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Abstract
What happens within the university-based research enterprise when a federal funding agency
abruptly changes research grant funding levels, up or down? We use simple difference equation
models to show that an apparently modest increase or decrease in funding levels can have
dramatic effects on researchers, graduate students, postdocs, and the overall research enterprise.
The amplified effect is due to grants lasting for an extended period, thereby requiring the majority
of funds available in one year to pay for grants awarded in previous years. We demonstrate the
effect in various ways, using National Institutes of Health data for two situations: the historical
doubling of research funding from 1998 to 2003 and the possible effects of “sequestration” in
January 2013. We posit human responses to such sharp movements in funding levels and offer
suggestions for amelioration.
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1. Introduction
The research enterprise comprises universities, research laboratories, and similar
organizations that seek to foster economic growth and well-being for the country by
advancing scientific knowledge. In the field of biomedicine, the research enterprise’s
performance is critical in discovering new treatment methods and drugs that enhance health
and reduce the burden of illness and disabilities in the country. Through recruiting highly
knowledgeable individuals in the field of biomedicine, and using well-equipped facilities
and laboratories, the enterprise can offer valuable services to other organizations including
the pharmaceutical industry. Because of that crucial role, the well-being of the research
enterprise has always been a priority with policy makers and the general public.
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As most research centers operate on external funds, including taxpayer dollars, we
intuitively expect government funding policies to have substantial impacts on the
performance of the enterprise. Looking back at the historical trend of funding research
institutions, many instances of abrupt changes in funding policies are observable. For
example, over the five-year period 1998–2003, the budget of the National Institutes of
Health (NIH) doubled from $13.6 billion (1998) to $27.1 billion (2003) (Pear 1998, Smith
2006). Another important example is the current discussion among policy makers about
“sequestration,” which would abruptly decrease NIH, National Science Foundation (NSF),
and Centers for Disease Control (CDC) funding by about 7.8% starting in January of 2013.
From an organizational point of view, the question is what happens within the research
enterprise when a federal funding agency abruptly changes research grant funding levels, up
or down.

The literature on the performance of research funding institutions such as the NIH is mostly
focused on the resource allocation problem across diseases (e.g., Bisias et al. 2012) or the
effects of funding on developing a new research workforce and on grant success rates
(Teitelbaum 2008, Gomez et al. 2012). Despite the importance of these questions, what
remains unanswered is the basic “temporal physics” of grant-making abilities as overall
funding levels move up and down. Interestingly, most studies including Bisias et al. (2012)
ignore this temporal physics. In this paper, we demonstrate how ups and downs in funding
levels can have dramatic and amplified effects on new funding available for grant
applicants.

We first develop a simple model of government funding when grants are provided for a
four-year period, and then we offer a generalized theory of amplified effects of change in
funding (§2). Then we apply the model to the case of NIH during the doubling period in
1998–2003 (§3). We then take a normative approach and analyze alternative policies that
could have resulted in better outcomes (§4). Finally, we discuss the results and their
implications to the sequestration period, and we highlight other implications of the study
(§5).

2. Modeling
We utilize a bottom-up structural modeling approach to develop a theory of the effects of
changes in overall funding on yearly new grant awards. Although different modeling
approaches could be taken, we deliberately try to make the model as simple as possible in
order to develop first-order intuition and insights.

2.1. The Awarding of Four-Year Research Grants
Consider a federal agency that supports fundamental biomedical research. It awards highly
competitive research grants each year, with each grant flat-funded for four continuous years;
i.e., 25% of the total grant amount is obligated and available to spend during each of the four
years of the grant. The agency’s funds for each year are drawn from the congressionally
approved budget for the agency for the given fiscal year. For simplicity, let us drop the term
“fiscal year” and just use “year” as in a calendar year. Suppose that $10 billion are available
for research grants in a given year—say, year Y. Those funds must first be used to provide
continuing support for grants awarded in the three previous years, years Y – 1, Y – 2, and Y –
3. Then, after those flat-funded earlier obligations are fulfilled, any funds left over from the
$10 billion are available for new grants in year Y. As an example, if the agency’s total yearly
funding had been traditionally flat at $10 billion, each year, three quarters of the money is
spent fulfilling obligations from the past three years, and one quarter ($2.5 billion) would be
available to fund new grants in year Y. Such a situation represents “steady-state” operation.
But annual funding changes up or down can dramatically alter steady state. This is a very
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simplistic first-order depiction of how the NIH works for its major research funding
programs—four-year R01 grants. We use this base model to explore the consequences of
changes in total year-to-year NIH funding.

We can express some basic quantities mathematically. Suppose we define

,

The annual research budgets B (Y) are given as input data, where we have started the process
at some distant year in the past, 1990 in this case. Now let us consider some year Y = y later
than 1993, to avoid start-up modeling effects. In year y, the total research budget is B (y).
The amount available for funding of new research grants in year y, F (y), is equal to B (y)
minus the sum of obligations stemming from the previous three years’ commitments. In
equation form, we have

(1)

We include the inequality on the right in Equation (1) to require that year y funding is at
least sufficient to cover the previous three years’ obligations. Anything left over is then
available for new funding in year y. Notice that in steady state, when funding levels and new
commitments are constants, i.e., B (y) = C and F (y) = F0, Equation (1) becomes

(2)

Equation (2) simply confirms our intuition that in steady state, the funds available for new
grants each year are equal to one quarter of the total research funds for that year. Three
quarters are used to fund previously awarded grants.

