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Abstract 

This thesis aims at better understanding of the tokamak pedestal, which is a defining 

feature of the so-called “High Confinement Mode” or “H Mode” of tokamak operation. 

This region is characterized by a drastic plasma density drop over a relatively short radial 

distance, typically of order of the poloidal ion gyroradius (ρpol). Experiments demonstrate 

that H Mode plasmas have superior transport properties compared to other known 

regimes, making them important for practical fusion energy generation. However, the 

nature of this improvement is still poorly understood and this thesis provides key new 

insights.  

 

According to experiments and simulations, plasmas in a tokamak are turbulent and 

therefore their physics can only be addressed with a formalism that retains short 

perpendicular wavelengths such as gyrokinetics. To be applicable in the pedestal, the 

formalism must also be capable of treating background scales as short as ρpol and 

conveniently accounting for the effects of finite ion drift orbits whose size scales with ρpol 

as well. To this end, we develop a special version of gyrokinetics that employs canonical 

angular momentum in place of the standard radial gyrokinetic variable. Using this 

formalism to find the leading order ion distribution function we conclude that the 

background ion temperature profile in the H Mode regime cannot have a steep ρpol wide 

pedestal similar to the one observed for the plasma density.  
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Having obtained this result, we next deduce that a strong electric field is inherently 

present in a subsonic pedestal to sustain ion pressure balance, making the ExB drift enter 

the leading order streaming operator in the kinetic equation. We proceed by analyzing the 

novel feature that the existence of the pedestal introduces in collisionless zonal flow, the 

dominant mechanism controlling the anomalous transport. In particular, we find that due 

to the electric field modifying ion orbits, the zonal flow residual in the pedestal is 

enhanced over its core value. This allows us to suggest a new scenario for the pedestal 

formation.  

 

Since the turbulence level is lowered, we are led to consider neoclassical mechanisms of 

plasma transport by retaining collisions in our gyrokinetic equation. Then, we observe 

that the ExB drift entering the gyrokinetic equation makes the neoclassical ion heat 

conductivity sensitive to the pedestal electric field. Remarkably, this sensitivity allows us 

to get insight into possible electric field and density profiles with the help of an entropy 

production restriction and the energy conservation equation. 
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1 Introduction 

One of the greatest challenges that humankind faces in the 21
st
 century is the global 

energy problem. All future projections claim that by mid-century the demand for energy 

will exceed existing capabilities at least by a factor of two. If we also require future 

energy generation to be environmentally friendly, the anticipated energy deficit becomes 

even more severe. Given that the level of energy consumption is strongly coupled to the 

quality of life, this deficit will inevitably result in sharp social and political conflicts. The 

only option that can realistically provide electrical energy on the required scale, thereby 

preventing these grave consequences, is nuclear. 

 

In the mid-term future conventional fission generation can address the global energy 

issue. Modern Light Water Reactor technology is mature and, despite common fears, 

reasonably safe. However, economical fission energy strongly depends on cheap uranium 

supplies. Expanding conventional nuclear generation to cover the above mentioned 

energy deficit may exhaust inexpensive uranium reserves in about fifty years. This time 

scale is when fusion enters the scene. 

 

The focus of this thesis is in the physics of a tokamak, the most developed version of 

fusion reactors employing magnetic confinement of plasmas. The idea of such a device 

was initially proposed by Sakharov and Tamm in 1953 and since then many experimental 
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and theoretical tokamak studies have been conducted. Along the way, a widely 

recognized break-through was the experimental discovery of the so-called High 

Confinement Mode or H Mode in which energy transport from plasma in the core of a 

tokamak is significantly reduced. The distinctive feature of this regime as compared to 

the Low Confinement Mode or L Mode that had been known before is the existence of 

the pedestal, the region in which plasma density drops significantly over a relatively short 

radial scale length. 

 

The most obvious advantage of the H Mode is higher plasma energy content. Indeed, as 

shown on Fig 1, the area below the profile with a pedestal is greater than that below the 

smoother L Mode curve. More importantly, it was 

observed that anomalous transport becomes noticeably 

lower as a tokamak switches from L to H Mode. This 

transport is due to the so-called drift wave turbulence 

that is inevitably present in any fusion reactor due to 

the enormous change between the core plasma temperature, which must be as high as a 

million degrees to initiate the nuclear fusion reaction, and the reactor walls, which can 

only tolerate plasma at about 1000C. Evidently, in H Mode such  microturbulence is 

well controlled and hence, understanding the mechanism of attaining and sustaining this 

regime is crucial for practical fusion power generation.  

 

Fig 1. Density profiles in H and L modes  
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A great number of studies are concerned with the mechanism of the L-H transition which 

is still poorly understood. Here we instead concentrate on the physics of the pedestal 

itself considering it as given. Such an approach, however, will allow us to make 

reasonable conjectures about the formation of this region of a tokamak. In other words, in 

this thesis we start with an existing steep density profile, such as sketched in Fig 1, and 

then investigate the consequences. Then, having the self-consistent model of a pedestal in 

hand we are able to speculate on possible scenarios of the L-H transition. 

 

Theoretical modeling of the H Mode is complicated by existence of two different 

background scales with the larger one relevant to core plasmas and the shorter to the 

pedestal region. Therefore, for a formalism aiming at studying such a regime it is 

desirable to encompass both of these scales in an uncoupled manner. Also, to address the 

issue of turbulent transport the formalism must be capable of retaining perturbations with 

wavelengths ranging from the ion Larmor radius to the size of a tokamak. To this end, we 

have developed a special version of gyrokinetics, an approach that has been successfully 

used for describing tokamak core plasmas, but is not conveniently applicable to sharp 

density regions in its conventional form. 

 

The original idea of using gyrokinetic variables was proposed by Catto in 1978 [1] who 

suggested a new way of eliminating the fast Larmor motion scale from the kinetic 

equation. The need for this elimination took on added importance once it became clear 

that choosing the time step below the cyclotron period would make the computation time 
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unrealistically large. The technique that had been employed before then is called drift 

kinetics and based on splitting the yet unknown distribution function into two pieces with 

one evolving on the cyclotron period time scale and the other being slowly varying. The 

key point of gyrokinetics is that we can conveniently retain the rapidly oscillating 

dynamics by introducing a certain change of variables. While giving the same physical 

results as drift kinetics in the case of perturbation wavelengths much greater than the ion 

gyroradius, this new technique is more elegant and significantly reduces the amount of 

analytical work in the process. 

 

More importantly, the gyrokinetic formalism allows retaining the perturbations with 

perpendicular wavelengths comparable to the ion gyroradius, a feature that drift kinetics 

does not have. Hence, it soon became a vital instrument in turbulent studies. Nowadays, it 

has been successfully implemented in codes such as GYRO [2] and GS2 [3] or GTC [4] 

that are aimed at investigating the fusion relevant plasmas. In addition, its first 

application in astrophysics has recently appeared [5][6--9]. 

 

The distinctive feature of the gyrokinetic formalism developed in this thesis is employing 

the canonical angular momentum in place of usual radial variable. Obviously, this choice 

makes direct use of the axisymmetry of a tokamak. Furthermore, it naturally separates the 

ion Larmor radius and poloidal gyroradius spatial scales, responsible for the classical and 

neoclassical phenomena respectively, thereby conveniently allowing investigations of 

these two groups of effects in a systematic manner.   
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When formulated in such a form, gyrokinetics gives important pedestal results in leading 

order in the poloidal gyroradius expansion parameter. In particular, it suggests that in H 

Mode the profile of the background ion temperature cannot have a radial scale as short as 

the poloidal ion gyroradius scale of the plasma density, and so can only vary slowly 

across the pedestal. By going to the next order, we are able to find the equation that 

describes zonal flow and neoclassical collisional transport with both the finite Larmor 

radius (FLR) and finite drift orbit (neoclassical) effects retained. Putting aside the 

classical FLR effects, we can then concentrate on novel features that these drift 

phenomena acquire in the pedestal as compared to their well known core counterparts.  

 

Zonal flow is a very common mechanism limiting the turbulence in dynamical systems. It 

was revealed by drift wave turbulence simulations [6--9] that in the core of a tokamak the 

zonal flow drastically reduces anomalous transport near marginality by shearing the so-

called “turbulent eddies”, thereby improving plasma confinement. Soon after, a proper 

analytical treatment was performed by Rosenbluth and Hinton [10,11]. In particular, they 

found that the plasma shields or reduces the zonal flow by means of neoclassical 

polarization, but that some fraction of it, the residual, survives. 

 

In the pedestal, neoclassical orbits are modified due to the strong electric field inherent to 

this region of a tokamak. Therefore, in this thesis we are led to substantially extend the 

Rosenbluth and Hinton [10] calculation. By studying tokamak particle trajectories in the 
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presence of a strong external electric field and implementing the results in our 

gyrokinetic formalism we find the pedestal zonal flow is qualitatively different from that 

in the core. In particular, we demonstrate that for a steep enough density profile the 

residual is enhanced. This feature in turn allows us to suggest a mechanism for the L-H 

transition.   

 

Once we realize that ion orbits in the pedestal are different from those in the core due to 

the electric field, we have to revisit the conventional calculation of neoclassical transport 

in the banana regime. To carry out this pedestal calculation in the most efficient way we 

adopt the general framework used by Kovrizhnikh [12], Rosenbluth [13] and others [12--

16], along with our formalism that naturally accounts for the presence of background 

electric field. Then, by introducing a special treatment of the collision operator, we obtain 

an explicit expression for the neoclassical ion heat flux and parallel flow. Remarkably, 

the fact that the former depends on the local electric field allows us to gain insight into 

shape of the pedestal density profile. 

 

In the three chapters to follow, each prefaced by a detailed introduction, we consecutively 

discuss the preceding issues. Accordingly, in the next chapter we derive our special 

version of gyrokinetics and demonstrate its first applications by clarifying the allowed 

behavior of the background ion temperature profile in the pedestal. This chapter 

culminates in deriving the equation for the perturbation of the distribution function that 

contains both the neoclassical and zonal flow drives. In chapter 3 we proceed by using 
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this equation to see how the pedestal zonal flow is modified as compared to the 

conventional core case. This result then allows us to suggest a model of pedestal 

formation based on the turbulent transport picture. Finally, in chapter 4 we employ the 

same equation to calculate the neoclassical banana regime ion flow and heat flux in the 

pedestal. We then discuss the constraints on the electric field and density profiles 

imposed by these results. Chapter 5 summarizes our findings and draws an overall 

conclusion for the thesis. 

  



13 

 

2 Gyrokinetics and arbitrary poloidal gyroradius effects in 

a tokamak pedestal 

2.1 Introduction 

Understanding tokamak pedestal physics [17--19] is one of the more crucial challenges 

currently facing magnetic fusion science. A self-consistent, predictive description of this 

region is necessary to understand the reason for improved confinement or H mode 

operation [20] and to gain insight into the Greenwald density limit [21]. As the barrier 

between the core and scrape-of-layer, the pedestal also helps control particle and heat 

fluxes [22] to the first wall and divertor [23]. One of the many reasons that the pedestal 

appears complicated is that the well known kinetic approaches [1,24--27] fail in the 

presence of the strong plasma gradients associated with the pedestal [27,28] as well as 

internal transport barriers (ITB) [29,30]. In these regions, as well as near the magnetic 

axis [31,32], finite ion orbit [26,27], orbit squeezing [33], and even neutral [34--36] 

effects on the pedestal may need to be addressed. To deal with the geometrical 

complications associated with large drift departures from flux surfaces [37], a variation of 

standard gyrokinetics [1,38,39] using the canonical angular momentum as the radial 

variable is developed and applied. This alternate description is constructed to exactly 

preserve conservation of canonical angular momentum and energy and is thereby able to 

provide key insights into the behavior of the ions in regions with step gradients. 

Canonical angular momentum has been employed as a variable in drift kinetic quasilinear 

descriptions [40,41], but we are not aware of it being used in gyrokinetic descriptions. 
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Gyrokinetics is a well established formalism capable of handling phenomena with high 

perpendicular wavenumbers that is being successfully used for studies of turbulence in 

tokamak core plasmas [2--4,8,42--44]. However, its application to steep gradient regions 

becomes more transparent if an alternative analytical treatment involving canonical 

angular momentum is employed. We focus on the development and insights provided by 

such an electrostatic gyrokinetic formulation that explicitly makes use of the 

axisymmetric magnetic field of a tokamak while allowing strong radial variation of the 

background ion profiles so that barrier widths comparable to the poloidal ion gyroradius 

may be treated in fully turbulent plasmas. 

 

The technique we employ is a generalization of a standard linear gyrokinetic procedure 

[45,46] and its nonlinear counterpart that is used to consider the shortcomings of 

gyrokinetic quasineutrality at long wavelengths [47]. By modifying these procedures we 

construct nonlinear gyrokinetic variables to higher order than is typically done while 

retaining finite poloidal ion gyroradius effects. The resulting fully nonlinear gyrokinetic 

equation is not only valid for 


1k   , as any gyrokinetic approach would be, but also 

due to our choice of canonical angular momentum as one of the variables, it is naturally 

separable into departures from flux surfaces caused by neoclassical drifts and classical 

finite Larmor radius    effects. This feature is what makes the analysis of the leading 

order solution for the ion distribution function in a tokamak pedestal and an ITB (and 

near the magnetic axis) intuitively easy to understand since it precisely retains the 
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isothermal limit [48]. In particular, it allows us to conclude that in the pedestal and an 

ITB (and near the magnetic axis) the lowest order ion distribution function must be nearly 

isothermal in the banana regime. As a result, an ion temperature pedestal or internal ion 

heat transport barrier is not allowed in a tokamak operating in the banana regime. 

 

Having this result, we go further to formulate the gyrokinetic equation for the next order 

corrections to the ion distribution function. The relevant gyrokinetic equation obtained 

consistently contains neoclassical effects [24--27] and zonal flow phenomena [11,49--51] 

in the pedestal or an ITB along with the terms responsible for orbit squeezing [52] and 

potato orbits [31,32]. This gyrokinetic equation is also valid for zonal flow and 

neoclassical studies in core tokamak plasmas since our full nonlinear gyrokinetic 

equation with turbulence retained is constructed to smoothly connect to the core where it 

remains valid. 

 

The remainder of the chapter is organized as follows. In sections 2.2 – 2.3 we outline the 

gyrokinetic procedure we use to derive the full nonlinear gyrokinetic equation and 

discuss how it differs from standard nonlinear gyrokinetics [47,53--56] including a 

version developed especially for the edge [56]. The expressions for the gyrokinetic 

variables we employ and the orderings under which they are obtained are given in brief in 

sections 2.4 – 2.5 and in detail in appendices A - C. In section 2.6 the full nonlinear 

gyrokinetic equation is derived and its main properties are discussed. An entropy 

production analysis is employed in section 2.7 (with some details relegated to appendix 
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D) to obtain the most general form of the leading order solution for the ion distribution 

function. Section 2.8 provides further insight into the physics of a pedestal or an ITB with 

the help of pressure balance equations. The gyrokinetic equation for zonal flow and 

neoclassical phenomena is presented in section 2.9. We close with a brief discussion of 

the results in section 2.10. 

