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Abstract 

 

The choice of heat transfer fluids has significant effects on the performance, cost and reliability 

of solar thermal systems. In this chapter, we evaluate existing heat transfer fluids such as oils and 

molten salts based on a new figure of merit capturing the combined effects of thermal storage 

capacity, convective heat transfer characteristics and hydraulic performance of the fluids. 

Thermal stability, freezing point and safety issues are also discussed. Through a comparative 

analysis, we examine alternative options for solar thermal heat transfer fluids including water-

steam mixtures (direct steam), ionic liquids/melts and suspensions of nanoparticles (nanofluids), 

focusing on the benefits and technical challenges.  
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Nomenclature  

 a     ratio of heated perimeter to perimeter 

A     area (m
2
) 

Ck coefficient of k enhancement (Wm
-1

K
-1

) 

pC    specific heat capacity at constant pressure (Jkg
-1

K
-1

) 

Cμ coefficient of μ enhancement (kgm
-1

s
-1

 or Pa s) 

d particle diameter (nm) 

D     diameter (m) 

E     heat transfer enhancement factor  

Fr    Froude number 

g     gravitational acceleration (ms
-2

) 

G      Total mass flux through a tube (kgm
-2

s
-1

) 

h     heat transfer coefficient (Wm
-2

K
-1

), height (m), enthalpy (Jkg
-1

) 

k     thermal conductivity (Wm
-1

K
-1

) 

K     permeability (m
2
)  

L     length (m)  

m      mass flux (kgm
-2

s
-1

) 

M two-phase flow pressure drop multiplier 

Mo Mouromtseff number 

Nu Nusselt number 

p     perimeter (m) 

P     pressure (Pa) 

Pr    Prandtl number  

q      heat flux (Wm
-2

) 

r      radius (m)  

Re    Reynolds number  

S      heat transfer correction factor 

T      temperature (K) 

u      velocity (ms
-1

) 

 V averaged bulk velocity (ms
-1

) 
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We    Weber number  

x      vapor quality 

 

Greek symbols  

     thermal diffusivity (m
2
s

-1
) 

     tilt angle (º) 

     angle (º) 

Λ dimensionless thermal load 

     dynamic viscosity (kgm
-1

s
-1

) 

     density (kgm
-3

) 

Y dimensionless pumping load  

ϕ volume fraction of solid phase 

ν        kinematic viscosity (m
2
/s) 

 

Subscript  

c     capillary  

eff effective 

f     fluid  

g     gas 

h     hydraulic diameter 

in     inlet  

l      liquid 

le      assuming the entire flow as liquid  

max maximum 

out outlet 

p particle 

ph phase 

pool pool boiling 

s      surface 

w     wall  
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1. Introduction 

Heat transfer fluids serve one or more purposes in solar thermal applications, such as: collection 

and transport of heat from solar absorbers; intermediate storage of thermal energy to buffer the 

diurnal nature of solar radiation; and heat exchange with the power cycle to produce electricity. 

As a result of the multiple purposes of heat transfer fluids in these applications, many 

constraints, both performance and practical, influence the choice of heat transfer fluid. In typical 

concentrated solar power (CSP) applications, heat transfer fluids are required to have low 

freezing points (near room temperature) to avoid freezing overnight, high operating temperatures 

(>400
o
C) to increase the power cycle efficiency, and low vapor pressures at high temperatures to 

reduce installation costs. For heat transfer performance, fluids are expected to have high thermal 

conductivity, high volumetric heat capacity, and low viscosity. They also need to be 

environmentally benign, non-corrosive, safe and cost-effective. Since pure substances and 

commonly used fluids such as synthetic oils and molten salts rarely meet all of the practical and 

performance criteria, the development of new solar heat transfer fluids continues to be an active 

area of research.  Two of the most commonly pursued research avenues include: mixtures, such 

as multi-component salts; and composite fluids, such as suspensions of submicron-sized solid 

particles in liquids (i.e., nanofluids). New developments have been discovered in the recent years 

in the field of mixtures and composite fluids which can potentially lead to significant 

breakthroughs for solar thermal applications.  

 

The purpose of this chapter is to review and analyze existing heat transfer fluids and recent 

advances in the area. A new figure of merit is derived based on the assumption of forced 

turbulent convection inside a uniformly heated collector tube in Section 2: Figure of Merit. More 

commonly used heat transfer fluids such as water, gases, oils, and molten salts are evaluated 

based on the new figure of merit in Section 3: Conventional Heat Transfer Fluids.  Section 4: 

Direct Steam focuses on the performance and practical issues regarding the use of pressurized 

water-vapor in solar plants. Recent advances in the promising fields of ionic fluids (such as 

molten salt mixtures) and composite fluids are discussed in Section 5: Ionic Liquids and Melts 

and Section 6: Nanofluids, respectively.  
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2. Figure of Merit 

2 . 1  P R E V I O U S  S T U D I E S  

The choice of proper heat transfer fluids is essential for the development of high-efficiency solar 

thermal power plants, as it determines the thermal and hydraulic performance of the collector 

field. Previously, Becker [1] evaluated various heat transfer fluids for use in solar thermal power 

plants by comparing their individual thermophysical properties. However, the performance of 

heat transfer fluids is determined by the combination of the properties rather than by each of the 

individual properties. To evaluate the effects of combined thermophysical properties, researchers 

have suggested various figures of merit (FOMs). Mouromtseff introduced the Mouromtseff 

number (Mo) to evaluate the effects of combined fluid properties on the convective heat transfer 

coefficient of internal turbulent flow based on the Dittus-Boelter correlation [2]:  

 
47.0

67.033.08.0



 kc
Mo

p
  .      (1) 

Bonilla suggested another FOM by comparing the required pumping power to maintain the 

temperature difference between inlet and outlet of carrier fluid [3]:  

 .
2.0

8.22



 pc
  (2)                       

Even though these FOMs provide meaningful comparisons among various heat transfer fluids, 

there are several limitations. Mouromtseff [2] compared only heat transfer characteristics in the 

radial direction assuming that all fluids have the same flow velocity. Meanwhile, Bonilla [3] 

ignored radial heat transfer between the wall and the fluid and only considered axial heat flow. 

Since performance of solar thermal heat transfer fluids is determined by the combined effects of 

the thermal storage capacity of the fluid, convective heat transfer from the wall to the fluid and 

hydraulic performance characterized by pumping power, an alternative FOM is desired.  

 

Recently, Murakami and Mikić reported the optimization of heat sinks based on the 

minimization of pumping power assuming the same temperature difference between wall outlet 
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and fluid inlet [4]. Their approach introduced dimensionless pumping and thermal loads, and 

showed important relationships among the parameters to optimize heat sink designs considering 

the axial and radial heat flow as well as the pumping power requirement. Here, we use the 

methodology suggested by Murakami and Mikić [4] to develop a new FOM to evaluate the 

performance of conventional solar thermal heat transfer fluids. 

2 . 2  N E W  F I G U R E  O F  M E R I T  

Figure 1 shows a schematic of a solar collector tube which is simplified as a single channel of 

diameter D and length L. The heat flux is assumed to be uniform throughout the entire length and 

the temperature distribution inside the solid walls is neglected.  

 

Figure 1: Schematic of a solar collector tube simplified as a single channel of diameter D and 

length L; 
infT ,

and 
outfT ,

represent the inlet and outlet temperature of carrier fluid, respectively. 

outwT ,
is the outlet wall temperature.    

From conservation of energy, the amount of heat stored in the fluid can be described as: 

   apLqTTVAc infoutfp
 )( ,,  ,   (3) 

where V and p represent the average bulk velocity of fluid and the perimeter of tube, 

respectively. a is the correction factor for the case when the heat flux is applied to a fraction of 

the perimeter.  For solar thermal collector tubes, the thermal stability of the heat transfer fluid 

and the selective coating imposes a restriction on Tw,out. Therefore, we rewrite Eq. 3 using the 

maximum temperature difference between the tube wall and fluid inlet ( maxT = infoutw TT ,,  ):  

q 
outwT ,

outfT ,infT ,

L

D
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h

q
TTTTTTT outfoutwinfoutwinfoutf


 max,,,,,, )()(  .      (4) 

Then, the pumping power is normalized by the amount of heat transferred to the fluid per time:  

 3

3Re

8

1

D

f

Λ

Υ

aapLq

ΔPVA
P 


 ,   (5)  

where D is a normalized diameter (D/L), f is the internal friction factor, and Re is the Reynolds 

number. Y and Λ represent the dimensionless pumping and thermal loads, respectively:  

   

max

2
max

3

Tk

Lq
Λ

LTk

ρν
Υ









.                 (6) 

Eqs. 3 and 6 are substituted into Eq. 4:  

      F
Nu

D



1  , (7) 

where F is a normalized temperature rise of the fluids, ( infoutf TT ,, 
 
)/ maxT , described by:  

  PrRe

4






a
F   . (8) 

For turbulent flow in circular tubes, the internal friction factor and the Nusselt number (Nu) can 

be estimated as [5, 6] 

 
4.08.0

2.0

PrRe023.0

Re184.0



 

Nu

f
. (9) 

By substituting Eqs. 6-9 into Eq. 5:  

 















 


