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Recent theoretical progress has explained the physics of knotting of semiflexible polymers, yet knotting
of flexible polymers is relatively unexplored. We herein develop a new theory for the size distribution of
knots on a flexible polymer and the existence of metastable knots. We show the free energy of a flexible
molecule in a tube can be mapped to quantitatively reproduce the free energy distribution of a knot on a
flexible chain. The size distribution of knots on flexible chains is expected to be universal and might be
observed at a macroscopic scale, such as a string of hard balls.
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Long polymer molecules can find themselves in knotted
conformations, akin to those seen in jumbled strings [1] or
agitated chains [2–4], and these knots become increasingly
likely as the length of the polymer is increased [5]. Knotted
conformations are frequently found in polymers in poor
solvents [6] or confinedwithin small volumes, such as a viral
capsid [7,8], and a number of knotted protein conformations
have been discovered [9–11]. To study the properties of
knots on polymers more closely, knots have been tied on
actin filaments [12] and DNA molecules [13] with optical
tweezers, and knots have been generated on DNA in
microfluidic devices through collisions with defects [14]
or the application of electric fields [15]. Simple knots can
influence dynamic polymer processes such as breaking a
strand [16], rheological response [17], translocation of a
protein [18,19] or DNA [20] through a pore, or the ejection
of DNA from a viral capsid [21]. The specific topology
of a knot can also alter rates of ejection from the viral
capsid [22] and untying in electric fields [23,24]. Composite
knots have been shown to exhibit complex dynamics [25].
Recently, researchers have shown how to generate knots of
selected topologies in polymers via chemical synthesis
pathways [26,27] and self-assembly [28].
These developments have motivated fundamental study

of knots on polymers. The knotting probability and the size
distribution of knots have been investigated for chains
under various conditions [29–35]. An intriguing finding
from simulations is that the cores of knots often localize
to small portions of semiflexible [36] or flexible chain
[6,37–40] [Fig. 1(a)]. Grosberg and Rabin posited a theory
that predicts a metastable knot size for thin semiflexible
polymers, such as double-stranded DNA [41]. The
Grosberg-Rabin (GR) theory considers the bending and
confining energies within the knot, which tend to swell and
shrink the knot, respectively, leading to a metastable size.
We extended the GR theory to incorporate the effect of a
finite chain width and demonstrated quantitative agreement
between these theories and simulation results [36]. These

theories, however, cannot address knotting in flexible
chains, such as single-stranded DNA and most common
synthetic polymers, yet recent simulations observed a
metastable knot size in these flexible molecules [40].
In this Letter, we present a new theory that predicts a

metastable knot size for flexible polymers. We show results
of simulations of trefoil knots in long, flexible polymer
molecules exhibit a metastable knot size. We develop
a theory that considers a flexible knot to be effectively
confined in a virtual tube, and we perform simulations
to understand the free energy of confinement of flexible
chains in tubes. Finally, we show that the simulations of
flexible chains in tubes can be directly mapped to the free
energies of knots by the choice of two reasonable fitting
parameters.
We performed Monte Carlo simulation of flexible chains

and analyzed conformations of the trefoil knot. In our
simulations, the flexible chain is modeled as a string of

FIG. 1 (color online). (a) A trefoil knot in a flexible chain. The
monomers in the knotted region (red) are confined in a virtual
tube (gray). (b) A flexible chain confined in a tube. The open
circles correspond to blobs of size Deff ¼ D − a.
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hardcore beads, each with diameter a. In each Monte Carlo
cycle, either a crankshaft or reptation move is performed,
described in Ref. [42]. The algorithm of calculating knot
sizes has been presented in our previous publication [36]
and is briefly recapitulated here. We used the minimally
interfering closure scheme [43] to generate closed con-
figurations of the chain, and we calculated the Alexander
polynomial ΔðtÞ [44] of this closed loop. We identified the
knotted subregion by successively cutting segments from
ends of the chain, generating a new closure, and recalculat-
ing ΔðtÞ until detecting a change in ΔðtÞ. The knot size
Lknot is defined as the contour length inside the knotted
subregion.
The probability of forming a trefoil knot of a certain

size Lknot is shown in Fig. 2(a) for simulations of 2000 and
1000 monomers. The probability fknotðxÞ is normalized
such that

