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We consider several types of quantum critical phenomena from finite-density gauge-gravity duality
which to different degrees lie outside the Landau-Ginsburg-Wilson paradigm. These include: (i) a
“bifurcating” critical point, for which the order parameter remains gapped at the critical point, and thus is
not driven by soft order parameter fluctuations. Rather it appears to be driven by “confinement” which
arises when two fixed points annihilate and lose conformality. On the condensed side, there is an infinite
tower of condensed states and the nonlinear response of the tower exhibits an infinite spiral structure; (ii) a
“hybridized” critical point which can be described by a standard Landau-Ginsburg sector of order
parameter fluctuations hybridized with a strongly coupled sector; (iii) a “marginal” critical point which is
obtained by tuning the above two critical points to occur together and whose bosonic fluctuation spectrum
coincides with that postulated to underly the “Marginal Fermi Liquid” description of the optimally doped
cuprates.
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I. INTRODUCTION AND SUMMARY

In a strongly correlated many-body system, small changes
of external control parameters can lead to qualitative
changes in the ground state of the system, resulting in a
quantum phase transition. The quantum criticality associated
with continuous quantum phase transitions give rise to some
of the most interesting phenomena in condensed matter
physics, especially in itinerant electronic systems [1–3].
Among these are the breakdown of Fermi liquid theory and
the emergence of unconventional superconductivity.
Quantum criticality is traditionally formulated within the

Landau paradigm of phase transitions [4–6]. The critical
theory can be understood in terms of the fluctuations of the
order parameter, a coarse-grained variable manifesting the
breaking of a global symmetry. This critical theory lives in
dþ z dimensions [6], where d is the spatial dimension, and
z the dynamic exponent.
More recent experimental and theoretical developments

[1–3,7,8], however, have pointed to new types of quantum
critical points. New modes, which are inherently quantum
and are beyond order-parameter fluctuations, emerge as part
of the quantum critical excitations. For example, continuous
quantum phase transitions observed in various antiferro-
magnetic heavy fermion compounds, involve a nontrivial
interplay between local and extended degrees of freedom.
While the extended degrees of freedom can be described by
an antiferromagnetic order parameter, the Kondo break-
down and the interplay between Kondo breakdown and
antiferromagnetic fluctuations cannot be captured in the
standard Landau-Ginsburg-Wilson formulation.
It is thus of great interest to identify other examples of

stronglycorrelatedquantumcriticalpoints that donot fit easily
into the standard formalism. In this paper wewill discuss a set

of such phase transitions using holographic duality [9]. We
will be studying a d-dimensional field theory that is con-
formal1 in the UVand has aUð1Þ global symmetry. Consider
turningon anonzero chemical potentialμ for theUð1Þ charge.
This finite charge density system has a disordered phase
described in the bulk by a charged black hole in AdSdþ1

[10,11]. The conserved current Jμ of the boundary global
Uð1Þ is mapped to a bulkUð1Þ gauge field AM, under which
the black hole is charged.Various examples exist of boundary
gauge theories with such a gravity description.
Now consider a scalar operator O dual to a bulk scalar

field ϕ, which at a finite chemical potential could exhibit
various instabilities toward the condensation of O. If we
tune parameters an instability can be made to vanish, even
at zero temperature, with a critical point separating an
ordered phase characterized by a nonzero expectation value
hOi from a disordered phase in which hOi vanishes. The
physical interpretation of the condensed phase depends on
the quantum numbers carried by O: for example, if it is
charged under some Uð1Þ it can be interpreted as a
superconducting phase, whereas if it transforms as a triplet
under an SUð2Þ denoting spin it can be interpreted as an
antiferromagnetic order parameter. If it is charged under a
Z2 symmetry, the condensed phase can be used to model,
for example, a Ising-Nematic phase from a Pomeranchuck
instability. The critical point is largely independent of the
precise interpretation of the condensed phase.
We will essentially discuss two different kinds of critical

phenomena, which we refer to as a “bifurcating” and a
“hybridized” quantum critical point. A “bifurcating”

1Choosing a theory which is conformal in the UV is solely
based on technical convenience and our discussion is not
sensitive to this.
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quantum phase transition happens when a bulk scalar dips
below the Breitenlohner-Freedman bound [12] in the deep
interior of the spacetime. It was shown previously [13,14]
that the thermodynamical behavior of this system has an
exponentially generated scale reminiscent of Berezinskii-
Kosterlitz-Thouless transition and there is an infinite tower
of geometrically separated condensed states analogous to
the Efimov effect [15] in the formation of three-body bound
states.2 Here we study the dynamical critical behavior in
detail. We find that at a bifurcating critical point, the static
susceptibility for the order parameter does not diverge (i.e.
the order parameter remains gapped at the critical point),
but rather develops a branch point singularity. When
extended beyond the critical point into the (unstable)
disordered phase, the susceptibility attempts to bifurcate
into the complex plane. As the order parameter remains
gapped at the critical point, the quantum phase transition is
not driven by soft order parameter fluctuations as in the
Landau-Ginsburg-Wilson paradigm. Rather it appears to be
driven by “confinement” which leads to the formation of a
tower of bound states, which then Bose condense, i.e. it can
be interpreted as a quantum confinement/deconfinement
critical point.3 On the condensed side, we find the nonlinear
response of the tower of condensed states exhibits an
infinite spiral structure that is shown in Fig. 7 in Sec. VII B.
The instability corresponding to a “hybridized” phase

transition occurs when the bulk extremal black hole geom-
etry allows for certain kinds of scalar hair [19]. One can
approach the critical point for onset of the instability by a
double-trace deformation in the field theory [20]. Here we
review and extend the results of [20]. At a hybridized critical
point the static susceptibility does diverge, but the small
frequency and temperature behavior near the critical point
does not follow the standard Landau-Ginzburg-Wilson
formulation due to presence of some soft degrees of freedom
other than the order parameter fluctuations. In particular, in
some parameter range the dynamical susceptibility exhibits
the local quantum critical behavior observed in quantum
phase transitions of certain heavy fermion materials.
Finally, one can tune the parameters of the system such

that both types of critical point happen at the same time,
resulting in yet another kind of critical point, which we call
a “marginal critical point,” as it is driven by a marginally
relevant operator. Intriguingly, the critical fluctuations at
such a point are precisely the same as the bosonic
fluctuation spectrum postulated to underly the “Marginal
Fermi Liquid” [21] description of the optimally doped
cuprates (see also [22,23]).
Underlying the various sorts of novel quantum critical

behavior described above is the “semilocal quantum liquid”

(or SLQL for short) nature of the disordered phase. SLQL
is a quantum phase dual to gravity in AdS2 ×Rd−1 which is
the near-horizon geometry of a zero-temperature charged
black hole. It has a finite spatial correlation length, but a
scaling symmetry in the time direction, and has gapless
excitations at generic finite momenta; its properties have
been discussed in detail recently in [24] (and are also
reviewed below in Sec. II). A hybridized QCP can be
described by a standard Landau-Ginsburg sector of order
parameter hybridized with degrees of freedom from SLQL.
A bifurcating QCP can be understood as the transition of
SLQL to a confining phase, as a consequence of two fixed
points describing SLQL annihilate. The infinite tower of
condensed states and the associated infinite spiral can be
understood as consequences of a spontaneously broken
discrete scaling symmetry in the time direction.
The plan of the paper is as follows. In the next section,

we discuss various aspects of the disordered phase and in
particular the notion of semilocal quantum liquid from the
point of view taken in [24]. In Sec. III we discuss various
instabilities of a generic AdS spacetime, and in Sec. IV we
discuss how these instabilities manifest themselves in the
AdS2 factor in the disordered phase, resulting in quantum
phase transitions. In Sec. V we attempt to illuminate the
nature of these quantum phase transitions by providing a
low-energy effective theory for them. In Sec. VI we discuss
various aspects of the condensed phase. In Secs. VII and
VIII we provide a description of the critical behavior
around the bifurcating and hybridized critical points,
respectively. In Sec. IX we discuss the “marginal” critical
point that is found if parameters are tuned so that the
hybridized and bifurcating critical points collide. Finally in
Sec. X we conclude with a discussion of the interpretation
of the SLQL as an intermediate-energy phase and the
implications for our results.
Due to the length of this paper various details and most

derivations have been relegated to the appendices. We do
not summarize all appendices here, but we do point out that
in an attempt to make this paper more modular an index of
important symbols (including brief descriptions and the
location of their first definition) is provided in Appendix G.

II. DISORDERED PHASE AND SEMILOCAL
QUANTUM LIQUIDS

We will be interested in instabilities to the condensation
of a scalar operator for a holographic system at a finite
density, and in particular, the quantum critical behavior
near a critical point for the onset of an instability. An
important set of observables for diagonalizing possible
instabilities and characterizing the dynamical nature of a
critical point are susceptibilities of the order parameter.
Suppose the order parameter is given by the expectation
value of some bosonic operator O, then the corresponding

susceptibility χðω; ~kÞ are given by the retarded function for

2See also [16–18].
3As will be elaborated later here we use the term “confinement”

in a somewhat loose sense, as in our story the “confined” state still
has gapless degrees of freedom left and thus the “confinement”
only removes part of the deconfined spectrum.
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O, which captures the linear responses of the system to an
infinitesimal source4 conjugate to O.
In a stable phase in which O is uncondensed, turning on

an infinitesimal source will result in an expectation value
for O which is proportional to the source with the propor-
tional constant given by the susceptibility. However, if the
system has an instability to the condensation of O, turning
on an infinitesimal source will lead to modes exponentially
growing with time. Such growing modes are reflected in the

presence of singularities of χðω; ~kÞ in the upper complex
ω-plane. Similarly, at the onset of an instability (i.e. a
critical point, both thermal and quantum), the static
susceptibility typically diverges, reflecting that the ten-
dency of the system to develop an expectation value of O
even in the absence of an external source. The divergence is
characterized by a critical exponent γ (see Appendix F for
a review of definitions of other critical exponents)

χðk ¼ 0;ω ¼ 0Þ ∼ jg − gcj−γ ð2:1Þ

where g is the tuning parameter (which is temperature for a
thermal transition) with gc the critical point.
In this section we first review the charged black hole

geometry describing the disordered phase and the retarded
response function for a scalar operator in this phase. We
also elaborate on the semilocal behavior of the system,
which is a central theme of our paper.
While the qualitative features of our discussion apply to

any field theory spacetime dimension5 d ≥ 3, for definite-
ness we will restrict our quantitiative discussion to d ¼ 3.

A. AdS2 and infrared (IR) behavior

At zero temperature a boundary CFT3 with a chemical
potential μ is described by an extremal AdS charged black
hole, which has a metric and background gauge field
given by

ds2 ¼ R2

z2
ð−fdt2 þ d~x2Þ þ R2

z2
dz2

f
ð2:2Þ

with

At¼μð1−μ�zÞ; f¼1þ3μ4�z4−4μ3�z3; μ�≡ μffiffiffi
3

p
gF
ð2:3Þ

where R is the curvature radius of AdS4 and gF is a
dimensionless constant which determines the unit of
charge.6 Note that the chemical potential μ is the only

scale of the system and provides the basic energy unit. For
convenience we introduce the appropriately rescaled μ�,
which will be used often below as it avoids having the
factor

ffiffiffi
3

p
gF flying around. f has a double zero at the

horizon z ¼ z� ≡ 1
μ�
, with

fðzÞ ≈ 6
ðz� − zÞ2

z2�
þ…; z → z� ð2:4Þ

As a result the near-horizon geometry factorizes into
AdS2 ×R2:

ds2 ¼ R2
2

ζ2
ð−dt2 þ dζ2Þ þ μ2�R2d~x2 A ¼ gFffiffiffiffiffi

12
p

ζ
dt:

ð2:5Þ

Here we have defined a new radial coordinate ζ and R2 is
the curvature radius of AdS2,

ζ ≡ z2�
6ðz� − zÞ ; R2 ≡ Rffiffiffi

6
p : ð2:6Þ

The metric (2.5) applies to the region z�−z
z�

≪ 1 which
translates into μζ ≫ 1. Also note that the metric (2.2)
has a finite horizon size and thus has a nonzero entropy
density.
As discussed in [19] the black hole geometry predicts

that at a finite chemical potential the system is flowing
to a nontrivial IR fixed point dual to AdS2 ×R2 (2.5).
See Fig. 1. Note that the metric (2.5) has a scaling
symmetry

t → λt; ζ → λζ; ~x → ~x ð2:7Þ

under which only the time coordinate scales. Thus the IR
fixed point has nontrivial scaling behavior only in the time
direction with the R2 directions becoming spectators. Thus
we expect that it should be described by a conformal
quantum mechanics, to which we will refer as “eCFT1”
with “e” standing for “emergent.” This conformal quantum
mechanics is somewhat unusual due to the presence of the

FIG. 1. At a finite chemical potential, a CFTd flows in the IR to
SLQL. On the gravity side this is realized geometrically via the
flow of the AdSdþ1 near the boundary to AdS2 × Rd−1 near the
horizon.

4For example if O is the magnetization of the system, then the
corresponding source is the magnetic field.

5Explicit examples of the duality are only known for
d ¼ 3, 4, 6.

6It is equal to the bulk gauge coupling in appropriate units.
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R2 factor on the gravity side, with scaling operators labeled
by continuous momentum along R2 direction (as we shall
see below). As emphasized in [24], the quantum phase
described by such an eCFT1 has some interesting properties
in terms of the dependence on spatial directions, and a more
descriptive name semilocal quantum liquid (or SLQL for
short) was given (see Sec. II C for further elaboration).
Below the terms eCFT1 and SLQL can be used inter-
changeably. SLQL will be more often used to emphasize
the IR fixed point as a quantum phase.
Let us now consider a scalar operator Oðt; ~xÞ corre-

sponding to a bulk scalar field ϕ of mass m2 and charge q.
Its conformal dimension Δ in the vacuum of the CFT3 is
related to m by

Δ ¼ 3

2
þ νU; νU ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2R2 þ 9

4

r
: ð2:8Þ

At a finite chemical potential, in the IR its Fourier trans-

form O~kðtÞ along the spatial directions, with momentum ~k,
should match onto some operator Φ~kðtÞ in the SLQL. The
conformal dimension of Φ~k in the SLQL can be found from
asymptotic behavior of classical solutions of ϕ in the
AdS2 ×R2 geometry (2.5) and is given by7 [19]

δk ¼
1

2
þ νk ð2:9Þ

with

νk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2R2

2 − q2� þ
1

4
þ k2

6μ2�

s
; k ¼ j~kj; q� ¼

qgFffiffiffiffiffi
12

p :

ð2:10Þ

Equation (2.10) has some interesting features. First, the IR
dimension increases with momentum k, as a result oper-
ators with larger k become less important in the IR. Note,
however, this increase with momentum only becomes
significant as k ∼ μ. For k ≪ μ, we can approximately
treat δk as momentum independent. Second, νk decreases
with q, i.e. an operator with larger q will have more
significant IR fluctuations (given the same vacuum
dimension Δ).
In the low frequency limit ω ≪ μ the susceptibility (i.e.

retarded Green function) χðω; ~kÞ forO in the full CFT3 can
be written as [19]

χðω; ~kÞ ¼ μ2νU�
bþðk;ωÞ þ b−ðk;ωÞGkðωÞμ−2νk�
aþðk;ωÞ þ a−ðk;ωÞGkðωÞμ−2νk�

; ð2:11Þ

where Gk is the retarded function for Φ~k in the SLQL and
can be computed exactly by solving the equation of motion
for ϕ in (2.5). It is given by [19]

GkðωÞ ¼
Γð−2νkÞ
Γð2νkÞ

Γð1
2
þ νk − iq�Þ

Γð1
2
− νk − iq�Þ

ð−2iωÞ2νk : ð2:12Þ

a�ðk;ωÞ and b�ðk;ωÞ in (2.11) are real (dimensionless)
functions which can be extracted (numerically) by solving
the equation of motion of ϕ in the full black hole geometry
(2.2). For the reader’s convenience we review the analytic
properties of a�, b� and outline derivation of (2.11) in
Appendix A. a�, b� are analytic in ω and can be expanded
for small ω as

aþðk;ωÞ ¼ að0Þþ ðkÞ þ ωað1Þþ ðkÞ þ… ð2:13Þ

a�ðk;ωÞ, b�ðk;ωÞ are also analytic functions of νk and k2.
Note that for a neutral scalar the linear term in ω vanishes
and the first nontrivial order starts with ω2. A relation
which will be useful below is (see Appendix A for a
derivation)

að0Þþ ðkÞbð0Þ− ðkÞ − að0Þ− ðkÞbð0Þþ ðkÞ ¼ νk
νU

: ð2:14Þ

We also introduce the uniform and static susceptibilities,
given by

χ ≡ χðω ¼ 0; ~k ¼ 0Þ ¼ μ2νU�
bð0Þþ ð0Þ
að0Þþ ð0Þ

χð~kÞ≡ χðω ¼ 0; ~kÞ ¼ μ2νU�
bð0Þþ ðkÞ
að0Þþ ðkÞ

: ð2:15Þ

Note that for notational simplicity, we distinguish χ; χð~kÞ
and χðω; ~kÞ only by their arguments.

B. Finite temperature scaling

The previous considerations were all at precisely zero
temperature; at finite temperature the factor fðzÞ in (2.2)
develops a single zero at a horizon radius z0 < z�. For
z�−z0
z�

≪ 1, the near-horizon region is now obtained by
replacing the AdS2 part of (2.5) by a Schwarzschild black
hole metric in AdS2, i.e.

ds2 ¼ R2
2

ζ2

�
−
�
1 −

ζ2

ζ20

�
dt2 þ dζ2

1 − ζ2

ζ2
0

�
þ μ2�R2d~x2 ð2:16Þ

7Note that depending on the value of νk there may be an
alternative choice for δk ¼ 1

2
− νk, by imposing a Neumann

boundary condition for ϕ at the AdS2 boundary [25]. We will
review this in more detail below when needed.
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where ζ0 ≡ z2�
6ðz�−z0Þ. The inverse Hawking temperature is

given to leading order in z�−z0
z�

by

T ¼ 1

2πζ0
: ð2:17Þ

The metric (2.16) applies to the region z�−z
z�

≪ 1 with the
condition z�−z0

z�
≪ 1 which translates into μζ ≫ 1 with the

condition μζ0 ∼
μ
T ≫ 1.

Thus at a temperature T ≪ μ, one essentially heats up the
SLQL and Eq. (2.11) can be generalized to

χðω; ~k; TÞ ¼ μ2νU�
bþðk;ω; TÞ þ b−ðk;ω; TÞGðTÞ

k ðωÞμ−2νk�
aþðk;ω; TÞ þ a−ðk;ω; TÞGðTÞ

k ðωÞμ−2νk�
;

ð2:18Þ

where GðTÞ
k is the retarded function for Φ~k in the SLQL at

temperature T and is given by [19,26]

GðTÞ
k ðωÞ ¼ ð4πTÞ2νk Γð−2νkÞ

Γð2νkÞ
Γð1

2
þ νk − iq�Þ

Γð1
2
− νk − iq�Þ

×
Γð1

2
þ νk − i ω

2πT þ iq�Þ
Γð1

2
− νk − i ω

2πT þ iq�Þ
: ð2:19Þ

Note that at finite T, a�, b� also receive analytic
corrections in T as indicated in (2.18). The retarded

function GðTÞ
k in the SLQL has a scaling form in terms

of ω=T as expected from the scaling symmetry at the zero
temperature. Note that there is no scaling in the spatial
momentum and analytic dependence on T and ω in (2.18).
In both (2.12) and (2.19) the k dependence solely arises

from νk, which in turn depends on k through k2=μ2. This
implies that for k ≪ μ, Gk is approximately k-independent.
For most of this paper we will be considering a neutral

scalar, for which (2.12) and (2.19) simplify to

GkðωÞ ¼
�
−
iω
2

�
2νk Γð−νkÞ

ΓðνkÞ
; ð2:20Þ

and

GðTÞ
k ðωÞ ¼ ðπTÞ2νk Γð−νkÞ

ΓðνkÞ
Γð1

2
þ νk − i ω

2πTÞ
Γð1

2
− νk − i ω

2πTÞ

≡ T2νkg

�
ω

T
; νk

�
; ð2:21Þ

with gðx; νkÞ a universal scaling function.

