage changes on the order of 10 kV

influenced the orbits of deeply-trapped particles. As a

particle moves from a high voltage region to a lower voltage

one, the gain in kinetic energy results in an increase in

V U through the energy conservation equation (see equation

II-B-3). The increased parallel velocity tends to decrease

the effect of the grad B drifts on the particle, resulting

in a decreased flux excursion of the particle, and a cor-

respondingly smaller drift surface. The opposite effect is

seen on positively charged particles when a negative axis

voltage is implemented. In this case the particle's

parallel energy decreases as it climbs the potential hill

between the axis and separatrix regions. The lack of
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parallel velocity results in increased flux excursions

due to the increased influence of the grad B drift.

At V axis = -100 kV, the test particle became unconfined

(see Figure II-C-5). In general, potential wells near

the magnetic axis tend to destabilize the orbits of

deeply-trapped particles as these particles pass near the

separatrix region. The effect of the voltage profile

on 3.5 MeV deeply-trapped alpha particles was noticable

when a potential difference of more than 10 kV was created

along the particle orbit.

D. Conclusions

A highly accurate guiding-center tracking code

has been developed, capable of tracking guiding-centers

through thousands of poloidal orbits in helical toroidal

fields without significant numerical error. The high

degree of accuracy is obtained by integrating an equation

of motion which is accurate to second order in p, and by

calculating B and VB in the tracing code with a cubic

spline interpolation routine.

The tracking code was used to investigate the

confinement and orbit characteristics of charged particles

in torsatron magnetic fields. An analytic investigation

of particle confinement in helical, cylindrical magnetic

fields showed that particles near the magnetic axis are

limited to radial excursions of the order of a Larmour

radius, due to the conservation of helical momentum in

the particle orbit. A numerical scan of phase-space
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demonstrated that this same limitation on radial excursion

applied to all particles between the magnetic axis and

coil position. These results are independent of the energy

and pitch-angle positions of the particle, as long as

<< a coil

The lack of a direction of symmetry inhibits an

analytic investigation of the radial excursions of particles

in helical toroidal fields. The analyses of confinement

and orbit characteristics were done by examining guiding-

center orbits obtained by the TAPIR code. The vacuum field

orbits showed that the particles may be grouped into two

general classes, well circulating particles and blocked

particles. Particles with V>V have sufficient parallel

energy so that they are never reflected by the helical

or toroidal modulations in the magnetic field. Their orbits

are characterized by extremely periodic motion on well

defined drift surfaces. Blocked particles, on the other

hand, are reflected by the modulations in B, and generally

spend part of their time in quasi-circulating orbits and

other parts trapped in the helical ripples in B. Their

motion is non-periodic, and the randomness of the phases

of the bounce motion within a ripple results in varying

particle drift positions after successive poloidal orbits.

These particles' orbits are contained in three-dimensional

drift "regions".

Finally, the effects of plasma voltage profiles on

alpha particle orbits were investigated. It was found that
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the orbits of well circulating alpha particles were very

insensitive to plasma electric fields, even for a one mega-

volt potential difference between the magnetic axis and

separatrix. The orbits of deeply-trapped alpha particles

were affected by much lower potential differences, on the

order of 10 kilovolts. It was found that a positive charg-

ing of the axis region aided in alpha particle confinement,

since the particles, leaving the axis region, would pick up

parallel energy from the decreasing potential and be less

affected by the modulation of the magnetic field. Per

contra, a negative charging of the axis region resulted in

an increased number of unconfined orbits as particles

leaving the axis region lost parallel energy due to the

increased potential. This resulted in larger flux surface

excursions by these particles, and in some cases, particle

loss.
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Chapter III. ALPHA-PARTICLE DISTRIBUTIONS AND CONFINE-
MENT PROPERTIES

A. Motivations and Assumptions

In the previous chapter I described a set of orbit

equations that was used to track particles in a torsatron

magnetic field. In this chapter I describe the method by

which the information contained in many a-particle orbit

tracks was collected and used to find the a-particle dis-

tribution function and fractional energy confinement.

The guiding-center equations used are accurate to

second order in <p>, with

1 2 2
<P> = .<v >/BGC + O(E ) 1111-A-I]

the time averaging done over a cyclotron period, with E

a smallness parameter scaling as p./LB and AB/B. Since

the torsatron magnetic fields are static, the criterion

for conservation of <p> is that (AB/B) <<l during one

cyclotron orbit. I will now show that <p> is well con-

served for 3.5 MeV a-particles in a torsatron reactor.

Case I: V >> V

The Larmor radius of the alpha-particle is

P= 10.8 (5 tesla) cm IIII-A-2]B t m

Near the magnetic axis, the magnetic curvature is primarily
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the toroidal curvature of the windings, with BB R /R,

and L B(axis) = R 0 Near the separatrix, the helicity

of the field dominates, and the curvature is of the order

of the minor radius of the coils. The resulting criterion

for <j> conservation is:

(B2 2p k2
(A) ~ ( ) << [III-A-3)
B a coil

For the reactors of this study, a coil = 4 meters, B=5 tesla,

so:

2
(A1) = << [III-A-4]
B 343

Case II: V> Vl

A particle can experience a change in B due to the

particle's longitudinal motion in rippled magnetic fields.

In our cyclotron period a 3.5 MeV a-particle can move 68 cm

along a field line. The maximum helical ripple observed

occurred in the small aspect ratio device (R /a = 3) along

the outside edge of the separatrix. The magnitude of the

ripple was:

B -B
ripple = Bmax + Bmin = 17% [III-A-5]

max min

measured along the length of a module (Lmodule 9.4

meters). Along the path length of the particle for one
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cyclotron period, the observed ripple is:

(AB AB , path length
B 1 period B 1 module 1 module length

2B 2

AD 2 2

(-) = ((.34) (68cm/4.7 m)) = 1/413 << 1 [III-A-6]

It was observed that the magnetic ripple rapidly decreased

one to two orders of magnitude as one moves from the

separatrix to the magnetic axis. Thus <V> should be an

extremely well conserved quantity for all types of a-

particle orbits in the torsatrons studied.

The background plasma parameters of temperature,

density, and voltage were assumed to be functions only of

the vacuum field magnetic flux coordinate. This is

analogous to an ideal MHD plasma model, where \Vp = JxB

is perpendicular to the flux surfaces. The displacement

of the vacuum field surfaces due to plasma pressure was

assumed negligible.

The profiles of density and electron temperature

were chosen as conservatively flat estimates of profiles

that might exist within a fusion reactor. The tracking

runs were done in a high density, low temperature regime,

with:

n (axis) = 3.10 2 0/meter3

T (axis) = 8 keV
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The reason this regime was chosen is that it is

the easiest to explore numerically, since electron drag,

the determining factor in the slowing down of the alpha

particles, scales as n /T 3/2. The amount of computation

required per particle track scales inversely with the drag

on the particle. From a study of individual particle

orbits, it was found that the drift surface motion was a

function of the energy loss rate. If the drag force was

increased, the displacement of the drift surface was also

increased, but, as will be shown later, the plot of the

drift surface position versus particle energy was not de-

pendent on the drag force. Thus the data presented in

this chapter should be valid for a wide range of plasma

densities and temperatures. Particles born in loss

cones escape immediately. Particles born far away from

loss cones remain confined until they thermalize with the

background plasma. Particles born near loss cones re-

main confined until they are pushed into a loss region by

the drag and scattering forces. However, since the drag

term <(AV,)> and the scattering term <(AV) 2> both scale

linearly with time, an escaping particle will leave with

a final energy nearly independent of the magnitude of the

drag and scattering forces.

A change in the plasma's profile shapes will

affect the net energy confinement of the reactor, since the
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source distribution depends on the plasma's density and

temperature. In general, flatter profile shapes result

in a higher percentage of particles being born near the

separatrix, where the loss regions are larger.. Net energy

confinement is, therefore, lower with flat profiles, and

higher with more peaked profiles.

The choices for machine sizes were made as follows:

the canonical size for the coil minor radius was chosen

to be 4 meters, allowing a sufficient plasma volume to

load the first wall with 1.5-2 MI/m2 of primary fusion

power, and enough space for the blankets and magnet

shields. The pitch length was determined by the size

of the separatrix, and the desire to be near the force-

minimum winding configuration (27a/psl). A constraint

was imposed that the separatrix would be no closer than

1.75 meters to a helical coil. The closest point occurred

along the inside edge of the small aspect-ratio machine,

since large toroidicity tends to push the flux surfaces

in towards the major axis. It was found that by unwind-

ing the pitch so that 2wa/p~.89, the 1.75 meter separation

could be maintained at thi-s point. (In general, a shorter

pitch length enlarges the separatrix).

The current in the helical winding was chosen such

that the machines of different aspect ratios would enclose

the same amount of toroidal flux within their separatrixes.

Also, their poloidal flux per unit length were closely
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matched, see Figure III-A-3. This shows that the rotation-

al transform per module is approximately the same for each

machine , since t = dp /d5 .

The values of flux and axis magnetic field are shown

in Table III-A-1. Each machine was designed with ac = 4

meters, 2 = 3, p = 9.42 meters = 1 module length, and with

a constant pitch winding law that is described in Appen-

dix A.

Machine
Designation

aspect ratio

B (axis)

$t(separatrix)

R0

N

12

5.50
Tesla

82.8
webers

48 mete

32

B

6

5.31
Tesla

82.8
webers

rs 24 meters

16

TABLE III-A-l

C

3

5.05
Tesla

82.8
webers

12 meters

8

D

3

10.10
Tesla

165.6
webers

12 meters

8

B. Description of Methods Used to Determine Alpha Particle
Power Deposition

In Chapter II I described how a single alpha particle

is tracked as it thermalizes with the background plasma.

I now explain how many such orbits are combined to yield a

power deposition profile in the plasma.

A 4-dimensional phase space grid (3 spatial direc-

tions and a pitch angle direction) was created within each

reactor module with 4096 grid locations. The grid had 4

IA
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steps equally spaced in the toroidal direction, 8 steps

equally spaced in the poloidal direction, 8 steps equally

spaced in the flux direction from axis to separatrix, and

16 steps equally spaced in the cos(pitch angle) direction

from -1 to +1 (resulting in each grid location representing

an equal area on the velocity sphere). As an alpha par-

ticle was launched, a record was kept of all the phase-space

locations in which the particle existed before it lost

its first 100 keV of kinetic energy. (For a 3.51 MeV

alpha particle, this represented about 2.8% of its initial

kinetic energy). Also, as the particle was being tracked

until either thermalization or escape, a record was kept of

the flux regions in which the particle was depositing

its energy. This process was continued for each alpha

particle launched, until all of the phase space locations

in the grid had at least one alpha particle passing through

it before said particle lost its first 100 keV of kinetic

energy. Then, for each grid location, the set of all

particles making this initial contact was taken to be a

set of particles originating at that grid location. The

energy deposition profiles of the particles within each

set were averaged, producing an energy deposition profile

for each grid location. Then, each grid location deposition

profile is weighted with a source strength determined by

the values of n and T at the flux coordinate associated
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with the grid location. These grid deposition profiles

are then summed to obtain a grid sink profile, showing

how much power is deposited at each grid location per unit

power created in the total plasma volume. The percentage

energy confinement for the entire plasma is the sum of

the 4 dimensional sink grid. The percentage energy confine-

ment for particles originating in the i'th velocity-space

angle is obtained from the grid deposition profiles:

8 8 4
%energy confined =

)i=l 0=1 p=1

Power deposited from $p53,

Ptotal/ 1 6

for i = 1 to 16. [IlI-B-i]

Similarly, the percentage energy confinement for all part-

icles originating on the j'th flux surface is:

16 8 4
E E E Power deposited from

%energy confined = =1 =i
e er y ne Power ($ )

[III-B-2]

As described in Chapter II, considerable effort was

spent in designing the orbit tracking code to be as effi-

cient as possible. The use of cubic spline interpolation

added two orders of magnitude in speed relative to a code

which directly evaluated B and \VB from current segments,
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and the use of a guiding center code added two orders of

magnitude in speed relative to a particle following code.

