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The quantum reverse Shannon theorem and resource
tradeoffs for simulating quantum channels
Charles H. Bennett, Igor Devetak, Aram W. Harrow, Peter W. Shor and Andreas Winter

Abstract—Dual to the usual noisy channel coding problem,
where a noisy (classical or quantum) channel is used to simulate
a noiseless one, reverse Shannon theorems concern the use of
noiseless channels to simulate noisy ones, and more generally
the use of one noisy channel to simulate another. For channels of
nonzero capacity, this simulation is always possible, but for it to
be efficient, auxiliary resources of the proper kind and amount
are generally required. In the classical case, shared randomness
between sender and receiver is a sufficient auxiliary resource,
regardless of the nature of the source, but in the quantum case
the requisite auxiliary resources for efficient simulation depend
on both the channel being simulated, and the source from which
the channel inputs are coming. For tensor power sources (the
quantum generalization of classical IID sources), entanglement
in the form of standard ebits (maximally entangled pairs of
qubits) is sufficient, but for general sources, which may be arbi-
trarily correlated or entangled across channel inputs, additional
resources, such as entanglement-embezzling states or backward
communication, are generally needed. Combining existing and
new results, we establish the amounts of communication and aux-
iliary resources needed in both the classical and quantum cases,
the tradeoffs among them, and the loss of simulation efficiency
when auxiliary resources are absent or insufficient. In particular
we find a new single-letter expression for the excess forward
communication cost of coherent feedback simulations of quantum
channels (i.e. simulations in which the sender retains what would
escape into the environment in an ordinary simulation), on non-
tensor-power sources in the presence of unlimited ebits but no
other auxiliary resource. Our results on tensor power sources
establish a strong converse to the entanglement-assisted capacity
theorem.
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I. INTRODUCTION

A. Motivation

In classical information theory, Shannon’s celebrated noisy
channel coding theorem [71] establishes the ability of any
noisy memoryless channel N to simulate an ideal noiseless
binary channel, and shows that its asymptotic efficiency or
capacity for doing so is given by a simple expression

C(N) = max
p

I(X;Y )

= max
p

{
H(X) +H(Y )−H(XY )

}
, (1)

where H is the entropy, X the input random variable and
Y = N(X) the induced output variable. The capacity, in other
words, is equal to the maximum, over input distributions p,
of the input-output mutual information for a single use of
the channel. Somewhat more recently, a dual theorem, the
classical “reverse Shannon theorem” was proved [14], which
states that for any channel N of capacity C, if the sender and
receiver share an unlimited supply of random bits, an expected
Cn + o(n) uses of a noiseless binary channel are sufficient
to exactly simulate n uses of the channel. In [84] a version
of this construction is given which achieves asymptotically
perfect simulation, works on a uniform blocksize Cn+ o(n),
and uses an amount of shared randomness increasing linearly
with n, in contrast to the exponential amount used in [14].
These simulations do not depend on the nature of the source,
and work for arbitrarily varying as well as IID sources.

Together with the original Shannon theorem, these theorems
show that in the presence of shared randomness, the asymp-
totic properties of a classical channel can be characterized
by a single parameter, its capacity; with all channels of
equal capacity being able to simulate one another with unit
asymptotic efficiency in the presence of shared randomness.
In [14] a quantum analog of the reverse Shannon theorem
was conjectured, according to which quantum channels should
be characterizable by a single parameter in the presence of
unlimited shared entanglement between sender and receiver.

A (discrete memoryless) quantum channel can be viewed
physically as a process wherein a quantum system, originating
with a sender Alice, is split into a component for a receiver
Bob and another for an inaccessible environment (commonly
referred to as Eve). Mathematically it can be viewed as an
isometric embedding NA→BE of Alice’s Hilbert space (A)
into the joint Hilbert space of Bob (B) and Eve (E). Tracing
out Eve yields a completely positive, trace-preserving linear
map on density operators from A to B, which we denote
NA→B . Operationally, the two pictures are equivalent, but
we will sometimes find it convenient mathematically to work
with one or the other.

The theory of quantum channels is richer and less well
understood than that of classical channels. Unlike classical
channels, quantum channels have multiple inequivalent capac-
ities, depending on what one is trying to use them for, and
what additional resources are brought into play. These include

• The ordinary classical capacity C, defined as the max-
imum asymptotic rate at which classical bits can be

transmitted reliably through the channel, with the help
of a quantum encoder and decoder.

• The ordinary quantum capacity Q, which is the maximum
asymptotic rate at which qubits can be transmitted under
similar circumstances.

• The private classical capacity P , which is the maximum
rate at which classical bits can be transmitted to Bob
while remaining private from Eve, who is assumed to
hold the channel’s environment E.

• The classically assisted quantum capacity Q2, which is
the maximum asymptotic rate of reliable qubit transmis-
sion with the help of unlimited use of a 2-way classical
side channel between sender and receiver.

• The entanglement-assisted classical capacity CE [13],
[14], which is the maximum asymptotic rate of reliable
bit transmission with the help of unlimited pure state
entanglement shared between the sender and receiver.

• Similarly, one can define the entanglement-assisted quan-
tum capacity QE [13], [14], which is simply 1

2CE , by
teleportation [9] and super-dense coding [15].1

Somewhat unexpectedly, the entanglement assisted capaci-
ties are the simplest to calculate, being given by an expression
analogous to Eq. (1). In [14] (see also [54]) it was shown that

CE(N ) = max
ρ

{
H(ρ) +H(N (ρ))−H(I ⊗N (Φρ))

}
, (2)

where the optimization is over all density matrices ρ on A
and ΦRAρ is a purification of ρ by a reference system R
(meaning that ΦRAρ is a pure state and TrR ΦRAρ = ρA).
The entanglement-assisted capacity formula Eq. (2) is formally
identical to Eq. (1), but with Shannon entropies replaced by
von Neumann entropies. It shares the desirable property with
Eq. (1) of being a concave function of ρ, making it easy to
compute [2]. We can alternately write the RHS of Eq. (2) as

max
ρ

I(R;B)ρ, (3)

using the definitions

|Ψ〉 = (IR ⊗NA→BE)
∣∣ΦRAρ 〉

I(R;B)ρ = I(R;B)Ψ = H(R)Ψ +H(B)Ψ −H(RB)Ψ

= H(ΨR) +H(ΨB)−H(ΨRB).

We will use I(R;B)ρ and I(R;B)Ψ interchangeably, since
the mutual information and other entropic properties of Ψ are
uniquely determined by ρ.

Aside from the constraints Q ≤ P ≤ C ≤ CE , and
Q ≤ Q2, which are obvious consequences of the definitions,
and Q2 ≤ QE = 1

2CE , which follows from [74], the five
capacities appear to vary rather independently (see for example
[10] and [72]). Except in special cases, it is not possible,
without knowing the parameters of a channel, to infer any
one of these capacities from the other four.

1Another powerful assistive resource, unlimited noiseless quantum back-
communication from receiver to sender, turns out to be equivalent to unlimited
shared entanglement [18]. Thus the capacity of a channel assisted by such
back-communication is CE for classical messages and QE for quantum
messages.
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This complex situation naturally raises the question of how
many independent parameters are needed to characterize the
important asymptotic, capacity-like properties of a general
quantum channel. A full understanding of quantum channels
would enable us to calculate not only their capacities, but more
generally, for any two channels M and N , the asymptotic
efficiency (possibly zero) with which M can simulate N ,
both alone and in the presence of auxiliary resources such
as classical communication or shared entanglement.

One motivation for studying communication in the presence
of auxiliary resources is that it can simplify the classification
of channels’ capacities to simulate one another. This is so
because if a simulation is possible without the auxiliary
resource, then the simulation remains possible with it, though
not necessarily vice versa. For example, Q and C represent a
channel’s asymptotic efficiencies of simulating, respectively, a
noiseless qubit channel and a noiseless classical bit channel.
In the absence of auxiliary resources these two capacities
can vary independently, subject to the constraint Q ≤ C,
but in the presence of unlimited prior entanglement, the
relation between them becomes fixed: CE = 2QE , because
entanglement allows a noiseless 2-bit classical channel to
simulate a noiseless 1-qubit channel and vice versa (via
teleportation [9] and superdense coding [15]). Similarly the
auxiliary resource of shared randomness simplifies the theory
of classical channels by allowing channels to simulate one
another efficiently according to the classical reverse Shannon
theorem.

B. Terminology

The various capacities of a quantum channel N may be
defined within a framework where asymptotic communication
resources and conversions between them are treated abstractly
[33]. Many independent uses of a noisy channel N , i.e. N⊗n,
corresponds to an asymptotic resource 〈N〉, while standard
resources such as ebits (maximally-entangled pairs of qubits,
also known as EPR pairs), or instances of a noiseless qubit
channel from Alice to Bob are denoted [qq] and [q → q]
respectively. Their classical analogues are [cc] and [c → c],
which stand for bits of shared randomness (rbits), and uses
of noiseless classical bit channels (cbits). Communication
from Bob to Alice is denoted by [q ← q] and [c ← c].
Within this framework, coding theorems can be thought of as
transformations from one communication resource to another,
analogous to reductions in complexity theory, but involving
resources that are quantitative rather than qualitative, the rate
(if other than 1) being indicated by a coefficient preceding the
resource expression. We consider two kinds of asymptotic re-
source reducibility or resource inequality [33]: viz. asymptotic
reducibility via local operations ≤ L, usually abbreviated ≤ ,
and asymptotic reducibility via clean local operations ≤CL .
A resource β is said to be locally asymptotically reducible to
α if there is an asymptotically faithful transformation from α
to β via local operations: that is, for any ε, δ > 0 and for all
sufficiently large n, n(1 + δ) copies of α can be transformed
into n copies of β with overall error < ε = o(1). Here, and
throughout the paper, we use o(1) to mean a quantity that

approaches zero as n → ∞. We use “error” to refer to the
trace distance in the context of states, which is defined as

1

2
‖ρ− σ‖1 =

1

2
Tr |ρ− σ|.

For channels, “error” refers to the diamond norm [60] (see
also [69], [63]). The example most studied in this paper is
when the target resource β = 〈N〉 with a channel N . The
initial resource α is transformed, via a protocol involving local
operations, into a channel N ′(n), with diamond-norm error

‖N⊗n −N ′(n)‖� = max
ρ

∥∥∥(idR ⊗ (N⊗n −N ′(n))
)
(Φρ)

∥∥∥
1
,

where the maximization is over states ρ on An and Φρ is an
arbitrary purification of it.

The clean version of this reducibility, ≤CL , which is impor-
tant when we wish to coherently superpose protocols, adds the
restriction that any quantum subsystem discarded during the
transformation be in the |0〉 state up to an error that vanishes in
the limit of large n. When α≤ β and β≤ α we have a resource
equivalence, designated = L, or = , or for the clean version
=CL . Resource reducibilities and equivalences will often be
referred to as resource relations or RRs.

For example, the coding theorem for entanglement-assisted
classical communication can be stated as

〈N〉+∞[qq] ≥ CE(N ) [c→ c]. (4)

where CE(N ) is defined as in Eq. (2).
In this language, to simulate (resp. cleanly simulate) a

channel N is to find standard resources α (made up of qubits,
ebits, cbits and so on) such that 〈N〉≤ α (resp. ≤CL ). For
example, the simplest form of the classical reverse Shannon
theorem can be stated as ∀N 〈N〉≤ C(N)[c→ c]+∞[cc], with
C(N) defined in Eq. (1).

We will also introduce notation for two refinements of the
problem. First, we (still following [33]) define the relative
resource 〈N : ρ〉 as many uses of a channel N whose
asymptotic accuracy is guaranteed or required only when n
uses of N are fed an input of the form ρ⊗n. This means that
the error is evaluated with respect to Φ⊗nρ rather than the worst
case entangled input state:

‖N⊗n −N ′(n)‖ρ⊗n =
∥∥∥(idR ⊗ (N⊗n −N ′(n))

)
(Φ⊗nρ )

∥∥∥
1
.

Most coding theorems still apply to relative resources, once
we drop the maximization over input distributions. So for
a classical channel 〈N : p〉 ≥ I(X;Y )p[c → c] and for
a quantum channel 〈N : ρ〉 + ∞[qq] ≥ I(R;B)ρ[c → c]
(notation following Eq. (2)).

Second, we will consider simulating channels with passive
feedback. The classical version of a passive feedback channel
has Alice obtain a copy of Bob’s output Y = N(X). We
denote this form of channel by NF if the original channel
is N . For a quantum channel, we cannot give Alice a copy
of Bob’s output because of the no-cloning theorem [88], but
instead define a coherent feedback version of the channel
as an isometry in which the part of the output that does
not go to Bob is retained by Alice, rather than escaping to
the environment [87]. We denote this NA→BE

F , where the
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subscript F indicates that E is retained by Alice. When it
is clear from the context, we will henceforth use "feedback"
to mean conventional passive feedback for a classical channel
and coherent feedback for a quantum channel.2

Coherent feedback is an example of quantum state redis-
tribution [57], [35], [90] in which the same global pure state
Ψ is redistributed among a set of parties. The redistribution
corresponding to a feedback channel NA→BE

F involves Alice,
Bob, and a purifying reference system R. Alice’s share A of
the initial state ΨA:R, is split into two parts, E and B, with E
remaining with her party, while B passes to Bob, who initially
held nothing, leading to a final state ΨE:B:R.

Classical and coherent feedback are thus rather different
notions, indeed one might say opposite notions, since in
coherent feedback Alice gets to keep everything but what
Bob receives, and as a result coherent feedback is sometimes
a stronger resource than free classical back-communication.
Despite these differences, there are close parallels in how feed-
back affects the tradeoff between static resources (rbits, ebits)
and dynamic resources (cbits, qubits) required for channel
simulation. In both cases, when the static resource is restricted,
simulating a non-feedback version of the channel requires less
of the dynamic resource than simulating a feedback version,
because the non-feedback simulation can be economically split
into two sequential stages. For a feedback simulation, no such
splitting is possible.

Other notational conventions we adopt are as follows. If
|ψ〉 is a pure state then ψ := |ψ〉〈ψ| and ψX refers to the
state of the X subsystem of ψ. For a subsystem X , we define
|X| to be the cardinality of X if X is classical or dimX
when X is quantum. We take log and exp to be base 2.
The fidelity [77] between ρ and σ is ‖√ρ

√
σ‖1 and the trace

distance is 1
2‖ρ− σ‖1. For a channel NA→B we observe that

N = TrE ◦NF and we define the complementary channel
N̂A→E := TrB ◦NF . Since isometric extensions of channels
are unique only up to an overall isometry on E, the same is
true for the complementary channel [56], and our results will
not be affected by this ambiguity.

Additional definitions related to entanglement spread will
be introduced in Sec. II-C.

C. Overview of results

In this paper we consider what resources are required to
simulate a quantum channel. In particular, one might hope
to show, by analogy with the classical reverse Shannon theo-
rem, that QE(N ) qubits of forward quantum communication,
together with a supply of shared ebits, suffice to efficiently

2The term "feedback" has been used in multiple ways. Bowen[19] compares
several kinds of feedback, both quantum and classical. In his terminology, both
the classical and coherent feedbacks we consider here are passive, meaning
that they do not grant the sender and receiver any additional resource but
require them to perform an additional task (e.g. giving the sender a copy of
the output) beyond what would have been required in an ordinary execution or
simulation of the channel. For this reason passive feedback capacities are never
greater than the corresponding plain capacities. Active feedback, by contrast,
involves granting the sender and receiver an additional resource (e.g. unlimited
quantum back-communication, as in [18]), to perform the same task as in a
plain execution or simulation of the channel. Accordingly, active feedback
capacities are never less than the corresponding plain capacities. We do not
discuss active feedback further in this paper.

simulate any quantum channel N on any input. This turns out
not to be true in general (see below), but it is true in some
important special cases:
• When the input is of tensor power form ρ⊗n, for some
ρ. In this case, we are simulating the relative resource
〈N : ρ〉.

• When the channel N has the property that its output
entropy H(N (ρ)) is uniquely determined by the state
of the environment. Such channels include those with
classical inputs or outputs.

However, for general channels on general (i.e. non-tensor-
power) inputs, we show that efficient simulation requires
additional resources beyond ordinary entanglement. Any of
the following resources will suffice:
• more general forms of entanglement, such as an

entanglement-embezzling state [78], in place of the sup-
ply of ordinary ebits, or

• additional communication from Alice to Bob, or
• backward classical or quantum communication, from Bob

to Alice.
The quantum reverse Shannon theorem is thus more fastidious
than its classical counterpart. While classical shared random
bits (rbits) suffice to make all classical channels equivalent
and cross-simulable, standard ebits cannot do so for quantum
channels. The reason is that quantum channels may require
different numbers of ebits to simulate on different inputs.
Therefore, to maintain coherence of the simulation across a su-
perposition of inputs, the simulation protocol must avoid leak-
ing to the environment these differences in numbers of ebits
used. Fortunately, if the input is of tensor power form ρ⊗n,
the entanglement “spread” required is rather small (O(

√
n)),

so it can be obtained at negligible additional cost by having
Alice initially share with Bob a slightly generous number of
ebits, then at the end of the protocol return the unused portion
for him to destroy. On non-tensor-power inputs the spread
may be O(n), so other approaches are needed if one is to
avoid bloating the forward communication cost. If the channel
itself already leaks complete information about the output
entropy to the environment, there is nothing more for the
simulation to leak, so the problem becomes moot. Otherwise,
there are several ways of coping with a large entanglement
spread without excessive forward communication, including:
1) using a more powerful entanglement resource in place of
standard ebits, namely a so-called entanglement-embezzling
state [78],

|ϕN 〉 =
1√∑N
j=1

1
j

N∑
j=1

1√
j
|j〉|j〉 (5)

from which (in the limit of large N ) a variable amount of
entanglement can be siphoned off without leaving evidence
of how much was taken, or 2) using a generous supply of
standard ebits but supplementing the protocol by additional
backward classical communication to coherently “burn off”
the unused ebits. We discuss the role of entanglement spread
in the quantum reverse Shannon theorem in Sec. II-C. There
we will precisely define the resource [¤¤], which informally
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can be thought of as an embezzling state |ϕN 〉 with N allowed
to be arbitrarily large.

When simulating quantum feedback channels, we are some-
times able to establish resource equivalences rather than
reducibilities, for example (as we will see in part (a) of
Theorem 3)

〈NF : ρ〉= 1

2
I(R;B)[q → q] +

1

2
I(E;B)[qq]. (6)

This both indicates the numbers of qubits and ebits asymp-
totically necessary and sufficient to perform the redistribution
ΨA:R → ΨE:B:R on tensor powers of a source with density
matrix ρA, and expresses the fact that any combination of
resources asymptotically able to perform the feedback simula-
tion of N on ρ can be converted into the indicated quantities
of qubits and ebits. These results reflect the fact that the state
redistribution performed by a quantum feedback channel is
asymptotically reversible. One interesting special case is when
N is a noiseless classical channel, in which case Eq. (6)
reduces to the “cobit” resource equality [40]. This observation,
and our derivation of Eq. (6), are due to [32].

Applications: Our results also have implications for prov-
ing rate-distortion theorems and strong converses for the
entanglement-assisted capacities. The rate-distortion problem
is a variant of the reverse Shannon theorem which differs
in that instead of simulating a specific channel with high
blockwise fidelity the goal is to minimize an average distortion
condition. This is a less stringent condition than demanded by
the reverse Shannon theorem, so our simulations imply rate-
distortion theorems at the rate one would expect: the least
capacity of any channel satisfying the distortion bound. This
connection was observed for classical channels in [84] (see
also [73]) and for quantum channels in [31]. The second
application of our result is to derive a strong converse theorem,
meaning that attempting to send classical bits through a
quantum channel at rates above CE results in an exponentially
small success probability. We discuss this application further
in Sec. IV-E.

Coordination capacity: Another interpretation of reverse
Shannon theorems is in terms of “coordination capacities”,
defined as the minimum rate of communication required to
achieve certain correlated probability distributions subject to
constraints on some of the variables [29]. For example, the
classical reverse Shannon theorem corresponds to the goal of
reproducing the input-output distribution of a channel given
one party’s knowledge of the input. However, the framework of
coordination capacity also encompasses many network-coding
generalizations of this task.