To gain some additional insight into Equation (1), suppose that years are traditionally flat-
funded at $10 billion but that year 2000 has a one-time increase to $12.5 billion, a 25%
increase in total yearly funding. After that, funding drops back to $10 billion/year. What
happens then? Let us work through the equations:

and so on.

We see that a step increase in total grant funding of 25% in one year has two interesting
effects on new grant funding. First, it results in a doubling of new grant funding in that year
(2000) and a zeroing out of new funding the following year (2001). Second, the funding of
new grants returns to normal levels for the next two years (2002 and 2003), but the entire
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sequence repeats four years after the one-time 25% increase: in 2004, the system devotes $5
billion to new grants followed in year 2005 with zero new grant funding. In theory, this
four-year oscillatory cycle continues ad infinitum. Of course, we are dealing with a
simplistic first-order model, and real life is more complicated. But the point remains: An
apparently modest one-time step increase in total funding can have dramatic effects on
current-year new funding and on new funding in all subsequent years.

The reverse is also true. An apparently modest decrease in total funding can have dramatic
effects in new funding for the current year and in subsequent years. For instance, if the 25%
increase in new funding for 2000 had instead been a 25% decrease to $7.5 billion, there
would be no new funding available in 2000. And the consequences of this occurrence would
propagate though the system in subsequent years.

All of the complications that we have seen embodied in Equation (1) stem from the fact that
all research grants are given for four years, with equal funding for each of the four years.
The weight of the previous three years of funding commitments looms large in new funding
available for the year. This new funding is the mathematical “remainder,” after past
obligations are paid for. Any changes in total funding for the current year affect this
remainder only, not the three years’ prior commitments. Thus there is a huge “round-off
magnification effect” in the current year resulting from any change in total research funding,
up or down. We theorize the effect as follows.

The Rule of Four—Starting from steady state, an X percent change in this year’s funding
results in a 4X% change in new funding for this year.1

If we are not starting from steady state, the Rule of Four does not apply, but the funding
obligations from the previous three years will usually dramatically affect the research
funding available for the current year.

2.2. The Awarding of Different Period Research Grants
The Rule of Four, of course, generalizes. For instance, the CDC often awards five-year
research grants. For that portion of the national research enterprise that depends on five-year
grants, there is the Rule of Five: Starting from steady state, an X percent change in this
year’s funding results in a 5X% change in new funding for this year.2 In general, there is a
“Rule of N,” associated with N-year grants, and as the CDC example illustrates, the
amplified impact on current-year new funding becomes even more severe as the parameter N
increases in value.

We can extend the argument to the general case with mixed grant durations. Suppose that
grants are awarded for any integer number of years i, i = 1, 2, …, M. Suppose that in any
year, assuming steady-state operation, there is a total research budget, B. Also, we assume
that the yearly flow of dollars awarded to new grants is A, in dollars per year, A < B. We
assume that grants can have different durations. We do this by assuming that a fraction pi of
the total new-award amount A is directed to awards of i years’ duration, where we assume

. Then in steady state, in any given year, we have obligations OB from previous
grants totaling

(1)For decreases in funding, the Rule of Four applies only for decreases up to 25%. Anything greater would imply negative funding
for the current year, an impossibility.
(2)For decreases in funding, the Rule of Five applies only for decreases up to 20%. Anything greater would imply negative funding
for the current year.
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(3)

We can see this by picking any given value of i, say, i = 4. For i = 4, in each of the previous
(4 − 1) = 3 years, there has been a funding commitment of Ap4 dollars to grants of four
years’ duration. These obligations carry over into the current year. Thus, current-year
obligations for previous four-year grants is A (3p4). This logic applies to each of the terms in
Equation (3).

Now for the current year, we observe that the apportioning of research funds B must go first
toward commitments from previous years and then toward new awards,

(4)

where

In other words, τ is the weighted average of grant durations. To solve for A, the dollar flow
amount that can be awarded to new grants in any given year, again assuming steady state,
we obtain

(5)

A simple check verifies the Rule of Four (when p4 = 1.0) and the Rule of Five (when p5 =
1.0). But the derivation generalizes our results to include mixtures of grant durations. For
instance, The Rule of Four is seen to apply to any situation in which the average grant
length is four years; there is no need for all of them to be four years. Also, there is no need
for the average grant duration to be an integer quantity.