This allowed an alpha particle with V_>> V to be tracked

until thermalization in 30 to 60 sec. of CRAY CPU, which

was an acceptably small number. The well circulating

particles, however, made many more toroidal and poloidal

orbits than the trapped particles, resulting in -5.106 B

and VB evalutions per particle as the particles were tracked

through ~5000 poloidal orbits. This totaled to about 10

minutes CRAY CPU per particle, which was unacceptably large.

In an effort to reduce this CPU requirement, noted that

these well circulating particles, unlike their trapped

counterparts, execute extremely periodic and well ordered

motion in their poloidal orbits around their drift sur-

faces. Since the effect of the drag forces are a small

perturbation on this motion, I calculated the track of

one poloidal orbit and accumulated the drag and scattering

effects of several orbits on this track. I termed this

procedure "push processing" and refer to an orbit thus

tracked as a "push-processed" orbit. See Figures II-B-l,

2,3 for a comparison between a standard and a push-

processed orbit. For the standard orbit, 5163 poloidal

orbits were tracked, requiring 20 minutes of CPU on a CDC

7600. In comparison, the push-processed orbit required

only 388 poloidal orbits to be tracked, while the effect

of an additional 4779 poloidal orbits was simulated by
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the push-processing technique. The push-processed orbit

required only 1.6 minutes of CPU on the CDC7600. Figures

II-B-l,2 show that push-processing does indeed produce

the same deposition profile as the standard tracking algor-

ithm. This is an extremely favorable result. Not only does

this result allow a large saving in computation, it implies

that, for given plasma profile shape, the calculated energy

confinement for the circulating particles should be valid

for a wide range of plasma regimes. Since the drift sur-

face displacement is a function of the integrated effect

of the drag forces, and the energy lost by the alpha particle

is also a function of the time integrated effect of the

drag forces, a plot of drift surface position versus par-

ticle energy is independent of the magnitude of the drag

force (Figure II-B-4). Hence the calculated orbit is valid

for a wide range of plasma conditions, as long as the

scattering and slowing-down times are still much greater

than a poloidal orbit time.

Figures III-B-1,2 also illustrate a general effect

seen in the other well-circulating alpha particle tracks:

scattering effects are small before the particle has lost

80% of its energy, and the primary effect of the drag

force is to reduce the flux surface excursions of the

well-circulating particles. This is plausible, since V,

of the guiding center scales with /energy while v scales

with energy. One would expect the following scaling
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for the magnetic surface excursion Ar:

Ar _V st

r~ poloidal orbit VI

Near the separtrix, A4aAr, so a table can be made from

Figures III-B-1,2 showing the scaling of (Ar) with E.

Time (ms) A t(t) 2/At(o) 2 E(t)/E 0

0 1 1

10 .51 .54

20 .30 .28

30 .15 .14

40 .09 .06

TABLE III-B-1

The excursion scales with energy in the expected manner.

I will now describe how puch-processing was imple-

mented into the orbit tracking code. Push processing was

only done on the orbits of well circulating particles, since

the orbits of the bouncing particles have nonperiodic

motion that would not be accurately simulated with a push-

processing code involved identifying the well-circulating

particles. A well-circulating particle was defined in

the code as any particle which, in its previous five pol-

oidal orbits, had 6min > 1/8, where 6min is the minimum

value of jcos(V ,/V)j during these orbits. The drag and

scattering forces on a well-circulating particle were en-
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hanced by a factor 1+20*(6 - 1. This factor resultedmin -8

in a tenfold savings in computation requirements, yet

still kept the poloidal orbit times of the hot alpha part-

icles much shorter than their slowing down times. After

each poloidal orbit, 6min and the enhancement factor were

recomputed. This resulted in a smooth turn-off of push-

processing when a particle drifted in velocity space from

a well-circulating region towards a trapped region.

C. Presentation of Data

Using the procedures and parameters described in the

previous two sections, the percentage of a-particle power

deposited in the plasma was found for the four reactor de-

signs described in Table III-A-1. Graphs of the fractional

power confinement versus cos (pitch angle) and flux sur-

face are given in Figure III-C-1, and the confinement per-

centages are listed in Table III-C-1,
Prompt Loss

Machine Aspect Ratio %power confined Loss

A 12 99.4% 60%

B 6 90.3% 83%

C 3 65.6% 88%

D 3(high field) 70.1% 86%

TABLE III-C-1

As can be seen in Figure III-C-l, both trapped and

circulating particles are well confined in the large as-

pect ratio machines, and only trapped particles are poorly
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confined in the low aspect ratio machines. Also, the high

field device shows a narrowing of the loss cones produced

by the toroidicity of the windings, though this effect

is small compared to the effect produced by changing the

aspect ratio.

As discussed in Chapter II, the effect of a back-

ground electrostatic profile on the alpha particles is

negligible for potential differences between the axis

and separatrix that are less than 10 kV. The actual volt-

age profiles that would be established in a torsatron by

ambipolar diffusion is unknown, and depends in a complex

way on the plasma equilibrium and conductivity, and on the

sources and sinks of alpha particles and injected ions.

For the confinement studies of this thesis, a low value

of Vaxis (3000 volts 40% Te) was chosen as an inter-

mediate value, the weak electric fields neither aiding nor

hindering particle confinement.

In each of the four confinement studies, between

80% and 90% of the energy loss was due to particles escap-

ing before completing one poloidal orbit. Particles born

in loss cones escape immediately. Particles born on con-

fined orbits will in general lose most of their energy

to the background plasma before scattering into a loss

cone. The data from the R O/a = 12 reactor case also show

that bouncing alpha particles can spend a long time
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(~100 Ms). wandering in the helical grooves of the torsatron

without escaping (see Figure III-C-2). The toroidal curva-

ture of the magnetic field tends to creat loss cones in

velocity space at these bounce regions. A severe example

of this is the R /a = 3 torsatron, where the toroidal

effects are large and almost all of the alpha particles

born in the bounce cone are unconfined.

D. Conclusions

Within torsatrons of reactor size, the magnetic

moment p of alpha particles was found to be an extremely

well-conserved quantity. Using a p conserving integration

code, several hundred a particle orbits were tracked in

torsatrons with aspect ratios of 3, 6 and 12. These orbits

were used to calculate the percentage confinement of alpha

particle energy as a function of flux position and pitch

angle. The results are shown in Figure III-C-1.

Well circulating alpha particles were found to be

well confined in all the torsatrons investigated. This is

consistent with the model for well-criculating orbits de-

veloped in Chapter II. The motion of well-circulating

particles is extremely periodic and relatively insensitive

to energy and pitch angle scattering. Hence most a-particles

that are born with closed, circulating orbits tend to re-

main confined until thermalization.

Non-circulating a-particles were found to be well
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confined in torsatrons with R /a ; 12, moderately confined

with R /a = 6, and poorly confined with R /a = 3. In the

low aspect ratio device, the large toroidal curvature of

the magnetic field created a large loss cone in phase

space where 1cos (pitch angle)j< 0.3. This loss cone

was slightly decreased by raising the magnetic field

strength on axis from 5.05 tesla to 10.1 tesla, result-

ing in an overall percentage increase in confined alpha-

particle power of 4.5% (from 65.6% to 70.1% power confine-

ment). This benefit is slight compared to the advantage

of a higher aspect-ratio device; the R /a = 6 machine had

90.3% overall power confinement, while the R /a = 12

machine had 99.4%.

Alpha-particle power confinement was found to be in-

sensitive to the background plasma conditions. Between

60% and 90% of the lost power is carried away by alpha

particles born in loss cones and escaping before complet-

ing a poloidal orbit. The remaining loss results from

particles being scattered into the loss cones by the in-

tegrated effects of the scattering and drag forces. Since

energy deposition into the background plasma is also pro-

portional to the integrated effect of the drag forces, the

power loss due to alpha particles being scattered into loss

cones is independent of the background plasma's temperature
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and density, as long as

T poloidal orbit < T slowing down.
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Chapter IV. THERMAL PARTICLE CONFINEMENT AND DIFFUSION

A. Motivations and Assumptions

The main object of this thesis is the estimation of

energy deposition and diffusive transport in a torsatron

plasma. The data from Chapter III give the energy deposi-

tion into the plasma from the fusion-produced a-particles.

In this chapter, a method is developed to numerically

measure the diffusive transport of energy due to the ion

thermal conductivity (Xi). The scaling of Xi is compared

with that predicted by ripple transport theory. This theory

associates large transport coefficients with the helical

modulation, or ripple, of the field strength on the flux

surfaces of the torsatron, due to particles trapped in the

helical magnetic wells.(1, 2)

Power losses due to bremsstrahlung and particles

scattering into unconfined orbits are also calculated. These

losses, together with the diffusive energy loss rates, are

then compared with energy deposition rates due to the a-par-

ticles, and an estimate is given for the minimum aspect

ratio of an ignited torsatron.

B. Loss Cones of Thermal Particles

This section describes the techniques used in finding

the loss regions in phase space of thermal deuterons. The

methods used were very similar to those used in finding the

percentage of a-particle confinement (see Chapter III,

Section B). A 4-D phase space grid (3 spatial directions
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and a pitch angle direction) was again created within each

reactor module studied. A set of deuterons was launched,

and the phase space partitions that each deuteron entered

were-recorded. Each deuteron was tracked for 16 msec, and

was considered to be promptly lost if it escaped during

this time. This tracking time is long compared to the ion-

ion scattering time of the a-particle confinement study of

40 3 scat
Chapter III (with n = 3-10 /M and T . =8 keV, T sa 2.7e /m 2.
msec). Also, the tracking time was sufficient to allow

the 8 keV deuterons to complete 10 to 20 circulating orbits

or 1 to 3 trapped orbits; thus if a particle remains con-

fined for 16 msec, it is probably on a confined orbit. The

tracking runs were done without a background plasma, since

I desired to locate in the vacuum field the positions of

loss regions in phase space for thermal energy deuterons.

For each reactor study, deuterons were launched until

each of the phase space locations in the grid had at least

one deuteron passing through it. Then, for each grid

location, the set of all deuterons passing through the

location was equated with the fraction of deuterons in the

set that remained confined during the 16 msec tracking runs.

The percentage confinement for all particles originating

on the jith flux surface is:

16 8 4
% confined = z E % confine d

*-l 0=1 $=l

512
[IV-B-1]
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Similarly, the percentage confined for all particles ori-

ginating in the i'th velocity space angle is obtained by:

8 4 8
% confined E E E (% confined ) n*(f)

i 6=1 $=l 4=l 1
8

32 E n*W(p)
$p=l

[IV-B-2]

where n*(k) is the density shape function. The results

are plotted in Figure IV-B-l. The four reactors studied

were those used in the alpha-particle confinement study

described in Chapter III. In the plots of thermal deuteron

confinement versus cos(pitch angle), the same n*(iP) profile

shape was chosen that existed for the alpha-particle

populations of Chapter III. This allows a direct comparison

of the loss regions in pitch angle space between high energy

alpha-particles and thermal deuterons, since most of the

escaping alpha-particles were promptly lost and hence their

percentage power confinement profiles are approximately

equal to their percentage particle confinement profiles.