C. Semilocal quantum liquids

We expect that the leading low frequency behavior of the
spectral function of O should be given by that of the IR

fixed point, i.e. that of Φ~k in the SLQL. Indeed, suppose

að0Þþ ðkÞ ≠ 0 and νk is real, we can expand (2.11) at small
frequency as

χðω; kÞ ¼ χðkÞ þ χ2ðkÞGkðωÞ þ real analytic in ω

ð2:22Þ

where

χðkÞ ¼ μ2νU�
bð0Þþ ðkÞ
að0Þþ ðkÞ

; χ2ðkÞ ¼ μ2νU�
νk
νU

1

ðað0Þþ Þ2
ð2:23Þ

are real analytic functions of νk and k2. Note we have used
(2.14) in the above expression for χ2. The spectral function
is then given by

Imχðω; kÞ ¼ χ2ðkÞImGkðωÞ þ…: ð2:24Þ

The factor χ2ðkÞ can be interpreted as a wave function
renormalization of the operator. The … in (2.24) denote
higher order corrections which can be interpreted as
coming from irrelevant perturbations to the SLQL.
In subsequent sections we will describe situations in

which (2.22) and (2.24) break down and give rise to
instabilities. Below we briefly review the semilocal behav-
ior of the IR fixed point discussed in [24] to provide some
physical intuition as to the nature of the disordered phase.
An important feature of the SLQL is that the spectral

weight, which is defined by the imaginary part of the
retarded function (2.12), scales with ω as a power for any
momentum k, which indicates the presence of low energy
excitations for all momenta (although at larger momenta,
with a larger scaling dimension the weight will be more
suppressed).
Another interesting feature of the SLQL, which is a

manifestation of the disparity between the spatial and time
directions of the spacetime metric (2.5), is that the system
has an infinite correlation time, but a finite correlation
length in the spatial directions (where the scale is provided
by the nonzero chemical potential). This is intuitively clear
from the presence of (and lack of) scaling symmetry in the
time (and spatial) directions in the near horizon region. The
correlation length ξ in spatial directions can be read from
the branch point k ¼ iξ−1 in νk. More explicitly, νk in (2.10)
can be rewritten as

νk ¼
1ffiffiffi
6

p
μ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 1

ξ2

s
ð2:25Þ

with

ξ≡ 1

μ�

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2R2 − 6q2� þ 3

2

q ¼ 1ffiffiffi
6

p
ν0μ�

: ð2:26Þ

QUANTUM PHASE TRANSITIONS IN SEMILOCAL … PHYSICAL REVIEW D 91, 025024 (2015)

025024-5



By Fourier transforming (2.24) to coordinate space one
obtains Euclidean correlation function GEðτ ¼ it; ~xÞ with
the following behavior (For details of the Fourier transform
see Appendix of [27]. See also [24] for arguments based on
geodesic approximation):
(1) For x≡ j~xj ≪ ξ (but not so small that the vacuum

behavior takes over),

GEðτ; xÞ ∼
1

τ2δk¼0
: ð2:27Þ

(2) For x ≫ ξ, the correlation function decays at least
exponentially as

GEðτ; xÞ ∼ e−
x
ξ: ð2:28Þ

From the above we see that the system separates into
domains of size ξ ∼ 1

μ. Within each domain a conformal
quantum mechanics governs dynamics in the time direction
with a power law correlation (i.e. infinite relaxation time)
(2.27). Domains separated by distances larger than ξ are
uncorrelated with one another. See Fig. 2 for a cartoon
picture.
This behavior is reminiscent of the local quantum

critical behavior discussed in [7] as proposed for heavy
fermion quantum critical points and also that exhibited in
the electron spectral function for the strange metal phase for
cuprates [21]. We note that there are also some important
differences. First, here the behavior happens to be a phase,
rather than a critical point. Second, while there is nontrivial
scaling only in the time direction, the local AdS2 corre-
lation functions depend nontrivially on k. From (2.25) it is
precisely this dependence of νk on k that gives the spatial
correlation length of the system. Also while at a generic
point in parameter space, the dependence of νk and Gk on k
is analytic and only through k=μ (and thus can be
approximated as k-independent for k ≪ μ), as we will

see in Sec. VII, near a bifurcating quantum critical point,
the dependence becomes nonanalytic at k ¼ 0 and is
important for understanding the behavior around the critical
point. For these reasons, such a phase was named as a
semilocal quantum liquid (SLQL) in [24]. As also dis-
cussed there, SLQL should be interpreted as a universal
intermediate energy phase rather than as a zero temperature
phase. This will have important implications for the
interpretation of quantum critical behavior to be discussed
in later sections, a point to which we will return in the
conclusion section. For now we will treat it as a zero-
temperature phase.

III. SCALAR INSTABILITIES
OF AN ADS SPACETIME

In preparation for the discussion of instabilities and
quantum phase transitions for the finite density system we
introduced in last section, here we review the scalar
instabilities of a pure AdSdþ1 spacetime. As we will see
in the later sections, the instabilities and critical behavior of
our finite density system are closely related to those of
the near horizon AdS2 region. Below we will first consider
general d and then point out some features specific
to AdS2. We will mainly state the results; for details see
Appendix B.
Consider a scalar field ϕ in AdSdþ1, which is dual to an

operator Φ in some boundary CFTd. The conformal
dimension of Φ is given by

Δ� ¼ d
2
� ν; ν ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2R2 þ d2

4

r
ð3:1Þ

where M2 is the mass square for ϕ. For ν ≥ 1, only the þ
sign in (3.1) is allowed. For ν ∈ ð0; 1Þ, there are two ways
to quantize ϕ by imposing Dirichlet or Neumann conditions
at the AdS boundary, which are often called standard and
alternative quantizations respectively, and lead to two
different CFTs. We will call the CFTd in which Φ has
dimension Δþ ¼ d

2
þ ν the CFTIR

d and the corresponding
operator Φþ. The one in which Φ has dimension Δ− ¼
d
2
− ν will be denoted as the CFTUV

d and the operator Φ−.
The range of dimensions in the CFTUV

d is Δ− ∈ ðd
2
− 1; d

2
Þ

with the lower limit (corresponding to ν → 1) approaching
that of a free particle in d spacetime dimension.
Let us consider first ν ∈ ð0; 1Þ. In the CFTUV

d the double
trace operator Φ2

− is relevant (as 2Δ− < d). Turning on a
double trace deformation

κ−μ
2ν�

2

Z
Φ2

− ð3:2Þ

with a positive κ−, the theory will flow in the IR to the
CFTIR

d [28] (and thus their respective names). Turning on

FIG. 2 (color online). A cartoon picture: the system separates
into domains of size ξ ∼ 1

μ. Within each domain a conformal
quantum mechanics governs dynamics in the time direction with
a power law correlation (i.e. infinite relaxation time).
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(3.2) with a κ− < 0 will instead lead to an instability in the
IR, and Φ− will condense (see Appendix B for explan-
ation).8 Thus κ− ¼ 0, i.e. the CFTUV

d , is a quantum critical
point for the onset of instability for condensing the scalar
operator. The double trace deformation

κþμ−2ν�
2

Z
Φ2þ ð3:3Þ

in the CFTIR
d is an irrelevant perturbation and the theory

flows in the UV to the CFTUV
d for negative κþ. Note that

CFTIR
d deformed by (3.3) with κþ < 0 is equivalent to

CFTUV
d deformed by (3.2) with the relation9

κþ ¼ −
1

κ−
: ð3:4Þ

Thus the alternative quantization corresponds to the limit
κþ → −∞. For positive κþ the system develops a UV
instability (see Appendix B). See Fig. 3 for a summary.
For ν > 1, there is only CFTIR

d corresponding to the
standard quantization and the double trace deformation is
always irrelevant. There is a UV instability for κþ < 0
(κþ > 0) for ν ∈ ðn; nþ 1Þ for n an odd (even) integer
(see Appendix B). For example for ν ∈ ð1; 2Þ there is a UV
instability for κþ < 0.
As ν → 0, i.e. M2 → − d2

4
, the two CFTd’s merge into

one at ν ¼ 0. When M2 drops below M2
c ≡ − d2

4
, the so-

called Breitenlohner-Freedman bound, the fixed points
become complex and the conformal symmetry is broken.

Relatedly ν becomes complex and Φ develops exponen-
tially growing modes [12]. The system becomes unstable to
the condensation of Φ modes. Introducing a UV cutoff Λ,
then there is an emergent IR energy scale ΛIR below which
the condensate sets in [30]

ΛIR ∼ Λ exp

�
−

πffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

c −M2
p �

: ð3:5Þ

Thus ν ¼ 0 is another critical point; for all M2 < M2
c an

instability occurs.
Now consider being precisely at ν ¼ 0, i.e. fixM2 ¼ M2

c.
Our system still has another control knob: the double trace
deformation

κ

2

Z
Φ2 ð3:6Þ

is marginal. One can show that it is marginally relevant for
κ < 0 and irrelevant for κ > 0 [28] (see Appendix B 1 b for
a derivation). Thus for κ > 0 the system is stable in the IR,
but for κ < 0 there is an exponentially generated IR scale
(Λ is a UV cutoff)

ΛIR ¼ Λ exp

�
1

κ

�
ð3:7Þ

below which the operator will again condense. As it
requires tuning two parameters, ν ¼ 0 and κ ¼ 0 is a
multicritical point. See Fig. 14 in Appendix B 1 b.
The above discussions apply to any d including d ¼ 1.

There are some new elements for d ¼ 1, i.e. AdS2,
10 which

does not happen for d ≥ 2. First, from (2.10), the dimension
of an operator also depends on its charge, i.e. the second
equation in (3.1) is modified to11

ν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2R2

2 − q2� þ
1

4

r
: ð3:8Þ

Thus ν can become imaginary when charge is sufficiently
large even for a positive M2. Second, for a charged scalar
in AdS2, the range in which both quantizations exists
becomes ν ∈ ð0; 1

2
Þ (see Appendix B 2 for details). Both

features have to do with that the gauge potential in (2.5)
blows up at the infinity and thus affects the boundary
conditions (including normalizability) of a charged
scalar.
In our discussion below, double trace deformations of

the eCFT1 describing the SLQL will play an important

FIG. 3. Flow from CFTUV
d to CFTIR

d (the arrows denote flows to
the IR). In the region between two fixed points, one can describe
the system using either fixed point. To the left of the fixed point
corresponding to CFTIR

d , the system develops a UV instability.
To the right of CFTUV

d , the system develops an IR instability.

8As discussed recently in [20] this instability can be used to
generate a new type of holographic superconductors.

9For a recent discussion of these issues see Appendix of [29].

10We will assume the AdS2 has a constant radial electric field
as in most applications with (2.5) as one such example.

11Note that in (2.10), k2 term comes from dimensional
reduction on R2 and should be considered as part of the AdS2
mass square, i.e. the AdS2 mass square is M2R2

2 ¼ m2R2
2 þ k2

6μ2�
.
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role. In particular, for an operator Φ in which alternative
quantization exists we should also distinguish eCFTIR

1 and
eCFTUV

1 , where Φ has dimension 1
2
� ν, respectively.

IV. INSTABILITIES AND QUANTUM CRITICAL
POINTS AT FINITE DENSITY

We now go back to the (2þ 1)-dimensional system at a
finite density introduced in Sec. II. We will slightly
generalize the discussion there by also including double
trace deformations in the dual CFT3. We will mostly work
in the standard quantization so that our discussion also
applies to νU > 1 and the results for the alternative
quantization can be obtained from those for standard
quantization using (3.4). We will work in the parameter
region that the vacuum theory is stable in the IR, i.e.

m2R2 ≥ −
9

4
; and κþ < 0: ð4:1Þ

Turning on a finite chemical potential can lead to new IR
instabilities and quantum phase transitions. In this section
we discuss these instabilities and the corresponding quan-
tum critical points and in the next section we give an
effective theory description. The subsequent sections will
be devoted to a detailed study of critical behavior around
these quantum critical points.

A. Finite density instabilities

Potentially instabilities due to the condensation of a
scalar operator O can be diagonalized by examining the
retarded function (2.11), which can be generalized to
include double trace deformations (3.3) as [25]

χðω; ~kÞ ¼ μ2νU�
bþðk;ωÞ þ b−ðk;ωÞGkðωÞμ−2νk�
~aþðk;ωÞ þ ~a−ðk;ωÞGkðωÞμ−2νk�

ð4:2Þ

where we have used (B6) and

~a�ðω; kÞ ¼ a�ðω; kÞ þ κþb�ðω; kÞ
¼ að0Þ� ðkÞ þ κþb

ð0Þ
� ðkÞ þOðωÞ: ð4:3Þ

Instabilities will manifest themselves as poles of (4.2) in
the upper half complex-ω-plane, which gives rise to
exponentially growing modes and thus leads to condensa-
tion of ϕ.
In [19], it was found that when one of the following

two conditions happens, (2.22)–(2.24) do not apply and
Eq. (4.2) always has poles in the upper ω-plane,12 implying
instabilities:

(1) νk becomes imaginary for some k, for which there
are an infinite number of poles in the upper half
ω-plane.13 Writing (2.10) as

νk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uþ k2

6μ2�

s
; u≡m2R2

2 þ
1

4
− q2� ð4:4Þ

νk becomes complex for sufficiently small k when-
ever u < 0. For a given m, this always occurs for a
sufficiently large q. For a neutral operator q ¼ 0, u
can be negative for m2R2 lying in the window

−
9

4
< m2R2 < −

3

2
ð4:5Þ

where the lower limit comes from the stability of
vacuum theory (4.1) and the upper limit comes from
the condition u < 0 after using the relation (2.6).
Interpreting m2R2

2 − q2� as an effective AdS2 mass
square (at k ¼ 0), on the gravity side the instability
can be interpreted as violating the AdS2 BF bound
[31–34]. For a charged scalar the instability is also
related to pair production of charged particles from
the black hole and superradiance [19]. On the field
theory side, the instability can be interpreted as due
to formation of bound states in SLQL [24] (see also
discussion in Sec. VII D).

(2) ~að0Þþ ðkÞ can become zero for some special values of
momentum kF. At k ¼ kF it is clear from (4.2) that

since ~að0Þþ ¼ 0, χ has a singularity at ω ¼ 0. Fur-

thermore since að0Þþ changes sign near k ¼ kF, it was
shown in [19] (see Sec. VI B), the phase of (2.12) is
such that a pole moves from the upper half ω-plane
(for k < kF) to the lower half ω-plane (for k > kFÞ
through ω ¼ 0. In Appendix C Figs. 16, 17, we show

some examples of a neutral scalar field for which ~að0Þþ
has a zero at some momentum. On the gravity side a

zero of ~að0Þþ ðkÞ corresponds to the existence of a
normalizable solution of scalar equation in the black
hole geometry, i.e. a scalar hair [19]. Such a normal-
izable mode implies in the boundary field theory the
existence of some soft degrees of freedom and as we
shall see in Sec. VA the instability can be captured by
a standard Landau-Ginsburg model.

In the parameter range (say for m, q, κþ) where either
(or both) instability appears, the system is unstable to the
condensation of the operator O (or in bulk language
condensation of ϕ). For a charged scalar the condensed
phase corresponds to a holographic superconductor [35,36]
and the first instability underlies that of [37,38] as was first
pointed out in [31], while holographic superconductors due
to the second type instability has been discussed recently in12Reference [19] considered only the standard and alternative

quantization. The argument there generalizes immediately to
(4.2) with double trace deformations. 13For example, see the right plot of Fig. 1 of [19].
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[20]. For a neutral scalar, the first type of instability was
first pointed out in [32], and as discussed in [13] the
condensed phase can be used as a model for antiferromag-
netism when the scalar operator is embedded as part of a
triplet transforming under a global SUð2Þ symmetry
corresponding to spin. For a single real scalar field with
a Z2 symmetry, the condensed phase can be considered as a
model for an Ising-nematic phase.
Both types of instabilities can be cured by going to

sufficiently high temperature; there exists a critical temper-
ature Tc, beyond which these instabilities no longer exist
and at which the system undergoes a continuous super-
conducting (for a charged scalar) or antiferromagnetic (for
a neutral scalar) phase transition. As has been discussed
extensively in the literature such finite temperature phase
transitions are of the mean field type, as the boundary
conditions of the finite-temperature black hole horizon are
analytic (see e.g. [13,39,40]). Alternatively one can con-
tinuously dial external parameters of the system at zero
temperature to get rid of the instabilities. The critical values
of the parameters at which the instabilities disappear then
correspond to quantum critical points (QCP) where
quantum phase transitions into a superconducting or an
antiferromagnetic phase occur.

B. Bifurcating quantum critical point

For the first type of instability a quantum critical point
occurs when the effective AdS2 mass becomes zero for
k ¼ 0 [13,14], i.e. from (4.4), at

u ¼ uc ¼ 0: ð4:6Þ

For example for a neutral scalar field (with q ¼ 0) this
happens at

m2
cR2 ¼ −

3

2
: ð4:7Þ

Note that while in AdS/CFT models the mass squarem2 for
the vacuum theory is typically not an externally tunable
parameter, the effective AdS2 mass square can often be
tuned. For example, in the setup of [14,16], the effective
AdS2 mass square can be tuned by dialing an external
magnetic field and so is the example discussed in [13] when
considering a holographic superconductor in a magnetic
field. See also [13] for a phenomenological model. In this
paper we will not worry about the detailed mechanism to
realize the uc ¼ 0 critical point and will just treat u as a
dialable parameter (or just imagine dialing the mass square
for the vacuum theory). Our main purpose is to identify and
understand the critical behavior around the critical point
which is independent of the specific mechanism to realize
it. As will be discussed in subsequent sections, as we
approach uc ¼ 0 from the uncondensed side (u > 0), the
static susceptibility remains finite, but develops a cusp at

u ¼ 0 and if we naively continue it to u < 0 the suscep-
tibility becomes complex. Below we will refer to this
critical point as a bifurcating QCP.

C. Hybridized quantum critical point

The second type of instability results in an intricate phase
structure in the u–κþ plane. For illustration, we restrict our
attention here to 0 < u < 1

24
(i.e. − 3

2
< m2R2 < − 5

4
) where

the story is relatively simple, and relegate the discussion of
the u > 1

24
regime to Appendix C.

For 0 < u < 1
24
, one can readily check numerically that

~að0Þþ is a monotonically increasing function of k for negative
κþ. See Fig. 16. Thus to diagnose possible instability we

need only to examine the sign of ~að0Þþ ðk ¼ 0Þwith the stable
region having ~að0Þþ ðk ¼ 0Þ > 0. This implies that the system
is stable for κþ satisfying14

0 > κþ ≥ κc ≡ −
að0Þþ ðk ¼ 0Þ
bð0Þþ ðk ¼ 0Þ

ð4:8Þ

where the upper limit is required by (4.1). For κþ > 0 there
is a UV instability already present in the vacuum, and this
instability is unaffected by the introduction of finite density.
We will focus on the critical point κc in (4.8) below.

Note that at the critical point κþ ¼ κc

~að0Þþ ðk ¼ 0; κcÞ ¼ 0 ð4:9Þ

and as a result the uniform susceptibility χ in (2.15)
diverges. Such a quantum critical point has been discussed
recently in [20]. As already mentioned in [20] and will be
elaborated more in Sec. VIII, the presence of the strongly
coupled IR sector described by AdS2 gives rise to a variety
of new phenomena which cannot be captured by the
standard Laudau-Ginsburg-Wilson paradigm. For reasons
to be clear in Sec. VIII, below we will refer to such a critical
point as a hybridized QCP.
Note that it is rather interesting that despite that κþ being

an irrelevant coupling, tuning it could nevertheless result in
an IR instability due to finite density effect. In the u-range
we are working in νU < 1, and this phenomenon can be
understood more intuitively through the description in
terms of alternative quantization. From (3.4), the stable
region (4.8) translates into

κ− ≥ −
1

κc
ð4:10Þ

with the alternative quantization itself (κ− ¼ 0) falling into
the unstable region. Note that turning on a double trace

14Note that form2R2 < 0, both bð0Þþ ðk ¼ 0Þ and að0Þþ ðk ¼ 0Þ are
positive, see Fig. 16 in Appendix C.
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deformation in the alternative quantization 1
2
κ−μ

2νU�
R
O2

translates in the bulk description into turning on a bulk
boundary action 1

2
f−
R
ϕ2 where f− ∝ κ− and ϕ is the bulk

field dual to O. Thus we see that at finite density one needs
to turn on a nonzero “boundary mass” to stabilize the
alternative quantization.

D. A marginal quantum critical point

We can also tune κþ and u together to have a doubly
tuned critical point at u ¼ 0, κþ ¼ κ�þ, where the

susceptibility both diverges and bifurcates. The value of
κ�þ can be obtained from u → 0 limit of the expression for
κc given in (4.8), leading to

κ�þ ¼ −
α

β
ð4:11Þ

where α and β are constants defined in Eq. (A22). For the
specific example (4.7) of tuning the AdS4 mass of a neutral
scalar to reach u ¼ 0, the values of α, β are given in
(A27)–(A28) which gives κ� ¼ −2.10.
As we will show in Sec. IX, the dynamical susceptibility

around such a critical point coincide with that of the
bosonic fluctuations underlying the “Marginal Fermi
Liquid” postulated in [21] for describing the strange metal
region of the high Tc cuprates.15

The full phase diagram for a neutral scalar operator is
given in Fig. 4.16 Additional details about the construction
of the phase diagram can be found in Appendix C.

V. EFFECTIVE THEORY DESCRIPTION
OF THE CRITICAL POINTS (μ� ¼ 1)

In this section we illuminate the nature of various
quantum critical points discussed in the last section by
giving a low energy effective boundary theory description
for them. For a hybridized QCP, the discussion below
slightly generalizes an earlier discussion of [20].
For definiteness, for the rest of the paper we will restrict

our discussion to a neutral scalar field with q ¼ 0. Almost
all qualitative features of our discussion apply to the
charged case except for some small differences which
we will mention along the way. To avoid clutter we set
μ� ¼ 1 in this section.
On general grounds we expect that the low energy

effective action of the system can be written as

Seff ¼ SeCFT1
þ SUV ð5:1Þ

where SeCFT1
is the action for the IR fixed point SLQL, for

which we do not have an explicit Lagrangian description,
but (as discussed in Sec. II) whose operator dimensions and
correlation functions are known from gravity in
AdS2 ×R2. SUV arises from integrating out higher energy
degrees of freedom, and can be expanded in terms of
scaling operators in SeCFT1

. The part relevant for O can be
written as

FIG. 4 (color online). The full phase diagram of the system for a
neutral scalar. C (U) denotes regions with (without) IR insta-
bilities; C stands for condensed, U for uncondensed phase. The
region with UV instability is filled with light blue. Top plot: phase
diagram for the standard quantization. For u < 0, i.e. m2R2 < − 3

2
the system is always unstable in the IR with u ¼ 0 the critical line
for a bifurcating QCP. The vertical purple dashed line is at u ¼ 1

24
corresponding to m2R2 ¼ − 5

4
. There is no alternative quantiza-

tion to the right of this line. The vertical black dashed line is at
u ¼ 1

4
corresponding to m2 ¼ 0. The curve separating C and U

approaches infinity when approaching this line. Bottom plot:
phase diagram for the alternative quantization [for νU ∈ ð0; 1Þ,
hence the limited range in u compared to the top plot, u < 1

24
].

The κ− > 0 part of the phase diagram can be obtained from the
κþ < 0 part of the standard quantization phase diagram by using
the relation (3.4). In the vacuum, the system has an IR instability
for κ− < 0, i.e. with κ− ¼ 0 the critical line. At a finite density the
critical line is pushed into the region κ− > 0.

15It has also been pointed out by David Vegh [41] that the
retarded function for a scalar operator with ν ¼ 0 in AdS2 gives
the bosonic fluctuations of the “Marginal Fermi Liquid.”

