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Abstract— The steady increase in oil prices and awareness 

regarding environmental risks due to carbon dioxide emissions 
are promoting the current interest in electric vehicles. However, 
the current relatively low driving range (autonomy) of these 
vehicles, especially compared with the autonomy of existing 
internal combustion vehicles, remains an obstacle to their 
development. In order to reassure a driver of an electric vehicle 
and allow him to reach his destinations beyond the battery 
capacity, we describe a system which generates an energy plan 
for the driver. We present in this paper the electric vehicle 
ecosystem and we focus on the contribution of using the 
generalized multi-commodity network flow (GMCNF) model as a 
vehicle routing model that considers energy consumption and 
charging time in order to ensure the usage of an electric vehicle 
beyond its embedded autonomy by selecting the best routes to 
reach the destination with minimal time and/or cost. We also 
present some perspectives related to the utilization of 
autonomous electric vehicles and wireless charging systems. We 
conclude with some open research questions. 
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I. INTRODUCTION 

The steady increase in oil prices and awareness regarding 
environmental risks posed by emissions of Carbon Dioxide 
(CO2) are promoting the current interest in Electric Vehicles 
(EVs). However, the relatively low driving range (autonomy) 
of these vehicles, especially compared with the autonomy of 
existing internal combustion vehicles, remains an obstacle to 
their development. Indeed, many drivers could be afraid to 
live in constant fear of the failure to not reach their 
destinations using their vehicles, and to be limited in their 
movements on long distances between cities, for example. 

In order to reassure a driver of an EV and allow him to 
reach his destinations beyond the battery capacity, we 
describe a system which generates a smart energy plan for the 
driver. This energy plan consists of roads connecting service 
stations to the destination. Each service station may be a quick 
charging station or a battery exchange station. While we can 

also take into account hybrid vehicles by considering 
traditional stations (gas and oil), we focus in this paper on 
EVs. The autonomy of an EV is sensitive to many factors. 
Indeed, the energy consumption by an EV is driven by 
multiple internal and external parameters of the vehicle. The 
system presented in this paper provides a driver with a reliable 
driving plan thanks to its model of autonomy calculation and 
network analysis. 

II. BACKGROUND 

Like in many other places in the world, the European 
Commission expects that energy needs will continue to 
increase. In the case of European Union, primary energy 
consumption in 2030 would be 11% higher than in 2005  [1]. 
According to the European Environment Agency, road 
transport is a large consumer, accounting for the most 
significant part (around 72%) of the total transport energy 
consumption  [2]. The European Commission also expects 1.6 
billion vehicles in the world in 2030 and 2.5 billion in 
2050  [3]. These numbers are not surprising given the 
projected population growth in the world and the differences 
in the density of vehicles (number of vehicles per 1000 
inhabitants) between countries that are going to shrink (for 
example, 627 in USA, 44 in China, and 12 in India, in 
2010  [4]). On another hand, personal vehicles (internal 
combustion engine vehicles) are responsible for 10% of CO2 
emissions in the atmosphere  [5]. For all these reasons, EVs 
could bring a significant contribution to the World policies for 
sustainable development, both in the ecological and energy-
related sides by reducing CO2 (and other pollutants such as 
Nitrogen Oxide (NOx), Hydrocarbon (HC), and Carbon 
Monoxide (CO)) emissions  [6] and non-renewable energy 
consumption1. 
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 By assuming that electricity should be produced using renewable sources 

such as hydro, solar, wind, waves, etc. 
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Interesting research studies  [7] [8] have been conducted in 
this context to show the contribution of EVs (and also hybrid 
vehicles) in reducing CO2 emissions and energy consumption 
in the USA. A study conducted by CIRED
macroeconomic and macro-energetic aspects of the 
deployment of EVs  [9]. Results show that this deployment can 
positively influence the economy, particularly
considering climate policy and tensions on oil prices, but also 
that EVs allow a significant reduction in CO2
private transport. 