The plots of particle confinement versus flux surface posi-

tion are independent of the density shape profile, and the

confinement percentages of alphas and deuterons versus flux

position can again be directly compared. A discussion on

these results is postposed until Part E of this chapter.

C. Description of Methods Used in Finding the Ion Thermal
Conductivity

The ion thermal conductivity of a plasma can be

obtained from the rate of diffusive spreading of a test
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particle distribution interacting with a background, plasma.

All relevant collisional effects must be included in the

orbits of the test particles. These effects are represented

by the following Coulomb interaction coefficients: (3)

1) dynamical friction term --

~V) -Z A9  i±Artj ID

[IV-C-l]

2) energy scattering term --

(r tt G~-~t)

[IV-C-2]

3) pitch-angle scattering term --

EIV-C-31

where

E= summation over all relevant field particle species.

A -Ale

tIV-C-4]

J [

[IV-C-SI
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n = density of '_th field species

vth T?
[IV-C-6]

4(x) =

[IV-C-7]

X d[IV-C-8]

In measuring the diffusive spreading of the test

particle distribution, only ion-ion scattering effects were

included. This simplification is possible when thermal

conductivity is being calculated, since the test ions

interact much more strongly with the field ions than with

the field electrons. The momentum of the test particle

distribution is not conserved, since the test particles

are exchanging momentum and energy with the background

plasma. This is acceptable, since I am only measuring the

energy transport. It is questionable whether this approach

would be valid in measuring particle transport, as the method

only would measure the Lorentz part of particle diffusion,

and not the momentum conserving part, Dmj It is currently un-

known to what extent Dm cancels DLorentz in the torsatron

magnetic configuration.(17)
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I now describe how the ion-ion interaction terms

were implemented in the test-particle tracking code. After
<AV, <(A~ )2>(A )2~

each time step, t ' At and At were

were computed, and multiplied by the At of the time step.

Then, random directions were chosen in pitch-angle and V,

and used as the directions of <(AV9 2> and <(AV,) 2>

respectively. These velocity vectors, along with the

<AV,,> vector, were added to the test particle's velocity

space position, and the particle's new V, V,,, and V were

computed. This method is valid when AV/V << 1 for the time

step. In the tracking runs, using ions of mass 2.5 u,

AV/V was << 1 for plasma densities up to and i-ncluding one

order of magnitude above the regime of reactor interest

21 3
(i.e., for an 8 keV plasma, nmax = 2-10 /m3). The accuracy

of the scattering was tested by observing whether the

test particle would have a Maxwellian distribution in

kinetic energy if tracked over many scattering times, and

if it would maintain a random position on the velocity

sphere. In a trial run shown in Figures IV-C-l, 2

a particle was tracked for 5200 scattering times. In the

graph of probability versus energy, the histogram represents

the particle's energy distribution,while the solid curve

represents a theoretical Maxwellian distribution (the

horizontal tic marks show units of energy). The close match

between theory and observation was taken as confirmation

that the code was accurately simulating drag and energy

scattering. Observation of the tracking code results
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showed that a pitch-angle correlation time was about equal

to a theoretical scattering time, and Figure IV-C-2 shows

that the tracked particle was spending approximately equal

time in the equal area segments of the velocity sphere.

This was taken as confirmation that the code was accurately

simulating pitch-angle scattering.

In measuring ion conductivity, the plasma density

and temperature were chosen to be independent of Yt, and no

electric fields were present. For each measurement, 360

test ions were launched on a given flux surface, $to .

These test particles were launched with a pitch-angle and

energy distribution appropriate to an isotropic Maxwellian

with temperature equal to that of the background ions, and

were uniformly spaced poloidally. The particles were

weighted according to the flux surface area each particle

represented. Each test particle was followed for 30 msec,

and after every 3 msec its energy and flux position

were recorded. Thus, a test particle distribution

function f (X,v,t) was created, with X being

defined by X = <r sep t sep1/2 , where $ ep is the

toroidal flux function at the separatrix and <r ep> is the

average radius of the separatrix.

The ion thermal conductivity can be determined from

the test particle distribution by

[IV-C-9]
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where U. is the distribution'g kinetlc energy density

/ [IV-C-lOI

Numerically, X was found by performing a least-squares

fit to

A tt'
[IV-C-llI

with

[IV-C-121

where the index j denotes the time and the index k denotes

the spatial interval.

Although all test particles in a particular case

are started on the same flux surface, there is a spreading

of the test particle distribution because the collisionless

drift surfaces differ from the flux surfaces. This spread-

ing results in a statistical fluctuation in y(t) which

occurs on a time scale comparable with the total tracking

time (30 msec). The diffusive broadening should manifest

itself in a linear dependence of y(t) on t. In fitting

the data for y(t) to an expression of the form A + 5 t

I found <p> = 1.0 ± .4 for the cases of greatest broadening

(the six highest density cases for the R /a = 6 torsatron).

In the other runs, the statistical fluctuations are of the

same order as the diffusive broadening, and the best fits
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for p varied from 0 to 2. For these runs, the measurements

for Xi should be regarded as upper limits, since the distri-

bution broadenings were caused both by diffusive and non-

diffusive effects. This method o' QAlculating X. was tested

in axisymmetric tokamaks and found to reproduce neoclassical

results to within 10% throughout the banana and plateau regimes.

The values of y(t) for the Xi versus density scans

of the A and B reactors (see Table III-A-i), and for the X-

versus T at constant fusion power scan of the A reactor,

are given in Tables IV-C-1, 2, 3. Sample plots of y(t) for

the B reactor scan are given in Figure IV-C-3.

Here is a description of how the errors in the X-

measurements were estimated. The statistic X2 is a measure

of the goodness of a fit and is defined as

N

L [IV-C-13]

where N = number of data points in fit

2
a. = variance in i'th measurement
1

y= i'th data point

y(t.) = fitted values for i'th data point.

(Please note that I am now using the symbol X for two

2.different quantities; X is the measure of the goodness of

fit, and Xi is the ion thermal conductivity.) The probabi-

lity P(X , v) that any random set of N data points would

yield a value of X2 larger than X2 is:(5)
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y(t) [units of cm 2] for the scans of Xi versus

density for the R /a = 12 torsatron

t [msec]

density

[10 20/m3

.005

.01

.02

.03

.05

.1

.2

.4

.6

1

2

3

5

8

13

3 6

83

90

164

57

49

67

73

120

68

55

67

53

68

49

45

123

130

241

168

53

144

175

131

145

62

86

69

70

67

58

9 12 15 18 21 24 27 30

164

151

280

273

86

165

208

141

191

110

100

98

77

111

81

160

173

277

301

155

145

216

145

207

100

86

103

124

148

101

182

171

292

186

202

189

266

221

241

92

113

192

127

113

124

170

147

286

162

192

202

258

274

249

102

119

171

139

192

108

147

166

219

246

194

164

224

242

241

120

150

103

154

170

97

169

176

23/

231

221

233

294

232

347

160

189

163

166

138

142

187

196

274

205

184

320

284

228

294

158

159

177

194

176

131

178

180

268

215

158

299

258

297

286

219

203

184

185

162

153

Table IV-C-1
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y(t) [units of cm2] for the scans of Xi

versus density for the R /a = 6 torsatron

density t Imsec]

[10 20/m] 3 6 9 12 15 18 21 24 27 30

.01 87 140 160 215 213 284 204 158 186 213

.02 187 219 244 289 205 302 320 317 226 275

.03 228 259 245 365 302 370 253 256 347 278

.06 85 160 202 205 199 217 199 261 303 256

.1 215 243 164 194 281 265 183 180 274 246

.2 187 144 147 222 176 162 237 181 353 303

.3 104 154 168 233 276 225 227 315 302 393

.6 103 115 204 340 370 288 383 429 431 371

1 203 271 251 321 359 354 417 345 358 346

2 108 126 175 203 223 356 383 457 368 440

3 61 149 231 198 186 275 276 308 407 524

6 212 159 191 169 245 301 336 352 404 383

10 62 142 180 179 215 235 296 328 345 480

20 101 119 159 251 304 391 430 479 462 550

Table IV-C-2
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y(t) [units of cm2 1 for the scans of Xi versus

T. at constant plasma fusion power density

t [msec]

T. 3 6 9 12 15 18 21 24 27 30

[keV]

6 50 61 81 103 94 118 159 186 144 188

8 53 69 98 103 192 171 103 163 177 184

10 70 76 96 117 123 115 144 157 224 229

12 53 104 106 202 217 246 248 239 251 303

15 209 191 247 196 255 245 369 266 260 408

18 217 173 312 300 322 333 411 399 448 475

21 288 342 319 475 312 381 408 472 465 516

Table IV-C-3
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~Jo -o \

[IV-C-14]

where v number of degrees of freedom

= N-n-l for a fit to a function with n coeffi-

cients plus one constant term.

For 10 data points, v _ 8 for a straight line fit.

2
Choosing P(X , v) = .3174 (corresponding to a standard deviation

2
confidence level on a X test), the associated value for

X 2is 944. (6)Assuming equal uncertainties in the data

points yi, the variance a2 of the data points is determined.

This variance is then used in a standard least squares fit

to produce error estimates for the coefficients of the fit.

This fit corresponds to a standard deviation confidence

interval.

D. Measurements of X4 and Comparisons with Ripple Transport
Theory

In Figure IV-D-l I plot the results of a scan of

Xi versus v for a large aspect ratio, reactor-sized

torsatron with the following parameters:
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R =48 m B (axis) 5.5 T

a c=,4 m 82.8 webers
=4msep

k =.3 <r > = 2.1 m
sep

N = 32

Table IV-D-1

Both the test and background ions have a temperature of

8 keV, giving v 125(n/1020 ) sec- for ions with mass

2.5 u. The test ions for this case were started at

.25 $p where et 0.02, Eh = 0.015, and t = 1/q = 0.25;

Et is the toroidal modulation given by the local value of

the inverse aspect ratio and + is the local rotational trans-

form. In the same figure I plot for comparison the theore-

tical ion thermal conductivity for an axisymmetric torus

of otherwise identical parameters. Also plotted is a

theoretical estimate for Xi resulting from particles trapped

in the helical magnetic wells. This estimate has been given

for stellarators by Connor and Hastie as:

[IV-D-1]

where Eh is the helical modulation of the field, pi is the

ion gyro-radius, Vth i= /2T 1 /m 1  is the ion thermal velocity,

R is the major radius, and v is the ion-ion collision

frequency. This expression is presumed to be valid when the
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collision frequency is small enough for particles to

complete bounce orbits in the helical modulation but large

enough that these trapped particles do not complete their

poloidal drift orbits.

In Figure IV-D-2, I plot xi versus for a torsatron

with R = 24 meters, N = 16. In Figure IV-D-3a, I plot for
0

the conditions of Figure IV-D-1, Xi versus $t0 for v

370 sec~1 In Figure IV-D-3b, the values

of Et and c h are shown. Apparently, the thermal transport

for fixed collisionality is not sensitive to the exact

value of the modulation in the parameter range examined.