Rþ∞
0 fknotðxÞdx ¼ ftotal, where x ¼ Lknot=a and

ftotal ≈ 0.00226 or 0.00094 is the total probability of a
trefoil knot for simulations of 2000 or 1000 monomers,
respectively. In agreement with a previous study [40], fknot
is maximized at a critical knot size L�

knot ¼ ð140� 20Þa,
corresponding to a metastable knot. The values of fknot for
L ¼ 1000 are approximately half that of L ¼ 2000 over
the range Lknot ≤ 700, which suggests the metastable knots
are insensitive to the contour length; a similar result was
obtained in a previous study [40]. The values of fknot are
converted to the free energy by

Fknot ¼ − logðfknotÞ: ð1Þ

In Eq. (1) and throughout this Letter, all free energies, Fi,
are made dimensionless by kBT. Figure 2(b) shows the free
energy as a function of Lknot after shifting the minimum
to zero. The trefoil knot attains a minimum free energy
at L�

knot ≈ 140a. A well depth of ∼1kBT spans from
50 < Lknot=a < 700, diverging sharply for smaller knots
and rising gradually for larger knots.
We will now focus on the physics governing the

distribution of knot sizes on flexible polymer molecules.
We show that using a renormalized free energy of a flexible
chain confined in a hard tube, the distribution of sizes of
trefoil knots can be quantitatively captured, as indicated
by the agreement between the blue line (free energy of
flexible chains in hard tubes) and black and red circles (free
energies of knots) in Fig. 2(b). For the remainder of this
Letter, we will explain the physics behind the confinement
of a flexible chain in a tube and how this leads to a
metastable knot on a flexible chain.
For semiflexible chains, Grosberg and Rabin [41]

envisioned the monomers in the knotted region to be
confined in a virtual tube, depicted in Fig. 1(b). The
self-confinement free energy in knots Fknot can be mapped
to the confinement free energy of a chain confined in a
straight tube Ftube, a more tractable problem. The virtual
tube can be imaged as the state of a maximally inflated
knot, and so the characteristic ratio

p≡ Ltube=D ð2Þ

only depends on the topology of the knot [45]. Here,D and
Ltube denote the diameter and length of the tube, respec-
tively. This definition allows the problem of minimizing
Fknot with respect to the knot size Lknot to be solved via
the ansatz of minimizing Ftube with respect to D under the
condition Ltube ¼ pD.
We turn to the chains confined in straight tubes [Fig. 1(b)].

The confinement free energy can be written as

Ftube ¼ FmNm; ð3Þ

where Fm is the confinement free energy per monomer, and
Nm ¼ Lknot=a is the number of confined monomers. Using
the definition of the relative extension r of the chain in a tube,

r≡ Ltube=ðNmaÞ; ð4Þ
the number of confined monomers can be written as
Nm ¼ pD=ðraÞ. Recall that Ltube in Eq. (4) equals the
extension of the confined chain. In our theory and simu-
lations, the effective tube diameter

Deff ≡D − a; ð5Þ

is more relevant than D because the centers of monomers
are confined in a tube of diameter Deff rather than D.
Using Eq. (5), we modify Eq. (3) to
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FIG. 2 (color online). (a) Probability of forming a trefoil knot of
a certain size for chains of L ¼ 2000 and L ¼ 1000 monomers.
The probabilities for L ¼ 1000 are scaled by a factor of 2.
(b) Free energies as a function of knot size from computer
simulations (circles). The blue line is the rescaled free energy
of a flexible polymer in a straight tube, using Eqs. (7), (8), and
data in Fig. 3(c).
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Ftube ¼ pFm=r × ðDeff=aþ 1Þ: ð6Þ

The above equation indicates that Ftube=p only depends
on Deff because Fm and r depend solely on Deff=a. To
numerically obtain FmðDeffÞ and rðDeffÞ, we performed
additional simulations of confined flexible chains contain-
ing 1000 monomers. The relative extension rðDeffÞ was
obtained using typical Monte Carlo simulations as
described above. The confinement free energies Fm were
obtained by the Pruned-Enriched Rosenbluth Method
(PERM) simulations [46]. The details of the PERM
algorithm were presented in our previous publication [47].
Figures 3(a) and 3(b) show Fm and r as a function of