We see that the parameter τ, the mean duration of a new grant, is the single most important
factor influencing possibly unstable fluctuations in current year funding once the system is
deliberately moved out of steady state. We could say that that the ultimate generalization is

The Rule of τ. Starting from steady state, an X percent change in this year’s
funding results in a τ X% change in new funding for this year.3

3. The Case Study
3.1. Application to the Case of NIH

We now apply our simple difference equation model to a key historical case of the NIH. We
consider the period 1998–2003, a five-year time frame during which the NIH gradually
doubled its annual funding of research grants. To make the numbers simple to remember,
say that the 1998 funding level was $10 billion4 and the 2003 level was doubled to $20
billion. We assume that all grants are flat-funded for four years.5

(3)For decreases in funding, the Rule of τ only applies for decreases up to (1/τ)100%. Anything greater would imply negative
funding for the current year, an impossibility.
(4)The total NIH budget in 1998 was $13.675 billion, of which $7.559 billion was research grants, and a total of about $10 billion was
for research in a variety of award mechanisms.
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Table 1 contains a simple spreadsheet showing such a doubling of funding over five years,
the doubling occurring with three alternative increment scenarios:

1. Constant, linear increments (a constant 20% of base added to total budget per year).

2. Fixed percentage increments (a constant 14.9% increase in total budget per year).

3. Manually adjusted increments (the authors’ manually adjusted increases with an
attempt to minimize disruption).

The years range from 1998 to 2007. As shown in Table 1, for each scenario we have a row
for total budget (B). These numbers represent the successive values of B (y) in Equation (1).
In all scenarios, total budget (B) starts with a base annual funding of $10 billion and ends at
$20 billion. The three scenarios differ only in the way the transitions are made from $10 to
$20 billion over the five-year period. These figures can, of course, be adjusted to the true
historical NIH funding amounts. In these scenarios, funding begins increasing in 1999 and
reaches its new steady state in 2003. Actual NIH funding increases over this period
resembled a hybrid combination of scenarios 1 and 2.

In each scenario, the spreadsheet uses B as input and calculates three outputs. The first
output is labeled commitments (C). This represents the total funding during that year that is
already obligated as a result of funding commitments made during the previous three years.
This quantity is represented by the term C (y) in Equation (1) and is equal to the sum of the
past three years’ new funding (F (y − 1) + F (y − 2) + F (y − 3)).

The second output is the available new funding (F), i.e., the “remainder” after the previous
three years of funding obligations are satisfied (F (y) = B (y) − C (y)). Recall that when a
new year starts, the funding available for new grants in that year is the total available for that
year, minus the funding devoted to old grants from each of the past three years.

Finally, a key performance output is labeled change in new funding (ΔF), defined as the
fractional yearover-year increase or decrease in the funding of new grants. We saw in our
examples in §1 that modest changes in total funding could increase or decrease current-year
new funding by 100%.

Although the details of the three scenarios in the accompanying spreadsheets may be
interesting, we draw your attention to two quantities: the underlined values of %ΔF in 1999
(just after the total budget increases start) and in 2004 (just after total budget reaches $20
billion). Under scenario 1’s constant increments, the increase in new funding in 1999 is a
whopping 80%. Under scenario 2’s fixed percentage increments, the increase in new
funding in 1999 is 59%. Only in the manually adjusted scenario 3 is the increase a more
modest 40%, still quite large. Now examine through 2004, the first year of flat funding
under the new constant support level of $20 billion per year. The decreases in new funding
for 2004 stand at 31%, 36%, and 25%, respectively, for the three successive scenarios.

Imagine the response of the biomedical research communities to these research funding-
level percentage changes, first up and then down. One can reasonably imagine that a 59%-
to-80% increase in new funding in 1999 caused a very positive set of reactions in the
university-based research communities. University department heads could be seen going to
deans and provosts, asking for more faculty slots, higher caps on admissions, more space,
and perhaps even new buildings. To represent these first reactions, we use the term early

(5)To retain focus on the primary four-year funding mechanism, we are ignoring components of NIH research funding that are not
four-year grants.
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euphoria. We define euphoria as the biggest percent increase in year-over-year funding over
the five-year doubling period (most likely to happen in 1999).

Now consider the year 2004, the first year of flat funding at the higher total funding level.
Under scenarios 1 and 2—the scenarios that most closely resemble NIH’s actual history—
new funding for 2004 was 31%–36% lower than that of 2003. Imagine the response of the
biomedical university-based research community: they have probably overcommitted to
support for doctoral research assistants, new faculty slots, research space, and related
investments. They might have imagined that “the sky had fallen.” We label these types of
reactions as severe hangovers. We define a hangover as the largest percent decrease in year-
over-year funding over the five-year doubling period plus the four years following (most
likely to happen in 2004, the first year of flat funding at the new doubled level).

Under scenario 1, with a linear 20% add-on each year, euphoria is 80% followed by a
hangover of 31%. Under scenario 2, with a 14.9% research funding increase each year,
euphoria is 59% followed by a more severe hangover of 36%. The authors’ manual creation
of scenario 3 reduced euphoria to 40% but kept it high for four years, followed by a 25%
hangover.

Early euphoria most likely also generated many additional grant proposal submissions by
established, respected researchers. In 1999, there were no immediately available additional
new researchers who would be competitive in the grant submission process. Thus it is likely
that the established researchers garnered the lion’s share of the newly available funds, above
the usual annual amount. Those funds would “belong” to that established researcher for four
years, with reasonable likelihood of continuation after that time. This process of granting
more awards to established researchers likely continued throughout the five-year growth
phase, leaving little new funds available for the now larger army of newly minted Ph.D.’s by
the early 2000s. Such a lack of funds for new Ph.D.’s would lead to larger pools of postdocs
as well as increased age at first grant award for those for tunate enough to become new
assistant professors. We explore some of these issues in the next section.

