
ar
X

iv
:1

30
3.

05
88

v2
  [

m
at

h.
S

G
]  

2 
Ju

l 2
01

3

CONSTRUCTING EXACT LAGRANGIAN IMMERSIONS WITH FEW

DOUBLE POINTS

TOBIAS EKHOLM, YAKOV ELIASHBERG, EMMY MURPHY, AND IVAN SMITH

Abstract. We establish, as an application of the results from [13], an h-principle
for exact Lagrangian immersions with transverse self-intersections and the minimal, or
near-minimal number of double points. One corollary of our result is that any orientable
closed 3-manifold admits an exact Lagrangian immersion into standard symplectic 6-
space R6

st with exactly one transverse double point. Our construction also yields a
Lagrangian embedding S

1
× S

2
→ R6

st with vanishing Maslov class.

1. Introduction

Lagrangian self-intersections. In this paper we study the problem of constructing
Lagrangian immersions with the minimal possible number of transverse self-intersection
points. It is well known that the existence of a Lagrangian embedding imposes strong
topological constraints (e.g. Gromov’s theorem about non-existence of exact Lagrangian
submanifolds in standard symplectic 2n-space, R2n

st = (R2n,
∑n

i=1 dxi ∧ dyi)), and also
that, in many cases, two Lagrangian submanifolds must intersect in more points than
is suggested by topological intersection theory alone (e.g. results confirming Arnold’s
conjectures). In view of this, it was expected that there should be similar lower bounds
on the minimal number of double points for Lagrangian immersions, e.g. that an exact
Lagrangian immersion of an n-torus into R2n

st with transverse self-intersections would
have at least 2n−1 double points.

Bounds of this kind have been proved for Lagrangian immersions satisfying additional
conditions. For instance, it was shown in [6, 8] that any self-transverse exact Lagrangian

immersion f : L → R2n
st of a closed n-manifold, for which the Legendrian lift f̃ : L →

R2n
st × R has Legendrian homology algebra that admits an augmentation, satisfies the

following analogue of the Morse inequalities: the number of double points of f is at least
1
2

∑n
j=0 rank(Hj(L)).
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Here we prove a surprising result in sharp contrast to such lower bounds: if no extra
constraints are imposed then Lagrangian immersions into symplectic manifolds of di-
mension > 4 with nearly the minimal number of self-intersection points satisfy a certain
h-principle. Let us introduce the notation needed to state the result. Let X be an ori-
ented 2n-manifold and f : L→ X a proper smooth immersion of a connected n-manifold.
If L is non-compact we will assume that f is an embedding outside of a compact set.
Following Whitney [22], if f is self-transverse we assign a self-intersection number I(f)
to f , where I(f) is the mod 2 number of self-intersection points if n is odd or L is
non-orientable, and the algebraic number of self-intersection points counted with their
intersection signs if n is even and L is orientable. Note that I(f) depends only on the
regular homotopy class of f provided that L is closed or that the regular homotopy is
an isotopy at infinity. When n > 2 and X is simply connected, a theorem of Whitney
[22] asserts that an immersion f is regularly homotopic to an embedding if and only if
I(f) = 0. If f : L → X is a self-transverse immersion, then we let SI(f) ≥ 0 denote its
total number of double points. Clearly, SI(f) ≥ |I(f)|.

Similarly, given an orientable (2n−1)-dimensional manifold Y and an (n−1)-dimensional
manifold Λ, consider a smooth regular homotopy ht : Λ → Y , 0 ≤ t ≤ 1, which connects
embeddings h0 and h1 and is an isotopy outside of a compact set. Let H : Λ × [0, 1] →
Y × [0, 1] be given by H(x, t) = (ht(x), t); then H is an immersion. We say that the
regular homotopy ht has transverse intersections if the immersion H has transverse
double points. In this case we define I({ht}t∈[0,1]) := I(H) and SI({ht}t∈[0,1]) := SI(H).
Note that if n is even and Λ is orientable then I({ht}t∈[0,1]) = −I({h1−t}t∈[0,1]).