16A similar phase diagram for AdS5 was determined in [42] for
a wider range of u.
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SUV ¼ 1

2

Z
χðkÞJ~kJ−~k −

1

2

Z
ξkΦ~kΦ−~k þ

Z
ηkΦ~kJ−~k þ…

ð5:2Þ

where Φ~k is the scaling operator at the IR fixed point to
which O~k matches. We have written the action in momen-
tum space since the dimension of Φ~kðtÞ is momentum-
dependent, and the integral signs should be understood asR ¼ R dtd~k. We have introduced a source J~k for O~k and…
denotes higher powers of Φ~k and J. Since we are only
interested in two-point functions it is enough to keep SUV to
quadratic order in Φ and J. We have also only kept the
lowest order terms in the expansion in time derivatives. The
“UV data” χðkÞ, ηk and ξk can be found from by integrating
out the bulk geometry all the way to the boundary of the
near-horizon AdS2 region [29]; χðkÞ is the static suscep-
tibility and other coefficients can be expressed in terms of
functions a�, b� we introduced earlier as

χðkÞ ¼ bð0Þþ ðkÞ
~að0Þþ ðkÞ

; ξk ¼
~að0Þ− ðkÞ
~að0Þþ ðkÞ

;

ηk ¼
ffiffiffiffiffi
W

p

~að0Þþ ðkÞ
; W ≡ að0Þþ bð0Þ− − að0Þ− bð0Þþ : ð5:3Þ

In (5.1) we are working with the standard quantization of
eCFT1; in terms of the notation introduced at the beginning
of Sec. III, it corresponds to eCFTIR

1 and Φk corresponds to
Φþ with dimension 1

2
þ νk. Since the full action (5.1) is

essentially given by eCFT1 with (irrelevant) double trace
deformations, the full correlation function following from
(5.1) can be readily obtained using (B6),

χðω; kÞ ¼ χðkÞ þ η2k
G−1
k þ ξk

: ð5:4Þ

It can be readily checked that (5.4) agrees with the lowest
order ω expansion of (4.2) with the substitution of (5.3).
Alternatively, one can obtain (5.3) by requiring (5.4) to
match (4.2) [29].17

When νk for Φ~k lies in the range νk ∈ ð0; 1Þ [or ð0; 1
2
Þ for

a charged operator], it is also useful to write the low energy
theory in terms of the operator in the alternative quantiza-
tion, i.e. in terms of eCFTUV

1 . Again following the pro-
cedure of [29] we find

Seff ¼ SeCFTUV
1

−
1

2

Z
ξ−Φ2

− þ
Z

η−Φ−J þ
1

2

Z
χ−J2

ð5:5Þ
with

χ− ¼ bð0Þ− ðkÞ
~að0Þ− ðkÞ ; ξ− ¼ −

~að0Þþ ðkÞ
~að0Þ− ðkÞ ¼ −

1

ξk

η− ¼
ffiffiffiffiffi
W

p

~að0Þ− ðkÞ : ð5:6Þ

In (5.5) to distinguish from (5.1) we have reinstated the
subscript (−) and suppressed k-dependence.

A. Hybridized QCP

Near a hybridized QCP (4.9), the effective action
(5.1)–(5.2) breaks down as all the coefficient functions
in (5.2) diverge at k ¼ 0. For example, near κc at small k,
the static susceptibility χðkÞ has the form

χð~kÞ ≈ 1

ðκþ − κcÞ þ hk~k
2
; hk ≡ ∂k2 ~a

ð0Þ
þ ðkÞ

bð0Þþ ðkÞ

����
k¼0;κþ¼κc

ð5:7Þ

which is the standard mean field behavior with the spatial
correlation length scaling as

ξ ∼ ðκþ − κcÞ−νcrit ; νcrit ¼
1

2
: ð5:8Þ

The reason for these divergences is not difficult to identify;
we must have integrated out some gapless modes, which
should be put back to the low energy effective action.

Indeed as discussed in [19,29], when ~að0Þþ ðkÞ becomes zero
at some values of k, the bulk equation of motion develops a
normalizable mode with ω ¼ 0, which will give rise to
gapless excitations in the boundary theory. Thus near a
hybridized QCP, we should introduce a new field φ in the
low energy theory. Clearly there is no unique way of doing
this18 and the simplest choice is

Seff ¼ SeCFT1
−
1

2

Z
ckΦ2

~k
þ
Z

λkΦ−~kφ~k

−
1

2

Z
φ−~kχ

−1φ~k þ
Z

φJ ð5:9Þ

where

χðkÞ ¼ bð0Þþ ðkÞ
~að0Þþ ðkÞ

; λk ¼
ηk
χk

¼
ffiffiffiffiffi
W

p

bð0Þþ ðkÞ
;

ck ¼ ξk þ χkλ
2
k ¼

bð0Þ− ðkÞ
bð0Þþ ðkÞ

: ð5:10Þ

17This is the approach taken by [43].

18We can for example make a field redefinition in φ as
φ → Z1φþ Z2Φ.
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Now all the coefficient functions are well defined near a
hybridized QCP (4.9), where φ becomes gapless.
It is worth reemphasizing that both φ and Φ should be

considered as low energy degrees of freedom, representing
different physics. Given that in (5.9) only φ couples to the
source J for the operator O, φ can be considered as the
standard Laudau-Ginsburg order parameter (i.e. essentially
O written as an effective field) representing extended
correlations. In particular the phase transition is signaled
by that it becomes gapless. The last two terms in (5.9) then
corresponds to the standard Landau-Ginsburg action for the
order parameter. In contrast, as we discussed in Sec. II C,
field Φ from SLQL can be considered as representing some
strongly coupled semilocal degrees of freedom whose
effective action is given by the first two terms in (5.9).
The key element in (5.9) is that the Laudau-Ginsburg order
parameter φ is now hybridized with (through the mixing
term

R
λkΦ~kφ~k) some degrees of freedom in SLQL, which

are not present in conventional phase transitions. This is the
origin of the name “hybridized QCP.”
In summary, the action (5.9) can be written as

Seff ¼ ~SeCFT1
½Φ� þ λ

Z
Φφþ SLG½φ� þ

Z
φJ ð5:11Þ

where ~SeCFT1
is given by the first two terms in (5.9) and

SLG ¼ −
1

2

Z
φ−~kðκþ − κc þ hkk2Þφ~k: ð5:12Þ

In this coupled theory, there is then an interesting interplay
between semilocal and extended degrees of freedom. As
shown in [20] and as we will see in Sec. VIII this leads to a
variety of novel critical behavior. When φ is massive, i.e.
away from the critical point, one can integrate out φ and
obtain a low energy effective theory solely in terms of Φ as
in (5.1).
In the range of νk for which the alternative quantization

for the SLQL applies, the low energy theory can also be
described using (5.5). It is interesting that in this formu-
lation all coefficients functions in (5.5) are well defined
near a hybridized QCP. Thus there is no need to introduce φ
any more and (5.5) is the full low energy effective theory.
Then how does the SLQL sector of (5.5) know that we are
dialing the effective mass of φ in (5.9) to drive a quantum
phase transition through a hybridized QCP? What happens
is that through hybridization between Φ and φ, when one
drives the effective mass for φ to zero, the double trace
coupling in (5.1), ξk is driven to infinity and when
expressed in terms of alternative quantization, the corre-
sponding double trace coupling ξ− is driven through ξ− ¼ 0
[see (5.6)], which is precisely a quantum critical point of
the eCFT1 itself (see discussion of Sec. III and Appendix B
1 a). Thus in this formulation, dialing the external param-
eter directly drives to a critical point of the SLQL sector.

It is also important to emphasize that in the formulation
of (5.5), while eCFT1 involves only the time direction, this
theory can nevertheless describe the quantum phase tran-
sition of the full system including that the spatial corre-
lation length goes to infinity near the critical point, since
spatial correlations are encoded in the various k-dependent
coefficient functions (including the cosmological constant).
But this is achieved by some level of conspiracy among
various coefficient functions in (5.5), which will not work
using generic coefficients as one would normally do in
writing a general low energy effective theory. In this sense
the effective action (5.9) in terms of two sectors is a more
“authentic” low energy theory.

B. Bifurcating QCP

Let us now consider a bifurcating QCP (4.6). Since κþ
does not play a role here, for notational simplicity we will
set it to zero, i.e. ~a� become a�.
At u ¼ 0, the fixed points corresponding to the standard

and alternative quantization for Φk¼0 merge into a single
one, and for u < 0, the SLQL becomes unstable as Φ will
develop exponentially growing modes as discussed in
Sec. III and Appendix B 1 b.
At a bifurcating QCP, all the coefficient functions in (5.2)

remain finite. For example, in the u → 0 limit, the sus-
ceptibility χðk ¼ 0Þ can be written as

χðk ¼ 0Þ ¼ β

α
−

ffiffiffi
u

p
2νUα

2
þ… ð5:13Þ

where α, β are some numerical constants and we have used
(A22), (A26). Thus there is no need to introduce the
Landau-Ginsburg field φ as for a hybridized QCP. In other
words, in (5.9), at a bifurcating QCP, φ remains gapped and
we can integrate it out. Nevertheless, various coefficient
functions in (5.2) do become singular at u ¼ 0, with a
branch point singularity, as can be seen from the second
term in (5.13). If we naively extend (5.13) and ηk, ξk to
u < 0, they become complex.19 Also note that from
Eq. (2.26) the spatial correlation length of SLQL does
diverge when u → 0 as

ξ ¼ 1ffiffiffi
6

p ffiffiffi
u

p : ð5:14Þ

Let us now focus on the homogenous mode (i.e. k ¼ 0)
and consider the u → 0 limit of (5.1)–(5.3). Note as u → 0,

ξk¼0¼ 1−2
ffiffiffi
u

p ~α

α
þ…; η2k¼0¼

ffiffiffi
u

p
νUα

2
þ… ð5:15Þ

19This complexity is of course unphysical as for u < 0 the
disordered phase based on which (5.13) is calculated is unstable.
As we will see in Sec. VII the susceptibility for the condensed
phase is indeed real.
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where we have used (A22) and (2.14). Also note
from (2.20)

Gk¼0ðωÞ → −1þ 2
ffiffiffi
u

p
G0ðωÞ; u → 0 ð5:16Þ

with G0ðωÞ the retarded function at ν ¼ 0, given by20

G0ðωÞ ¼ − log

�
−

iω
2μ�

�
− γE ð5:17Þ

where μ� is a UV regulator [it is convenient to chose to use
the same μ� (2.3) that is supplied by the full theory].21

Since SeCFT1
in (5.1) is defined to be the theory which

gives Gk of (5.16), we see that the u → 0 is a bit subtle as a
straightforward limit does not gives an action whose
retarded function is (5.17). An efficient way to proceed
is to write down the general action

Seff ¼ Sðν¼0Þ
eCFT1

þ ~χ0
2

Z
dtJ2 −

~ξ0
2

Z
dtΦ2 þ ~η

Z
dtΦJ þ…

ð5:18Þ

where J, Φ are shorthand for Jk¼0 and Φk¼0 and Sðν¼0Þ
eCFT1

denotes the action for the IR fixed point in which the
retarded function for Φ is given by (5.17). Various
coefficients in (5.18) can then be deduced by matching
the retarded function from (5.18) with the u ¼ 0 limit of
(2.11), which is

χðu¼0Þðω; k ¼ 0Þ ¼ βG0ðωÞ þ ~β

αG0ðωÞ þ ~α
: ð5:19Þ

We find that22

~χ0 ¼
~β

~α
; ~ξ0 ¼

α

~α
; ~η20 ¼

1

2νU ~α
2
: ð5:20Þ

For the specific example of tuning to u ¼ 0 by dialing the
mass for the bulk scalar field (4.7), the numerical values of
α, β, ~α, ~β, νU are given in Eqs. (A27)–(A28) in Appendix A.

C. Marginal critical point

In (5.18), Φ has dimension 1
2
and thus the double trace

term Φ2 is marginal. As discussed in Sec. III and
Appendix B 1 b, it is marginally irrelevant when its
coupling ~ξ0 is positive and marginally relevant when ~ξ0
is negative (leading to a condensed phase), with ~ξ ¼ 0

being a multicritical point. When κþ ¼ 0, the value of ~ξ0 is
given by (5.20), which for the specific example of (4.7) has
a positive value and thus the system is IR stable. Turning on
a nonzero κþ, ~ξ0 generalizes to

~ξðκÞ0 ¼ αþ κþβ
~αþ κþ ~β

ð5:21Þ

and the susceptibility (5.19) to

χðu¼0;κþÞðω; k ¼ 0Þ ¼ βG0ðωÞ þ ~β

ðαþ κþβÞG0ðωÞ þ ð ~αþ κþ ~βÞ
:

ð5:22Þ

There is thus a critical point at

κ�þ ¼ −
α

β
ð5:23Þ

which agrees with (4.11) obtained from directly taking the
u → 0 limit of (4.8). At the critical point, there is a
divergent static susceptibility

χðu¼0;κþÞðω ¼ 0; k ¼ 0Þ ¼ β

αþ κþβ
: ð5:24Þ

For κþ < κ�þ, ~ξ
ðκÞ
0 < 0, and the system is unstable to the

condensation of O. In this case, the condensation is driven
by a marginally relevant operator (thus for the name
marginal critical point) which generates an exponential
IR scale (3.7)

ΛIR ∼ μ exp

�
1

~ξðκÞ0

�
ð5:25Þ

just as in the BCS instability for superconductivity.

VI. ASPECTS OF THE CONDENSED PHASE

In this section we discuss some qualitative features of the
spacetime geometry corresponding to the condensed state
of a neutral scalar. In particular, we show that in the IR, the
solution again asymptotes to AdS2 ×Rd−1, but with a
different curvature radius and transverse size compared
with the uncondensed solution. The discussion applies to
both types of instabilities discussed in Sec. IV.
Consider the Einstein-Maxwell action coupled to a

neutral scalar field ϕ

S ¼ 1

2κ2

Z
ddþ1x

ffiffiffiffiffiffi
−g

p �
Rdþ1 þ

dðd − 1Þ
R2

−
R2

g2F
F2

�
þ Sϕ

ð6:1Þ

where F ¼ dA and

20G0 is obtained by solving directly the bulk equation of
motion at ν ¼ 0.

21Contrary to other parts of the section we reintroduced μ�
for (5.17) only.

22There is a systematic procedure to derive these coefficients
directly from the u → 0 limit of (5.1), which is not needed here.
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Sϕ ¼ 1

2κ2g

Z
ddþ1x

ffiffiffiffiffiffi
−g

p �
−
1

2
ð∂ϕÞ2 − VðϕÞ

�
; ð6:2Þ

where g is the coupling constant for the matter field.
In the absence of any charged matter the equation of

motion for At is simply Gauss’s law

∂r

�
1

g2F

ffiffiffiffiffiffi
−g

p
grrgtt∂rAt

�
¼ 0: ð6:3Þ

Note we work in a gauge in which Ar ¼ 0. This equation is
nothing but the electric flux conservation

Eprop

g2F
A ¼ const ð6:4Þ

with Eprop ≡
ffiffiffiffiffiffiffiffiffiffiffi
grrgtt

p ∂rAt the electric field in a local proper

frame and A≡
ffiffiffiffiffiffiffiffi
−g

gttgrr

q
the transverse area. The boundary

charge density ρB is the canonical momentum with respect
to At at infinity, which can be written as

ρB ¼ 2R2

κ2
Eprop

g2F
A

����
∞
¼ 2R2

κ2
Eprop

g2F
A

����
rh

ð6:5Þ

where we have used (6.4). Given that the entropy density s
is the area of the horizon,

s ¼ 2π

κ2
Aðr ¼ rhÞ ð6:6Þ

Eq. (6.5) also implies that

ρB
s
¼ R2

π

Eprop

g2F

����
r¼rh

: ð6:7Þ

This is a rather intriguing result which expresses the
dimensionless ratio of charge density over the entropy
density in terms of the local electric field at the horizon in
units of the asymptotic AdS radius.
We now express this in terms of more geometric

quantities. To do this, we assume that ϕ goes to zero
(which is a local maximum of V) at asymptotic AdSdþ1

infinity and in the interior settles into a constant value
ϕ ¼ ϕ0 which is a nearby local minimum. We choose the
normalization of VðϕÞ so that Vð0Þ ¼ 0 and thus
Vðϕ0Þ < 0. At the IR fixed point, the effective cosmologi-
cal constant is modified from the asymptotic value. For
convenience we define

1

~R2
2

¼ 1

R2
2

−
Vðϕ0Þ

g
;

1

R2
2

¼ dðd − 1Þ
R2

ð6:8Þ

where R2 is the AdS2 radius in the uncondensed phase.
Since Vðϕ0Þ < 0, we have R2 > ~R2.

Now if we require a nonsingular solution, i.e. if the
electric field is nonsingular,23 flux conservation (6.4) tells us
the area A should be finite in the IR. We thus expect that the
IR geometry factorizes into the form M2 ×Rd−1 with M2

some two dimensional manifold involving r, t. Near the
horizon we can thus write the dþ 1 dimensional metric as

ds2 ¼ gMNdxMdxN ¼ gð2Þμν dxμdxν þ a2d~x2d−1 ð6:9Þ

where μ, ν run over the 2d space ðr; tÞ and a is a constant.
Now dimensionally reduce along all the spatial directions,
the action becomes

S ¼ 1

2κ2

Z
d2x

ffiffiffiffiffiffiffiffiffiffi
−gð2Þ

q
ad−1

�
R2 þ

1

~R2
2

−
R2

g2F
F2

�
: ð6:10Þ

Note that herewe assume that all active fields do not couple in
a special way to the transverse spatial components of the
metric a, whose effect can thus be taken into account purely
from the ad−1 factor in the metric determinant; a nonzero
magnetic fieldFxy for examplewould violate this assumption
and introduce extra a-dependence into the action.
Varying the 2d metric gð2Þ we find

2E2
prop ¼ −F2 ¼ g2F

R2 ~R2
2

ð6:11Þ

which is simply a constraint on the electric field. Varying
with respect to a and using (6.11) in the resulting equation,
we find

R2 ¼ −
2

~R2
2

ð6:12Þ

which implies thatM2 is given by an AdS2 with radius ~R2,
i.e. the IR metric can be written as

ds2 ¼
~R2
2

ξ2
ð−dt2 þ dξ2Þ þ a2d~x2d−1: ð6:13Þ

From (6.11) we also find that

At ¼
ed
ξ
; with ed ≡ gF ~R2ffiffiffi

2
p

R
: ð6:14Þ

Given ρB we can now also determine the value of a
from (6.5)

ad−1 ¼ ρBκ
2gFffiffiffi
2

p ~R2

R
: ð6:15Þ

23If there is a horizon, this means nonsingular also at the
horizon.
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Now using (6.11) in (6.7) we also find that

ρB
s
¼ 1

~R2

�
Rffiffiffi
2

p
πgF

�
: ð6:16Þ

Note the combination of R and gF appearing in the brackets
is the ratio of gauge to gravitational couplings. Our
discussion leading to (6.16) only depends on the factorized
form of (6.9), which of course also applies to the uncon-
densed phase with ~R2 replaced by R2. As we are now in a
lower point in the bulk effective potential, we have
~R2 < R2, and thus ρB

s increases in the condensed phase.
Keeping the charge density fixed, this implies that the
entropy density s is smaller in the condensed phase, i.e. the
condensate appears to have gapped out some degrees of
freedom. Note that (6.16) also provides a boundary theory
way to interpret the AdS2 radius: it measures the number of
degrees of freedom needed to store one quantum of charge.
We conclude this section by pointing out a difference

between the geometries corresponding to the condensed
states of a charged (holographic superconductor) and a
neutral (AFM-type state) scalar. As discussed in the above
the infrared region of the bulk geometry for the condensate
of a neutral scalar is still given by an AdS2 ×R2, but with a

smaller curvature radius and entropy density than those of
the uncondensed geometry. This implies that such a neutral
condensate is not yet the stable ground state, and at even
lower energy some other order has to take over [24]. We
will return to this point in the conclusion section. In
contrast, the geometry for a holographic superconductor
at zero temperature is given by a Lifshitz geometry (which
includes AdS4 as a special example) [44–46] in the infra-
red. The black hole has disappeared and the system has zero
entropy density. Such a solution may be stable and thus
could describe the genuine ground state. Note, however, in
both cases, the condensed state still has some gapless
degrees of freedom left. See Fig. 5 for a cartoon which
contrasts the difference between the two cases.

VII. CRITICAL BEHAVIOR OF A
BIFURCATING QCP

We now proceed to study the critical behavior of the
various types of critical points identified in Sec. IV. In this
section we study the bifurcating quantum critical point,
including the static and finite frequency behavior at zero
temperature and then thermal behavior. In this section we
will set the double trace deformation to zero, i.e. κþ ¼ 0, as
the story for a nonzero κþ is exactly the same.

A. Zero temperature: From uncondensed side

For convenience we reproduce the expression for the
zero-temperature susceptibility (2.11),

χðω; ~kÞ ¼ μ2νU�
bþðk;ωÞ þ b−ðk;ωÞGkðωÞμ−2νk�
aþðk;ωÞ þ a−ðk;ωÞGkðωÞμ−2νk�

ð7:1Þ

with

νk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uþ k2

6μ2�

s
; u≡m2R2

2 þ
1

4
: ð7:2Þ

To study the behavior near the critical point u ¼ 0 we study
the implications of taking νk → 0 in (7.1), i.e. both k2=μ2

and u are small.

1. Static properties

We first study the critical behavior of the static suscep-
tibility (2.15) by setting ω → 0 in (7.1) and taking u → 0
from the uncondensed side u > 0. From Eq. (A22) we find
that for small νk,

χðkÞ ¼ μ2νU�
β þ νk ~β

αþ νk ~α
þOðν2k; k2Þ ð7:3Þ

where α, β, ~α, ~β are numerical constants. Setting k ¼ 0 we
find the zero momentum susceptibility is given by

FIG. 5. Comparison of the spacetime geometries (close to the
critical point) corresponding to the condensed state of a neutral
(left) and charged scalar (right). The vertical direction in the plot
denotes the R2 directions. For AdS2 the transverse directions has
a constant size independent of radial coordinates, while for the
Lifshitz geometry, the size of the transverse directions shrinks to
zero in the interior. Close to the critical point, the IR scale at
which the scalar condensate sets in is much smaller than the
chemical potential and we expect an intermediate spacetime
region described by the AdS2 of the original black hole geometry.
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χ ¼ μ2νU�
β þ ffiffiffi

u
p

~β

αþ ffiffiffi
u

p
~α
: ð7:4Þ

As already mentioned earlier, at the critical point the static
susceptibility remains finite, given by

χju→0þ ¼ χ0 ≡ μ2νU�
β

α
; ð7:5Þ

which is in sharp contrast with the critical behavior from
the Landau paradigm where one expects that the uniform
susceptibility always diverges approaching a critical point.
Due to the square root appearing in (7.4), χ has a branch
point at u ¼ 0 and bifurcates into the complex plane for
u < 0. Of course, when u < 0, Eq. (7.4) can no longer be
used, but the fact that it becomes complex can be
considered an indication of instability. Furthermore, taking
a derivative with respect to u we find that

∂uχ ¼ μ2νU�
α~β − β ~α

2α2
1ffiffiffi
u

p ¼ −
μ2νU�
4νUα

2

1ffiffiffi
u

p → ∞; ðu → 0Þ

ð7:6Þ

where we have used (A26) in the second equality. Thus
even though χðuÞ is finite at u ¼ 0, it develops a cusp there,
as shown in Fig. 6. It will turn out convenient to introduce a
quantity

χ� ≡ μ2νU�
1

4νUα
2
¼ χ0

1

4νUαβ
ð7:7Þ

and then (7.6) becomes

∂uχ ¼ −
χ�ffiffiffi
u

p : ð7:8Þ

Similarly, taking derivative over k2 in (7.3) and then setting
k ¼ 0, we find that

∂k2χð~kÞjk¼0 ¼ −
χ�

6μ2�
ffiffiffi
u

p ; u → 0: ð7:9Þ

Note that this divergence is related to the fact for any u > 0,

χð~kÞ is analytic in k2, but not at u ¼ 0, where νk ∝ k.
The above nonanalytic behavior at k ¼ 0 should have

important consequences when we Fourier transform χð~kÞ to
coordinate space. Indeed by comparing (4.4) with (2.25),
we find that

ξ ¼ 1ffiffiffi
6

p
μ�

ffiffiffi
u

p : ð7:10Þ

Thus as u → 0, the correlation length ξ diverges as u−
1
2

which is the same as that in a mean field theory. More
explicitly, Fourier transforming χðkÞ to coordinate space we
find asymptotically at large x,

GðxÞ≡
Z

d2k
ð2πÞ2 χð

~kÞeikx ≈ χ�
ffiffiffi
u

p
πx2

exp

�
−
x
ξ

�
: ð7:11Þ

Note however that there is additional suppression by factors
of

ffiffiffi
u

p
in the numerator of this expression; this suggests that

the actual power law falloff at the critical point is not the
one found from setting u → 0 above, but is rather faster.
Indeed performing the integral at precisely u ¼ 0 we find

GðxÞju¼0 ∼
μ2Δ−1�
ðμ�xÞ3

ð7:12Þ

with a different exponent ∼x−3.