Figure IV-D-4 is a plot of ion thermal conductivity

versus aspect ratio for R /a = 3, 6, and 12 (the same

machines for which the alpha-particle confinement studies

were done, see Table III-A-1). Also plotted is the best fit

to the equation C (a/R ) = Xi, given the observed points

and their associated error bars. In Figures IV-D-5 and

IV-D-6, the helical and toroidal ripple in these machines

are plotted versus the flux coordinate.

The principal result of these computations is that

the predicted 1/v behavior does not occur; instead ion

thermal conductivity is independent of collision frequency

over a wide range of collisionality. This transport coef-

ficient is approximately equal to that derived for the neo-

classical axisymmetric plateau regime, and maintains this

value over at least two orders of magnitude in density

(or collision frequency) variation.
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Magnetic Ripple versus Toroidal Flux (Fourier components)
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It appears that ripple transport theory is not

applicable to the torsatron geometry. The usual calculation

of transport due to ripple trapping relies on the assumption

1/that a significant fraction (E /2) of the particles in the

system are trapped in the helical ripples, and that the

deviation of their collisionless drift orbits from their

initial flux surface positions is determined primarily by

the vertical drift caused by the toroidal 1/R magnetic field

1/2gradient. The c h dependence of the trapped particle

population originates from the relation between the maximum

mirroring angle in velocity space and the field modulation:

2 V 04O 0
sinm 2 B hv .max [IV-D-2]

/

circulating

A/ trapped

\/

Figure IV-D-7

nitrapped cos e ~
ntotal m h [IV-P-31
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Detailed calculations of collisionless particle orbits

in a wide variety of helical toroidal configurations,

however, indicate that this model is invalid (see details

of particle orbits in Chapter II). As in axisymmetric

systems, most particles are never reflected, make small

excursions from flux surfaces, and do not contribute signi-

ficantly to transport in low to moderate collisionality

regimes. In helical toroidal systems, the rest of the

particles undergo very complex motions. They can make

frequent transitions among quasi-circulating ("blocked"),

tokamak-like banana, and helically trapped orbits.(8

Even for large aspect ratios (Eh >t), the contribution

from particles with simple, helically trapped orbits is

negligible. The transition particles comprise a fraction

of the total which is the larger of /E or /E . Their

orbits do not conserve the adiabatic invariant J, because

of the transitions between trapped and quasi-circulating

motion. The "plateau" character of the thermal conductivity

is demonstrated by the 1/R dependence seen in Figure IV-D-4.

This is consistent with a transport model in which Xi scales

as Et h , the transport resulting from an orbit resonance

between the motion in the helical modulation and the bounce

motion in the toroidal modulation of the field.(9' 10) A

model developed by Miyamoto(90 leads to a transport coef-

ficient which is independent of collision frequency

(Dh % th T /B) (9) for Et >h and v c t h T / (eB r. In

this model, the drift is dominated by the toroidal curvature,
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and the step length is V /v ef = V ih/v.

I suggest that neoclassical ripple transport was not

observed because it is based on a toroidal ordering of

the distribution function f in a series of powers in m/e,

using the periodic function X($) = + R, where 3/3 = 0

and fX d$ = 0. () Helical ripple is usually treated as

a perturbation on the toroidal ordering of f . In the

torsatron case, where ct is of the same order as Ehr this

toroidal ordering of f is inappropriate, hence the

deviation between theory and observation.

E. Measurement of X . and Analysis of Torsatron Ignition
Criteria

The results of the previous section are of particular

importance for plasma conditions appropriate to fusion

reactors. The 1/v.. dependence of the ripple transport
11

coefficients has led recent torsatron reactor design studies

to concentrate on low temperature, high density plasma

regimes where collisionality is large and Xi acceptably

small. (12, 13) Recent experimental results have indicated,

though, that the 1/v.. behavior may not be occurring. 1 4  15)
11

In order to compare the ignition criteria at various plasma

temperatures with the scaling of X a number of Xi measure-

ments were made with varying plasma temperature, but with a

3
constant fusion power density of 3.76 MW/m3. This value

is consistent with the axis values of n and T used in the

a-particle energy deposition studies described in Chapter

III (n = 3*10 20/m 3, T. 8 keV), and would result in an
e1
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acceptable first wall loading of 1 to 2 MW/M of primary

fusion power (the exact value depending on the profile

shapes) . For the diffusion runs, flat profiles were

assumed for n and T. The results are shown in Figure

IV-E-1. The energy confinement times at the various

plasma temperatures were calculated by

TE = <r sep>2 /4 Xi [IV-E-l]

where <r > = 2.1 meters for the A machine (R /a = 12).
sep 0

The energy confinement time necessary for ignition

was found by a power balance equation:

T _ energy contained in plasma
ig source power-(non-conductive power loss)

3 E n T d Vol
2 a_ _ _ _

(% a confinement) -a - W
power x [IV-E-2]

where W is the bremsstrahlung radiation loss calculated by

W = 4.8 - 10-37 n.n /T (keV) watts/m3
x i e e [IV-E--3]

and

power = QT n n < plasma Volume

[IV-E-4]

with Q = 3.5 MeV/fusion reaction.

The results are shown in Tabld IV-E-l. The data for

T /T. indicates that, for T. = 8 -20 keV and <a > = 2.1 m,
E ig p
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ni

-3

4.70-10 20

3.00-10 20

2.2210 20

1.82-1020

1.42-1020

1.22-1020

1.09-10 20

ion
pressure

(tesla2

1.135

.966

.892

.878

.857

.884

.918

T .

(sec)

2.79

1.85

1.59

1.52

1.45

1.48

1.53

Xi

(m2 /s)

. 51

.46

.58

.83

.58

1.02

.71

11E

(sec)

2.15

2.39

1.90

1.33

1.90

1.07

1.56

TE /1ig

.77

1.29

1.19

.87

1.31

.73

1.02

Table IV-E-1

Comparison of ignition and energy containment times

at varying plasma temperatures for an R /a = 12

torsatron.

1Ii

(keV)

6

8

10

12

15

18

21
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the energy containment time in an R /a = 12 torsatron will
0

approach or exceed the ignition times. The plot of the

neoclassical ripple transport in Figure IV-E-l again

clearly demonstrates that Xi does not show the adverse 1/v

scaling predicted by this theory. This implies that,

in moderate aspect ratio helical systems, the ion temperature

may be raised to 15 keV (the value for minimum nT at

ignition) without suffering from increased loss due to

ripple transport.

Equation IV-E-2 will be valid only when the non-

diffusive power loss is limited to bremsstrahlung. Power

loss may also occur from ions scattering into unconfined

orbits. This is potentially a very detrimental loss term.

If loss cones in velocity space exist near the magnetic

axis, the particle containment time would be on the order

of a scattering time. In addition, the resulting non-

Maxwellian nature of the plasma might excite micro-

instabilities and further decrease plasma containment.

The resulting power loss would probably exceed the source

power from the a-particles.

From Figure IV-B-l, we see that there are no loss

regions in phase space for the R /a = 12 torsatron. This

fact was confirmed by the diffusion runs. During the 29

runs reported in this chapter in the R /a = 12 torsatron,

only one particle (out of 10440) managed to escape during

its 30 msec track. During the 14 runs in the R /a = 6

torsatron (see Figure IV-D-2), only 18 particles escaped,
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which corresponds to an e folding time of 8.38 sec for

the test ion distribution. The e folding time T was

determined by-

n(t) = n e-t/T [IV-E-5

The observed ion losses occurred uniformly during

the 30 msec tracking period, consistent with

n
dn ~ - constant (for t << t)
dt T

[IV-E-6]

The principal result of these computations is that the

energy transport due to loss cones is negligible in R /a > 60

torsatrons. For torsatrons of smaller aspect ratios,

this is not the case. Figure IV-B-1 shows sizable loss

cones existing near the magnetic axis for the R /a = 3

machine. The single diffusion run done for this machine

had 20 particles out of 360 escape during 30 msec of track-

ing. This results in an e folding time of .52 sec for the

density distribution, on the same order as the energy

confinement time due to diffusive spreading (TE = .47 sec).

This indicates that the low aspect ratio torsatrons cannot

be ignited. In addition to suffering from the observed

1/R increase in Xi, energy confinement is further degraded

due to particles scattering into unconfined orbits,

Figure IV-B-1 indicates that loss cones near the

magnetic axis are diminished in the R /a torsatron by a
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high field. A diffusion run made in the high field

machine confirmed this. With the test particle distribution

launched at $to = .25 t(separatrix), no particles were lost

during the high field (Bz0 = 10.1 tesla) compared with 20

for the normal field. The observed value of X. was 1.22

± .05 for Bzo = 10.1 tesla, compared to Xi = 2.31 ± 0.2 for

Bzo = 5.05 tesla. This is suggestive of a 1/B scaling for

Xi, another characteristic of resonance diffusion.

(Please note that I presented Miyamoto's diffusion coeffi-

cient in section D only to illustrate the characteristic

scalings of diffusion based on a resonance between helical

and toroidal ripples. I am not comparing Miyamoto's results

directly with my observations, since Miyamoto's basic

assumption that Et h is not valid for torsatrons with

moderate aspect ratio.)

F. Conclusions

A detailed optimization of a torsatron reactor

design is well beyond the scope of this thesis. It would

involve a complex interaction of the engineering constraints

(power balance, first wall loading, total reactor size) with

the numerous design parameters (plasma radius, aspect ratio,

coil pitch length and winding law, field strength on axis,

etc.). Still, I believe the choices made in this thesis for

the fixed design parameters of the torsatron reactors were

reasonable, and that my results allow a number of conclusions

to be drawn concerning the viability of the torsatron as a
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power reactor.

The numerical measurements of the ion thermal

conductivity show the presence of a plateau regime

extending over two orders of magnitude in collision

frequency. The value of Xi is approximately equal to the

neoclassical plateau value for an equivalent torus without

helical modulation. This plateau regime, plus the observed

1/R and 1/B scaling of Xi, are characteristic of diffusion

resulting from an orbit resonance between the motion in

the helical modulation and the bounce motion in the toroidal

modulation of the field. (9 10)

I suggest two reasons why neoclassical ripple trans-

port was not observed in the torsatron fields. First,

the toroidal ordering of the distribution function in the

neoclassical calculation is inappropriate to the torsatron

magnetic geometry, because the helical and toroidal modula-

tions in the torsatron's field are of the same order.

Second, the observed orbits of the trapped particles within

the torsatron (which are the fraction of the population

that contribute most to the diffusion) differ markedly from

the trapped orbit characteristics assumed by neoclassical

theory. Neoclassical ripple theory assumes that a signifi-

cant fraction ( / ) of the particles are trapped in the

helical ripples of the field. The observed orbits indicate

that this assumption is incorrect. The trapped particles

were observed to make frequent transitions from ripple

trapped to tokamak-like banana to quasi-circulating motion
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in vacuum fields. Their motion does not conserve the second

adiabatic invariant J, which is assumed conserved in neo-

classical theory.