Furthermore, the future of EVs could be promising
economical side. Target markets in the sh
mainly owners of vehicles for which autonomy is not a 
particular problem. This represents more than 70%
share  [10], given, for example, that 87% of Europeans drive 
less than 60 kilometers per day  [6]. 

However, EVs represent more disruptive
products compared to the traditional vehicles. The emerging 
of new services requires considering the EVs and the 
surrounding environment during their whole lifecycle. An 
interesting study has been presented in  [11]
the EVs’ ecosystem and explaining complex interfaces 
between the surrounding stakeholders. We report the 
environment modeling in Fig. 1. 

There are a lot of issues to be addressed
present study on the contribution of autonomy c
network problem solving in order to ensure the usage of an 
EV beyond its embedded autonomy by selecting 
routes to reach the destination with minimal
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CIRED: Centre International de Recherche sur l’Environnement et le 

Développement, France. http://www.centre-cired.fr/ 
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Fig. 1. EVs’ ecosystem

III.  SYSTEM OF INTEREST DE

We describe in the following paragraph a 
example and a generic structure of our system
the modules that are necessary and useful for its 
implementation. It allows the vehicle driver to easily 
determine, taking into account the current battery
least one path connecting the current 
(A) to the destination (B), the transit 
trip may involve steps for battery charging or exchange. To do 
this, the driver shall first submit 
destination (B) using a Human 
which can be integrated permanently in the dashboa
be mobile through a wireless link like a smart
energy consumption module then retrieves information about 
the current location (A), the current battery
required for a trip from A to B. The path calculation module 
retrieves all the parameters 
coordinates of charging stations on paths between A and B, 
their electrical characteristics, weather and traffic conditions 
on these paths, etc. This module calculates the conditions for 
success of the mission taking into account the battery 
throughout the trip, the time required to achieve the mission, 
and the cost depending on the eventual choice of energy 

 

cosystem  [13]. 

YSTEM OF INTEREST DESCRIPTION 

We describe in the following paragraph a simplified 
generic structure of our system of interest and 

necessary and useful for its 
implementation. It allows the vehicle driver to easily 
determine, taking into account the current battery level, at 
least one path connecting the current location of the vehicle 

transit time, and the cost. This 
trip may involve steps for battery charging or exchange. To do 
this, the driver shall first submit a mission by designating a 

uman Machine Interface (HMI), 
which can be integrated permanently in the dashboard or can 

mobile through a wireless link like a smart-phone. The 
energy consumption module then retrieves information about 

(A), the current battery level, and energy 
B. The path calculation module 
needed for the mission: the 

coordinates of charging stations on paths between A and B, 
their electrical characteristics, weather and traffic conditions 
on these paths, etc. This module calculates the conditions for 

ission taking into account the battery level 
throughout the trip, the time required to achieve the mission, 
and the cost depending on the eventual choice of energy 



supplier by the driver. If the mission cannot be achieved 
without steps, this module provides a map of charging stations 
on the best route(s) with additional information of a particular 
energy supplier such as tariffs. 

A. Generic structure 

Figure 2 summarizes a generic structure of our proposition. 
We assume that the vehicle can get information through the 
Internet via a wireless connection, including the type of road 
and weather conditions, traffic congestion, GPS position of 
charging stations, etc. 

 

 
Fig. 2. A generic structure of the system of interest. 

B. Human Machine Interface (HMI) 

As mentioned previously, the HMI can be integrated 
permanently in the dashboard or can be mobile through a 
wireless link like a smart-phone. Using this HMI, a user of the 
vehicle can plan a mission or trip and choose a path based on 
his preference between time, cost, and other factors. 

C. Path calculation module 

One of the objectives of the path calculation module is to 
find a trip from point A to point B with minimal time and/or 
cost. For a round-trip mission, A is also a final destination but 
B still has to be defined as a halfway point. Figure 3 illustrates, 
in the form of a graph consisting of nodes and edges, an 
example network of different paths connecting A and B, based 
on which our system estimates time and cost. In Figure 3, four 
points 1 through 4 may be a step of battery charging or 
exchanging during a trip from A to B. Each edge �� represents 
a driving route from node �  to node � , where �, � =
��, 1,2,3,4, ��. Driving time from � to � is denoted as ��. 