2. Dynamical properties

We now turn to the critical behavior of the susceptibility
(2.11) at a nonzero ω near the critical point from uncon-
densed side u > 0. We should be careful with the νk → 0

limit as the factor ðωμ�Þ2νk in the AdS2 Green function (2.20)
behaves differently depending on the order we take the
νk → 0 and ω → 0 limits. For example, the Taylor expan-
sion of such a term in small νk involves terms of the form
νk logðω=μ�Þ, but in the small ω limit, the resulting large
logarithms may invalidate the small νk expansion.
To proceed, we note first that the expression (7.1)

together with the explicit expression for the AdS2
Green’s function (2.20) can be written

χðω; ~kÞ ¼ μ2νU�

 
bþΓðνkÞð−iω2μ�

Þ−νk þ b−Γð−νkÞð−iω2μ�
Þνk

aþΓðνkÞð−iω2μ�
Þ−νk þ a−Γð−νkÞð−iω2μ�

Þνk

!
:

ð7:13Þ

0.02 0.01 0.01 0.02 0.03 0.04

0.5

1.0

1.5

u

u

FIG. 6. A plot of χðuÞ as a function of u with μ� ¼ 1. We also
include the behavior on the u < 0 side to be worked out in
Sec. VII B. Note that while there is a cusp in χ approaching the
critical point from the uncondensed side (u > 0), there is no cusp
approaching the critical point from the condensed side (u < 0).
From both sides the susceptibility is finite at the critical point, but
there is a jump in their values.
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Now from the discussion at the beginning of Appendix A 2,
we can write

a� ¼ að�νk; k2;ωÞ; b� ¼ bð�νk; k2;ωÞ ð7:14Þ

where aðν; k2;ωÞ and bðν; k2;ωÞ are some functions
analytic in all its variables. Using (7.14), Eq. (7.13) can
be further written as

χðω; ~kÞ ¼ μ2νU�
fbðνkÞ − fbð−νkÞ
faðνkÞ − fað−νkÞ

ð7:15Þ

where24

fbðνÞ≡ bðνÞνΓðνÞ
�
−iω
2μ�

�
−ν

ð7:16Þ

and similarly for faðνÞ. The point of this rewriting is to
illustrate that if fa;bðνÞ have nonsingular Taylor expansions
in ν—which is the case for any finite ω—then if we expand
numerator and denominator in ν all the terms that are odd in

νwill cancel, and thus χðω; ~kÞ contains only even powers of
νk, i.e. χðω; ~kÞ ¼ χðω; u; k2Þ and for any nonzero ω,

χðω; ~kÞ is analytic at u ¼ 0 and k2 ¼ 0. There is no
branch-point singularity that was found in (7.3). In par-

ticular the expression for χðω; ~kÞ approaching u ¼ 0 for the
condensed side can be simply obtained by analytically
continuing (7.15) to u < 0. This should be expected since
for a given ω, as we take u → 0−, it should always be the
case that ω is much larger than the scale where the physics
of condensate sets in, which should go to zero with u. Thus
the physics of the condensate is not visible at a given
nonzero ω. We will see in next section that the same thing
happens at finite temperature.
Now expanding the Gamma function and a�, b� in

(7.13) to leading order in νk, but keeping the full depend-
ence on ω, we find that

χðω; ~kÞ ¼ χ0
sinh ðνk logð−iωωb

ÞÞ
sinh ðνk logð−iωωa

ÞÞ þ… ð7:17Þ

where the energy scales ωa;b are given by

ωa ¼ 2μ� exp
�
~α

α
− γE

�
; ωb ¼ 2μ� exp

�
~β

β
− γE

�
;

ð7:18Þ

where γE is the Euler-Mascheroni constant, and χ0 is
uniform susceptibility at the critical point given earlier

in (7.5). For a charged scalar, Eqs. (7.15) and (7.17) still
apply with slightly different functions fa, fb and ωa, ωb
becoming complex.
Considering νk → 0 in (7.17) with a fixed ω, we then

find

χðω; ~kÞ ¼ χ0
logð ωωb

Þ − i π
2

logð ωωa
Þ − i π

2

þOðu; k2Þ ð7:19Þ

whose leading term is simply (5.19) and the corrections are
analytic in both u and k2. Note that both above expression
and (7.17) have a pole at ω ¼ iωa in the upper half ω-plane.
But this should not concern us as our expressions are only
valid for ω ≪ μ� ∼ ωa.
Further taking the ω → 0 limit in (7.19) then gives

χðω; ~kÞ ¼ χ0

�
1þ 1

2νUαβ

1

logω
þ iπ
4νUαβ

1

ðlogωÞ2 þ…

�
¼ χ0 þ

2χ�
logω

þ iπχ�
ðlogωÞ2 þ… ð7:20Þ

where we have kept the leading nontrivial ω-dependence in
both real and imaginary parts and used (7.7).
Equations (7.19) and (7.20) give the leading order

expression at nonzero u [for both signs, as χðω; kÞ is
analytic at u ¼ 0 at a nonzero ω] and k2 as far as νk log

ω
ωa;b

remains small. They break down when ω becomes expo-
nentially small in 1

ν,

ω ∼ ΛCO; ΛCO ∼ μ�e
− #ffiffi

u
p ð7:21Þ

where # denotes some Oð1Þ number. In the regime of
(7.21), the susceptibility (7.17) crosses over to

χðω → 0; ~kÞ ¼ χ0 − 2νkχ� − 4νkχ�

�
−iω
2μ�

�
2νk þ…

ð7:22Þ
which is the low energy behavior (2.22) for the uncon-
densed phase and also consistent with (7.3). Note that… in
the above equation also includes perturbative corrections
in ω.

B. Zero temperature: From the condensed side

When u < 0, the IR scaling dimension of O~k becomes

complex for sufficiently small k as νk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uþ k2

6μ2�

q
¼ −iλk

is now pure imaginary.25 For a given nonzero ω and
juj sufficiently small, as discussed after (7.15) the
corresponding expression for χðk;ωÞ can be obtained

24Note that Γðν → 0Þ ∼ 1
ν − γ þOðνÞ, necessitating the extra

factor of ν in the definition of fa;bðνÞ to obtain a nonsingular
Taylor expansion.

25Note that the choice of branch of the square root does not
matter as (7.17) is a function of ν2k.
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from (7.17) by simply taking u to be negative, after which
we find

χðω; ~kÞ ¼ χ0
sin ðλk logð−iωωb

ÞÞ
sin ðλk logð−iωωa

ÞÞ þ…: ð7:23Þ

While (7.17) is valid to arbitrarily small ω, Eq. (7.23) has
poles in the upper half frequency plane (for k ¼ 0) at26

ωn ¼ iωa exp

�
−

nπffiffiffiffiffiffi
−u

p
�
≡ iΛn; ; n ¼ 1; 2… ð7:24Þ

with

Λn ∼ μ exp

�
−

nπffiffiffiffiffiffi
−u

p
�
: ð7:25Þ

In particular, we expect (7.23) to break down for ω ∼ Λ1,
the largest among (7.25), and at which scale the physics of
the condensate should set in. This is indeed consistent with
an earlier analysis of classical gravity solutions in [13,14]
where it was found thatO develops an expectation value of
order

hOi
μΔ

∼
�
Λ1

μ

�1
2

: ð7:26Þ

The exponent 1
2
in (7.26) is the scaling dimension of O

in the SLQL for u ¼ 0, whileΔ is its UV scaling dimension
in the vacuum. It was also found in [13,14] there are an
infinite number of excited condensed states with a dynami-

cally generated scale given by Λn and hOi ∼ Λ
1
2
n, respec-

tively. Thus the pole series in (7.24) in fact signal a
geometric series of condensed states. This tower of con-
densed states with geometrically spaced expectation values
is reminiscent of Efimov states [15].27 The largest is in the
first state n ¼ 1, which is the energetically favored vacuum
(see the discussion of free energy below).

1. Static susceptibility

In Appendix D, we compute the response of the system
to a static and uniform external source in this tower of
“Efimov” states. The result is rather interesting and can be
described as follows. One finds that the response in all the
“Efimov” states can be read from a pair of continuous spiral
curves described parametrically by (for

ffiffiffiffiffiffi
−u

p
≪ 1)28

A¼ z3−Δ�
γffiffiffiffiffiffi
−u

p α

ffiffiffiffiffi
z�
ζ�

r
sin

� ffiffiffiffiffiffi
−u

p
log

ζ�
z�
þ ffiffiffiffiffiffi

−u
p ~α

α

�
;

B¼ z−Δ�
γffiffiffiffiffiffi
−u

p β

ffiffiffiffiffi
z�
ζ�

r
sin

� ffiffiffiffiffiffi
−u

p
log

ζ�
z�
þ ffiffiffiffiffiffi

−u
p ~β

β

�
; ð7:27Þ

where A and B denote the source and expectation value for
O respectively, γ is a Oð1Þ constant. ζ−1� is a dynamical
energy scale which parametrizes movement through the
solution space; as we vary ζ�, we trace out a spiral in the
ðA;BÞ plane.29 See Fig. 7. Since we are considering a
system with a Z2 symmetry O → −O, in Fig. 7 there is
also a mirror spiral obtained from (7.27) by tak-
ing ðA;BÞ → −ðA; BÞ.
The tower of “Efimov” states is obtained by setting the

source A ¼ 0, which leads to

ζ� ¼ ζn ≡ z�e
nπffiffiffi
−u

p − ~α
α; n ¼ 1; 2;… ð7:28Þ

which when plugged into the expression for B in (7.27)
gives

0.3 0.2 0.1 0.1 0.2 0.3

0.2

0.1

0.1

0.2

FIG. 7 (color online). The spiral in the B–A plane passing

through Bð1Þ
þ gives the solution described by (7.27) as ζ� is varied.

The spiral passing through Bð1Þ
− ¼ −Bð1Þ

þ gives the mirror curve
from O → −O reflection symmetry. The normalizable solutions
in the standard quantization are given by the intersections of the

spiral with respect to the B-axis with Bð1Þ
� the ground states and

Bð2Þ
� the first excited states, etc. The red straight line has slope

given by (7.30). As
ffiffiffiffiffiffi
−u

p
→ 0 most part of the spiral becomes

parallel to it. For ease of visulazation a nonlinear mapping has
been performed along the major and minor axes of the spiral;
while the zeros of A and B are preserved by this mapping the
location of divergences and zeros of dB

dA are not (hence the
quotation marks in the location of “PA” and “PB”, which are
only for illustrative purposes).

26Note that (7.23) also have poles for nonpositive integer n.
But at these values ω is either of order or much larger than the
chemical potential μ to which our analysis does not apply.

27In fact the gravity analysis [from which (7.23) arises] reduces
to the same quantum mechanics problem as that of the formation
of three-body bound states in [15].

28Note that the following result applies to both neutral and
charged cases.

29Infinite spirals in holography were previously found by [47]
in a different setting resulting in first order phase transitions, by
[48] in nonrelativistic holography and very recently by [18].
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hOi ∝ jBj ¼ μΔ�
γ

2νUα
e−

nπ
2
ffiffiffi
−u

p þ ~α
2α ∼ μΔ� exp

�
−n

π

2
ffiffiffiffiffiffi
−u

p
�

ð7:29Þ

where we have used (A26). These are the values at which
the spiral intersects with the vertical axis, with that for the
n ¼ 1 state corresponding to the outermost intersection.
Note that ζn ∼ Λ−1

n and Eq. (7.29) is consistent with the
discussion below (7.26).
As

ffiffiffiffiffiffi
−u

p
→ 0, from (7.27), A and B are becoming in

phase, and the spiral is being squeezed into a straight line,
with limiting slope

B
A

���� ffiffiffiffiffi
−u

p
→0

¼ μ2νU�
β

α
¼ χ0: ð7:30Þ

This slope agrees with the value found from linear response
approaching the critical point from the other side (7.5). This
is however not the relevant slope for the susceptibility,
which should be given by

χL ¼ dB
dA

����
A¼0

ð7:31Þ

which in the usual models of spontaneous symmetry
breaking, corresponds to the longitudinal susceptibility.
From (7.27) we find

χL ¼ μ2νU�
β

α

�
1þ ~αβ − α~β

2αβ

�
þOðuÞ ¼ χ0 þ χ� þOðuÞ

ð7:32Þ

where we have used (A26) and (7.7). Essentially, even
though the spiral is squished into a straight line as we
approach the transition, each intersection of the spiral with
the A ¼ 0 axis has a different slope than the limiting slope
of the entire spiral. Note that this result is independent of n
and in particular applies to n ¼ 1, the ground state. Since χ0
is the value at u ¼ 0 from the uncondensed side, we thus
find a jump in the value of uniform susceptibility in
crossing u ¼ 0 (see Fig. 6) and the difference is precisely
the same coefficient as the divergent terms in (7.6), which
also appears in other places such as (7.20).
We now elaborate a bit more on the interpretation of

various parts of the spirals in Fig. 7. Let us start with the

ground state30 Bð1Þ
þ , and first follow the spiral to the right,

i.e. we apply an external source A in the same direction as
the condensate. This will increase B according to (7.31) and

(7.32). Note that near the critical point Bð1Þ
þ is exponentially

small; thus as we increase A further, we will eventually
reach a regime where the forced response is much larger

than the condensate B ≫ Bð1Þ
þ but is still much smaller than

1, B ≪ 1. One thus expects that here the system should not
care about the (exponentially small) condensate and the
response should simply be given by that at the critical point,
i.e. the linear response line given by χ0. Thus the spiral will
approach a straight line parallel to the red straight line in the
figure.
Now consider applying A in the opposite direction to the

condensate. As the Z2 symmetry was spontaneously
broken, we now expect that Bð1Þ

− should be the global

minimum and Bð1Þ
þ should be only locally stable.

Nevertheless, we can choose to stay in the “super-cooled”

state given by Bð1Þ
þ and stay on the response curve given by

following the spiral at Bð1Þ
þ to the left, where now the source

acts to reduce B. The response curve in the region between

Bð1Þ
þ and PA is nonlinear as the effect of the condensate is

important. At PA the susceptibility dB
dA → þ∞ (PA corre-

sponds to an inflection point in the effective potential) and
the state that we are on becomes genuinely (i.e. even
locally) unstable and if we continue to increase jAj, then the
system will relax to the point PA

0 on the other branch of the
spiral starting from Bð1Þ

− , as shown in Fig. 8

BðPAÞ
Bð1Þ
þ

∼Oð1Þ ð7:33Þ

where byOð1Þ we mean that the ratio is independent of the
small parameter

ffiffiffiffiffiffi
−u

p
.

To complete the story let us now consider starting from

the first excited state Bð2Þ
þ and again apply the external

source along the direction of the condensate, which now

corresponds to following the spiral to the left. Near Bð2Þ
þ , the

response is again controlled by (7.32), but again when

1 ≫ jBj ≫ jBð2Þ
þ j, the system will forget that it is in a

condensed state and the response will again be controlled
by χ0. The response curve will once again be parallel to the
linear response line until we reach the region near PB,
where the response has now become exponentially large

compared with the value at Bð2Þ
þ , i.e. it is now comparable to

the value of jBð1Þ
þ j:

jBðPBÞj
Bð1Þ
þ

∼Oð1Þ;
����BðPBÞ
Bð2Þ
þ

���� ∼Oðe πffiffiffi
−u

p Þ: ð7:34Þ

Near PB the nonlinear effects due to the condensate again
become important. In the region between PA and PB the
susceptibility has the wrong sign and thus the system
becomes locally thermodynamically unstable. Also note

that even though Bð2Þ
þ is an excited state and so not a global

minimum of the free energy, it does appear to be locally
thermodynamically stable.30Equivalently we can also start with its Z2 image Bð1Þ

− .
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The discussion above also gives a physical explanation
as to why as u → 0− the whole spiral is squished into a
straight line with slope given by (7.5): the vast majority of

the spiral (e.g. the exponentially large region between Bð2Þ
þ

and PB) must become parallel to such a straight line.
The existence of a tower of “Efimov” states with

geometrically spaced expectation values may be considered
as a consequence of spontaneous breaking of the discrete
scaling symmetry of the system. With an imaginary scaling
exponent, (7.23) exhibits a discrete scaling symmetry with
(for k ¼ 0)

ω → e
2πffiffiffi
−u

p
ω ð7:35Þ

which is, however, broken by the condensate.31 The tower
of “Efimov” states may then be considered as the
“Goldstone orbit” for this broken discrete symmetry.
We would also like to point out that ∂uχL and ∂k2χL do

not diverge at the critical point unlike from the uncon-
densed side. Hence we do not get a cusp approaching the
critical point from the condensed side. This is due to that
small u corrections to (7.32) are all analytic, which can be
checked by explicit calculations to next nontrivial order as
already indicated in (7.32).

2. Free energy across the quantum phase transition

The fact that the order parameter (7.29) is continuous (to
an infinite number of derivatives) across the transition
implies that the free energy is also continuous (to an infinite
number of derivatives). We outline the arguments here. The
free energy is simply the (appropriately renormalized)
Euclidean action of the scalar field configuration. We
can divide the radial integral into two parts, the UV part
and the IR AdS2 part. It is clear that the contribution
from the UV portion of the geometry will scale like
ϕ2 ∼ hOi2 ∼ exp ½− πffiffiffiffiffi

−u
p �, since the scalar is small there

and so a quadratic approximation to the action is sufficient.
To make a crude estimate of the IR contribution in which

region ϕ ∼Oð1Þ, let us ignore backreaction and imagine
that in the IR the scalar is simply a domain wall: for
ζ > Λ−1

IR it sits at the bottom of its potential ϕðζÞ ¼ ϕ0 and
that for ζ < Λ−1

IR it is simply 0. Then we find for the
Euclidean action32 an expression of the form

SE ∼ Vðϕ0Þ
Z

Λ−1
IR

∞
dζ

ffiffiffi
g

p
∼ ΛIR ð7:36Þ

which again scales as SE ∼ ΛIR ∼ exp ½− πffiffiffiffiffi
−u

p �. Note what

has happened: even though the scalar is ofOð1Þ in the deep
IR and so contributes to the potential in a large way, the
infinite redshift deep in the AdS2 horizon suppresses this
contribution to the free energy, making it comparable to the
UV part. A more careful calculation also reveals that the
free energy is indeed negative compared to the uncon-
densed state. We thus conclude that

F ∼ − exp
�
−

πffiffiffiffiffiffi
−u

p
�

ð7:37Þ

and that the free energy is also continuous across the
transition to an infinite number of derivatives, reminiscent
of a transition of the Berezinskii-Kosterlitz-Thouless
type.33

C. Thermal aspects

We now look at the critical behavior near the bifurcating
critical point at a finite temperature. Our starting point is the
expression for the finite-temperature susceptibility, which
we reproduce below for convenience:

χðω; ~k; TÞ ¼ μ2νU�
bþðk;ω; TÞ þ b−ðk;ω; TÞGðTÞ

k ðωÞμ−2νk�
aþðk;ω; TÞ þ a−ðk;ω; TÞGðTÞ

k ðωÞμ−2νk�
:

ð7:38Þ

The finite temperature behavior mirrors the finite frequency
behavior of last subsection. We simply repeat the analysis
leading to (7.17), starting with (7.38) rather than (7.1);
somewhat predictably, at ω ¼ 0 but finite T we find

χðTÞð~kÞ ¼ χ0
sinh ðνk logð TTb

ÞÞ
sinh ðνk logð TTa

ÞÞ ; ð7:39Þ

where Ta;b differ from ωa;b by factors,34

Ta ¼
4μ�
π

e
~α
α; Tb ¼

4μ�
π

e
~β
β: ð7:40Þ

Similarly to (7.23), the expression for u < 0 is obtained by
analytically continuing (7.39) to obtain

χðTÞð~kÞ ¼ χ0
sin ðλk logð TTb

ÞÞ
sin ðλk logð TTa

ÞÞ : ð7:41Þ

And again both (7.39) and (7.41) are analytic at u ¼ 0 and
reduce to the same function there

31Note that for n ¼ 1 state, since the physics of the condensate
sets in already at Λ1, the range of validity for (7.23) is not wide
enough for the discrete scaling symmetry to be manifest.

32As we are at zero temperature the Euclidean time is not a
compact direction, and so all expressions for the Euclidean action
contain a factor extensive in time that we are not explicitly writing
out.

33The argument presented here are in agreement with the
results of [14].