 

2.2 Gyrokinetic procedure 

An assumption that is a basis of the gyrokinetic procedure to be described is the slow 

spatial variation of the equilibrium magnetic field. In particular, the background magnetic 

field of interest is assumed to obey the ordering 

 1i

L


   , (2.1) 

where   1lnL B    and i i iv    with 2i iv T M  the ion thermal speed and 

i ZeB Mc   the ion cyclotron frequency.  For simplicity, the magnetic field will be 

also assumed constant in time so that electric field can be treated as electrostatic; 

however, the slowly evolving induced electric field in a tokamak can easily be retained.   

 

Consider the Vlasov operator written in terms of  , ,r v t


 variables: 

  ˆr v
d Ze

v v n
dt t M




        


 
 . (2.2) 
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Then, the evolution of the distribution function is given by 

  
df

C f
dt

 , (2.3) 

where C  is the collision operator. Equation (2.3) includes the fast time scale associated 

with the gyromotion of particles in the external magnetic field. Generally, in order to 

remove this time scale an averaging over gyrophase    is performed. This, in turn, 

requires switching to a new set of magnetic field aligned variables that includes the 

gyrophase and then gyrophase averaging (2.3) written in terms of these variables. If the 

new variables are denoted by  51,... ,q q  , then (2.3) transforms into 

  1 5

51

...
dq dqf f f f d

C f
t q dt q dt dt




   
    

   
. (2.4) 

The gyroaverage to be employed is defined as  

  
1
2

d


   , (2.5) 

where the integration is performed holding the jq ’s fixed. 

 

If the new variables are chosen so that  1 5, ... ,
dq dq d
dt dt dt


 do not depend on   the 

averaging of the left side of (2.4) becomes particularly convenient. However, it is 

difficult to find variables that possess this property exactly. Fortunately, the existence of 

the small parameter (2.1) allows us to construct variables whose total time derivatives are 

gyroindependent to the desired order in  . The procedure follows. 



18 

 

 

We first choose a suitable set of initial variables     0 0
51 ,...q q  and apply the 

d
dt

 operator 

to them as well as to  . Then, we extract the gyrodependent part of these total time 

derivatives and define the corrections       1 1 1
51 ,... ,q q   such that     0 1

j j
d
q q

dt
  is 

gyroindependent to next order, where    0 1
j jq q  is the improved variable. This 

procedure employs the lowest order result 

    1 1
j j

d
q q

dt 


 


 (2.6) 

Thus, we can recover  1
jq  by performing an integration over   as follows: 

      1 0 0
j j j

d d
q q q

dt dt


  


. (2.7) 

This results in    1 0
j jq q , thereby allowing us to determine the variables up to any 

given order by repeating the steps above. What this procedure yields is a particularly 

convenient set of gyrokinetic variables.  

 

Note, that by this procedure we only find the gyrodependent part of   1
jq  that results in 

the gyroindependency of      0 1
j j

d
q q

dt
 . Thus, we can arbitrarily choose 

   1 0
j jq q  if it is convenient. Generally, we will set  1 0jq  , but sometimes a 
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clever choice of  1
jq  can further simplify (2.4). This freedom is what allows us to 

define a magnetic moment variable that will be an adiabatic invariant order by order, as 

will be demonstrated. Moreover, it is just the freedom needed to replace the regular radial 

gyrokinetic variable with the canonical angular momentum. 

 

2.3 An alternative to regular gyrokinetics 

Often, the initial set of variables is chosen as [1,45,46,53--56] 

r


;  
2

2
v Ze

r
M




 or ||v ; 
2

0 2
v
B

  ;  . 

However, in the case of tokamaks it is convenient to make use of conservation of the 

toroidal component of the canonical angular momentum. To do so we employ  

 
*

ˆMc
Rv

Ze
    


 (2.8) 

as the radial variable. The other initial variables are chosen to be the poloidal angle  , the 

toroidal angle  , the magnetic moment 0 , and the kinetic energy 
2

2
v

. The gyrophase is 

defined such that 

  || 1 2ˆ ˆ ˆcos sinv v n v e e   


 (2.9) 

where ||
2

0ˆ 2v v n v B   


, n̂ B B


, and B B


. Also,  1̂e r


 and  2̂e r


 are 

orthogonal unit vectors in the plane perpendicular to B


 such that 1 2ˆ ˆ ˆe e n  . 
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2.4 Orderings 

We desire to develop a formalism to handle both neoclassical (large spatial scale) and 

turbulent (small spatial scale) phenomena. For this purpose we adopt the ordering used in 

[34]. Basically, this ordering allows only weak variations along the magnetic field while 

rapid perpendicular gradients are allowed for small amplitude fluctuations of the 

potential. Mathematically, our orderings are expressed as 

 
1

n̂
L

    (2.10) 

and 

 
1ke

T k L




 , (2.11) 

where the subscript k  denotes a Fourier component. Physically, (2.11) implies that the 

E B  drift can be only of order thv  or smaller. 

 

The distribution function f  is ordered analogously to the potential by taking 

 
0

1kf
f k L

 , (2.12) 

where the equilibrium solution 0f  is assumed to have spatial scales of order L . These 

orderings allow perturbations of the potential, density, and temperature with sharp 
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gradients, and are relevant to turbulence, zonal flow, and the pedestal, ITBs, and near the 

magnetic axis in tokamaks. 

 

In addition to the preceding orderings, we assume the characteristic frequency of the 

turbulent behavior to be that of drift waves, 

 *
thv k
L

  , (2.13) 

and allow the species collision frequency   to be of order of its transit frequency, 

 thv
L

  , (2.14) 

where thv  is the species thermal speed and   is its Larmor radius. 

 

2.5 Gyrokinetic variables for an axisymmetric magnetic field  

We next briefly consider the explicit expressions for the gyrokinetic variables that result 

from the procedure of Sec. 2 along with the orderings of section 4. Gyrokinetic variables 

resulting from an initial variable  0q  will be denoted as *
q  at each order. We perform the 

calculation up to the second order in   starting from the initial variables given in section 

3. Here we summarize the results correct up to the first order, with the details of the 

derivation given in appendix A. Second order corrections and details of their derivation 

are given in appendix B. 
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2.5.1 Spatial variables 

Applying the gyrokinetic procedure to 0   and 0   we find 

 *

ˆv n
  


   




 (2.15) 

and 

 *

ˆv n
  


   




. (2.16) 

No first order correction to the *
  of equation (2.8) is needed. Equations (2.15) and 

(2.16) give the usual   and   coordinates of the gyrocenter, while *
  labels the so-

called “drift surface” [24,27]. The total time derivatives of the spatial variables to the 

requisite order are given by 

 
* *

*

c


 



 


  , (2.17) 

  
 || ||

||
*

** * *

ˆ
ˆ( )d

Iv v n
v n v


  


  

     
 

  , (2.18) 

  
 || ||*

* * || * *

ˆ
ˆ( )d

Iv v n
v n v


  


  

      
 

   

 
|| || ||

*
2 2d

Iv Iv Iv
v

BR BR



                 


, (2.19) 

where 
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  ||
2

ˆ ˆ ˆ ˆ ˆd

vc
v n n n n n B

B


         
 


, (2.20) 

  * * * * * * *

1
, , , , ,

2
E d        


   , (2.21) 

and tI RB , with tB  the toroidal magnetic field and R  the tokamak major radius. The 

axisymmetric tokamak magnetic field is taken to be 

  B I        


, (2.22) 

so that *
  can be rewritten as 

 
||

*

ˆ Ivv n
  


    

 


. (2.23) 

Also, in the preceding formulas and throughout the paper we use the following notation. 

If a certain quantity is given in terms of initial variables by  , , , , ,Q Q E     , then 

we define 

  * * * * * * *
, , , , ,Q Q E     . (2.24) 

For example,  

 ||
*

* * *
v E B  . (2.25) 

The difference between Q  and *
Q  is of order Q  and sometimes is unimportant. For 

instance, in the last term in (2.18) we can replace ||v  by ||
*v  and still stay within the 

required precision. However, in the first term of the same equation we must distinguish 

between these two. 
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2.5.2 Energy 

Applying the gyrokinetic procedure to 2
0 2E v  we find 

 
2

* 2
v Ze

E
M

   , (2.26) 

and to requisite order 

                   * * *
* * * *

* * ( ) 1
Ze Ze

E E
M M E

   
  

  
                

    , (2.27) 

where  

     . (2.28) 

In (2.27) the expressions for * , * , and *  are given by (2.17) – (2.19), and the small 

*E   term is given by (B.21) and must be retained to ensure that total energy remains 

an exact constant of the motion in the steady state. 

 

2.5.3 Magnetic moment 

The gyrokinetic procedure applied to 2
0 2v B   gives 

              ||

1 1ˆ ˆ ˆ:
4

M
vv v Ze
v v n v n v n

B B MB
   


        



 
     , (2.29) 
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where 

  ||
2

0ˆ ˆ ˆ ˆM

v
v n n n n B


     

 


. (2.30) 

 

As mentioned at the end of section 2, 1  can be chosen arbitrarily as long as 

1 0  . For all the other variables we set the gyroindependent part of the correction 

equal to zero (notice that *
  automatically retains a gyroindependent term). However, as 

the magnetic moment is an adiabatic invariant [57], we show we can define 1  such 

that  
*

0   order by order. This feature is checked in the appendix C by choosing 

 
||

2

1 ˆ ˆ
2

v v
n n

B
    


 (2.31) 

to find  

 3
1 0       . (2.32) 

This choice allows us to neglect the f    term in the gyrokinetic equation even with 

1k    potential fluctuations retained. 

 

2.5.4 Gyrophase 

For the ordering we employ, 0f    to lowest order. As a result, for our purposes it 

is adequate to use *
   as defined by (2.9). Then, we find 
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* *
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2
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n n v n e e Iv
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 .  (2.33) 

The first order correction to the gyrophase is given in appendix A for completeness. 

 

2.6  Electrostatic gyrokinetic equation 

Having defined the gyrokinetic variables we can now insert them into (2.4) and 

gyroaverage to find our full nonlinear gyrokinetic equation 

 
* * * *

* * * *

{ }
f f f f f

E C f
t E

  
  

    
    

    
   , (2.34) 

where f f  and expressions (2.17) - (2.19) and (2.27) give 
*

 , *
 , *

 , and 
*
E . Note 

that for 
*
E  defined by (2.27) the total energy 

*

Ze
E

M
    is exactly conserved by 

the gyrokinetic Vlasov operator. Consequently, we can construct an exact solution to 

(2.34) in the isothermal case in the same way as Catto and Hazeltine in [48].   

 

To do so we observe that for a stationary and axisymmetric plasma any function of   and 

*
  makes the left side of the equation exactly vanish. On the other hand, to make the 

right side vanish f  has to be Maxwellian as ion-ion collisions dominate over those 
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between ions and electrons. Combining these two statements we find an exact solution 

for arbitrary collisionality to be the rigidly toroidally rotating Maxwellian 

    23
2

*

ˆ
exp( )

2 2

M v RM
f n

T T

 




 



, (2.35) 

with the density given by 

 
2 2

exp( )
2

Ze M R Ze
n

T T cT
 

     , (2.36) 

where T ,  , and   are constants. In terms of the gyrokinetic variables this solution is 

only a function of the constants of motion   and *
  since 

   *

3
2

* 2

M Ze
T cT

M
f e

T





  . (2.37) 

 

2.7  Entropy production   

Now we analyze the case with spatially varying T  still assuming 0   . Physically, 

this assumption implies that non-axisymmetry can be only due to the fluctuations of the 

distribution function and potential in our axisymmetric magnetic field. It is convenient to 

switch to *
  and   variables so that our gyrokinetic equation becomes 

 
*

*

{ }
f f Ze f

C f
t M t 




 
   

  
   

 . (2.38) 
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Using orderings (2.12) and (2.13) the first term on the left side of (2.38) can be estimated 

as follows 

 0 0
th thv vf
k f f

t L L L







  , (2.39) 

where 0f  stands for the leading order distribution function. In the similar way it can be 

shown that the last term on the right side of (2.38) is of the same order. At the same time, 

 0*
*

thvf
f

L







  , (2.40) 

where (2.18) was used to estimate *
 . Thus, the equation for the leading order 

distribution function 0f  is found to be 

 0
0*

*

{ }
f

C f









 . (2.41) 

Transit averaging (2.41) we obtain the solubility constraint 

 0{ } 0C f  , (2.42) 

where the transit average is defined by 

 
* *

* *

Qd
Q

d

 

 










. (2.43) 

The full nonlinear constraint (2.42) must be satisfied for any physically acceptable 

stationary solution  0 0 * * *
, , ,f f     , and the transit average is performed holding 
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*
 ,   and *

  fixed by integrating over a complete bounce for trapped particles and a full 

poloidal circuit for the passing. Next, we use the preceding to determine the lowest order 

ion distribution function 0f  in a tokamak pedestal and internal transport barrier (ITB).  

 

We define the radial scale w  of the distribution function as 

 
ln 1f

w





 


. (2.44) 

In a pedestal or in an internal barrier region we assume strong spatial gradients by 

allowing 

 polw L  , (2.45) 

where pol  is the poloidal ion gyroradius. Gradients along the flux surface will be 

allowed to be strong as well 

 
ln 1

pol

f


 


 
 

, (2.46) 

although we will demonstrate that only weak derivatives over   are physically possible 

in the banana regime. The electrostatic potential   is assumed to scale analogously to f . 

With these assumptions, we demonstrate that in the pedestal or an ITB the leading order 

solution to (2.42) remains Maxwellian (from now on we refer to the pedestal case only as 

proof for an ITB is exactly the same). Before doing so we remark that the original 

orderings (2.11) – (2.12) we used to derive the axisymmetric gyrokinetic equation imply 
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that the characteristic scale of the leading order axisymmetric distribution function and 

potential is the size of tokamak L. However, all our results remain valid provided  

pol w  


. Indeed, in all the estimates required for the derivation of the gyrokinetic 

variables we can then replace L by pol  so that the outcome of the gyrokinetic procedure 

stays unchanged. As a result, (2.41) is still a valid equation for 0f  . However, the 

comparison among different terms in the gyrokinetic formulas can be affected. In 

particular, in (2.18) for *
  the contribution of the E B

 
 term in dv


 becomes comparable 

to that due to the ||v  if the potential gradient is of order 1 pol  so that orbit squeezing 

effects enter [33]. 