An analysis of the power balance of a torsatron

reactor, based on the observed plateau character of the

ion thermal conductivity, indicates that an R /a = 12

torsatron can ignite at moderate density and temperature

(n e 1.5 - 102 0 /m3 , T. 10 -20 keV). For the reactore

sized torsatron described in Table IV-D-1, the power de-

posited in the plasma by thermalizing a-particles (42.1

MW/module) was sufficient to balance the bremsstrahlung

power loss (- 10 -15 MW/module) and the diffusive power loss

due to the ion thermal conductivity. The power loss due

to particles scattering into unconfined orbits was found to

be negligible for an R /a = 12 torsatron, about 15 percent

of the diffusive power loss for an R /a = 6 torsatron, and

approximately equal to the diffusive power loss for an

R /a = 3 torsatron. The observed 1/R scaling of X suggests

that, for <a > = 2.1 m and B = 5 tesla, the minimum
p z0

aspect ratio for ignition is ' 10. In this aspect ratio

regime, the power loss due to ions scattering into uncon-

fined orbits was found to be much less than the bremsstrah-

lung power loss. The diffusion measurements also point to

a 1/B scaling of Xi, which suggests that the minimum aspect

ratio for ignition might be lower if the magnetic field

strength of the reactor were increased, assuming that the

new values for plasma g and/or wall loading were acceptable.
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Chapter V. SUMMARY

In this thesis I studied high-energy particle orbits

and energy diffusion in reactor sized torsatrons. In parti-

cular, I investigated the orbit characteristics of 3.5 MeV

a-particles, the power deposition profiles of thermalizing

a-particle distributions, and the characteristics of the

plasma's ion thermal conductivity. The results were used to

estimate a minimum aspect ratio at which power deposited in

the plasma by thermalizing a-particles would balance power

losses due to bremsstrahlung, escaping particles., and ion

thermal conductivity. I present here an abbreviated collec-

tion of these results and conclusions.

For particles orbiting in helical, cylindrical mag-

netic fields, energy and helical momentum are absolute

invariants of motion. For particle orbits with p << a coil

and p << LB (the local field curvature), the magnetic moment

V is an adiabatic invariant of motion. The invariance of

these three quantities limits the radial excursion of a

particle to approximately a Larmor radius (pP ). This

indicates that the large radial excursions observed for

trapped particles in helical, toroidal fields were not due

solely to the presence of helical ripple, but were the result

of orbit resonances between the motion in the helical modu-

lation and the bounce motion in the toroidal modulation of

the field.
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The analysis of orbit characteristics in helical,

toroidal magnetic fields was done by examining numerical

tracks of guiding-center orbits. These tracks showed that

the particles may be grouped into two general classes, well

circulating particles and blocked particles. Well circulat-

ing particles are in general confined particles; their orbits

are characterized by periodic motion on well defined drift

surfaces. Blocked particles, on the other hand, exhibit

more complex and non-periodic motion, and their general

confinement is dependent on the toroidal curvature of the

magnetic field. Blocked a-particles were found to be well

confined in a reactor sized torsatron with R /a = 12,

moderately confined with R /a = 6, and poorly confined with

R /a = 3. This led to an overall percentage power confine-

ment (from thermalizing a-particles) of 99.4% for a torsatron

reactor with R /a = 12, 90.3% with R /a = 6, and 65% with

R /a = 3. By raising the axis field from 5.05 tesla to 10.1
0

tesla in the R /a = 3 machine, the overall percentage power

confinement was increased to 70.1%.

The a-particle orbits were found to be insensitive to

moderate potential differences between the axis and separa-

trix regions of the plasma (0- 10 kV). Above 10 kV, a posi-

tive charging of the axis region aided the confinement of

blocked a-particles. These particles, when leaving the axis

region, would pick up parallel energy from the decreasing

potential and be less affected by the magnetic field

modulations. Per contra, a negatively charged axis resulted
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in blocked particles losing parallel energy near the separa-

trix region, which led to larger flux surface excursions,

and in some cases, particle loss.

Numerical determination of the ion thermal conductivity

showed the presence of a plateau regime extending over two

orders of magnitude in collision frequency. The theoretically

predicted adverse 1/v scaling of Xi due to ripple trapping

was not seen. On the contrary, Xi was approximately equal

to the neoclassical plateau value for an equivalent torus

without helical modulation. These results indicate that

ripple transport theory is not applicable to the torsatron

geometry. The usual calculation of transport due to ripple

trapping relies on the assumption that a significant fraction

(%/h ) of the particles in the system are trapped in the

magnetic ripples, and that the deviations of their collision-

less drift orbits from their initial flux surface positions

are determined primarily by the vertical drift caused by the

toroidal 1/R magnetic field gradient. However, an analysis

of blocked particle orbits shows that this assumption does

not hold. The orbits of the blocked particles are complex.

These particles can make frequent transitions between quasi-

circulating, tokamak-like banana, and helically trapped

orbits. The fraction of particles with simple, helically

trapped orbits is negligible.

An analysis of the ignition criteria of a torsatrQn

reactor, based on the observed plateau character of the ion

termal conductivity, indicates that an R /a = 12 torsatron
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can be ignited at moderate density and temperature

20 3
(n = 1.5 - 10 /m , T. = 10-+20 keV). In this machine,e

the power deposited in the plasma by thermalizing at-particles

(42.1 MW/module) was sufficient to balance the bremsstrahlung

power loss (-10- 15 MW/module), the power loss due to

particles scattering into unconfined orbits (<< 1 MW/module),

and the diffusive power loss due to the ion thermal conduc-

tivity (20 - 30 MW/module) . The diffusive power loss was

found to scale with l/R. The power loss due to particles

scattering into unconfined orbits was found to be negligible

for an R /a = 12 torsatron, about 15% of the diffusive power

loss for an R /a = 6 torsatron, and approximately equal to

the diffusive power loss for an R /a = 3 torsatron. These

results indicate that moderate aspect ratio torsatrons with

the design parameters chosen for this study (BZ = 5 tesla,

<a > = 2.1 meters, a = 4 meters) can meet or exceed ignition
p c

requirements. Power losses due to ions scattering into

unconfined orbits are negligible, and the power deposited

by the well confined, thermalizing a-particles can balance

bremsstrahlung and diffusive power losses. The 1/B scaling

of the ion thermal conductivity and diffusive power loss

also suggests that torsatrons of lower aspect ratio might

also be ignitable if a higher axis field strength ('x 10 tesla)

were used.
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Appendix A

This appendix describes the calculation of B on a

three-dimensional grid inside a torsatron reactor. In

particular, it describes:

1) the mathematics of the constant-pitch winding law

2) a method to approximate helical, toroidal wind-

ings with straight line segments

3) the calculation of B from a line segment

4) a method of constructing the three-dimensional
grid which allows 2inite poloidal thickness of
the coils with very little extra computation
time.

The pitch angle a of the torsatron's helical windings

is defined by the equation:

tan a a' dO
R + a cos(O) d4 [A-l]

Figure A-1

I
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Two comnon winding laws involve keeping de/dp

constant (sinusoidal windings) or the angle a constant

(constant pitch windings). For this study, the constant

pitch winding law was arbitrarily chosen. With tan a a

constant, an equation relating the 0 coil position to the

$ position may be derived. I start by solving for tan a.

Since the winding makes 1/Nt toroidal turns for

one poloidal turn,

Jo

tan =

[A- 2]
(All angles expressed in radians.)

Rewriting equation A-l:

O -a de
tan a (R + a cos 0) [A-3]

and integrating:

+ a 2 tan-l R. a tan 0
o tanca R- 2 R + a 2;

2 tan- R 0.-_a tan e

t 0
[A-4]
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tan a . R 0,- a' tan .Ntj. + 0)
tan = R + a ta2 R0+a 2 [A-5]

The computer code constructs the helical coils in

the following manner: first, a set of points, uniformly

spaced in $, is positioned on the helical winding. This is

done by picking the appropriate c for the initial position,

spacing the points in $, and then solving for their e

positions with the help of the last equation. My goal is

to approximate the helical winding with a series of straight

line segments. One method would be to connect the set of

points with straight line segments. I used a more accurate

method, which I will illustrate with a simple example.

Suppose I have a set of points of an arc of a circle, and I

want to connect the points with line segments such that

the segments closely followed the curve of the circle.

Given that I know the slope of the circle at each

point, I create a line segment at every other point, match-

ing each segment to the local slope of the circle, with

each segment having length 2k.

Figure A-2
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"" is chosen so that 6,s = 6s2' and is found as follows;

Figure A-3

0
Cos a 0 a + 6s (A-6]

a.
cos x = 0

Cos X = a + 0s

with Ae= $+ X a known quantity, solve for 6s.

a 2 + Z2 _ a 2 + 2a Es + 6s2 [A-7]
0 0 0

X = (Ss + 2a ) Ss [A-8]

I will now extend this procedure so that it will

work on a helical winding. I already have a set of N

points on the helix, and I know that the direction of the

winding at each of these points by the equation:

= $ cos a + 0 sinoa [A-9]

Again I create a line segment at every other point, match-

ing each segment to the local slope of the helix, with each
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segment having length 2.P.*.. To determine the appropriate

length Y,*, note that AO is known, so that the 0 component

of t* is P, which has been found. Now, * can be determined

from the following relationship:

A{

Figure A-4

k* = Z/sin a [A-10]

The toroidicity of the helix introduces an additional error

of a/R order, which for the cases run added about 20

percent onto an already small deviation. The following

data represent an average run by the computer code. The

deviation figures were obtained by a detailed integration

of the line segments' positions, relative to the true

positions of the helical toroidal windings.

Re 024 meters

a 4 meters

Nt 5 2/3

number of line segments 148
representing winding (continued..
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average radial deviation .0013 meters

average magnitude of radial .0111 meters
deviation

Imaximal radial deviation .0546 meters

average circumferencial deviation -.0003 meters

average magnitude of circumferen- .0030 meters
cial deviation

Imaximum circumferencial .0138 meters
deviationi

Table A-1

The deviations are small compared to the dimensions

of an actual winding (even assuming a high current density

2of 6000 A/cm , the winding would still have a radial

thickness of 30 cm). Also, a test case was made with a

winding represented by only 74 line segments, resulting

in a four-fold increase in the deviations. No noticable

differences were seen in the flux surfaces produced by this

winding and the winding with 148 line segments. This match-

ing was taken as confirmation that the coil's true helical

position was being accurately represented.

After the set of line current segments is created,

I next need to calculate the magnetic field at arbitrary

positions due to these line currents. This is done by a

simple summation of the contributions of each segment. I

will now describe how the magnetic field from any line

current is determined.

I am using a right-handed Cartesian coordinate

system (W, D, Z), with the observer at the origin, and the

current segment L lying in the DW-plane with the current
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flowing in the positive W direction.

Writing the Biot-Savart law:

dB = 4 7T

r x dL

3
r

(A-111

(note direction of r)

Ty.
\k4/

Figure A-5

r= D 0 + W W

dL = dW W

d B =
_ 47

Integrate:

B p Ia0 D x W
B-

47T D
0

'J I
0
4;ir

D0 d W (D x W)

2 2 2/3
(D +W)

JW

max

min

D X W
D

0

z
D dW

2 + 2 3/2
( W )

S W)

2 2 1/

I)

Do

where

Ws

[A-121

[A-13]

[A-14]

wmax

W.mlun [A-15]
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Any line segment can be oriented so as to conform to this

representation, when the appropriate coordinate system is

chosen. For example, assume the observation point is at

the origin, the line current begins at point P =

(x , yy, z ) and ends at point P2 = (x2 ' Y2, z2 ).

Let -12 2 P1 = (6x, 6y, 6z). I want to find

D in this coordinate system; I start by writing a set of

locus equations:

Do = x1 + 6x t

Do - y + 6 y t

Do z = z + 6z t

[A-161

D - r 12 = 0 = (6x2 + 6y2 + 6z 2) t

+ 6x x1 + 6y y, + 6z z1  [A-17]

t =-(6x x1 + )y yl + z z [A-18]

-12 * 12

Wmin = 1 2 1 t [A-191

Wmax = Wmin + I r1 2 1 [A-20]

W = unit vector in r12 direction

All the terms in the equation for B are now known.