Consider next a Lagrangian regular homotopy, ft : L→ X, 0 ≤ t ≤ 1, and write F : L×
[0, 1] → X for F (x, t) = ft(x). Let α denote the 1-form on L × [0, 1] defined by the
equation α := ι∂/∂t(F

∗ω), where ι denotes contraction and t is the coordinate on the
second factor of L× [0, 1]. Then the restrictions αt := α|L×{t} are closed for all t. We call
the Lagrangian regular homotopy ft a Hamiltonian regular homotopy if the cohomology
class [αt] ∈ H1(L) is independent of t. The following theorem is our main result:

Theorem 1.1. Suppose that X is a simply connected 2n-dimensional symplectic mani-
fold, n > 2. If n = 3 we assume further that X has infinite Gromov width (that is, it
admits a symplectic embedding of the standard ball B6(R) for any large R). If f : L→ X
is a Lagrangian immersion then there exists a Hamiltonian regular homotopy ft : L → X,
0 ≤ t ≤ 1, with f0 = f such that f1 is self-transverse and

SI(f1) =





1, if n is odd or L is non-orientable and I(f0) = 1;

2, if n is odd or L is non-orientable and I(f0) = 0;

|I(f0)|, if n is even, L is orientable and (−1)
n
2 I(f0) < 0;

|I(f0)|+ 2, if n is even, L is orientable and (−1)
n
2 I(f0) ≥ 0.

Remark 1.2. There is a version of Theorem 1.1 in the non-simply connected case where
the intersection number I(f0) is defined as an element of the group ring of π1(X) and
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where |I(f0)| denotes an appropriate norm on this ring. For simplicity, we focus on the
simply connected case in this paper.

Theorem 1.1 is proved in Section 4.1 as an application of results in [13].

This result has the following consequences for exact Lagrangian immersions into R2n
st . Let

L be an n-dimensional closed manifold. Recall that according to Gromov’s h-principle
for Lagrangian immersions the triviality of the complexified tangent bundle TL ⊗ C is
a necessary and sufficient condition for the existence of an exact Lagrangian immersion
L → R2n

st , while exact Lagrangian regular homotopy classes are in natural one to one
correspondence with homotopy classes of trivializations of TL⊗C. We write s(L) for the
minimal number of double points of a self-transverse exact Lagrangian immersion L →
R2n
st . Given a homotopy class σ of trivializations of TL⊗C, the refined invariant s(L, σ)

denotes the minimal number of double points of an exact self-transverse Lagrangian
immersion L→ R2n

st representing the exact Lagrangian regular homotopy class σ.

Corollary 1.3. Let L be an n-dimensional closed manifold with TL⊗C trivial and let
σ be a homotopy class of trivializations of TL⊗ C. Then the following hold:

(1) If n > 1 is odd or if L is non-orientable, then s(L, σ) ∈ {1, 2}.
(2) If n = 1, then s(L) = 1 and there exist σ with s(L, σ) = d for any integer d > 0;

if n = 3, then s(L) = 1 and for one of the two regular homotopy classes σ,
s(L, σ) = 2.

(3) If n is even and L is orientable, then for χ(L) < 0, s(L, σ) = 1
2 |χ(L)|, and for

χ(L) ≥ 0, either s(L, σ) = 1
2χ(L) or s(L, σ) =

1
2χ(L) + 2.

Corollary 1.3 is proved in Section 4.2; in Section 4.3 we then give more detailed infor-
mation about the case when n is odd, respectively discuss the Lagrangian embeddings
obtained from these immersions by Lagrange surgery. The case n = 2 in both (1) and (3)
above does not follow from our proof of Theorem 1.1; rather, these are results of Sauvaget
[20], who gave direct geometric constructions of self-transverse exact Lagrangian immer-
sions of both oriented and non-oriented surfaces. In particular, Sauvaget constructed,
as the key point for his result, an exact immersed genus two surface in C2 with exactly
one double point. In Appendix A we describe a higher dimensional analogue of that
construction.

It is interesting to compare Corollary 1.3 with the results of [9, 10] which show that any
homotopy n-sphere Σ that admits a Lagrangian immersion into R2n

st with exactly one
transverse double point of even Maslov grading and with induced trivialization of the
complexified tangent bundle homotopic to that of the Whitney immersion of the standard
n-sphere1, must bound a parallelizable (n + 1)-manifold. If n is even, both the Maslov
grading condition and the homotopy condition are automatically satisfied, and moreover

1i.e. the trivializations σ : TSn
⊗ C → Cn and σ̃ : TΣ ⊗ C → Cn are related as σ̃ = σ ◦ (h ⊗ C), where

h : TΣ → TS is a bundle isomorphism covering a homotopy equivalence Σ → S
n.
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the standard n-sphere is the only homotopy n-sphere that bounds a parallelizable (n+1)-
manifold. Thus, if n is even the standard n-sphere is the only homotopy n-sphere that
admits a self-transverse Lagrangian immersion into Euclidean space with only one double
point. This means in particular that in the case when dim(L) is even and χ(L) > 0, s(L)
is generally not determined by the homotopy type of L. The following result constrains
the homotopy type of a manifold for which this phenomenon may occur.