 

We begin our demonstration by multiplying (2.41) by 0ln f , transit averaging, and 

integrating it over   and *
  to obtain the steady state result 

 *
0 0* *

*

0 ln { }ii

d
d d d f C f


  


     , (2.47) 

where we employ 

  0
0 0 0 0

* *

ln ln
f

f f f f
 

 
 

 
 (2.48) 

to annihilate the left side. Notice that all the integrals in equation (2.48) are performed 

holding *
  fixed. Next, we recall (2.18) and ordering (2.46) to find the leading order 

result  
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 || ||*
ˆ ˆE

cI
v n v v n

B


   


             
 , (2.49) 

where we must retain the E B
 

 term as noted at the end of the previous paragraph. 

Contributions of the other terms from (2.18) are always one order smaller in w . 

Rewriting we obtain 

 
 * ||

* *
0 02

ln { } 0ii

d d dd
f C f

B v B cI B

  

  
 

       
  , (2.50) 

where the inner integrations are performed holding *
  fixed.  

 

To clarify the novel features of a pedestal plasma, we first review the analysis of (2.47) in 

the weak gradient limit (w L ) relevant to the core (see [27] for example). In this 

simpler case we can hold   fixed instead of *
  without an error to leading order. Then, 

neglecting the     term in the denominator, equation (2.47) becomes  

 
||

0 0* * ln { } 0ii
d B

d d d f C f
vB


  


 

  . (2.51) 

Finally, employing 

 
||* * 0 0 0

3 3

d d d vdE d d
Bd v d v

    
    (2.52) 
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we see that the left side of (2.51) is the flux-surface averaged entropy production on a 

given flux surface. Thus, we can employ the Boltzmann H-theorem to determine that 0f  

is Maxwellian.  

 

In the pedestal     * polf w f f         and integrating holding *
  fixed 

rather than   becomes important. To adjust the logic to the pedestal we need to integrate 

(2.50) with respect to *
  over the entire pedestal region. Then, we can use  

   ||
* * * * *

3 3 ˆ
d d d d d d cI

n v
Bd rd v

      



        

 (2.53) 

(see appendix D for the derivation) to transform (2.50) into 

 3 3
0 0ln { } 0

ped

ii
V

d r d v f C f   , (2.54) 

where pedV  denotes the pedestal volume. As a result, we conclude from the H-theorem 

that  0 0 * * *
, , ,f f      must be Maxwellian in the pedestal as well.  

 

It is interesting to notice, that the proof for the core plasma only requires integration over 

a given flux surface, while for the pedestal plasma we have to integrate over the entire 

pedestal region (the presence of a separatrix complicates the pedestal case as discussed at 

the end of this section and in section 10; however for the ITB case this proof is robust). 

This feature suggests that in the absence of sharp gradients each flux surface equilibrates 
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by itself, while within the pedestal all flux surfaces are coupled. Physically, this coupling 

is due to the order pol  departures of ions from a flux surface. This effect is not 

important in the core plasma, where spatial variation is weak on the pol  scale and 

therefore we can consider any given flux surface a closed system. However, when the 

radial gradient scale is as large as 1 pol  these flux surface departures affect the 

equilibrating of the neighboring flux surfaces and therefore it is the entire pedestal region 

that is a closed system rather than its individual flux surfaces. 

 

As a result of the preceding observations, the leading order ion distribution function must 

be Maxwellian, thereby satisfying constraint (2.42) and making 0{ } 0C f   as well. 

Therefore, in the banana regime (2.41) results in 0 *
0f     so that 0f  can only 

depend on  , *
 , and *

 , and allowing strong poloidal gradients [recall (2.46)] was 

unnecessary. The only Maxwellian that satisfies these conditions must be independent of 

*
  and given by the relations (2.35) - (2.37), in which T ,  , and   are now allowed to 

be slowly varying compared to pol : 

 ln 1ipol T    (2.55) 

and 

 ln 1pol   , ln 1pol   . (2.56) 
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Thus, for the ions we have proven that the solution to (2.41) in a pedestal or an ITB is an 

isothermal Maxwellian to lowest order in / pol  , no other solution is possible. Non-

isothermal modifications enter in next order as indicated by (2.55) and (2.56). As a result, 

in the banana regime a pedestal in the background ion temperature is unlikely to exist in a 

tokamak. In the Pfirsh – Schlüter regime ion departures from a flux surface are much 

smaller and an ion temperature pedestal cannot be ruled out. The plateau regime is a 

transitional case. 

 

In addition, an ion temperature pedestal in the near scrape-of-layer (SOL) (or at the 

separatrix) is unlikely since our kinetic equation (2.41) remains valid there and is 

satisfied by the very same nearly isothermal Maxwellian ion distribution function we find 

inside the separatrix. As a result, no entropy production or entropy flow occurs to lowest 

order in the near SOL and no ion temperature pedestal is anticipated there as long as the 

near SOL remains in the banana regime. 

 

2.8 Pressure balance in pedestal or ITB 

In the previous section we studied pedestal and internal transport barrier plasmas given 

that the ion distribution function radial gradient is of order . This gradient can only 

be associated with the density (and potential) as the ion temperature is proven to be 

slowly varying. In this section we comment on how such large density gradients can be 

sustained.  

1 pol
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We start by noting that from the ion pressure balance equation and (2.55) we find to 

lowest order that 

 i
i

cTd dn
c
d Zen d



 

   , (2.57) 

where dn d
 
obeys ordering (2.45). Then we estimate that 

 ii
i

i

RcT dn
en d v





  (2.58) 

with iR  the net ion flow.  Thus, unless ions are sonic the left side of (2.57) must be 

smaller to lowest order than each of the terms on the right. Consequently, plasma density 

and potential must be connected through the lowest order radial Boltzmann relation  

 iTd dn
d Zen d

 

  . (2.59) 

Also, 0dn d   and therefore (2.59) yields 0d d   , so the electric field in the 

pedestal is inward, as indeed observed for pedestals in the presence of  subsonic ion flow 

[58,59].  

 

Next, we consider electron flows in the pedestal by writing the net electron velocity as 

  ˆ
e e eV R BK n   
 

, (2.60) 



36 

 

with eK  a flux function so that   0enV  


 to lowest order. Then, total pressure 

balance,  e iJ B c p p   
 

, reduces to the lowest order electron pressure balance 

result 

 e
e

d c dp
c
d en d



 

   , (2.61) 

when (2.59) is employed. But here the terms on the right side have the same sign and 

therefore cannot cancel as in the ion equation. Estimating, 

 e ec c en p         we find a large electron flow,  

 e iR v  . (2.62) 

Thus, the electrostatic potential associated with the density gradient in the pedestal or an 

ITB can only be sustained by a large electron flow. As a result, it is the electron dynamics 

that underlies pedestal or ITB physics, and we can say that ions are electrostatically 

confined by the electrons. Although it is not clear what establishes the pedestal, it is clear 

that subsonic ion flow implies the pedestal is maintained by a large electron current with 

the ions electrostatically confined. Any small small departure of the ions from a radial 

Maxwell - Boltzmann relation must be due to weak ion temperature variation. 

 

2.9 Zonal flows and neoclassical transport 

Now that we have the leading order solution to (2.38) we can seek higher order 

corrections to it. We proceed by writing 
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    * * * * *
, , , , ,f f g t       , (2.63) 

with *
g f  and *

f  given by (2.35) - (2.37) but with T ,  , and   allowed to be slowly 

varying functions of *
 . Then, equation (2.38) becomes 

   *
* *

*
ii

fg g Ze
C f g

t M t 




 
  

    
   

 . (2.64) 

Notice, that due to (2.59) there is a significant equilibrium potential in the pedestal that 

will be denoted by 0 . Accordingly, we can write  0   , with 
 
standing for 

the zonal flow perturbation of the potential that is time dependent and driven by the 

turbulence. Thus, on the right side of (2.64) we can replace / t   with  / t  since 

0 / t   is negligibly small. 

 

To evaluate the collision operator term in (2.64) we expand the slowly varying terms of 

*
f  around   to obtain 

 
 

 
 
   

 
 

 
 

*
* *

* *

3 32 2

* *
*

[1
22

ZeM M Ze
T cT T cT

M M
f e e

TT

           
  

                
 

            * *
2 2*

1 3
+... ]

2

Ze ZeM T T T
cT TT cT

   
 

     
                  

. (2.65) 

The expression preceding the square parentheses is a toroidally rotating Maxwellian at 

any given point in space 
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 Mf , (2.66) 

where  n n r


 is given by (2.36). We use 

   0ii MC f   (2.67) 

and employ the linearized ion-ion collision operator l
iiC  along with momentum 

conservation to note that  

   0l
ii MC vf 


. (2.68) 

Recalling that  *
ˆMc Ze Rv     


 and using properties (2.67) - (2.68) we find 

 *iiC f   

2 22 2

2 2

ˆ
ˆ ˆ

2
l
ii M

M cR v v T Ze T McR Ze McR
C f v v

Ze Ze cT ZeT cT

  
 

  

                                     


 

. (2.69) 

Finally, we can neglect the last two terms in the collision operator for subsonic flows 

because of (2.55) - (2.56) to obtain the simple result 

   ||
2

2* 2
l

ii ii M

Iv Mv T
C f C f

T 
          

. (2.70) 
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Next, we evaluate the   term on the right side of (2.64) assuming   ,t    to the 

requisite order [11,49--51], and using an eikonal form 

 
  ˆ iSe   , (2.71) 

with  k S   


. Then, expanding  S   around *
  and gyroaveraging   holding 

*
  fixed yields 

       
||

** *
*

ˆ
......

1 0*
ˆ ˆ

Ivv nS
i S S Si S iQk v

e e J e
  

     

                      




,(2.72) 

where  *
*

ˆ iSe    and  ||
Q Iv S   , with S S      and S  assumed slowly 

varying. 

 

Now we insert (2.70) and (2.72) into (2.64) and use  * Mf M T f     to obtain the 

equation for g  to be 

            . (2.73) 

Finally, we consider the banana regime in which 
*

0g     to lowest order, so that 

transit averaging (2.73) gives 

  ||
2

*
2 02

l iQ
ii M M

Ivg Mv T Ze k v
C g f f J e

t T tT




 
               

 (2.74) 
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with transit average defined as in (2.43). The distinctions between Mf , Q , ||v , 0J  and *
f , 

*
Q , ||

*v , *
0J  respectively are unimportant in (2.73) and (2.74). Equation (2.74) contains 

both neoclassical and zonal flow drives in an uncoupled manner. The neoclassical drive 

enters in the collision operator and for it the time derivatives in (2.74) are negligible. The 

zonal flow drive is due to the 
*
t   term that requires keeping g t  , but for which 

the neoclassical drive does not matter. This gyrokinetic equation is capable of retaining 

finite Larmor radius effects on these phenomena, as well as finite poloidal gyroradius and 

orbit squeezing effects since it is derived using *
  as the radial variable. 

 

2.10 Discussion 

An electrostatic gyrokinetic formalism for tokamaks is developed and its first 

applications are performed. Based on an entropy production argument that retains orbit 

squeezing as well as E B
 

 shear effects, the most important prediction is that in the 

banana regime the background ion temperature is not allowed to have a pedestal similar 

to the ones observed for plasma density, electrostatic potential, and electron temperature 

since inequality (2.55) must be satisfied. Although this prediction may seem to disagree 

with some widely cited experimental observations it is important to keep in mind that 

currently there are almost no direct measurements of the background ion temperature in a 

tokamak pedestal. The majority of existing ion temperature measurements are for 

impurities which have a smaller ion gyroradius and are more collisional than the 

background ions. Moreover, it must be noticed that in the pedestal temperature 
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equilibration between impurities and background ions is no longer local (flux surface by 

flux surface) because finite orbit effects, and impurity radial heat transport and 

equilibration can compete. Indeed, the only direct measurements of the background ion 

temperature in the pedestal that we are aware of were performed in helium plasmas at the 

DIII-D tokamak and fully supports our conclusion [60]. 

 

Of course, the entropy production proof that the background ions do not have a 

temperature pedestal has some limitations. First, we can only apply it when the collision 

operator does not dominate over the streaming term in the kinetic equation. Therefore, 

our proof is valid in the banana regime, but not in the collisional Pfirsch-Schluter regime 

(with any plateau regime behavior expected to be transitional). Only in the banana regime 

does the distribution function being Maxwellian result in it being independent of *
  and 

therefore *
 , which in turn leads to slow radial temperature variation. 

 

Another issue is the implicit assumption of the absence of any significant entropy flow 

from the pedestal into divertor plates that is needed to obtain (2.54). This assumption 

requires the pedestal region to be within the tokamak separatrix in such a way that all the 

flux surfaces carrying a significant amount of plasma are closed. If the separatrix were to 

fall part way up the pedestal our proof would no longer be mathematically robust. 

However, our almost isothermal Maxwellian solution remains valid in the near SOL so 

entropy flow into the divertor is negligible. Therefore, we expect that in the banana 

regime, it will be difficult to sustain strong background ion temperature variation 
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comparable to that of the plasma density in ITER [61] unless the pedestal scale length is 

many poloidal gyroradii.  

 

Other limitations of our proof are associated with the neglect of charge exchange and 

ionization, and direct orbit loss to physical structures outside the SOL, which may or may 

not be playing a role in establishing the pedestal [61]. Orbit loss results in non-

Maxwellian features that cause the entropy production to be finite so we anticipate that 

ion orbit loss will have to remain a weak effect in a well defined pedestal in local 

equilibrium. Moreover, in the short neutral mean free path limit the velocity dependence 

of the neutral distribution function will become the same as that of the ions causing 

charge exchange collisions of the ions with the neutrals to produce no entropy. For longer 

neutral mean free paths we expect little entropy production due to the presence of the 

neutrals based on a self-similar treatment of the neutrals which finds results roughly in 

agreement with short mean free path results [62]. 

 

Interestingly, we can apply our nonlocal entropy production proof to the case of the so-

called “potato regime” near the magnetic axis [31,32] that is the potato analog of the 

regular banana regime. In this region of a tokamak pol  becomes large so that (2.55) 

requires an almost constant ion temperature in the vicinity of the magnetic axis meaning 

that there is no transport in a conventional sense. This analysis is in agreement with the 

point made in [32] that near the magnetic axis we should speak about a global solution in 
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the entire region rather than about a local diffusive process. This point is in turn similar to 

the point about the non-local equilibration of the pedestal that we make in section 7. 

 

Finally, we remark that a favorable consequence of the lack of a background ion 

temperature pedestal in the banana regime is the probable enhancement of the bootstrap 

current in the pedestal. To see this effect we employ the usual Z = 1, large aspect ratio 

expression                        

             

lnln ln 0.29
1.66 1 0.47 ei i

etBS
e e

T d Td n d T
j f nT R

ZT d d ZT d  
           

,   (2.75) 

where tf  is a trapped particles fraction (e.g. see [27]). We use (2.75) only as an estimate 

because neoclassical transport in pedestal can be slightly different from this result in the 

large aspect ratio form due to strong shaping effects in the pedestal. Experiments show 

that eT  and n  profiles are very similar  with strong electron temperature variation being 

allowed by the small poloidal gyroradius of the electrons. We recall that (2.55) prevents 

iT  from having a gradient comparable to that of n  and eT , so the ion temperature 

gradient term is expected to be negligible in the pedestal, but more importantly (2.55) 

leads us to expect 1eiT T   to hold in the coefficient of the ion density gradient term. 