II. STATEMENT OF RESULTS

Figure 1 shows the parties, and corresponding random
variables or quantum subsystems, involved in the operation
of a discrete memoryless classical channel (top left) and a
discrete memoryless quantum channel (top right). Dashed
arrows indicate additional data flows characterizing a feed-
back channel. The bottom of the figure gives flow diagrams
for simulating such channels using, respectively, a classical
encoder and decoder (bottom left) or a quantum encoder

and decoder (bottom right). Shared random bits (rbits) and
forward classical communication (cbits) are used to simulate
the classical channel; shared entanglement (ebits) and forward
quantum communication (qubits) are used to simulate the
quantum channel. As usual in Shannon theory, the encoder and
decoder typically must operate in parallel on multiple inputs
in order to simulate multiple channel uses with high efficiency
and fidelity.

Where it is clear from context we will often use upper
case letters X , B, etc. to denote not only a classical ran-
dom variable (or quantum subsystem) but also its marginal
probability distribution (or density matrix) at the relevant
stage of a protocol, for example writing H(B) instead of
H(ρB). Similarly we write I(E;B) for the quantum mutual
information between outputs E and B in the upper right side
of Figure 1. However, it is not meaningful to write I(A;B),
because subsystems A and B do not exist at the same time.
Thus the conventional classical notation I(X;Y ) for the input-
output mutual information may be considered to refer, in the
quantum way of thinking, to the mutual information between
Y and a copy of X , which could always have been made in
the classical setting.

N
X

X Y
X

Y A

R
E
R

B

X

Enc

Dec

Rn

rbits
cbits

Ψ

Ψn

E

ebits
qubits

N

Xn
Xn

Xn

Yn

Yn

Rn

An
En

Bn
D

Fig. 1. Parties and subsystems associated with classical and quantum
channels (top left and right, resp.) and with their simulation using standard
resources (bottom left and right respectively). The dashed lines represent
systems that are sent to Alice only in the case of feedback simulations.

Figure 2 shows some of the known results on communi-
cations resources required to simulate classical and quantum
channels under various conditions.

A. Classical Reverse Shannon Theorem

Most of these results are not new; we collect them here
for completeness, and give alternate proofs that will help
prepare for the analogous quantum results. The high-shared-
randomness and feedback cases below (a,b,e) were proved in
[13], [14], [84]. The low- and zero-shared-randomness cases
(c,d,f) were demonstrated by Cuff [28] building on Wyner’s
classic common randomness formula [89]. The connection to
rate distortion was first developed in the 1996 Steinberg-Verdú
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Kind of Channel Classical Quantum

Kind of Simulation Classical
Feedback Non-feedback Coherent

Feedback Non-feedback

Excess
shared
ebits

or
rbits

Tensor-
power
source

c = I(X;Y )
when r ≥ H(Y |X)

q = I(R;B)/2
when e ≥ I(E;B)/2

General
source

c = C(N) = maxp I(X;Y )
q = QE(N ) = maxρ I(R;B)/2

Ordinary ebits insufficient

Limited
shared
ebits

or
rbits

Tensor-
power
or IID
source

c(r) =
max{I(X;Y ),
H(Y )− r}

c(r) = min{max(
I(X;W ),

I(XY ;W )− r)
: W s.t. I(X;Y |W ) =

0}.

q(e) =
max{ 1

2I(R;B),
H(B)− e}

q(e) = limn→∞max
{ 1

2nI(R;EBB
n),

1
nH(EBB

n)− e}

General
source

c(r) = maxX
max{I(X;Y ),
H(Y )− r}

c(r) = maxX minW
{max(I(X;W ),
I(XY ;W )− r) :
I(X;Y |W ) = 0}.

Various tradeoffs possible (see text)
Ordinary ebits insufficient

No
shared
ebits

or
rbits

Tensor-
power
or IID
source

c = H(Y )
c = min{ I(XY ;W )
: W s.t. I(X;Y |W ) =

0}.

q = H(B)
= H(N (ρ))

q = limn→∞ min
{ 1
nH(ω) : ∃ω,N1,N2

s.t. N1(ρ⊗n) = ω &
N2(ω) = N (ρ)⊗n}

General
source

c = maxX
H(Y )

c =
maxX minW {I(XY ;W )

: I(X;Y |W ) = 0}.

q = maxρH(B)
=

maxρH(N (ρ))

q = maxρ limn→∞ min
{ 1
nH(ω) : ∃ω,N1,N2

s.t. N1(ρ⊗n) = ω &
N2(ω) = N (ρ)⊗n}

Fig. 2. Resource costs of simulating classical and quantum channels: Some known results on the forward communication cost (c=cbits or q=qubits) for
simulating classical and quantum channels are tabulated as a function of the kind of source (tensor power or arbitrary), the kind of simulation (feedback or
non-feedback), and the quantity of shared random bits (r) or ebits (e) available to assist simulation. For non tensor power quantum sources (green shaded
cells), efficient entanglement-assisted simulation is not possible in general using ordinary ebits, because of the problem of entanglement spread. To obtain an
efficient simulation in such cases requires additional communication (wlog backward classical communication), or a stronger form of entanglement resource
than ordinary ebits, such as an entanglement-embezzling state.

paper [73], which also proved a variant of the high-randomness
case.

Theorem 1 (Classical Reverse Shannon Theorem (CRST)).
Let N be a discrete memoryless classical channel with input
X (a random variable) and induced output Y = N(X). We
will use I(X;Y ) to indicate the mutual information between
input and output. Let NF denote the feedback version of N ,
which gives Alice a copy of Bob’s output Y = N(X). Trivially
N≤NF and 〈N : p〉≤ 〈NF : p〉 for all input distributions p.

(a) Feedback simulation on known sources with sufficient
shared randomness to minimize communication cost:

〈NF : p〉≤ I(X;Y )[c→ c] +H(Y |X)[cc]. (7)

In fact this is tight up to the trivial reduction [cc]≤ [c→
c]. In other words, for c and r nonnegative,

〈NF : p〉≤ c[c→ c] + r[cc] (8)

iff c ≥ I(X;Y ) and c+ r ≥ H(Y ).
(b) Feedback simulation on general sources with sufficient

shared randomness to minimize communication cost:

〈NF 〉≤ C(N)[c→ c] + (max
p

H(Y )− C(N))[cc]. (9)

(c) Non-feedback simulation on known sources, with limited
shared randomness: When shared randomness is present
in abundance, feedback simulation requires no more
communication than ordinary non-feedback simulation,
but when only limited shared randomness is available,
the communication cost of non-feedback simulation can
be less.

〈N : X〉≤ c[c→ c] + r[cc] (10)

if and only if there exists a random variable W with
I(X;Y |W ) = 0, such that c ≥ I(X;W ) and c + r ≥
I(XY ;W ).

(d) Non-feedback simulation on known sources with no
shared randomness: A special case of case (c) is the fact
that

〈N : p〉≤ c[c→ c] (11)

if and only if there exists W such that I(X;Y |W ) = 0
and c ≥ I(XY ;W ).
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(e) Feedback simulation on arbitrary sources, with arbitrary
shared randomness: For non-negative r and c,

〈NF 〉≤ c[c→ c] + r[cc] (12)

iff c ≥ C(N) = maxp I(X;Y ) and r ≥ maxpH(Y ) −
maxp I(X;Y ). Because the two maxima may be achieved
for different p the last condition is not simply r ≥
H(Y |X).

(f) Without feedback we have, for non-negative r and c,

〈N〉≤ c[c→ c] + r[cc] (13)

if and only if for all X there exists W with I(X;Y |W ) =
0, such that c ≥ I(X;W ) and c+ r ≥ I(XY ;W ).

Parts (b,e,f) of the theorem reflect the fact that the cost of a
channel simulation depends only on the empirical distribution
or type class of the input3, which can be communicated in
at asymptotically negligible cost (O(log n) bits), and that
an i.i.d. source p is very likely to output a type p′ with
‖p − p′‖1 ∼ 1/

√
n. Also note that in general the resource

reducibility Eq. (12) is not a resource equivalence because
H(Y ) and I(X;Y ) may achieve their maxima on different
X .

Part (c), and the low-randomness simulations in general, are
based on the possibility of splitting the simulation into two
stages with the second performed by Bob, and part of the first
stage’s randomness being recycled or derandomized4. Since
Alice does not get to see the output of the second stage, this is
a non-feedback simulation. Indeed, part (a) implies that non-
trivial cbit-rbit tradeoffs are only possible for non-feedback
simulations.

Fig. 3 and Fig. 4 schematically illustrate the form of the
cbit-rbit tradeoffs. For feedback simulation on a fixed source,
the tradeoff between communication and shared randomness
is trivial: Beginning at the point c = I(X;Y ), r = H(Y |X)
on the right, r can only be decreased by the same amount as c
is increased, so that c = H(Y ) when r = 0. By contrast, if the
simulation is not required to provide feedback to the sender,
a generally nontrivial tradeoff results, for which the amount
of communication at r = 0 is given by Wyner’s common
information expression min{I(XY ;W ) : I(X;Y |W ) = 0}.
This is evident in Fig. 5 showing the tradeoff for non-feedback
simulation of the classical binary erasure channel for several
values of the erasure probability t. This figure also shows that
for some channels (in particular for erasure channels with t >
0.5), even the non-feedback tradeoff begins with a -45 degree
straight line section at low r values.

The converse to (a) follows from Shannon’s original noisy
channel coding theorem, which states that 〈N : p〉 ≥
I(X;Y )p[c → c]. A slight refinement [3], [4] implies that
〈NF : p〉 ≥ I(X;Y )p[c→ c] +H(Y |X)p[cc].

Thus we have the following resource equivalences.

3Types are defined and reviewed in Sec. III-C.
4Here, “recycled” means that using a sublinear amount of additional

randomness, privacy amplification can be used to make the shared randomness
approximately independent of the output of the first stage. Our proof (in
Sec. III) will instead use the somewhat simpler “derandomization” approach
in which we argue that some of the random bits in the X–W stage can be
set in a way that works for all input strings xn simultaneously.

c

I(X:Y)

H(Y|X)

Simulation with Feedback
Simulation w/o Feedback 

r
0 0

c(0) =  
min   I(XY;W)

c(r) =   min     max{I(XY:W)-r, I(X:W)} 

cF(0) = H(Y)

W s.t. 
I(X:Y|W)=0

W s.t. 
I(X:Y|W)=0

Fig. 3. Classical communication c versus shared randomness r tradeoff for
feedback and non-feedback simulations of a classical channel on a specified
source p (Theorem 1).

Forward
Classical
Commun-
ication c

Shared Randomness r

t = 0.2

t = 0.4

t = 0.5

t = 0.6

t = 0.8

t = 0.9

Erasure
probability

c vs. r tradeoff for simulating a 
classical erasure channel.  

Fig. 5. Classical communication c vs shared randomness r tradeoff for
non-feedback simulation of binary erasure channels with erasure probabilities
t = 0.2, 0.4, 0.5, 0.6, 0.8 and 0.9 (colored graphs). One can show that in
Theorem 1 part (f) it is enough to consider W such that both legs X →W
and W → Y are erasure channels. The two black curves mark the boundaries
of the region where the tradeoff has slope −1, viz. r ≤ H2(c/2) − c, and
where it is horizontal, r ≥ H2(c). Note that for t ≤ 1

2
, Wyner’s quantity

c(0) = 1, and that for these channels the tradeoff graphs have no section of
slope −1. These tradeoff curves were first given in [28].

Corollary 2.

〈NF : p〉= I(X;Y )[c→ c] +H(Y |X)[cc] (14)
〈NF : p〉+∞[cc]= 〈N : p〉+∞[cc]

= I(X;Y )[c→ c] +∞[cc] (15)
〈NF 〉+∞[cc]= 〈N〉+∞[cc]

= (max
p

I(X;Y ))[c→ c] +∞[cc] (16)

Remark: The task considered in case (d) above, of simulat-
ing a channel on a known source by forward communication
alone without shared randomness, is a variant of the problem
originally considered by Wyner [89], who sought the minimum
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I(X:Y)

H(Y|X)

Forward
Commun-
ication c

Shared Randomness  r
0

0

I(X:W)

I(Y:W|X) =
H(W|X) −H(W|X,Y )

Trivial
c vs.  r
tradeoff

Alice

Bob

X
W Y

Shared 
random-
ness

Two stage non-feedback simulation 
can give a nontrivial tradeoff 

Bob

W

Alice

Bob

X
YShared 

random-
ness

Y

One-stage 
feedback 
simulation

Fig. 4. Two-stage non-feedback simulation of a classical channel, via a Markov chain X → W → Y allows a nontrivial tradeoff between forward
communication c and shared randomness r. A typical point on the optimal tradeoff curve is shown with c = I(X : W ) and r = I(Y : W |X), and with
a segment of the optimal tradeoff curve depicted. The second term, H(W |XY ), in the expression for r represents the portion of the shared randomness in
the first stage simulation of X →W that can be recycled or derandomized. On the right side is also depicted the “full randomness” solution consisting of a
one-stage feedback simulation that uses communication I(X : Y ) and randomness H(Y |X). Since cbits can always be traded for rbits, this yields the upper
bound depicted by the 45-degree dashed line coming out of this point.

rate of a source allowing two correlated random variables X
and Y to be generated from it by separate decoders. He called
this the common information between X and Y , and showed
it was given by min{I(XY ;W ) : I(X;Y |W ) = 0}.

B. Quantum Reverse Shannon Theorem (QRST)

Theorem 3 (Quantum Reverse Shannon Theorem). Let N be
a quantum channel from A→ B or equivalently an isometry
from A → BE and NF the feedback channel that results
from giving system E to Alice. If we are given an input
density matrix ρA then entropic quantities such as I(R;B) or
I(R;B)ρ refer to the state ΨRBE = (IR ⊗NA→BE)(ΦRAρ ),
where Φρ is any state satisfying ΦAρ = ρ.
(a) Feedback simulation on known tensor power input, with

sufficient ebits of entanglement to minimize the forward
qubit communication cost:

∀ρ 〈NF : ρ〉 = 1
2I(R;B)ρ[q → q] + 1

2I(E;B)ρ[qq].
(17)

In view of the trivial tradeoff between ebits and qubits for
simulating a feedback channel, this implies that the qubit

communication rate necessary and sufficient for feedback
simulation of a channel on a tensor power source using
ordinary entanglement at the rate e ebits per channel use
is

qF (e) = max{ 1
2I(R;B), H(B)− e}. (18)

(b) Known tensor power input, non-feedback simulation, en-
tanglement possibly insufficient to minimize the forward
communication cost:

〈N : ρ〉 ≤ q[q → q] + e[qq], (19)

if and only if for all δ > 0 there exists an n>0 and an
isometry V :En → EAEB such that

q ≥ 1

n
· 1

2I(Rn;BnEB)Ψ − δ and (20)

q + e ≥ 1

n
H(BnEB)Ψ − δ where (21)

|Ψ〉R
nBnEAEB := V E

n→EAEBN⊗nF |Φρ〉
⊗n
. (22)
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Thus the communication cost for non-feedback simulation
on a tensor power source, as a function of e, is given by

q(e) = lim inf
n→∞,∃V :En→EA,EB

max{ 1
2I(Rn;BnEB)/n,H(BnEB)/n− e}. (23)

(c) Known tensor power input, non-feedback, no entangle-
ment: This is obtained from setting e = 0 in case (b)
above. In this case, Eq. (20) is always dominated by
Eq. (21) and we have that

〈N : ρ〉 ≤ q[q → q], (24)

iff q ≥ limn→∞
1
n minV H(BnEB), where the min-

imum is over isometries V : En → EAEB .
The latter is a well-known quantity: it is the
regularized entanglement of purification (EoP) [75]
E∞P (ΨRB) = limn→∞

1
nEP ((ΨRB)⊗n) of the channel’s

Choi-Jamiołkowski state Ψ.
(d) Arbitrary input, feedback simulation: For a communi-

cation resource α in the sense of [33] comprising any
combination of ebits, embezzling states [¤¤], backward
cbits [c ← c], and/or forward or backward quantum
communication,

α ≥ 〈NF 〉 (25)

iff there exists a resource β such that for all ρ,

α ≥CL 〈NF : ρ〉+ β. (26)

Specifically, using embezzling states we have

〈NF 〉≤QE(N )[q → q] + [¤¤] (27)

and when considering back communication

〈NF 〉 ≤ QE(N )[q → q] + C[c← c]

+ (max
ρ

H(B)ρ −QE(N ))[qq]
(28)

iff C ≥ maxρH(B)ρ−minρH(B|R)ρ−CE(N ). Other
examples are discussed in Sec. II-C.

(e) Arbitrary input, no feedback: This case combines ele-
ments of cases (b) and (d), although we now consider
only fully coherent input resources. If α is a combination
of ebits, embezzling states [¤¤] and forward and/or back-
ward qubits, then α≥ 〈N〉 iff for all δ > 0 there exists an
n > 0, a resource βn and an isometry Vn : En → EAEB
such that

α≥CL
1

n
〈Vn ◦ N⊗nF 〉+ βn. (29)

Part (a) of Theorem 3 can equivalently be stated as

〈NF : ρ〉 = I(R;B)ρ[q → qq] +H(B|R)ρ[qq], (30)

where [q → qq] denotes a co-bit [40], [33], which is equivalent
to ([q → q] + [qq])/2. The formulation in Eq. (30) is parallel
to the classical version in Eq. (14) if we replace quantum
feedback with classical feedback, co-bits with cbits and ebits
with rbits.

A weaker version of (a) was proven in a long unpublished
and now obsolete version of the present paper. The idea there

was to simulate the channel using a noisy form of teleporta-
tion, and then to use measurement compression [85]5. The full
statement of (a) has since been proved by Devetak [32] using
his triangle of dualities among protocols in the “family tree”
– see also [33]; by Horodecki et al. [57] as the inverse of the
“mother” protocol, a coherent version of state merging; and
by Abeyesinghe et al. [1] in the context of a direct derivation
of the “mother” protocol. We will present another proof of (a)
in Sec. IV, partly in order to prepare for the proof of the rest
of Theorem 3.

To prove (b), we argue that any protocol using only
qubits and ebits for a non-feedback simulation of N⊗n is
equivalent to one that performs a feedback simulation of
V E

n→EAEB ◦ N⊗nF . The argument is that the resources used
(qubits and ebits) leak nothing to the environment, so the only
non-unitary elements are those that are deliberately introduced
by Alice and Bob. Thus, we can replace any non-unitary
operation by an isometry that instead sends the system to
be discarded to a local “environment”, labeled EA for Alice
and EB for Bob. By Uhlmann’s theorem and the fact that
any two purifications are related by an isometry, it follows
that if our original simulation had fidelity 1 − ε with the
action of N⊗n, then this modified simulation has fidelity
1 − ε with V E

n→EAEB ◦ N⊗nF for some isometry V . This
is an equivalence, since this procedure turns any simulation of
N⊗n into a method of simulating V E

n→EAEB ◦ N⊗nF for an
isometry V , and the reverse direction is achieved simply by
discarding the EA, EB systems.

Part (c) is simply a special case of (b), and was proven in the
case when N is a CQ channel (that is, has classical inputs) by
Hayashi [46]. It corresponds to the regularized entanglement of
purification [75] of |Ψ〉. In both cases, the additivity problem
(i.e. the question of whether regularization is necessary) is
open, although recent evidence suggests strongly that the
entanglement of purification is not additive [20] and thus that
it is not a single-letter formula for the simulation cost.

Proving, and indeed understanding, parts (d) and (e) will
require the concept of entanglement spread, which we will
introduce in Sec. II-C. At first glance, the statements of
the theorem may appear unsatisfying in that they reduce the
question of whether 〈N〉 ≤ α or 〈NF 〉 ≤ α to the question of
whether certain other clean resource reductions hold. However,
according to part (a) of Theorem 3, the corresponding clean
resource reductions involve the standard resources of qubits
and ebits. As we will explain further in Sec. II-C, this will
allow us to quickly derive statements such as Eq. (27) and

5More concretely, suppose that Alice uses the “Homer Simpson protocol,”
which means applying N to her input and then teleporting the output to Bob,
using a classical message of size 2 log dA. Alice’s entire part of the protocol
can be viewed as a measurement that she performs on her input state and
on half of a maximally entangled state. The mutual information between her
classical message and Bob’s residual quantum state is given by I(R;B).
Therefore [85] can be used to simulate n applications of this measurement
by a block measurement with ≈ exp(nI(R;B)) outcomes. Finally, it is
necessary to observe that the error analysis in [85] shows that the simulated
measurement not only has the correct output statistics, but essentially has
the correct Kraus operators. Thus the compressed measurement gives a high-
fidelity simulation of the Homer Simpson protocol, and thus of the original
channel. However, the measurement compression step relies on knowledge of
the input density matrix ρ, and so new ideas are necessary for the non-tensor-
power case.
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Eq. (28). An alternate proof6 of the QRST for general sources
using embezzling states as the entanglement resource, Eq. (27),
was given by Berta, Christandl, and Renner [16].