Theorem 1.4. Let L be an even dimensional spin manifold with χ(L) > 0. If s(L) =
1
2χ(L) then π1(L) = 1 and H2k+1(L) = 0 for all k. In particular if dimL > 4 then
L has the homotopy type of a CW-complex with χ(L) even-dimensional cells and no
odd-dimensional cells.

Theorem 1.4 is proved in Section 4.4. The proof uses lifted linearized Legendrian ho-
mology, introduced in [10] following ideas in [5]. Note that this result can be viewed as
an obstruction to an h-principle for exact Lagrangian immersions having the minimal,
rather than near-minimal, number of self-intersection points.

Surgery, Lagrangian embeddings and the Maslov class. In [19] Polterovich de-
scribes a local Lagrangian surgery construction which resolves a double point of a La-
grangian immersion. Let Q+ denote the manifold S1×Sn−1, and Q− the mapping torus
of an orientation-reversing involution of Sn−1. Given a Lagrangian immersion f : L→ X
of an oriented n-manifold with a single double point p, [19, Propositions 1 & 2] imply:

(1) if n is odd, there are Lagrangian embeddings L#Q± → X;
(2) if n is even, there is a Lagrangian embedding L#Qǫ → X, where the sign of ǫ is

given by (−1)n(n−1)/2+1sign(p),

where sign(p) ∈ {±1} denotes the intersection index of the double point. Combining
this with Corollary 1.3 yields:

Corollary 1.5. Let Y be a closed orientable 3-manifold. Then there is a Lagrangian
embedding Y#(S1 × S2) → R6

st.

The question of determining the minimal number k for which there is a Lagrangian
embedding Y#k(S1 × S2) → R6

st was raised explicitly by Polterovich [19, Remark 2].
The construction in Appendix A, in combination with Lagrange surgery, gives an explicit
Lagrangian embedding of Q+#Q+#Q+ into R2n

st for any odd n ≥ 3.

In another direction, in each odd dimension n = 2k + 1 our construction yields a La-
grangian immersion of the sphere Sn → R2n

st with a single double point of Maslov grading
1 (note the double point of the Whitney sphere has Maslov grading n). Using Lagrange
surgery we conclude:
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Corollary 1.6. There exists a Lagrangian embedding S1 × S2k → R4k+2
st for which the

generator of the first homology of positive action has non-positive Maslov index 2 − 2k.
In particular, there exists a Lagrangian embedding S1×S2 → R6

st with zero Maslov class.

The (non-)existence question for Lagrangian embeddings into R2n
st with vanishing Maslov

class is a well-known problem in symplectic topology. Viterbo proved in [21] that if L
admits a metric of non-positive sectional curvature then any Lagrangian embedding
L→ R2n

st has non-trivial Maslov class, whilst Fukaya, Oh, Ohta and Ono infer the same
conclusion in Theorem K of [15] whenever L is a spin manifold with H2(L;Q) = 0.
Corollary 1.6 shows that the hypotheses in these theorems play more than a technical
role; in particular, the assumption on second cohomology in the latter result cannot be
removed. Note that by taking products of the Maslov zero S1 × S2 in R6

st, one obtains
Maslov zero Lagrangian embeddings in R6k

st for every k > 1. We point out that the
Lagrangian embedding in Corollary 1.6 is not monotone. In the monotone case, the
Maslov index of the generator of the first homology of positive action necessarily equals
2, see [14, Proposition 2.10] (and references therein) and [5, Theorem 1.5 (b)].

Plan of the paper. The paper is organized as follows. In Section 2 we recall the no-
tions and the main results of the theory of loose Legendrian knots from [18]. In Section
3 we formulate the h-principle for Lagrangian embeddings with conical singularities, es-
tablished in [13], and deduce from it its own generalization: in the presence of a conical
singularity, Lagrangian immersions with the minimal number of self-intersections abide
an h-principle. Theorem 1.1 is then proved in Section 4.1 as an application of this h-
principle. Corollary 1.3 and related explicit results about Lagrangian immersions into
R2n
st are proved in Sections 4.2, 4.3, and 4.4. As is typical with h-principles, Theorem