34.06.1

4.2

)1(

1

Pr FF
P .  (10) 
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Assuming the heat flux ( q  ), tube length ( L ) and the maximum temperature difference between 

the tube wall and fluid inlet ( maxT ) are fixed, the normalized pumping power is determined by 

the properties of the fluid and the Reynolds number. To elucidate the effect of fluid properties on 

the normalized pumping power without introducing complexity associated with the Reynolds 

number, we optimize the normalized temperature rise (F):  

 0
)1(

1
34.0














FFF
.  (11) 

By substituting the optimized F (= 2/17) into Eq. 10, the normalized pumping power can be 

described:   

 4.0

4.3

max

4.2

8.16.10.2

4.1

L
T

q

kc
P

p































 . (12) 

Then, the performance of heat transfer fluids is determined by the combination of fluid 

properties in the first parentheses. Since the normalized pumping power needs to be minimized, 

the FOM of solar thermal heat transfer fluids becomes:  

 
4.1

8.16.10.2



 kc
FOM

p


 

.   (13) 

2 . 3  S U M M A R Y  &  O U T L O O K  

A new FOM is suggested to evaluate the thermal and hydraulic performance of heat transfer 

fluids for solar thermal applications. Compared with the Mo number (Eq. 1), the suggested FOM 

(Eq. 13) has a strong dependency on ρ and cp which characterize the heat storage capacity of 

fluid. In addition, unlike the previous FOM (Eq. 2), the thermal conductivity of fluid k also has a 

strong effect as the new FOM includes heat transfer characteristics between wall and fluid in the 

radial direction. When the carrier fluids experience phase-change in the collector tube, the 

changes in thermal and hydraulic performance associated with the phase-change process need to 

be considered. 
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3. Conventional Heat Transfer Fluids 

In addition to the FOM discussed in Section 2, the choice of fluid for solar thermal applications 

is governed by many other practical considerations. The commonly available heat transfer fluids 

for solar thermal power plants are summarized in Table 1. For large scale solar thermal plants 

(e.g., Solar Energy Generating Systems), synthetic or mineral oils have been the most common 

heat transfer fluid due to their high stability over a relatively wide temperature range 

(15°C ‒ 400°C) [7, 8]. The use of molten salts that are stable at higher temperatures (> 400°C) 

has also been suggested by previous studies to enhance the power cycle efficiency [9].  

 

Table 1: Conventional and potential heat transfer fluids for solar collector fields. 

  Fluid  

Oils 
Synthetic Therminol

®
 VP-1[10] 

Mineral  Caloria HT 43 [1] 

Molten salts 

Nitrates 
Hitec

®
 [11], 

 Hitec
®
 Solar Salt [11] 

Chlorides KCl-MgCl2 [12] 

Fluorides LiF-NaF-KF (FLiNaK) [12] 

Other liquids 
Mercury [13] 

Water [14] 

Pressurized gases 
Water vapor (30 - 100 bar) [14] 

Air (30-100 bar) [15] 

 

Figure 2 shows the thermophysical properties and the FOM of the various heat transfer fluids 

listed in Table 1. Volumetric heat capacity (Figure 2a), thermal conductivity (Figure 2b), and 

dynamic viscosity (Figure 2c) values are shown, and the combined effects of these properties 

(Figure 2d) are evaluated using the FOM discussed in Section 2. 

3 . 1  E V A L U A T I O N  O F  H E A T  T R A N S F E R  F L U I D S  

Between the two types of oils, the synthetic oil performs better than the mineral oil due to its 

higher thermal conductivity and lower viscosity. Therminol
®
 VP-1 has been the most common 

heat transfer fluid used in parabolic trough solar plants; however, its modest thermal breakdown 

temperature (~400
o
C) limits the efficiency of power cycles [8].   
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Between the oils and the salts, the molten salts have a higher FOM due to their higher volumetric 

heat capacity and thermal conductivity. At 325
o
C, for example, the FOM of nitrate salts (e.g., 

Hitec
®
, Hitec

® 
Solar Salt) is approximately two and nine times higher than the synthetic (e.g., 

Therminol
®
 VP-1) and mineral oil (e.g., Caloria HT 43), respectively. Fluoride molten salts (e.g., 

FLiNaK) have higher energy density and thermal conductivity than the nitrate ones, but the 

higher viscosity limits their overall benefit. At very high temperatures (> 525
o
C), the FOM of 

fluoride salts becomes larger than that of the nitrate salts due to the decrease in viscosity. 

However, the freezing point (> 425
o
C) is too high for existing solar thermal applications. 

 

Molten salts have a potential to improve both the collector field and power cycle efficiencies due 

to their higher FOM compared with the oil-based heat transfer fluids. Moreover, molten salts are 

cheaper and environmentally less harmful than the oils. However, the high freezing point of the 

molten salts requires a freeze protection method in the solar field, which increases the operation 

and maintenance cost. For example, Hitec
®

 freezes at ~140ºC [11] while the synthetic oil usually 

freezes at ~15ºC. To further reduce the freezing point of molten salts, recent studies have 

introduced advanced molten salt mixtures based on nitrate/nitrite anions [16]. Details of the 

recent progress in multi-component molten salts and ionic liquids will be discussed in Section 5: 

Ionic Liquids and Melts. 

 

Water and water-vapor are also promising heat transfer fluids for solar thermal plants, as shown 

in Figure 2d. In fact, alternative solar thermal plants using water and water-vapor as heat transfer 

fluids have been successfully operated for more than 4000 hours through the Direct Solar Steam 

(DISS) project [17]. The alternative system, the so-called direct steam generation (DSG) solar 

thermal plants, will be separately discussed in Section 4: Direct Steam. 

 

Gases such as air are also promising heat transfer fluids due to their extremely low viscosity and 

cost. The volumetric heat capacity can be increased by increasing the operating pressure. 

However, the increase in working pressure may raise the cost of solar field piping.   
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3 . 2  O P E R A T I N G  T E M P E R A T U R E  

Figure 2d shows that the performance of heat transfer fluids is strongly temperature-dependent. 

For the presented liquids, the FOM rapidly increases as the temperature increases mainly due to 

the rapid decrease in viscosity (Figure 2b). For the gases, the trend is reversed; the FOM 

decreases with temperature, primarily because the volumetric capacity decreases rapidly as the 

temperature increases (Figure 2a).  

 

The operating temperature also affects the power cycle efficiency since an increase in fluid outlet 

temperature increases the Rankine cycle efficiency of steam turbines. For typical concentrated 

solar power (CSP) plant designs, power cycle efficiency increases from 37.6% to 40% by 

increasing the solar field fluid outlet temperature from ~390ºC to ~450ºC [9]. 

 

Despite the benefits of increasing the operating temperature, the thermal stability of fluids and 

selective coatings on collector tubes sets an upper limit on the fluid temperature. The Luz System 

Three (LS-3) collector tube, utilized in the most recent SEGS and DISS plants, is only stable up 

to ~400°C [18, 19]. Two new selective coatings with interface stacks and cermet layers stable up 

to ~450°C were recently developed within the DISS project but have not been applied yet [17].  

Therefore, the operating temperature of fluids should be carefully determined considering the 

entire system, including the collector tubes, the power block steam turbine, and the fluid itself. 

3 . 3  S A F E T Y  A N D  R E L I A B I L I T Y   

Other characteristics of the heat transfer fluids including flammability, toxicity and corrosiveness 

also need to be considered for the safe and reliable operation of solar plants. For the collector 

fields using highly flammable heat transfer fluids such as oils, fire extinguishing systems are 

required to protect the solar plants against fire hazards. In fact, the first SEGS plant using 

mineral oil was destroyed in 1999 by a fire. In subsequent SEGS plants, mineral oil was replaced 

by less flammable synthetic oil [20]. Even though mercury has a very high FOM (see Figure 2d), 

the use of mercury is not suggested because mercury and most of its compounds are extremely 

toxic. For solar plants using molten salts, the collector tubes need to be corrosion resistant. At 

elevated temperature (~450°C), molten salts may corrode some metals including steel, stainless 
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steels and copper. The corrosion rates of various metals by nitrate salts (e.g., Hitec
®

) are 

provided by manufacturers [11]. 
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Figure 2: Thermophysical properties and FOM of heat transfer fluids: (a) volumetric heat 

capacity, (b) dynamic viscosity, (c) thermal conductivity, (d) figure of merit (FOM). Pl = Psat(T) 

and Pg = 30 ‒ 100 bar.  

 

 

3 . 4  S U M M A R Y  &  O U T L O O K  

The performance of various heat transfer fluids is evaluated for solar thermal applications based 

on the individual thermophysical properties and the new FOM. The comparison shows that 

molten salts should perform better than oil-based fluids. However, several technical issues 

including freeze protection and the selection of proper materials for piping need to be considered 
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to successfully apply the molten salts to large scale solar plants. Pressurized gases including air 

and water vapor are also promising economical heat transfer fluids but the levelized electricity 

cost (LEC) should be investigated considering the high pressure requirement in the collector tube. 
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4. Direct Steam   

Conventional parabolic trough solar thermal power plants are built with two separate thermal 

cycles for collecting solar radiation and converting it to electricity. The solar collector field 

utilizes a heat transfer fluid that flows through collector tubes and the power block converts the 

absorbed solar thermal energy to electricity using a water-steam cycle. The two cycles are 

connected via a heat exchanger which transfers energy from the intermediate heat transfer fluid 

to the water-steam circuit. Solar thermal power plants using oil-based heat transfer fluids have 

been successfully demonstrated through the well-known SEGS projects [7]. However, the oil-

based heat transfer fluids are thermally unstable over ~400°C [8], flammable, environmental 

unfriendly and relatively expensive; thus limiting the system efficiency and the dollar per watt 

metric. 