Now that the procedure for finding B has been

described, I will describe the method by which a three-

dimensional grid containing the values for B is created.
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The periodicity length of B in a torsatron is a module

length; hence the grid need only extend one module length

in $. Also, the grid need only cover the top half of

the torsatron, since the bottom half is a mirror image of

the top half. (This can be seen by flipping the torsatron

over and reversing the current direction.) The relation-

ship between B in the top half and B in the bottom half

of the torsatron is given by the following equations:

Br (r, y, B) -Br (r, -y, mirror -$) [A-211

BY (r, y, B) =Y (r, -y, $ mirror -)[A-22]

B (r, y, B) (r, -y, $mirror [A-23]

where $mirror is any -plane in the torsatron where the

coils' radial positions in the top half are equal to those

in the bottom half. This occurs at two different planes in

any module, regardless of "V" number.

&Y

. ....V _

Figure A-6
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The first step in creating the three-dimensional

grid involves creating a grid extending only in two dimen-

sions (r and Y) and containing separately the contributions

from wires covering the surface of the torsatron (see

Figure A-7). From this data base the 3-D grid is created

by adding the wire contributions appropriate for the

individual $-planes. This procedure enables me to mock

up windings of finite poloidal thickness with very little

extra computation.

Figure A-7

To explain: suppose I wanted thirteen divisions in

$ in a module length, and that the 9 number is 2. I would

then calculate the 2-D grid with 26 coils, spaced in e so

that when I move one division in $, coil 1 is in the old

e position of coil 2; coil 2 is in the old 6 position of

coil 3; and so on. Note how this implies Ae between coils.
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is not a constant, since d4/dQ is not a constant in a

constant pitch winding. The next step involves calculating

a true 3-D grid. Assume that I want each winding to cover

about 19 percent of the torsatron surface area. I can

approximate this poloidal thickness by adding the contribu-

tions of 5 of the 26 helical current filaments to represent

one coil. For example, in the $ 0 plane,

Figure A-8

where both coils are at Y 0, I would add the contributions

of coils 24, 25, 26, 1, 2 and 11, 12, 13, 14, 15 of the

2-D grid to get the c = 0 values of the 3-D grid. For

= one division (i.e., the next f-plane in the 3-D grid,

= 1/13 module displacement). I take the values of the

= 0 plane, subtract the contributions of coils 24 and 11

of the 2-D grid, add the contributions of coils 3 and 16

of the 2-D grid, and have the c = one division values of

the 3-D grid. The net saving of this method is that only

1/ # filaments per coil amount of computation need be done,

compared to solving for the 3-D grid values by integrating

the effect of the ten filaments at each point. In a typical
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computer run, with perhaps 60,000 points in the 3-D grid,

and 15 filaments per coil, the routines to calculate the

B field grid take about 3.5 minutes of CPU on a CDC 7600,

rather than an hour which would be required by the direct

3-D evaluation.
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Appendix B

This appendix describes the placement of the vertical

field coils of the torsatron reactors. It contains:

1) a description of the effect the vertical field
coils have on the flux surfaces

2) a description of how the coils' positions were
chosen

3) an expression for magnetic field produced by
circular current loops

4) a polynomial approximation for the elliptic
integrals K and E.

The vertical field coils (VFC) of a torsatron consist

of large, circular current loops lying alongside the main

helical windings, carrying current in the opposite

toroidal direction. Their primary purpose is to cancel

Figure B-1

the large vertical field produced by the helical windings,

and thereby allow the formation of closed flux surfaces.
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(The VFC also have the desirable property of canceling most

of the dipole moment of the helical windings,)

The placement of the VFC of the torsatron designs

considered in this study was done by the non-linear multi-

parameter optimization code SOLVE. This code solves for

positions and currents of vertical field coils when required

constraints are specified. These requirements can include

geometrical constraints, specification of the magnetic

field at many points, and specification of flux linkages

and magnetic moments. For the reactor cases studied, it

was found that nulling the field at 10 to 15 points on a

grid loosely spread within the separatrix produced accept-

able flux surfaces (see Table B-1).

Once the flux surfaces were created, I found that

the location of the magnetic axis and the well depth of the

surfaces are -very sensitive to the amount of current in the

VFC. A change of VFC current of 5 percent can move the

magnetic axis the distance of a minor radius. An increase

in the VFC current pushes the magnetic axis in towards the

toroidal center, and decreases the well depth. Thus the

VFC current can be changed to obtain more or less well

depth, up to a maximum of about 10 percent well depth for

the large aspect ratio torsatron (R /a = 6), and up to

about 20 percent well depth for the small aspect ratio

torus (R /a = 3), with well depth defined as:

<B2> < 2

well depth = max axis

<B 2>
max (B-1]
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i-K:11P91;SOUT 1112

SOLVE VERISION 3,4

RUN NUMBER 1112 AT 06:44:20
AA MACHINE ON 08/21/79

DETAILS OF 11POLE MODLL OF HELIX

TOTAL AZIM'UTHA L C(InhIWNT 1.200E+08
M!! RAD i4S 2. 400E+01

Mii,'i HADIM S 4.OOOE+00
COhDUCTR RADIUS 2.OOOE-02

FIXED COILS F3R IILiLP, SO
fINKOING L4'W COIISTANT PiTCH ANGLE LAWJ

NON-LINEAR MIIIAIZER CALLED WITH M c 14 WISHES:

-AT COORDINATES- ----------- ------------ WI -------------------

TtPE

VE..TICAL 0 F J,
VE'ITiCAL B F! iJ3
V'MT I CAL B FE:.U
VMtT!CAL B F1 !
VI!2TICAL B FIE,')

RAIAL B FIELD
RADIAL 9 F IELD
RADIAL B FIE ir

VER I CAL B FIELl)
V51TICAL 0 FILD
VEPTICAL B FIELD

rA)IAL B FIELD
VLRT ICAL B F IELI

DIPOLE OE

4 NULLING COIL'i WERE ST1.RTED AT :

23.000 14.300
31.000 5.830

-2 .570E+07
-1,580E+07

iPAIR AT +/- Z)
[PAIR AT +/- ZI

l'i1JT PARAMETMl" TO Till' MINIMiZER :

IOPT z
IIAXFII'

NSIG
FPS

DELTA
11I 1;

1 (ALOORITHA OPTIO11)
t00 lFM.IIJU ICTIOU CAILSI

5 ISIlGIJIFIC:T FIGiE 2
1 u.vE-08 (A.iSIDUAL SUNI OF irU/I.J1ES)
1. 0 F -07 (1O1RM OF GRADIEIJTJ

rINIsnzr WIT4 1IIFER = 2 IEP = 0.

R

1
2
3
4

12

6
7

9
10
11
12
13
14

"ALUE

22 . 000
22.600
24.000
25.400
26.000
22.000
24.000
25.400
23.000
24.000
25000
4.000

24.000
24.000

WEI111T

1 .410

.41'

1,410
2.,000

.410
0.

1.000
0.
1.000I.

0.
0.
0.
0.
0.

0.
0.
0.
0.0.
0,.

0.
0.

1 .0oE+00
c .00UEi00
I .00()E+00
1.000E+00
1 .o00E+00
1 .00UE+00
1 .000E+00
1 .0u0E+00
to. ME+00
t.,00*E+00
5.000E+00
5. OqE+00
1 .000E+01
1.OOOE+00

sullosy, saptomDbel 1, 19-L,

I
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Sunday, Septemuer U, 107t,

F IFAL CO 1L P01hIIHS

R z

12: 56:38 iVK:hPOL;SOUT 1112

-2.77OE+07
-1.753E+07

IPAIR AT +1- Z)
1PAIR AT +/- ZI

DETAILS OF S)Vi-UTON
SUM OF SQUARE5 -jF FIES!I)ALS

11E55DUAL (ERROII A.R.T. WISH) :

3.340S1E-00

WE I GlITED

1 4.01709E-04
2 --5.2r295E-04
3 6.52402E-04
4 -9.12693E-04
5 1.05460E-03
6 -1.46788E-04
7 -5.7125CE-04
8 -9.2506SE-05
9 -3.29078E-05

10 7.17667E-05
11 2.%5796E-04
12 1,77824E-04
13 -7.4005UE-04
14 -1.17890E-05

WOMIALIZED

4.91831E-04
-6.20251E-04
C.52450E-04
-9.12641E-04

1.05465E-03
-1.45827E-04
-5.71302E-04
-0.27270E-05
-6.55250E-06
1.40015E-05
5.920GE-05
3.5622SE-05

-2.403d1E-05
~1.17531E-05

ARUOLUTE

5.06551E-04
-6.50-421E-04
7.71356E-04
--1.03653E-03
1.llOlE-03
Z.07046E-06
4.08351E-06
4.30019E-06

-8.00256E-06
1.7*257E-05
6.80722E-05

-1.27045E-06
-t.94706E-05
-2.OaG45E+06

POrAP, OF GRADIENT
1: J! 'TkI'T l EoALUAT I OilS

ESTIMATU Gi^IFIc.MT DIGIS
FhIAL MAPOUA11DT SCAL .110 PARAMETER

ITERATIONS

3.9922r-(5
90.

3.
1.5145C-06
24.

Table B-1

33.758
33.548

13.8 8
6.777

I
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If one attempts to get a larger well by decreasing the VFC

current still further, the magnetic axis comes in contact

with the outside edge of the separatrix, and the flux

surfaces are destroyed.

I now present a brief outline of the procedure used

to calculate the magnetic fields produced by the VFC.

(2,)Following Jackson,( consider a circular loop of

radius a, centered at the origin of a cylindrical coordinate

system, carrying a current I (MKS units). The current

density has only a 0 component:

J= I 6(Z) 6(p -a) (B-2]

The vector potential is

_A o J d1 [B-3]

4-ff r

Figure B-2
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The azimuthal integration is symmetric about 9 = 0; hence

the radial component of A is zero. This leaves only the

e component, which is:

A (P, Z) = 00 4Tr T 2Tr0

cos e' d o
(a 2 + Z + p 2 2 a p cos ')1 /2

[B-4]

Expressing this integral in terms of the complete elliptic

integrals K and E:

r (a2 + Z2 + P2 + 2 a p)1/2

where m =

F/ Z2 + 4 + P 2a+p)2

3A 0
B = V x - + P

(2 -M) K(m)- 2 E(m)

m

(pAO) Z

Evaluation of these derivatives is straightforward,

noting that

DK(m) _ Dm dK(m)
a Z T dm , etc. [B-8]

and that

dK(m) E
dmn 2m 1-m

-K
[B-9]

(B-l10l

A (p, Z) =

[B-5]

[B-61

[B-7]

d E (mi) 1(E -K)
d m
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The results are:

B = 0

B =1-
P 2ir

110

2rrf

p[(a + p2 + 2 1/2

1 1

p[ a + 2) + z2 1 :I

F(a2 2 + Z2
- 2 2

(a - p) + z

[B-121

E(a2 p2 - Z2 +K

a -p) 2+ Z- .