The situation in part (d) when embezzling states are not
present (i.e. general input, unlimited ebits, and some com-
bination of forward quantum communication and backwards
quantum and classical communication) is somewhat surprising
in that the simulation requires an asymptotically greater rate
of communication than the communication capacity of the
channel. To capture this gap, we introduce the following
definition.

Definition 4. The spread deficit of a channel N is defined as

∆sim(N ) := max
ρ

H(B)ρ −min
σ
H(B|R)σ − CE(N ). (31)

Thus, we could equivalently say that the resource inequality
in Eq. (28) holds iff C ≥ ∆sim(N ).

It is important to note that the maximization of H(B) and
the minimization of H(B|R) on the RHS of Eq. (31) are taken
separately. Indeed, CE(N ) is simply the maximization of
H(B)ρ−H(B|R)ρ over all ρ, so Eq. (31) expresses how much
larger this expression can be by breaking up the optimization
of those two terms.

Fortunately, each term in the RHS of Eq. (31) is additive,
so there is no need to take the limit over many channel
uses. The additivity of H(B)ρ follows immediately from the
subadditivity of the von Neumann entropy, or equivalently the
nonnegativity of the quantum mutual information. The other
two terms have already been proven to be additive in previous
work: [34] showed that minH(B|R) = −maxH(B|E) is
additive and [2] showed that CE is additive. Thus, we again
obtain a single-letter formula in the case of unlimited ebits.

The fact that ∆sim(N ) provides a single-letter character-
ization involving convex optimizations makes it possible to
explicitly and efficiently evaluate it. For the important class of
so-called covariant channels, such as the depolarizing and era-
sure channels, entropic quantities are invariant under unitary
rotation of the inputs. In this case, H(B), H(R)−H(E) and
I(R;B) are all simultaneously maximized for the maximally-
mixed input and ∆sim(N ) = 0. However, channels that
lack this symmetry will generally have nonzero ∆sim. As an
example, we plot the entanglement-assisted capacity CE(N )
against the ebit-assisted simulation cost CE(N ) + ∆sim(N )
for the amplitude-damping channel in Fig. 6.

For the amplitude damping channel, the spread deficit is
comparable to the other costs of the simulation. But there
exist other channels for which the spread deficit can dominate
the cost of the channel simulation. Here is an example: for
any d, define the “variable-entropy” channel Md mapping
2 dimensions to d + 1 dimensions as follows: it measures

6This proof was developed in parallel with ours (cf discussion in [22])
and differs primarily by describing merging in terms of one-shot entropies
(compared with our applying merging only to “flat” spectra) and by reducing
to the tensor-power case using the post-selection principle of [22] (compared
with our use of Schur duality to reduce to the flat case). Note that the post-
selection principle can also be thought of in terms of the Schur basis as the
statement that tensor-power states are “almost flat” in a certain sense (cf.
[47]).

the input, and upon outcome 0, outputs |0〉〈0|, and upon
outcome 1, outputs 1

d

∑d
i=1 |i〉〈i|. For any d, CE(Md) = 1,

but ∆sim(Md) = log(d+1)−1, which is asymptotically larger
as d grows7. Thus, when performing a feedback simulation of
Md using cbits and ebits, nearly all of the communication cost
comes from the need to create entanglement spread (discussed
further in Sec. II-C).

What about non-feedback simulations? In this case, it turns
out that the variable-entropy and amplitude-damping channels
can both be simulated at the communication rate given by
CE . We will discuss this in more detail in Sec. II-C, but the
intuitive reason for this is that non-feedback simulations allow
us to damage the environment of the channel and in particular
to measure it. This can result in collapsing superpositions
between different amounts of entanglement, thus reducing the
contribution of entanglement spread. However, there remain
channels whose simulation cost with ebits is higher than
with embezzling states or back communication even for non-
feedback simulation; we describe an example (the “Clueless
Eve” channel) in Sec. IV-E3.

Fig. 6. The amplitude damping channel with parameter γ has Kraus
operators |0〉〈0|+

√
1− γ|1〉〈1| and

√
γ|0〉〈1|. The lower, solid, curve is the

entanglement-assisted classical capacity of the amplitude-damping channel,
or equivalently the (w.l.o.g. feedback) simulation cost in cbits when back
communication or embezzling states are given, or when the source is a tensor
power. The upper, dashed, curve is the feedback simulation cost in cbits
(calculated using Eq. (31)) when instead unlimited ebits are given. The gap
between the two curves is the spread deficit from Definition 4, and illustrates
the extra communication cost of producing entanglement spread.

The proofs of parts (d) and (e) will be given in Sec. IV.
To prove them, we restrict attention to the case when α

7Proof:Md can be perfectly simulated with a single bit of forward classical
communication, which proves that CE(Md) ≤ 1, while the obvious protocol
for sending one classical bit through the channel proves that CE(Md) ≥ 1.
To evaluate ∆sim(Md), observe that H(B) achieves its maximal value of
log(d+ 1) upon input 1

d+1
|0〉〈0|+ d

d+1
|1〉〈1|, while H(B|R) can be zero

if the input |0〉〈0| is given.
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is a combination of entanglement-embezzling states and/or
“standard” resources (qubits, cbits and ebits). However, for
part (e), we need to further restrict our claim to exclude cbits,
for reasons related to the fact that we do not know the tradeoff
curve between quantum and classical communication when
simulating classical channels.

Remark: Analogously to the low-shared randomness regime
in classical channel simulation (Figure 4 and cases (c) and
(d) of the CRST), simulating a non-feedback channel permits
a nontrivial tradeoff between ebits and qubits, in contrast to
the trivial tradeoff for feedback simulation. While the cbit-rbit
tradeoff curve for simulating classical channels is additive and
given by a single-letter formula [89], [28], no such formula or
additivity result is known for the qubit cost in the zero- and
low-entanglement regime.

Remark: Interestingly, quantum communication or entan-
glement can sometimes improve simulations of even classical
channels. In [86] an example of a classical channel is given
with d-dimensional inputs which requires Ω(log d) classi-
cal bits to simulate, but can be simulated quantumly using
O(d−1/3) qubits of communication, asymptotically. Curiously,
the classical reverse Shannon theorem (Theorem 1) is only a
special case of the quantum reverse Shannon theorem (Theo-
rem 3) when in the unlimited shared entanglement regime; one
of the problems left open by this work is to understand how
entanglement can be more efficient than shared randomness
in creating correlated classical probability distributions. More
generally, which values of c, q, r, e are consistent with the
reducibility 〈N〉≤ c[c → c] + q[q → q] + r[cc] + e[qq]? We
know how to convert this problem to the equivalent relative
resource problem with 〈N〉 replaced with 〈N : ρ〉, but this in
turn we do not have an answer for.

Remark: Our results imply unbounded gaps (for growing
dimension) between the costs of simulating channels when (a)
no entanglement is given, (b) a linear or unlimited rate of ebits
are given, and (c) stronger forms of entanglement, such as em-
bezzling states, are given. An example of a large gap between
(a) and (b) is given by the Werner-Holevo channel [79], defined
on d-dimensional inputs to be N (ρ) = ((Tr ρ)I−ρT )/(d−1).
This channel has CE(N ) / 1, but when acting on half of a
maximally entangled state produces a state with entanglement
of purification equal to log d [24]. Thus, the gap between the
ebit-assisted simulation cost and the unassisted simulation cost
grows with dimension. For an asymptotically growing gap
between (b) and (c), we give an example in Sec. IV-E3.

C. Entanglement spread

To understand parts (d) and (e) of Theorem 3, we need
to introduce the idea of entanglement spread. This concept is
further explored in [42], [52], but we review some of the key
ideas here.

If Alice’s input is known to be of i.i.d. form ρ⊗n then
we know that the channel simulation can be done using
1
2I(R;B)[q → q] + 1

2I(B;E)[qq]. To see the complications
that arise from a general input, it suffices to consider the case
when Alice’s input is of the form (ρ⊗n1 + ρ⊗n2 )/2. We omit
explicitly describing the reference system, but assume that

Alice’s input is always purified by some reference and that the
fidelity of any simulation is with respect to this purification.

Assume that ρ⊗n1 and ρ⊗n2 are nearly perfectly distin-
guishable and that the channel simulation should not break
the coherence between these two states. Naively, we might
imagine that Alice could first determine whether she holds ρ⊗n1

or ρ⊗n2 and coherently store this in a register i ∈ {1, 2}. Next
she could conditionally perform the protocol for i.i.d. inputs
that uses 1

2I(R;B)ρi [q → q] + 1
2I(B;E)ρi [qq]. To use a

variable amount of communication, it suffices to be given the
resource maxi

1
2I(A;B)ρi [q → q], and to send |0〉 states when

we have excess channel uses. But unwanted entanglement
cannot in general be thrown away so easily. Suppose that
I(B;E)ρ1 > I(B;E)ρ2 , so that simulating the channel on
ρ⊗n1 requires a higher rate of entanglement consumption than
ρ⊗n2 . Then it is not possible to start with 1

2nI(B;E)ρ1 (or
indeed any number) of ebits and perform local operations to
obtain a superposition of 1

2nI(B;E)ρ1 ebits and 1
2nI(B;E)ρ2

pairs.
The general task we need to accomplish is to coherently

create a superposition of different amounts of entanglement.
Often it is convenient to think about such superpositions as
containing a small “control” register that describe how many
ebits are in the rest of the state. For example, consider the
state

|ψ〉 =

m∑
i=1

√
pi|i〉A|i〉B |Φ〉⊗ni |00〉⊗N−ni , (32)

where 0 ≤ ni ≤ N for each i. Crudely speaking8, we say that
maxi ni − mini ni is the amount of entanglement spread in
the state |ψ〉, where the max and min are taken over values
of i for which pi is nonnegligible.

A more precise and general way to define entanglement
spread for any bipartite state |ψ〉 is (following [52]) as
∆(ψA) = H0(ψA) − H∞(ψA), where H0(ρ) = log rank ρ
and H∞(ρ) = − log ‖ρ‖∞. (The quantities H0 and H∞ are
also known as Hmax and Hmin respectively. Alternatively, they
can be interpreted as Rényi entropies.) Ref. [52] also defined
an ε-smoothed version of entanglement spread by

∆ε(ρ) = min{∆(σ) : 0 ≤ σ ≤ ρ,Trσ ≥ 1− ε}

that reflects the communication cost of approximately prepar-
ing |ψ〉. More precisely, we have

Theorem 5 (Theorem 8 of [52]). If |ψ〉 can be created from
ebits using C cbits of communication and error ≤ ε = δ8/4,
then

C ≥ ∆δ(ψ
A) + 3 log(1− δ) (33)

The factor of 3 in Eq. (33) is because the definition of ∆ε

we have used is actually the alternate version used in Remark 4
of [52]. We can similarly define H0,ε(ρ) := log min{rankσ :
0 ≤ σ ≤ ρ,Trσ ≥ 1− ε} and H∞,ε(ρ) := − log min{‖σ‖∞ :
0 ≤ σ ≤ ρ,Trσ ≥ 1− ε}. Our definition of H0,ε is the same
as the one used in [52], but our definition of H∞,ε may be as

8 This neglects the entanglement in the |ii〉 register. However, in typical
applications, this will be logarithmic in the total amount of entanglement.
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One-stage
Feedback
Simulation

Shared Ebits   e
0

0

Wyner-like point   
q(0) =    min       {H(W)/n}

An=>W => Bn

Two-stage non-feedback 
simulation gives 

½ I(R;B)

½ I(E;B)

V1

V2

EA

EBAn

W

Φρn

Bn

Rn

q = I(Rn;W)/2n,  
e = I(EA;W)/2n

Forward
Qubits q

Fig. 7. Two-stage non-feedback simulation of a quantum channel (solid red curve) on a specified input ρ, via an intermediate state W , makes possible a
nontrivial tradeoff between forward communication q and shared entanglement e. By contrast, for a feedback simulation (right, dashed blue curve) only a
trivial tradeoff is possible, where any deficit in ebits below the 1

2
I(E;B) needed for optimal simulation must be compensated by an equal increase in the

number of qubits used.

much as − log(1− ε) smaller. As with the definitions in [52],
our quantities trivially satisfy

∆ε(ρ) ≥ H0,ε(ρ)−H∞,ε(ρ). (34)

Our quantities can also be expressed as

H0,ε(ρ) = min
M

H0(
√
Mρ
√
M) (35a)

H∞,ε(ρ) = max
M

H∞(
√
Mρ
√
M), (35b)

where in each case M must satisfy 0 ≤M ≤ I and TrMρ ≥
1−ε. In fact, we can WLOG assume that M commutes with ρ
and TrMρ = 1−ε. Similarly, in the definitions that optimized
over σ ≤ ρ, we can assume that ρ and σ commute.

One advantage of this version of ∆ε(ρ) is that it has the
following natural interpretation as a minimization over nearby
normalized states.

Lemma 6.

max(0,∆ε(ρ))

= min{∆0(σ) :
1

2
‖ρ− σ‖1 ≤ ε, 0 ≤ σ,Trσ = 1} (36)

The lemma is proved in the appendix. It improves upon
Lemma 5 of [52], and could thus be used to tighten Theorem 5,
although we do not carry out that exercise here.

There are a few different ways of producing entanglement
spread, which are summarized in [42]. For example, one cbit
can be used to coherently eliminate one ebit, or to do nothing;
and since both of these tasks can be run in superposition,
this can also be used to create entanglement spread. Likewise
one qubit can coherently either create or disentangle one
ebit. To put this on a formal footing, we use the clean

resource reducibility ≤CL (called
clean
≤ in [42]). A resource

β is said to be “cleanly LO-reducible” to α iff there is an
asymptotically faithful clean transformation from α to β via
local operations: that is, for any ε, δ > 0 and for all sufficiently
large n, n(1 + δ) copies of α can be transformed by local
operations into n copies of β with overall diamond-norm
error ≤ ε, and moreover, any quantum subsystem discarded
during the transformation is in a standard |0〉 state, up to an
error vanishing in the limit of large n. In particular, entangled
states cannot be discarded. This restriction on discarding states
means that clean protocols can be safely run in superposition.

Finally, we can define the clean entanglement capacity of a
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resource α to be the set Eclean(α) = {E : α≥CL E[qq]} ⊆ R.
Negative values of E correspond to the ability to coherently
eliminate entanglement. By time-sharing, we see that Eclean(α)
is a convex set. However, it will typically be bounded both
from above and below, reflecting the fact that coherently un-
doing entanglement is a nonlocal task. The clean entanglement
capacities of the basic resources are

Eclean([q → q]) = Eclean([q ← q]) = [−1, 1] (37a)
Eclean([c→ c]) = Eclean([c← c]) = [−1, 0] (37b)

Eclean([qq]) = {1} (37c)

To understand Eq. (37a), observe that transmitting one qubit
can map |Φ2〉AB to or from |00〉AB , in each case without
changing anything in the environment. The reasoning behind
Eq. (37b) is less obvious since sending any classical message
leaks the message to the environment by definition. However,
the protocol can be made clean by always sending a uniformly
random bit through the channel. If Alice generates this bit
locally (or more simply sends a |+〉 state) and Bob discards it,
then this does not change their amount of shared entanglement.
Alternatively, if Alice sends her half of an ebit through
the classical channel and Bob performs a CNOT with the
transmitted bit as control and his half of the ebit as target,
then this will eliminate the entanglement while presenting the
same information to the environment.

These resources can be combined in various ways to create
entanglement spread. For example, to create a superposition
of 5 and 9 ebits, we might start with 8 ebits, use two cbits to
create a superposition of 6 and 8 ebits and then use one qubit
to create the desired superposition of 5 and 9 ebits. Implicit
in these sort of protocols is a pair of control registers AC , BC
that specify how many ebits Alice and Bob would like to
end up with. In this example, they would like to map the
state (c0|00〉+c1|11〉)ACBC⊗|Φ2〉⊗8 (for arbitrary coefficients
c0, c1) to

c0|00〉ACBC |Φ2〉⊗5|00〉⊗4
+ c1|11〉ACBC |Φ2〉⊗9

. (38)

To achieve this transformation, Alice and Bob perform the
following sequence of actions conditioned on their control
qubits:

• If Alice’s control qubit is zero, she sends two of her
entangled qubits through the classical channel. If it is one,
she sends two |+〉 states through the channel. Either way,
the environment observes two random bits sent through
the channel.

• If Bob’s control qubit is zero, he uses the two bits he
has received as controls for CNOTs that are applied to
his halves of the ebits that Alice sent, thus mapping them
to |00〉. Then he discards the bits he received. If Bob’s
control bit is one, he simply discards the bit he received.
Either way the environment sees another copy of the same
random bit being discarded by Bob. Moreover, this bit is
now independent of the residual quantum state held by
Alice and Bob. Alice and Bob now share

c0|00〉|Φ2〉⊗6|00〉⊗2
+ c1|11〉 ⊗ |Φ2〉⊗8

.

• If Alice’s control qubit is zero, she sends half of one of
her ebits through the qubit channel and locally creates a
|0〉 state. If her control qubit is one, she locally creates a
|Φ2〉 and sends half through the channel.

• If Bob’s control qubit is zero, he now holds both halves
of one of the |Φ2〉 states. He rotates this to a |00〉 state
and discards one of the |0〉 qubits. If his control qubit is
one, he keeps the transmitted qubit, but also creates and
discards a |0〉 qubit. Alice and Bob are now left with the
state in Eq. (38).

Observe that in this example the classical and quantum com-
munication could have been sent in either direction. Thus,
while some parts of the simulation protocol can only use
forward communication, the spread requirements can be met
with communication in either direction.

While this framework gives us a fairly clear understanding
of the communication resources required to create entangle-
ment spread, it also shows how unlimited ebits are not a
good model of unlimited entanglement. Instead of maximally
entangled states, we will use the so-called entanglement-
embezzling [78] states |ϕN 〉AB , which are parameterized by
their Schmidt rank N , and can be used catalytically to produce
or destroy any Schmidt rank k state up to an error of log k

logN in
the trace norm. See [78] for a definition of |ϕN 〉 and a proof
of their entanglement-embezzling abilities. We let the resource
[¤¤] denote access to an embezzling state of arbitrary size:
formally, [¤¤] =

⋃
N≥1〈ϕN 〉 and so we have

Eclean([¤¤]) = (−∞,∞).

By the above discussion, this is strictly stronger than the
resource ∞[qq].

We remark that these sorts of entanglement transformations
were studied by Nielsen [67] who gave conditions for when
an entangled state could be prepared using unlimited classical
communication. In this context, the term “maximally entan-
gled” makes sense for ebits, since together with unlimited
classical communication they can be used to prepare any
other state with the same or smaller Schmidt rank. The low-
communication case was also considered by Daftuar and
Hayden [30].

We now return to parts (d) and (e) of Theorem 3. In (d),
we need to run the simulation protocol for 〈NF : ρ〉 for all
possible ρ in superposition.9 We can discard a resource β at
the end of the protocol, but β must be either independent
of ρ for a feedback simulation or can depend only on N̂ (ρ)
for a non-feedback simulation. By the equality in Eq. (17),
this reduces to producing coherent superpositions of varying
amounts of qubits and ebits.

The simplest case is when α = Q(N )[q → q] + [¤¤]. In
this case, α≥CL Q(N )[q → q]+E[qq]+[¤¤] for any E. Thus
we can take β = [¤¤] and so we have α≥CL 〈N : ρ〉+β for
all ρ. This establishes Eq. (27).

The most general case without embezzling states is when

α = Q1[q → q] +Q2[q ← q] + C2[c← c] + E[qq]. (39)

9For technical reasons, our coding theorem will adopt a slightly different
approach. But for the converse and for the present discussion, we can consider
general inputs to be mixtures of tensor power states.
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In this case, we always have the constraint

Q1 ≥ Q(N ) = max
ρ

1
2I(R;B)ρ, (40)

since Q1[q → q] is the only source of forward communication.
Suppose that β = (E − e)[qq], for some 0 ≤ e ≤ E, i.e. we
will use all of the communication, but discard E − e ebits
of entanglement. Now, for each ρ, being able to simulate
the channel on input ρ⊗n requires creating at least I(R;B)ρ
mutual information and I(B;E) + β entanglement which is
only possible if

α≥CL
1
2I(R;B)ρ[q → q] + ( 1

2I(E;B)ρ + E − e)[qq].