 

To overcome these limitations, direct steam generation (DSG) solar thermal plants using a water-

steam mixture as the heat transfer fluid have been suggested. In the DSG plants, feed-water is 

preheated and evaporated inside the collector tubes, which provides an additional increase in 

volumetric heat capacity due to the latent heat of vaporization. At the collector outlets, 

superheated or saturated steam directly enters the power block water-steam turbine without 

experiencing an additional heat exchanging process (Figure 3). The outlet steam temperature can 

be higher than that of oil-based heat transfer fluids. Therefore, DSG solar plants may potentially 

improve both solar collector field performance and power cycle efficiency. Even with the high 

pressure requirement in the collector tube, the overall investment cost may decrease since DSG 

systems do not require heat exchangers and additional elements associated with the intermediate 

heat transfer fluid including the costly fluid itself. The environmental risk and fire hazard in case 

of leaks also decrease.  

 

Despite the promise, the implementation of the DSG technology requires a full understanding of 

technical issues and potential problems associated with the hydrodynamic behavior of two-phase 

flow and the high pressure requirements in the collector field.  In order to overcome the lack of 

knowledge and to investigate the technical and commercial feasibility of the DSG, a complete 

R&D program (DISS project) was initiated in 1995 [17, 21, 22]. The DISS test facility was 
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implemented at the Plataforma Solar de Almeria (PSA) in 1997 and successfully operated for 

more than 4000 hours. Through the DISS project, the feasibility of DSG systems has been 

proven under real solar conditions and reliable models have been developed based on the 

collected data. The experiences acquired during the DISS project were applied in the 

development of the first pre-commercial DSG solar power plant within the Integration of DSG 

Technology for Electricity Production (INDITEP) project [23] which provided detailed 

engineering for DSG systems focusing on high operation flexibility and reliability. 

 

Unlike the conventional heat transfer fluids discussed in Section 3, water used in DSG solar 

fields experiences a transient phase-change process inside the collector tube. As a result, the 

performance of solar fields strongly depends on the changes in flow regime inside the tubes and 

cannot be evaluated using the FOM (Eq. 13) for single-phase fluids. In this section, we discuss 

the important parameters determining the thermal and hydraulic performance of the DSG 

collector fields based on empirical two-phase flow correlations and experimental data obtained 

from the DISS project.    

4 . 1  S T E A M  G E N E R A T I O N  M O D E  

Schematics of DSG solar fields operating under three different steam generation modes are 

shown in Figure 3a.  

In the once-through mode, all of the water introduced at the collector is preheated, 

evaporated, and converted into superheated steam during the circulation through the collector 

rows. Due to its simplicity, this process minimizes the investment cost; however, control of the 

outlet steam temperature is challenging [24].  

In the injection mode, small fractions of feed water are injected along the collector row. 

This process provides good control of the superheated steam at the outlet. The complexity of the 

system, however, may increase the investment cost.  

In the recirculation mode, feed water is injected at a higher flow rate compared with the 

other modes and only a fraction of the water is converted into steam. A water-steam separator 

placed at the end of the evaporating section separates steam from the water and then the 

remaining water is transferred back to the collector inlet by a recirculation pump. 
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Figure 3: Schematics of DSG solar thermal power plants: (a) solar field showing three 

configurations and (b) power block (for the 5MWe INDITEP DSG). Adapted from [22] 

(Copyright 2002, ASME) and [23] (Copyright 2006, Elsevier), respectively. 

One of the main tasks of the DISS project was to determine the best steam generation mode 

among the three options. Within the project, the controllability of the once-through and the 

recirculation modes was compared under real transient solar conditions. The test of the injection 

mode could not be completed due to a failure of the devices required for running the injection 

mode [17]. Measured temporal changes in outlet temperature of the DISS test loop are shown in 

Figure 4 with measured direct normal irradiation (DNI) [24]. Under similar solar inputs, the 

recirculation mode better regulated the outlet steam temperature compared with the once-through 

mode due to the presence of the water-steam separator damping the disturbances. Details on the 

control schemes applied for each mode are described in [25]. More sophisticated adaptive 

controllers will improve the controllability of the once-through process but they will increase the 

investment and management cost. Even though the test could not be completed, it has been 

discussed that the injection mode also requires a more sophisticated controller than the simple 

proportional-integral-derivative (PID) algorithm applied to the DISS plant [26]. Based on the 

experience obtained from the DISS project, the recirculation mode was determined the best 

among the three configurations. Table 2 shows the specifications of the DISS solar field using 

the recirculation mode.  

(a) (b)
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Figure 4: Temporal changes in the collector outlet temperature and the direct normal irradiation 

(DNI) of the DISS collector loop with recirculation (in red / July 5
th

, 2001) and once-through (in 

blue / July 11
th

, 2001) steam generation modes. Adapted from [24] (Copyright 2003, Elsevier). 

Table 2: Specifications of the DISS solar field [17]. 

Number of parabolic trough modules 40 

Total row length 550 m 

Collector tube inner/outer diameter 50 / 70 mm 

Steam mass flow per row 0.8 kg / s 

Maximum water recirculation rate  ( steamionrecirculat mm  / ) 4 

Maximum outlet steam temperature/pressure 400 ºC / 100 bar 

 

4 .2  F L O W  P A T T E R N S  

The two-phase flow patterns inside the collector tubes play a significant role in the determination 

of the heat and mass transfer performance. To increase the efficiency and the reliability of 

collector fields, it is critical to prevent the formation of a stratified flow zone. The presence of 

flow stratification results in a non-uniform heat transfer coefficient distribution along the 

perimeter and introduces large circumferential temperature gradients, which may lead to 
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collector tube damage. In the annular flow region, a thin-film of water that covers the entire wall 

provides a high heat transfer coefficient and low temperature gradient around the entire wall.   

 

Previous studies [27-29] have suggested a model for predicting flow transitions in horizontal 

two-phase flow, considering stratified flow with a wave existing on the surface. As the gas 

accelerates, the pressure in the gas phase decreases and the wave grows. Then, the transition 

from stratified to annular or intermittent flow can be determined by the Kelvin-Helmholtz 

instability. For a round pipe, the criterion is represented by the following dimensionless form 

[29]: 
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,  (14) 

 

where Fr is the Froude number modified by the density ratio. The definition of Ag, Al, hl, ug, 

are graphically shown in Figure 5 (length and area were normalized with D and D
2
, repectively). 

The superficial gas velocity 
s

gu  is normalized with gu .   

 

Figure 5: The schematic of equilibrium stratified flow; a liquid flows along the bottom of a tube 

and a gas flows separately above the liquid. A  and u
 
represent the cross-sectional area and flow 

velocity of each phase, respectively.   is a tilt angle of the tube. Reproduced from [29]. 

When the flow satisfies the criterion (Eq. 14), two possible flow regimes can occur. If the supply 

of liquid is large enough, a stable slug can form (i.e., intermittent flow); otherwise, the wave is 

swept up around the wall and annular flow takes place, i.e., the liquid level in the stratified flow 

gu

lu

gA
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determines whether intermittent or annular flow will occur. It has been suggested that when the 

liquid level in the tube is below the center line (hl / D ≤ 0.5),
 
annular flow occurs [27, 29]. 

 

During the DISS project, it was observed that the flow inside the DSG collector tube is mainly 

wavy or annular. Based on the experimental data, an empirical correlation has been developed 

that predicts the mass flux value where the transition from wavy to annular flow occurs for 

various heat fluxes in DSG applications [30]:  

     






 


56
3.11)119.0595.06.46( 2 q

PPmg
  ,   (15) 

where P and q   are given in bar and kW/m
2
, respectively, and the mass flux is calculated in 

kg/(m
2
s).  

 

To increase the portion of annular flow, a small degree of inclination of the absorber tubes has 

been suggested [28, 29]. Downward inclinations can decrease the stratified and intermittent flow 

region by increasing the liquid velocity and decreasing the liquid level. The influence of the tilt 

on the temperature gradients inside the absorber tubes was experimentally investigated under real 

solar conditions within the DISS project. The ninth collector tube was tilted by 4° and the 

maximum circumferential temperature difference was measured at four different locations with 

varying operating pressure (30 bar ‒ 100 bar) and steam quality (0.4 ‒ 1) [17, 22]. The results 

showed that the benefit of the inclination was not significant since the horizontal tubes already 

satisfied the reliability criteria. In two-phase flow regions, the maximum temperature difference 

along the perimeter was measured to be <30 K in both horizontal and tilted tubes. Considering 

the increase in cost associated with tilting, the study recommended using horizontal tubes 

without inclination [24].   

4 . 3  H E A T  T R A N S F E R  C O E F F I C I E N T  

Based on the prediction of the flow patterns, the overall heat transfer performance can be 

estimated with semi-empirical correlations developed for different flow regimes. Researchers 

have developed convective heat transfer correlations for saturated flow boiling inside horizontal 
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tubes with relatively high Reynolds numbers. The details of the correlations are summarized in 

Table 3.  