This analysis is not meant to argue against research funding increases; within given fixed
grant award structures, it is meant only to demonstrate the underlying physics of the system.
Here, “physics” means both the hard mathematical consequences and the softer emotional
human responses. We will later discuss how a formal optimization of budget increments
and/or grant durations can help to reduce early euphoria and severe hangover.

3.2. Details of the NIH Doubling of Research Funding
We now discuss in some detail what actually happened with NIH funding during 1998–
2003. Please keep in mind that the opening two sections of the paper dealt with a simplistic
linear difference equation model to depict the first-order physics of the system. The real
system is more complex.6

In 1997, the U.S. Senate voted unanimously in support of doubling the NIH’s budget in five
years to foster research discoveries in the field and research workforce development (Pear
1998). As result, NIH appropriations were increased from $13.6 billion in 1998 to $27.1
billion in 2003 (Smith 2006). The budget doubling flooded academia in a relatively short
period of time, having a significant effect on expansion of biomedical research.
Approximately half of the money was spent on research grants. Whereas in 1998 NIH
funding for research project grants was $7.7 billion, in the next five years it increased to
$8.6, $10, $11.3, $12.6, and $13.8 billion, showing annual increases of 13%, 15%, 15%,

(6)We use data from the Federation of American Societies for Experimental Biology (FASEB) (Garrison and Ngo 2011, 2012).
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12%, and 10%, respectively. The funding supported new grants and fulfilled grant
commitments from past years, as the usual duration of an NIH grant is four years. Additional
details are provided in Gomez (2012) and Gomez et al. (2012).

The increase in funding influenced many institutions that wanted to expand their research
capacities and activities. Several even started spending their own money—as an investment
—to build more research laboratories (Brainard 2004) and admitted more graduate students
in anticipation of winning NIH grants to support them (Monastersky 2007). The rise in
funding also increased the expectations of university researchers and tenure track professors
to bring funding to their schools. However, the five-step smooth increase in total research
funding was not reflected in the same way in new grant funding, which instead showed
periodic unexpected oscillations. As Figure 1 shows, in 1999, new grant funding increased
by 31%, creating an exciting early euphoria and sending a signal to researchers on the
availability of competing grants. In the next few years, new research funding increased
continuously, but at a declining pace: a 16% increase in 2000, a 4% increase in 2001, and a
5% increase in 2002. In 2003 (exactly four years after the first huge increase in new research
funding), new grant funding again increased by 10%, sending a mixed signal about the
possibilities of winning a grant proposal. But in the next two years, the change in new
research funding dropped to 2% and −5%, causing hangover. Interestingly, for several years
after the implementation of the doubling policy, new research funding still showed an
oscillatory behavior with a four-year time period.

These significant fluctuations resulted in a wide array of consequences in the field. First, the
number of competing grants was affected. As shown in Figure 2(a), the number of
competing R01 grants increased in the doubling period (+15%), which then was followed by
a marked drop at the end of the doubling period (−20% in three years). The effect on the
number of grants could have been much worse if NIH had not reacted by changing the size
of grants. As depicted in Figure 2(b), during the early euphoria period, grant size was
increased, although it was decreased after a few years.

The rise and fall in competing grants were reflected in the grant application success rate (see
Figure 2(c)). After an early euphoria sends a positive signal encouraging researchers to
submit grant applications, the latter hangover negatively affects the success rate of already
increased grant applications. The combination of more applications and less money worsens
the magnitude of the effect at the end of the doubling period.

Finally, effects were also reflected in the average age of first-time R01 recipients. More and
larger grants encouraged more established researchers to submit grant proposals, and in the
competitive environment, established scholars benefited from their experience and won
more grants, leaving fewer opportunities for young scholars. The result was a two-year jump
in the average age of first-time R01 recipients (see Figure 2(d)). Interestingly, after the
doubling period, the effect remained in the system.

Other effects of the doubling included increasing numbers of graduate students, researchers,
and postdocs who later become grant applicants, further lowering the grant application
success rate. In 2007, Science magazine concluded that conditions worsened after the NIH’s
budget doubled, as the infusion of money was far too rapid and not tied to structural reforms
in the field (Benderly 2007).

The Rule of Four is shown statistically in Figure 3, depicting the percentage of NIH grant
funding that is committed to prior years’ awards. In steady state, the Rule of Four would
show this chart at a constant 75% level. Yet we see that in the early years of the five-year
doubling period, the percentage of R01 funding obligated to previous awards drops
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significantly below 75%. Then, as hangover sets in after 2003, the percent obligated to
earlier awards rises above 75%.

4. Alternative Policies: Changing Funding Step Sizes and Grant Durations
Given that the federal government plans to double NIH funding in five years, the question is
this: “Are there any corrective steps that can be taken to reduce early euphoria and severe
hangover?” The answer is, yes. There are two types of policy decisions that can reduce but
not eliminate these detrimental outcomes: (1) “optimizing” the step increments of funding in
each of the five years and (2) allowing the durations of some of the grants to be different
from the usual fixed four-year period. In this section, through an optimization exercise, we
offer policy insights to help reduce the effects of early euphoria and severe hangover in the
system. The idea is to seek smooth rather than abrupt transitions in new grant funding.