Equivalently

(Q1 − 1
2I(R;B)ρ)[q → q] +Q2[q ← q] + C2[c← c]

≥CL ( 1
2I(E;B)ρ − e)[qq]. (41)

We can calculate when Eq. (41) holds by using the spread
capacity expressions in Eq. (37). First, if 1

2I(E;B)ρ − e ≥ 0
then the C2[c ← c] is not helpful and we simply have Q1 −
1
2I(R;B)ρ +Q2 ≥ 1

2I(E;B)ρ − e, or equivalently

Q1 +Q2 ≥ H(B)ρ − e.

Alternatively, if 1
2I(E;B)ρ−e ≤ 0 then we have the inequality

Q1 − 1
2I(R;B)ρ + Q2 + C2 ≥ e − 1

2I(E;B)ρ, which is
equivalent to

Q1 +Q2 + C2 ≥ e−H(B|R)ρ.

We will consider the case when E is sufficiently large so that
it does not impose any constraints on the other parameters.
This results in the bound

2(Q1 +Q2) +C2 ≥ max
ρ

H(B)ρ−min
ρ
H(B|R)ρ−CE(N ).,

(42)
whose RHS is precisely ∆sim(N ) from Definition 4.

The role of communication can be thought of as both
creating mutual information between R and B and in cre-
ating entanglement spread. Both are necessary for channel
simulation, but only forward communication can create mutual
information, while backwards or forward communication (or
even other resources, such as embezzling states) can be used
to create spread.

The non-feedback case (e) of Theorem 3 adds one additional
subtlety: since the simulation gives part of the input to Eve, it
does not have to preserve superpositions between as many
different input density matrices. In particular, if the input
density matrix is ρ⊗n, then Eve learns N̂ (ρ). Thus, we need to
run our protocol in an incoherent superposition over different
values of N̂ (ρ) and then in a coherent superposition within
each N̂−1(ω). Intuitively we can think of the input as a
superposition over purifications of different tensor powers
ρ⊗n. This picture can be made rigorous by the post-selection
principle [22] and gentle tomography [50], [11], but we will
not explore this approach in detail. In this picture Eve learns
ω = N̂ (ρ) up to accuracy O(1/

√
n), and this collapses the

superposition to inputs ρ⊗n with ρ ∈ N̂−1(ω). Thus we need
only consider entanglement spread over the sets N̂−1(ω).

Unfortunately, even in the case of a fixed input ρ, the ad-
ditivity question is open. Until it is resolved, we cannot avoid
regularized formulas. However, conceptually part (e) adds to
part (d) only the issues of regularization and optimization over
ways of splitting En into parts for Alice and Bob.

At this point it is natural to ask whether spread is only
helpful for feedback simulations. The amplitude damping
channel of Fig. 6 and the variable-entropy channel both have
efficient non-feedback simulations on general inputs, using CE
bits of forward communication, even when entanglement is
supplied as ordinary ebits. One way to see why is to observe
that in each case H(N (ρ)) is uniquely determined by N̂ (ρ),
so that measuring the average density matrix of Eve will leave
no room for spread. An optimal simulation can gently measure
the average density matrix of Eve, transmit this information
classically to Bob, and then use the appropriate number of
ebits.

A second way to see that spread is not needed to simulate
these two channels is to give explicit choices of the isometry in
Eq. (29). This is easier to do for the variable-entropy channel,
for which

Md,F = |00〉BE〈0|A +
1√
d

d∑
i=1

|ii〉BE〈1|A.

Define an isometry V1 : E → EAEB by

V1 =

d∑
i=1

(
1√
d
|0i〉EA |i〉EB 〈0|E + |1i〉EA |i〉EB 〈1|E

)
.

Then V1 ◦ Md,F is equivalent to transmitting a classical bit
from Alice to Bob and creating a d-dimensional maximally
entangled state between Bob and Eve. This can be simulated
using one cbit by having Bob locally create a d-dimensional
maximally mixed state.

However, the above reasoning does not extend to more com-
plicated situations. In Sec. IV-E3 we exhibit a channel whose
efficient simulation requires spread-generating resources such
as embezzling states or back communication even in the non-
feedback setting.

D. Relation to other communication protocols

Special cases of Theorem 3 include remote state prepara-
tion [12] (and the qubit-using variant, super-dense coding of
quantum states [43]) for CQ-channels N (ρ) =

∑
j 〈j|ρ|j〉σj ;

the co-bit equality [q → qq] = ([q → q] + [qq])/2 [40];
measurement compression [85] (building on [65], [66]) for qc-
channels N (ρ) =

∑
j Tr(ρMj)|j〉〈j| where (Mj) is a POVM;

entanglement dilution [8] for a constant channel N (ρ) = σ0;
and entanglement of purification (EoP) [75] – it was shown by
Hayashi [46] that optimal visible compression of mixed state
sources is given by the regularized EoP.

The Wyner protocol for producing a classical correlated
distribution [89] is a static analogue of the cbit-rbit tradeoff.
Similarly, the entanglement of purification is a static version
of the qubits-but-no-ebits version of the QRST.

For feedback channels, [32] showed that the QRST can be
combined with the so-called “feedback father” to obtain the
resource equivalence Eq. (17). On the other hand, [32] also
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showed that running the QRST backwards on a fixed i.i.d.
source yields state merging [57], a.k.a. fully-quantum Slepian-
Wolf. This implies that merging can be used to provide an al-
ternate construction of the QRST on a known i.i.d. source [1].
More recently, [90] has introduced state redistribution which
simultaneously generalizes state merging and splitting, by
determining the optimal rate at which a system can be sent
from one party to another when both parties hold ancilla
systems that are in some way entangled with the system being
sent.

As remarked earlier, the version of the classical reverse
Shannon theorem proved here, Theorem 1, differs from the
version originally proved in [14] (which also first conjectured
Theorem 3). In the earlier version, the simulation was exactly
faithful even for finite block size, and asymptotically efficient
in the amount of communication used, but exponentially
inefficient in the amount of shared randomness. The version
proved here is only asymptotically faithful, but importantly
stronger in being asymptotically efficient in its use both of
classical communication and shared randomness. None of our
simulations, nor other results in this area (apart from [27]),
achieve the zero-error performance of [14]. We believe that
zero-error simulation of classical channels using optimal rates
of communication requires exponential amounts of shared
randomness, and that for quantum channels, zero-error sim-
ulations do not exist in general. Apart from some easy special
cases (e.g. quantum feedback channels), we do not know how
to prove these conjectures.

III. SIMULATION OF CLASSICAL CHANNELS

A. Overview

This section is devoted to the proof of Theorem 1 (the classi-
cal reverse Shannon theorem). Previously the high-randomness
cases of Theorem 1 were proved in [14], [84] and its converse
was proved in [84]. Here we will review their proof and show
how it can be extended to cover the low-randomness case
(parts (c,d,e) of Theorem 1). Similar results have been obtained
independently in [28].

The intuition behind the reverse Shannon theorem can be
seen by considering a toy version of the problem in which all
probabilities are uniform. Consider a regular bipartite graph
with vertices divided into (X,Y ) and with edges E ⊂ X ×
Y . Since the graph is regular, every vertex in X has degree
|E|/|X| and every vertex in Y has degree |E|/|Y |. For x ∈ X ,
let Γ(x) ⊂ Y be its set of neighbors. We can use this to define
a channel from X to Y : define N(y|x) to be 1/|Γ(x)| =
|X|/|E| if y ∈ Γ(x) and 0 if not. In other words, N maps
x to a random one of its neighbors. We call these channels
“unweighted” since their transition probabilities correspond to
an unweighted graph.

In this case, it is possible to simulate the channel N
using a message of size ≈ log(|X| · |Y |/|E|) and using ≈
log(|E|/|X|) bits of shared randomness. This can be thought
of as a special case of part (a) of Theorem 1 in which N is
an unweighted channel and we are only simulating a single
use of N . This is achieved by approximately decomposing N
into a probabilistic mixture of channels and using the shared

randomness to select which one to use. We will choose these
channels such that their ranges are disjoint subsets of Y , and
in fact, will construct them by starting with a partition of Y
and working backwards. The resulting protocol is analyzed in
the following lemma.

Lemma 7. Consider a channel N : X → Y with N(y|x) =
1Γ(x)(y)/|Γ(x)|, where 1S denotes the indicator function for
a set S. Choose positive integers r,m such that rm = |Y |
and let γ = m|E|/|X| |Y |. Choose a random partition of Y
into subsets Y1, . . . , Yr, each of size m, and for y ∈ Y define
i(y) to be the index of the block containing y. Define

Ñ(y|x) =
1Γ(x)(y)

r · |Γ(x) ∩ Yi(y)|

to be the channel that results from the following protocol:
1) Let i ∈ [r] be a uniformly chosen random number shared

by Alice and Bob.
2) Given input x, Alice chooses a random element of Γ(x)∩

Yi (assuming that one exists) and transmits its index
j ∈ [m] to Bob.

3) Bob outputs the jth element of Yi.
Then it holds with probability ≥ 1− 2re−γε

2

that ‖N(·|x)−
Ñ(·|x)‖1 ≤ ε for all x.

If we choose γ = 2(ln 4|E|)/ε2 then there is a nonzero
probability of a good partition existing. In this case we can
derandomize the construction and simply say that a partition
of Y exists such that the above protocol achieves low error on
all inputs.

The idea behind Lemma 7 is that for each x and i, the
random variable |Γ(x) ∩ Yi| has expectation close to

|Γ(x)| · |Yi|/|Y | =
|E|
|X|
· m
|Y |

= γ,

with typical fluctuations on the order of
√
γ. If γ is large

then these fluctuations are relatively small, and the channel
simulation is faithful. Similar “covering lemmas” appeared in
Refs. [84], [28], and were anticipated by Ref. [39] and Thm
6.3 of [89]. The details of the proof are described in Sec. III-B.

The difference between Lemma 7 and the classical reverse
Shannon theorem (i.e. part (a) of Theorem 1) is that in the
latter we are interested in an asymptotically growing number
of channel uses n and in simulating general channels N ,
instead of unweighted channels. It turns out that when n is
large, Nn looks mostly like an unweighted channel, in a sense
that we will make precise in Sec. III-C. We will see that Alice
need communicate only O(log(n)) bits to reduce the problem
of simulating Nn to the problem of simulating an unweighted
channel. This will complete the proof of the direct part of part
(a) of Theorem 1.

One feature of the protocol in Lemma 7 is that Bob uses
only shared randomness (i) and the message from Alice (j)
in order to produce his output y. As a result, the protocol
effectively simulates the feedback channel NF in which Alice
also gets a copy of y. Conversely, in order to simulate a
feedback channel, Bob cannot use local randomness in any
significant way.
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On the other hand, if Alice does not need to learn y, then
we can consider protocols in which some of the random bits
used are shared and some are local to Alice or Bob. This will
allow us to reduce the use of shared randomness at the cost
of some extra communication. The resulting trade-off between
the resources is given in part (c) of Theorem 1. In order to
prove it, we will again first consider the unweighted case.

The idea will be to decompose the channel N(y|x) as
the composition of channels N1(w|x) and N2(y|w); i.e.
N(y|x) = (N2 ◦ N1)(x) =

∑
w∈W N1(w|x)N2(y|w). In

this case Alice can simulate the channel N on input x, by
simulating N1 to produce intermediate output w on which Bob
locally applies N2 to produce y. Since w is generally more
correlated with x than y, this will require more communication
than simply simulating N directly as in Lemma 7. However,
since Bob simulates N2 using local randomness, the protocol
may require less shared randomness, and more importantly,
the total amount of communication plus shared randomness
may be lower.

We will assume that the channels N,N1 and N2 are all
unweighted channels. Let the corresponding bipartite graphs
for N,N1, N2 have edges EXY ⊂ X×Y , EXW ⊂ X×W and
EYW ⊂ W × Y , respectively. We use ΓXY (x) to denote the
neighbors of x in Y ; that is, ΓXY (x) = {y : (x, y) ∈ EXY }.
Similarly, we can define ΓY X(y) to be the neighbors of y in X ,
ΓXW (x) to be the neighbors of x in W and so on. We assume
that the graphs are regular, so that |ΓXW (x)| = |EXW |/|X|
for all x, |ΓWY (w)| = |EWY |/|W | for all w, and so on.
Combined with the fact that N = N2 ◦N1, we find that

1ΓXY (x)(y)

|EXY |/|X|
= N(y|x) =

∑
w∈W

N2(y|w)N1(w|x)

=
∑
w∈W

1ΓXW (x)(w)

|EXW |/|X|
·

1ΓWY (w)(y)

|EWY |/|W |

=
|ΓXW (x) ∩ ΓYW (y)|
|EXW | · |EWY |/|X| |W |

, (43)

Rearranging terms yields the identity

|ΓXW (x) ∩ ΓYW (y)| = 1ΓXY (x)(y)
|EXW | |EWY |
|EXY | |W |

. (44)

The protocol is now defined in a way similar to the one in
Lemma 7.

Lemma 8. Choose positive integers r,m such that m =
γ|X| |W |/|EXW | and r = |EXY | |W |/|EWY | |X|. Choose
disjoint sets W1, . . . ,Wr ⊂W at random, each of size m. Let
Wi = {wi,1, . . . , wi,m}. Let Ñ(y|x) be the channel resulting
from the following protocol:

1) Let i ∈ [r] be a uniformly chosen random number shared
by Alice and Bob.

2) Given input x, Alice chooses a random wi,j ∈ Γ(x)∩Wi

(assuming that one exists) and transmits its index j ∈
[m] to Bob.

3) Bob outputs y with probability N2(y|wi,j).

Then it holds with probability ≥ 1 − 2|EXY |e−γε
2/32 that

‖N(·|x)− Ñ(·|x)‖1 ≤ ε for all x.

We can take γ = 32(ln 2|EXY |)/ε2 and derandomize the
statement of the Lemma.

Note that in general we will have rm < |W |, so that this
protocol does not use all of W . This should not be surprising,
since faithfully simulating the channel N1 should in general
be more expensive than simulating N . The trick is to modify
the simulation of N1 that would be implied by Lemma 7 to
use less randomness, since we can rely on Bob’s application
of N2 to add in randomness at the next stage.

B. Proof of unweighted classical reverse Shannon theorem

In this section we prove Lemma 7 and Lemma 8. The
main tool in both proofs is the Hoeffding bound for the
hypergeometric distribution [53]. The version we will need
is

Lemma 9 (Hoeffding [53]). For integers 0 < a ≤ b < n,
choose A and B to be random subsets of [n] satisfying |A| = a
and |B| = b. Then µ := E[|A ∩B|] = ab/n and

Pr [|A ∩B| ≥ (1 + ε)µ] ≤ e−
µε2

2 (45)

Pr [|A ∩B| ≤ (1− ε)µ] ≤ e−
µε2

2 (46)

Pr [| |A ∩B| − µ| ≥ εµ] ≤ 2e−
µε2

2 (47)

Now we turn to Lemma 7. We can calculate

‖N(·|x)− Ñ(·|x)‖1 =
∑

y∈Γ(x)

|N(y|x)− Ñ(y|x)|

=
∑

y∈Γ(x)

∣∣∣∣ 1

|Γ(x)|
− 1

r · |Γ(x) ∩ Yi(y)|

∣∣∣∣
=

r∑
i=1

∑
y∈Γ(x)∩Yi

∣∣∣∣ 1

|Γ(x)|
− 1

r · |Γ(x) ∩ Yi|

∣∣∣∣
=

r∑
i=1

∣∣∣∣ |Γ(x) ∩ Yi|
|Γ(x)|

− 1

r

∣∣∣∣ (48)

To apply Lemma 9, take A = Γ(x) and B = Yi, so that
a = |E|/|X| = rγ, b = m = |Y |/r, n = |Y | and µ = γ. Then
each term in the sum in Eq. (48) is ≤ ε/r with probability
≥ 1 − 2e−γε

2/2. Taking the union bound over all a and i
completes the proof of Lemma 7.

The proof of Lemma 8 is similar. This time

Ñ(y|x) =
1

r

r∑
i=1

∑
w∈Wi

Pr [Alice sends w|x, i]N2(y|w)

=
1

r

r∑
i=1

∑
w∈Wi

1ΓXW (x)(w)

|ΓXW (x) ∩Wi|
·

1ΓWY (w)(y)

|ΓWY (w)|

=
|W |

r|EWY |

r∑
i=1

|ΓXW (x) ∩ ΓYW (y) ∩Wi|
|ΓXW (x) ∩Wi|

.

We will use Lemma 9 twice. First, consider |ΓXW (x) ∩Wi|.
This has expectation equal to γ and therefore

Pr [|ΓXW (x) ∩Wi| ≥ (1 + ε/4)γ] ≤ e−γε
2/32.

(We will see that the one-sided bound simplifies some of the
later calculations.) Taking the union bound over all |X|r ≤
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|EXY | values of x, i, we find that |ΓXW (x)∩Wi| ≤ (1+ε/4)γ
for all x, i with probability ≥ 1− |EXY |e−γε

2/32. Assuming
that this is true, we obtain

Ñ(y|x) ≥ |W |
r|EWY |

r∑
i=1

|ΓXW (x) ∩ ΓYW (y) ∩Wi|
(1 + ε/4)γ

=
|W |

r|EWY |
|ΓXW (x) ∩ ΓYW (y) ∩ W̃ |

(1 + ε/4)γ
, (49)

where we define W̃ = W1 ∪ . . . ∪ Wr. Note that W̃ is a
random subset of W of size rm. Using Eq. (44) we find that
E[|ΓXW (x)∩ΓYW (y)∩W̃ |] is equal to γ when (x, y) ∈ EXY
and 0 otherwise. Again we use Lemma 9 to bound

Pr
[
|ΓXW (x) ∩ ΓYW (y) ∩ W̃ | ≤ (1− ε/4)γ]

]
≤ e−γε

2/32

for all (x, y) ∈ EXY . Now we take the union bound over all
pairs (x, y) ∈ EXY to find that

|ΓXW (x) ∩ ΓYW (y) ∩ W̃ | ≥ (1− ε/4)γ (50)

with probability ≥ 1 − |EXY |e−γε
2/32. When both Eq. (49)

and Eq. (50) hold and (x, y) ∈ EXY it follows that

Ñ(y|x) ≥ |W |
r|EWY |

1− ε/4
1 + ε/4

> (1− ε/2)
W

r|EWY |

= (1− ε/2)
|X|
|EXY |

= (1− ε/2)N(y|x). (51)

Finally we compare with Eq. (43) to obtain

‖N(y|x)− Ñ(y|x)‖1 = 2
∑
y∈Y

max(0, N(y|x)− Ñ(y|x))

< ε
∑
y∈Y

N(y|x) = ε. (52)

This concludes the proof of Lemma 8.

C. Classical types

In this section we show how the classical method of
types can be used to extend Lemmas 7 and 8 to prove the
coding parts of Theorem 1. We begin with a summary of the
arguments aimed at readers already familiar with the method
of types (a more pedagogical presentation is in [26]). The idea
is to for Alice to draw a joint type according to the appropriate
distribution and to send this to Bob. This requires O(log(n))
bits of communication and conditioned on this joint type they
are left with an unweighted channel and can apply Lemma 7.
It is then a counting exercise to show that the communication
and randomness costs are as claimed. For the low-randomness
case, the protocol is based on a decomposition NX→Y into
NW→Y

2 ◦NX→W
1 . Alice draws an appropriate joint type for all

three variables (X,W, Y ) and transmits this to Bob. Again this
involves O(log(n)) bits of communication and leaves them
with an unweighted channel, this time of the form that can be
simulated with Lemma 8.

To prove these claims, we begin by reviewing the method of
types, following [26]. We will use X ,Y,W to denote single-
letter alphabets, while reserving X,Y,W for block variables.
Consider a string xn = (x1, . . . , xn) ∈ Xn. Define the type
of xn to be the |X |-tuple of integers t(xn) :=

∑n
j=1 exj ,

where ej ∈ Z|X | is the unit vector with a one in the ith

position. Thus t(xn) counts the frequency of each symbol
x ∈ X in xn. Let T nX denote the set of all possible types
of strings in Xn . Since an element of T nX can be written
as |X | numbers ranging from 0, . . . , n we obtain the simple
bound |T nX | =

(
n+|X |−1
|X |−1

)
≤ (n + 1)|X |. For a type t, let

the normalized probability distribution t̄ := t/n denote its
empirical distribution.