 

When feed-water enters or superheated vapor exits the tube, the water or vapor is heated only by 

single-phase convective heat transfer. In this preheating or superheated zone, the heat transfer 

coefficient can be predicted from the Dittus-Boelter correlation [6]. Once phase change occurs, 

the flow pattern can be determined using the criteria described earlier (Eq. 14 or 15). In the 

stratified flow zone, the increase in the heat transfer coefficient is mainly due to the enhancement 

in the convective heat transfer since flow must accelerate due to the decrease in fluid density 

during vaporization. Shah described the heat transfer coefficient of stratified flow by multiplying 

the single-phase flow convective heat transfer coefficient (h1ph) by an enhancement factor 

(EShah) [31] :  

                    ph
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where phh1 can be calculated from the Dittus-Boelter correlation with the modified Reynolds 

number: Rel =
G(1- x)Dh

ml
. 

 

When the transition to the annular or intermittent flow occurs, boiling on the tube inner wall 

provides additional heat transfer enhancement. In these regimes, the overall heat transfer 

coefficient can be described as the sum of convective and boiling contributions [32-34]: 

             
h2 ph = EChenh1ph +Shpool    , (17)  

where hpool can be determined from the Forster and Zuber correlation for nucleate pool boiling 

[35]. EChen (> 1) is an enhancement factor for the convective contribution (similar with EShah in 

Eq. 16) and S (< 1) is a correction factor reflecting the lower effective superheat available in 

forced convection compared with pool boiling [36].                          
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Using a similar concept, Kandlikar proposed a general correlation applicable to a wide range of 

fluids and flow conditions [37]. It has been reported as one of the most reliable general 

correlations:  

 
 K

CC

le

C

phph FBoCFrCoChh 452

3112 )25(   . (18) 

Since the measured heat transfer coefficients inside the DSG collector tubes are not available, the 

evaluation of different correlations for DSG applications has not yet been reported. Most of 

previous studies have applied Chen’s correlation (Eq. 17) to model the heat transfer 

characteristics of two-phase flow inside the DSG collector tubes [30, 38]. 

 

In order to provide additional enhancement of heat transfer in the collector tube, the integration 

of capillary systems such as porous coatings or micro channels has been proposed [39]. The 

capillary systems pull the water to the top of the tube via capillary forces, which prevents flow 

stratification and increases the overall heat transfer coefficient.  For capillary structures of small 

effective pore diameters, inertial effects are small and the volumetric flow rate per cross-

sectional area (u) is described as:  
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where K and rc represent the permeability and the capillary radius of the porous media, 

respectively. 
s  is the contact angle, R is the inner radius and l  is the wetting front position 

(Figure 6). When the capillary force generated by the porous media becomes smaller than the 

viscous and gravitational forces, dryout occurs inside the capillary structures. The maximum 

external heat flux that keeps the internal surface of the pipe wet up to the angular position l  

without dryout is:  
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where coatingt  and tube  are the thickness of the porous media and the thermal diffusivity of the 

tube, respectively.  
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Table 3: Flow boiling correlations applicable to the DSG collector fields. 
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Coefficients : 

 
Co < 0.65 

(convective) 

Co   0.65 

(nucleate boiling) 

C1 1.1360 0.6683 

C2 -0.9 -0.2 

C3 667.2 1058.0 

C4 0.7 0.7 

C5
* 0.3 0.3 

* C5 = 0 for vertical tubes and  

       horizontal tubes with  Frle > 0.04.  
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Figure 6: Schematic of a DSG collector tube with internal capillary structures that draw the 

liquid up to the angular position l . 

Once the material for the porous coating and the tube is determined, the capillary structures can 

be designed considering the operating heat flux range. In general, the increase in the capillary 

performance factor ( cs rK /cos ) and the thickness of the coating ( coatingt ) enhances the 

maximum heat flux ( maxq ). However, the increase in the coating thickness also increases the 

thermal resistance. Therefore, structures need to be optimized based on the operating heat flux 

range to maximize the overall internal heat transfer coefficient.   

 

Suggested internal capillary structures may increase the number of operating hours as they can 

prevent the formation of flow stratification even at low solar radiation. The increase in the thin 

evaporative film area can also increase the overall heat transfer coefficient in the absorber tubes. 

However, the incorporation of capillary structures in DSG absorber tubes has not yet been 

demonstrated mainly due to the challenges in the fabrication process and the increase in the 

investment cost.  

4 . 4  P R E S S U R E  D R O P  

The pressure drop inside the DSG collector loop is also an important performance factor since it 

determines the pumping power requirement. Methods for predicting the pressure drop in two-

phase flow have been classified as homogeneous and separated flow models. The homogeneous 

flow model assumes two-phase flow as a homogeneous pseudo-fluid characterized by averaged 

properties of the two phases. Despite its simplicity, this model has been recommended only for 
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high mass flux (> 2000 kg/m
2
s) flows [41]. The separate models consider the two-phase flow as 

separated streams and predict the pressure gradient using a two-phase multiplier. Lockhard and 

Martinelli [42] originally suggested the prediction method based on a two-phase multiplier, and 

Martinelli and Nelson [32] extended the study to higher pressure ranges up to the critical 

pressure. Chawla [43] determined the pressure drop of annular flow considering the friction 

between the phases and between the fluid and the wall. Friedel’s correlation [40] uses a two-

phase liquid multiplier assuming the liquid phase flows alone in the channel with the total mass 

flow rate.  

 

For a DSG collector loop which operates under high pressure and low mass flux conditions 

(Table 2), the homogeneous model is not suitable. Among the separate models, Martinelli and 

Nelson [32] or Friedel’s correlation [40] have been suggested by previous studies [21, 28, 44]. 

Friedel’s correlation was determined to be best for DSG applications from the data obtained 

during the DISS project [21, 28, 44].  

 

In the preheating and superheated steam zone, where turbulent single-phase convection occurs, 

the pressure drop can be calculated using the Darcy–Weisbach equation (Table 3) and various 

friction factor correlations [45]. For the two-phase flow region, Friedel correlated the friction 

pressure drop as the product of the single phase water flow and a two-phase flow multiplier M 

[40]: 
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,  (21) 

where the single-phase pressure drop (dP/dz)1ph,l  can be calculated from the Darcy–Weisbach 

equation assuming the total mass flux is liquid. Detailed information on the two-phase multiplier 

M is provided in Table 3. Compared with the experimental data obtained under real operating 

conditions, Friedel’s correlation overestimated the pressure drop by approximately 25% [21]. 

Results from the DISS project suggested that the overestimation can be used as a safety margin 

for  collector designs.  
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Figure 7 shows the pressure drop variation with flow rate in DSG and oil-based collector tubes 

[28]. The flow rate in DSG collector tubes determines the two-phase flow patterns and the 

contribution of each phase to the total pressure drop. At low flow rates, the total pressure drop 

rapidly decreases due to the generation of dry steam. A critical region may exist between Pc1 and 

Pc2 where the total pressure drop decreases with increasing flow rate (Ledinegg instability). 

Another previous study also noticed the possible existence of the critical region in DSG collector 

tubes and suggested the use of a positive displacement pump to avoid the Ledinegg instability 

[46]. Therefore, the instability issue should be considered when deciding the flow rate. The 

pressure drop in the DSG collector tubes (flow rate of ~1 kg/s and Di = 54 mm) is approximately 

half of that in the typical oil-based ones (flow rate of 5.5~6.5 kg/s and Di = 66 mm [28]), which 

significantly reduces the pumping power requirement. 
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Figure 7: Pressure drop in horizontal DSG and oil-based collector tubes, Ltube = 600 m, Di,DSG = 

54 mm, Di,oil  = 66 mm, Tin = 210°C,  PDSG = 100 bar,  qsolar = 1000 W/m
2
. Adapted from [28] 

(Copyright 2000, ASME).  
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4 . 5  S U M M A R Y  &  O U T L O O K   

The use of a water-steam mixture as a heat transfer fluid in solar collector fields is a promising 

method to increase the efficiency and reduce cost. Based on the results of the DISS project, the 

levelized electricity cost (LEC) of DSG plants operating at 400 ºC and 120 bars was estimated to 

be 7.7-11.1% lower than that of SEGS-like plants using synthetic oils [47]. By increasing the 

operating temperature from 400 ºC to 500 ºC, the total LEC reduction can reach up to 10.9-

14.1% [47]. For the successful commercialization of the DSG solar plants, the following issues 

need to be further explored: the optimization of collector loop and power cycle design, the 

development of new absorber coatings for high temperature, the regulation of the outlet 

temperature and pressure, and the reduction of collector piping costs. 
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5. Ionic Liquids and Melts 

Compared to synthetic oils which are commonly used in parabolic trough applications, molten 

salts operate at higher temperatures, have lower vapor pressures, are more environmentally-

friendly and less expensive. Recent feasibility studies have shown that molten salts, serving as 

both a heat transfer fluid and a storage medium, have the potential to improve performance and 

lower the overall costs of parabolic trough solar plants [9]. It is envisioned that excess molten 

salt supplied by the collector loop during periods of high-irradiation can be stored in an insulated 

tank and later used for power production during periods of low-irradiation (e.g., extended periods 

of cloud cover, nighttime, etc.). Moreover, the ability to increase the operating temperature 

(> 450
o
C) of the system translates into more efficient thermal-to-electrical conversion in the 

power cycle [9, 16, 48].  