In any optimization, we need to agree on an objective to optimize—that is, a function to
maximize or minimize. Here, we wish to reduce (minimize) both euphoria and hangover. So
we create reasonable equations for each and then sum the two, giving a weight to each. We
define the cost function as a weighted sum of the largest rise (euphoria) and largest fall
(hangover) in a 10-year time period, from 1999 until 2008:

(6)

where w is the relative cost weight of euphoria to hangover. We will value equally euphoria
and hangover and set w = 0.5. The optimization goal is to minimize y. As a comparison
baseline, y in the base case with linear budget increments is equal to 0.55. Our goal is to find
“optimum” solutions that are meaningfully (level of precision is 0.01) better than the base
case.7

Equations (7a) and (7b) define euphoria and hangover:

(7a)

(7b)

There are different decision variables that the government and NIH can partially control. As
discussed above, we focus on two sets of decision variables: the NIH annual budget
increments and grant award periods.

4.1. Optimal Budget Increments
Assuming that the NIH budget in 1998 is equal to $10 billion and in 2003 is equal to $20
billion, we can find the optimal total budgets for each year from 1999 until 2002: (B1999,
B2000, B2001, B2002). Here, “optimal” means minimizing the weighted sum of euphoria and
hangover, as depicted in Equations (6) and (7). We use Microsoft Excel 2010 (Solver Add-
in) to perform the optimization. Table 2 summarizes the optimal values and shows the
outcome results in comparison to the base run with linear growth (fixed increments) in the
NIH budget.

(7)In some cases there are several locally optimum solutions that result in very close payoff values with differences of less than 0.01.
Although mathematically they might be different, in the real world, from the view of a policy maker who wants to soften wild shocks
in grants, the difference between different local optimum solutions with close payoff values is meaningless.
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The optimization suggests an S-shape growth in budget with a small increase in the first year
(1999) and larger increments in subsequent years until a final smaller increment in 2003.
This S-shaped pattern is similar to the one that the authors discovered by hand, as shown as
scenario 3 in Table 1. Compared with the base run with linear growth, early euphoria
decreases to +42% (in the base run, +80%) and hangover disappears (in base run, −31%).
Figure 4 depicts the trend of new grant funding in comparison to the base run.

4.2. Optimal Award Periods
Currently, most NIH R01 grants last for four years. But varying the lengths of grants during
times of transition can reduce euphoria and hangover. We can find the “optimal mixture” of
funding durations that minimizes our cost function. To keep it simple, we limit the
optimization to three types of grants: three-year, four-year, and five-year grants. In each year
(from year X until 2004), we look for the percentage of the new grant funding that should be
awarded as three-year, four-year, and five-year grants. Here, the “base run” is one where all
awarded grants are four years in duration and the funding increments during 1998–2003 are
kept constant at $2 billion/year.

Let us define F as a 3 × n matrix with arrays of 0% ≤ fi, j ≤ 100%, with fi, j representing the
percentage of j-year funding that will be given in the form of i-year duration grants for i = 3
years, 4 years, and 5 years. The grant-awarding years j that we consider range from j = X to j
= 2004. The matrix can be presented as follows:

where for any j,

(8)

X is the year from which the NIH starts changing the mix of grant periods to improved, or
what we call optimal values. For example, if we set X = 2003, the optimization will
represent a late reaction by the NIH in the years 2003 and 2004 only, to decrease the
impending hangover. For earlier years, say, X = 1999, the optimization will represent a
proactive approach, where the NIH wants to take the best action at the same time that they
observe early euphoria. Starting even earlier, say, X = 1995, represents a much more
proactive policy that initiates change several years before implementing the doubling policy.

We conducted several optimizations for different values of starting year X from 1995 to
2000. Figure 5 compares the cost function values. Recall that the cost is the sum of euphoria
and hangover divided by 2. The figure shows that all optimizations improve the result when
compared to the base run. As we take a more proactive approach (smaller Xs), the results get
better. We think X = 1999 represents a more realistic situation, reacting immediately after
the approved rise in research funding. As shown, the marginal effect of smaller Xs (X =
1998X = 1997, and 1996) is very small. However, for X = 1995, which represents very
“prescient” policy making, we see a huge impact from optimization. The reason is connected
to the Rule of Four. When funding is awarded for four years, mitigating the early euphoria is
not possible without changing grant periods at least four years prior to doubling. The
limitation with the prescient optimum is that decision makers are not likely to foresee the
situation four years into the future, before the first increment in the budget. Thus the
prescient policy is interesting but most likely infeasible.
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Figure 6 shows the trend of new grant funding for two of the optimizations (X = 1999, the
realistic scenario, and X = 1995, the prescient scenario) in comparison to the base run.
Optimized runs make the transitions smoother as new research funding approaches its final
equilibrium. The prescient optimization run is the only run that avoids early euphoria.

The detailed results of the optimizations are presented in Table 3 and are compared with the
base run, where grant duration was fixed at four years and funding increments were kept
constant at $2 billion/year. In the realistic optimum scenario, grant durations are changed
after 1999. As the table shows, in 1999, 13% of funding is awarded in the form of three-year
grants. Immediately after 1999, the balance is shifted toward five-year grants. After 2000,
funding is predominantly allocated to four-year grants.