34For a charged scalar while ωa;b are complex, Ta;b remain
real.
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χðTÞð~kÞ ¼ χ0
log T

Tb

log T
Ta

þOðu; k2Þ: ð7:42Þ

Similar to (7.19), the pole in (7.42) and (7.39) at T ¼ Ta
should not concern us as this expression is supposed to be
valid only for T ≪ μ� ∼ Ta. For nonzero ω, (7.39) general-
izes to

χðTÞðω; kÞ ¼ χ0
sinh ðνk½logð2πTωb

Þ þ ψð1
2
− i ω

2πTÞ�Þ
sinh ðνk½logð2πTωa

Þ þ ψð1
2
− i ω

2πTÞ�Þ
; ð7:43Þ

where ψ is the digamma function. It is easy to check using
the identities ψð1

2
Þ ¼ −γE − log 4 and ψðx → ∞Þ → log x

that this expression has the correct limiting behavior to
interpolate between (7.39) and (7.17). Taking νk → 0 with
ω and T fixed, we then find that

χðTÞðω; ~kÞ ¼ χ0
logð2πTωb

Þ þ ψð1
2
− i ω

2πTÞ
logð2πTωa

Þ þ ψð1
2
− i ω

2πTÞ
: ð7:44Þ

For u > 0, at a scale of

T ∼ ΛCO ∼ μ�e
− #ffiffi

u
p ð7:45Þ

Eq. (7.39) crosses over to an expression almost identical to
(7.22) with ω replaced by T. For u < 0, at such small
temperature scales Eq. (7.41) has poles at (for k ¼ 0)

Tn ¼ Ta exp

�
−

nπffiffiffiffiffiffi
−u

p
�

¼ 4μ�
π

exp

�
−

nπffiffiffiffiffiffi
−u

p þ ~α

α

�
; n ∈ Zþ: ð7:46Þ

Comparing to (7.25) and (7.28), we see that
Tn ∼ Λn ∼ 1=ζn. The first of these temperature should be
interpreted as the critical temperature

Tc ¼
4μ�
π

exp

�
−

πffiffiffiffiffiffi
−u

p þ ~α

α

�
ð7:47Þ

below which the scalar operator condenses. Including

frequency dependence, one can check that χðTÞðω; ~kÞ has
a pole at

ω� ¼ −
2i
π
ðT − TnÞ ð7:48Þ

For T > Tn this pole is in the lower half-plane, and it moves
through to the upper half-plane if T is decreased through
Tn. Thus we see the interpretation of each of these Tn; as
the temperature is decreased through each of them, one
more pole moves through to the upper half-plane. There
exist an infinite number of such temperatures with an

accumulation point at T ¼ 0; and indeed at strictly zero
temperature there is an infinite number of poles in the upper
half-plane, as seen earlier in (7.24). Of course in practice
once the first pole moves through to the upper half-plane at
Tc ¼ T1, the uncondensed phase is unstable and we should
study the system in its condensed phase.
One can further study the critical behavior near the finite

temperature critical point Tc. Here one finds mean field
behavior and we will only give results. See Appendix E for
details. For example the uniform static susceptibility has
the form

χðTÞ ≈

8<:
χ0

2νUαβ
Tc

T−Tc
T → Tþ

c

χ0
4νUαβ

Tc
Tc−T

T → T−
c

ð7:49Þ

The result that χðT−
c Þ has a prefactor twice as big as χðTþ

c Þ
is a general result of Landau theory.
Similarly, the correlation length near Tc is given by

ξ−2 ¼ 6μ2�ð−uÞ32
πTc

ðT − TcÞ: ð7:50Þ

Note that the prefactor of T − Tc diverges exponentially as
u → 0, and should be contrasted with the behavior (7.10) at
the quantum critical point. Finally we note that at the

FIG. 8 (color online). A zoomed in version of the spiral, where
there has been no nonlinear mapping and so the location of PA is
faithfully reproduced. As described in the text, at PA the system
becomes locally unstable and relaxes to PA

0. Appearances to the
contrary, the spiral continues to wind around infinitely many
times as it approaches the origin, a fact that is difficult to see
without the nonlinear mapping due to the exponential spacing of
the intersections.
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critical point T ¼ Tc, we find a diffusion pole in χðTÞðω; ~kÞ
given by

ω� ¼ −i
Tc

3μ2�ð−uÞ32
k2 ð7:51Þ

which is of the standard form for this class of dynamic
critical phenomena (due to the absence of conservation
laws for the order parameter, this is Model A in the
classification of [49]; see also [39] for further discussion
in the holographic context). Note that the diffusion constant
goes to zero exponentially as the quantum critical point is
approached. For a charged scalar, the factor multiplying ik2

on the right-hand side of (7.51) becomes complex, reflect-
ing the breaking of charge conjugation symmetry.
In Fig. 9 we summarize the finite temperature phase

diagram.

D. Summary and physical interpretation

In this section we studied the physics close to a
“bifurcating” quantum critical point, i.e. the quantum
critical point obtained by tuning the AdS2 mass of the
bulk scalar field through its Breitenlohner-Freedman
bound. Here we briefly summarize the main results and
discuss possible interpretations.
Much of the physics can be understood from the

expression for the dynamic susceptibility at zero temper-
ature (7.17),

χðω; ~kÞ ¼ χ0
sinh ðνk logð−iωωb

ÞÞ
sinh ðνk logð−iωωa

ÞÞ þ… ð7:52Þ

where νk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uþ k2

6μ2�

q
and u ¼ 0 is the location of the

quantum critical point. ωa;b ∼ μ are some constants. This
expression defines a crossover scale as in (7.21)

ΛCO ∼ μ� exp
�
−

#ffiffiffiffiffiffijujp �
; ð7:53Þ

with # some Oð1Þ number; for ω ≫ ΛCO, one can expand
the arguments of the hyperbolic sine to find

χðω; ~kÞ ¼ χ0
logð ωωb

Þ − i π
2

logð ωωa
Þ − i π

2

þOðu; k2Þ ð7:54Þ

with the spectral function given by

Imχðω; kÞ ¼ πχ�
ðlogωÞ2 þ…: ð7:55Þ

For ω ≪ ΛCO, approaching the critical point from u > 0
side, we find

χðω → 0; ~kÞ ¼ χ0 − 2νkχ� − 4νkχ�

�
−iω
2μ�

�
2νk þ…:

ð7:56Þ

Interestingly, the static susceptibility does not diverge
approaching the critical point, but develops a branch point
singularity at u ¼ 0, as νk¼0 ¼

ffiffiffi
u

p
; it is trying to bifurcate

into the complex plane as we cross u ¼ 0. Upon Fourier
transformation to coordinate space, these singularities lead
to a correlation length that diverges at the critical point,

ξ ¼ 1ffiffiffi
6

p
μ�

ffiffiffi
u

p : ð7:57Þ

While the exponent is the same as that of mean field, clearly
the underlying physics is different. The coordinate-space
expression is also different from that of the mean field, as
shown in (7.11).
For ω ≪ ΛCO, approaching the critical point from u < 0

side, in (7.52), the hyperbolic sine is replaced by a normal
sine, and we find a geometric series of poles in the upper-
half complex frequency-plane at

ωn ¼ iωa exp

�
−

nπffiffiffiffiffiffi
−u

p
�
∼ iμ

�
ΛIR

μ

�
n
; ð7:58Þ

with

ΛIR ≡ μ exp

�
−

πffiffiffiffiffiffi
−u

p
�
; n ¼ 1; 2;… ð7:59Þ

indicating that the disordered state is unstable and the scalar
operator condenses in the true vacuum. Interestingly, one

Quantum 
critical region 

QCP 

Condensed phase 

FIG. 9 (color online). Finite temperature phase diagram with
the quantum critical region for bifurcating criticality as a function
of u. The dotted line is given by ΛCO in (7.21) and (7.45). But
note that the discussions there are not enough to determine the
Oð1Þ factor in the exponent for ΛCO. The dynamical susceptibility
in the bowl-shaped quantum critical region is given by (7.44) with
the zero temperature limit given by (7.19).
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finds an infinite tower of “Efimov” condensed states in one
to one correspondence with the poles in (7.58)

hOin ∼ μΔ exp

�
−

nπ
2
ffiffiffiffiffiffi
−u

p
�
∼ μΔ

�
ΛIR

μ

�n
2

n ¼ 1; 2;…:

ð7:60Þ
Note that the factor 1

2
in the exponent of (7.60) compared

with that of (7.58) is due to thatO has IR dimension 1
2
at the

critical point u ¼ 0. n ¼ 1 state is the ground state with the
lowest free energy which scales as (with that of the
disordered state being zero)

F ∼ −ΛIR: ð7:61Þ
A study of the full nonlinear response curve of the tower of
“Efimov states” reveals a remarkable spiral structure,
shown in Fig. 7, which may be considered as a manifes-
tation of a spontaneously broken discrete scaling symmetry
in the time direction.
At a finite temperature, in the quantum critical region

T ≫ ΛCO (the bowl-shaped region in the right plot of
Fig. 9), the zero temperature expression (7.54) generalizes
to

χðTÞðω; ~kÞ ¼ χ0
logð2πTωb

Þ þ ψð1
2
− i ω

2πTÞ
logð2πTωa

Þ þ ψð1
2
− i ω

2πTÞ
ð7:62Þ

which can now be applied all the way down to zero
frequency. Equation (7.62) reproduces (7.54) for ω ≫ T.
The n ¼ 1 pole in (7.58) provides the scale for the critical
temperature

Tc ∼ μ exp

�
−

πffiffiffiffiffiffi
−u

p
�
∼ ΛIR: ð7:63Þ

Now let us now try to interpret the above results. First we
emphasize that nowhere on the uncondensed side do we see
a coherent and gapless quasiparticle pole in the dynamical
susceptibility, which usually appears close to a quantum
phase transition and indicates the presence of soft order
parameter fluctuations. That at the critical point the
susceptibility (7.56) does not diverge and the spectral
function (7.55) is logarithmically suppressed at small
frequencies are also manifestations of the lack of soft order
parameter fluctuations.
We would like to argue that the quantum phase transition

at a bifurcating critical point corresponds to a confinement/
deconfinement transition [24]. At the critical point, two fixed
points eCFTUV

1 and eCFTIR
1 of SLQL merge and annihilate,

beyond which the scalar operator Ok¼0 develops a complex
dimension and conformality is lost. The loss of conformality
is realized through a dynamically generated “confinement”
scale ΛIR below which an infinite tower of geometrically
separated bound states of operatorO form; from this infinite

tower the lowest energy bound state Bose condenses. There
are infinitely many metastable vacua, where a higher Efimov
state condenses (7.60). The physical picture here is similar to
the BEC regime in a strongly interacting ultracold Fermi
systemwhere fermions form bound molecules and then Bose
condense. This also explains why the susceptibility does not
diverge at the critical point and the spectral density is
suppressed. The bifurcating QCP is characterized by the
onset of forming bound states rather than by soft order
parameter fluctuations.
From this perspective, SLQL should be considered as a

fractionalized state where degrees of freedom from which
O is formed become deconfined. Indeed this interpretation
is consistent with the power law behavior (2.12) of the
spectral function ofO in the SLQL phase and finite entropy
density of SLQL.
Our story has some interesting differences with standard

discussion of a confinement/decofinement transition (or
crossover) which is driven by temperature:
(1) Here we use the term “confinement” in a somewhat

loose sense, as in our context the “confined” state
still has gapless degrees of freedom left for both the
condensation of a neutral and charged scalar. Thus in
our story the “confinement” only removes part of the
deconfined spectrum.

(2) Here the transition is driven by an external parameter
and thus is quantum mechanical in nature.

(3) The confinement (i.e. formation of bound states) and
Bose condensation set in at the same point in
parameter space.

To summarize, for a bifurcating QCP, while the phase
transition can still be characterized by an order parameter,
the order parameter remains gapped at the critical point
and the phase transition is not driven by its fluctuations.
Instead the phase transition appears to be driven by
confinement coming from the merger of two different
CFTs, in contrast with the Landau-Ginzburg-Wilson para-
digm which is characterized by a single critical CFT with
some relevant direction.

VIII. CRITICAL BEHAVIOR OF A
HYBRIDIZED QCP

In this section we examine the critical behavior around a
hybridized QCP (4.9), reviewing and slightly generalizing
an earlier discussion of [20].

A. Zero temperature: Statics (μ� ¼ 1)

Let us first look at the scaling of the expectation value
and free energy on the condensed side.35 This can be done
by analyzing the condensed solution on the gravity side

35In this subsection we will mainly use effective field theory
arguments, hence we will set μ� ¼ 1 to alleviate the notation. In
later subsections however we restore μ�.
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[20]. Alternatively, one could use the low energy effective
action (5.11), which we copy here for convenience

Seff ¼ ~SeCFT1
½Φ� þ λ

Z
Φφþ SLG½φ� þ

Z
φJ: ð8:1Þ

We can generalize the Landau-Ginsburg action SLG (5.12)
in (8.1) by including the next order nonlinear and time
derivative terms

SLG ¼ −
1

2

Z
φ−~kðκþ − κc þ hkk2Þφ~k

− u
Z

φ4 þ ht

Z
ð∂tφÞ2 þ… ð8:2Þ

with u and ht some (positive) constants.36 We will consider
k ¼ 0 and denote νk¼0 simply as ν. The eCFT1 operator Φ
has a scaling dimension 1

2
þ ν and from the second term in

(8.1), φ thus has dimension 1
2
− ν. Then from the last term in

(8.1) J has dimension 1
2
þ ν, the same asΦ. Note that spatial

coordinates or momenta all have zero IR dimension. Now
let us imagine that φ develops some nonzero expectation
value. From the relative scaling dimensions between Φ and
φ, we can then write Φ as

Φ ∼ φ

1
2
þν

1
2
−ν ð8:3Þ

and the free energy density F corresponding to (8.1) can
then be written as

F ∼ Cφ
1

1
2
−ν þ 1

2
ðκþ − κcÞφ2 þ uφ4 ð8:4Þ

where the first term comes from the Φφ term with C some
constant. Equation (8.4) can also be derived from a detailed
bulk analysis37 which also gives that C > 0 for ν < 1

2
.

Now notice that for φ small, the first term dominates over
φ4 term if ν < 1

4
, while the Landau-Ginsburg φ4 term

dominates for ν > 1
4
. In other words, since the first term

is marginal by assignment, φ4 term becomes relevant
when ν > 1

4
.38

For ν < 1
4
we can ignore the last term in (8.4) and for

κþ < κc find that

hOi ∼ φ ∼ ðκc − κþÞ
1
2
−ν
2ν ð8:5Þ

and as a result

F ∼ ðκc − κþÞ 1
2ν: ð8:6Þ

Including the source J, which has dimension 1
2
þ ν, the free

energy should then be given by a scaling function

F ¼ ðκc − κþÞ 1
2νf1ðJðκc − κþÞ−

1
2
þν

2ν Þ ¼ ξ−
1
νf2ðJξ

1
2
þν

ν Þ ð8:7Þ

where in the second equality we have expressed the free
energy in terms of the correlation length using (5.8). From
(8.7) we can also deduce that at the critical point we should
have

hOi ∼ φ ∼ J

1
2
−ν

1
2
þν ð8:8Þ

which can again be confirmed by a bulk analysis. From
(8.5), (8.8), and (8.7) we can collect the values of various
scaling exponents (see Appendix F for a review of their
definitions)

α ¼ 2 −
1

2ν
; β ¼

1
2
− ν

2ν
; δ ¼

1
2
þ ν

1
2
− ν

: ð8:9Þ

For ν > 1
4
, we can ignore the first term in (8.4) and the

analysis becomes the standard Landau-Ginsburg one. As a
result, the behavior near the critical point becomes that of
the mean field, as pointed out earlier in [20] from a detailed
bulk gravity analysis. We thus find that for ν > 1

4
,

hOi∼φ∼ðκc−κþÞ12; F∼−ðκc−κþÞ2; hOiκþ¼κc
∼J

1
3

ð8:10Þ

and various exponents become

α ¼ 0; β ¼ 1

2
; δ ¼ 3 ð8:11Þ

which agree with the values of (8.9) for ν ¼ 1
4
.

B. Dynamical critical behavior

Let us now examine the dynamical behavior near the
critical point. Expanding ~aþðω; kÞ around ω ¼ 0, k ¼ 0
and κþ ¼ κc, we find that the full dynamical susceptibility
(2.11) can now be written as (for a neutral scalar)

χðω; ~kÞ ≈ μ2νU�
κþ − κc þ hk~k

2 − hωω2 þ hGkðωÞ
ð8:12Þ

where hk was introduced earlier in (5.7) and

36Their specific values can be worked out from gravity. Here
we are only interested in the scaling behavior and their values are
not important.

37See [20]. This expression was argued for in [50].
38Some readers might worry that higher powers like φ6 may

also become relevant at some point (for example for ν > 1
3
). But

note that once the last two terms in (8.4) dominate we should
reassign dimension of φ and the standard Landau-Ginsburg story
applies.
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hω ≡ −
~að2Þþ ðkÞ
bð0Þþ ðkÞ

����
k¼0;κþ¼κc

; h≡ μ−2νk� ~að0Þ− ðkÞ
bð0Þþ ðkÞ

����
k¼0;κþ¼κc

:

ð8:13Þ

Recall that the SLQL retarded function GkðωÞ ∝ ω2νk . From
explicit gravity calculation one finds various constants in
(8.12) have the following behavior: hk > 0, h < 0 and
hω > 0 (for νk¼0 > 1).
The behavior of full dynamical susceptibility (8.12)

depends on the competition between the analytic contri-
bution hωω2 and the nonanalytic contribution GkðωÞ from
SLQL. When ν ∈ ð0; 1Þ, the nonanalytic part dominates at
low energies and the analytic contribution can be ignored,
leading to

χðω; ~kÞ ≈ μ2νU�
ðκþ − κcÞ þ hkk2 þ hCðνÞð−iωÞ2ν ð8:14Þ

with CðνÞ < 0. We will consider k ¼ 0 below. At the
critical point κþ ¼ κc we find that

χðω; k ¼ 0Þ ∼ ð−iωÞ−2ν: ð8:15Þ

Away from the critical point, the relative magnitude of the
two terms (with k ¼ 0) in the denominator of (8.14) defines
a crossover energy scale

ΛðωÞ
CO ∼ jκc − κþj 12ν: ð8:16Þ

For ω ≪ ΛðωÞ
CO we find that

χðωÞ ∼ μ2νU�
κ − κc

þOðω2νÞ ð8:17Þ

which is the typical behavior in the uncondensed phase [see

e.g. (2.22)], while for ω ≫ ΛðωÞ
CO we recover the critical

behavior (8.15). The crossover scale (8.16) defines the
correlation time ξτ of the system

ξτ ∼
1

ΛðωÞ
CO

∼ jκc − κþj− 1
2ν: ð8:18Þ

Comparing the above expression with (5.8) we then find
that ξτ ∼ ξz with the dynamical exponent z given by

z ¼ 1

ν
: ð8:19Þ

Of course this exponent can equivalently be seen by
balancing the k2 term and the ω2ν term in (8.14). Also
note that when κþ < κc Eq. (8.14) has a pole in the upper
half plane [since hCðνÞ > 0] at

ωpole ∼ iΛðωÞ
CO : ð8:20Þ

When ν > 1, in (8.12), the nonanalytic part GkðωÞ ∼
ω2ν from the SLQL becomes less important than the
analytic corrections ∼ω2 and one finds mean field like
behavior. Now the full dynamical susceptibility is given
by

χðω; ~kÞ ≈ μ2νU�
ðκþ − κcÞ þ hkk2 − hωω2 þ hCðνÞð−iωÞ2ν

ð8:21Þ

which describes a long-lived (nearly gapless) relativistic
particle with a small width Γ ∼ ω2ν. The dynamical
exponent is now z ¼ 1.
This crossover to mean field dynamical behavior at

ν ¼ 1 can also be readily seen from the effective action
(8.1)–(8.2). For ν > 1, the dimension for φ become smaller
than − 1

2
, for which the kinetic term ð∂tφÞ2 becomes

relevant and more important than the hybridization term
Φφ (which is marginal by definition). Alternatively, we can
now assign − 1

2
as dimension of φ using ð∂tφÞ2, under

which the hybridization term Φφ will have dimension ν
which becomes irrelevant for ν > 1.
It is interesting to note that while the free energy already

exhibits mean field behavior for ν > 1
4
, the dynamical

quantity exhibits mean field behavior only for ν > 1.

C. Finite temperature

At a finite temperature T ≪ μ, Eq. (8.12) generalizes at
leading order in T=μ to [from expanding (2.18)],

χðω; ~k;TÞ ≈ μ2νU�
κþ − κc þ hk~k

2 − hωω2 þ hTT þ hGðTÞ
k ðωÞ
ð8:22Þ

where hTT (hT a constant) comes from (analytic) finite
temperature corrections to aþ and bþ. Finite temperature

SLQL retarded function GðTÞ
k ðωÞ has the form GðTÞ

k ðωÞ ¼
T2νkgðωT ; νkÞwith g a universal scaling function [see (2.21)].
Explicit gravity calculations give hT > 0 (for νk¼0 >

1
2
). Let

us first look at the static uniform susceptibility at finite T,
which is

χðTÞ ∼
μ2νU�

κþ − κc þ hTT þ hCðνÞT2ν : ð8:23Þ

It is interesting that the analytic contribution now domi-
nates for ν > 1

2
.
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For ν < 1
2
we find that there is a pole at

Tc ∼ ðκc − κþÞ 1
2ν ð8:24Þ

for κþ < κc. It should be interpreted at the critical temper-
ature for a thermal phase transition, above which the
instability disappears. From the uncondensed side, such
a temperature scale gives the crossover scale

ΛCO ∼ jκc − κþj 12ν ð8:25Þ

to the quantum critical behavior; for T ≫ ΛCO

χðω; ~k;TÞ ≈ μ2νU�
κþ − κc þ hk~k

2 þ hT2νgðωT ; νÞ
ð8:26Þ

which exhibits ω=T scaling. Note that the finite temper-
ature crossover scale tracks that of zero temperature
equation (8.16).

For ν > 1
2
, we find instead mean field behavior

Tc ∼ ðκc − κþÞ ð8:27Þ
and the finite temperature crossover scale becomes

ΛðTÞ
CO ∼ jκc − κþj ð8:28Þ

which no longer tracks that of zero temperature. In this
regime, there is no ω=T scaling and the nonanalytic
frequency dependence from the SLQL becomes irrelevant
compared to leading temperature effects.
This crossover at ν ¼ 1

2
can again be readily seen from

the effective action (5.11). Finite temperature generates a
term

R
Tφ2, which becomes relevant when the dimension

of φ becomes smaller than zero, i.e. for ν > 1
2
. Alternatively

we can now use Tφ2 term to assign dimension 0 to φ, under
which the hybridization term Φφ then becomes irrelevant
for ν > 1

2
as now the dimension for Φ becomes larger

than 1.
We summarize various the finite T phase diagram for

various values of ν in Figs. 10 and 11.