[B-131

The following polynomial approximations were used for the

values of K and E,(3 , 4)

4
K(m) = E X (a + b

1=0
log (1/X) ) + e (m)

jc(m)j < 2-10-8

X = 1 -M

1.38629 436112

.09666 344259

.03590 092383

.03742 563713

.01451 196212

4
E(m) = 1 + Z X (e + d

1=1

b= .5

b = .12498

b2= .06880

b 3 .03328

b = .00441

593597

248576

355346

787012

log (1/X) ) + e(m)

EI(m)I < 2 -10-8

[B-11}

[B-14]

0

a 1 =

a2 =

a3 =

a 
=

[13-151
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el = .44325 141463

e2 = .06260 601220

e3 = .04757 383546

e4 = .01736 506451

li = .24998 368310

d2 = .09200 180037

d3 = .04069 697526

d = .00526 449639
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Appendix C

This appendix describes how cubic spline interpolation

was implemented in this study. In particular, it contains;

1) the motivation for using spline interpolation

2) an outline of spline theory

3) a description of the use of spline interpolation,
covering the extension to multi-dimensional inter-
polation and the inclusion of boundary conditions

4) a description of the calculation of B, VB,

toroidal' and Vi toroidal within a torsatron from

a series of two-dimensional spline grids

5) a description of the differentiation formula used
to calculate the second derivatives of B needed
in the construction of the spline grids.

A common problem in numerical computation is that of

interpolating the value of a function f whose value is known

only at discrete points. One solution involves constructing

a curve through the points by expanding a set of linearly

independent eigenfunctions (hereafter called basis functions)

and then defining the curve G as:

G(X) = E a. B.(X) [C-1]
1 1

where B(X) represents the basis functions, and a represents

a set of basis coefficients, which are determined by the

function f. If f were a continuous function, an infinite

series of basis functions (such as an infinite Fourier series)

would be needed in order to construct a curve through the

continuum of data. Since f is known only at a finite number
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of data points, however, only a finite number of basis

functions (e.g., a finite Fourier series) is needed. As

another example, if f(X) is known at n data points, one

could define B. (X) X and define G(X) as:

n-i n-i
G(X) = c.B.(X) = a B. X

i=O i=0 1 [C-2]

By requiring G(X) = f(X) at the n distinct data points,

the basis coefficients are determined. This approach also

has the desirable feature that G(X) and all-order derivatives

of G(X) are continuous. As the number of data points becomes

large, this method suffers from the large amount of compu-

tation needed to calculate both the basis coefficients, and

also G(X) by computing n basis functions each time a value

for G(X) is desired.

It is desirable to retain control of the continuity

of the derivatives of G(X), but also to define B (X) such

that it is non-zero over only a small range of values. The

summation of a. B (X) can then be done with only those values

of i for which B. (X) is known to be non-zero. A set of basis

functions called B-splines meets these requirements. The

spline method of interpolation was developed by Schonberg,(1 )

and extended to multi-dimensional problems by C. deBoor.(2 )

A spline is defined to be a polynomial function which

is piecewise continuous to degree m -1, where m is the order

of the polynomials. Schonberg defines the spline basis

function as:
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Bg OX) = E
i= 0

(X-XZ+i+
2 -m +

where (X - Xk)+ = X - Xk for X > Xk

(X -Xk + = 0 for X< X k

In the case of cubics (m = 4),

B (X) = (X - x+ 2 )

[C-3]

[C-4]

[C-5]

[C-6]

+ 6 (X -X)

-4 (X - X ++ 6(X-X 3

+ (X - XE- +

k-2 +

which is non-zero on the interval (X-2' x,+ 2) and defined

as zero elsewhere.

The continuity of B and its derivatives B (X) is

guaranteed for k< m -1. Thus, for m =4 (cubic splines);

a2SB (X)
and a 2 are continuous

a3 B (X)

a x3

is discontinuous only at the original data

points in f (also called knot points),

and constant in between

ak B X

k = 0 for all X, for k > 4
a xk

I will now step through the solution procedure for

B (X)

ax
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cubic spline interpolation (m =4) for a one-dimensional

case.

Given n data points,

1 2 n-i n

1 (m- 2) extra data points are needed on each end of the array

as boundary conditions, in order to uniquely determine the

a coefficients. Here I will choose second derivative

boundary conditions, so my expanded set of data points looks

like this:

f:

0 1 2 n-1 n n+1

[knot points]
2

where f D f X0 M2f

2
f a f(X)

n+l 9X 2 f
n

Now, write f as:

n+1 n+1
f(X ) = a Bk(X ) = E a BZi [C-71

k=0 9'=0

-1
Operate on both sides of the equations with Z B,

i ikL

n+1 -1 n+l -1 n+1
E B ,, f(X.) = E BL , Bz.

i=0 i=O k=O

(continued ... )
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n+1

n= 0

n+ 1

n+1 -i

=0

Z B.A

[C-8]

2
To construct the B matrix, I must calculate aB 91(X)

3X
second derivative boundary conditions are used.

2
a B,(X) = +6 (X -X + 2 +
§X 2

-24 (X -x +1 +

+36 (X-X )+

-24 (X -X _-)+

+6 (X-X XY-2 + [C-9]

0 1 j

B(X. )

all zero

2 B(x)

ax2

1 4

6 -12

1

6

0. .-

all
zero

0
all
zero

Thus the i'th column of B will be:



column #0

row #0

#1

Thus, for

6

- 1 2

6

0

0

columan 0

n = 3,

1

4

1

0

0

1

Columns 0 and n+

32
and f = ,

f3

vector is placed

columns

0

1

4

1

0

2

1 to 3

0

0

1

4

1

3

of B would

0

0

6

-12

6

4

look like this:

1 are determined by the fact that f - -

32 B (X) f

so the appropriate 2

(k=0 to n+1)

in these columns.

181

. #2#1 #i

0

0

0

0

1

4

1

0
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Finally, B is computed, and

n+1
G (X) = Z X B 9 (X), XJ <X X

9=0

n+1 -1
= B f(X.)

i= i

[C-10]

[C-11]

For spline interpolation of a multi-dimensional

problem, one-dimensional basis fuctions must be calculated

for each dimension of the data. In three dimensions, for

example,

G(X, Y, Z) =E E a k
£z m n Zinn

B (X) B B (Z)L m n (Z)

[C-121

At a data point:

f (xi, yj zk) atmnk m n

= n amn

(x) (y) (z)
B (X ) Bm Cyj) B (zk

[C-13]

(x) (y) (z)
B B. Bnk

[C-14]

with i, j, and k having the same dimensions as -Z, m, and

n, respectively. The spline coefficients are now computed,

as in the one-dimensional case, only now an additional

summation is required for each extra dimension.

(z) ( xW
=E E E B B I B. f

aV'M'n' k j 1 kn' jm[C1 ijk5]
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I will now step through a very simple two-dimensional

problem to illustrate the inclusion of boundary conditions

and the limits of the summation operators.

Suppose the initial data is a 2 by 3 rectangular

grid.

XMAX = 3

YMAX = 2

f 2 2

f2 1

f
3 2

f31

Using cubic spline basis functions, I require one extra data

point at each limit of the grid in both the X and Y direc-

tions. This gives:

f 2 3f13

f12

f 3 3

f3 2

f 3 0

where

f2
j0 2

4 = 2

fLj3 2

f2
ej 9xfD. = -r

f

j 2

f

flj

j = 1, 2, 3

j = 1, 2, 3

j = 1, 2
(continued...)

f01 f21

f20f10
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32
fj a 2 f

x 2 f
j = 1, 2

Notice that the extra dimensionality of the problem creates

the need for four more boundary conditions, in particular

the four corners of the expanded f grid. The values of f

at these four corners form the boundary conditions of the

boundary conditions of f . The four corner values of f are

determined by the same method used to calculate the other

edge values of f. In this case, since second derivative

boundaries were used, consistency requires that the corner

values of f be the second derivative of the edge values of

f. In particular,

D2 2 f a2  2

a 2 f - 3 2  f f 10 ay 2x Sy Xx

01 210

a f = 2 f
03 9 y 2 x

32
- a 2f

4 3 3 2
ay

f .3 42f
2

ay

2
a f

ax

2

ax

2  
a 2 f

13 f1 2

32 2

a a f

~ ~ 2 2ay ax33 32

2 2

ay2ax2 31

This rule also applies to higher-dimensional problems. If

a three-dimensional f grid had second-derivative boundary
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conditions, then the face locations on the f grid would
2 2 32

have f values, the edge locations would have 2 2

32 22 32
f values, and the eight corners would have 2 2 2

ax x. 23x2
values. Boundary conditions in the I- J k

different directions need not be of the same order. For

example, if I keep the second derivative condition in the

x direction f = _2 f , etc. but have first order

3x f

derivative boundary conditions in the y direction

f =3 f
10 -- , etc. , the corner cells reflect this

change:

3 f 3 f a 2
-00 y 3 10  y 3x2  , etc.

Returning to the main problem: I have now constructed the

expanded f grid. The next step is to construct the B

and the B matrices. This is done in a manner identical

to the one-dimensional case, since each direction is

treated separately. The basis matrices become:

B(x ' 6 1 0 0 0

-12 4 1 0 0

XMAX= 3 6 1 4 1 6

0 0 1 4 -12

0 0 10 6
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B ()= 6

-12

YMAX = 2 6

0

1

4

1

0

I am now ready to calculate

XMAX +l YMAX +l
a = E z

i=O j=0

0

6

-12

6

0

1

4

1

the a matrix.

(x)~1 (y)
3 B. f

j m

(in matrix notation, this is equivalent to:

a = ( (f B 1 )
B (x) 1) T )

Finally:

(x) (y)
G(x,y) = E I a B (x) Bm (y)

k m m [C-18]

I will now give a relatively simple set of equations

that calculate the spline basis function values. I will

work in one dimension, since any other basis functions in

other possible dimensions are evaluated independently and

in exactly the same manner.

first
point

J

second
point

j+l

third
point

fourth
point

Assume G(x) is desired to be known, and x < x < xj+1. We

i
[C-16]

[C-17]
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are guaranteed that B (x) = 0 for 9 < j - 1 or k> j + 2

Thus:
j+2

G(x) = Z B. (x) a..
i=j-1

[C-19]

By simple algebra, I find the values of B(x) at the four

points of interest to be the following:

first point:

B = -3 + 36 2

second poin

B = 36 3

- 36 + 1 [C-20]

- 662 + 4 [C-21]

third point:

B = 1 + 3 * (62 + 6 - 6 ) [C-221

fourth point:

B = 63 [C-23]

where 6 is the percentage distance of x from x to xj+1

(hence 0 < 6<1).

As a final point, note that derivatives of G can be

found by directly differentiating the basis functions.

G (x) j+2

= x
U,. VB. (x)

1 1

where the four non-zero values of VB. are:
I

[C-241
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first point:

VB. = -362 + 66 - 3 [C-25]
1

second point:

VB 962 - 126 [C-26]

third point:

VB. = 66 - 96 + 3 [C-27]

fourth point:

VB. = 362 [C-28]

2 j+2 2
6 G(x) E a. V B (x) , if the second derivative is

2 =j-l 1 1
6x

3
desired. 3 G(x) is discontinuous at the knot points, and

a4 G(x) and higher-order derivatives are identically equal to
x

zero everywhere.