Thus, the first term in square parentheses in (2.75) is expected to be greater in pedestal 

than in the core resulting in a larger bootstrap current closer to plasma edge. 
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In summary, the modified gyrokinetic approach we employ promises to be a useful tool 

for studies of plasma turbulence and transport in tokamaks. The choice of *
  as the 

gyrokinetic radial variable results in a convenient treatment of arbitrary poloidal 

gyroradius effects in the pedestal, in ITBs, and about the magnetic axis, while still 

allowing neoclassical collisional effects and zonal flow to enter naturally along with 

finite Larmor radius phenomena including orbit squeezing. As a result, our formalism is 

capable of handling such problems as collisional zonal flow damping with 1polk   , 

zonal flow in a pedestal, and neoclassical transport in a pedestal, as well as turbulent 

phenomena. 
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3 Zonal flow in a tokamak pedestal 

3.1 Introduction 

Zonal flow is observed in nearly all the systems with turbulent behavior [63]. In 

tokamaks, zonal flow is a poloidally and toroidally symmetric sheared flow produced by 

drift wave turbulence on a time scale greater than the cyclotron period. By suppressing 

this turbulence, it limits anomalous transport and in turn improves plasma confinement. 

This mechanism seems to be rather universal and works for turbulence caused by ion 

[6,7,64] and electron  [9] temperature gradient modes. In this connection, the question of 

what limits zonal flow itself takes on special significance.  

 

The pioneering work by Rosenbluth and Hinton [10] demonstrated that in the absence of 

collisions the zonal flow amplitude is controlled by neoclassical polarization, with a 

significant portion of it, the residual, surviving in the turbulent steady state. In their 

calculation, the assumptions of circular flux surfaces and large radial wavelengths were 

used. In subsequent work the effects of collisions on zonal flow were analyzed [50,65] as 

well as those of the flux surfaces shape [66,67] and shorter wavelengths [68,69]. 

However, all of the preceding analyses involved an essentially homogeneous equilibrium 

solution since the wavelength of the zonal flow perturbation was assumed to be much less 

than all background radial scale lengths. While plausible in the tokamak core, such an 

assumption is inappropriate in a pedestal whose background scale is comparable to the 
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ion poloidal gyroradius  /pol i polv Mc ZeB , where  
1/2

2 /i iv T M  is the ion 

thermal velocity and polB  is the poloidal magnetic field. The purpose of the present 

calculation is to generalize the zonal flow calculation to the pedestal case. 

 

A better understanding of the pedestal region is a key to modeling high confinement or H 

Mode operation [18,20] for controlled fusion power production. In the first chapter of this 

thesis, we theoretically found some basic features inherent to a pedestal. The formalism 

developed there allows the radial pedestal width to be of the order of ion poloidal 

gyroradius while assuming pol  , where   is the ion gyroradius. This assumption 

decouples the neoclassical phenomena from classical finite Larmor radius (FLR) effects 

and allows the development of a version of gyrokinetics that is particularly convenient 

for pedestal studies. With the help of this formalism we proved that in the banana regime 

the background ion temperature in pedestal cannot vary as strongly as on the poloidal 

gyroradius scale when plasma density does. This result was recently confirmed by direct 

measurements in He plasmas in DIII-D [60]. Moreover, it allows the shape of the 

pedestal electric field to be deduced for subsonic ion flow since the E B
 

 drift and 

diamagnetic flow must cancel to lowest order in / pol  . 

 

When the pedestal width is of order pol  it is important to recall that ion departures from 

a flux surface also scale with pol  and therefore finite drift orbit effects on zonal flow are 
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significant. For the problem of ion transport these effects were considered by Shaing and 

Hazeltine [52], who presented the derivation of ion orbits in the presence of a strongly 

sheared radial electric field. They focused their studies on orbit squeezing [33] by 

assuming large electric field shear and expanding the potential around the flux surface 

where the radial electric field vanished. However, the electric field is large for most flux 

surfaces in the pedestal and we are led to solve for the particle motion in a tokamak 

retaining both the electric field and its shear. A preliminary numerical investigation of 

this issue along with some analytical estimates is given in [70]. Here we present a fully 

self-consistent derivation of particle trajectories in a pedestal. 

 

To carry out the pedestal zonal flow calculation we employ the Kagan and Catto [71] 

version of gyrokinetics derived in the previous section that readily provides the relation 

between the density and potential perturbations. The explicit evaluation of the potential 

involves trajectory integrals and this is where the finite orbit effects enter. We find that 

for strong enough electric field the trapped particle fraction becomes exponentially small 

so that the neoclassical shielding disappears. This means that turbulent transport can be 

lower in the pedestal than in the core for the same turbulent drive, and may impact for 

how a sharp density gradient is established on the transport time scale. 

 

The remainder of this chapter is organized as follows. In section 3.2 we derive the 

integral relation between the density and potential perturbations and give the expression 

for the zonal flow residual. Section 3.3 investigates ion motion in a tokamak pedestal and 
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the results of this study are applied in section 3.4 to obtain explicit expressions for the 

neoclassical polarization and the zonal flow residual in the pedestal. Finally, in section 

3.5 we summarize our findings and discuss their implications. 

 

3.2 Neoclassical polarization in the presence of strong background 

electric field 

Rosenbluth and Hinton demonstrated that neoclassical polarization is the key factor 

affecting the zonal flow dynamics in a tokamak [10,65]. Thus, to see how zonal flow is 

modified as we move from the tokamak core to the pedestal, we have to evaluate 

neoclassical polarization in the presence of a sharp density gradient. 

 

It may seem that as polarization density is due to modifying single particle orbits by the 

perturbation of the electric field, the density gradient should not have a strong impact on 

it. However, while a density gradient cannot affect single particle motion directly, it 

necessarily builds up a strong electric field to sustain pressure balance according to 

equation (2.59). Moreover, equation (2.49)yields that in a subsonic pedestal with a 

density gradient as large as 1/ pol , the resulting E B
 

 drift ( Ev


) contributes to the 

poloidal angular velocity   of the ions in leading order so that  

            || ||
ˆ ˆ/Ev n v v cI B n     

 , (3.1) 
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where the two terms on the right side are comparable (unlike the core where ||v  

dominates). Therefore, the distinctive pedestal feature that is crucial for the zonal flow 

dynamics is the existence of the strong background radial electric field as it directly 

affects equilibrium particle orbits. Accordingly, in this section we discuss the role of the 

equilibrium electric field on the neoclassical plasma polarization. 

 

Plasma polarization pol  relates density and potential perturbations n  and   through 

 2 4polk Ze n      . (3.2) 

Therefore, what one technically has to do to evaluate pol  is to assume a small density 

perturbation is introduced into the pedestal and find the potential response to this 

perturbation. To this end, it is convenient to start from the equation (2.64) derived in the 

previous chapter 

 
                    

||
2

* 2
* 2

l M
ii M

Iv fg g Mv T Ze
C g f

t M t ET




 
 . (3.3) 

The distinction between *
 , poloidal angular velocity of the ion gyrocenters given by 

(2.18), and the poloidal ion angular velocity   as given by (3.1) will turn out to be 

unimportant in this chapter.  

 

Here, to apply (3.3) to the problem of the neoclassical polarization we evaluate   in 

slightly different manner as compared to the procedure outlined in Sec. 2.9. To do so we 
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still notice that there is a significant equilibrium potential in the pedestal and therefore   

consists of the unperturbed piece 0 , whose gradient balances the diamagnetic drift to 

keep the ion flow subsonic  0 / / /iT en n          , and the perturbation   

such that / /t t      . Assuming an eikonal form for   we write 

    * ||
ˆ/ /ˆ ˆ iG Iv v niGe e          


. (3.4) 

In Sec. 2.9 we expanded G  around *
  to obtain 

      ||*
ˆ/ /G G Iv v n G        


 (3.5) 

and gyroaveraged this result to find 

  0*
/ iQJ k v e     , (3.6) 

where  *
*

ˆ iGe   ,    || /Q Iv G  and k G  


. However, the underlying 

assumption made to perform expansion (3.5) is that, for the particles of interest, ||v  is 

small. In the conventional case this is justified because neoclassical response is mainly 

due to the trapped and barely passing particles whose ||v  is indeed small in the large 

aspect ratio limit. Now that we allow a strong electric field, the poloidal motion described 

by (3.1) suggests that the trapped-passing boundary is shifted to  || /v cI B   . In 

the pedestal, /cI B  is of order iv  while the wavelengths of interest are of order pol  

or less. Thus, the particles contributing the most to the neoclassical polarization, have 

   || /Iv G G   , making (3.5) inappropriate. To address this issue we expand G  
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around *
/Iu    rather than around *

  itself, where u  accounts for the effect of 

E B
 

 drift and is approximately equal to /cI B . The explicit definition of u  in 

terms of constants of the motion will be provided in the next section where single particle 

orbits are analyzed. Now, anticipating that trapped and barely passing particles still lie 

within a narrow vicinity of the trapped-passing boundary, we replace (3.5) with 

                         ||*
ˆ/ / /G G Iu I v u v n G           


, (3.7) 

so that we can directly adopt (3.6) by redefining Q  as 

       ||
/Q I v u G  (3.8) 

and *
  as  * /ˆ iG Iue    . 

 

Next, we transit average (3.3), using *
/ 0g     to leading order in the banana regime, 

to find 

  ||
2

*
2 02

l iQ
ii M M

Ivg Mv T Ze k v
C g f f J e

t T tT




 
               

, (3.9) 

where the transit average of a quantity A  is defined over a full bounce (for trapped) or a 

complete poloidal circuit (for passing) by 

 
* *

* *

/

/

Ad
A

d

 

 










. (3.10) 
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We consider the collisionless limit, use     
   2 2 2

0 / 1 2J k v k v  since we assume 

,polB B  and extract the 
 

2 2 22k v  piece as the classical polarization that will be 

added back later to give the overall plasma response. With these assumptions (3.9) yields  

  *
iQ

M
Ze

g f e
T

 . (3.11) 

To relate g  and f , the perturbation of the distribution function from its equilibrium 

value, we write 

  0 * 0,M M
Ze

f f f f E g f f g
T


           

 
   * 0 0, ,M Mf E f E    , (3.12) 

where we used that   0 0Mf f    and Taylor expanded Mf  for small  . We do 

not explicitly perform the * expansion in the square brackets because the resulting terms 

are linear in v


 and therefore do not contribute to density perturbation.. Then, we obtain 

the linearized neoclassical relation between the density and potential response on a flux 

surface in a form similar to the one found in [68]: 

    3
0 1iQ iQZe

n d vf e e
T 

  , (3.13) 

where ...


 stands for the flux surface average. Again using that parallel velocities of 

the particles of interest are localized around u , we expand the right side of (3.13) up to 

the second order in Q  to obtain  
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2 2

3
0

2

2

Ze Q QQ Q
n d vf iQ iQ

T


  . (3.14) 

 

In the Rosenbluth-Hinton case [10], the terms of the first order in Q  do not contribute to 

the density perturbation. Indeed, in the absence of the electric field ||v  and Q  are odd 

functions of ||v  while 0f  is even in it. That is, for each particle passing clockwise there is 

a particle with the same absolute value of ||v  passing counterclockwise so that their 

cumulative response is canceled. Also, for any trapped particle || 0v Q  . Thus, in the 

Rosenbluth-Hinton limit, it is the terms quadratic in Q  that give the leading order 

response. 

 

In our case, there is a preferred direction of rotation in the poloidal plane due to the 

E B
 

 drift. Therefore, Q  is no longer an odd function of ||v . Neither have we || 0v   

for trapped particles. Thus, the terms linear in Q  are expected to contribute to the 

neoclassical polarization. Interestingly, these terms have a preceding factor of i  making 

the plasma susceptibility complex. Consequently, in contrast to the Rosenbluth-Hinton 

case there is now a spatial phase shift between the density and potential perturbations.  

 

Once we explicitly relate n  and   with the help of (3.14) we are able to predict the 

long-term behavior of the zonal flow using the Rosenbluth-Hinton framework. Namely, 
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we will assume that at times greater than the cyclotron period, but less than the bounce 

period, the potential response to the zonal flow density is solely provided by the classical 

polarization pol
cl , whereas at the times much greater than the bounce period neoclassical 

shielding enters as well so that     pol pol pol
nc clt   . Thus, solving for the 

potential response to a constant density step,      0n t n t  ,  we obtain  

 
 
 
 


 0

pol
cl

pol pol
nc cl

t

t

 

  
 (3.15) 

with  2 2/pol
cl pi ci   , where pi  and ci  are the plasma and ion cyclotron frequencies 

respectively. Notice, that in our case pol
nc  is complex and therefore the zonal flow 

residual is phase shifted with respect to the initial perturbation of the potential. In the 

following section, finite E B
 

 drift departures from flux surfaces will be shown to 

substantially modify the Rosenbluth-Hinton [10] result further. 

 

3.3 Particle orbits in a tokamak pedestal 

In this section we analyze single ion motion in a tokamak in the presence of a strong 

electrostatic field. Namely, we investigate how accounting for the E B
 

 drift on the 

right side of (3.1) modifies poloidal dynamics of an ion. It is necessary to emphasize that 

the E B
 

 drift itself need not be comparable to ||v  in order to have significant effect. In 

fact, due to geometrical factors even Ev  of order   ||
/ pol iv v    causes qualitative 



55 

 

changes. Indeed, for / 1pol   , ||v


 is nearly perpendicular to the poloidal plane, while 

Ev


 is almost parallel to it as shown in Fig. 1. Consequently, if / 1/ polZe T    

these two streaming contributions in (3.1) compete in the poloidal cross-section of a 

tokamak.  

 

FIG 2. Gyrocenter motion on a torus with poloidal orbit projection plotted (in green). Even though v
||
 is much greater than v

E
 , their 

contributions to the poloidal motion are comparable due to geometrical effects. 

 

As mentioned in the previous section, in the presence of an electric field, the trapped and 

barely pasing particles are spatially localized around the flux surface 

 * *
, ,E      rather than around *

   as in the conventional case. 