If the problem is to minimize the total time and there is no 
waiting at each transit node, it is called the shortest path 
problem and can be solved using conventional techniques 
such as Dijkstra’s algorithm as it was addressed in  [16]. In the 
problem to be addressed in this paper, however, the vehicle 
might have to stay for a while at a transit node to charge or 
exchange the battery. This process takes extra time, which 
should be considered in addition to the driving time. In Figure 
3, each transit node is attached with a “loop”, which 
represents charging or exchanging of the battery. 
Charging/exchanging time at node � is denoted as ��. 

 

 
Fig. 3. An example network of different paths connecting A and B. 

 
Furthermore, if the battery charging or exchanging cost is 

also considered, each loop has a cost ���. It should be noted 
that the vehicle does not necessarily have to charge or 
exchange the battery at every node that it passes through. 
Therefore, whether the vehicle changes/exchanges the battery 
at each transit node is also to be determined through the 
optimization process performed by this module. Additionally, 
if a toll is required on each edge, ��� can represent that cost. 

This type of optimization problem can be formulated as the 
generalized multi-commodity network flow (GMCNF) 
problem. It is a novel network flow model that introduces 
three types of matrix multiplications (requirement, 
transformation, and concurrency) on top of the classical 
network flow problems and also allows loop edges associated 
with nodes (graph loops) and multiple edges between the 
same end nodes (multigraph)  [14] [13]. The problem in this 
paper can be interpreted as a shortest path problem with 
internal sources of consumables. The similar type of problem 
is discussed in the GMCNF case study of space exploration 
logistics  [15]. 

Let � = ��,�� be a directed network defined by a set � 
of nodes and a set � of directed edges. Each node � ∈ � is 
associated a vector �� representing its net supply/demand. The 
GMCNF problem can be formulated as follows: 
 
Minimize 
 

� = � ���±
��,��∈�

 

 
subject to 
 

� ��������
�:��,��∈�

− � ��� ��� 
�:��,��∈�

≤ �� 					∀	� ∈ � 

$������ = ��� 					∀	��, �� ∈ � 
%������� ≤ &			and			%�� ��� ≤ &					∀	��, �� ∈ � 

& ≤ ���� ≤ *��� 			and			& ≤ ��� ≤ *�� 					∀	��, �� ∈ � 
 



where ����  and ���  represent an outflow from node � to edge �� 
and an inflow from edge �� into node �, respectively. ���± , $��, 
and %��±  are called a requirement matrix, a transformation 
matrix, and a concurrency matrix, respectively. If time and/or 
cost on each edge includes a fixed term (regardless of amount), 
a binary variable +�� needs to be introduced, which is equal to 
1 if the vehicle passes through edge �� and 0 if not. In this case, 
the problem falls under the mixed integer linear program 
(MILP). 

Parameters that define each edge and loop such as energy 
required for passing through an edge and time required for 
charging the battery at a loop could be determined in the 
modules described below. 

D. Energy consumption module 

The module for calculating energy consumption of an EV 
uses not only the internal parameters of the vehicle but also 
the external parameters retrieved from cloud 
computing/Internet. By default, the model of energy 
consumption of an EV minimizes the energy required to reach 
the destination. But the driver can also choose to focus on 
prices at charging stations to minimize the cost. 

Some internal parameters of the vehicle, reflected in the 
model of energy consumption of an EV, include internal 
temperature of the battery, the laws of control for battery and 
electric motor cooling, the auxiliary consumers like headlights, 
air conditioning or heating, the mass of the vehicle, its 
coefficient of air penetration (aerodynamics) or the size of the 
wheels. Other data such as battery weight, storage capacity of 
the battery, nominal output voltage of battery, the 
characteristics of the motor or motors (torque, rotation speed 
of the engine, etc.), and gear ratio are also considered. 

External parameters can be constraints on road (traffic 
congestion) and weather conditions, slope of the roads, 
acceleration of gravity, air density, temperature, air pressure, 
the driving profile of the user, the distance, etc. 