For a particular type t ∈ T nX , denote the set of all strings in
Xn with type t by Tt = {xn ∈ Xn : t(xn) = t}. From [26],
we have

(n+1)−|X| exp(nH(t̄)) ≤ |Tt| =
(
n

t

)
≤ exp(nH(t̄)), (53)

where
(
n
t

)
is defined to be n!∏

x∈X tx! . Next, let p be a prob-
ability distribution on X and p⊗n the probability distribution
on Xn given by n i.i.d. copies of p, i.e. p⊗n(xn) :=
p(x1) · · · p(xn). Then for any xn ∈ Tt we have p⊗n(xn) =∏
x∈X p(x)tx = exp(−n(H(t̄) + D(t̄‖p))). Combining this

with Eq. (53), we find that

exp (−nD(t̄‖p))
(n+ 1)|X |

≤ p⊗n(Tt) ≤ exp (−nD(t̄‖p)) , (54)

Thus, as n grows large, we are likely to observe an empirical
distribution t̄ that is close to the actual distribution p. To
formalize this, define the set of typical sequences Tnp,δ by

Tnp,δ :=
⋃
t∈T nX
‖t̄−p‖1≤δ

Tt. (55)

To bound p⊗n(Tnp,δ), we apply Pinsker’s inequality [70]:

D(q‖p) ≥ 1

2 ln 2
‖p− q‖21 (56)

to show that

p⊗n(Tnq,δ) ≥ 1− (n+ 1)|X | exp

(
− nδ2

2 ln 2

)
. (57)

We will also need the Fannes-Audenaert inequality [36], [7]
which establishes the continuity of the entropy function. Let
η(x) = −x log x − (1 − x) log(1 − x). Then if p, q are
probability distribution on d letters,

|H(p)−H(q)| ≤ 1

2
‖p−q‖1 log(d−1)+η

(
1

2
‖p− q‖1

)
(58)

If we have a pair of strings xn ∈ Xn, yn ∈ Yn, then we can
define their joint type t(xnyn) simply to be the type of the
string (x1y1, . . . , xnyn) ∈ (X ×Y)n. Naturally the bounds in
Eq. (53) and Eq. (54) apply equally well to joint types, with
X replaced by X×Y . If t is a joint type then we can define its
marginals tX ∈ Z|X | and tY ∈ Z|Y| by tXx =

∑
y∈Y tx,y and

tYy =
∑
x∈X tx,y . Let N(y|x) denote a noisy channel from

X → Y with Nn(yn|xn) := N(y1|x1) · · ·N(yn|xn). Then
Nn(yn|xn) depends only on the type t = t(xnyn) according
to Nn(yn|xn) =

∏
x,y N(y|x)tx,y .

We now have all the tools we need to reduce Theorem 1
to Lemmas 7 and 8. First, consider parts (a,b) of Theorem 1,
where we have an ample supply of shared randomness. In
either case, the protocol is as follows:
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1) Alice receives input xn. This may be expressed in a
type-index representation as (tA, pA). Here tA = t(xn)
is the input type, and pA ∈ [|TtA |] is defined by assign-
ing the integers 1, . . . , |TtA | arbitrarily to the elements
of TtA .

2) Alice simulates the channel Nn locally to generate a
provisional output ỹn. Let tB = t(ỹn) be the output
type and tAB ∈ Z|X×Y| the joint type between xn and
ỹn. Having determined these types, Alice discards ỹn,
as it is no longer needed.

3) Alice sends tB to Bob using |X × Y| log(n+ 1) bits.
4) Alice and Bob use n(H(Y )−C) + o(n) bits of shared

randomness to pick a subset Si from a preagreed parti-
tioning of outputs of type tB into approximately equal
disjoint subsets, each of cardinality approximately 2nC ,
where C is the Shannon capacity of channel N .

5) Alice finds a string yn ∈ Si having the same joint type
with xn as ỹn had. But because yn lies in the chosen
subset Si, which Bob already knows, Alice can transmit
yn to Bob more efficiently, by a message of size only
nC + o(n) bits, using the method of Lemma 7 (Let
X = TtA , Y = TtB and E = TtAB ⊂ X × Y define a
regular bipartite graph. To simulate the action of Nn on
xn ∈ X , conditioned on (xn, yn) ∈ E, we need only to
choose a random neighbor yn of xn in this graph.)

This protocol is depicted in Fig. 8.
It remains only to analyze the cost of this last step. The

communication cost is (taking notation from the statement of
Lemma 7)

log(m) = log

(
|X| |Y |γ
|E|

)
= log

(
|TtA | |TtB | (2 ln(2|TtAB |)/ε2)

|Tt|

)
≤ n(H(t̄A) +H(t̄B)−H(t̄AB)) + |X × Y| log(n+ 1)

+ log(2 ln(2)nH(t̄AB)/ε2)

= nI(X ;Y)t̄AB +O(log(n)) + log(1/ε2).

Since C(N) ≥ I(X ;Y)t̄ for all t, this establishes part (b) of
Theorem 1. Continuing, we estimate the randomness cost to
be

log(r) = log

(
|E|
|X|γ

)
≤ log

(
|E|
|X|

)
≤ n(H(t̄AB)−H(t̄A)) +O(log(n))

= nH(Y|X )t̄AB +O(log(n)).

To prove part (a), we need to relate entropic quantities
defined for t̄ to the corresponding quantities for p. This
will be done with typical sets (Eq. (57)) and the Fannes-
Audenaert inequality (Eq. (58)). If p is a distribution on X
then let q = NF (p) be the joint distribution on X and Y
that results from sending X through N and obtaining output
Y . Then Eq. (57) implies that following the above protocol
results in values of t̄ that are very likely to be close to
q. In particular, q⊗n(Tnq,δ) ≥ 1 − (n + 1)de−nδ

2/2, where
d = |X × Y|. Next, the Fannes-Audenaert inequality says
that if t̄ ∈ Tnq,δ then |H(t̄) − H(q)| ≤ δ log(d/δ). Applying

this to each term in I(X ;Y) = H(X ) + H(Y) − H(XY),
we obtain that |I(X ;Y)t̄ − I(X ;Y)q| ≤ 3δ log(d/δ) and
|H(Y|X )t̄ − I(Y|X )q| ≤ 2δ log(d/δ). Taking δ to be n−1/4,
we obtain a sequence of protocols where both error and
inefficiency simultaneously vanish as n→∞.

Similarly, for part (c), we need to consider the joint distri-
bution q of XWY that results from drawing X according to
p, sending it through N1 to obtain W and then sending W
through N2 to obtain Y . The protocol is as follows:

1) Suppose Alice’s input is xn.
2) Alice simulates Nn

1 (xn) to obtain w̃n and then simulates
Nn

2 (w̃n) to obtain ỹn.
3) Alice sets tAWB = t(xnw̃nỹn). She will not make any

further use of w̃n or ỹn.
4) Alice sends t to Bob using |X ×W×Y| log(n+1) bits.
5) Define X = TtA , W = TtW , Y = TtB , EXY = TtAB ,

EXW = TtAW and EWY = TtWB
. To simulate the

action of Nn on xn ∈ X , conditioned on (xn, wn, yn) ∈
Tt, we need only to choose a random element of
ΓXY (xn) in this graph. This is achieved with Lemma 8.

The analysis of this last step is similar to that of the
previous protocol. The communication cost is log(m) =
log (|X| |W |γ/|EXW |) = nI(X ;W)t̄ + O(log n) and the
randomness cost is

log(r) = log

(
|EXY | · |W |
|EWY | |X|

)
= n(H(XY)t̄ +H(W)t̄ −H(WY)t̄ −H(X )t̄) +O(log n)

using Eq. (53)
= n(H(XY)t̄+H(XW)t̄−H(XWY)t̄−H(W)t̄)+O(log n)

using the Markov condition I(X ;Y|W)t̄ = 0

= nI(Y;W|X )t̄ +O(log n)

= n(I(XY;W)t̄ − I(X ;W)τ̄ ) +O(log n) (59)

This concludes the proofs of the existence of channel simula-
tions claimed in Theorem 1.

D. Converses

In this section we discuss why the communication rates for
the above protocols cannot be improved. The lower bound for
simulating feedback channels was proven in [84] and for non-
feedback channels in [28]. We will not repeat the proofs here,
but only sketch the intuition behind them.

First, the communication cost must always be at least C(N),
or I(X;Y )p if the input is restricted to be from the distribution
p. Otherwise we could combine the simulation with Shannon’s
[forward] noisy channel coding theorem to turn a small
number of noiseless channel uses into a larger number of uses.
This is impossible even when shared randomness is allowed.

Next, if NF (i.e., the channel including noiseless feedback)
is to be simulated, then Bob’s output (with entropy H(Y ))
must be entirely determined by the C bits of classical com-
munication sent and the R bits of shared randomness used.
Therefore we must have C +R ≥ H(Y ).

The situation is more delicate when the simulation does not
need to provide feedback to Alice. Suppose we have a protocol
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Alice’s
Lab

Typewise compressed simulation giving classical reverse Shannon theorem

pA

tB

tAB

pB

tB

Short O(log n)
bit message
conveys
output type tB

Bob’s Lab

xn

Simulate 
channel 
locally to 
get joint  
type  tAB

Encoder 
chooses an 
output index  pB
lying in the     

chosen set Si
and having correct
joint type with pA
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transmission of 
index pB using  
≈ nC bits

≈n(H(Y)−C)
shared  random
bits used to        
choose a                
set Si of  ≈2nC

outputs from a 
preagreed partitioning 
of outputs of type tB
into disjoint subsets
S1, S2,…

tA

}

Express
Input in 

type/index
represent-

ation

Optional feedback   
of output type and 
index to Alice

pB

tB

Decoder recon-
structs pB using 

shared randomness.

yn

Fig. 8. The protocol for the classical reverse Shannon theorem (Theorem 1).

that uses C cbits and R rbits. Then let W = (W1,W2) com-
prise both the message sent (W1) and the shared random string
(W2). We immediately obtain I(XY ;W ) ≤ H(W ) ≤ C+R.
Additionally, the shared randomness W2 and the message
X are independent even given the message W1; in other
words I(X;W2|W1) = 0. Thus I(X;W ) = I(X;W1) ≤
H(W1) ≤ C. Finally we observe that X −W − Y satisfies
the Markov chain condition since Bob produces Y only by
observing W . This argument is discussed in more detail in
[28], where it is also proven that it suffices to consider single-
letter optimizations.

These converses are also meaningful, and essentially un-
changed, when we consider negative R, corresponding to
protocols that output shared randomness.

We observe that some of these converses are obtained from
coding theorems and others are obtained from more traditional
entropic bounds. In the cases where the converses are obtained
from coding theorems then we in fact generally obtain strong
converses, meaning that fidelity decreases exponentially when
we try to use less communication or randomness than neces-
sary. This is discussed in [84] and we will discuss a quantum
analogue of this point in Sec. IV-E.

IV. SIMULATION OF QUANTUM CHANNELS ON ARBITRARY
INPUTS

This section is devoted to proving parts (d) and (e) of
Theorem 3.

A. The case of flat spectra

By analogy with Sec. III-B, we will first state an unweighted
or “flat” version of the quantum reverse Shannon theorem.
We will then use a quantum version of type theory (based
on Schur-Weyl duality) to extend this to prove the QRST for
general inputs.

Definition 10. An isometry V A→BE is called flat if, when
applied to half of a maximally entangled state |Φ〉RA, it
produces a state |ψ〉RBE with ψR, ψB and ψE each maximally
mixed.

We note two features of the definition. First, the requirement
that ψA be maximally mixed is satisfied automatically, but we
include it to emphasize that each marginal of ψ should be
maximally mixed. Second, the definition of a flat isometry
does not depend on the choice of maximally entangled input
|Φ〉.

An important special case of flat channels occurs when
A,B,E are irreps of some group G and V is a G-invariant
map. We will return to this point in Sec. IV-C2.
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Lemma 11 ([57], [1]). Let A,B,E have dimensions
DA, DB , DE respectively. Consider furthermore quantum sys-
tems KA,KB ,M with dimensions DK , DK , DM , respectively,
such that DB = DKDM and DM ≥ 256

δε4

√
DADB/DE . If

V A→BE is a flat isometry, it can be simulated up to error ε
with respect to the maximally mixed input state, by consuming
log(DK) ebits and sending log(DM ) qubits from Alice to Bob.
More precisely, there exist isometries SKBM→BH , SAKA→ME

V

such that

V A→BE |ΦDA〉
RA ≈ε

SKBM→BH SAKA→ME
V |ΦDK 〉

KAKB |ΦDR〉
RA
. (60)

Furthermore, SH can be taken to be a Haar random unitary
of dimension DB with SV chosen deterministically based on
SH and V . Eq. (60) holds with probability ≥ 1 − δ over the
random choice of SH .

The protocol in Eq. (60) is depicted in Fig. 9.

KB

SH|ΦDK 〉 B

KA
SV

M

A E

|ψ〉
R R

Fig. 9. The simulation of flat channels described in Lemma 11. The entangled
state

∣∣ΦDK 〉 is consumed in order to simulate the action of V A→BE on the
A part of |ψ〉RA. SH is chosen from the Haar measure on UDB , while SV
is chosen to depend on SH and V , as described by [1]. While any |ψ〉RA
can be input into the channel, the fidelity guarantee of Eq. (60) only holds
when ψA is maximally mixed.

In an earlier unpublished version of this work, we proved
a version of Lemma 11 using the measurement compression
theorem of [85]. This version used classical instead of quantum
communication (with correspondingly different rates), but by
making the communication coherent in the sense of [40], [33]
it is possible to recover Lemma 11.

However, a conceptually simpler proof of Lemma 11 was
later given by [32], [57], [1]. This proof is based on reversing
“state merging,” which we can think of as the task of Bob
sending a subsystem B to Alice in a way that preserves its
correlation with a subsystem E which Alice already has, as
well as with a purifying reference system R. In other words,
merging is a state redistribution of the form

ΨR:E:B → ΨR:EB . (61)

The simplest proof of state merging is given in [1], where it is
shown that if Bob splits B randomly into systems M and KB

of the appropriate sizes (i.e. by applying S†H ), and sends M
to Alice, then Alice will be able to locally transform E,M
into two subsystems A and KA such that A is completely
entangled with the reference system R (and thus can be
locally transformed by Alice into E,B, the desired goal of
the merging.). On the other hand KA is nearly completely
entangled with the remaining KB system that Bob kept, so that
it represents a byproduct of entanglement between Alice and

Bob that has been generated by the protocol. When executed
in reverse, the merging becomes splitting, and the KAKB

entanglement becomes a resource that is consumed, along with
the quantum transmission of system M from Alice to Bob, in
order to implement the state-splitting redistribution

ΨR:A → ΨR:EB → ΨR:E:B . (62)

B. Tensor power inputs

We next need to reduce the general channel simulation
problem to the problem of simulating flat channels. To get the
idea of how this works, consider first the problem of simulating
N⊗n on a tensor power input ρ⊗n. While several solutions
to this problem have been previously described in [57], [32],
[1] and this section is not strictly necessary for the proof of
Theorem 3, we will present a protocol for tensor power inputs
here in a way that will help us understand the general case.

Let |σ〉ABE = (I ⊗ N )|Φρ〉AA
′

and |ψ〉 = |σ〉⊗n. Unfor-
tunately, none of ψA, ψB nor ψE are in general maximally
mixed. Even restricting to typical subspaces still leaves these
states with eigenvalues that vary over a range of 2±O(

√
n).

On the other hand, these eigenvalues have a large amount
of degeneracy. Let {|a1〉, . . . , |adA〉} be the eigenbasis of
ρ = σA. Then the eigenvectors of ψA can be taken to be
of the form |ai1〉 ⊗ · · · ⊗ |ain〉, for i = (i1, . . . , in) ∈ [dA]n.
Moreover the corresponding eigenvalue is determined entirely
by the type tA of i, just as in the classical case. There are(
n+dA−1

n

)
such types. For fixed dA, this number is polynomial

in n, and thus the “which type” information can be transmitted
using O(log n) qubits. Conditioned on this information, we
are left with a flat spectrum over a space whose dimension
depends on the type.

The same decomposition into types can be performed for
the B and E systems, and for constant dB and dE we will
still have at most poly(n) types tB and tE . Furthermore, we
can decompose the action of U⊗nN into a map from tA to a
superposition of tB and tE followed by a flat map within the
type classes, which we call VtAtBtE . Thus, letting ∼= denote a
global change of basis, we have

U⊗nN
∼=

∑
tA,tB ,tE

|tB , tE〉〈tA| ⊗ VtA,tB ,tE . (63)

The only remaining question is to determine the commu-
nication rate. Here we can use the classical theory of types
from Sec. III-C to argue that almost all of the weight of ψ
is concentrated in strings with t̄A, t̄B , t̄E close to the spectra
of σA, σB and σE respectively. If “close” is defined to be
distance δ, then ignoring the atypical types incurs error at
most exp(−nδ′) and we are left with subspaces of dimensions
DA = exp(n(H(A)σ±δ′′)), DB = exp(n(H(B)σ±δ′′)) and
DE = exp(n(H(E)σ ± δ′′)), where δ′, δ′′ are constants de-
pending on δ.10 depending on δ), . Applying Lemma 11 we ob-
tain the claimed communication rates of H(A)+H(B)−H(E)

2 =

10These claims are based on standard methods of information theory. By
“distance” δ we refer to the trace distance ‖σX − t̄X‖1. The error bound on
ignoring atypical types is obtained from Eq. (57) and the bound on entropy
is from the Fannes-Audenaert inequality (Eq. (58)).
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1
2I(A;B) qubits and H(B)+H(E)−H(A)

2 = 1
2I(B;E) ebits per

use of N .
Two subtleties arise from combining communication pro-

tocols involving different input and output types. The first
problem is that we have to be careful about who knows
what when: unlike in the classical channel simulation protocol,
Alice would like to communicate to Bob only tB and not tA
or tE . Indeed, she would like to forget tA and retain only
knowledge of tE for herself. This is addressed by using the
fact that Bob’s decoding unitary SH in Lemma 11 can be
chosen to depend only on tB , since we can choose a single
SH for each tB , and w.h.p. Eq. (60) holds simultaneously for
all tA, tE . Denote the resulting decoding map SH,tB and call
Alice’s encoding SVtA,tB,tE . Then from Eqs. (60) and (63),
we have that U⊗nN can be approximately simulated by starting
with an appropriate entangled state (more on this below) and
applying(∑

tB

|tB〉〈tB | ⊗ SH,tB

)
×( ∑

tA,tB ,tE

|tB , tE〉〈tA| ⊗ SVtA,tB,tE

)
, (64)

where the first line is applied by Bob and the second line is
applied by Alice.

The second problem is that when we apply Lemma 11 to the
VtA,tB ,tE , the dimensions DA, DB , DE (and thus DK , DM

as well) vary by as much as exp(±nδ), and yet our protocol
needs to act on a single entangled state and send a single
message. For the M register we can address this by simply
taking DM to equal maxd 256

ε4 |TtA ||TtB |/|TtE |e, where the
maximum is taken over all typical triples of tA, tB , tE . Thus,
DM is independent of any of the registers communicated
during the protocol.

However, since DRDM must equal |TtB |, we cannot avoid
having DR vary with tB . (There is a minor technical point
related to DB needing to be an integer, but this can be ignored
at the cost of an exponentially small error.) As a result, we
need to run the protocol of Lemma 11 in superposition using
different numbers of ebits in different branches of the super-
position. This cannot be accomplished simply by discarding
the unnecessary ebits in the branches of the superposition that
need less entanglement; instead we need to use one of the tech-
niques from Sec. II-C. Fortunately, since the number of ebits
varies by only O(nδ) across different values of tB , we only
need to generate O(nδ) bits of entanglement spread. This can
be done with O(nδ) extra qubits of communication, leading
to an asymptotically vanishing increase in the communication
rate. And since the amount of entanglement generated depends
on only tB , this does not require leaking any information to
Bob that he will not already have. Alice first creates her half
of the entanglement at the same time as she is transformating
|tA〉 into |tB , tE〉. Then she sends her half of the entanglement
to Bob (after it has been mixed with the input by SVtA,tB,tE )
along with her copy of |tB〉. This ensures that Alice keeps no
record of the amount of entanglement she has created, while
Bob is able to perform his part of the entanglement-generation

protocol.
Earlier versions of the quantum reverse Shannon theorem

did not need to mention this sublinear amount of entanglement
spread because the extra sublinear communication cost could
be handled automatically by the protocols used. However,
when we consider non-tensor power inputs in Sec. IV-D we
will need to make a more explicit accounting of the costs of
entanglement spread. Thus, the reason our “warm-up” is more
complicated than the previous proofs of the i.i.d.-source QRST
is that it already contains much of the complexity of the full
proof.