Assuming that the radial extent of particle orbits is much less than pol , we can Taylor 

expand the equilibrium electric potential around this point 

 0 *    
 

               
       2

* 0 * * 0 *
1

...
2

                       (3.16) 
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Notice, that we anticipate the yet unknown parameter  *
, ,E   to be of order 

/thIv   and for this reason it would be incorrect to Taylor expand the potential around 

*
  to retain finite drift departures from a flux surface. We assume further that the radial 

variation of B  is weak so that      * *
, , ,B B B        . Then, denoting   

              * * * * * *, ,          (3.17) 

we can rewrite (3.1) as  

 
           

||

2
* * *

0 1
cI cI cI

qR v
B B B

  
 , (3.18) 

where 0R  stands for the major radius and finite orbit effects are retained. Defining  

 0*u cI B  (3.19) 

and setting /Iu   , (3.18) becomes  

  ||0qR S v u   , (3.20) 

where 2
*1S cI B    is the orbit squeezing factor [33]. Next, we use an aspect ratio 

expansion to write 

      2
0 01 / 1 cos 1 2 sin

2
B B B


         (3.21) 
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with  0 0B B    and  0  at the outer equatorial plane. We also define 

 ||0 || 0v v   ,   0 0u u    and 2
0 0 0*1S cI B    so that 

 ||00 0 00
qR S u v





  .  

 

Next, we employ energy conservation 

  ||
2

.
2

v Ze
E B const

M
       (3.22) 

Using *
  conservation this becomes  

 
               

||

2
22

*
* *2 2 2

S v u Su Ze
B E

M


   , (3.23) 

where all terms on the right side are constant along a trajectory. As a result, we can 

describe the particle motion solely in terms of   and  : 

 
   

    
2 2 22

0 0 0 0 0
0

02 2 2 2

qR qR S uSu
B B

S S

 
 

 
. (3.24) 

In the Eq. 26, for  0S  the  2  term is negative and therefore trapped particles reside 

on the inside of the tokamak. For what follows we assume  0S  so that banana 

particles are localized on the outside of the tokamak as in the conventional case. 

Evaluating the   dependence of u  and S  with the help of (3.21) and solving (3.24) for 

  we obtain 
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     2 2
0 0 0 1 sin 2qR qR     , (3.25) 

where we assume  0 04 1 / 1S S   and define 

 

   
 

 


||0

2 2
2 0 0 0 0

0 2 2
00 0

4
4

u B u B
S

SqR u v

 
 


 (3.26) 

with the trapped particles corresponding to 1   and the passing to 0 1  , and 

where 



0

2
0 / 2B v . For 04 / 1S   the particles of interest are indeed localized 

around the trapped-passing boundary justifying our initial assumption. 

 

It is instructive to plot the trapped-passing boundary on the  0 ||0,v v  plane as shown in 

Fig 3. Compared to the conventional case there are two novelties worth mentioning. First, 

due to the effective poloidal potential well, 

particles with no magnetic moment can be 

trapped. Second, as anticipated, the trapped 

particle region is no longer centered at ,
||0

0v 
 

which is the Maxwellian distribution axis of 

symmetry. Consequently, the terms linear in Q  

on the right side of (3.14) no longer vanish. 

Furthermore, for 04 / 1S , as 0u  grows the 

overlap between the trapped region and the distribution function decreases exponentially. 

Thus, we expect neoclassical phenomena to disappear for a strong enough electric field! 

FIG 3. The trapped particle region is shifted by a factor 

of u
0
, while its width scales like (/S

0
)

1/2

. For 4/S
0
<1, as 

u
0
 grows, the trapped particle fraction decays 

exponentially. 
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The important qualitative change in the  0 ||0,v v  plane is due to the large electric field, 

rather than its shear. Indeed, for 0 0u   and 0 1S   the trapped particle region is still a 

cone centered at the origin [52] and therefore electric field shear alone can only modify 

the Rosenbluth-Hinton result algebraically. Therefore, even though 0S  is expected to 

contribute to neoclassical polarization, the key features in the pedestal zonal flow 

behavior are governed by the parameter 0u . 

 

We are now in a position to revisit our localization assumption which allowed us to 

perform expansion (3.16). To do so we rewrite (3.25) as 

    || ||0
2 2

0 1 sin 2u v u v        (3.27) 

so that following a given particle  

            || ||0
2 2

0*
/ / / 1 sin 2Iv Iu I u v               . (3.28) 

Then, 

        ||0
2 2

0 0 0 0*
/ 1 sin 2 2 / /thI u v S Iv              

,(3.29) 

as required, while   0*
/thIv    . Thus, expanding     around *

  is not 

valid, while it is valid to expand     around *
   provided 0/S  is small enough 
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for higher order terms in (3.16) to be neglected. More specifically, we require 0/S  to 

be small so that 
 02 / 1polk S   , as well as 


 1polk 


. 

 

Finally, we remark that the preceding results involve the parameter  which is defined 

in terms of *
 . This form of  is exactly what we need to find the transit average of Q  

and 2Q  on the right side of (3.14) since *
  must remain constant along a particle 

trajectory. However, the velocity integral in the same expression is to be evaluated 

holding   fixed rather than *
 . Therefore, it is necessary to express 0u  in terms of   as 

well. To do so we recall (3.17) and (3.19) to find 

                       ||*
/ / / 1u cI B Iu cI B S u v           , (3.30) 

where the second term on the right side of (3.30) is smaller than the first one by a factor 

of 0/S . Thus, for the flux surface average we can consider  

       0 /u u cI B   . (3.31) 

The integrals in (3.14) are evaluated in the next section. 

 

3.4 Evaluation of the neoclassical response 

Now that we have solved for the particle trajectories we can obtain an explicit expression 

for the neoclassical polarization in the pedestal. To do so it is convenient to define  

0u

0u
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2 2

3
0

0

1 2

2

Q QQ Q
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 (3.32) 

so that the zonal flow residual is given by 

 
 
 





 


 

2 2

2 20
i

i

t k

t k Y

 

 
, (3.33) 

where (3.2), (3.14), and (3.15) are used along with  
 2 2 2 2/pol

nc pi ci iY k    . To evaluate 

Y  we first transit average Q  and 2Q  based on the particle equations of motion, and then 

perform the integration over velocity space and the flux surface average on the right side 

of (3.32). 

 

3.4.1 Transit Averages  

We start by noticing that to the requisite order     
||

/Q G I v u  as well as 

     
||

222 /Q G I v u . Then, for passing particles (0 1  ), 

  
 

 


  ||0 0/
2

v u
Q G I

K




 (3.34) 

and  

      
 

  
||0

222
0/
E

Q G I v u
K




, (3.35) 
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where (3.27) is used and K  and E  are the complete elliptic integrals of the first and 

second kinds respectively:  

    
/2

2 2

0

1 sinE d


    , (3.36) 

   



/2

2 2
0 1 sin

d
K





 

. (3.37) 

For trapped particles ( 1  ), 

 0Q   (3.38) 

and  

      
 

 
      
  

||0

2
222 2

0

1 /
/ 1

1 /

E
Q G I v u

K

 



. (3.39) 

 

3.4.2 Velocity and Flux Surface Average Integrals 

Equations (3.34) - (3.39) provide us with Q  and 2Q  in terms of  ||0 0v u  and  . 

Therefore, it is convenient to switch from integration over v


 to integration over 

 ||0 0v u  and   in (3.32). To account for the Jacobean of this transformation we use 

(3.27) to obtain 

 
   

 
||0 ||0

||

2 2
0 0 0

2 2
0

2
2 1 sin /2

BS v u d d v u
v dv dv

B

 


  
 

 



. (3.40) 
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Then, upon performing the flux surface average we rewrite (3.32) as 

 
2
0

3/22
/20 0 0

0

1
2

Mu TQ S iMuM
Y e

T TQ


 

              
 

     22
0 ||0 0

||0 ||0

4 /42
0 0

MS v u T
d d v u v u e

        

                         
       

10 1

2 / 2 2 2 21 1 / 1 /E K E
K




    

  
 

                      

, (3.41) 

where 0 0/Q IG   . In equation (3.41), the first term in the curly brackets is employed 

for the evaluation of the passing particle response by integrating over  0 1  after 

performing the 
||0 0v u  integration from   1/2

02 / / S   to   and from   to 

  
1/2

02 / / S   (see Fig 2). The second term is used for the integration over the 

trapped particle region  1  and again between   
1/2

02 / / S   and  . Letting 

   
||0

22 2
0 0 0/ 4 /y MS v u T Mu T   and replacing   with 1 /   in the 1   

range, the trapped particle response on the right side of (3.41) can be evaluated explicitly 

to obtain 
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  , (3.42) 



64 

 

where numerical evaluation of the expression in the curly brackets gives an approximate 

value of 0.193 . Absent the electric field, 0 0u   and 0 1S   so that the last integral in 

(3.42) is equal to 3 /4  and (3.42) recovers the Rosenbluth-Hinton result [10] 

  
2

2 2 3/21.6 iRH

q
Y k  

 . (3.43) 

Therefore, normalizing (3.42) to RHY  we obtain the final answer in a more compact form 

                      
 

 





           


2
0/ 3/220

03/2
0 0

/ 4
1 2 2 /

3

iu v
yi

i
RH pol

u vY e
i dye y u v

Y k S 
. (3.44) 

Expression (3.44) possesses the features qualitatively expected. In particular, it captures a 

spatial phase shift between density and potential perturbations and orbit squeezing, as 

well as exponential decay in the large electric field limit. As anticipated, the major 

changes are due to the parameter 0u  rather than 0S  which only modifies the Rosenbluth-

Hinton result by a factor of 
3/2
0S . Notice, that for the wavelengths of order pedestal size 

the imaginary part of the residual is comparable to its real part and therefore simulations 

should reveal a non-trivial phase shift between the initial and resulting zonal flow 

potentials.  
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To see in greater detail how neoclassical polarization depends on the electric field we plot 

/ /pol pol
nc nc RHRH

Y Y   for 


 1polk   in 

Fig 4, where     2 2 21.6 /pol
nc pi ciRH

q     

is the neoclassical polarization in the tokamak 

core [10]. Notice that  0
pol
nc u  has a 

maximum at 0 1.2 iu v . To the right of this 

maximum, an increase in the equilibrium 

electric field leads to an increase of the zonal flow residual according to (3.33). Recalling 

that in a subsonic pedestal pressure balance yields the radial Boltzmann relation between 

the equilibrium potential and plasma density [71], 

   0 0 0/ / /d d T en dn d   , (3.45) 

we find that, for a steep enough density profile, its further sharpening leads to the 

enhancement of the zonal flow residual. This feature has an important consequence as 

noted in the next section. 

 

3.5 Discussion  

In the preceding section we present an explicit evaluation of the collisionless neoclassical 

polarization and zonal flow residual in the pedestal. It importantly generalizes the classic 

Rosenbluth-Hinton result [10] because it allows for the strong electric field that is an 

intrinsic feature of a subsonic pedestal in a banana regime. The mechanism by which 
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 FIG 4. Neoclassical polarization normalized to the 

Rosenbluth-Hinton result as a function of the equilibrium 
electric field.  
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strong radial electric field modifies the zonal flow in the banana regime can be 

schematically explained in the following way. In a pedestal of width pol , the 

electrostatic potential satisfies / 1/ polZe T    to sustain pressure balance. A 

simple estimate then gives that the E B
 

 drift significantly contributes to the poloidal 

motion of an ion, thereby qualitatively changing ion orbits compared to those in the core. 

Consequently, the neoclassical response to a density perturbation provided by these 

changed orbits modifies the Rosenbluth-Hinton zonal flow dynamics and the residual. 

 

As it can be seen from (3.44), the zonal flow is sensitive to both, the absolute value of the 

electric field and its shear, with the former entering through the parameter 0u  and the 

latter through the orbit squeezing factor 0S . However, in the absence of 0u , orbit 

squeezing only modifies the Rosenbluth-Hinton results algebraically leaving the 

underlying physics otherwise unchanged. More interestingly, the electric field without 

shear makes the neoclassical polarization complex, resulting in a zonal flow residual that 

is phase shifted with respect to the initial perturbation. Moreover, for 0 1u  the 

neoclassical polarization decays exponentially as the square of the electric field so that 

the zonal flow is no longer neoclassically shielded! In this limit, the zonal flow residual 

approaches unity so once it is generated it can continue to act strongly in regulating the 

turbulent transport. 
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If we now imagine that zonal flow is the dominant factor limiting turbulent transport in 

the tokamak edge, the preceding results suggest that a strong background electric field 

reduces transport. This in turn suggests a feedback mechanism that could play a role in 

pedestal formation. Indeed, consider a tokamak with a shallow density profile and initial 

zonal flow. Assume that a perturbation causes a sharp density gradient. We might expect 

this gradient to be eliminated by transport processes. However, when the flow is 

subsonic, creating such a density step at the same time increases the radial electric field to 

sustain pressure balance (3.45). When this field becomes large enough for 0u  to go 

beyond the maximum of the curve in Fig 3 it enhances the zonal flow residual in that 

region making the turbulent transport level lower and sharpening the density profile 

further. Thus, this feedback phenomenon may allow creation of a steep density profile 

before it can be relaxed by anomalous transport and therefore it could be involved in 

establishing, as well as maintaining, a tokamak pedestal. Importantly, it is the strength of 

the electric field, rather than its shear, that is expected to play the key role since it enters 

exponentially. 
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4 Neoclassical radial heat flux in a tokamak pedestal  

4.1 Introduction 

The neoclassical theory of plasma transport considers transport processes that are due to 

the non-uniformity of the confining magnetic field. In the original work by Galeev and 

Sagdeev in 1968 [15] it was pointed out that such a non-uniformity results in more 

complicated particle trajectories as compared to simple Larmor orbits in straight 

magnetic field line geometry. More specifically, they observed that in toroidal magnetic 

fields the gyrocenters of these orbits themselves perform cyclic motions that allow them 

to depart noticeably from their reference magnetic field line. In a tokamak, particles can 

be classified as either trapped or passing based on the character of their gyrocenter 

trajectory, whose poloidal projection is banana like for the former and an off-center circle 

with respect to the reference flux surface for the latter. These orbits of particle 

gyrocenters are often referred to as drift surfaces. 

 

For ions, the characteristic size of the drift surface departure from its flux surface scales 

with poloidal ion gyroradius,  /pol i polv Mc ZeB , where 2 /iv T M  is the ion 

thermal velocity and polB  is the poloidal magnetic field. Accordingly, in the so-called 

“banana regime”, in which collisions are rare enough for an ion to circulate several times 

over its neoclassical orbit before being scattered, it is pol  that defines the elementary 
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diffusive step in contrast to classical transport in a uniform magnetic field that is 

governed by a step in the Larmor radius  /iv Mc ZeB . For most tokamaks, the 

poloidal component of the magnetic field is much less than toroidal, making pol  . 

Therefore, neoclassical transport normally dominates over classical. 