D. Summary and discussion

We summarize the critical behavior near a hybridized
QCP for various values of ν in the following table (see
Appendix F for a review of definitions of various scaling
exponents):

Quantity ν ∈ ð0; 1
4
Þ ν ∈ ð1

4
; 1
2
Þ ν ∈ ð1

2
; 1Þ ν > 1

ω=T scaling yes yes no no

ΛðωÞ
CO ðκc − κþÞ 1

2ν ðκc − κþÞ 1
2ν ðκc − κþÞ 1

2ν ðκc − κþÞ12
z 1

ν
1
ν

1
ν 1

Tc ðκc − κþÞ 1
2ν ðκc − κþÞ 1

2ν κc − κþ κc − κþ
hOi ðκc − κþÞ

1
2
−ν
2ν ðκc − κþÞ12 ðκc − κþÞ12 ðκc − κþÞ12

Critical behavior for the neutral scalar.

FIG. 10 (color online). Finite temperature phase diagram with
the quantum critical region for a hybridized QCP for a fixed
0 < ν < 1

2
. In the quantum critical region the dynamical suscep-

tibility is given by (8.22) with (8.14) as the zero temperature limit.

FIG. 11 (color online). The crossover diagrams for a hybridized QCP for ν > 1
2
. Given the difference in the crossover scales between

frequency (at zero temperature) and temperature, we plot them separately. For ν ∈ ð1
2
; 1Þ, the zero temperature dynamical susceptibility

exhibit nontrivial scaling (or for ω2ν ≫ T), but finite temperature behavior is given by that of mean field. For ν ≥ 1, essentially
everything is mean field at leading order.
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In the above the expressions which are independent of ν
are all mean field behavior. For all values of ν the static
susceptibility from the uncondensed side is always given by
the mean field behavior

χ0ð~kÞ ≈
μ2νU�

ðκþ − κcÞ þ hk~k
2

ð8:29Þ

with the spatial correlation length

ξ ∼ jκþ − κcj−1
2: ð8:30Þ

In the range ν ∈ ð0; 1
4
Þ the free energy from the condensed

side is given by the scaling form

F ¼ ξ−
1
νfðJξ

1
2
þν

ν ; Tξ
1
νÞ; ð8:31Þ

with f a universal scaling function, while for ν ∈ ð0; 1
2
Þ, the

full dynamical susceptibility exhibits ω=T scaling at a finite
temperature

χðω; ~k;TÞ ≈ μ2νU�
ðκþ − κcÞ þ hk~k

2 þ Σðω; k; TÞ
;

Σ ¼ hT2νkg

�
ω

T
; νk

�
ð8:32Þ

where Σ can be interpreted as self-energy and g a universal
scaling function given by (2.21). Note that since νk depends
on k through k=μ, for k ≪ μ we can approximate νk in the
self-energy Σ (8.32) as νk¼0 and Σ becomes k independent.
As pointed out in [20], then Eq. (8.32) resembles the
dynamical susceptibility of CeCu6−xAux near the quantum
critical point x ¼ 0.1 [51].
From the definitions in Appendix F it is easy to check

that various exponents here satisfy the relation

γ ¼ ð2 − ηÞνcrit ¼ βðδ − 1Þ ð8:33Þ

but the so-called hyperscaling relation

2β ¼ ðd − 2þ ηÞνcrit ð8:34Þ

is violated for the trivial reason that our results are
independent of spacetime dimension d.
Note that for a charged scalar, the discussion is very

similar except that the perturbative corrections in ω starts
at linear order. As a result everything becomes mean field
for ν > 1

2
, i.e. there are only three columns in the table

below. Note that the mean field values of the dynamical
quantities for the charged case are different from those of
the neutral scalar, while the static exponents remain
the same.

Quantity ν ∈ ð0; 1
4
Þ ν ∈ ð1

4
; 1
2
Þ ν > 1

2

ω=T scaling yes yes no

ΛðωÞ
CO ðκc − κþÞ 1

2ν ðκc − κþÞ 1
2ν κc − κþ

z 1
ν

1
ν 2

Tc ðκc − κþÞ 1
2ν ðκc − κþÞ 1

2ν κc − κþ
hOi ðκc − κþÞ

1
2
−ν
2ν ðκc − κþÞ12 ðκc − κþÞ12

Critical behavior for the charged scalar.

For a hybridized QCP, the critical behavior is not
described by the order parameter fluctuations alone as
the order parameter is hybridized with degrees of freedom
in SLQL. The interplay between two sectors gives rise to a
rich spectrum of critical behavior. In particular, the semi-
local nature of the SLQL leads to that the susceptibility of
the order parameter has mean field behavior in the spatial
sector, but exhibits nontrivial ω=T scaling in some param-
eter range, reminiscent of local quantum critical behavior
observed in certain heavy fermion materials. Note that the
mean field nature of the spatial sector and the independence
of spacetime dimension of our results should be related to
that gravity approximation corresponds to the large N limit
of the boundary theory. It would be interesting to under-
stand better how the hybridized theory (8.1) works when
the SLG is below the upper critical dimension.

IX. DOUBLY FINE-TUNING TO A MARGINAL
CRITICAL POINT

Let us now consider the critical behavior around a
marginal critical point, which can be obtained by tuning
u → 0 and κþ → κ�c at the same time,with κ�c given by (5.23),

κ�c ¼ −
α

β
: ð9:1Þ

Wehave already studied the behavior as we vary u through 0
away from this point; for definiteness below we will fix
u ¼ 0 and vary κþ.
From earlier discussion in Sec. V C, at u ¼ 0 and general

κþ, the system can be described by the low energy action
(5.18), which we copy here for convenience (keeping most
essential terms),

Seff ¼ Sðν¼0Þ
eCFT1

−
~ξðκÞ0

2

Z
dtΦ2 þ… ð9:2Þ

where

~ξðκÞ0 ¼ αþ κþβ
~αþ κþ ~β

¼ 2νUβ
2ðκþ − κ�þÞ þ…: ð9:3Þ

In the second equality we have expanded ~ξðκÞ0 around κ�þ
and used (A26). The dynamical susceptibility for O is
given by the u → 0 limit of (4.2)
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χðu¼0;κþÞðω; kÞ

¼ μ2νU�
ðβ þOðk2ÞÞG0ðωÞ þ ~β þOðk2Þ

ðαþ κþβ þOðk2ÞÞG0ðωÞ þ ð ~αþ κþ ~βÞ þOðk2Þ

¼
μ2νU� logð−iωωb

Þ
ðκþ − κ�cÞ logð−iωωb

Þ − 1
2νUβ

2

þ… ð9:4Þ

with G0 given by (5.17) and in the second line we have
suppressed k dependence which always comes with
k2=μ2 and is small when k ≪ μ. ωb was introduced earlier
in (7.18).
The system develops an instability to the condensation of

Φ (and thusO)39 when ~ξðκÞ0 becomes negative (i.e. κþ< κ�þ),
where it becomes marginally relevant and generates an IR
scale

ΛIR ∼ μ exp

�
1

~ξðκÞ0

�
¼ μ exp

�
1

2νUβ
2

1

κþ − κ�c

�
ð9:5Þ

which can be seen from a pole of (9.4) in the upper half
ω-plane at40

ω� ¼ iωb exp

�
1

2νUβ
2

1

κþ − κ�c

�
∼ iΛIR: ð9:6Þ

Equation (9.4) defines a crossover scale

ΛCO ∼ μ exp

�
−

1

2νUβ
2

#

jκþ − κ�cj
�

ð9:7Þ

where # is someOð1Þ number. For ω ≫ ΛCO we can ignore
the first term in the denominator and are thus in the
quantum critical regime with

χðu¼0;κþÞðω; kÞ ¼ −2νUβ2μ
2νU�

�
log

�
ω

ωb

�
− i

π

2

�
: ð9:8Þ

The appearance of a pure logarithm in the numerator of this
propagator at criticality is interesting. It leads to the spectral
density

Imχðu¼0;κþÞ ¼ πνUβ
2μ2νU� sgnðωÞ ð9:9Þ

which is a pure step function.41 This should be contrasted
with the situation for a bifurcating critical point (7.55)

in which there is a logarithmic suppression at low
frequencies.
When ω ≪ ΛCO, the first term in the denominator of

(9.4) dominates and expanding in powers of the inverse
logarithm, we find

χðu¼0;κþÞðω → 0; kÞ ¼ μ2νU�
κþ − κ�c

þO

�
1

logω

�
ð9:10Þ

with a spectral density appears at order log−2ðωÞ,

Imχðu¼0;κþÞðω → 0; kÞ

¼ πμ2νU�
4ðκþ − κ�cÞ2νUβ2

log−2
�
ω

ωb

�
þO

�
1

log3ω

�
ð9:11Þ

which is of course the generic behavior at a bifurcating
critical point. Note that for κþ < κ�þ, below ΛCO the
above equations no longer apply as the condensate sets
in. Given that Φ has dimension 1

2
we can easily deduce

the expectation value for O in the condensed side should
scale as

hOi ∼ Λ
1
2

IR ∼ μΔ� exp

�
1

4νUβ
2ðκþ − κ�cÞ

�
: ð9:12Þ

Similarly from (9.2) the free energy should scale as

F ∼ hOi2 ∼ ΛIR ∼ exp

�
1

2νUβ
2ðκþ − κ�cÞ

�
: ð9:13Þ

Both (9.12) and (9.13) can be confirmed by an explicit
bulk analysis of the nonlinear solution for the condensed
phase.
From the u → 0 limit of (2.18), Eq (9.4) can be

immediately generalized to a finite temperature

χðu¼0;κþÞðω; k;TÞ

¼ μ2νU�
logð2πTωb

Þ þ ψð1
2
− i ω

2πTÞ
ðκþ − κ�cÞðlogð2πTωb

Þ þ ψð1
2
− i ω

2πTÞÞ − 1
2νUβ

2

:

ð9:14Þ

From here we can see that for κþ < κ�c the static suscep-
tibility diverges at the critical temperature [Tb was defined
in (7.40)]

Tc ¼ Tb exp

�
1

2νUβ
2

1

κþ − κ�c

�
∼ ΛIR ð9:15Þ

above which the system is stable. The temperature is set by
the same dynamically generated scale.

39Recall that Φ is the operator in SLQL to which O match in
the IR.

40There is also a UV pole for κþ > κ�þ which is at an
exponentially high energy scale. Our low-frequency formula
breaks down far before the pole, and is thus of no concern to us.

41The logarithm jumps by iπ as we cross through ω ¼ 0,
resulting in the step function; note that this was necessary in order
to maintain the relation ωImχðωÞ > 0, true for any bosonic
spectral density.
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Now for T ≫ ΛCO we find in the quantum critical region

χðu¼0;κþ¼κ�þÞðω; k;TÞ

¼ −2νUβ2μ
2νU�

�
log
�
2πT
ωb

�
þ ψ

�
1

2
− i

ω

2πT

��
:

ð9:16Þ

Taking the imaginary part and using the identity42

Imψð1
2
þ ixÞ ¼ π

2
tanhðπxÞ we find the expression

Imχðu¼0;κþ¼κ�þÞðω; k;TÞ ¼ πνUβ
2μ2νU� tanh

�
ω

2T

�
ð9:17Þ

which is simply a smoothed-out version of the step function
(9.9) that we find at zero temperature.
Equation (9.17) implies that

Imχðu¼0;κþ¼κ�þÞðω; k;TÞ ∼
� ω

T ω ≪ T

sgnðωÞ ω ≫ T
ð9:18Þ

which is precisely of the form for spin and charge
fluctuations in the phenomenological “Marginal Fermi
liquid” [21] description of High-Tc cuprates in the strange
metal region (see also [22,23]). Thus the marginal critical
point can be viewed as a concrete realization of the bosonic
fluctuation spectrum needed to support a Marginal Fermi
liquid. In particular, this gives an alternative approach to
construct holographic Marginal Fermi liquid.
In Fig. 12 we summarize the phase diagram for a

marginal critical point.

X. DISCUSSION

In this paper we have discussed several types of quantum
critical points from gauge-gravity duality which to different
degrees lie outside the Landau-Ginsburg-Wilson paradigm.
Let us first briefly summarize some key features:
(1) A hybridized QCP is described by an order param-

eter φ with a Landau-Ginsburg effective action SLG
hybridized with degrees of freedom in SLQL, i.e.

Seff ¼ SSLQL½Φ� þ
Z

λΦφþ SLG½φ�: ð10:1Þ

The SLQL sector is strongly coupled (with no
quasiparticle description). It has a scaling symmetry
in the time direction only, and gapless excitations at
generic finite momenta. Due to these features, the
phase transition could exhibit a rich spectrum of
critical behavior, including locally quantum critical
behavior with nontrivial ω=T scaling, depending on
the scaling dimension of Φ in the SLQL. At the level
of effective theory, this critical point lies mildly
outside the standard Landau paradigm, as the phase
transition is still driven by soft fluctuations of the
order parameter and all the critical behavior is fully
captured by (10.1), given (still mysterious) proper-
ties of the SLQL.
On the gravity side the Landau-Ginsburg sector is

associated with the appearance of certain scalar hair
in the black hole geometry, which lies outside the
AdS2 region which describes the SLQL.

(2) A bifurcating QCP arises from instabilities of the
SLQL itself to a confined state and appears not
driven by soft order parameter fluctuations. On the
condensed side, a scalar operator develops a com-
plex scaling dimension in the SLQL, generating a
tower of bound states, which then Bose-Einstein
condense (at a geometric series of exponentially
generated scales).43 In particular, one finds a finite
critical susceptibility with a branch point singularity,
and the response of condensed states is described by
an infinite spiral.
At a field theoretical level, underlying these fea-

tures is the annihilation (and moving to the complex
plane of a coupling constant) of two conformal fixed
points (eCFTUV

1 and eCFTIR
1 ).We expect these critical

phenomena generically occur in such a situation,
where eCFT1 can be replaced by some higher dimen-
sional CFTs. We emphasize that this is very different
from the standard Landau-Ginsburg-Wilson para-
digm of phase transitions, which can be characterized
as a single critical CFTwith some relevant directions.

FIG. 12 (color online). Finite temperature phase diagram with
the quantum critical region for marginal criticality at u ¼ 0 and
changing (κþ − κ�þ). The susceptibility in the bowl-shaped
quantum critical region is given by (9.16) with the ω ≫ T limit
given by (9.8)

42This can be proved using the reflection formula
ψð1 − xÞ − ψðxÞ ¼ π cotðπxÞ.

43SLQL may be considered as a “deconfined” state in which
the composite bound states deconfine and fractionalize into more
fundamental degrees of freedom.

QUANTUM PHASE TRANSITIONS IN SEMILOCAL … PHYSICAL REVIEW D 91, 025024 (2015)

025024-29



On the gravity side, for charged operators the
instabilities of the SLQL manifest themselves as pair
production of charged particles which then sub-
sequently backreact on the geometry. For a neutral
scalar operator, the instability is related to the viola-
tion of the BF bound in the AdS2 region.

(3) A marginal QCP can be obtained by sitting at the
critical point of a bifurcating QCP and then dialing
the external parameter which drives a hybridized
QCP. Here given the critical theory describing a
bifurcating QCP (which comes from the merger of
two fixed points), the phase transition can be
described as the appearance of a marginally relevant
operator. Interestingly, the fluctuation spectrum that
emerges is (when coupled to a Fermi surface)
thought to underly the “Marginal Fermi Liquid”
description of the optimally doped cuprates [21],
making this critical point of potential importance.

Note that while our results were found from gravity
analysis, given the general field theoretical descriptions
above, they likely correspond to generic phenomena, and it
would be interesting to understand them better using field
theoretical methods.
Finally let us elaborate on an important point, which we

have glossed over in our discussion so far. As emphasized
recently in [24], SLQL, which describes the disordered
phase in our examples above, should be interpreted as an
intermediate-energy phase, rather than a genuine ground
state. That is, we expect SLQL to order into some other
phases at lower energies, which may not be visible at the
largeN limit we are working with. An example discussed in

[24] is that at some exponentially small scale in N2, SLQL
orders into a Fermi liquid phase.44 Thus the quantum
critical behavior found in this paper should be more
correctly interpreted as describing the intermediate-region
indicated in Fig. 13. In the case of condensation of a neutral
order parameter, as discussed at the end of Sec. VI, even the
condensed side may go to some other phase (e.g. a Fermi
liquid phase co-existence with AFM). Our discussion is
nevertheless robust in region outside the dome-shaped
region in Fig. 13.
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APPENDIX A: MATCHING FORMULAS AND
PROPERTIES OF a�, b�

In this appendix we first briefly review some aspects of
the derivation of the master formula (2.11),

GRðω; ~kÞ ¼ μ2νU�
bþðk;ωÞ þ b−ðk;ωÞGkðωÞμ−2νk�
aþðk;ωÞ þ a−ðk;ωÞGkðωÞμ−2νk�

: ðA1Þ

This was first derived in [19], and we refer readers to that
work or the more recent review [27] for a more in-depth
discussion; here we simply recall some aspects of their
treatment which require greater care in our analysis. We
then discuss the properties of the functions a�, b�
appearing in the master formula.

1. Derivation of the master formula

Recall that the equation of motion (in momentum space)
for ϕ in the charged black hole geometry (2.2) can be
written as

z4∂z

�
f
z2
∂zϕ

�
þ z2

�ðωþ qAtÞ2
f

− k2
�
ϕ −m2R2ϕ ¼ 0:

ðA2Þ
As z → 0 (i.e. to the AdS4 boundary), ϕ has the standard
asymptotic behavior

SLQL 

Condensed 
e.g. FL 

Quantum  
Critical 

FIG. 13 (color online). How to interpret the results found in this
paper. As discussed in [24], SLQL should be interpreted as a
universal intermediate phase which orders into some other
phases, such as a Fermi liquid, at lower energies. Thus the
results of the paper only describe the quantum critical behavior
outside the dome-shaped region. In contrast to the results found in
this paper, which do not depend on the details of a given system
(both microscopically and macroscopically), what is inside the
dome is model-dependent and likely requires understanding finite
N effects.

44See [52] for a recent discussion of nucleation of a neutral
order parameter in a Fermi liquid-like phase.
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ϕðz → 0Þ ∼ Az3−Δ þ BzΔ ðA3Þ
where Δ is the conformal dimension (2.8) for ϕ in the
vacuum. The retarded function for O in standard quantiza-
tion can then be written as45

GRðω; ~kÞ ¼
B
A

ðA4Þ

provided that ϕ is an in-falling wave at the horizon.
We are interested in the small-frequency expansion of

(A4). The key point here, emphasized in the main text,
is that near the horizon the geometry factors into an
AdS2 ×R2, where the AdS2 involves the time and radial
directions. This introduces nontrivial scaling in the time
direction, meaning that great care must be taken in perform-
ing a small-frequency expansion. This problem was solved
in [19]: we start with an exact solution in the AdS2 ×R2

region, inwhich the frequency dependence is treated exactly.
We then evolve it outwards, eventually matching it to a
solution in theUV region (away from theAdS2) to determine
the coefficients A and B. In the UV region it is safe to treat
frequency dependence perturbatively.
The scalar wave equation on theAdS2 × R2 region (2.5) is

−∂2
ζϕ~k þ

R2
2m

2
k

ζ2
ϕ~k ¼

�
ωþ q�

ζ

�
2

ϕ~k; ðA5Þ

where m2
k ¼ k2

μ2�R2 þm2 and q� ¼ qgFffiffiffiffi
12

p . Equation (A5) has

solutions near the AdS2 boundary

ϕ~kðζÞ ∼ ζ
1
2
�νk ; ζ → 0 ðA6Þ

with

νk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uþ k2

6μ2�

s
; u≡m2R2

2 − q2� þ
1

4
ðA7Þ

which implies that the corresponding CFT1 operator Φ~kðtÞ
dual to ϕ~kðt; ζÞ has a conformal dimension46 δk ¼ 1

2
þ νk.

Expanding the in-falling solution, which behaves as eiωζ

for ζ → ∞, near the AdS2 boundary for small ζ, we find (up
to an overall normalizing constant)

ϕðζÞ ¼ ζ
1
2
−νk þ GkðωÞζ1

2
þνk ; ðA8Þ

where by definition GkðωÞ is the retarded Green’s function
for Φ~kðtÞ in the SLQL; it can be found by directly solving
(A5) and has been given earlier in (2.12).

We now match the IR solution (A8) to a solution in the
UV region. To leading order we can set ω ¼ 0 in (A2) in
the UV region. The resulting equation has two independent

solutions ηð0Þ� which can be specified by their behavior near
z → z� as

ηð0Þ� ðzÞ →
�
6ðz� − zÞ

z�

�
−1
2
�νk ¼

�
ζ

z�

�1
2
∓νk

; z → z�

ðA9Þ
with the corresponding asymptotic behavior as z → 0 as

ηð0Þ� ðzÞ ≈ að0Þ� ðkÞ
�
z
z�

�
3−Δ

þ bð0Þ� ðkÞ
�
z
z�

�
Δ
: ðA10Þ

að0Þ� ðkÞ and bð0Þ� ðkÞ thus defined are (dimensionless) func-
tions of k which can be computed numerically.
At small ω, there is an overlapping region in which both

both (A8) and (A9) should apply, which determines the full
UV solution to be

ϕðzÞ ¼ ηð0Þþ ðzÞ þ GkðωÞz2νk� ηð0Þ− ðzÞ: ðA11Þ
Equation (A11) can be generalized to higher orders in ω

ϕðzÞ ¼ ηþðzÞ þ GkðωÞz2νk� η−ðzÞ ðA12Þ
where

η� ¼ ηð0Þ� þ ωηð1Þ� þOðω2Þ ðA13Þ
are the two linearly independent perturbative solutions to
the full UV region equation. We have glossed over several
details here and again refer the interested reader to [19].
The key point here is that the η� do depend on frequency,
but analytically with smooth Taylor expansions near
ω ¼ 0; the nontrivial scaling behavior all arises from the
AdS2 region. If νk is real than the η� are also real, as they
obey a real equation with real boundary conditions.
Nevertheless, the case where νk is imaginary is important
in our analysis and is discussed below.
Near z ¼ 0, the η� have the expansion of the form (A10)

with various coefficients að0Þ� , bð0Þ� replaced by a�, b�
which also have an analytic ω-expansion such as

aþðk;ωÞ ¼ að0Þþ ðkÞ þ ωað1Þþ ðkÞ þ…: ðA14Þ
Note that since both the boundary conditions and the
equation (A2) are real, a�, b� are real. From (A12) and
the expansion of η� near z ¼ 0 we thus find the boundary
theory Green’s function to be

GRðω; ~kÞ ¼ μ2νU�
bþðω; kÞ þ b−ðω; kÞGkðωÞμ−2νk�
aþðω; kÞ þ a−ðω; kÞGkðωÞμ−2νk�

: ðA15Þ

45Note we are using a nonstandard normalization for the
Green’s function, which differs from the standard one by a factor
of 2νU. The same normalization difference applies to the Green’s
function in the AdS2 region.