C. A quantum theory of types

There is one further difficulty which arises when considering
non-tensor power inputs. This problem can already been seen
in the case when the input to the channel is of the form
1
2 (ρ⊗n1 + ρ⊗n2 ). If ρ1 and ρ2 do not commute, then we cannot
run the protocol of the previous section without first estimating
the eigenbases of ρ1 and ρ2. Moreover, we need to perform
this estimation in a non-destructive way and then be able to
uncompute our estimates of the eigenbasis, as well as any
intermediate calculations used. Such techniques have been
used to perform quantum data compression of ρ⊗n when ρ
is unknown [58], [11]. However, even for that much simpler
problem they require delicate analysis. We believe that it is
possible to prove the quantum reverse Shannon theorem by
carefully using state estimation in this manner, but instead
will present a somewhat simpler proof that makes use of
representation theory.

The area of representation theory we will use is known as
Schur duality (or Schur-Weyl duality). It has also been used
for data compression of unknown tensor power states [49],
[50], [45] and entanglement concentration from tensor powers
of unknown pure entangled states [48], [51]. Some reviews
of the role of Schur duality in quantum information can be
found in Chapters 5 and 6 of [41] and Chapters 1 and 2
of [21]. A detailed explanation of the mathematics behind
Schur duality can also be found in [37]. Our treatment will
follow [41]. In Sec. IV-C1, we will explain how Schur duality
can serve as a quantum analogue of the classical method of
types that we described in Sec. III-C. Then in Sec. IV-C2
we will show this can be applied to channels, allowing us to
decompose N⊗n into a superposition of flat channels. Finally,
in Sec. IV-C3 we will use this to describe quantum analogues
of conditional types. We will use this to show that the atypical
flat sub-channels involve only an exponentially small amount
of amplitude.

In Sec. IV-D, we will use these tools to prove Theorem 3.
1) Schur duality and quantum states: This section will

review the basics of Schur duality and will explain how it can
serve as a quantum analogue of the classical method of types.
Let Sn denote the permutation group on n objects and let Ud
denote the d-dimensional unitary group. Both groups have a
natural action on (Cd)⊗n. For u ∈ Ud define Q(u) = u⊗n and
for s ∈ Sn define P(s) to permute the n systems according
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to s: namely,

P(s) =
∑

i1,...,in∈[d]

|i1, . . . , in〉
〈
is(1), . . . , is(n)

∣∣. (65)

This convention is chosen so that P(s) is a representation11

These two representations commute, and can be simulta-
neously decomposed into irreducible representations (a.k.a.
irreps). We can also think of Q(u)P(s) as a reducible rep-
resentation of Ud × Sn.

Define Id,n to be the set of partitions of n into d parts:
that is Id,n = {λ = (λ1, λ2, . . . , λd) ∈ Zd : λ1 ≥ λ2 ≥
· · · ≥ λd ≥ 0 and

∑d
i=1 λi = n}. Note that |Id,n| ≤ |Td,n| ≤

(n+ 1)d = poly(n). It turns out that Id,n labels the irreps of
both Ud and Sn that appear in the decompositions of Q and
P. Define these representation spaces to be Qλ and Pλ and
define the corresponding representation matrices to be qλ(u)
and pλ(s). Sometimes we write Qdλ or qdλ to emphasize the
d-dependence; no such label is needed for Pλ since λ already
determines n.

Schur duality states that (Cd)⊗n decomposes under the
simultaneous actions of Q and P as

(Cd)⊗n ∼=
⊕
λ∈Id,n

Qdλ ⊗ Pλ (66)

This means that we can decompose (Cd)⊗n into three regis-
ters: an irrep label λ which determines the actions of Ud and
Sn, a Ud-irrep Qλ and an Sn-irrep Pλ. Since the dimension
of Qλ and Pλ depends on λ, the registers are not in a strict
tensor product. However, by padding the Qλ and Pλ registers
we can treat the λ, Qλ and Pλ registers as being in a tensor
product.

The isomorphism in Eq. (66) implies the existence of a
unitary transform USch that maps (Cd)⊗n to

⊕
λ∈Id,n Q

d
λ ⊗

Pλ in a way that commutes with the action of Ud and Sn.
Specifically we have that for any u ∈ Ud and any s ∈ Sn,

USchQ(U)P(s)U†Sch =
∑

λ∈Id,n

|λ〉〈λ| ⊗ qdλ(U)⊗ pλ(s). (67)

While we have described Schur duality in terms of the
representation theory of Sn and the Lie group Ud, there exists a
similar relation between Sn and the general linear group GLd.
Indeed, qλ(U) is a polynomial function of the entries of U
(of degree

∑
i λi), and so can be extended to non-unitary and

even non-invertible arguments. After doing so, one can show
an analogue of Eq. (67) for tensor power states (taking U = ρ
and s = id)

USchρ
⊗nU†Sch =

∑
λ∈Id,n

|λ〉〈λ| ⊗ qdλ(ρ)⊗ IPλ . (68)

So far we have not had to describe in detail the structure of
the irreps of Ud and Sn. In fact, we will mostly not need
to do this in order to develop quantum analogues of the
classical results from Sec. III-C. Here, the correct analogue
of a classical type is in fact λ together with Qλ. Classically,
we might imagine dividing a type (t1, . . . , td) into a sorted list

11The product of permutations s1, s2 is defined by (s1·s2)(i) = s1(s2(i)).
Our definition in Eq. (65) is chosen so that P(s1 · s2) = P(s1)P(s2).

t↓1 ≥ · · · ≥ t↓d (analogous to λ) and the Sd permutation that
maps t↓ into t (analogous to the Qλ register). Quantumly, we
will see that for states of the form ρ⊗n, the λ register carries
information about the eigenvalues of ρ and the Qλ register is
determined by the eigenbasis of ρ.

The main thing we will need to know about Qλ and Pλ
is their dimension. Roughly speaking, if d is constant then
|Id,n| ≤

(
n+d−1
n

)
≤ poly(n), dimQλ ≤ poly(n) and

dimPλ ≈ exp(nH(λ̄)). For completeness, we also state
exact formulas for the dimensions of Qλ and Pλ, although
we will not need to use them. For λ ∈ Id,n, define λ̃ :=
λ + (d − 1, d − 2, . . . , 1, 0). Then the dimensions of Qdλ and
Pλ are given by [37]

dimQdλ =

∏
1≤i<j≤d(λ̃i − λ̃j)∏d

m=1m!
(69)

dimPλ =
n!

λ̃1!λ̃2! · · · λ̃d!

∏
1≤i<j≤d

(λ̃i − λ̃j) (70)

It is straightforward to bound these by [45], [23]

dimQdλ ≤ (n+ d)d(d−1)/2 (71)(
n

λ

)
(n+ d)−d(d−1)/2 ≤dimPλ ≤

(
n

λ

)
. (72)

Applying Eq. (53) to Eq. (72) yields the more useful

exp
(
nH(λ̄)

)
(n+ d)d(d+1)/2

≤ dimPλ ≤ exp
(
nH(λ̄)

)
. (73)

To relate this to quantum states, let Πλ denote the projector
onto Qdλ ⊗ Pλ ⊂ (Cd)⊗n. Explicitly Πλ is given by

Πλ = U†Sch

(
|λ〉〈λ| ⊗ IQdλ ⊗ IPλ

)
USch. (74)

From the bounds on dimQdλ and dimPλ in Eqs. (71) and
(73), we obtain

exp
(
nH(λ̄)

)
(n+ d)d(d+1)/2

≤ Tr Πλ ≤ exp
(
nH(λ̄)

)
(n+ d)d(d−1)/2

(75)
As in the classical case, i.i.d. states have a sharply peaked dis-
tribution of λ values. Let r = (r1, . . . , rd) be the eigenvalues
of a state ρ, arranged such that r1 ≥ r2 ≥ . . .. For µ ∈ Zd,
define rµ = rµ1

1 · · · r
µd
d . As explained in Section 6.2 of [41],

one can bound Tr Πλρ
⊗n = Trqdλ(ρ) · dimPλ by

exp
(
−nD(λ̄‖r)

)
(n+ d)−d(d+1)/2

≤ Tr Πλρ
⊗n

≤ exp
(
−nD(λ̄‖r)

)
(n+ d)d(d−1)/2 (76)

Similarly, we have Πλρ
⊗n = ρ⊗nΠλ = Πλρ

⊗nΠλ and

Πλρ
⊗nΠλ ≤ rλΠλ = exp[−n(H(λ̄) +D(λ̄‖r))]Πλ. (77)

For some values of µ, rµ can be much smaller, so we
cannot express any useful lower bound on the eigenvalues of
Πλρ

⊗nΠλ, like we can with classical types. Of course, tracing
out Qdλ gives us a maximally mixed state in Pλ, and this is
the quantum analogue of the fact that p⊗n(·|t) is uniformly
distributed over Tt.
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We can also define the typical projector

Πn
r,δ =

∑
λ:‖λ̄−r‖1≤δ

Πλ (78)

Using Pinsker’s inequality, we find that

Tr Πn
r,δρ
⊗n ≥ 1− exp

(
−nδ

2

2

)
(n+ d)d(d+1)/2, (79)

similar to the classical case. The typical subspace is defined
to be the support of the typical projector. Its dimension can
be bounded (using Eqs. (58) and (76)) by

Tr Πn
r,δ ≤ |Id,n| max

λ:‖λ̄−r‖1≤δ
Tr Πλ

≤ (n+ d)d(d+1)/2 exp(nH(r) + η(δ) + nδ log d). (80)

2) Decomposition of memoryless quantum channels: The
point of introducing the Schur formalism is to decompose
N⊗n (or more accurately, its isometric extension U⊗nN ) into
a superposition of flat sub-channels. This is accomplished
by splitting An, Bn and En each into λ,Qλ and Pλ sub-
systems labelled λA,QλA ,PλA , λB , etc. Then the map from
PλA → PλB ⊗ PλE commutes with the action of Sn and as
a result has the desired property of being flat.

To prove this more rigorously, a general isometry from
An → BnEn can be written as a sum of terms of
the form |λB , λE〉〈λA| ⊗ |qB , qE〉〈qA| ⊗ PλA,λB ,λE , where
|qA〉, |qB〉, |qE〉 are basis states for the respective Qλ registers
and PλA,λB ,λE is a map from PλA → PλB ⊗ PλE .

Since U⊗nN commutes with the action of Sn, it follows
that each PλA,λB ,λE must also commute with the action of
Sn. Specifically, for any λA, λB , λE ∈ Id,n (with d =
max(dA, dB , dE)) and any s ∈ Sn, we have

(pλB (s)⊗ pλE (s))PλA,λB ,λE pλA(s) = PλA,λB ,λE

pλA(s)†P †λA,λB ,λEPλA,λB ,λEpλA(s) = P †λA,λB ,λEPλA,λB ,λE

By Schur’s Lemma P †λA,λB ,λEPλA,λB ,λE is proportional to the
identity on PλA . Therefore PλA,λB ,λE is proportional to an
isometry. Furthermore, PλA,λB ,λE maps the maximally mixed
state on PλA to a state proportional to PλA,λB ,λEP

†
λA,λB ,λE

.
This state commutes with pλB (s)⊗pλE (s) for all s ∈ Sn, and
so, if we again use Schur’s Lemma, we find that the reduced
states on PλB and PλE are both maximally mixed. Therefore
PλA,λB ,λE is proportional to a flat isometry.

This is an example of a broader phenomenon. For vector
spaces V1, V2, define Hom(V1, V2) to be the space of linear
maps from V1 to V2. Note that Hom(V1, V2) ∼= V ∗1 ⊗ V2,
and if (r1, V1), (r2, V2) are representations of a group G, then
there is a representation r of G on Hom(V1, V2) given by
r(g)T = r2(g)Tr1(g−1). For a representation (r, V ) the G-
invariant subspace V G is defined by

V G := {|ψ〉 ∈ V : r(g)|ψ〉 = |ψ〉 ∀g ∈ G}.

The space Hom(V1, V2)G is precisely the set of linear opera-
tors from V1 to V2 that commute with the action of G. Using
this notation, Schur’s Lemma is equivalent to the statement
that if V1, V2 are irreducible then Hom(V1, V2)G is equal to

{0} if V1, V2 are inequivalent and is one-dimensional if V1, V2

are equivalent.
Using this language, we can observe that PλA,λB ,λE be-

longs to Hom(PλA ,PλB ⊗ PλE )Sn , i.e. the set of maps
from PλA to PλB ⊗ PλE that commute with Sn. By the
arguments in the paragraph before last, any isometry in
Hom(PλA ,PλB ⊗PλE )Sn must also be a flat isometry. There
is a natural isomorphism from (P∗λA ⊗ PλB ⊗ PλE )Sn into
Hom(PλA ,PλB ⊗PλE )Sn . We denote this isomorphism by S
(making the λA, λB , λE-dependence implicit) and normalize
S so that if |µ〉 ∈ (P∗λA ⊗PλB ⊗PλE )Sn is a unit vector then
S|µ〉 is a (flat) isometry. Below we will offer an operational
interpretation of the |µ〉 register.

To deal with the large numbers of registers, we now
introduce some more concise notation.

Definition 12. Let PλB ,λEλA
be an orthonormal basis for

(P∗λA ⊗PλB ⊗PλE )Sn . We also let TA denote the set of pairs
(λA, qA), where |qA〉 runs over some fixed orthonormal basis
of QλA , and similarly we define TB and TE .

Now we can represent U⊗nN as

U⊗nN =
∑

τA∈TA
τB∈TB
τE∈TE

∑
µ∈PλB,λEλA

[V nN ]τAτB ,τE ,µ|τB , τE〉〈τA| ⊗ S|µ〉 (81)

This is depicted as a quantum circuit in Fig. 10.
(We will not need to know anything more about the

representation-theoretic structure of PλA,λB ,λE , but the in-
terested reader can find a more detailed description of this
decomposition of U⊗nN in Section 6.4 of [41], where S|µ〉 is
related to the Clebsch-Gordan transform over Sn.)

|τA〉

[V nN ]

• |τB〉

• |τE〉
|µ〉

S
|pB〉

|pA〉 |pE〉
Fig. 10. The quantum channel U⊗nN is decomposed in the Schur basis
as in Eq. (81). Alice inputs an n qudit state of the form |τA〉|pA〉 and
the channel outputs superpositions of |τB〉|pB〉 for Bob and |τE〉|pE〉 for
Eve. The intermediate state |µ〉 belongs to (P∗λA ⊗ PλB ⊗ PλE )Sn . The
figure suppresses the implicit UN , n-dependence of S, and expresses the
λA, λB , λE -dependence of S by the control wires from the |τB〉 and |τE〉
registers.

We now have a situation largely parallel to the classical
theory of joint types with τA, τB , τE representing the quantum
analogues of types for systems A, B and E. Since τB , τE , µ
together describe the joint type of systems BE, we can
think of µ as representing the purely joint part of the type
that is not contained in either of the marginal types. Further
justifying the analogy with classical types is the fact that all
but poly(n) dimensions are described by the flat isometries
PλA,λB ,λE . Next we need to describe an analogue of jointly
typical projectors, so that we can restrict our attention to
triples of (λA, λB , λE) that contribute non-negligible amounts
of amplitude to U⊗nN . In the next section, we will argue
that [V nN ]τAτB ,τE ,µ is exponentially small unless (λ̄A, λ̄B , λ̄E)
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correspond to the possible spectra of marginals of some state
ψRBE that is obtained by applying UN to a pure state on RA.

3) Jointly typical projectors in the Schur basis: In order for
Eq. (81) to be useful, we need to control the possible triples
(τA, τB , τE) that can have non-negligible weight in the sum. In
fact, it will suffice to bound which triples (λA, λB , λE) appear,
since these determine the dimensions of the Pλ registers and
in turn determine the dominant part of the communication
cost. For large values of n, almost all of the weight will be
contained in a small set of typical triples of (λA, λB , λE).
These triples are the quantum analogue of joint types from
classical information theory.

Let ρA be an arbitrary channel input, and |ψ〉ABE =

(IA ⊗ UA
′→BE
N )|Φρ〉AA

′
the purified channel output. Now

define R(N ) to be set of ψABE that can be generated in this
manner. Further define T ∗N to be {(rA, rB , rE) : ∃ψABE ∈
R(N ) s.t. rA = spec(ψA), rB = spec(ψB), rE = spec(ψE)}.
This set is simply the set of triples of spectra that can arise
from one use of the channel. We will argue that it corresponds
as well to the set of (λ̄A, λ̄B , λ̄E) onto which a channel’s input
and output can be projected with little disturbance. Let TnN ,δ
denote the set

{(λA, λB , λE) : ∃(rA, rB , rE) ∈ T ∗N ,

‖λ̄A − rA‖1 + ‖λ̄B − rB‖1 + ‖λ̄E − rE‖1 ≤
δ

log(d)
} (82)

One difficulty in defining joint types is that applying the
projector ΠλA to the input may not commute with applying
ΠλB ⊗ΠλE to the output. Nevertheless, the following lemma
(first proven in Section 6.4.3 of [41]) establishes a version of
joint typicality that we can use.

Lemma 13 ([41]). Let d = max(dA, dB , dE). For any state
|ϕ〉RA with |Ψ〉 = (I ⊗ UN )⊗n|ϕ〉⊗n,∥∥∥∥∥∥ |Ψ〉 −

∑
(λA,λB ,λE)∈TnN ,δ

I ⊗ ((ΠλB ⊗ΠλE )U⊗nN ΠλA)|ϕ〉⊗n
∥∥∥∥∥∥

≤ nO(d2) exp

(
−n δ2

8 log2(d)

)
. (83)

For completeness, we include a proof in the appendix.

D. Reduction to the flat spectrum case

In this section we prove the coding theorem for the QRST.
The outline of the proof is as follows:

1) We show that general inputs can be replaced by Sn-
invariant inputs by using a sublinear amount of shared
randomness (which can be obtained from any of the
other resources used in the protocol).

2) We show that Sn-covariant channels (such as N⊗n)
decompose into a superposition of flat sub-channels.
This is based on Sec. IV-C2. The simulation of these flat
sub-channels on maximally mixed inputs is described in
Sec. IV-A.

3) We show that atypical sub-channels can be ignored with
negligible error (using Sec. IV-C3).

4) We paste together simulations of different flat channels
using entanglement spread (introduced in Sec. II-C).

We now explain these components in more detail. First, we
show how it is possible to assume without loss of generality
that our inputs are Sn-symmetric. If we did not mind using a
large amount of shared randomness, then using log(n!) rbits
would allow Alice to apply a random permutation π ∈ Sn to
her inputs, and then for Alice to apply π−1 to the Eve output
and for Bob to apply π−1 to his output. In some scenarios,
these shared rbits might be a free resource (e.g. when entan-
glement is unlimited), and their cost could be further reduced
by observing that they are incoherently decoupled from the
protocol (using the terminology of [33]), and thus can be safely
reused.

However, in fact, it is possible for Alice and Bob to safely
sample π from a much smaller distribution. The idea is that
the protocol has ε error on an Sn-invariant input, which means
that if the input is randomly permuted, then the average error
will be ε. On the other hand, the diamond-norm error is never
greater than 2. Standard concentration-of-measure arguments
can then be used to show that O(log(n/ε)) rbits suffice to
reduce the error to O(ε). This is detailed in Lemma 14.

For the rest of this section, we simply assume that Alice
is given half of an Sn-invariant input |ϕ〉R

nAn . Based on
Sec. IV-C2, we can decompose the action of U⊗nN into a
map from τA to τB , τE , µ followed by a map from pA, µ to
pB , pE . The τB register has only poly(n) dimension, and can
be transmitted uncompressed to Bob using O(log n) qubits.
On the other hand, the map Pµ is flat, and therefore can be
compressed using Lemma 11.