 

The feasibility of molten salts as heat transfer fluids and storage media has been successfully 

demonstrated in CSP applications with central receiver designs. Nevertheless, the primary issue 

preventing the widespread use of molten salt is their relatively high freezing point. During 

periods of limited or no solar irradiation, the ambient temperature can drop well below 25
o
C 

resulting in solidification of the molten salts which ultimately leads to damage of the piping and 

increased costs associated with thawing [16]. Freeze prevention mechanisms, including 

overnight circulation of the fluid, auxiliary heaters and heat trace wire, are needed in such 

systems [9].  

 

To eliminate the solidification problems, current research efforts aim to lower the freezing point 

of ionic fluids. For this purpose, ionic liquids and multi-component salts have received a 

significant amount of interest. The difference between ionic liquids and ionic melts (i.e., molten 

salts) is subtle: ionic liquids, by definition, have freezing point temperatures below the boiling 

point of water. Furthermore, ionic liquids typically have organic cations, while molten salts are 

composed of inorganic anions and cations [49]. The focus of this section is to review and discuss 

recent advances in both ionic liquids and multi-component salts for use in solar thermal 

applications, most of which have targeted lowering the freezing point and extending the working 

range of the fluid.  
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5 . 1  M U L T I - C O M P O N E N T  S A L T S  

The melting point of binary and ternary mixtures is significantly lower as compared to the pure 

components because of increased entropy when mixed.  In a simple binary mixture system, a 

particular composition of the two components (i.e., eutectic point) will minimize the freezing 

point (or liquidus temperature). For this reason, salts currently used in solar thermal applications 

such as Hitec
®

 and Hitec
® 

Solar Salt are eutectic binary or ternary mixtures.  Liquidus 

temperatures as low as 108
o
C for eutectic mixtures of nitrate/nitrite anions with two alkaline 

cations have been reported [50].  

 

Recent work has focused on extending this concept by investigating multi-component salt 

mixtures. In such systems, the phase diagram can be significantly more complex and harder to 

predict [51]; hence, a combinatorial experimental approach has been adopted to determine the 

composition with the lowest melting point.  

 

As shown in the phase diagram in Figure 8, Cordaro et al. investigated a mixture of cations of 

sodium, potassium and lithium with a fixed 1:1 molar ratio of nitrate/nitrite anions [16]. They 

were not able to find a eutectic or near-eutectic point, yet they obtained liquidus temperatures 

below 80
o
C. By sampling aliquots of the liquid phase during freezing and experimentally 

determining their composition, a liquidus temperature near 70–75°C for a Li:K:Na 

(30%:50%:20%) salt with a nitrate/nitrite ratio of approximately 0.56 was obtained. 

 

Figure 8: Phase diagram for Li:Na:K mixture with nitrate/nitrite (1:1 molar ratio). (Dots: 

experimental data; Lines: mathematically interpolated.)  From [16] (Copyright 2011, ASME). 
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Bradshaw et al. [51] investigated nitrate/nitrite systems with sodium, potassium, lithium and 

calcium cations. Calcium nitrate was found to lower the liquidus temperature moderately and 

significantly increase the viscosity of the melt. Lithium nitrate, on the other hand, was found to 

reduce the liquidus temperature significantly and have a weak effect on viscosity. 

 

The thermal stability of nitrate/nitrite multi-component salts is expected to be limited by the 

oxidation of nitrite into nitrate. As nitrate is formed, the mixture shifts away from the eutectic 

point elevating the freezing point such that insoluble products may form in the heat transfer fluid 

which clog the valves and pipes [51]. An inert atmosphere can prevent this problem since the 

nitrite/nitrate reaction is governed by the partial pressure of oxygen in contact with the molten 

salts.  The thermal stability of nitrate/nitrite multi-component salts in air is expected to be similar 

to existing nitrate/nitrite salts (i.e., ~500
o
C). Thermal decomposition of these salts at high 

temperatures yielding different types of oxides is also a concern since soluble oxide ions can 

increase the amount of corrosion [51]. 

 

A limited amount of research currently exists on the thermophysical properties and heat transfer 

performance of low melting point multi-component salt mixtures. Moreover, the cost of lithium 

containing salts is high; low-cost substitutes for lithium need to be investigated if the fluid is to 

be used as a thermal storage medium.  

5 . 2  I O N I C  L I Q U I D S  

In contrast to molten salt mixtures where the freezing point is decreased via the addition of salts 

with small and polarizing inorganic cations (e.g., Li), ionic liquids have large and asymmetrical 

organic cations [52]. Although other cations have been synthesized and used in ionic liquids, the 

imidazolium cation ([im]) and its derivatives have been prevalent in research because of their 

low melting points which are attributed to the asymmetrical nature of [im] [52].  Moreover, 

properties of ionic liquids (such as the melting point) can be tuned through modification of the 

chemical group attached to the basic [im] structure [48]; examples of which are shown in 

Figure 9.  
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a) 

 

[emim][Tf2N] 

b) 

 

[bmim][BF4] 

c) 

 

[bmmim][PF6] 

Figure 9: Chemical structure of the following imidazolium-based ionic liquids: a) 1-n-ethyl-3-

methylimidazolium bis(trifluoromethylsulfonyl)imide, [emim][Tf2N]; b) 1-n-butyl-3-

methylimidazolium tetrafluoroborate, [bmim][BF4]; c) 1-n-butyl-2,3-dimethylimidazolium 

hexafluorophosphate, [bmmim][PF6]. Adapted from [53] (Copyright 2004, American Chemical 

Society). 

Van Valkenburg studied several “common” [im]-based ionic liquids for use as HTFs in solar 

thermal applications [49]: 1-methyl-3-ethylimidazolium tetrafluoroborate ([emim][BF4]), 1-

methyl-3-butylimidazolium tetrafluoroborate ([bmim][BF4]), and 1,2-dimethyl-3-

propylimidazolium bis(trifluorosulfonyl)imide ([dmpi]Im). The thermophysical properties of 

these ionic liquids are summarized in Table 4. The thermal conductivity, heat capacity and 

density of the three ionic liquids are comparable and similar to the properties of synthetic oils 

such as Therminol
®
 VP-1; the viscosity of the ionic liquids, however, is at least an order of 

magnitude higher.  

 

When evaluated on the basis of the FOM discussed in Sections 1 and 2, the heat transfer 

performance of the three [im]-based ionic liquids in Table 4 is relatively poor (~10
11

-10
12

) and 

comparable to low-pressure air or water-vapor. The increased viscosity severely limits the 

applicability of these ionic liquids, especially in parabolic trough applications where the pressure 

drop is a concern because of the relatively long solar collector loop.   
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Table 4: Summary of thermophysical properties and temperature ranges for three ionic 

liquids [49]. 

Property 
Ionic Liquids 

[emim][BF
4
] [bmim][BF

4
] [dmpi]Im 

    

Density, 60º C (kgm
-3

) 1253 1175 1421 

Heat capacity, 100º C  (Jkg
-1

K
-1

) 1281 1659 1196 

Thermal conductivity, 25
o
C (Wm

-1
K

-1
) 0.200 0.186 0.131 

Dynamic viscosity, 25
o
C (kgm

-1
s

-1
) 0.036 0.120 0.090 

4.1

8.16.10.2



 kc
FOM

p
  8.5 (10

11
) 1.8 (10

11
) 1.3 (10

11
) 

Freezing point (
o
C) 14.4 -87.4 11.3 

Thermal decomposition onset (
o
C) 446 424 457 

 

The ~50
o
C higher onset of thermal decomposition for [emim][BF4] compared to Therminol

®
 

VP-1 has the potential to increase efficiency in the power cycle and outweigh the cost of the 

increased pressure drop. Further studies on the feasibility of these and other ionic liquids are 

needed to confidently assess their applicability in CSP.  

 

The temperature dependence of the thermophysical properties of ionic liquids has been reported 

by Van Valkenburg and others [49, 53-55]. In general, the heat capacity shows a weak 

dependence, while the thermal conductivity and density decrease slightly with increasing 

temperature. Chen et al. [55] determined that the viscosity of an imidazolium-based ionic fluid 

decreases with increasing temperature following an Arrhenius-like behavior; furthermore, their 

experiments show that the ionic fluid is Newtonian. 

 

Few heat transfer experiments using ionic liquids as the heat transfer fluid exist in literature.  

Chen et al. [55] studied the convective heat transfer behavior of an [im]-based ionic fluid under 

laminar flow conditions. The thermal entrance length for the ionic fluid was determined to be 

very large compared to that of water because of the relatively low thermal conductivity and high 

viscosity of the ionic fluid. The convective heat transfer coefficient over the developing region 

http://dx.doi.org/10.1615/AnnualRevHeatTransfer.2012004122


DOI: 10.1615/AnnualRevHeatTransfer.2012004122 

SOURCE: Lenert, Andrej, Youngsuk Nam, and Evelyn N. Wang. “Heat Transfer Fluids.” Annual Review of Heat 

Transfer 15, 2012.  