46This is the dimension in the AdS2 standard quantization; the
full UV answer is of course insensitive to this choice.
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We conclude this discussion with some remarks:
(1) Note that for a neutral scalar with q ¼ 0, Eq. (A2)

only depends on ω2 and the expansion parameter in
(A13) and (A14) should be ω2, i.e.

aþðk;ωÞ ¼ að0Þþ ðkÞ þ ω2að2Þþ ðkÞ þOðω4Þ ðA16Þ

and so on.
(2) For νk ¼ 0, which happens for k ¼ 0 and u ¼ 0 [see

(A7)], some new elements arise. At νk ¼ 0, the basis
of functions in (A9) should be replaced by

ηð0ÞðzÞ ¼
�
ζ

z�

�1
2

~ηð0ÞðzÞ ¼ −
�
ζ

z�

�1
2

log
ζ

z�
ðA17Þ

where the asymptotic behavior for them at z → 0 is

ηð0ÞðzÞ ≈ α

�
z
z�

�
3−Δ

þ β

�
z
z�

�
Δ
;

~ηð0ÞðzÞ ≈ ~α

�
z
z�

�
3−Δ

þ ~β

�
z
z�

�
Δ

ðA18Þ

α, β, ~α, ~β are now dimensionless real numbers which
can again be found numerically. They play a key role
in understanding the analytic properties of a�, b� as
is discussed in some detail below.

(3) For u < 0, νk ¼ −iλk is pure imaginary for small
enough k, and the basis of solutions (A9) now has
the form

ηð0Þ� ðzÞ →
�
6ðz� − zÞ

z�

�
−1
2
∓iλk ¼

�
ζ

z�

�1
2
�iλk

;

z → z� ðA19Þ

These boundary conditions are now complex, and
thus so are the η�. As the η� actually obey a real
wave equation, the full analytic structure is deter-
mined by the boundary conditions in the infrared;
thus we find that now ηþ ¼ η�−. This also implies that
a�, b� are complex and

a�þ ¼ a−; b�þ ¼ b−: ðA20Þ

We now discuss some further properties of the UV
expansion coefficients a�, b�.

2. Analytic properties of a�, b�
The functions a�ðω; kÞ, b�ðω; kÞ are obtained by solv-

ing Eq. (A2) perturbatively in ω in the UV region. Their
k-dependence comes from two sources, from dependence
on νk via the boundary condition (A9) and from k2

dependence in the equation (A2) itself. Since the geometry

is smooth throughout the UV region we expect the
dependence on both νk and k2 to be analytic. In fact we
can think of b� and a� as functions of νk; i.e. there exists a
function bðνk; k2;ωÞ, analytic in all its arguments, such
that b� ¼ bð�νk; k2;ωÞ. This is clear from the boundary
condition (A9) (and its generalization for higher orders in
ω) and from the fact that there is no other dependence on νk
from the equation of motion itself.

Let us now look at the behavior of að0Þ� , bð0Þ� in the limit of
νk → 0 in some detail. Note that this limit should be
considered as a double limit k2 → 0 and u → 0. First,
we note that in the limit νk → 0, the basis of functions
introduced in (A9) can be expanded as

ηð0Þ� ¼ ηð0ÞðzÞ � νk ~η
ð0ÞðzÞ þOðν2kÞ; ðA21Þ

where ηð0Þ and ~ηð0Þ were introduced in (A17). This leads to

bð0Þ� ¼ β � νk ~β þ ðc1k2 þ d1uÞ þ…;

að0Þ� ¼ α� νk ~αþ ðc2k2 þ d2uÞ þ…: ðA22Þ

In the above equations the linear order terms directly come
from the linear order term in (A21), while the quadratic
order terms also receive contributions from equation of
motion itself (not just the boundary conditions) and cannot
be expressed in terms of ν2k alone. The important point is
that the quadratic order terms are independent of the signs
before νk and thus are the same for a� and b� respectively.
Similarly approaching νk ¼ 0 from the imaginary νk ¼
−iλk side, we have for small λk,

bð0Þ� ¼ β∓iλk ~β þ…; að0Þ� ¼ α∓iλk ~αþ…: ðA23Þ

Again the quadratic order terms should be the same for a�
and b�.
Note also that νk itself becomes nonanalytic in k2 at

u ¼ 0 [see (A7)] and as a result through formula such as
(A22) a�, b� will also develop nonanalytic behavior in k2

at u ¼ 0. This fact is important for understanding the
critical behavior around the critical point u ¼ 0 discussed
in the main text.
We conclude this section by noting that coefficients a�,

b� are not independent. For example evaluating the

Wronskian of (A2) (for ω ¼ 0)47 for ηð0Þ� and demanding
that it be equal at infinity and at the horizon, we find the
elegant relation:

47The Wronskian of Eq. (A2) is given by

W½ϕ1;ϕ2� ¼
f
z2

ðϕ1∂zϕ2 − ϕ2∂zϕ1Þ ðA24Þ

which is independent of z.
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að0Þþ ðkÞbð0Þ− ðkÞ − að0Þ− ðkÞbð0Þþ ðkÞ ¼ νk
νU

: ðA25Þ

A similar analysis on η, ~η results in

α~β − β ~α ¼ −
1

2νU
: ðA26Þ

Interestingly, this particular combination of coefficients
appears many times throughout this paper.
We conclude this section by specifying the explicit

values for these constants for a neutral scalar moving on
the pure Reissner-Nordstrom background; in this model by
requiring νk¼0 ¼ 0 we fix the value of the mass to be
m2R2 ¼ − 3

2
, and thus we can (numerically) compute the

coefficients once and for all to be:

α ¼ 0.528 ~α ¼ 0.965 ðA27Þ

β ¼ 0.251 ~β ¼ −0.640: ðA28Þ

One can check that within numerical error these values

satisfy (A26) with νU ¼
ffiffi
3

p
2
.

APPENDIX B: ADS CORRELATORS AND
INSTABILITIES

In this Appendix we give a more detailed discussion of
various scalar instabilities of a (dþ 1)-dimensional AdS
spacetime mentioned in Sec. III. We will first consider
general d and then specify to d ¼ 1, i.e. AdS2, for which
more can be said and which plays an important role in this
paper. Our discussion for d > 1 applies to any scalar
operator, but for AdS2 (which often contains a background
electric field) the results for charged and neutral scalars are
different and we will comment on this. We treat only linear
response and so will describe the nature and onset of the
instability, not the endpoint of the condensate (which
depends on the specific model.)

1. General d

As in Sec. III, consider a scalar field ϕ in AdSdþ1, which
is dual to an operator Φ in some boundary CFTd. The
possible conformal dimensions of Φ are given by (3.1)
which we reproduce here for convenience,

Δ� ¼ d
2
� ν; ν ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2R2 þ d2

4

r
ðB1Þ

where M2 is the mass square for ϕ. As discussed below
(3.1), for ν ∈ ð0; 1Þ, there are two ways to quantize ϕ in
AdS, giving rise to the two theories CFTIR

d and CFTUV
d , in

which the corresponding operators Φ� have dimension
Δþ ¼ d

2
þ ν and Δ− ¼ d

2
− ν respectively. These are often

called the “standard” and “alternative” quantizations; for

ν > 1 only the standard quantization is allowed. This can
be seen via a simple normalizability argument and as we
will see below is modified for a charged scalar in AdS2.
The two-point retarded Green’s function for Φþ in the

CFTIR
d (“standard quantization”) is given by

Gþðω; ~kÞ ¼ CðνÞ
�~k2 − ðωþ iϵÞ2

4

�ν

; CðνÞ≡ Γð−νÞ
ΓðνÞ
ðB2Þ

and at zero spatial momentum

Gþðω; ~k ¼ 0Þ ¼
�
−
iω
2

�
2ν Γð−νÞ

ΓðνÞ ðB3Þ

That forΦ− in the “alternative quantization” CFTUV
d [which

we denote by G−ðkμÞ] is given by

G−ðkμÞ ¼ −GþðkμÞ−1: ðB4Þ

Also note that for a theory deformed by a double-trace
operator48

δS ¼ κ

2

Z
ddxO2 ðB5Þ

in the large N limit, the retarded correlation function for O
becomes

GðκÞ
R ðω; ~kÞ ¼ 1

G−1
R ðω; ~kÞ þ κ

ðB6Þ

where GRðω; ~kÞ is the retarded function in the absence of
deformation.

a. Instabilities from double trace deformations

We now consider instabilities induced by a double
trace deformation of the system. We begin by considering
ν ∈ ð0; 1Þ with the alternative quantization, CFTUV

d and
turn on the following double trace deformation:

κ−
2

Z
ddxΦ2

−: ðB7Þ

From (B6) the retarded Green’s function of the operator Φ−
now becomes

Gðκ−Þ− ðω; ~kÞ ¼ 1

G−1
− ðω; ~kÞ þ κ−

; ðB8Þ

48Note that in this Appendix we use a dimensionful κ as
opposed to the main text.
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where G−ðω; ~kÞ is the undeformed correlator in alternative
quantization. The double-trace deformation (B7) has
dimension d − 2ν and so is relevant. For κ− > 0 it triggers
a flow which leads to the standard quantization, CFTIR

d (and
hence the respective names of the two theories). This can be
seen by expanding (B8) at small momentum; for any
nonzero κ− the resulting answer will coincide (up to a

contact term) with the correlator Gþðω; ~kÞ.
For κ− < 0, the theory develops an IR instability [54,55],

as the static susceptibility becomes negative at k ¼ 0,
signaling a tachyonic mode. The scale at which the
instability sets in can be found either by examining the
beta function for the running double-trace coupling
which develops an IR Landau pole at certain scale or from
that Eq. (B8) develops a pole in the upper half complex
plane. We now elaborate on the latter a bit more. With
~k ¼ 0, from (B3)

G−ðωÞ ¼ −
1

GþðωÞ
¼ −

1

CðνÞ
�
−
iω
2

�
−2ν

: ðB9Þ

Plugging this into (B8) we find that Gðκ−Þ− ðω; kÞ has a
pole at

ω ¼ iωκ ωκ ¼ 2

�
κ−
CðνÞ

� 1
2ν ðB10Þ

As CðνÞ is negative for ν ∈ ð0; 1Þ, this pole is in the upper-
half plane when κ− < 0, indicating a dynamical instability,
meaning the bulk scalar field will condense.49 Note that as
we increase κ− from zero, the pole appears from the origin;
thus it is an IR instability, consistent with our under-
standing of the double-trace deformation (3.2) as a relevant
operator.
To summarize, κ− ¼ 0 can be considered as a quantum

critical point separating two different phases; for κ− > 0we
flow to a conformal phase which in the IR is simply the
standard quantization theory CFTIR

d , whereas for κ− < 0 we
have a different phase in which the bulk scalar field
condenses; the final endpoint of the instability cannot be
answered without knowing more details about the non-
linear structure of the theory.
The story for the standard quantization with a double

trace deformation κþ
2

R
ddxΦ2þ can be similarly worked out.

For ν ∈ ð0; 1Þ, the system is stable for κþ < 0 and the
alternative quantization is obtained in the κþ → −∞ limit.
However for positive κþ we find a pole in the upper half
plane at50

ω ¼ iωκ; ωκ ¼ 2ð−κþCðνÞÞ− 1
2ν: ðB11Þ

Note that as we increase κþ from zero, the pole (B11)
moves in fromþi∞, which means that it is aUV instability.
This is consistent with our RG understanding, as Φ2þ has
dimension dþ 2ν; it is irrelevant and so is expected to be
important only at large energies. This UV instability can
also be seen from a Landau pole in the running coupling of
the double-trace operator Φ2þ [54,55]. See Fig. 3 which
summarizes the above conclusions.
For ν > 1, there is only standard quantization. For

ν ∈ ð1; 2Þ, CðνÞ in (B2) becomes positive. Thus in contrast
with ν ∈ ð0; 1Þ, now the system develops a UV instability
for κþ < 0. While there is no apparent instability for
κþ > 0, the UV completion is not currently known. The
sign of CðνÞ oscillates with integer n for ν ∈ ðn; nþ 1Þ and
the instability region oscillates between κþ > 0 and κþ < 0
depending on whether n is even or odd.

b. Instabilities from the Breitenlohner-Freedman bound

We now study a different mechanism for an instability.
As ν → 0, i.e. M2 → − d2

4
≡M2

c, the two possible quanti-
zations—two different CFTd’s—merge into one at ν ¼ 0. If
M2 further drops below M2

c, the so-called Breitenlohner-
Freedman bound, ν becomes complex and Φ develops
exponentially growing modes [12]. The system becomes
unstable to the condensation of Φmodes. Introducing a UV
cutoff Λ, then there is an exponentially generated IR energy
scale ΛIR [30]

ΛIR ∼ Λ exp

�
−

πffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

c −M2
p �

ðB12Þ

below which the physics of condensate sets in.
Now instead of going below the BF bound, consider

sitting precisely at ν ¼ 0, we find that the double-trace
deformation κΦ2 is marginal. Whether it is marginally
relevant or irrelevant depends on its sign [28]. To see this,
note that at ν ¼ 0, Eq. (B3) should be replaced by51

G0ðωÞ ¼ − log

�
−
iω
Λ

�
ðB14Þ

where Λ is a UV regulator. Under a double trace deforma-
tion with coupling κ we find

GðκÞ
0 ðωÞ ¼ 1

G−1
0 ðωÞ þ κ

: ðB15Þ

49Turning on a finite temperature can stabilize the system, and
the critical temperature scales as Tc ∼ ð−κ−Þ 1

2ν [20].
50It is intriguing that CðνÞ oscillates; this implies for example

that there are poles in the upper-half plane for negative κþ and
ν ∈ ð1; 2Þ. It would be good to understand this better.

51Note that (B14) is obtained by directly solving the bulk
equation of motion at ν ¼ 0. Taking ν → 0 limit in (B3) one
instead finds

GþðωÞ → −1þ 2νG0ðωÞ þ…; ν → 0: ðB13Þ
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The above equation has a pole in the upper half frequency
plane at

ωκ ¼ iΛ exp

�
1

κ

�
≡ iΛκ: ðB16Þ

Considering increasing κ from zero to some positive value,
then the above pole emerges from þi∞, implying a UV
instability. We thus conclude that κ > 0 is marginally
irrelevant. Similarly a negative κ is marginally relevant
and leads to an IR instability. In both cases we can identify
Λκ as a dynamically generated scale.
Here we note a curious fact. Suppose we deform the

system with κ > 0 at some scale far belowΛκ where the UV
instability sets in. Naively we would expect that the system
should flow back to κ ¼ 0 in the IR. However, it follows
from (B15) that in the ω → 0 limit, the retarded function is
given by Gκ

0 ∼ 1
logð−iωÞ instead of G0. The situation is

summarized in Fig. 14. Starting from MFTUV, under a
double trace deformation κ, the theory flows to MFTIR for
positive κ in the IR, while for κ < 0, the theory develops an
IR instability and flows to a condensed phase. ThusMFTUV

is a multicritical point (since we need to tune to ν ¼ 0 and
κ ¼ 0 at the same time).

2. Specializing to AdS2

We now specialize to d ¼ 1, i.e. an AdS2 bulk geometry,
for which there are some new elements. We work with an
AdS2 metric with the form

ds2 ¼ −
R2
2

ζ2
ð−dt2 þ dζ2Þ A ¼ ed

ζ
dt: ðB17Þ

Note that if are finding this as the near-horizon limit of the
Reissner-Nordstrom black hole in an asymptotically AdS4
spacetime the value of ed is fixed to be

gFffiffiffiffi
12

p , as in (2.5). Note

that the gauge field actually blows up as we go to the
boundary ζ → 0. This influences various properties of
operators dual to bulk charged fields; for example, the
conformal dimension of the operator can now depend on
the charge q. For a scalar with mass m we find using the
metric (B17)

Δ� ¼ 1

2
� ν ν ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2R2

2 − q2� þ
1

4

r
: ðB18Þ

where q� ≡ qed.
The allowable Δ− range that can be reached using

alternative quantization is also different; for a neutral scalar
in any AdSdþ1 we find that alternative quantization is
allowed if ν ∈ ð0; 1Þ, but for a charged scalar in AdS2
normalizability of the wave function requires ν ∈ ð0; 1

2
Þ.

Note this imposes a new “unitarity bound” on the lowest
possible dimension of a charged operator in AdS2=CFT1:
Δ− > 0; this is stronger than the usual unitarity bound,
which isΔ− > d−2

2
→ − 1

2
for d ¼ 1. There is a heuristic way

to understand this new bound; usually the field theoretical
unitarity bound coincides with the dimension of a free
massless (field theoretical) scalar in d-dimensions. In one-
dimensional quantum mechanics if we turn on a chemical
potential for a charged scalar X its scaling is determined not
by the

R
dt _X† _X term but rather by the term

R
dtAtX† _X,

which results in a free charged scalar of dimension ½X� ¼ 0,
coinciding with the bound derived above.

APPENDIX C: DETAILS OF THE
PHASE DIAGRAM

In this Appendix we go through the steps of constructing
the standard quantization phase diagram Fig. 4.We begin by
drawing the phase diagram of the system at zero density. As
discussed in Appendix B, for νU ∈ ðn; nþ 1Þ the instability
region oscillates between κþ > 0 and κþ < 0 depending on
whethern is even or odd. Translating between νU andu gives
us the vacuumphase diagram for a neutral scalar, Fig. 15. By

FIG. 15 (color online). Phase diagram of the neutral scalar
system in the standard quantization at zero density.

FIG. 14 (color). The RG flow diagram at ν ¼ 0 for double trace
coupling κ. Note the positive κ-axis is pointed to the left and the
arrow denotes flowing to IR. MFTUV denotes the fixed point in
which the retarded function for Φ is given by (B14) and MFTIR

denotes the theory in which the retarded function for Φ is
proportional to 1

logð−iωÞ.
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FIG. 16 (color online). Top plot: að0Þþ ðkÞ and bð0Þþ ðkÞ plotted for different values of m2R2 < − 5
4
with q ¼ 0; blue is m2R2 ¼ −1.4999,

green m2R2 ¼ −1.4, red m2R2 ¼ −1.3 and black m2R2 ¼ −1.27. að0Þþ ðkÞ is positive and monotonically increases with k, while bð0Þþ ðkÞ
monotonically decreases with k. Thus for κþ < 0, ~að0Þþ ðkÞ ¼ að0Þþ ðkÞ þ κþb

ð0Þ
þ ðkÞ is a monotonically increasing function of k. Bottom

plot: ~að0Þþ ðkÞ form2R2 ¼ −1.4999 and q ¼ 0. ~að0Þþ ðkÞ has a zero for some kwhen κþ < κc ¼ −2.13, which implies an IR instability. For

0 > κþ > κc there is no instability (see the κþ ¼ −1 curve). When κþ > 0, ~að0Þþ ðkÞ can again develop a zero for some kF (with the value
of kF approaching infinity for κþ → 0þ); this is the UV instability discussed in Sec. III which is already present in the vacuum. To lead

the eye we use solid lines for stable values of κ [i.e. ~að0Þþ ðkÞ does not have any zero], dotted lines for those with an IR instability, and
dashed lines for those with a UV instability.
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FIG. 17 (color online). Top plot: að0Þþ ðkÞ and bð0Þþ ðkÞ plotted for different values of − 5
4
< m2R2 < 7

4
with q ¼ 0; blue ism2R2 ¼ −1.23,

purple m2R2 ¼ −1.15, green m2R2 ¼ −0.5, red m2R2 ¼ 0 and black m2R2 ¼ 0.5. While as in Fig. 16, að0Þþ ðkÞ is positive and

monotonically increases with k, for this mass range bð0Þþ ðkÞ becomes monotonically increasing with k. Note that bð0Þþ ðk ¼ 0Þ ¼ 0 for

m2 ¼ 0 and bð0Þþ ðk ¼ 0Þ < 0 for m2 > 0. Bottom left plot: ~að0Þþ ðkÞ for m2R2 ¼ −1 and q ¼ 0. For 0 ≥ m2R2 > − 5
4
the system is stable

for any κþ > 0, but develops a UV instability for 0 > κþ > κc, ~a
ð0Þ
þ ðkÞ has a zero which approaches infinity for κþ → 0−. For κ < κc,

~að0Þþ ðkÞ becomes negative definite. This is the only instance, when we cannot resort to the logic of the second point in Sec. III. However,
because the UV and IR effects are independent, we can conclude that phase has both a UV and an IR instability. Bottom right plot:

~að0Þþ ðkÞ for m2R2 ¼ 0.5 and q ¼ 0. For m2 > 0, the system now develops an IR instability for κþ > κc > 0. For κþ < 0, there is a UV
instability.
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introducing finite density, on top of the UV instabilities
determined by the vacuum structure the system can develop
other IR instabilities. We devote the rest of the Appendix to
their study.
To determine when finite density instabilities occur, we

have to solve for að0Þþ ðkÞ and bð0Þþ ðkÞ numerically. As
explained in Sec. IV, in the double trace deformed theory

we look for the zeros of ~að0Þþ ðkÞ ¼ að0Þþ ðkÞ þ κþb
ð0Þ
þ ðkÞ as a

function of k. At these special values of k there is a pole
crossing over to the upper half ω-plane resulting in a
dynamical instability. The phase boundaries are then easily

mapped out. In Figs. 16, 17 we plot að0Þþ ðkÞ, bð0Þþ ðkÞ, and
~að0Þþ ðkÞ for various values of u (equivalently m2R2) and κþ.
From these plots we can read off the movement of the

poles on the ω-plane. There can be two sources of
instabilities and correspondingly two types of poles can
make appearance in the upper half plane. The position of
the UV poles is determined by vacuum physics, and gives
the vacuum phase diagram Fig. 15. The IR poles are a result
of finite temperature physics. When such poles cross the
real line the static susceptibility, χ diverges. We show where
these poles are in the various phases in Fig. 18. We
emphasize that the physics of UV and IR instabilities is
different, and correspondingly the movement of IR and UV
poles is independent.
Finally, we complete the phase diagram with the

bifurcating critical line at uc ¼ 0, see Fig. 4.