We now consider the prescient scenario, where a similar pattern of decisions emerges. In
1995, 23% of funding is awarded in the form of three-year grants. In the following year, the
balance is shifted to longerduration grants, where 8% of funding goes to five-year awards.
The reason for giving three-year funding instead of four-year funding is to decrease ongoing
grant commitments three years later. If more three-year grants are awarded now, they will
end two years from now, and there will be less prior commitment the year after (three years
from now) and thus more funding for new grants. Therefore, more three-year grants awarded
in 1995 and 1999 result in more new research funding in 1998 and 2002, exactly one year
before the years in which euphoria and hangover, respectively, are most likely to occur.

4.3. Increments and Award Period Optimization
We now optimize for both budget increments and mix of grant periods from 1999 (the
realistic case). The optimization is conducted iteratively. First, we optimize the increments,
and then with the optimum increments held fixed, we optimize award periods. We then fix
the award periods and reoptimize the increments, etc. We continue this iterative process
until no significant change is observed in the results, which are shown in Table 4. Overall,
the results are improved. As shown in the table, the optimized solution totally removes
hangover and decreases euphoria to 36%.

5. Discussion
We have constructed our presentation around a simple mathematical model of government
research funding. Our analysis shows that an apparently modest net increase or decrease in
annual government research spending can have significant magnifying effects on new grant
funding, and these effects can reverberate for a long time. We framed this effect as the Rule
of Four, generalized it to the Rule of τ, and discussed possible early euphoria and severe
hangover as results of change in funding.

The structural reason for the amplified fluctuations in new grant funding is linked to the
relation between grant commitments and new grant funding, as depicted in Figure 7.
Research grants are planned for a period of time (at the NIH, usually four years). Every year,
the government must fulfill commitments made in past years. The remaining research
funding is allocated as “new research funding” to provide opportunities for grant applicants.
And the story continues through the years: new grants, in turn, lead to future commitments,
affecting funding availability for new grants in the upcoming three years. The system has
memory, a type of momentum or inertia, that yields a system having rather unstable year-to-
year new funding prospects.

The theory has several policy implications. We discuss these in turn below.
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5.1. Applicability to Sequestration
Whereas the case history discussed in this paper has focused on the NIH during a research
doubling growth phase (1998–2003), the issues and concerns are equally relevant today. An
immediate example is “sequestration,” a term being applied to across-the-board research
funding cuts, starting in January of 2013;8 these cuts will apply to the NIH, NSF, CDC, and
other federal agencies supporting research. The across-the-board cut is estimated to be 7.8%,
representing about $2.4 billion for the NIH.9 As our analysis has shown, this entire
reduction for the NIH would come from new grants, not previously funded and continuously
supported grants. Suppose we consider of presequestration budget of a $100. Assuming that
four-year grants are being awarded, in steady state, $75 is reserved for the continuous
support of previously funded grants; that only leaves $25 for new grants. A 7.8% budget
reduction implies that only $92.20 is available for all research, new and previously funded.
And the amount available for new research, under sequestration, is $92.20 – $75.00 =
$17.20, representing a 31.2% reduction in new research. Based on the Rule of Four, this is
four times the 7.8% overall reduction. Again, we magnify by a factor of four because all of
the reduction must be absorbed by new grants, as the funds for previously funded grants are
already obligated. The estimated 31.2% reduction in new NIH research for 2013
approximates the severe hangover we found for the year 2004. Invoking the Rule of Four,
one could argue that a true discretionary reduction of NIH research outlays for 2013 would
correspond to a net reduction of 7.8/4 = 1.925%. Such a reduction would require a 7.8%
reduction in new research commitments.

We have not attempted to apply any of our model-based optimization tools to sequestration.
If sequestration becomes a reality, it seems that the only ameliorative policy change for the
NIH would be to create a mixture of grant durations.10

The issues raised here also apply to the other federal research granting agencies, including
the NSF and as we mentioned previously, the CDC, with its five-year grants. But with more
varied grant durations, the agencies require a separate detailed analysis, where undoubtedly,
the Rule of τ would play a significant role.

5.2. Applicability to Other Cases
Our intuition is that the “euphorias” and “hangovers” occur more frequently than one might
think. Recent U.S. “stimulus money,” made possible by the American Recovery and
Reinvestment Act of 2009,11 directed billons of dollars to medical schools and biomedical
university research labs. The NIH received approximately $9 billion in stimulus funds
during fiscal years 2009 and 2010. In full, 2,059 new competing grants were awarded,
totaling $2.71 billion—over two-thirds of that in fiscal year 2009.12 Another 4,497 awards
totaling $1.73 billion were given to existing competing proposals that had not been funded
under previous constraints; over 80% of these funds were from fiscal year 2009. Assuming
flat funding for four years, the majority of these funds are now spent, end-of-grant planning
is underway, and resource commitments made two or three years ago are being painfully
revisited. It is our belief that even without sequestration, severe hangover is being
experienced in many research universities and medical schools today.