36 

 

correlated well with analytical predictions for their geometry (Shah’s equation) but it was 

significantly lower than that for water under the same conditions. Thus, as predicted by the 

individually measured properties, the heat transfer performance of many ionic liquids is limited. 

5 . 3  S U M M A R Y  &  O U T L O O K  

The difference between ionic fluids and ionic melts is becoming less distinct as current research 

using inorganic multi-component mixtures of salts is successfully lowering the liquidus 

temperature below 100
o
C. Research in both areas of ionic liquids and ionic melts will most likely 

converge toward multi-component systems optimized for heat transfer performance and a wide 

region of thermal stability. Cost-effective ionic liquids with comparable viscosities to synthetic 

oils and temperature stability approaching 500
o
C need to be developed. Similarly, multi-

component salts are promising for solar parabolic trough applications but lower cost alternatives 

to lithium nitrate need to be incorporated. 
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6. Nanofluids 

In order to enhance the thermophysical properties of common heat transfer fluids, researchers 

have investigated colloids where solid particles are suspended in a liquid. The basic idea 

originates from the assumption that the characteristic benefits of two or more components can be 

combined to achieve the desired properties. In the case of solid-liquid composites for example, 

the addition of solid particles was proposed to increase the effective thermal conductivity and 

storage density. However, it was found that solid-liquid composites with larger particles lead to 

problems with sedimentation, clogging, and erosion in heat transfer applications. Suspensions of 

submicron-sized solid particles, on the other hand, promise to alleviate some of the 

aforementioned issues and have recently received a significant amount of attention in literature.  

 

In this section we focus on suspensions of nanoparticles (i.e., nanofluids) including solid 

nanoparticles and phase-change nanoparticles. Nanofluids have generated much interest in the 

heat transfer community where order of magnitude thermal conductivity enhancements were 

experimentally obtained. We discuss the recent advances reported in literature regarding 

nanofluids and indentify technological issues that need to be overcome before they can be 

successfully adopted in solar thermal applications. The proposed mechanisms explaining the 

thermophysical properties of nanofluids are also discussed.  

 

Nanofluids are primarily evaluated based on their performance under turbulent forced convection 

since those are the conditions most commonly encountered in existing solar collectors. Heat 

transfer enhancements deviating from predictions based on empirical correlations are discussed. 

 

We will also explore the dual-use potential of nanofluids in solar thermal applications, where in 

addition to being heat transfer fluids, they can act as volumetric solar receivers, replacing 

selective surface coatings by directly absorbing solar radiation, or direct storage media, 

eliminating the need for an intermediate thermal storage medium. These dual-use applications 

have the potential of increasing the efficiency and reducing the cost of existing systems by 

eliminating the need for a specific component or loop.  
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6 . 1  T H E R M O P H Y S I C A L  P R O P E R T I E S  

In this subsection we review the thermal conductivity, viscosity, heat capacity and radiative 

properties of nanofluids. The properties of solid-liquid composites are conventionally understood 

using effective medium theories or mixing rule formulations; however, nanofluids have shown 

behavior not captured by these classical approaches, generating much interest in the research 

community. Our discussion will focus on currently well-accepted mechanisms explaining the 

behavior of nanofluids since research in this area remains active and sometimes controversial. 

6 . 1 . 1  Th erm al  Con d uct i v i t y  

Effective medium theory is a relatively simple approach used to describe transport properties 

(e.g., thermal conductivity) of composites. In the limit that the thermal conductivity of the solid 

particles (kp) is much higher than that of the basefluid (kf), the effective conductivity keff of dilute 

nanofluids can approximately be described by 

 k
f

eff
C

k

k
1 ,  (22) 

where Ck is the thermal conductivity enhancement coefficient and ϕ is the volume fraction of the 

solid particles. For a dilute suspension (ϕ < 0.03) of non-interacting spherical particles, Maxwell 

obtained that Ck = 3 [56].  Additional effects have been incorporated to generalize the effective 

medium theory such as particle shape and the interfacial resistance between the solid and the 

basefluid. Descriptions of these effects can be found in past reviews of nanofluids [57-60]. Many 

investigators have reported experimental data not explained by effective medium theory (EMT) 

and proposed physical mechanisms beyond EMT to explain the discrepancies and “anomalous” 

effects [61]. The dominant mechanisms have not been identified primarily due to a lack of 

agreement between the experimental results of different investigators, however, the main 

mechanisms discussed in literature are as follows [57]: 

i) Interfacial layering: Ordering of basefluid molecules at the particle interface and 

formation of a high-conductivity solid-like interfacial layer (Figure 10a). An in situ study 

of an alumina-aluminum interface using a high-resolution transmission electron 

microscope provides experimental evidence of ordering of the liquid molecules at a 
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crystal interface (i.e., interfacial layer), even at elevated temperatures (~750 
o
C) [62]. 

Kaplan and Kauffmann [63] reviewed both theoretical and experimental studies of liquid 

molecule ordering adjacent to crystalline solids.  Gerardi et al. [64] observed layering of 

water (forming a ~1.4 nm thick layer) on alumina particles using NMR, but they did not 

measure an anomalous conductivity enhancement. 

ii) Agglomeration:  Formation of particle clusters within the basefluid leading to increased 

effective solid fraction and preferential heat flow through the highly conductive clusters 

(Figure 10b). Timofeeva et al. [65] found that the thermal conductivity was not 

significantly affected by aggregation, whereas, Wamkam et al. [65, 66] observed a 

significant enhancement of thermal conductivities (>20%) in 3 wt % suspensions when 

aggregation was most pronounced. Both groups suggest that the reason for the 

discrepancy lies in the nature and amount of the agglomeration: strong aggregates, which 

could lead to keff enhancement; and aggregate-like ensembles, which occur due to weak 

repulsive forces between particles and are unlikely to enhance keff because of the solid-

liquid-solid interfacial resistance. The effect of agglomeration will be discussed further in 

the next subsection as it plays an important role in the effective viscosity of nanofluids; 

more work needs to be done to quantify the effect of agglomeration on thermal 

conductivity. 
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a) 

 

b) 

 

Figure 10: Schematics of mechanisms proposed to explain thermal conductivity enhancement in 

nanofluids: a) Formation of a highly ordered interfacial layer (h) composed of basefluid 

molecules around a nanoparticle (diameter, d). Adapted from [67] (Copyright 2002, Elsevier); b) 

Formation of highly conductive aggregates leading to an increased effective solid volume 

fraction compared to ϕ of particles (solid squares: well-dispersed particles, circles: packed 

clusters (60 vol.% particles), open squares: loosely packed clusters (40 vol.% particles). Adapted 

from [57] (Copyright 2005, Elsevier).  

A recent international collaboration (International Nanofluid Property Benchmark Exercise, or 

INPBE) was coordinated in order to build a consensus in the area. The INPBE had over 30 

organizations worldwide measure the thermal conductivity of identical nanofluid samples using 

several different experimental approaches [68]. Experimental data collected for the INPBE is in 

good agreement (< 20% error) with the generalized form of the EMT [69] which includes the 

effects of particle shape and interfacial resistance. A drawback of the generalized EMT 

formulation, however, is that it has little predictive power since the magnitude of the interfacial 

resistance (which is not readily available) must be known. Although, the INPBE study observed 

no anomalous thermal conductivity enhancements and found that proposed theoretical 

mechanisms such as interfacial layering and agglomeration were not needed to explain the data 

[68], there is still a debate as to which mechanisms are negligible and which ones can be 

exploited for thermal conductivity enhancements.  

 

f

eff
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At present, the generalized form of the EMT [69] is recommended. Using this formulation, the 

thermal conductivity enhancement in nanofluids simply increases with increasing particle 

volume fraction, thermal conductivity (kp) and aspect ratio.  Further systematic studies with 

explicit control and characterization of the interfacial effects need to be performed to validate 

any mechanisms beyond the generalized EMT.  

6 . 1 . 2  Vis co s i ty  

Similar to thermal conductivity (Eq. 22), the effective viscosity (μeff) of nanofluids depends 

strongly on the volume fraction of nanoparticles in suspension and can be approximately 

represented by [70] 

                                                          



C

f

eff
1  .                                (23) 

Einstein predicted that for a suspension of non-interacting, hard, uncharged, spherical particles, 

the coefficient of viscosity enhancement (Cμ) is 2.5 [71]. For non-spherical particles, limitations 

to rotational and translational Brownian motions lead to higher viscosity. In this case, the 

coefficient of viscosity enhancement scales with the aspect ratio [70]. In dilute suspensions 

(ϕ < 0.03), these formulation were found to work well for particles sizes between 3 and 300 μm, 

but for suspensions of particles below 500 nm, the experimental viscosity exceeds 

predictions [72].  

 

An INPBE study on viscosity determined that the measured viscosity dependence on the particle 

volume fraction for both spherical and non-spherical particles is roughly ten-times larger than 

predicted (Cμ was 23.4 for spherical particles, and 70.8 for rod-shaped particles) [70]. A slightly 

lower dependence on ϕ was observed in other studies (Cμ ≈ 4-16). Therefore, models used for 

micron-size particle suspensions underestimate the viscosity of nanofluids. 