Deff , calculated from simulation results. From these results,
Eq. (6) was used to calculate Ftube=p as a function of Deff ,
shown in Fig. 3(c). In qualitative agreement with the
observed metastable knot sizes in Fig. 2, a local minimum
exists at D�

eff ¼ 3.0a. The excellent agreement between
theory and simulation shown in Fig. 2(b) was achieved by a
mapping of the results in Fig. 3, described as follows. The
relationship between Deff and Lknot is

Lknot ¼ pðDeff þ aÞ=r: ð7Þ

A value of p ¼ 17.9 was used in order to match the
minimum location D�

eff ¼ 3.0a in Fig. 3(c) and the mini-
mum location L�

knot ¼ 140a in Fig. 2(b). This value of p is
close to a similarly fit value of p ¼ 16 for the semiflexible
chains [36], and the ideal value 12.4 for the maximally
inflated trefoil knot [45]. We rescaled the free energy of
confinement by a factor of

α ¼ Fknot=Ftube: ð8Þ
The fitted value of α ¼ 0.19 < 1 corrects for the fact that
the virtual tube of the knot has soft (rather than hard) walls.
With these two parameters, the numerical values from
simulations of a flexible chain confined to a hard tube are
mapped onto the free energy of trefoil (31) knots (blue
curve, Fig. 2). Similar results for 41 knots are shown in the
Supplemental Material [48]. These results strongly suggest
that the physics of the knotted region of a flexible chain are
that of self-confinement, similar to the physics in semi-
flexible chains [36].
While the above analysis paints a compelling picture,

why the local minimum of Ftube with respect toDeff exists is
not obvious and merits further discussion. We write Ftube as

Ftube ¼ NblobFblob; ð9Þ
where Fblob is the confinement free energy within a blob of
size Deff [Fig. 1(b)]. Note that the “blob” in this Letter
simply corresponds to the subchain within a sphere of
diameter Deff. Considering that the tube length is pD and
the extension of each blob is Deff , the number of blobs is

Nblob ¼ pð1þ a=DeffÞ: ð10Þ
It is easy to see that Nblob → p as Deff → ∞, and
Nblob → ∞ as Deff → 0. Figure 3(d) shows Fblob versus
Deff calculated from Fm and r in Figs. 3(a) and 3(b) using

Fblob ¼ FmDeff=ðraÞ: ð11Þ
In weak confinement, Deff ≫ a, the classic blob model

[49,50] predicts the confinement free energy per blob is
independent of blob size:

Fblob ¼ c1; ð12Þ
where c1 is determined to be 5.0kBT in Fig. 3(d).
In strong confinement, Deff ≪ a, we can derive the

expressions of Fm and r as follows. In the absence of
confinement and excluded volume (EV) interactions, the
allowed region for the vector connecting two monomers is a
sphere with surface area 4πa2. Considering the EVof three
adjacent monomers, the allowed space becomes 3πa2. In a
tube, the allowed region for the vector connecting two
monomers corresponds to the cross section of the tube, and
the area is πðDeff=2Þ2. The entropy loss per monomer is
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FIG. 3 (color online). (a) The confinement free energy per
monomer as a function of the effective tube diameter. (b) The
relative extension as a function of the effective tube diameter.
(c) The total confinement free energy divided by p as a function
of the effective tube diameter. (d) The confinement free energy
per blob as a function of the effective tube diameter. The red lines
are based on the scalings predicted by the blob model [49,50] and
the Flory exponent ν ¼ 0.5876 [51]. The prefactors are the best
fit values.
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Fm ¼ − log½D2
eff=ð12a2Þ�: ð13Þ

The average angle between the tube axis and the vector
connecting two monomers is asin½Deff=ð2aÞ� ≈Deff=ð2aÞ.
Then, the average extension of each monomer along the
tube axis is

r ¼ cos½Deff=ð2aÞ�: ð14Þ
Using Eqs. (13) and (14), the confinement free energy per
blob in strong confinement is

Fblob ¼−ðDeff=aÞ log½D2
eff=ð12a2Þ�=cos½Deff=ð2aÞ�: ð15Þ

Equation (15) indicates that Fblob ¼ 0 when Deff=a ¼ 0,
agreeing with the simulation results in Fig. 3(d).
We have obtained agreement between theory and

simulations for Fblob in weak and strong confinements,
which are observed to be applicable for Deff ≥ 20a and
Deff ≤ 0.2a, respectively. The critical tube diameter,
D�

eff ≈ 3.0a, which corresponds to the metastable knot
size, is located in the transition regime between these
two extreme cases. At the critical tube diameter, r ¼ 0.51
and Fm ¼ 0.60kBT. We propose an empirical expression
for Fblob in the transition regime