Given all these parameters, we can calculate the EV 
autonomy. For this purpose, the driving cycle of the user is 
very important. In the following simplistic example, we 
consider the calculation of energy consumption over a 
distance as an average of the energy consumption using the 
standards NEDC and Artemis as explained in [17]. In addition, 
we take into account a threshold for safety (a capacity for 
driving about 15 km for example is always left in the battery).  
Note, as explained in [17], the EV energy consumption 
represents the sum of the energy consumed by all the 
components of its electric vehicle power-train (considering the 
performance of all its components) and by the auxiliaries, 
such as lights, air conditioning system and radio…). Figure 4 
gives an example of results using the initial parameters 
presented in [17]. 

Details for calculating the autonomy and a case study are 
presented in  [16] [17] [18]. 

 
 

 
Fig. 4. The EV autonomy and energy consumption estimations [17]. 

E. Charging time calculation module 

As described in more detail in  [16], in order to improve the 
accuracy of the estimated travel time, the consumption 
module also includes calculating the charging time, either fast 
charge or normal charge, taking into account not only the 
amount of charge but also the internal battery temperature and 
the outside temperature at the load point. The temperatures 
influence the time required to reach full charge. 

The charging time is a function T, using as inputs the 
intensity of the electric current I and the capacity of the 
battery C. 

We want to charge the battery, in the station � , with a 
capacity C necessary and sufficient to achieve at least the 
section between the station  � and the next station �. If the time 
we can spend at � will not be enough to charge the battery to 
reach yet another subsequent station ,, we must charge the 
battery more at �. 

The capacity C reflects the energy consumed by the vehicle 
in a section. It represents the sum of the energy consumed by 
the power-train and by the auxiliaries. 

In summary, the time of charge depends on the charging 
system’s characteristics. For an example in the next section, 
we consider the following estimates: 
• A normal charging system using standard outlet 240 Volt: 

12 minutes (and $0.15) per 1 kWh. 
• A fast charging system: 1,5 minutes (and $0.25) per 1 kWh. 
• Battery exchange: 3 minutes (and $10). 



IV.  EXAMPLE 

This section presents an example problem for finding the 
best route of a single EV from A to B in the network in Fig. 3 
using the GMCNF method described above. We assume 24 
kWh for the full capacity of a single battery and 2 kWh for the 
minimum allowed battery level for path calculation. Table I 
lists various edge parameters used in the analysis. 

 
Table I. Edge parameters for the example network in Fig. 3. 

 
  
The objective is to minimize the total time and/or cost. 

Assuming a linear objective function, the problem is a linear 
program and a contribution from edge ��  to the overall 
objective function is written as: 

 
��� = -./0�� + .23��4��� 

 
where ./ and .2 are objective function weights for time and 
cost, respectively. The edge parameters in Table I and the 
battery charging/exchanging time and cost are implemented in 
���± and two matrices, $�� and %��± . Note that ���±  is an identity 
matrix because there is no such constraint in this context. For 
edge �� , $��  models energy consumption while %��±  models 
constraints on the full battery capacity and the minimum 
allowed battery level for path calculation. For loop �� , $�� 
models battery charge/exchange. 

Varying the weights between time and cost, we obtained 
five different Pareto-optimal solutions. Using a normal store-
bought laptop computer, the optimal solution in each instance 
was obtained within 0.1 seconds at most. Figure 5 shows the 
five “best” paths from A to B. Path 1 in the top minimizes 
solely the transit time while path 5 in the bottom minimizes 
solely the total cost. Each of the paths 2-4 minimizes a mix of 
time and cost with different weights. Paths 1 and 2 look the 
same in path topology but path 1 exchanges the battery at 
station 4 while path 2 uses the fast charging system at the 
same station. Likewise, Paths 4 and 5 look the same in path 
topology but path 4 mainly uses fast charge while path 5 only 
uses normal charge. Figure 6 shows the Pareto-optimal front 
for the time-cost trade-off. While paths 2-4 appear to be more 
reasonable options, a driver of the vehicle can choose any of 
these candidates based on his preference. 