 

The drastically increased viscosity in nanofluids most likely occurs because basefluid molecules 

are trapped around particles and inside particle clusters leading to an increased effective volume 

fraction of the solid phase [66, 70, 73]. Electrical double layers and particle-particle interactions 

govern the formation of effective excluded volumes, as discussed below. 
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An electrical double layer forms around particles because they typically acquire a surface charge 

when placed in a liquid. Investigators suggest that the increase in viscosity is proportional to the 

double layer thickness because molecules in the double layer increase the effective volume of a 

particle [65, 72-74]. This effective excluded volume effect can play a significant role in small 

nanoparticles because of their large surface-to-volume ratio.  

 

Agglomeration in nanoparticle suspensions is governed by particle-particle interactions. These 

interactions are understood as a balance between attractive Van der Waals forces and repulsive 

electrostatic forces between particles of the same charge. As shown in Figure 11, the balance of 

these forces can lead to the formation of an energy barrier which reduces contact and aggregation 

of particles. The influence of surface charge, pH, surfactant additives, particle morphology, and 

basefluid properties on the particle-particle interactions is discussed in more detail below. 

 

i) pH: Adjusting the pH of the nanofluid such that it is further from its isoelectric point 

(IEP) increases the surface charge of particles and ultimately the repulsive forces, as 

understood through DLVO theory [66, 75]. Timofeeva et al. showed that the viscosity of 

alumina and SiC nanofluids can be decreased by 31% [65] and by 34% [72], respectively, 

by controlling the pH of the suspension; while, Wamkam et al. [66] lowered the viscosity 

enhancement ratio from 66% to 20% by changing the pH in ZrO2 suspensions from 8 to 

10 (IEP at pH ≈ 6.2). Both results are explained by the fact that increasing the repulsive 

forces results in less aggregated suspensions with lower viscosity.  
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Figure 11: Schematic diagram of the variation in free energy with increasing particle separation, 

showing a balance between repulsive and attractive forces. From [66] (Copyright 2011, 

American Institute of Physics). 

ii) Surfactant additives: Surfactants are typically ligands that adsorb to sites on the 

nanoparticle surface and impact the repulsive forces between the particles. Surfactants 

may provide both electrostatic and steric stabilization [74] and improve the viscosity of 

the suspension. Nevertheless, surfactants are not widely used in solar thermal heat 

transfer applications because large amounts of surfactant are needed to cover the total 

nanoparticle interfacial area and the thermal stability of surfactants at elevated 

temperatures (>200 
o
C) has not yet been demonstrated.  

iii) Particle morphology: the magnitude of the energy barrier preventing nanoparticles from 

aggregating can be enhanced by increasing the particle size (attractive forces scale with 

the particle diameter while repulsive forces scale with the diameter squared) [75]. 

 

Despite past efforts, the viscosity of nanofluids has yet to be fully connected to DLVO theory 

and explained using quantitative and predictive models. If agglomeration is accepted as the 

dominant mechanism, then the viscosity of nanofluids should decrease with increasing repulsion 

forces between particles and increasing particle size. As discussed, repulsive forces between 

particles can be tuned using the pH of the suspension. However, practical limitations on pH 

control and particle size exist such as corrosion and sedimentation, respectively.  
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6 . 1 . 3  Vo lum etr i c  H eat  Cap a c i ty  

In general, the heat capacity and density of solid-liquid nanofluids is well-predicted using a 

simple property mixing rule and no dependence on the particle morphology has been observed 

[72]. The specific heat of nanofluids typically increases or decreases with increasing particle 

loading depending on whether the nanoparticles have a higher or lower capacity relative to the 

basefluid [76, 77]. However, a recent study by Shin et al. [78] reported an anomalously high 

increase in specific heat capacity (14.5%) of a suspension of silica nanoparticles (1 wt.%) in a 

high-temperature alkali salt eutectic. The mechanisms suggested to explain the increased heat 

capacity are similar to the mechanisms suggested for thermal conductivity enhancements; 

namely, the existence of a semi-solid interfacial layer. The anomalous results have not been 

confirmed by other investigators. Nevertheless, if the existence of a substantial interfacial layer 

with distinct thermophysical properties can be experimentally verified, the effect can be 

significant in nanofluids because of the high surface-to-volume ratio of nanoparticles. 

   

A related but distinct approach to enhancing the specific heat of heat transfer fluids has been to 

suspend phase-change particles in the basefluid [79]. Micron-sized encapsulated phase-change 

materials (mePCMs) are most commonly composed of a wax or organic inner core and a 

polymer-based outer shell; paraffin is the most common inner core material because of its 

relatively high latent heat, low vapor pressure, negligible supercooling, and chemical stability 

[77]. When suspended in a heat transfer fluid, PCMs serve to increase the effective heat capacity 

of a fluid over a relatively small temperature range as the inner core undergoes melting or phase-

change. Unlike the study of nanofluids, thermophysical properties of mePCMs are well-

described through a conventional understanding of mixtures. They have been successfully 

commercialized in specialized thermal management applications; however, in convective heat 

transfer applications, mePCM suspensions suffer from problems related to low thermal 

conductivity [77], damage of the encapsulation material [80], clogging, and increased pumping 

costs. At present, they have not been successfully integrated in mid or high-temperature solar 

thermal applications because of these drawbacks and also because they are limited to low 

temperatures. 
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Recent work on phase-change material suspensions has aimed to make nano-sized PCM particles 

to circumvent the practical issues associated with micro-encapsulated PCMs. Nano-encapsulated 

PCMs (nePCMs) have been synthesized and characterized [80]; however, since the encapsulation 

layer scales with the surface area of the particles, it constitutes a significant fraction of the mass 

which limits their effectiveness. To avoid the issues with encapsulation, Han et al. [81] 

synthesized an encapsulation free, suspension of phase-changing indium (melting temperature, 

157 
o
C) using a dispersant to stabilize the suspensions and reduce coagulation. The use of 

encapsulation free phase-change nanofluids to simultaneously enhance thermal conductivity and 

effective heat capacity is an interesting approach but practical issues with fluid stability and 

lifetime remain a concern.    

6 . 1 . 4  Ra di at i ve  P r o per t i e s  

The radiative properties of nanofluids are dependent on both the basefluid and the nanoparticles. 

Potentially serving as basefluids, certain heat transfer fluids were found to be highly transparent 

for wavelengths in the solar spectrum such as molten salts [82], water, ethylene glycol, 

propylene glycol and Therminol
®
 VP-1 [83]. Nanoparticles, on the other hand, can exhibit strong 

and tunable absorption peaks. As a first order approximation, investigators have proposed that 

the nanofluid absorption coefficient can be described using a simple addition of the basefluid 

absorption coefficient and that of the particles [84].  

 

The radiative properties of nanoparticles are in principle well-described by Mie theory [85] when 

the surrounding is non-absorbing and the volume fraction is low (ϕ << 0.01). A nanoparticle in a 

dielectric medium exhibits a resonant absorption peak when the frequency of the incoming light 

coincides with a plasmon resonant mode (i.e., collective oscillation of the conduction band 

electrons) [86]. If the nanoparticle is indeed much smaller than the wavelength of incident light, 

absorption due to the particle is much stronger than scattering and is proportional to the volume 

of the particle [85, 87]. Hu et al. [88]  extended the analysis by Bohren and Huffman [85] to 

describe nanoparticles in an absorbing medium by treating the optical constant of the host 

medium (i.e., basefluid) as a complex number. Recently a quantum mechanical simulation has 

been used to validate that this description is applicable down to 10 nm in silver nanoparticles 
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[89] as long as the optical properties of the bulk solid are modified to account for electron 

scattering by the interface when describing smaller nanoparticles. In metallic nanoparticles, the 

dominant resonant absorption peak typically occurs in the visible spectrum but can be modified 

by varying the particle size, shape or shell material. Cole et al. proposed that a combination of as 

little as three metallic nanoparticles types can selectively absorb the majority of the solar 

spectrum [90]; in this case, the optimized composition of nanoparticles was found to contain 

nanospheres and nanoshells ranging from 32 nm to 58 nm.  

 

Plasmon resonant absorption peaks for nanoparticles in suspension have been experimentally 

demonstrated for a range of nanoparticle materials, shapes and sizes [91]. The experimental 

results match well with theory as long as the particles are sufficiently dispersed such that they 

can be treated as isolated. Recently, however, Taylor et al. [84] did not observe plasmon peaks 

using silver nanoparticles and attributed this result in part to the presence of impurities and 

particle aggregates leading to increased scattering. Thus, in order for nanofluids to maintain the 

sharp absorption peaks and have good absorption characteristics with solar light, care must be 

taken to avoid agglomeration; nevertheless, more research in this area is required. Moreover, the 

infrared properties of high temperature pure heat transfer fluids and nanofluids, critical for 

understanding their thermal emissivity, have not yet been fully characterized. The application for 

solar absorbing nanofluids will be described further in the following section.  

6 . 2  A P P L I C A T I O N S  

So far we have focused on recent experiments and understanding the thermophysical properties 

of nanofluids. For heat transfer applications, it is important to consider how those properties 

couple together in particular applications. The heat transfer performance of nanofluids will 

primarily be evaluated for forced convection in solar thermal systems. We will also consider 

direct absorption of solar radiation by the nanofluids for concentrated solar systems using 

volumetric receivers. 
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6 . 2 . 1  F o rce d  Con ve c t i on  He at  Tra ns f er  

In convective heat transfer, the thermal performance of the nanofluid depends not only on the 

thermal conductivity but also on the density, viscosity, heat capacity and other dynamic 

mechanisms.  