Fblob ¼ 5.0 − 2.57 expð−0.18Deff=aÞ; ð16Þ
which agrees with the simulation results for Deff ≥ 2a
[Fig. 3(d)]. By using Eqs. (16) and (10) with Eq. (9), we are
able to reproduce the free energy landscape for Deff ≥ 2a,
which covers the local minimum.
In order to understand why Fblob decreases monotoni-

cally as the blob size decreases in the transition regime, we
analyzed the orientation correlation hui · uji as a function
of the separation s ¼ jj − ij between pairs of bond unit
vectors ui and uj in bulk, shown in Fig. 4. Here, the
brackets indicate averaging over all i, j, and molecules.
The positive correlation indicates the relative orientation
between two adjacent blobs (subchains) is not completely
random in bulk. This correlation is due to EV interactions
which disfavor backfolding of the chain. Hence, the
positive correlation reduces the free energy cost of aligning

blobs, reducingFblob. Such a correlation explains why Fblob
is smaller than the asymptotic value c1 in the transition
regime. Note that for the critical tube diameterDeff ¼ 3.0a,
the number of monomers in the blob is approximately 6.
The correlation for s ¼ 6 in bulk is 0.07.
With the theory for knot sizes in flexible chains now

established, we will compare it to the GR theory for semi-
flexible chains. For semiflexible chains, the metastable
knot size is set by the bending energy, which scales as
Fbend ∼ L−1

knot, and the confinement free energy, which scales

asFconfine ∼ L1=3
knot. It is apparent that the competition between

these terms can lead to a minimum of free energy. Note that
the GR theory for semiflexible chains predicts shrinking
forces exist only for sufficiently tight knots but not for looser
knots in semiflexible chains [36] or knots in flexible chains.
For flexible chains, there is no bending energy Fbend.
In this case, the minimum of Fconfine cannot be intuited
from its asymptotic behavior: (i) Fconfine → ∞ as Lknot → 0,
(ii) Fconfine → pc1 as Lknot → ∞. A minimum of Fconfine,
however, is revealed in the simulation results in the transition
regime. If we examine what happens when EV interactions
are ignored, the confinement free energies Fconfine of flexible
and semiflexible chains become similar. For flexible chains
in the absence of EV, we have Deff ¼ D, and Fconfine ¼
pFblob should decrease towards zero forLknot → 0, as seen in
semiflexible chains. This effect serves to tighten a knot as
much as possible. For simulations of trefoil knots on fully
flexible chains without EV, Katrich et al. [37] found a
most probable size of 7 segments, and our simulations
(see Supplemental Material [48]) find a value of 6 segments.
Both values are remarkably close to 5 segments, the mini-
mumnumber required to form a trefoil knot. The larger knots
observed in simulations may arise from the high curvature in
the virtual tube (versus the straight tube in theory).
Our results imply that once a knot is formed on a long

flexible chain, the knot will diffuse along the chain with its
size fluctuating around L�

knot for a certain period before
escaping the potential well or it is untied at the chain ends
(see Supplemental Material [48]). This behavior has been
observed in previous simulations [40]. More broadly,
a knot can be considered as a number of self-entanglements
of a chain, sharing similarities with entanglements in
multichain systems. The effective potentials induced by
the virtual tubes of knots are similar to those induced
by entanglements in multichain systems [36,52]. However,
the interchain entanglements are more abundant than
self-entanglements in entangled polymer melts [53,54].
We have developed a simple theory to explain the origins

of metastable knots on flexible polymer molecules. These
knots localize due to two competing effects: shrinking to
reduce the number of monomers in the confined, knotted
region and swelling to reduce the effective confinement free
energy for each of these monomers. For trefoil knots, the
metastable state contains 140� 20 monomers, and these
monomers can be imaged to be confined in a virtual tube
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FIG. 4 (color online). Orientation correlation as a function of
monomer separation for a flexible chain in bulk (L ¼ 1000).
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of diameter 4.0a and length 71.7a. Looking forward, the
equilibrium distribution of knot size around the metastable
knot size is expected to be universal and may be also applied
to agitatedmacroscopic strings [1–4]. However, experiments
of knots onmacroscopic chains are typically on planes [2,4],
while our simulation and theory are for 3D chains.
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