 

 
 

 
 

 
 

 
 

 
Fig. 5. Five different “best” paths from A to B. 

 

A 1 toll 45 30 8.1 13.5

A 2 free 40 40 7.2 0

1 2 free 55 55 9.9 0

1 3 toll 50 35 9.0 15.0

1 4 free 70 70 12.6 0

2 1 free 55 55 9.9 0

2 3 toll 70 45 12.6 21.0

2 4 toll 60 40 10.8 18.0

3 4 free 35 35 6.3 0

3 B free 45 45 8.1 0

4 3 free 35 35 6.3 0

4 B toll 35 25 6.3 10.5
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Fig. 6. The Pareto-optimal front for the time-cost trade-off. 

V. APPLICATION TO AUTONOMOUS VEHICLES 

A direct application of the mission planner presented above 
could be its use for autonomous vehicles based on electric 
vehicles. The concept seems indeed like a natural or logical fit 
for this type of autonomous systems, for which some kind of 
“global planning” or mission definition is necessary. The 
implementation of this type of mission planner can be done 
either as an embedded or as an off-board capability of the 
system. 

In the case of EVs, the mission planner dedicated to the 
optimization of the vehicle autonomy could run permanently 
even while the vehicle has already started its mission, that is, 
while it is navigating towards a destination point B as defined 
by a user. The autonomous system would then endeavor to 
satisfy its mission (i.e. reach point B), autonomously deciding 
to change its path if needed in order to maintain its autonomy 
at a satisfactory level. 

Finally, the mission planner could also contribute to the 
optimization of the number of charging stations, in the 
perspective of wireless (or induction) charging techniques. A 
“charging system” could then make use of V2I (Vehicle to 
Infrastructure) or V2V (Vehicle to Vehicle) communications 
in order to inform autonomous vehicles on the schedule or the 
availability of recharge stations or even to coordinate and 
program their utilization. 

VI.  CONCLUSION AND PERSPECTIVES 

We have addressed in this paper the contribution of 
autonomy calculation and network modeling in order to help 
EVs’ drivers to enhance their utilization of EVs in a good way, 
by reducing time waste and cost. Indeed, beyond the capacity 
of the current batteries, the drivers of EVs could plan, a priori, 
their different missions or trips through a simple HMI. 

However, there are a lot of open research questions to be 
addressed in the future such as the management of battery 
charging/exchanging stations (How do we handle the arrival 
flow of EVs? How many stations are necessary and sufficient 
in a given area? How do we charge an EV at home or in a 
parking lot if they have not been designed to allow that? etc.), 
the management of electric grid (How do we manage demand 

peaks of electrical energy?), the ability to level energy 
demands on the energy network (see for example  [19] [19] 
about the use of EVs for “Vehicle to grid”), and the 
management of interfaces with customers (How do we deal 
with bills? How do we address remote HMI for charging 
reservations? etc.). Also, the complex economic equation and 
business model and taxes related to EVs should be addressed. 

Indeed, beyond the energy and ecological issues, EV 
programs are yielding waves of innovations and job 
opportunities. Many key actors or stakeholders in the EVs’ 
ecosystem are involved in the implementation of 
infrastructures and associated services. Indeed, given the fact 
that these programs have been started almost from scratch, the 
knowledge of all stakeholders surrounding the EVs 
throughout their whole lifecycle is paramount. For each of 
these stakeholders, the knowledge of his expectations and 
needs helps greatly in well designing the EVs and associated 
services in order to best integrate them sustainably in their 
environment. These stakeholders should probably cooperate 
and join unique structures, where each contributes with his 
own competence to meeting the EVs’ success.  

We assist today at many emerging partnerships between 
EVs’ manufacturers and energy companies, telecom 
companies, parking owners, etc. New operators are appearing 
(new business models such as car sharing). For a long term, in 
order to build sustainably this new market for EVs, 
national/regional organizations would drive and organize the 
cooperation of their industries (public and private) with local 
authorities. 
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