APPENDIX D: NONLINEAR SOLUTION NEAR
A BIFURCATING CRITICAL POINT:

EFIMOV SPIRAL

In this Appendix we give the gravity analysis of the
critical behavior near the bifurcating quantum critical point
approaching from the condensed side, i.e. u < 0. As
discussed in [13,14], for the lowest n ¼ 1 state there is a
new exponentially generated scale

ΛIR ∼ μ exp

�
−

πffiffiffiffiffiffi
−u

p
�

ðD1Þ

and when the AdS2 radial coordinate ζ satisfies ΛIRζ ≫ 1
(i.e. deep in the AdS2 region), ϕ becomes of order Oð1Þ.
Thus at zero temperature, no matter how close one is to the
critical point and even though the vacuum expectation value
of the condensed operator is very small near the critical
point, the nonlinear dynamics of ϕ and the backreaction to
the bulk geometry will be needed deep in the AdS2 region.
Nevertheless, we will find that a great deal of information
can be obtained even without detailed analysis of the
nonlinear equations and backreaction. For illustration pur-
pose, as in [13] we will consider an action for ϕ of the form

Lϕ ¼ 1

2κ2g

�
−
1

2
ð∂ϕÞ2 − VðϕÞ

�
ðD2Þ

where g is a coupling constant. The precise form of the
potential VðϕÞ is not important for our discussion below
except that Vð0Þ ¼ 0, V 00ð0Þ ¼ m2 and it has a minimum at
some ϕ0 ≠ 0. To be close to u ¼ 0 critical point on the
condensed side, we will thus take m2 to be slightly smaller
than the value in (4.7) and u ¼ ðm2 −m2

cÞR2
2 < 0.

We will now proceed to compute the response of the
system to a static, uniform external source. Thus we
consider the equation of motion following from (D2) with
ϕ depending on radial coordinate only. The analysis is a
slight generalization of that in [13,14,30]. To describe the
behavior of the bulk solution describing a condensed phase,
we separate the spacetime into three regions:
(1) IR region I: ζ > Λ−1

IR . Here the nonlinear effect of the
scalar potential is important and the value of ϕ is of
O(1). We note that the boundary condition at the
horizon is given by

ϕðζ → ∞Þ ¼ ϕ0 ðD3Þ
where ϕ0 is the minimum of the potential VðϕÞ.
Thus as ζ → ∞, the spacetime metric approachesgAdS2 ×R2 where gAdS2 has a different curvature
radius from the near-horizon AdS2 region of the
condensed phase,

1

~R2
2

¼ 1

R2
2

−
Vðϕ0Þ

g
: ðD4Þ

FIG. 18 (color online). Cartoon illustration of movement of UV
and IR poles in the complex ω-plane. Each box with two halves
represents the upper and lower complex plane, with dots
indicating where the UV and IR poles sit. The color coding is
the same as on the complete phase diagram Fig. 4. Note that when
moving across certain lines on the phase diagram it is evident

from Figs. 16, 17 that the asymptotic large k structure of ~að0Þþ ðkÞ
changes completely, allowing the UV pole to move (or return)
from infinity: e.g. from A to B it moves to infinity, and from B to
E it returns from infinity. On the other hand the IR pole crosses
from the upper to the lower half plane (or vice-versa) through
ω ¼ 0whenever the susceptibility changes sign (e.g. from B to C,

or from F to E). Consideration of the functions ~að0Þþ ðkÞ results
eventually in this assignment of poles.
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(2) IR region II: AdS2 region with ζ < Λ−1
IR (but still

μζ ≫ 1 so that the AdS2 scaling is appropriate). In
this region the value of ϕ is small, and we can treat it
linearly and neglect its backreaction on the geom-
etry. Here ϕ has a well-defined but complex con-
formal dimension in SLQL dual to the original AdS2
(with k ¼ 0) :

δ� ¼ 1

2
� i

ffiffiffiffiffiffi
−u

p
; −u ≪ 1 ðD5Þ

and general solution to linearized equation can be
written as aζδþ þ bζδ− .

(3) UV region: the rest of the black hole spacetime.
Again in this region linear analysis suffices.

Note that the IR region II is not guaranteed to exist a priori,
but will be justified by the results, i.e. (D1) (right now ΛIR
should be considered just as a parameter we introduce to
distinguish IR region I and II).
We will solve the nonlinear equation following from

(D2) starting in IR region I and moving toward the
boundary of the spacetime. Note that the horizon boundary
condition (D3) fixes one of the integration constants in the
second-order equation for ϕ. As we move outwards, the
scalar becomes smaller and smaller until around ζ ∼ Λ−1

IR ,
where we can neglect its backreaction on the geometry and
treat it linearly. Note that the solution to the nonlinear
equation in IR region I should be insensitive to the precise
value ofm2 (which is the mass square near ϕ ¼ 0) and thus
when juj ≪ 1, we could set u to 0 in solving it. This implies
that, near Λ−1

IR , it should be a good approximation to solve
the linearized equation (around ϕ ¼ 0) with u ¼ 0, and a
general solution can be written as52

ϕðζÞ ¼ γ

ffiffiffiffiffi
ζ

ζ�

s
log

ζ

ζ�
þOð ffiffiffiffiffiffi

−u
p Þ ðD6Þ

where γ ∼Oð1Þ and ζ� ∼ Λ−1
IR are integration constants.

In the limit of no backreaction [e.g. g → ∞ in (D4)], it
can be readily checked that the full nonlinear problem in
AdS2 region has an AdS2 scaling symmetry under which
both the IR boundary condition (D3) and the equations of
motion are invariant. Recall that the horizon boundary
condition (D3) fixed only one of the two integration
constants, leaving a one-parameter family of acceptable
solutions. We conclude that in this case because of the
scaling symmetry this family is parametrized by ζ�, and
the number γ must be fixed by (D3) to be an Oð1Þ constant
(as there are no small parameters in the nonlinear analysis).
If we allow backreaction then these statements are no
longer strictly true, in that as we traverse the remaining

one-parameter family of solutions we will likely move
through a nontrivial trajectory in the ðγ; ζ�Þ space. This
should be kept in mind; however in the remainder of the
analysis for simplicity we will assume that backreaction is
small and so we can assume that γ is fixed by (D3) and the
remaining solutions are parametrized by ζ�.
Now from (D5) the most general solution to the

linearized equation in IR region II can be written as

ϕðζÞ ¼ d1

ffiffiffiffiffi
ζ

ζ�

s
cos

� ffiffiffiffiffiffi
−u

p
log

ζ

ζ�
þ d2

�
ðD7Þ

where we have chosen ζ� as a reference point and d1, d2 are
numerical integration constants. For ζ ∼ ζ�, expanding
(D7) in

ffiffiffiffiffiffi
−u

p
and comparing with (D6) we conclude that

d1 ∼ 1ffiffiffiffiffi
−u

p and d2 ¼ π
2
þOð−uÞ and (D7) can be written as

ϕðζÞ ¼ γffiffiffiffiffiffi
−u

p
ffiffiffiffiffi
ζ

ζ�

s
sin

� ffiffiffiffiffiffi
−u

p
log

ζ

ζ�

�
: ðD8Þ

It is important to emphasize that the
ffiffiffiffiffiffi
−u

p
log ζ

ζ�
term may

not be small, as ζ may vary over exponentially large
distance in 1=

ffiffiffiffiffiffi
−u

p
.

Finally we now consider matching (D8) to the solution
in the UV region near μζ ∼Oð1Þ with identification

ζ ¼ z2�
6ðz�−zÞ. This is exactly the same as the linear matching

problems discussed in Appendix A 1 and so we will be
brief. In terms of the basis of solutions introduced in (A19)
we can write ϕ as

ϕðzÞ ¼ γffiffiffiffiffiffi
−u

p
ffiffiffiffiffi
z�
ζ�

r
1

2i
ðe−i

ffiffiffiffiffi
−u

p
logζ�z�ηð0Þþ − ei

ffiffiffiffiffi
−u

p
logζ�z�ηð0Þ− Þ:

ðD9Þ

Using the expansion (A10) and the following definitions
and properties of a�, b�:

aþ ¼ jaþjeiθa ; bþ ¼ jbþjeiθb ;
a− ¼ a�þ; b− ¼ b�þ ðD10Þ

we then conclude that the coefficients A and B in (A3) are
given by

A ¼ −z3−Δ�
γffiffiffiffiffiffi
−u

p jaþj
ffiffiffiffiffi
z�
ζ�

r
sin

� ffiffiffiffiffiffi
−u

p
log

ζ�
z�

− θa

�
;

B ¼ −z−Δ�
γffiffiffiffiffiffi
−u

p jbþj
ffiffiffiffiffi
z�
ζ�

r
sin

� ffiffiffiffiffiffi
−u

p
log

ζ�
z�

− θb

�
: ðD11Þ

Recall that ζ� parametrizes movement through the solution
space; as we vary ζ�, we see that we trace out a spiral in the
ðA;BÞ plane. See Fig. 7. If we are studying a normalizable

52Note at u ¼ 0, the two exponents in (D5) become degenerate
and the independent solutions to the linear equation become ζ

1
2

and ζ
1
2 log ζ, respectively.
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solution (in standard quantization), then we require A ¼ 0:
the spiral will cross this axis an infinite number of times as
we take ζ� → ∞, giving as an infinite tower of states. These
are the “Efimov” states described in the main text. Note that
no matter how small we consider A or B to be, the curve
continues to spiral and nonlinear dynamics remains
important—this is because the scalar in the deep interior
is always of Oð1Þ. Comparing with (A23) we find that
as

ffiffiffiffiffiffi
−u

p
→ 0,

jaþj ¼ α; θa ¼ −
ffiffiffiffiffiffi
−u

p ~α

α
;

jbþj ¼ β; θb ¼ −
ffiffiffiffiffiffi
−u

p ~β

β
ðD12Þ

giving (7.27) quoted in the main text.
For the case of the double-well potential:

VðϕÞ ¼ 1

4R2
ðϕ2 þm2R2Þ2 −m4R2

4
ðD13Þ

there is a ϕ → −ϕ symmetry which results in the symmetry
A, B → −A, −B of Fig. 7. For this potential in the limit of
no backreaction we find γ ≈ 2.

APPENDIX E: FINITE-TEMPERATURE LINE
NEAR A BIFURCATING CRITICAL POINT

The bifurcating quantum phase transition is the endpoint
of a line of finite-temperature phase transitions. In this
Appendix we present some calculations near this line. As
argued earlier this is a rather standard mean field second
order transition, so we do not present much detail. One
novel feature is that close to the quantum critical point then
we are at exponentially small temperatures and so we have
a great deal of analytic control over the calculations,
allowing us to verify explicitly many of the features
expected of such a transition.

1. Dynamic critical phenomena near finite-T transition

We first turn on a finite ω and k2 and study the critical
behavior close to the finite-temperature critical line. The
leading ω behavior comes from the dependence of the IR
Green’s function in (7.38) on ω=T. At finite ω this IR
Green’s function is no longer a pure phase, and to lowest
order we find

Gkðω;TÞ

¼ ðπTÞ−2iλk ΓðiλkÞ
Γð−iλkÞ

Γð1
2
− iλkÞ

Γð1
2
þ iλkÞ

�
1 −

πω

2T
ðλk þOðλ2kÞÞ

�
ðE1Þ

Recall that u measures the distance from the critical point.
The leading k2 dependence comes from expanding λk in
powers of k2 close to the critical point:

λk ¼
ffiffiffiffiffiffi
−u

p
−

k2

6μ2�
ffiffiffiffiffiffi
−u

p þOðk4Þ: ðE2Þ

Note that a sufficiently large k will take us out of the
imaginary ν phase and invalidate this expansion; while this
could presumably be dealt with, it would complicate the
analysis, and thus throughout wewill simply assume that k2

is parametrically small: k2 ≪ ðgc − gÞ. In this regime the
UV contributions to the k2 dependence can be ignored, as
they will be higher order in u.
We now insert these expansions into (7.38). The denom-

inator of the Green’s function then takes the form

GRðω; k;TÞ−1 ∼ sin

�
log

�
T
Ta

��
λ0 þ

dλ
dk2

k2
��

− i
ωλ0π

2T
e−iλ0 logð

T
Ta
Þ; ðE3Þ

where λ0 ¼ λk¼0 ¼
ffiffiffiffiffiffi
−u

p
. We now further expand the

temperature in the vicinity of the nth “Efimov temperature”
Tn, defined in (7.46). We now find

ð−1ÞnGRðω; k;TÞ−1 ∼
λ0ðT − TðnÞ

c Þ
TðnÞ
c

þ nπ
6μ2�λ20

k2 − i
ωπλ0

2TðnÞ
c

:

ðE4Þ

Let us now study this expression, first setting k → 0; we
find then that the Green’s function has a pole at

ω� ¼ −
2i
π
ðT − TnÞ: ðE5Þ

For T > Tn this pole is in the lower half-plane, and it moves
through to the upper half-plane if T is decreased
through Tn.
Of course in practice once the first pole moves through to

the upper half-plane, the uncondensed phase is unstable
and we should study the system in its condensed phase;
thus we see that the true critical temperature is precisely at
the first Efimov temperature, Tc ¼ T1 ¼ Ta exp ð− πffiffiffiffiffi

−u
p Þ.

We can also set ω → 0 and study the static correlation
length; we see that near each Efimov temperature (includ-
ing the critical temperature) we have a standard finite
correlation length ζ with a mean field scaling in (T − Tc):

ζ−2 ¼ 6μ2�ð−uÞ32
Tnnπ

ðT − TnÞ: ðE6Þ

This correlation length exhibits an intriguing scaling in −u.
Finally, we can keep both ω and k2 nonzero and sit at the

critical point T ¼ Tn; we then find a diffusion mode

ω� ¼ −i
n

3μ2�ð−uÞ32
k2 ðE7Þ

QUANTUM PHASE TRANSITIONS IN SEMILOCAL … PHYSICAL REVIEW D 91, 025024 (2015)

025024-39



which is of the standard form for this class of dynamic
critical phenomena (due to the absence of conservation
laws for the order parameter, this is Model A in the
classification of [49]; see also [39] for further discussion
in the holographic context).

2. Susceptibility across the critical point

We now compute the linear susceptibility near the critical
point as we approach from the uncondensed side, i.e.
T > Tc. We already have all of the ingredients; from (7.41)
we have

χðTÞ ¼ χ0
sin ðλ0 logð TTb

ÞÞ
sin ðλ0 logð TTa

ÞÞ ðE8Þ

Now expanding near T ¼ Tc ¼ Ta exp ð− π
λ0
Þ we find

χðTÞ ≈ χ0
Tc logðTa

Tb
Þ

T − Tc
¼ χ0

2νUαβ

Tc

T − Tc
; ðE9Þ

where as usual we have used (A26).
We will now perform the analogous calculation from the

condensed side. This will require some understanding of
the nonlinear solution close to the critical point. Wewill use
analyticity properties of nonlinear classical field configu-
rations on black hole backgrounds; these are precisely
analogous to the analyticity arguments in the Landau
theory of phase transitions. Similar arguments led us in
[13] to conclude that for finite temperature phase transitions
we find mean field critical exponents.
First we express A, B as functions of the horizon value of

the scalar field, ϕh. We have

B
μ−Δ�

¼ bþðTÞϕh þ b3ðTÞϕ3
h þ… ðE10Þ

and the corresponding expression for A:

A
μΔ−3�

¼ aþðTÞϕh þ a3ðTÞϕ3
h þ… ðE11Þ

For small values of the scalar linear response must apply,
and thus the aþ and bþ appearing above are the same as
those used throughout this paper in calculating linear
response functions. Now from the calculation above we
know that close to the critical temperature we have
aþðTÞ ∼ ~aðT − TcÞ; matching to (E9) above we see that

bþðTcÞ
~a

¼ Tc

2νUα
2
: ðE12Þ

Now we see that for T < Tc we have a nontrivial zero in A
(and thus a normalizable bulk solution) at

ϕh ¼
�
~aðT − TcÞ

a3

�1
2 ≡ ϕnorm: ðE13Þ

The definition of the nonlinear susceptibility χL is the
derivative of the vacuum expectation value (i.e. B) with
the source as we approach the normalizable solution on the
condensed side, i.e.

χL ¼ μ2νU�
dB
dA

����
A→0

¼ μ2νU�
dB
dA

����
ϕh¼ϕnorm

: ðE14Þ

Evaluating the derivatives this works out to be

χL ¼ μ2νU�
dB
dϕh

dϕh

dA

����
ϕh¼ϕnorm

¼ χ0
4νUαβ

Tc

Tc − T
ðE15Þ

Compare this to the linear susceptibility χ calculated in (E9);
we see that the leading divergence in χL has a prefactor that is
half that of χ. This fact is a general result of Landau theory
and follows from the symmetry and analyticity arguments
that allowed us to write down (E10) and (E11).

APPENDIX F: REVIEW OF CRITICAL
EXPONENTS

In the vicinity of a critical point we observe scaling
behavior of various observable quantities, which is char-
acterized by a set of critical exponents. We list some of the
most commonly used exponents in the following. We will
denote the external tuning parameter g with which we tune
the system to the critical point g ¼ gc. Near the critical
point the spatial correlation length diverges as

ξ ∼ jg − gcj−νcrit : ðF1Þ
The energy gap for elementary excitations scales as

Egap ∼ ξ−z ∼ jg − gcj−zνcrit ; ðF2Þ

where z is called the dynamic critical exponent and
determines the characteristic time scale of the approach
to equilibrium via τeq ∼ 1=Egap. On the condensed side the
order parameter O also exhibits scaling near the critical
point; the corresponding exponent is

hOi ∼ jg − gcjβ; ðF3Þ
and exactly at the critical point it will depend on the source
as

hOi ∼ J1=δ; ðF4Þ
where the coupling to the external source is JO. The
correlation function χ ¼ hOOi can also be used to probe
the physical properties of the critical point. The next critical
exponent we introduce is for χ at zero momentum:
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χðk ¼ 0;ω ¼ 0Þ ∼ jg − gcj−γ: ðF5Þ
The decay of GR at the critical point in the free theory
would be 1=xd−2, the deviation from this is characterized
by η:

χðx;ω ¼ 0Þjg¼gc ∼
1

xd−2þη : ðF6Þ

To study the scaling of thermodynamic functions we
introduce α as:

f ∼ jg − gcj2−α; ðF7Þ
where f is the free energy density.
The scaling exponents obey scaling relations which can

be derived from scaling arguments.

γ ¼ ð2 − ηÞνcrit ¼ βðδ − 1Þ ðF8Þ
With some additional input one can derive the hyperscaling
relation which is obeyed by critical theories in the Landau-
Ginsburg-Wilson paradigm in the absence of dangerously
irrelevant operators:

2β ¼ ðd − 2þ ηÞνcrit: ðF9Þ
We will see in the bulk of the paper that hybridized
criticality violates the hyperscaling relation, hence we only
accept (F8) as valid equations. Choosing the independent
exponents to be β, γ, νcrit we can express all other exponents
with them:

α ¼ 2 − 2β − γ ðF10Þ

δ ¼ β þ γ

β
ðF11Þ

η ¼ 2 −
γ

νcrit
: ðF12Þ

Hyperscaling would give us an additional relation between
β, γ, νcrit.

APPENDIX G: INDEX OF SYMBOLS

For convenience here we compile (in rough alphabetical
order) the important symbols used in this paper, with brief
definitions and a reference to the equation number where
they are defined.
(1) A, B: UVexpansion coefficients of a general solution

to the bulk wave equation. Defined in (A3).
(2) a�, b�: UV expansion coefficients of a particular

basis of solutions to the bulk wave equation, chosen

to have definite scaling behavior in the AdS2
geometry. Defined in (A10).

(3) α, ~α, β, ~β: Taylor expansion coefficients of a�, b� in
small νk limit. Defined in (A22) and (A23).

(4) Δ: UV (i.e. in asymptotic AdS4 region) conformal
dimension of scalar operator O. Defined in (2.8).

(5) δk: IR (i.e. in eCFT1, or infrared AdS2 region)
conformal dimension of each Fourier mode of IR
scalar operator. Defined in (2.9).

(6) γ: Dimensionless parameter describing overall scale
of nonlinear condensed phase solution near bifurcat-
ing critical point. Defined in (D8); see also (7.27).

(7) GRðω; kÞ: Full retarded correlator of UVoperator O.
Expression given in (2.11).

(8) GkðωÞ: IR (i.e. in eCFT1) correlator of IR scalar
operator. Expression at zero temperature given in
(2.12); finite temperature generalization given
in (2.19).

(9) κ�: Coefficients of various double trace-deformations
that can be used to tune system through hybridized
critical point; see (3.2), (3.3) and (B7).

(10) κc: Critical value of κþ for hybridized critical point.
Defined in (4.8).

(11) κ�þ: Value of κc for which hybridized phase transition
line intersects bifurcating phase transition line,
leading to marginal quantum phase transition.
Defined in (9.1).

(12) m2: Bulkmass of scalar. See (2.8) and (2.10) for effect
on UVand IR conformal dimension, respectively.

(13) μ�: Rescaled chemical potential. Defined in (2.3).
(14) νU: Number related to UV conformal dimension by

Δ ¼ d
2
þ νU. Defined in (2.8).

(15) νk, ν: Number related to IR conformal dimension by
δk ¼ 1

2
þ νk. Defined in (2.9); ν with no subscript

is ν ¼ νk¼0.
(16) q�: Rescaled charge q of scalar field. Defined

in (2.10).
(17) R, R2: Curvature radii of asymptotic UV AdS4 and

IR AdS2 regions, respectively. Defined in (2.2)
and (2.5).

(18) u: Control parameter describing distance from bi-
furcating quantum critical point, which is at u ¼ 0,
with condensed phase for u < 0. Defined in (4.4).

(19) χ0: Susceptibility approaching bifurcating quantum
phase transition from uncondensed side. Defined
in (7.5).

(20) χ�: Parameter characterizing nonanalyticity in sus-
ceptibility across bifurcating quantum phase tran-
sition. Defined in (7.7).

(21) ψðxÞ: Digamma function, logarithmic derivative of
gamma function ψðxÞ≡ d

dx logΓðxÞ. Appears in ther-
mal response near bifurcating critical point, e.g. (7.43).
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