 

Neoclassical radial transport in the core of a tokamak has been investigated in great 

detail[12--16]. All these works rely on the Galeev and Sagdeev equations of particle 

motion, making their results inapplicable to the pedestal case. Indeed, as demonstrated in 

chapter 2 of this thesis, the strong electric field inherent to the pedestal region 

substantially modifies ion orbits, thereby requiring reconsideration of the conventional 

neoclassical results. In particular, we have already demonstrated the impact of such an 

orbit change on the neoclassical polarization. The goal of this chapter is to investigate the 

effect of strong radial electric field on the neoclassical ion heat flux. 

 

The evaluation of the neoclassical ion heat flux in the tokamak core has been done in a 

number of ways [12,13,16]. Our calculation of its pedestal counterpart extends the logic 

outlined in [27] to the retention of a strong radial electric field. Accordingly, in the 

second section of this chapter we present a model collision operator that is particularly 

convenient for describing processes near the trapped-passing boundary since it is 

modified by such a field. In the next section we employ this operator to solve the kinetic 

equation (2.74) obtained in chapter 2 of the thesis with only the neoclassical drive term 

retained. This provides us with the first order correction to the distribution function so 
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that I can continue to section 4.4 where we explicitly evaluate the neoclassical ion heat 

flux with the help of the moment approach.  The technique developed to calculate the ion 

heat flux is then employed to find the parallel ion flow in section 4.5. Finally, in the last 

section we use the result of section 4.4 to consider possible density and electric field 

profiles in the pedestal. 

 

4.2 Model collision operator in the pedestal 

We start by deriving a model of the like particle collision operator which conveniently 

describes the collisional transitions across the trapped-passing boundary in the pedestal. 

In the core of a tokamak, this boundary is a cone centered at the origin of the   ||,v v  

plane and therefore to retain neoclassical transport processes it is sufficient to use a 

momentum conserving pitch-angle scattering operator. In the pedestal, the trapped-

passing boundary is curved and shifted so that the energy scattering component of the 

collision operator contributes to neoclassical transport as well.  

 

To find a model more relevant to our problem, we recall from Sec. 3.3 that the pedestal 

trapping condition is given in terms of the parameter   by   

 

 





||0

2
2 0 0

2
0

0

4 u B

S u v


 , (4.1) 

since 



71 

 

       || ||0
2 2

0 1 sin / 2v u v u   , (4.2) 

where       /u cI B   ,   21S cI B , and subscript “0” refers to 

quantities evaluated in the equatorial mid-plane on a given particle orbit. The range 

 20 1  corresponds to passing particles and 2 1  to trapped. To capture 

collisional processes near the trapped-passing boundary in a simple manner we employ 

some function of 2  as an independent variable in the model collision operator. Also, it 

is convenient to choose variables that reduce to the conventional ones, 2
02 /B v  and 

2 / 2v , in the limit of no electric field to make it easier to keep track of the changes 

associated with the pedestal case. To this end, it is useful to employ the variables  

 
   


  

||

2

2
0

02

v u B
E B u

B
  and 

 


2
0B u

E


 . (4.3) 

Notice that  

   
2 2

2 20 01 sin
2 2 2

S S 


 
 (4.4) 

and therefore for the particles of interest 

 


2

2
02 / S




 
. (4.5) 

That is,   can be defined solely in terms of 2  to the requisite order. Moreover, 

            
   || ˆvE v u n v


 and     

     || 0ˆ /vE v u n B B v  


 (4.6) 
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so that 

 
 

   


||

2 2

2
0

v v

v u u
E E

B u





. (4.7) 

In the vicinity of the trapped-passing boundary  ||

2 2
iv u v , making E  and   

nearly orthogonal. Thus, we may anticipate that once the collision operator is written in 

terms of these variables, the main contribution to neoclassical transport will come from 

the  /   terms. We proceed by finding an explicit expression for such an operator. 

 

To do so we start from the Rosenbluth form of the collision operator 

       R vC f f 


, (4.8) 

where   

        0 0/v v M vf f G f f  


 (4.9) 

with  

       ||2

4 2v v MG v I vv vv



  

, (4.10) 

where 


  and 
||
  are functions of 2v  only and defined by 

    
    3

3 2
erf

2
Bx x

x


   and   

|| 3

3 2

2
Bx

x


  , (4.11) 
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where  1/2 4 4 1/2 3/24 ln / 3B iZ e n M T   is the Braginskii ion-ion collision 

frequency,  

  
   

2

erf erf

2

x x x
x

x


 

 
and   2

0

2
erf

x

tx e dt


   (4.12) 

with / 2 / ix v M T v v  . 

 

Switching to E ,   and gyrophase   variables and writing (4.8) in conservative form we 

obtain  

                       
           

  
1 1 1

v v vC f J J E J
J J E J

  
 

  
, (4.13) 

where the  /   term is set equal to zero since classical effects are ignored, and, upon 

accounting for both signs of  ||v u , the Jacobian of the transformation is given by 

 
 

 


3

0 ||

2d v BE
J

d dEd B v u 
. (4.14) 

The model collision operator to be constructed will eventually be applied to g h , 

where h  denotes the drive term inside the linearized collision operator in equation (2.74), 

while g  is the neoclassical response to h . In the absence of the electric field, g h  is 

localized around the trapped-passing boundary, so that        
1

0/ /g h f O  , 
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while         0/ / 1g h f E O  [13,27]. Assuming that these estimates remain 

appropriate in the pedestal as well, equations (4.6) and (4.10) give 

   
                         

||2
0

04 2v v v
g h

g h f v I vv vv
f


  



  
 

 
 || ||

2

0 2 2
0 2

04 2 4

v u B g h
f v u

fE B

  



 

                      
, (4.15) 

where due to our orderings we may drop the  / E  term. The same reasoning allows us 

to drop the  / E  term on the right side of (4.13) as well. Thus, we obtain our pedestal 

collision operator to lowest order to be 

  
 

 
           

||

||

0

0
ped v

B v u BE
C f

BE B v u
 




.  (4.16) 

 

The model operator defined by equations (4.15) - (4.16) does not manifestly conserve 

momentum. To restore this property, intrinsic to the full like particle collision operator, 

we introduce a free parameter   to redefine   v


 by 

  vg h     


 

         

   || ||||

2

0 2 2
0 2

04 2 4

v u B I v ug h T
f v u

f TE B

  


 
 

                           
.

 

(4.17) 
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Then, after solving for the first order correction to the distribution function we can find 

  such that the operator given by (4.16) - (4.17) conserves momentum. 

 

4.3 Passing constraint 

Now that we have a convenient model of the collision operator we can solve for the first 

order distribution function that is responsible for the neoclassical transport. Setting aside 

zonal flow phenomenon by omitting the  / t  terms in (2.74) and employing the 

leading order expression (2.49) for *
  when transit averaging, we obtain the neoclassical 

constraint on g  to be 

 
 

 
||

*
0

d B
C g h

v u B




 

     (4.18) 

where the integration on left side must be performed holding * ,   and total energy 

fixed as indicated by the   subscript on the integral. Also, due to the properties of the 

linearized like particle collision operator, the drive term h  can be replaced with 

 
    


 

||

2 2

0 22

M v uI v u T
h f

T 
. (4.19) 

With arguments identical to those in the conventional case it can be shown that for the 

trapped particles  0g . The goal of this section is therefore to solve (4.18) for g  in the 

passing region of the  ,E   space.  
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Employing our collision operator (4.16) along with the observation that   and E  are 

approximate constants of the motion we obtain 

              
              


||

||

2 2
0

2*
0

2 /
0

2

M v u T MI v ug T
d v u

f T




  . (4.20) 

In the banana regime 0/g f  is independent of   to leading order giving  

      

   
  ||

|| ||

2 2

2* *
0

2 /

2

IM v u v u T Mg T
d v u d v u

f T


 

  

                    
   .(4.21) 

 

We observe that due to (4.3),      ||

2

0/ 2 /E v u E B B  giving at fixed E that 

  
  

  

||

||

0

v u B
v u E

B
, (4.22) 

where for the particles of interest, to leading order in 0/ S ,  2 2v u  is given by 

   2 2 2v u E , (4.23) 

making it nearly independent of  . Thus, setting 0/ 1B B  we obtain  
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             ||

2
0 0

/

p

IME E T Mg T

f v u T



 
, (4.24) 

where 

    || ||
*

1

2
v u d v u

  . (4.25) 

 

Now we can verify the localization assumption made to derive our model collision 

operator. To do so we form  

                            

||

|| ||
2

0 0

/ 1 1I v u IME E T Mg h T T

f T v u v uT

 

  
. (4.26) 

To estimate the expression on the right side of (4.26) we flux surface average it and 

notice that 

             
   || ||

2 2 2 2

1 1 1 1

1 sin / 2 1 sin / 2v u v u    
. (4.27) 

We also observe that (4.5) gives  2
02 / 1S       so that at the trapped-passing 

boundary  01 / 1 2 / S    when 2 1 . However, once   leaves the   vicinity 

of the trapped-passing boundary, 2  becomes small and we can Taylor expand the 

expression on the right side of (4.27) to find 



78 

 

                        
 

4

2 2 2 2

1 1
1

1 sin / 2 1 sin / 2
O 

   
  . (4.28) 

Thus, for the particles of interest, the   derivative of the function inside the collision 

operator in (4.18) indeed goes like  0 /O S  , justifying our dropping of the  / E  

terms in the equations (4.13) and (4.15). 

 

Next, we have to ensure momentum conservation by choosing an appropriate value of  . 

That is, we have to find   such that 

           || ||

3 3

0
d v d v
vC g h v u C g h

B B
. (4.29) 

To evaluate the collision operator on the right side of (4.29) we first use (4.17) and (4.26) 

to write 
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. (4.30) 

Then, we recall (4.14) and (4.16) and integrate (4.29) by parts over   to obtain  

   
                       

 ||

|| ||

2 2
0

1 1
/ 0

4 2 4
dEd f E E T M v u

v u v u

 
   ,(4.31) 



79 

 

where (4.22) is used to find    || /v u  . Noticing that (4.3) gives 

     ||

2

02 1 /v u E B B  we now complete the integration over   in (4.38) by 

employing [13] 

 2

0 0

1 1

1 / 1 /
d

B B B B
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1 / 1 /
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B B B B
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00 00

2
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B B
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d d

SB B B B

  

 
, (4.32) 

where the p  subscript  on the second integral denotes that only the passing region is 

integrated over. Then, (4.31) reduces to  

     
       ||

1/2 2 2
0/ 2 0dEE E T M v u f    . (4.33) 

Finally, we introduce a new variable of integration 

      2 2 2/ 2 /y M v u T M E u T  in (4.33) and solve for   to obtain 
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,(4.34) 

where frequencies 


  and 
||
  are defined in terms of   2 / 2x y Mu T  by (4.11). 
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In the absence of the background electric field  0u  and 2x y  so that  
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dxe x x x

  (4.35) 

which agrees with the conventional result [13,16,27]. 

 

4.4 Neoclassical heat flux in the pedestal 

Here we proceed by calculating the neoclassical radial heat flux in the pedestal using the 

moment approach [27]: 

  
           ||

3 2 5

2 2

McIT d v Mv
q vC g h

Ze B T



. (4.36) 

To evaluate the integral on the right side of (4.36) we first employ the number, 

momentum and energy conservation properties of the collision operator to rewrite it as 

                  
  

 
 

   
||

2 23

02

M v u v uMcIT d v
q f C g h

Ze B T



. (4.37) 

Now we can continue in a manner similar to the one used in the previous section to find 

 . That is, we again use (4.30) inside the collision operator and integrate the result by 

parts using (4.22) and (4.23). Then, (4.37) transforms into 
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and we can carry out the   integration with the help of (4.32) to obtain 
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Finally, we again substitute y  for E  to find 
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   , (4.40) 

where in  stands for the ion density and the parameter   is provided by equation (4.34).  

 

To proceed with the analysis we insert expression (4.11) for the collision frequencies into 

(4.40) to obtain 
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/ / 3 erfi iu v y u v x x
               

(4.41) 

First, we consider the conventional limit in which  0u  and 0 1S . In this case,   is 

given by (4.35) and  2y x  so that (4.41) becomes 
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 (4.42) 

in agreement with the usual neoclassical result [13,16,27]. Now we can write the full 

result (4.41) in a normalized form as 
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2
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, (4.43) 

where  G u  is given by 
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so that  0 1G  . The dependence of the 

normalized neoclassical heat flux on u  is plotted on 

Fig 5. Notice, that as u  goes beyond unity  G u  

decays exponentially with the electric field. Of   

course, as in the problem of the zonal flow in the 

pedestal, it is due to the trapped-passing boundary 

shifting towards the tail of the ion distribution function, thereby making number of 

particles contributing to neoclassical heat flux negligible once electric field is large 

enough.  

 

4.5 Parallel ion flow in the pedestal 

Using the technique of the previous sections it is straightforward to evaluate the parallel 

ion flow in the pedestal. The net ion velocity iV


 is defined by 

   3
i inV d vvf
 

 (4.45) 

giving 

 
           ||

3ˆ ˆi i i
cR p

nV Zen n d vv g
Ze




 


 (4.46) 

with the help of (2.63) and (2.65), where ̂  is the toroidal unit vector. To proceed it is 

convenient to rewrite (4.46) further as 
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       ||
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i i

u n
V R n d vg d v v u g
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, (4.47) 

where           / / /ic c Zen p    . 

 

It is shown in Appendix E that 

  3 0d vg  (4.48) 

to leading order in 0/ S  and therefore here we only have to evaluate the last integral 

on the right side of (4.47). To do so we employ the Jacobian (4.14) with 0/B B  set equal 

unity and integrate by parts over   to obtain 
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g
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. (4.49) 

Noticing that to the order of interest 0f  is independent of   we now use (4.24) to find 
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For the purpose of this section we need the   integral only to leading order in 0/ S , 

which is provided by 
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Inserting the expression for the leading order distribution function we can rewrite (4.50) 

as 
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Finally, we again employ the y  variable to find 
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To recover the conventional result we use  2y x  and insert (4.35) for   to obtain 
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matching the answer given in [27]. To write (4.54) in a normalized form we introduce 
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such that 
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   (4.56) 

with  0 1J  . Recalling (4.47) and using that ˆˆ /Rn I B   we therefore obtain the 

parallel ion flow in the pedestal 
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, (4.57) 

where   is defined after equation (4.47). 

 

FIG 6. Neoclassical current as a function of the equilibrium electric field  

 

4.6 Discussion 

In this chapter, we present the technique for evaluating of neoclassical transport 

parameters in the presence of a strong background electric field and use it to explicitly 

calculate neoclassical ion heat flux and poloidal flow in the pedestal. A key step is the 

construction of the model collision operator (4.16) - (4.17) which replaces the pitch angle 

scattering operator employed in the conventional calculation. The need for choosing a 

different model for describing collisions in the pedestal is due to the electric field 

modifying the trapped-passing boundary in velocity space, thereby making the 
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conventional operator inadequate for the particles that contribute the most to neoclassical 

phenomena. 