Furthermore, it is commonly argued that the NIH should change it resource allocation from
one center to another. For example, some studies that argue that NIH funding is not

(8)Budget Control Act of 2011, Public Law 25, 112th Cong., 1st sess. (August 2).
(9)See Research!America (2012).
(10)The authors are ready to examine such grant duration mixtures, if requested to do so.
(11)American Recovery and Reinvestment Act of 2009, Public Law 5, 111 Cong., 1st sess. (February 17).
(12)See http://recovery.nih.gov/ (accessed July 8, 2012).
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sufficiently based on disease burden or the potential effects on years of life lost (Rangel et
al. 2002, Johnston and Hauser 2006, Bisias et al. 2012). An implication of our study to the
resource allocation arguments is that the process of change might be more complex than
what is usually assumed. If the NIH decides to reallocate its resources (e.g., to reallocate
center A’s funding to center B), we will likely see early euphoria, severe hangover, and the
Rule of Four within those centers. The need to manage the transition in resource allocation
is an inherent lesson of our theory.

5.3. Limitations
We recognize that our models are simplistic and stylized. Actual NIH operations are more
complex. But, as statistician George Box once said, “Essentially, all models are wrong, but
some are useful” (Box and Draper 1987, p. 424). In a related philosophy of modeling, Albert
Einstein said,13 “Everything should be made as simple as possible, but not simpler.” We
hope that our analyses showing the effects of the Rule of Four have provided useful insights.
A more comprehensive systems analysis of the effects of the doubling period 1998–2003 is
presented in Gomez (2012) and Gomez et al. (2012).

5.4. Conclusion
Changes in federal research funding can have amplified effects on new funding available for
researchers. When grants are awarded for a four-year time period (and in a generic case, for
an average of a τ-year time period), a X% change in total funding results in a 4X% change in
new funding (in a generic case, τX%). We offered the Rule of Four and the Rule of τ to
describe this phenomenon.

Furthermore, a positive step change in total funding results in a situation that might be
observed as an early euphoria for grant applicants but is later accompanied by a severe
hangover, a situation where grant funding declines, with dramatic effects on researchers.

The amplified effect is mainly due to grants lasting for an extended period, thereby requiring
the majority of funds available in one year to pay for grants awarded in previous years.
Policies to dampen the amplified effects when total funding is changing include careful
changes in grant periods during total budget changes, as well as close-to-optimal increments
in the total budget, as discussed throughout this paper.
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Figure 1.
Yearly Percent Change in New NIH Research Funding as Affected by the Doubling Policy
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Figure 2.
Effects of Change in NIH Research Funding
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Figure 3.
Percentage of Funding for Research Project Grants Obligated to Awards from Prior Years
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Figure 4.
Trend of New Grant Funding Under the Base Run and the Optimized Increments Run
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Figure 5.
Minimized Costs for Different Starting-Year Scenarios, Optimally Mixing Grant Durations
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Figure 6.
Year-to-Year New Grant Funding Under Three Scenarios
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Figure 7.
Structural Relation Between New Grant Funding and Commitments

Larson et al. Page 22

Serv Sci. Author manuscript; available in PMC 2014 January 31.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Larson et al. Page 23

Ta
bl

e 
1

Sp
re

ad
sh

ee
t A

na
ly

si
s 

of
 T

hr
ee

 A
lte

rn
at

iv
e 

M
et

ho
ds

 o
f 

D
ou

bl
in

g 
of

 F
un

di
ng

Y
ea

r

Sc
en

ar
io

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

1 
C

on
st

an
t l

in
ea

r 
in

cr
em

en
ts

 
In

pu
t:

 
 

B
10

12
14

16
18

20
20

20
20

20

 
O

ut
pu

ts
:

 
 

C
7.

5
7.

5
9.

5
11

.5
13

.5
13

.5
15

.5
15

.5
15

.5
13

.5

 
 

F
2.

5
4.

5
4.

5
4.

5
4.

5
6.

5
4.

5
4.

5
4.

5
6.

5

 
 

%
Δ

F
0

80
0

0
0

44
−

31
0

0
44

2 
Fi

xe
d 

pe
rc

en
ta

ge
 in

cr
em

en
ts

 
In

pu
t:

 
 

B
10

11
.5

13
.2

15
.2

17
.4

20
20

20
20

20

 
O

ut
pu

ts
:

 
 

C
7.

5
7.

5
8.

99
10

.7
12

.7
13

.4
15

.8
15

.5
15

.2
13

.4

 
 

F
2.

5
4.

0
4.

2
4.

5
4.

7
6.

6
4.

2
4.

5
4.

7
6.

6

 
 

%
Δ

F
0

59
6

6
7

38
−

36
6

7
38

3 
M

an
ua

lly
 a

dj
us

te
d 

in
cr

em
en

ts

 
In

pu
t:

 
 

B
10

11
12

.6
15

18
20

20
20

20
20

 
O

ut
pu

ts
:

 
 

C
7.

5
7.

5
8.

5
10

.1
12

.5
14

.5
15

.9
15

.1
14

.5
14

.5

 
 

F
2.

5
3.

5
4.

1
4.

9
5.

5
5.

5
4.

1
4.

9
5.

5
5.

5

 
 

%
Δ

F
0

40
17

20
12

0
−

25
20

12
0

N
ot

es
. I

n 
ea

ch
 s

ce
na

ri
o,

 to
ta

l b
ud

ge
t (

B
) 

in
 e

ac
h 

tim
e 

pe
ri

od
 o

f 
t e

nt
er

s 
as

 in
pu

t, 
an

d 
co

m
m

itm
en

ts
 (

C
),

 n
ew

 f
un

di
ng

 (
F

),
 a

nd
 c

ha
ng

e 
in

 n
ew

 f
un

di
ng

 (
%
Δ

F
) 

ar
e 

ou
tp

ut
s.