 

Investigators have shown that the heat transfer enhancements (compared to the pure basefluid) 

under turbulent forced flow conditions are typically between 15-45% [60]. However, Yu et al. 

[92] noticed that most of the previously reported heat transfer enhancements are based on a 

constant Re number such that the enhancement increases with increasing viscosity. When 

compared on the more practical basis of constant pumping power or constant velocity, only a 

small fraction (<30%) of studies report a forced convection heat transfer coefficient greater than 

that of their basefluid [92].  

 

This result is not surprising since it was discussed in the Section 6.1 that the thermal conductivity 

of nanofluids does not significantly exceed the predictions of the generalized effective media 

theory, whereas the viscosity is typically 5-10 times the value suggested by existing models 

shown to apply for micro-particle suspensions. The viscosity increase typically surpasses any 

thermal conductivity enhancement such that the heat transfer performance of nanofluids in 

forced convection is commonly worse than for pure basefluids.  

 

Enhancements in the heat transfer coefficient which cannot be predicted by traditional 

correlations such as Dittus-Boelter’s (using the measured thermophysical properties of the 

nanofluids) are attributed to a variety of mechanisms. Buongiorno [93] theoretically investigated 

inertia, Brownian diffusion, thermophoresis, diffusiophoresis, Magnus effect, fluid drainage, and 

gravity as possible mechanisms which can produce a relative velocity between the particle and 

the fluid, and in turn, enhance heat transfer. The results show that only thermophoresis and 

Brownian diffusion were non-negligible slip mechanisms in nanofluids. An alternative 

explanation for the enhanced heat transfer was proposed: the viscosity of the nanofluid within the 

boundary layer may be significantly reduced because of the effect of the temperature gradient 

and thermophoresis, resulting in heat transfer enhancement [93]. Meanwhile, other studies 

suggest that the effects of thermophoresis and Brownian diffusion can also be neglected [72].  
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Timofeeva et al. [72] compared experimental heat transfer coefficient enhancements  reported in 

literature [94-100] to a prediction using the Dittus-Boelter correlation based on the measured 

nanofluid properties (i.e., without additional dynamic mechanisms), as shown in Figure 12. It 

was found that most of the data is well-predicted by the correlation alone and noted that larger 

particle suspensions generally perform the best. 

  

Figure 12: Experimental enhancements of turbulent heat transfer coefficient (symbols) compared 

to enhancement predicted based on Mo number using nanofluid properties (dotted line). Grey 

region denotes property and performance deterioration compared to pure fluid.  Adapted from 

[72] (Copyright 2010, IOP Science). 

Other investigators [77] have studied hybrid suspensions of alumina nanoparticles and mePCMs 

to leverage the thermal conductivity enhancement of nanofluids and storage enhancements of 

PCMs. However, laminar forced convection experiments in a circular tube showed that the 

increase in friction factor exceeds enhancements in heat transfer since the viscosity of hybrid 

suspensions is anomalously high. 

 

Presently, the best performing well-dispersed nanofluids are suspensions of larger spherical 

particles. As compared to small and non-spherical particles, larger spherical particles provide 
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lower viscosity increases because of the decreased solid-liquid interfacial area [72] and reduced 

aggregation [101]. Practical limitations on the size of the particles are imposed by sedimentation 

issues. Based on these factors, studies suggested that the optimized particle size is roughly 

~130 nm (diameter) [101], but the exact size is application specific. 

 

Future work in nanofluids could lead to superior heat transfer performance, however, coupling 

between the different thermophysical properties of nanofluids leading to performance tradeoffs 

needs to be tuned and optimized. 

 

For forced convection in solar thermal applications, the observed viscosity decrease and thermal 

conductivity increase with temperature makes nanofluids promising for higher temperature 

applications [74]. However, further studies on the performance and material stability of 

nanofluids at high temperatures are needed. Moreover, further research needs to be conducted on 

additives to stabilize and lower the viscosity of nanofluids at high temperatures. Surfactants 

cannot currently withstand high temperatures, while using pH to prevent agglomeration may lead 

to corrosion issues. 

6 . 2 . 2  Vo lum etr i c  Re ce i ver s  

Absorbing surfaces are most commonly used to convert solar energy from its radiative form into 

thermal energy in existing solar thermal technologies. However, at high levels of solar 

concentration, a large temperature difference between the absorber and the fluid arises depending 

on the effectiveness of the heat transfer. This temperature difference results in substantial 

emissive losses owing to the quartic dependence of thermal re-radiation on the absorber 

temperature. Alternatively, in a volumetric receiver design, concentrated solar radiation is 

directly absorbed and more uniformly distributed in the surrounding fluid, decreasing the 

temperature difference between the absorber and the fluid.  

 

Nanofluid volumetric receivers, where nanoparticles in a liquid medium directly absorb solar 

radiation, promise increased performance over surface-based receivers by minimizing 

temperature differences between the absorber and the fluid. Several investigators have 

experimentally demonstrated that nanofluids are suitable solar absorbers [102, 103]. The 
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radiative properties of the nanofluid can be tuned by adjusting the nanoparticle loading to 

achieve a balance between the distribution of heat throughout the fluid (i.e., elimination of 

hotspots) and near-100% absorption of solar light, known as the optimum optical thickness 

[103]. Numerical studies showed that volumetric receivers are more efficient at higher levels of 

solar concentration and with increasing thickness of the absorbing nanofluid layer. As a result of 

the high solar-to-thermal efficiencies at high temperatures, predicted optimum receiver-side 

efficiencies of CSP plants utilizing nanofluid volumetric receivers exceed 35% [103]. From a 

practical standpoint, absorbing nanofluids are best suited for grounded solar receivers with 

integrated storage where a “reflective tower” [104] or hillside mounted heliostats [82] are used to 

beam down concentrated solar radiation into the nanofluid. 

 

Similarly to ceramic-metallic (i.e., cermet) surface absorbers, nanofluids have the potential to be 

spectrally selective if the basefluid is non-absorbing in the near and mid infrared (IR), while the 

absorbing particles are tuned to the solar spectrum. However, selective nanofluid absorbers have 

not yet been demonstrated. Furthermore, the stability of the nanofluid radiative properties with 

prolonged exposure to concentrated solar radiation and cycling in a high temperature thermal 

system requires more investigation. 

6 . 3  S U M M A R Y  &  O U T L O O K  

The use of submicron particles in solar thermal systems is a promising method of achieving heat 

transfer and storage enhancements, however, concerns related to increased pumping power, 

material compatibility, and additional cost are currently preventing their widespread use.  

 

The following fundamental areas need to be further explored to improve our understanding of 

nanofluids: characterization and understanding of the interfacial resistance and the interfacial 

semi-solid layer; systematic control, characterization and understanding of particle 

agglomeration and its effects on thermophysical properties and heat transfer performance; and, 

quantitative and predictive models of nanofluid viscosity. The high-temperature heat transfer 

performance and material stability of nanofluids needs to be realized before they are successfully 

adopted in solar thermal applications. 
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7. Summary 

The development of heat transfer fluids is essential to the feasibility and efficiency of solar 

thermal power plants, as it determines the thermal and hydraulic performance of the collector 

field. In this chapter, the performance of heat transfer fluids was determined by a combination of 

thermophysical properties rather than by each of the individual properties. Following the work of 

Murakami and Mikić [4], we derived a figure of merit:  

4.1

8.16.10.2



 kc
FOM

p
  

based on the assumption of forced turbulent convection inside a uniformly heated collector tube. 

The new FOM combines the effects of the thermal storage capacity of the fluid, the convective 

heat transfer from the walls to the fluid, and the hydraulic performance characterized by the 

pumping power. When evaluated based on this FOM, commonly-used heat transfer fluids 

generally performed as follows (in order of decreasing FOM): liquid metals, molten salts, oils, 

and gases. Water was found to be an exceptional heat transfer fluid considering its wide 

operating temperature range and additional increase in volumetric heat capacity during 

vaporization.  The use of water as a heat transfer fluid for direct steam generation (DSG) is a 

promising method to increase the efficiency and reduce cost of solar plants because of the high 

temperature output and the elimination of a heat exchange process. However, system 

components including the power block, the water-steam separator and the control scheme need to 

be carefully designed.  New developments in the field of mixtures, such as multi-component salts 

and ionic liquids, and composite fluids, such as nanofluids, were reviewed and discussed. 

Liquidus temperatures well below 100
o
C have been demonstrated using inorganic multi-

component salt mixtures (nitrite/nitrate mixtures of Li, Na, K).  Ionic liquids were found to have 

wider temperature ranges than existing synthetic oils used in CSP, but challenges with high 

viscosity and high cost need to be addressed. Finally, heat transfer enhancements in nanofluids 

were explored. On the basis of constant pumping power or constant velocity, only a small 

fraction (<30%) of nanofluids studies report an enhancement in the forced convection heat 

transfer coefficient compared to the basefluid. Within practical limits, the best performing well-

dispersed nanofluids are suspensions of larger spherical particles (~100 nm) since they have 

lower viscosities as compared to suspensions of small and non-spherical particles. 
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