The accuracy of these derivative calculations depends

on the order of the spline fit. Obviously, the original f

function, whose value is known at the original grid locations,

might have non-zero fourth-order derivatives, but these could

never be found by cubic spline interpolation. A higher-

order spline fit would have to be used. The exact order

needed would depend both on the accuracy needed and values

of the original data.
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Torsatron Field Calculations

In this thesis, the magnetic field within a torsatron

was approximated by a series of two-dimensional spline grids,

equally spaced in the toroidal directions $. This approach

was motivated by the fact that two-dimensional spline

interpolation is over four times as fast as three-dimensional

spline interpolation. The two-dimensional method does

impose the constraint that field quantities can now only be

accurately calculated on the discrete $-planes of the

spline grids. The particle pushing algorithm was therefore

constructed so that the particle's position always lies on

one of these spline grids, and the pushing algorithm moves

the particle from one plane to the next (for a detailed

description, see Chapter II). The pushing algorithm requires

the following field quantities: B, VB, $toroidal' and

Dtoroidal (the need for the toroidal values arises from

the fact that voltage profiles were mapped onto the toroidal

flux profiles; hence V toroidal is needed to calculate the

electric field quantity that appears in the guiding-center

equations). As a data base, four different spline grids

are kept for each plane, one for B , a second for B , and a

third for B z, and a fourth for $toroidal'
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Y

Thus B and Ttoroidal are found by standard spline interpola-

tion. In calculating the quantities

aB 3B aB 3B aB 3B Z 4 T $

7x ax ax 3y ay 3y ax ay

the derivatives of the spline basis functions multiply the

a coefficients, rather than the basis functions themselves.

Unfortunately, this method could not be used in calculating

the Z (toroidal) derivatives, since the two-dimensional

basis functions do not extend in that direction. To complete

the VB tensor, note that:
3B aB aB

- ax ay [C-29]

Bx B aB aB

V- B = 0 [C -3_y0 z ax az ~7}[C-301

Thus is known. The fact that V- B = 0 allows a check on

B aB
accurach of the VB calculation, since . Calculated

independently, these two values matched each other to 4 to 8

significant figures, the lowest accuracy occurring nearer the
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outside edge of the spline grids.

To calculate T, 3 is evaluated in an adjacent

i-plane (with the same X-Y coordinates) and 4 is

approximated by

-t t t(adjacent plane)

~z~ 6 z [C-31]

In order to have the particle pushing algorithm accurate to

second order in At, a forward finite difference for D is

done in the predictor phase, and a backward finite difference

3$t

for t is done in the corrector phase.

In the computer code, the spline grids only extended

half a module length, since the fields in the second half

are a mirror image of the first half (see discussion in

Appendix A). Here are the field relationships between points

in the first half of a module, and their associated mirror

points:

toroidal(r, y, = toroidal(r, -y, mirror

[C-321

t t , t= t- t - tt) r yt 
i -K r 3y Bz (r,y,$) ar y , 3 ~

[C-33]

(B , B ,B ) = (-B , B , B )

mirror

[C-34]
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3B r B .@Br z
9r 3r 3r

9 B .3B 3 B

ay Dy ay

3 B aB DB

az az az (r,Y,$)

- 3B aB aB

r yz
3 r Dr 3 r

3B - B - 3B
r y z

Dy By 3 y

r _y z
z 3 z z (r,-Y, mirror

[C-35]

In calculating the B spline grids, second-derivative

boundary conditions were used. These second derivatives

were found with a six-point differentiation formula. In

grid units (Ah = 1 grid distance), this formula is: (4)

d2 B 2! 5
S- E A. B

d2 5! i=O
0- [C-36]
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data grid

B 0) "B( B (2) 'B(3) 'B B 5) 'B(6)

i A.

0

1

2

3

4

5

225

-770

1070

-780

305

-50

92B

0
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Appendix D

This appendix describes the procedures used in analyz-

ing the vacuum magnetic field of a torsatron. In particular,

it describes:

1) the predictor-corrector method used to track a
field line

2) the algorithm that determined when closed flux

surfaces were found

3) the calculations of - , B - dL

<B 2>, and helical and toroidal field ripple for
the magnetic surfaces

4) the creation of a spline grid that allowed calcu-
lation of toroidal flux anywhere within the
separatrix

5) the calculation of poloidal flux within the
separatrix.

As described in Appendix C, the magnetic field within

a torsatron module is approximated by a series of two-dimen-

sional spline grids, equally spaced in the toroidal direction

$. Tracking a field line requires "pushing" the line posi-

tion from one $-plane to the next. In order to make the

field line following code upgradable to a particle following

code, the field line was followed by tracking a "particle"

(launched on the field line) whose equation of motion was

V = V0 b , V 0 being a unit velocity in MKS units. The track-

ing of the "particle" was done with a time-centered, predictr

-corrector algorithm, which I'll now describe.

Starting with the position of the field line on the

phi plane $ = $ at t=0, the magnetic field vector is cal-

culated at this point, and the "particle's" unit velocity



196

vector is given its direction. Assuming constant toroidal

and radial velocity, the time At required for the "particle"

to intersect the adjacent $-plane is calculated, as is the

intersect position. The magnetic field at this point (the

predictor point) is computed, and a new unit velocity vector

is calculated, with its direction being the average of the

directions of the magnetic fields at the original point

and the predictor point. This new velocity vector is now

used to move the "particle" to the adjacent phi-plane inter-

section point (the corrector point)in the same manner the

predictor point was found. The "push" is now complete.

Here is a detailed description of how the intersection

time At is computed. Given that toroidal velocity is assumed

constant, the equation for the toroidal angular velocity is:

V4(t) = Vp(t=O) R(t=O)
R(t) [D-1]

R(t) = R(t=0) + V t [D-21

At
(Wt) = +dt' [D-31

0
0

At = d tI

0 $0 1 + (VRo/R0) 
t'

_ V R loge 1 At
R 1+ (VRO/R) [D-4]
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At = R 0 exp R -

VR 0 [D-5]

As the "particle" enters each module segment of the

torsatron, its radial and vertical positions are recorded

in a list, (R, Z). being the "particlels" position after

traveling i modules. The "particle" is considered to have

completed one poloidal orbit after having traveled n modules

when the following three conditions are met:

1) (R,Z) - (R,Z)0  1 < (R,Z)n- 2  - (R,Z)0

(i.e., the "particle" has recently been approach-

ing its original starting location)

2) I(R,Z) n - (R,Z)0  1 > (R,Z)n- - (R,Z)0

(i.e., the "particle" is now moving away from its

original starting location)

3) ((R,Z)n - (R,Z) -l ((R,Z) - (R,Z)0)
(R,Z)n - (R,Z)n-ll I (R,Z)1  - (R,Z)0 > .8

(i.e., the "particle's" current poloidal velocity

direction closely matches the original one).

The integrals dB -dL and dB - d are computed

as the "particle" is tracked. Since dL is in the direction

of B, these integrals are simply the summation of (Ar B)

and (Ar/B) , respectively, summing j over all the pushes done

by the tracking routine. The average rotational transform

+ for each flux surface is found from the equation:
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[D-6]

with a6 = 1 cycle for each closed surface. As a check on

the accuracy of these calculations, f- d is com-
1 poloidal orbit

puted, and compared with a theoretical value derived from

Ampere's law:

+ f B-dL = k N I [D-7]

1 poloidal orbit 0 t

where

S= " " number of the torsatron

Nt = number of poloidal turns of helical windings

per toroidal turn

I = current per helical winding

Since, in the calculation of t, A$ is found as an integer

number of modules traversed, there is a small round-off

error in + on the order of .3 percent (with 300 to 400

modules traversed on a typical surface not near the

separatrix). It was found that the computed value of t O-JL

matched the theoretical value in all cases, within the

limits of the round-off error in + . This test, plus the

high degree of closure of the computed surfaces, allowed me

to conclude that the tracking algorithm used was accurately

following the field lines.
B -dL

Once the integrals f B-dL and f - 2 - are calculated,
B2

<B >, averaged over the flux surface, can be found through

the equation:
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<B 2> = f B-dL f/-.=---
B [D-81

Knowing <B > as a function of flux surface, I can map out

the position and depth of the magnetic well formed by the

torsatron vacuum fields. The well and shear characteristics

of the magnetic field are related to the plasma's stability

against resistive interchange modes. The well depth is very

sensitive to the placement of the vertical field coils

(see discussion in Appendix B).

The helical and toroidal ripple of the torsatron

fields were measured in order to calculate the theoretical

axisymmetric and ripple transport coefficients, which were

compared to the numerical measurements of the ion thermal

conductivity Xi The peak-to-average helical ripple was

found by:

B - B.
rippleh = max min

h B + B
max min along field line

traversing one module [D-9]

The peak-to-average toroidal ripple was found by:

<B>8* - <B>*
ripple <B 1800 QO<>0

t <B> 1 0+ <B>
180* Q* [D-1O]

where

<B> x is the average field along a field line

traversing one module at the flux surface

position where the poloidal angle is X*.

These geometric measurements were compared with the

Fourier components of the field modulation. The function
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B(9) along a field line for half a flux surface distance L

(from poloidal angle = 0* to poloidal angle = 1800) was

expanded into a Fourier cosine series:

B(f) =2 + Ea n Lo
n=1 [D-l1]

2 n nTT
with a n 0 B() cos L ) d 2

n L 0 L D-12]

It Ifa represents the toroidal ripple, and the set of an

(with wavelength 2Tr/n near a module length), when added in

quadrature, represents the helical ripple. Except near the

separatrix, where the rotational transform is large and the

geometric measurements become inaccurate, the Fourier

toroidal ripple matched the geometric toroidal ripple to

within a few percent, and the Fourier helical ripple matched

the average of the geometric helical ripples at e = 0* and

8 = 180* on the flux surface.

In the particle-following codes of this study,

background plasma profiles of density, voltage, and electron

temperature were assumed to be functions only of the flux

surfaces. It was therefore necessary to develop a fast

method of computing the toroidal flux at arbitrary points

within the separatrix. This was done as follows:

First, a series of flux surface positions are found

with the with the field line tracking code, and the

toroidal flux enclosed by each surface is found by numeri-

cally integrating Btoroidal over the cross-sectional area of
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the surface.

Next, a three-dimensional toroidal flux grid is

created. The horizontal positions where each flux surface

intersects the grid (for each value of and Y in the grid)

are first recorded. Then, for each grid location, the

horizontal positions of the two nearest flux surfaces are

found, and a linearly interpolated value of toroidal flux

is assigned to the grid location.

After all the grid points are assigned their initial

values, numerical smoothing of the grid is done in the

AY

Lj

Figure D-1

vertical direction. This is done by the following formula:

P + 21' + p
Pi new i+1,j old i, j old i-1, j old
i,j new 4

[D-13]

Finally, the three-dimensional grid is converted into

a series of two-dimensional spline grids. This insures that

the resulting approximation for the toroidal flux will have
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continuous first and second derivatives in the radial and

vertical directions. This is desirable, since the background

plasma's electric field profile is a function of the gradi-

ents of the toroidal flux (see discussion in Appendix C).

In Chapter III, I showed that the torsatrons of

different aspect ratios used in the a-particle confinement

study were closely matched in their rotational transform

per module and their poloidal flux per module. The poloidal

flux functions were found through the equation:

d P

dt 
[D-14]

Since t(f) and it(i) were previously found by the line-

following routines, the poloidal flux function could be

calculated by numerical integration of the equation:

P($ = f +t$ ) $ (T ' di'
0 [D-15]

When this function was compared with a direct numerical

integration of Bpoloidal over surfaces in the torsatron's

horizontal midplane, a deviation of less than 2 percent

was found, which was within the error of the B poloidl

integration routine.