 T
he

 b
ol

d 
nu

m
be

rs
 d

ep
ic

t t
he

 in
pu

t
di

ff
er

en
ce

s 
ac

ro
ss

 th
e 

sc
en

ar
io

s.
 T

he
 u

nd
er

lin
ed

 n
um

be
rs

 r
ep

re
se

nt
 y

ea
r-

ov
er

-y
ea

r 
pe

rc
en

t i
nc

re
as

es
 a

nd
 d

ec
re

as
es

, r
es

pe
ct

iv
el

y,
 in

 n
ew

 f
un

di
ng

 f
or

 tw
o 

ye
ar

s,
 1

99
9 

an
d 

20
04

.

Serv Sci. Author manuscript; available in PMC 2014 January 31.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Larson et al. Page 24

Ta
bl

e 
2

C
om

pa
ri

so
n 

of
 th

e 
B

as
e 

R
un

 (
Fi

xe
d 

In
cr

em
en

ts
) 

w
ith

 th
e 

O
pt

im
iz

ed
 I

nc
re

m
en

ts
 R

un

A
ct

iv
it

y 
va

ri
ab

le
: 

A
nn

ua
l b

ud
ge

t
O

ut
co

m
e 

va
ri

ab
le

s

B
19

98
B

19
99

B
20

00
B

20
01

B
20

02
B

20
03

y
E

up
ho

ri
a 

(%
)

H
an

go
ve

r 
(%

)

B
as

e 
ru

n 
(l

in
ea

r)
10

12
14

16
18

20
0.

55
80

−
31

O
pt

im
iz

ed
 in

cr
em

en
ts

10
11

.0
3

13
.5

3
16

.0
3

18
.5

4
20

0.
21

42
0

N
ot

e.
 T

he
 b

ol
d 

va
lu

es
 a

re
 e

st
im

at
ed

 th
ro

ug
h 

op
tim

iz
at

io
n.

Serv Sci. Author manuscript; available in PMC 2014 January 31.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Larson et al. Page 25

Ta
bl

e 
3

C
om

pa
ri

so
n 

of
 th

e 
B

as
e 

R
un

 (
10

0%
 F

ou
r-

Y
ea

r 
G

ra
nt

s)
 w

ith
 th

e 
O

pt
im

iz
ed

 G
ra

nt
 D

ur
at

io
ns

 U
nd

er
 T

w
o 

Sc
en

ar
io

s 
of

 R
ea

lis
tic

 a
nd

 P
re

sc
ie

nt
 O

pt
im

al
So

lu
tio

ns

Y
ea

r
O

ut
co

m
e 

va
ri

ab
le

s

C
as

es
19

95
19

96
19

97
19

98
19

99
20

00
20

01
20

02
20

03
20

04
y

E
up

ho
ri

a 
(%

)
H

an
go

ve
r 

(%
)

1 
B

as
e 

ru
n

0.
55

80
−

31

 
3-

ye
ar

 (
%

)
0

0
0

0
0

0
0

0
0

0

 
4-

ye
ar

 (
%

)
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0

 
5-

ye
ar

 (
%

)
0

0
0

0
0

0
0

0
0

0

2 
R

ea
lis

tic
 o

pt
im

um
0.

41
80

−
2

 
3-

ye
ar

 (
%

)
0

0
0

0
13

0
2

4
0

3

 
4-

ye
ar

 (
%

)
10

0
10

0
10

0
10

0
66

91
97

95
99

97

 
5-

ye
ar

 (
%

)
0

0
0

0
20

9
1

1
1

0

3 
Pr

es
ci

en
t o

pt
im

um
0.

12
23

−
1

 
3-

ye
ar

 (
%

)
23

0
0

9
10

1
0

2
1

0

 
4-

ye
ar

 (
%

)
71

92
94

82
72

97
99

98
99

99

 
5-

ye
ar

 (
%

)
6

8
6

9
18

2
1

0
0

1

N
ot

e.
 T

he
 b

ol
d 

va
lu

es
 a

re
 e

st
im

at
ed

 th
ro

ug
h 

op
tim

iz
at

io
n.

Serv Sci. Author manuscript; available in PMC 2014 January 31.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Larson et al. Page 26

Ta
bl

e 
4

R
es

ul
ts

 f
ro

m
 th

e 
O

pt
im

iz
at

io
n 

of
 B

ot
h 

In
cr

em
en

ts
 a

nd
 A

w
ar

d 
D

ur
at

io
ns

Y
ea

r
O

ut
co

m
e 

va
ri

ab
le

s

19
99

20
00

20
01

20
02

20
03

20
04

y
E

up
ho

ri
a 

(%
)

H
an

go
ve

r 
(%

)

O
pt

im
iz

at
io

n
0.

18
36

0

 
B

ud
ge

t
10

.9
13

.0
1

15
.1

2
17

.3
1

20
20

 
3-

ye
ar

 (
%

)
11

1
2

4
3

2

 
4-

ye
ar

 (
%

)
68

91
97

95
96

98

 
5-

ye
ar

 (
%

)
21

8
1

1
1

0

Serv Sci. Author manuscript; available in PMC 2014 January 31.