 

The results of this chapter possess the same qualitative feature as the neoclassical 

polarization discussed in chapter 3. Namely, both the neoclassical ion heat flux and 

poloidal flow, given by (4.43) and (4.56) respectively, decay exponentially in u . 

Obviously, this is again explained by the fact that the trapped particle region is shifted to 

the tail of the Maxwellian distribution once electric field is large enough. We observe that 

as in the zonal flow problem, the qualitative modifications of the pedestal case as 

compared to the conventional one are due to the parameter u , while the orbit squeezing 

parameter 0S  only enters algebraically. In other words, it is the magnitude of the radial 

electric field rather than its shear that is the central quantity governing neoclassical 

phenomena in the pedestal.  

 

The case of substantial electric field shear in the absence of a significant electric field 

itself was considered by Shaing and Hazeltine in [52]. It is important to emphasize that 

their problem formulation is not appropriate for most of flux surfaces in the pedestal, 

with only possible exceptions being the very top or very bottom of this tokamak region, 

where the electric field can be considered small. Our calculation for the ion neoclassical 

heat flux therefore captures the more important physics of the electric field, while still 

retaining Shaing’s case of pure orbit squeezing. Notice, that the heat conductivity given 

in [52] has the 0S  factor in the numerator contradicting our equation (4.43) which 
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predicts the inverse dependence. This mistake comes from the part of [52] that analyzes 

particle trajectories in the strong orbit squeezing case, where it is claimed that the trapped 

particle fraction scales with 0S . The proper treatment of particle orbits presented in 

Sec. 3.3 of this thesis implies that this fraction is rather inversely proportional to 0S . 

Employing this result in the otherwise correct kinetic calculation of Shaing leads to 

agreement with our equation (4.43) in the limit of 0u  . 

 

Interestingly, the fact that heat conductivity depends on local electric field properties 

allows us to make a conjecture about the shape of the global electric field profile in the 

pedestal. Of course, such an application of the preceding results requires the pedestal 

transport to be solely neoclassical; an unlikely event that cannot be verified with the 

currently available pedestal data. Moreover, it is known that in the core the dominant ion 

heat transport mechanism is rather turbulent. Despite these difficulties, the simplistic 

calculation to follow gives an idea of the limitations that heat flux conservation imposes 

on the shape of the pedestal electric field, thereby providing a benchmark for more 

sophisticated models. 

 

To obtain an equation for the electric field we require the heat flux given by (4.43) to be 

constant across the pedestal. We also observe that Braginskii frequency B  is 

proportional to plasma density. Then, neoclassical ion heat flux conservation requires  
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 2

0

.in G u T
const

S T 





, (4.58) 

where in , u  and 0S  are functions of the radial position with T  being a slow function of 

  as demanded by (2.55). Since ion pressure balance relates plasma density and electric 

potential through the Boltzmann relation (2.59), the preceding conservation law gives a 

differential equation for    .  

 

To proceed with solving (4.58) we need to specify the ion temperature gradient. In Sec. 

2.7 of this thesis we deduced that T  can only be a slow function of r  such that 

ln / 1 / polT r    . That is, the change in background ion temperature within the 

pedestal is negligible. Certainly, this does not necessarily mean that the change in 

/T    is negligible as well. However, for the estimate to follow it is reasonable to 

assume that temperature gradient has the same spatial scale as the temperature itself. 

Then, (4.58) simplifies further to give 

  2
0/ .in G u S const  (4.59) 

Employing (2.59) and switching to normalized quantities we obtain an explicit equation 

for the potential 

  2 / 1 .e G const       , (4.60) 
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where /Ze T   and derivatives are over dimensionless radial coordinate 

/ polz r  .  

 

Choosing   and   to be zero at the top of the pedestal we numerically solve (4.60) for 

different values of the constant on its right side. Next, we use pressure balance (2.59) to 

write 0/n n e , where 0n  
denotes the density at the top of the pedestal, to deduce 

 n z  from  z . The resulting family of density and electric field profiles is plotted in 

Fig 7. 

 

FIG 7. Pedestal density and eletric field as a function of radial position  
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From the figures we can see that according to our model a density drop by a factor of 

three can realistically be achieved for a pedestal width of about two poloidal ion 

gyroradii. Notice however, that the solutions plotted on Fig 7 cannot be straightforwardly 

matched to the core region as the electric field shear does not go to zero at the ends of the 

pedestal. That is, once we try to connect them to shallow core profiles, we acquire a 

nonphysical discontinuity in  . This discontinuity will disappear if we allow a small 

electric field at the top of the pedestal, a contribution from a mechanism other than 

neoclassical, or a slight change of the ion temperature gradient across the pedestal region. 

 

To summarize, the neoclassical ion heat conductivity derived in this chapter accounts for 

the presence of the strong radial electric field. As this electric field is inevitably present in 

tokamak regions such as a pedestal or internal transport barrier, it is this newly derived 

expression that has to be used there instead of the conventional formulas. With the help 

of a somewhat simplistic model we have also constructed the first application of this 

result to gain insight into the possible shapes of the electric field and density profiles in a 

tokamak pedestal.   

 

It is worth stressing an important consequence of entropy production not allowing the ion 

temperature to vary as rapidly as the poloidal ion gyroradius scale of the pedestal. This 

restriction results in the ion heat conduction equation in the banana regime determining 

the radial electric field and, thereby, the pedestal density profile since the ions are 
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electrostatically confined. Said in this way, a density pedestal becomes a direct 

consequence of the restrictions on the ion temperature and radial heat flow!    
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5 Summary 

This thesis encompasses several aspects of the physics of the pedestal, a tokamak region 

with a strong density gradient that is a defining feature of the High Confinement Mode of 

operation. Experiments find that the drastic density drop across the pedestal must be 

responsible for superior transport properties of H Mode plasmas as compared to those for 

L Mode, but the mechanism of this improvement is still poorly understood. In fact, it is 

this existence of short background scale, comparable to poloidal ion gyroradius, that 

greatly complicates the theoretical description of the H Mode regime. In this thesis we 

suggest an elegant resolution to this issue by developing a special version of the 

gyrokinetic formalism that allows both the larger background scale of the tokamak core 

and the shorter scale of the pedestal. This feature makes it a promising simulation tool 

capable of global H Mode modeling. Furthermore, this formalism allows us to determine 

analytical consequences about crucial pedestal parameters such as possible ion 

temperature, density and electric field profiles; and neoclassical and turbulent transport 

coefficients.  

 

The cornerstone of our version of gyrokinetics is employing the canonical angular 

momentum *  as the radial variable. This choice accounts for classical Finite Larmor 

Radius effects and neoclassical Finite Drift Orbit effects in a systematic manner that is 

illustrated by equation (2.23), where the second and the third terms on the right side are 
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of order  / L   and  /pol L   respectively. Moreover, by omitting the  / L   

term we can investigate the effect of the pedestal size being as small as pol  in a natural 

way. Applying this framework, we find that the leading order pedestal solution for ions in 

the banana regime must be a Maxwellian with temperature slowly varying over the pol  

scale of the plasma density. In other words, the background ion temperature profile 

cannot have as steep a pedestal region as the plasma density. This new insight is 

confirmed by recent direct measurements of helium ions temperature made at the DIII-D 

tokamak [60]. 

 

Our version of gyrokinetics culminates in the full nonlinear equation (2.74) for the first 

order correction to the distribution function which retains neoclassical collisional 

transport and the zonal flow drives. This equation has a general gyrokinetic feature of 

allowing small perpendicular wavelengths. It also includes the E B
 

 drift in leading 

order in the streaming operator, a feature that is relevant specifically to the pedestal. 

Therefore, equation (2.74) is capable of describing turbulent phenomena in the pedestal 

that cannot be conveniently treated with currently prevailing approaches. Of course, a 

complete turbulent study requires implementing our equation in a code. However, we can 

get an idea of how plasma turbulence in the pedestal is different from that in the core by 

considering the zonal flow, which is done by solely analytical means in the second 

chapter of the thesis. 
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By revisiting the pioneering calculation of Rosenbluth and Hinton [11,49] we find that in 

contrast to the core case there is a spatial phase shift between the zonal flow perturbations 

of the density and potential in the pedestal. This novelty is due to the strong electric field 

that is necessary to sustain the pedestal ion pressure balance. More importantly, we 

demonstrate that if this electric field goes beyond a certain critical value the zonal flow is 

effectively undamped since the residual starts approaching unity. Therefore, as zonal 

flow is the dominant mechanism limiting the turbulent transport and electric field is 

connected to density gradient by radial Boltzmann relation (2.59), we demonstrate for the 

first time that having a steep enough density profile improves confinement. That is, based 

on our analysis we suggest a first principles explanation for the advantage that H Mode 

operation has over L Mode as observed in experiments. Moreover, this logic also 

provides a new qualitative model of pedestal formation. Indeed, the preceding means that 

for a well developed zonal flow, once a steep enough density step is introduced over an L 

Mode type of density profile, turbulent transport is reduced, thereby causing this step to 

sharpen further. 

 

Having said that anomalous transport in the pedestal is lowered by the background 

electric field we are led to consider neoclassical transport mechanisms. Accordingly, in 

chapter 3 we present the first fully self-consistent calculation of the neoclassical ion heat 

flux and poloidal flow in a banana-regime pedestal. Not surprisingly, we find that these 

quantities are also sensitive to the local electric field. Remarkably, in the case of heat 

conductivity, we show that this sensitivity allows us to deduce possible electric field and 

density profiles in the pedestal. In other words, we find that for background scales as 
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short as pol , heat flux conservation sets a restriction on the shape of the electric field. 

Therefore, it may be that energy conservation and vanishing entropy production govern 

the global electric field solution in the pedestal. 

 

Hence, the thesis provides a multifaceted analytical description of the pedestal in 

tokamaks by focusing on the different physics issues underlying its formation and 

sustainment. It also presents a special version of gyrokinetics (a convenient tool that 

could be implemented in a code) that can successfully address the issue of finding an 

overall solution for the ion distribution function in H Mode in both the core and pedestal 

regions. 
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7 Appendices 

A First order corrections to gyrokinetic variables 

We show in this appendix how the gyrokinetic procedure we describe in section 2 is 

implemented to obtain our gyrokinetic variables correct up to first order in  . 

 

Spatial variables.  Following the steps outlined in section 2 we first apply the Vlasov 

operator to 0   to obtain 

 0d v
dt


  


. (A.1) 

Next, we extract gyrodependent part of  0d dt  by writing 

 0 0d d
v

dt dt
 

   


. (A.2) 

Then, we have to solve for 1  such that to lowest order 

    0 1 0 1 0
d d
dt dt

       . (A.3) 

Using (A.2) and (2.6), (A.3) gives the equation 
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 1 0 0d d
v

dt dt
  


 


     



. (A.4) 

To perform the integration over   we use ˆv d v n  
 

. Thus, setting 1 0   

gives 1
1 ˆv n     


, reproducing the relation (2.15) given in Sec 2.5.  

 

We get the first order correction to   by similar procedure to find 1
1 ˆv n     


 

and (2.16). 

 

As has already been mentioned, the *  variable does not require a first order correction. 

However, if we were to simply take   as the initial variable and then proceed 

analogously to   and  , we find  

 1

ˆv n
 


  




 . (A.5) 

If we define 

 1 *
ˆMc

Rv
Ze

       


, (A.6) 

then we see the gyrodependent part of 1  is equal to 1
 . This can be verified by using 

(2.22) for the magnetic field in tokamaks to rewrite 1  as 

||

1
1 ˆ ,v n Iv      


 as in (2.23).  
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Magnetic moment.  Here we will only show the derivation of the gyrodependent part of  

 denoted as . The gyroindependent term 1  will be considered in the appendix C.  

As usual, we first evaluate 

||

|| ||

22
0

0 0 0ˆ ˆ ˆ ˆln ln
2

vd d v
v n B v n v B n n v

dt dt B B


  
 

                 
 

 

    || ˆ ˆ ˆ:
2

v Ze
v v v n v n n v

B MB
        

    
. (A.7) 

We notice that 

  || ||
0

0 0ˆ ˆln 0
d

v n B n v B
dt


            , (A.8) 

giving 0d dt  as purely gyrodependent. Then, we write 

||
22

1 0 0 ˆ ˆln
2

vd d v
v B n n v

dt dt B B
  






          


  

 

    || ˆ ˆ ˆ:
2

v Ze
v v v n v n n v

B MB
        

    
. (A.9) 

Our ordering allows large gradients for the electric potential and therefore the last term in 

(A.9) must be analyzed carefully. To do so, notice that 

 * * *

* * *

1 1 1 1 1 1

, ,

, ,

  

            
       

                        
. (A.10) 

Using the relations for 1 , 1 , and 1  we obtain  

1 1
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* * *, ,

v v v v

  

       
   

                              

   
. (A.11) 

This form is conveniently integrated over   to find (2.29). 

 

Energy.  Once again, we begin by applying the Vlasov operator to the initial variable to 

find 

                    ||

2
0 ˆ

2
dE d v Ze Ze Ze

v v v n
dt dt M M M

  

              
 

. (A.12) 

Next, with the help of (A.11) we extract the gyrodependent part of the total time 

derivative to find 

 ||
0 0 ˆ

dE dE Ze Ze
v n

dt dt M M






      




 . (A.13) 

Our orderings allow us to neglect the first term on the right side of (A.13) and therefore 

the equation for 1E  can be written as 

 1 0 0E dE dE Ze
dt dt M


 

 
    

 


. (A.14) 

Integrating setting 1 0E   gives 

 1
Ze

E
M

  . (A.15) 
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A useful expression.  Before deriving the first order correction to the gyrophase we obtain 

a useful relation that will also be helpful during the calculation of the second order 

corrections. Suppose we have a physical quantity given in terms of original spatial 

variables  , ,Q Q    . Then, according to (2.24) we define  * * * *
, ,Q Q    .  As 

it has been already mentioned there is a first order difference between Q  and *
Q . For a 

slowly varying function we have upon Taylor expanding 

 1 1 1 1 1 1* * * *
, , ,

Q Q Q
Q Q Q        

  
  

       
  

. 

Note that this expansion is not normally valid for such quantities as electric potential and 

distribution function because they contain strong spatial gradients. Inserting the relations 

for 1 , 1 , and 1 we find 

||*

ˆ ˆ ˆ ˆˆ
f v n f v n f v n f Mc

Q Q Rv n
Ze

   
   

      
           

      

  
, 

or defining I  as in (2.22) 

 
||

*

ˆ Ivv n Q
Q Q Q


 

    
  


. (A.16) 

 

Gyrophase.  Evaluating  gives 

                  ||0
2 12 2

ˆ ˆ ˆ ˆ ˆ
vd Ze
v n v n v e e v n

dt v Mv



 

          
   

. (A.17) 

0d dt
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To extract the gyrodependent part of   we have to take into account that   

becomes slightly gyrodependent when expressed in terms of the starred variables. To do 

so we employ Eq. (A.16) to write 

 
||

*

ˆ Ivv n


 
      

  


. (A.18) 

In addition, we use the vector relation 

 
2

||
ˆ ˆ ˆ ˆ ˆ

2

v
v n v n v v n n n 


          

   

 

 
   1

ˆ ˆ ˆ:
2
v n v v v n n

 
     
   

, (A.19) 

where ˆ ˆn n  


 and the double-dot notation is defined by :ac T c T a  
   

. 