To understand the costs of compressing Pµ, we need to
estimate the dimensions of the PλA ,PλB ,PλE registers. In
Sec. IV-C1, we showed that dimPλ ≈ exp(nH(λ̄)) up to
poly(n) factors. So the cost of simulating a flat map from PλA
to PλB ⊗PλE is 1

2n[H(λ̄A) +H(λ̄B)−H(λ̄E)] +O(log n)
qubits and 1

2n[H(λ̄B) +H(λ̄E)−H(λ̄A)] +O(log n) ebits.
Next, we can relate these costs to entropic quantities. Using

Lemma 13 from Sec. IV-C3, it follows that we need only
consider the triples (λ̄A, λ̄B , λ̄E) within distance δ/ log(d)
of a spectral triple (rA, rB , rE) corresponding to a possible
channel output. Therefore, the problem of simulating N⊗nF
can be reduced to producing a superposition of(

1

2
nI(R;B)ρ +O(nδ + log n)

)
[q → q]

+

(
1

2
nI(E;B)ρ +O(nδ + log n)

)
[qq] (84)

for all possible single-letter ρ (i.e. ρ that are inputs to a
single channel use). If we take δ → 0 as n → ∞ then this
corresponds to an asymptotic rate of

1

2
I(R;B)ρ[q → q] +

1

2
I(E;B)ρ[qq] (85)

per channel use. The resulting protocol is depicted in Fig. 11.
Finally, if our input is not a known tensor power source, then

producing Eq. (84) in superposition may require entanglement
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Ψ⊗n
Coherent
Simulation       
of (I⊗N)⊗ n

acting on         
purified            
input Ψ⊗n

Purification of a tensor power state ρ⊗ n input to  n  instances of quantum channel N

Alice’s
Lab

½ n I(E:B)ρ
+O(sqrt(n))
ebits for state 
splitting

QRST in Schur Basis, for known tensor power source

Trans-
form
to 

Schur
Basis

pA

N τB

τE

µ

pE

τE

pB

τB

Small
O(log n)
quantum
message

½ n I(R:B)ρ qubits 
efficient encoding of Bob’s 
permutation irrep pB

Bob’s Lab

R⊗n

Flat sub-channel
encoding and 
Alice’s part of
state splitting

Small       
O(sqrt(n))
quantum message 
returning unused 
entanglement Bob’s   

part 
of state
splitting

ρ⊗n

τA V n
N

Fig. 11. Quantum protocol for quantum reverse Shannon theorem on a known tensor power source. Alice transforms the tensor power input into the Schur
representation, comprising a small τ register containing the quantum type and a large p register containing the permutation irrep. These registers, together
with a slight (O(

√
n)) excess of halves of ebits shared with Bob, are coherently transformed into about 1

2
nI(R;B) qubits worth of flat sub-channel codes

representing Bob’s p register, which Bob decodes with the help of the other halves of the shared ebits and the small τB register sent from Alice. Alice also
returns the (O(

√
n)) unused halves of ebits, allowing them to be coherently destroyed. The remaining registers τE and pE , representing Eve’s share of the

output, remain with Alice, as required for a quantum feedback simulation of the channel N⊗n. By discarding them into the environment, one obtains a (not
necessarily efficient) non-feedback simulation.

spread. Suppose that α ≥ β and

β ≥CL
1

2
I(R;B)ρ[q → q] +

1

2
I(E;B)ρ[qq]

for all ρ. Then we can prepare β from α and then use β
to produce the resources needed to simulate 〈NF : ρ〉 in
superposition across all ρ (or equivalently across all τA in
the input). This can be done using extra forward communica-
tion (in which case the protocol still qualitatively resembles
Fig. 11, but the O(

√
n) message with extra entanglement

becomes Ω(n) qubits), using an embezzling state (as depicted
in Fig. 12) or using backward communication (as depicted
in Fig. 13). The protocol with backwards communication
appears to require a temporary shuttling of the small τB
register from Alice to Bob and back before finally sending
it to Bob; otherwise backward communication is used to
coherently reduce entanglement the same way that forward
communication is.

When we do not need to simulate feedback, the main dif-
ference is that we can split the E register into a part for Alice
(EA) and a part for Bob (EB). Additionally, this splitting is not

restricted to be i.i.d., although the corresponding “additivity”
question here remains open. That is, for any n ≥ 1 and any
V : En → EAEB , simulating the action of N⊗n can be
achieved by simulating V ◦ N⊗nF . Here Alice gets the output
EA and Bob gets the output BnEB . Moreover, we are in
some cases able to break the superpositions between different
τA. If feedback is not required, then we can assume without
loss of generality that Alice has measured τE , estimated N̂ (ρ)
to within O(n−1/2) accuracy [59] and communicated the
resulting estimate to Bob using o(n) communication.

However, in some cases (including an example we will
describe in the next section), N̂ (ρ) does not uniquely deter-
mine N (ρ), and thereby determine the rate of entanglement
needed. In this case, it will suffice to prepare a superposition
of entanglement corresponding to any source in (N̂⊗n)−1(ω)
for each ω ∈ range(N̂⊗n). This yields the communication
cost claimed in Theorem 3.

We conclude with a rigorous proof that low average-case
error can be turned into low worst-case error, allowing the
permutation π in Figs. 12 and 13 to be largely derandomized,
reducing its shared randomness cost to sublinear in n.
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Fig. 12. QRST on a general input using an entanglement-embezzling state (green). Alice first applies a randomizing permutation π to the inputs to n
instances of her quantum channel, using information shared with Bob (magenta), thereby rendering the overall input approximately permutation-symmetric.
She then uses the τB register to embezzle the correct superposition of (possibly very) different amounts of entanglement needed by her sub-channel encoder,
leaving a negligibly degraded embezzling state behind. At the receiving end (lower right) Bob performs his half of the embezzlement, coherently decodes the
sub-channel codes, and undoes the random permutation. The shared randomness needed for the initial randomizing permutation can also be obtained from
the embezzling state, and in any case can be made sublinear in n, as shown in Lemma 14.

Lemma 14. Let V A→BE be an isometry that represents
an ideal protocol and Ṽ A→BE its approximate realization.
Suppose that we have an average-case fidelity guarantee of
the form

〈ΦDA |
RA

(I ⊗ Ṽ †V )|ΦDA〉
RA ≥ 1− ε. (86)

Let µ be a distribution over UDA such that EU∼µUρU† =
I/DA for any density matrix ρ. If U1, . . . , Um are drawn i.i.d.
from µ, then with probability ≥ 1 −DA(4/e)−mε/2, for any
|ψ〉,

1

m

m∑
i=1

|〈ψ|(I ⊗ U†i Ṽ
†V Ui)|ψ〉|2 ≥ 1− 6ε. (87)

Proof: Let ∆ := I − Ṽ †V . Observe that ‖∆‖∞ ≤ 2 and
that Eq. (86) implies that ‖∆‖1 = Tr ∆ ≤ εDA. Define

∆0 := EU∼µ[U∆U†] =
Tr ∆

DA
I ≤ εI (88)

∆̄ :=
1

m

m∑
i=1

Ui∆U
†
i , (89)

where U1, . . . , Um are drawn i.i.d. from µ. By applying the
operator Chernoff bound [5], [76], we find that with probabil-
ity ≥ 1−DA(4/e)−mε/2, we have ‖∆̄−∆0‖∞ ≤ 2ε. In this
case, ‖∆̄‖∞ ≤ 3ε. Eq. (87) follows by Cauchy-Schwarz.

Lemma 14 can be applied separately to each Schur sub-
space, with DA := dimPλa . Thus, a union bound multiplies
the probability of a bad choice of permutations by nO(dA) and
we always have DA ≤ O(n log dA).

Inefficiencies and errors: Here we briefly tabulate the
various sources of inefficiency and error in our simulation
protocols for quantum channels. We will consider allowing
an inefficiency of O(nδ) in each step of the protocol and will
analyze the resulting errors.

1) In Lemma 11, an extra communication rate of O(nδ)
means that the splitting step incurs an error of
exp(−nδ).

2) When restricting to typical triples, our definition of
TnN ,δ was chosen so that entropic quantities such as
H(Rn) + H(Bn) − H(En) would change by ≤ nδ +
o(n). According to Lemma 13, this results in error
exp(−nδ2/8 log2(d)). This will turn out to be the
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Fig. 13. QRST using classical back communication. Here the requisite spread is generated by starting with a large amount of ordinary (i.e. maximal)
entanglement, then using back communication and the τB register to coherently burn off some of it. This requires the τB register to make a round trip
from Alice to Bob then back again, before finally returning to Bob, who needs to be holding it at the end. Other aspects of the protocol are as in the
embezzlement-assisted implementation of the preceding figure.

dominant error term; accordingly, we define δ′ =
δ2/8 log2(d).

3) Suppose Alice and Bob use log(m) rbits to permute
the channel inputs, and unpermute the channel outputs.
Then Lemma 14 implies that the error multiplies by only
a constant factor if we take m = O(nδ + log(n)).

4) To achieve an error of exp(−nδ) using an embezzling
state, we need to take it to have n exp(nδ) qubits. This
is exorbitant, but in some secenarios, such as our proof
of the strong converse in the next section, the size of
the entangled ancilla that we use is irrelevant.

To summarize, our error scales as exp(−nδ2/8 log2(d) +
o(n)).

E. Converses and strong converses

In information theory, a “converse” is the statement of
asymptotic resource optimality of a coding theorem (which
is often called “direct part”). A “strong converse” is a state-
ment of the form that with too little resources the error
parameter in any protocol approaches 1 asymptotically. In
channel simulations, the first and foremost resource is forward
communication, but other resources of interest are the amount

of entanglement and specifically the amount of entanglement
spread.

Here, we first show that as with the classical reverse
Shannon theorem, the existence of a coding theorem (this
time for entanglement-assisted capacity [14]) means that no
better simulation is possible. Indeed, such matching coding
theorems generally give us strong converses, implying that
attempting to simulate a channel at rate CE − δ or lower
results in an error ≥ 1− exp(−nδ′) for some δ′ > 0. At the
same time, they give us strong converses for coding theorems,
proving that attempting to code at a rate CE + δ results in
the probability of successful decoding being ≤ exp(−nδ′),
again for some δ′ depending on δ. Second, we use arguments
from the theory of entanglement spread (cf. Sec. II-C) to
show that our simulations for non-IID inputs do require either
embezzling states, or – if only maximally entangled states are
available – the use of extra communication (which may be
forward or backward directed), to create entanglement spread.

1) Strong converse for forward communication: The gen-
eral principle behind these strong converses is based on the fact
that m forward cbits, assisted by arbitrary back communication
and entanglement, can transmit m+ k bits only with success
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probability ≤ 2−k. The proof is folklore.12 We call this
principle the guessing bound; it is also sometimes referred to
as “causality.” To apply the guessing bound, suppose we have
a coding theorem that allows us to use N⊗n (perhaps also
with auxiliary resources, such as shared entanglement) to send
n(C−δ) bits with success probability 1−εn,δ . [Typically, εn,δ
will be of the form exp(−O(nδ2)).] Now assume that there
exists a simulation of N⊗n (using any auxiliary resources that
are not capable of forward communication) that uses n(C−δ′)
bits of communication and achieves error ε′n,δ′ . If δ′ > δ, then
the guessing bound implies that

εn,δ + ε′n,δ′ ≥ 1− 2−n(δ′−δ). (90)

Thus coding theorems constrain possible simulation theorems.
Vice versa, by the same logic, suppose we had a simulation
of N⊗n using n(C + δ) cbits of forward communication plus
additional resources and error εn,δ , and consider a coding of
n(C + δ′) cbits into n uses of N and auxiliary resources,
achieving error probability ε′n,δ′ . Then as before, for δ′ > δ,

εn,δ + ε′n,δ′ ≥ 1− 2−n(δ′−δ). (91)

For the purposes of this argument, any auxiliary resources are
permitted as long as they are consistent with the guessing
bound. In particular, embezzling states of unlimited size are
allowed, and so is backwards quantum communication, and
in this way we can also establish whatever type of entangled
state we need.

In this case, the arguments of the last section estab-
lished that an inefficiency of δ in our channel simulation
(i.e. spending n(CE + δ) bits) allows errors to be bounded
by ≤ exp(−nδ2/8 log2(d) + o(n)). Similarly, it is known
that n(CE − δ) bits can be sent through N⊗n with error
≤ exp(−nδ2/8 log2(d)) if we are allowed a sufficient rate
of ebits. This establishes that CE(N ) is the optimal cbit
rate for simulation, and of communication, in the strong
converse sense, even if arbitrary entangled states and back
communication are for free. Previously this was known to
hold only when considering product-state inputs [68], [83] or
restricted classes of channels [61], [82]. Recently an alternate
proof of the entanglement-assisted strong converse has also
been given based on a more direct argument involving com-
pletely bounded norms [38]. The fact that our strong converse
also applies in the setting where free back communication
is allowed from Bob to Alice is perhaps surprising given
that back communication is known to increase the classical
capacity in the unassisted case [72] (although not in the
assisted case [18]). One limitation of our strong converses is
that they only apply when the entanglement-assisted capacity

12Here is a sketch of the proof. Suppose a protocol exists that achieves
success probability q on a randomly chosen m + k-bit input. Modify this
protocol so that the bits transmitted from Alice to Bob are replaced by random
bits that Bob generates locally. We can think of this as Bob guessing Alice’s
input. This modified protocol can be simulated locally by Bob and corresponds
to him drawing from a fixed distribution independent of Alice’s input. On a
random m + k-bit input, this must have success probability 2−m−k . Our
bound on the original protocol also means that this has success probability
≥ q2−m, since Bob has probability 2−m of correctly guessing Alice’s m
transmitted bits. Thus we obtain q ≤ 2−k .

is exceeded, whereas [68], [83], [61], [82] addressed the
Holevo capacity or the ordinary classical capacity.

While the above argument applies to arbitrary use of the
channel to communicate (and allows arbitrary input states in
the simulation), we can also establish such a strong converse in
the case of a known IID input. Here it is not only known [33]
that 〈NF : ρ〉 ≥ 1

2I(R;B)[q → q] + 1
2I(B;E)[qq], but the

corresponding protocol can be shown to have error bounded
by 2−nδ

′
. Thus, suppose a simulation existed for 〈N : ρ〉

that used 1
2 (I(R;B) − δ)[q → q] and an unlimited amount

of entanglement and back communication to achieve fidelity
f . Then combining this simulation with teleportation and our
coding protocol would give a method for using cbits at rate
I(R;B) − δ together with entanglement to simulate cbits at
rate I(R;B)−δ/2 with fidelity ≥ f −2−nδ

′
for some δ′ > 0.

By causality, any such simulation must have fidelity ≤ 2−nδ/2,
and thus we must have f ≤ 2−nδ/2 + 2−nδ

′
.

2) Converses for the use of entanglement and back com-
munication, based on spread: Here we have to distinguish
between the channel simulation with and without coherent
feedback.

The case with coherent feedback is easier to handle as it
places more stringent constraints on the protocol, and so the
bounds are easier to prove. Thus we begin with this case,
which corresponds to part (d) of Theorem 3.

We shall argue that entanglement spread is necessary. In
fact, we will show a larger communication cost (forward plus
backward) if the only entangled resource consists of ebits
(i.e. maximally entangled states). Recall that the simulation
theorem for feedback channels uses communication at rate

max
ρ1

H(B)ρ1 +max
ρ2

(H(R)−H(E))ρ2 = CE(N )+∆sim(N ).

(92)
In what follows, we will omit N from our notation. We will
show that this rate is optimal by constructing an input on which
U⊗nN will create ≈ n(CE + ∆sim) spread.

For i = 1, 2, let ρi be the states from Eq. (92) and let |ψi〉
be a purification of ρ⊗ni . Let

|Ψ〉 =
|1〉A|1〉B |ψ1〉A

′A|ψ2〉AB + |2〉A|2〉B |ψ2〉A
′B

√
2

.

Here we use A repeatedly to indicate registers under Alice’s
control, B to indicate registers owned by Bob, and A′ for a
register controlled by Alice that will be input to U⊗nN . We omit
describing the |0〉 registers that should pad Alice and Bob’s
registers so that each branch of the superposition has the same
number of qubits. Let |ϕi〉RBE = (UA

′→BE
N ⊗IR)⊗n|ψi〉A

′R.
Then,

|Θ〉 := U⊗nN |Ψ〉

=
|1〉A|1〉B |ϕ1〉ABE |ψ2〉AB + |2〉A|2〉B |ϕ2〉BBE√

2
. (93)

Here, E is again a register controlled by Alice and we observe
that |ϕ2〉 has two out of its three registers controlled by Bob.

We argue that ≈ n(CE + ∆sim) spread has been created by
applying U⊗nN . First, observe that |Ψ〉 is locally equivalent to
|1,1〉+|2,2〉√

2
⊗|ψ2〉AB , which has O(

√
n) spread. More precisely,
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∆ε(ψ
A
2 ) ≤ O(

√
n log(1/ε) log(d)), and so |Ψ〉 can be pre-

pared with error ε using this amount of communication [64].
Next, we argue that |Θ〉 has a large amount of spread. The
part attached to the |1, 1〉 register has entanglement roughly
equal to n(H(B)ρ1 + H(R)ρ2) and the part attached to the
|2, 2〉 register has entanglement roughly equal to nH(E)ρ2 .
Since these registers are combinations of i.i.d. states, one can
prove (c.f. Theorem 13 of [52], or Proposition 6 of [44])
that for any ε < 1/2, ∆ε(Θ

A) ≥ n(H(B)ρ1 + H(R)ρ2 −
H(E)ρ2) − O(

√
n). We conclude from Theorem 5 that sim-

ulating U⊗nN to error lower than a sufficiently small constant
(such as 10−4) using unlimited ebits requires communication
≥ n(CE(N )+∆sim(N )−o(1)). We suspect, but do not prove,
that a tighter analysis could prove this lower bound for all
ε < 1/2. Note that our statement is not a strong converse in
the usual sense (which would demand a proof of our bound
for all ε < 1) but that it still establishes a jump of the error at
the optimal rate.

When we consider simulations without feedback, we no
longer have additivity, and we are able only to estab-
lish regularized coding theorems and weak converses. The
zero-entanglement limit is discussed in [46] and the low-
entanglement regime (part (b) of Theorem 3) follows similar
lines. The main idea is that if only coherent resources (such
as qubits and ebits) are used, then the state of the environment
is entirely comprised of what Alice and Bob discard. Let EA
(resp. EB) denote the system that Alice (resp. Bob) discards.

Let P denote the simulation of N⊗n constructed by the
protocol. By the above arguments, P has an isometric exten-
sion UA

n→BnEAEB
P , just as NA→B has isometric extension

UA→BEN . The fact that the simulation is successful means that
‖P − N⊗n‖� ≤ ε. We now make use of a generalization of
Uhlmann’s theorem [62] to show that

‖UP − V E
n→EAEB ◦ U⊗nN ‖� ≤

√
ε (94)

for some isometry V .
For part (b) of Theorem 3, this allows us to reduce the

converse to that for part (a). We obtain Eqs. (20) and (21)
from Fannes’ inequality. Before discarding EB , Bob’s total
state BnEB is within ε of a state on q + e qubits, and thus
has H(BnEB) ≤ q + e+O(nε). Similarly, Bob has received
only q qubits, so we must have 1

2I(Rn;BnEB) ≤ q+O(nε).
For part (e), Eq. (94) allows us to reduce the converse to

the converse for part (d). Again this is because the ability to
simulate N⊗n without preserving E is equivalent to the ability
to simulate V · U⊗nN for some choice of V E

n→EAEB .
3) The clueless Eve channel: We conclude our discussion

of converses with an explicit example of a channel that
requires more communication to simulate with ebits than with
embezzling states [part (e) of Theorem 3]. This channel is
designed so that different inputs create different amounts of
entropy for the receiver, but without leaking information about
this to the environment. Hence, we call it the “clueless Eve
channel.”

The channel Nd maps d+1→ d+1 dimensions. We define

it in terms of its isometric extension as follows:

UNd = |Φd〉BE〈0|A +

d∑
i=1

|0〉B |i〉E〈i|A, (95)

where |Φd〉 = 1√
d

∑d
i=1 |i, i〉. In other words |0〉 is mapped

to the maximally mixed state (over dimensions 1, . . . , d) for
Bob, while |i〉 is mapped to the |0〉 state for 1 ≤ i ≤ d.
One can show that CE(Nd) = 2QE(Nd) = 1 independent
of d using convexity and symmetry arguments13 along the
lines of [25], [55]. However, the following argument will show
that on some (non-tensor-power) inputs, the channel’s ebit-
assisted simulation cost, even for a non-feedback simulation,
strictly exceeds its entanglement-assisted capacity. (This may
be contrasted with the case of the amplitude damping channel
considered earlier in Fig. 6, where the gap between ebit-
assisted simulation cost and CE is present only for feedback
simulation). To see qualitatively why standard ebits are an
insufficient entanglement resource to efficiently simulate this
channel, consider the purified non-tensor-power input

|Ψ〉RA
n

:=
|0n〉R|0n〉A

n

+ |Φdn〉RA
n

√
2

(96)

to n uses of the channel. As usual, R is a reference system
and An is sent to BnEn by U⊗nN .

| n/2
qubits

Alice’s 
Encoder

Bob’s 
Decoder

R

An

k 
ebits

EA Bn

R

EB

_<²RAn

Fig. 14. A would-be simulation of the clueless Eve channel Nd on the non-
tensor-power source

∣∣∣ΨRAn〉, using around nQE = n/2 qubits of forward
communication and k ordinary ebits as the entanglement resource, deposits
different amounts of entropy in Alice’s local environment EA depending on
which term in ΨRA

n
is acted upon, thereby decohering the superposition and

spoiling the simulation.