 

Finally, we rewrite the  ˆv n  


 term so that it can be integrated over . For this 

purpose we notice that  

 

* * *

1 1 1* * * 1 1 1

, , *

, ,

  

            
       

                        
. (A.20) 

Using the relations for 1 , 1 , and 1 , we find that  

 
2

||
* * *, ,

ˆ
B B Mc
v n I

v v Ze  

 


 

           


. (A.21) 

or 

0d dt
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2

||

ˆv n B Mc
I

v B v Ze
  

 

             


. (A.22) 

On the right side of the last formula the original variables can be replaced by the starred 

ones without an error to the order of interest. Thus, the only  dependence in 

 ˆv n  


 enters through the electric potential.  

 

Inserting (A.18), (A.19), and (A.22) into (A.17) and gyroaveraging we obtain 

0  d dt   as given by (2.33). Extracting the gyrodependent part of  0d dt  and 

using 1 0 0 0d dt d dt        yields  

  
 

 

                      

2 2

|| ||

1 2 12 2
ˆ ˆ ˆ ˆ ˆ ˆln :

4

v vv
n e e B v v v n v n n

v v
 


   

 

 
         || *

Ze B Mc
I

MB v Ze 

 
, (A23) 

where 

  0 0* * * * *

1
, , , , ,

2
E d



      


     (A.24) 

with 0  .  
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Expression for  .  To complete appendix A we give an expression that will be used 

in appendix C to prove that the magnetic moment correction given by (2.29) and (2.31) 

makes   a good adiabatic invariant. This expression is obtained by using the relations 

(A.11) and (A.22) to decompose the perpendicular component of electric field as 

 || *
2 ˆ

BI
v v n

B vv
  


   



                

 
. (A.25) 

 

B Second order corrections to gyrokinetic variables 

In this appendix we perform a second iteration to evaluate the gyrokinetic variables to 

second order in  . To carry out this calculation we apply the gyrokinetic procedure to the 

variables correct up the first order that were calculated in appendix A. 

 

Spatial variables.  We begin by evaluating 

   ||0 1

ˆ ˆ
ˆ ˆ:

d v nv n c
v n v v n

dt B
      


                

 

 
 

.(B.1) 

Here, the first term is one order larger than the others and therefore it needs to be 

expressed in terms of the new variables up to order . To do so for , we employ 

(A.16),   

                           ||*
*

ˆ
ˆ ˆ ˆ ˆ

v n McI
n n n v n

Ze
   


 

            
 


. (B.2) 

 n̂  
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In addition, ||v  requires some special care. Writing 

   || 0 02v E B r 


 (B.3) 

and using ||
*v  from (2.25) we expand to obtain 

 
     

|| ||
||

0 0* * * * * *
B B B E E

v v
v

      
  . (B.4) 

Using (2.29), (2.31), and (A.15) and applying (A.16) to B  we find 

  *

|| ||

|| ||

* *
*

ˆ
ˆ ˆ ˆ ˆ:

4
M

v v v vv n I B
v v B n n n n

v v
 


 

  
         

   

   
 

 
2

ˆ .̂
2

v
n n 


 (B.5) 

Having (B.2) and (B.5), we can now gyroaverage ||ˆv n    by writing 

                  * * *
|| || || || ||* * *
ˆ ˆ ˆ ˆ ˆv n v n v v n n n v               , (B.6) 

and after some algebra find 

          
 

  || ||*
|| || *

2ˆ
ˆ ˆ ˆ ˆ ˆ

2

Iv v n v
v n v n n n n


  


  

          
  

. (B.7) 

Next, we need to gyroaverage the rest of the terms in (B.1). These calculations give 

 
ˆ ˆ

: : 0
v nv I n

 
 

   
 

 
, (B.8) 
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       ||
2 2 2ˆ

ˆ ˆ ˆ ˆln
2 2

vn v v
v v n B n n n   

                       

  
, (B.9) 

and 

 ˆ ˆ
c c

n n
B B

            . (B.10) 

Collecting the terms we reproduce the relation (2.18) for  0 1 *d dt     . 

 

Now, we can extract the gyrodependent part of (B.1) and, using 

   2
0 1 0 1

0

d d
dt dt


   




    


, 

integrate it over   setting 2 0   to obtain 2  as  

   
                                       

|| ||2 2

ˆ ˆ ˆ1
ˆ ˆ: :

4 4 4

v nv n v v v v n
v v n v n v


 

     
   

              

 ||2

ˆ 1
ˆ ˆ ˆ:

8

n
v v v v n v nv n




 

          
   

    
 

 ||

2
ˆ ˆ

v c
v n n

B
 


      



   (B11) 

The calculation of 2  involves exactly the same procedure as used for 2  giving (2.19) as 

well as 

   
                                       

|| ||2 2

ˆ ˆ ˆ1
ˆ ˆ: :

4 4 4

v nv n v v v v n
v v n v n v
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||

||2 2

ˆ 1
ˆ ˆ ˆ ˆ ˆ:

8

vn c
v v v v n v nv n v n n

B


  

       ,(B.12) 

where ˆ R    and   2ˆ ˆˆ ˆR R R      . 

 

The total time derivative of *
  has been already given in the appendix A. Here we only 

have to extract the gyrodependent part of 
*

  in order to obtain  * 2
 , 

 * * c


 



 




  . (B.13) 

Integrating   0* * *2
         along with using  * 2

0   gives 

  * 2
*

c






 


, (B.14) 

where to second order    * * 2
ˆMc Ze Rv      


 . 

 

Energy.  To evaluate the Vlasov operator with the required precision it is convenient to 

write 

 0 1 ( )
r

d E E Ze Ze d Ze d Ze d
v

dt M M dt M dt t M dt

   


               

 
 

 

( )
r

Ze d

M dt t

        
. (B.15) 
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We can express the total time derivative in terms of the starred variables as 

                 * * *
* * *

* *
* **

d
E

dt t E
      

   
   

                   
    , (B.16) 

where the *
    term can be neglected since *

0   to the requisite order. Also, 

using 

2

*r r

k
t t t
  

  

                              
   

and inserting (B.16) into (B.15) we find 

               
 0

* * *
* * *

1
*

*

d E E Ze Ze
E

dt M t M E
    

  
  

                   


   . (B.17) 

Gyroaveraging and using  0 1 *
E E E    , we solve for 

*
E  to find (2.27). 

 

Next, we extract the gyrodependent part of  0 1d E E dt  to obtain the equation for 2E  

to be 

 2
* *

E Ze
E E

M t



 

   
 


  , (B.18) 

which upon integrating and setting 2 0E   yields 

 2
c

E
B t







. (B.19) 
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To finish this section we analyze the *
E   term 

||* * *

* *

ˆ ˆ ˆˆˆ , ,
v n Mc v n v n

Rv n
Ze

E E

       


                     


 

  

. (B.20) 

Note, that in conventional gyrokinetics the first order corrections to the spatial variables 

involve only v  and therefore do not depend on E  in leading order. Here, the correction 

to *  involves ||v  and therefore this term needs to be retained. From (B.20) we find 

 
||

||* * *

ˆˆ
vMc I

Rn
E Ze E v
  


 

  
  

    
. (B.21) 

This expression will be helpful for proving that the magnetic moment is a good invariant. 

Also, for numerical simulations the right side of the relation (B.21) may be more 

preferable to use than 
*
E  . Indeed, the *

E  dependence of   is weaker than the *
  

dependence of   and therefore numerical evaluation of  
*
E   potentially contains a 

greater error than that of *
   . 

 

C Magnetic moment 

This appendix verifies that the corrections to the magnetic moment we employ allow us 

to neglect f    term in the kinetic equation. To do so, we need to prove that 
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3
0*     . This has been already proven for the case without electric potential 

[39,47,57]. Here, we need only check that the first and second order terms of   explicitly 

involving the electric potential gyroaverage away. These terms are given by 

      1 ,v r v

Ze d Ze Ze
v

MB dt MB M             
  , (C.1) 

where we define 

    || ||0
1 ,

ˆ ˆ ˆ ˆ ˆ:
4

M

r v

v vv v
v v n v n v n n n

B B


  


         

 


 
   

. (C.2) 

It is convenient to consider the first two terms on the right side of (C.1) together 

     ||ˆ
r

Ze d Ze Ze d d Ze
v v n

MB dt MB MB dt t dt MB
 

   

              
   . 

Using the preceding allows us to rewrite    as 

     || 1 ,
ˆ ln v r v

r

Ze d Ze Ze
v n v B

MB dt t MB M
 

    
              


 .(C.3) 

In the following subsections we evaluate each term of  (C.3) up to order 2
0   in terms 

of the starred variables and then gyroaverage. 

 

Third term.  Here, we express ||ˆv n    in terms of starred variables before considering 

the first three terms together. We start by writing 
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* * *
* * * * * *

* * *

E
E

     
     

    
     

            
     

. (C.4) 

To evaluate the right side of (C.3) to the required order, relations (2.17), (2.15), (2.16), 

and (2.26) must be inserted for *
 , *

 , *
 , and *

E , respectively. To the same order, for 

*
  and *

  we only need insert the zero order expressions in terms of  . As a result, 

(C.4) becomes 

 
   

* * * *

* * *

ˆ ˆ
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n v n
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20 2 1
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. (C.5) 

The first three terms in the preceding equation are one order larger than the rest so the 

difference between  ,  ,   and  
*

 ,  
* ,  

*
  has to be taken into 

account. To do this we employ (2.23) and (A.16) so that Eq. (C.5) transforms into 

      
                                       

||

* * *
* * * * * *
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                                  ||
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                       || ||

2 2 1*
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B n v n v n e e
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. (C.6) 

To the required order we can write 
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, (C7) 

and with the help of relation (A.25) we get 
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2
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ˆ
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.(C.8) 

Finally, by inserting (C.8) into (C.6) we end up with 
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** *
* * * * * *
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    || ||

|| * *

2
0 2 1

ˆˆ ˆ ˆ ˆln ln .
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v Ze M E

    
  

   

    
              
     

 

 

In the preceding expression the first three terms are one order larger than the rest. 

 

Then, relating ||v  and *
||v  and n̂  and *̂n  using (A.16) and (B.5), noting that 

   * * *
ˆ ˆ 0n n       , and observing that the   ||*

ˆE v n      term is higher 

order, we evaluate ||ˆv n    to find 
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(C.9) 

Then, we use 
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and 
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. 

Gyroaveraging then gives 
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 (C.10) 

First three terms.  Next, we analyze d dt . We start by writing  
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* * * *

* * * *

d
E

dt t E
     

  
  

    
    

    
   , (C.11) 

where we insert (2.17) - (2.19) for 
*

 , *
 , and *

 , respectively, while for 
*
E  we need 

only the leading order result 

 ||*
ˆ

Ze
E v n

M
   . (C.12) 

To eliminate the terms quadratic in   we use (B.21) along with the observation that  

* * *
E E Ev v v

  
  

  
  

        
  

  
, 

where   ˆEv c B n  


. Then, (C.11) becomes  
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        (C.13) 

 Combining (C.13) with (C.10) we obtain 
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Remaining terms.  Finally, we analyze the last two terms in (C.3). As in the conventional 

gyrokinetics we find 
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Then, we notice that 
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, 

and therefore 
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Next, we combine the terms in the triangle brackets from (C.15) with the 

||

ˆ
ˆ

v n
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 term from (C.14). With the help of relation (A.25) and 
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, we obtain 
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Combining terms.  Finally, we combine the results from the subsections of this appendix 

to obtain  

  ||

2
2

* * *

ˆˆ ln
2M

MB Iv Mc
v n B Rv

Ze Ze
  

   
  

  
     

   
 

 . 

Noticing that  2 ˆ2 lnBv Iv n B        


 and   ||
2ˆv Mc Ze Rv      

 
 we 

find to the requisite order the desired result  

   0  . (C.17) 

 

D Jacobian in the strong potential gradient case 

To follow is the derivation of the leading order Jacobian of the transformation from the 

original set of variables to the one consisting of *
 , *

 , *
 ,  , *

 , and *
 . We start by 

writing 
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, v v v v v vJ r v

          
     

     
 

     
 . (D.1) 

Keeping only the leading order terms in all the blocks yields 
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. (D.2) 

In the absence of sharp potential gradient we would neglect the   term in the upper-

right block to obtain the usual expression for the leading order Jacobian, namely, 
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. (D.3) 

To calculate the determinant for polw   we multiply the first column of matrix (D.2) 

by   Ze M    , the second by   Ze M     and the third by 

  Ze M    , add them together and subtract the resulting linear combination from 

the fourth column of matrix (D.2) to obtain  
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. (4.4) 

The preceding determinant is easily evaluated to find 
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. (D.5) 

Notice, that if   1w e T        is of order 1 pol  the two terms on the right 

side of (D.5) are comparable.  
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E The integral on the right side of (4.46) 

When evaluating the parallel ion flow we used (4.48) to neglect one of the integrals on 

the right side of (4.48). Integrals of this type do not appear in the conventional case and 

require special treatment which is presented here. 

 

We start by switching to E  and   variables, 
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, (E.1) 

where (4.22) is used to obtain the integral in the expression on the right side of (E.1). 

Before integrating  by parts it is convenient to rewrite (E.1) as 
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, (E.3) 
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and, using that  0g  at the trapped-passing boundary as well as 

  01 / 1 0B B  for the freely passing particles ( 0  ), we  transform (E.2) 

into 

    
 3

04 2 1 / 1
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d vg dE Ed B B  


. (E.4) 

 

Next, we insert (4.24) into (E.4) to find 
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Replacing the   variable with 2  using (4.5), along with the observation that  
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equation (E.5) becomes  
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where (4.2) is used for  ||v u  and the 2  integral is only over the passing

 20 1   region. 

 

To leading order 
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, (E.8) 

where the elliptic function in the denominator changes from / 2  at 0   to 1 1  . 

Our goal is to demonstrate that integral (E.1) is small in 0/ S . For this purpose we 

can replace  E   with  0 / 2E   since this does not change the order of the 

estimate for (E.1). Thus, the integral over 2  in (E.7) is approximately evaluated to give 

   

21 2 0
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Sd
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 . (E.9) 

Hence, noticing that in (E.7) the integral (E.9) is preceded by a factor of 0/ S  we obtain 

the desired result (4.48) to leading order in the expansion parameter, 0/ 1S  .  
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