In Fig. 14 Alice’s encoder, assisted by some number k of
ebits, transforms the An part of this input into a supposedly
small (≈ n/2 qubit) quantum message sent to Bob and
a residual environment system EA retained by Alice. By
conservation of entropy, if An = 0, then Alice’s environment
EA will have entropy at most k + n/2, whereas if An 6= 0
it will be left in a different state with entropy at least
k+n log(d)−n/2. Because (as will be shown in the following

13CE is given by the maximum of I(A;B) over inputs ρ. Due to the
structure of the channel, it is invariant under the map ρ→ UρU† for any U
satisfying U |0〉 = |0〉. Since I(A : B) is concave in the input density matrix
ρ, it follows that it can be maximized by ρ that commutes with all such U .
The resulting states have the form p|0〉〈0|+ (1−p)(

∑d
i=1 |i〉〈i|/d) and the

resulting one-parameter maximization problem is easily seen to be equivalent
to determining the entanglement-assisted capacity of a noiseless classical bit
(i.e. totally dephasing) channel.
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theorem) these two states become close to orthogonal for large
d, Alice’s environment will gain information about which term
in the superposition ΨRAn was present, and consequently will
decohere the superposition, which a faithful simulation of the
channel would not have done. Carrying through this argument
more precisely, we have:

Theorem 15. Let P be a protocol using q qubits of communi-
cation (total, in either direction) and k ebits. If ‖P−N⊗nd ‖� ≤
ε then q ≥ 1

4n log d− 1− 8
√
εn log d.

Proof: We begin by introducing some notation. The proof
depends on the assumed closeness between P and N⊗nd on
the non-tensor-power source ΨRAn . Applying U⊗nN to the An

part of ΨRAn and using the fact that |Φd〉⊗n = |Φdn〉 we
obtain the (ideal) state

|Θ〉RB
nEn

:=
|0〉R|Φdn〉B

nEn
+ |0n〉B

n

|Φdn〉RE
n

√
2

(97)

that would result from the operation of the channel. We
now purify the simulating protocol P in a canonical way:
all non-unitary operations are replaced by isometries and
discarding subsystems, and each subsystem that Alice (resp.
Bob) discards is added to a register called EA (resp. EB). We
can think of EA, EB as local environments. Let UP denote
the resulting purification and define the actual protocol output
to be ∣∣∣Θ̃〉RBnEAEB := (I ⊗ UP)|Ψ〉. (98)

To simulate N⊗nd on input |Ψ〉 we do not need to approximate
|Θ〉, but it suffices to approximate the RBn part of the state.
By Uhlmann’s theorem, this is equivalent to the claim that
there exists an isometry V : En → EAEB such that∣∣∣〈Θ̃

∣∣∣ΘV

〉∣∣∣2 ≥ 1− ε, (99)

where |ΘV 〉RB
nEAEB := (IRB

n ⊗ V En→EAEB )|Θ〉.
To prove the lower bound, we will argue that either |ΘV 〉

has high spread for any V , or it has high mutual information
between R and BnEB . Either way, we obtain a lower bound
on the communication required to approximately create it.
We first sketch the idea of why this should be true. Let
V |Φdn〉XE

n

:= |ϕV 〉XEAEB , where X can be either R or
Bn. Then

|ΘV 〉RB
nEAEB =

|0n〉R|ϕV 〉B
nEAEB + |0n〉B

n

|ϕV 〉REAEB√
2

ΘREA
V =

|0〉〈0|R ⊗ ϕEAV + ϕREAV

2
.

To understand the spectrum of ΘREA
V , observe that |0〉〈0| ⊗

ϕEAV and ϕREAV have orthogonal support. Therefore, if ϕEAV
and ϕREAV have spectrum α = (α1 . . . , αa) and β =
(β1, . . . , βb) respectively, then ΘREA

V has eigenvalues

α1

2
, . . . ,

αa
2
,
β1

2
, . . . ,

βb
2
.

Note also that ϕREAV has the same spectrum as ϕEBV . Thus

1 + max(H0,ε(ϕ
EA
V ), H0,ε(ϕ

EB
V ))

≥ H0,ε(Θ
REA
V )

≥ max(H0,2ε(ϕ
EA
V ), H0,2ε(ϕ

EB
V )) (100a)

1 + min(H∞,ε(ϕ
EA
V ), H∞,ε(ϕ

EB
V ))

≤ H∞,ε(ΘREA
V )

≤ 1 + min(H∞,2ε(ϕ
EA
V ), H∞,2ε(ϕ

EB
V )). (100b)

Pretend for a moment that ε = 0. In that case H0(ΘREA
V ) ≥

H0(ϕEAV ) ≥ H(ϕEAV ) = H(Θ̃EA). Combining this with the
fact that H∞ ≤ S, we have that ∆0(ΘREA

V ) ≥ H(Θ̃EA) −
H(Θ̃REA) = −H(R|EA)Θ̃ = H(R)Θ̃−I(R;BnEB)Θ̃. Rear-
ranging we have that the sum of the spread (∆0(ΘREA

V )) and
the mutual information (I(R;BnEB)Θ̃) is at least H(R)Θ̃ =
1 + 1

2n log d. Since spread and mutual information are both
≤ 2q, we obtain the desired result.

The difficulty in extending this argument to the ε > 0
case is (a) that spread can vary dramatically under small
perturbations in the state (as observed even in situations as
simple as entanglement dilution [64], [52], [44]), and (b) that
the dimensions of EA, EB are unbounded, and so Fannes’
inequality is difficult to apply. The second difficulty is easiest
to address: we will use a variant of Fannes’ inequality known
as the Alicki-Fannes inequality, which bounds the variation of
H(R|EA) using only |R| and not |EA|.

Lemma 16 (Alicki-Fannes inequality [6]). If ε := 1
2‖ρ

XY −
σXY ‖1 < 1/2 then

|H(X|Y )ρ −H(X|Y )σ| ≤ 8ε log |X|+ 2H2(2ε) (101)

To address the unbounded Lipschitz constant of ∆0, we
will need to look more carefully at how ΘV and Θ̃ are
related. First, we replace ϕV with a low-spread approx-
imation. From Eq. (35), we obtain nonnegative operators
MA,0,MA,∞,MB0

,MB,∞ whose largest eigenvalues are ≤ 1
and that satisfy
• 1− 2ε = TrMA,0ϕ

EA = TrMA,∞ϕ
EA

• 1− 2ε = TrMB,0ϕ
EB = TrMB,∞ϕ

EB

• MA,0,MA,∞, ϕ
EA all commute

• MB,0,MB,∞, ϕ
EB all commute

• H0(MA,0ϕ
EA) = H0,2ε(ϕ

EA)
• H∞(MA,∞ϕ

EA) = H∞,2ε(ϕ
EA)

• H0(MB,0ϕ
EB ) = H0,2ε(ϕ

EB )
• H∞(MB,∞ϕ

EB ) = H∞,2ε(ϕ
EB )

We can now define

|ϕ̂〉 := γ−1/2(I⊗
√
MA,0MA∞⊗

√
MB,0MB∞)|ϕV 〉, (102)

where γ ≥ 1 − 8ε is a normalizing constant, chosen so that
〈ϕ̂|ϕ̂〉 = 1. For ease of calculations, we will choose ε ≤ 1/16,
so that log(1− 8ε) ≥ −1. Then

H0(ϕ̂EA) ≤ H0,2ε(ϕ
EA
V ) (103a)

H0(ϕ̂EB ) ≤ H0,2ε(ϕ
EB
V ) (103b)
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H∞(ϕ̂EA) ≥ H∞,2ε(ϕEAV ) + 1 (104a)

H∞(ϕ̂EB ) ≥ H∞,2ε(ϕEBV ) + 1 (104b)

Now we use |ϕ̂〉 to define∣∣∣Θ̂〉RBnEAEB :=
|0n〉R|ϕ̂〉B

nEAEB + |0n〉B
n

|ϕ̂〉REAEB√
2

.

(105)
Observe that

〈
ΘV

∣∣∣Θ̂〉 = 〈ϕV |ϕ̂〉 =
√
γ ≥
√

1− 8ε, implying
1
2‖ΘV − Θ̂‖1 ≤

√
8ε. Combined with Eq. (99), we obtain

1

2
‖Θ̃− Θ̂‖1 ≤ 4

√
ε. (106)

The advantage of Θ̂ is that it has exactly the same structure
as ΘV , but with |ϕV 〉 replaced with |ϕ̂〉. Thus it similarly
satisfies

Θ̂EA = ϕ̂EA and Θ̂EB = ϕ̂EB , (107)

and thus Eq. (100) still holds when ΘV is replaced with Θ̂
and ϕV is replaced with ϕ̂.

We now conclude with a traditional chain of entropic
inequalities, with each step labeled by its justification:

2q ≥∆0(Θ̃REA)

≥∆ε(Θ
REA)) Lemma 6

≥H0,ε(Θ
REA)−H∞,ε(ΘREA) Eq. (34)

≥max(H0,2ε(ϕ
EA
V ), H0,2ε(ϕ

EB
V )) Eq. (100a)

−min(H∞,2ε(ϕ
EA
V ), H∞,2ε(ϕ

EB
V ))− 1 Eq. (100b)

≥max(H0(ϕ̂EAV ), H0(ϕ̂EBV )) Eq. (103)

−min(H∞(ϕ̂EAV ), H∞(ϕ̂EBV ))− 3 Eq. (104)

≥H0(ϕ̂EA)−H∞(Θ̂REA)− 3 Eq. (100b)

=H0(Θ̂EA)−H∞(Θ̂REA)− 3 Eq. (107)

≥H(Θ̂EA)−H(Θ̂REA)− 3 H0 ≥ S ≥ H∞
=−H(R|EA)Θ̂ − 3

≥−H(R|EA)Θ̃ − 32
√
εn log d− 5 Lemma 16

=−H(R|EA)Θ̃ − δ δ := 32
√
εn log d+ 5

=H(R)Θ̃ − I(R;EA)Θ̃ − δ

=

(
1 +

1

2
n log d

)
− I(R;EA)Θ̃ − δ

≥
(

1 +
1

2
n log d

)
− 2q − δ

V. CONCLUSION

We conclude by summarizing the operational and technical
consequences of our work, as well as some open problems.

Operationally, we establish necessary and sufficient amounts
of standard noiseless resources for simulation of discrete
memoryless quantum channels, including classical DMCs as
a special case. As is usual in Shannon theory, simulations
become efficient and faithful only in the limit of large block
size, even in cases where the simulation capacity is given by a
single-letter formula. We consider both ordinary and feedback
simulations, a feedback simulation being one in which the

simulating sender coherently retains what the simulated chan-
nel would have discarded into its environment. We consider
simulations on both tensor power sources (the quantum gener-
alization of classical IID sources) and general sources, which
may be correlated or entangled over the multiple inputs, a
distinction that becomes important for quantum channels. We
also establish conditions for asymptotic equivalence among
channels, that is conditions under which channels can simulate
one another efficiently and reversibly, so that the capacity
for channel M to simulate N is the reciprocal of that for
performing the simulation in the opposite direction. Such
equivalences generally hold only in the presence of some com-
bination of auxiliary resources, which by themselves would
have no capacity for channel simulation. In each case, an
unlimited supply of the auxiliary resources enables asymptoti-
cally reversible cross-simulation. For cross-simulations among
classical channels, shared randomness is a necessary and
sufficient auxiliary resource. For quantum channels on tensor
power sources, ordinary shared entanglement is necessary and
sufficient. For quantum channels on general sources, more
general entangled states (“entanglement-embezzling states”) or
combinations of resources, such as entanglement and classical
back-communication, are required. Finally, in many cases of
interest, we quantify the loss of efficiency and reversibility
when an auxiliary resource is insufficient or absent. In this
respect, we feel that our Theorem 15 is not giving a tight
bound, due to an imperfect proof technique. One problem
is that mutual information and spread are not placed on a
common footing, as they are in the case when simulating an
isometry (feedback case).

On the technical side, we can now understand quantum sim-
ulations of quantum channels in terms of three key ingredients:

1) State splitting (also known as the reverse of state merg-
ing [57], [1]) in which a known tripartite state ΨABC

begins with C held by Alice and ends with C held by
Bob. Note that this is a coherent version of measurement
compression [85], upon which early QRST proofs were
based.

2) Entanglement spread, which measures how far a state
is from maximally entangled on some subspace [42],
and turns out to be necessary when protocols requiring
different numbers of ebits need to be executed in super-
position.

3) Dividing the environment between Alice and Bob, which
starts with the “Church of the Larger Hilbert Space”
principle that mixed states have purifications, and pro-
ceeds to the observation that in a protocol using only
noiseless resources any simulated environment must
WLOG be divided between the sender and receiver. This
form of the idea first appeared in [75] and is necessary to
understand the low-entanglement versions of the QRST.

These concepts were known to the quantum information
theory community separately in various contexts, but find their
common use in the QRST.

A number of interesting open questions remain. On the
technical side, we observe that for classical channels, Lemma 7
gives low error in the worst case, but for quantum channels,
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Lemma 11 only gives average-case bounds. While this can
be addressed by using shared randomness catalytically (and
thereby without increasing the overall cost of the protocol), a
more direct proof would be preferable.

More ambitiously, we observe that the classical and quan-
tum reverse Shannon theorems are incomparable because the
assistance of shared entanglement is stronger than the assis-
tance of shared randomness even for purely classical channels
(cf the discussion at the end of Sec. II-B). This is in contrast to
the fact that Shannon’s noisy coding theorem can be viewed as
a special case of the entanglement-assisted capacity theorem. It
would be desirable to have a single theorem that stated the cost
of simulating a channel given the assistance of an arbitrary rate
of randomness and entanglement. Some encouraging progress
in this direction is given by [81], [17], which shows that
for QC channels (i.e. quantum input, classical output) shared
randomness can be used in place of shared entanglement.
Another direction for generalization is to consider simulations
that use side information, along the lines of [90], [80].

There are also new questions about additivity and regular-
ization that arise when considering low-entanglement simula-
tions of quantum channels, most of which are completely open.
For example, the zero-entanglement point on the tradeoff curve
corresponds to the entanglement of purification [75] whose
additivity properties are still open (but see [20] for recent work
suggesting that it is not additive).
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with |Ψ〉 = (I ⊗ UN )⊗n|ϕ〉,∥∥∥∥∥∥ |Ψ〉 −
∑

(λA,λB ,λE)∈TnN ,δ

I ⊗ ((ΠλB ⊗ΠλE )U⊗nN ΠλA)|ϕ〉

∥∥∥∥∥∥
1

≤ nO(d2) exp

(
−n δ2

8 log2(d)

)
. (109)

Proof: By the triangle inequality, the LHS of Eq. (109)
is

≤
∑

(λA,λB ,λE)6∈TnN ,δ

‖(I ⊗ (ΠλB ⊗ΠλE )U⊗nN ΠλA)|ϕ〉‖1.

We now consider a particular triple (λA, λB , λE) 6∈ TnN ,δ . Let

ε = ‖(I ⊗ (ΠλB ⊗ΠλE )U⊗nN ΠλA)|ϕ〉‖1 (110)

= Tr(ΠλB ⊗ΠλE )U⊗nN ΠλAϕ
AΠλA(U†N )⊗n (111)

In this last step, we observe that all of the terms commute
with collective permutations except for ϕA. Thus, Eq. (111)
is unchanged if we replace ϕA with its symmetrized version,
ϕ̃A := 1

n!

∑
π∈Sn πϕ

Aπ−1. Next, observe that

ΠλA ϕ̃
AΠλ = |λA〉〈λA| ⊗ σ ⊗

IPλA
dimPλA

,

where σ is some (subnormalized) density matrix on QdAλA . This
implies that

ΠλA ϕ̃
AΠλ ≤ |λA〉〈λA| ⊗ IQdAλA

⊗
IPλA

dimPλA
=

ΠλA

dimPλA
(112)

Next, define the single-system density matrix ρ =∑dA
i=1 λ̄A,i|i〉〈i|. By Eq. (76), we have

Tr ΠλAρ
⊗n ≥ (n+ d)−d(d+1)/2.

Thus, if we twirl ρ⊗n, we find that

ΠλA

dimPλA
≤ EU∈UdA [(UρU†)⊗n] ·(n+d)d(d+1)/2 dimQdAλA

≤ EU∈UdA [(UρU†)⊗n](n+ d)d
2

, (113)

where in the second step we have used Eq. (71). Combining
this equation with Eq. (112), we obtain the operator inequality

ΠλA ϕ̃
AΠλ ≤ EU∈UdA [(UρU†)⊗n](n+ d)d

2

.

Let rB , rE be the spectra respectively of the B and E parts
of UNUρU†U

†
N . Then by the definition of TnN ,δ we have

that ‖rB − λ̄B‖1 + ‖rE − λ̄E‖1 > δ/ log(d). Thus, at least
one of these distances must be > δ/2 log(d). By Pinsker’s
inequality it follows that either D(λ̄B‖rB) ≥ δ2/8 log2(d) or
D(λ̄E‖rE) ≥ δ2/8 log2(d). This in turn means we can bound

ε ≤ (n+ d)d
2

Tr(ΠλB ⊗ΠλE )(UNUρU
†U†N )⊗n

≤ (n+ d)d(3d−1)/2 exp(−nmax(D(λ̄B‖rB), D(λ̄E‖rE)))

≤ (n+ d)d(3d−1)/2 exp

(
−n δ2

8 log2(d)

)
(114)

Finally, we sum over all (λA, λB , λE) 6∈ TnN ,δ
to upper-bound the LHS of Eq. (109) by

|Id,n|3(n + d)d(3d−1)/2 exp(−nδ2/8 log2(d)) ≤
(n+ d)

d(3d+5)
2 exp(−nδ2/8 log2(d)).

Lemma 6.

max(0,∆ε(ρ))

= min{∆0(σ) :
1

2
‖ρ− σ‖1 ≤ ε, 0 ≤ σ,Trσ = 1} (115)

Proof: If ∆ε(ρ) = δ then by definition there exists σ
satisfying ∆0(σ) = δ, 0 ≤ σ ≤ ρ, ρσ = σρ and Trσ = 1− ε,
which implies that ‖ρ−σ‖1 = Tr(ρ−σ) = ε. Let the nonzero
eigenvalues of σ be s1 ≥ · · · ≥ sd > 0. Then ds1 = 2δ and∑d
i=1 si = 1 − ε. We can add up to 2δ − (1 − ε) weight to

these eigenvalues while keeping them all ≤ s1. Thus, if

ε ≤ 2δ − (1− ε), (116)

then we can add ε weight to σ, thus obtaining a normalized
state, without increasing its ∆0. Call the resulting density
matrix ω. Then ∆0(ω) = δ and ‖ω − ρ‖1 ≤ 2ε by the
triangle inequality. This is possible whenever Eq. (116) holds,
or equivalently, whenever δ ≥ 0.

If δ < 0, then we cannot create a normalized state without
increasing the spread, since any normalized state has ∆0 ≥ 0.
Instead we will take ω to be the maximally mixed state on
suppσ. Note that σ ≤ ω, since s1 = 2δ/d < 1/d. Thus
‖ω−σ‖1 = Tr(ω−σ) = ε and we again have ‖ω−ρ‖1 ≤ 2ε.

This establishes that the RHS of Eq. (115) is ≤ the LHS. To
show the other direction, suppose that there exists a normalized
ω satisfying 1

2‖ρ − ω‖1 ≤ ε and ∆0(ω) = δ. Then we can
write ρ− ω = A−B where A,B ≥ 0 and TrA = TrB = ε.
Define σ = ρ − A = ω − B. Then Trσ = 1 − ε, 0 ≤ σ ≤ ρ
and σ ≤ ω, implying ∆0(σ) ≤ ∆0(ω) = δ.
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