1.1 does not provide explicit constructions of Lagrangian immersions with the minimal
number of double points. In Appendix A we complement Theorem 1.1 by construct-
ing an explicit exact Lagrangian immersion of P = (S1 × Sn−1)#(S1 × Sn−1) into R2n

st

with exactly one transverse double point (in particular, yielding an immersion in each
dimension violating the Arnold-type bound which pertains in the presence of lineariz-
able Legendrian homology algebra). Our construction is a generalization of Sauvaget’s
construction in the case n = 2. The construction of the appendix seems to have no
elementary relation to the arguments earlier in the paper; in general, our immersions
with few double points are obtained by first introducing many double points and then
canceling them in pairs, whilst in the Appendix considerable effort is expended to keep
the Lagrangians swept by appropriate Legendrian isotopies embedded.

Acknowledgements. T.E. and I.S. are grateful to François Laudenbach for drawing their
attention to Sauvaget’s work. Y.E. is grateful to the Simons Center for Geometry
and Physics where a part of this paper was completed. The authors thank Alexandr
Zamorzaev for pointing out a gap in the original proof of Lemma 3.4.
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2. Loose Legendrian knots

The theory of loose Legendrian knots and the h-principle for Lagrangian caps with loose
Legendrian ends, developed in [18] and [13], respectively, are crucial for the proof of our
main result, Theorem 1.1. In this section we recall the concepts and results from these
theories that will be used in later sections.

2.1. Stabilization. We start with a discussion of the stabilization construction for Leg-
endrian submanifolds, see [11, 4, 18].

Consider standard contact R2n−1:

R2n−1
st =

(
R2n−1 , ξst = ker

(
dz −

n−1∑

1

yidxi

))
,

where (x1, y1, . . . , xn−1, yn−1, z) are coordinates in R2n−1, with the Legendrian coordinate
subspace Λ0 ⊂ R2n−1

st given by

Λ0 = {(x1, y1, . . . , xn−1, yn−1, z) : x1 = y2 = y3 = · · · = yn−1 = 0, z = 0} .

Then (R2n−1
st ,Λ0) is a local model for any Legendrian submanifold in a contact manifold.

More precisely, if Λ ⊂ Y is any Legendrian (n − 1)-submanifold of a contact (2n − 1)-
manifold Y then any point p ∈ Λ has a neighborhood Ω ⊂ Y that admits a map

Φ: (Ω,Λ ∩ Ω) → (R2n−1
st ,Λ0), Φ(p) = 0,

which is a contactomorphism onto a neighborhood of the origin.

We will carry out the stabilization construction in a local model that is slightly different
from (R2n−1

st ,Λ0), which we discuss next. Let F : R2n−1
st → R2n−1

st denote the contacto-
morphism,

F (x1, y1, . . . , xn−1, yn−1, z) =

(
x1 +

1

2
y21, y1, x2, y2, . . . , xn−1, yn−1, z +

1

3
y31

)
.

Then F maps Λ0 to

Λcu =

{
(x1, y1, . . . , xn−1, yn−1, z) : x1 =

1

2
y21, y2 = · · · = yn−1 = 0, z =

1

3
y31

}

In the language of Appendix A.2, the front Γcu of Λcu in Rn−1 × R is the product of
Rn−2 ⊂ Rn−1 and the standard cusp {(x1, z) : 9z

2 = 8x31} in R × R. In particular, the
two branches of the front are graphs of the functions ±h, where

h(x) = h(x1, . . . , xn−1) =
2
√
2

3 x
3

2

1 ,

defined on the half-space Rn−1
+ := {x = (x1, . . . , xn−1) : x1 ≥ 0}.

Let U be a domain with smooth boundary contained in the interior of Rn−1
+ , U ⊂

int(Rn−1
+ ). Pick a non-negative function φ : Rn+1

+ → R with the following properties: φ

has compact support in int(Rn−1
+ ), the function φ̃(x) := φ(x) − 2h(x) is Morse, U =
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φ̃−1([0,∞)), and 0 is a regular value of φ̃. Consider the front ΓU
cu in Rn−1 × R obtained

from Γcu by replacing the lower branch of Γcu, i.e. the graph z = −h(x), by the graph
z = φ(x)− h(x). Since φ has compact support, the front ΓU

cu coincides with Γcu outside
a compact set. Consequently, the Legendrian embedding ΛU

cu : R
n−1 → R2n−1 defined by

the front ΓU
cu coincides with Λcu outside a compact set.

Lemma 2.1 ([4, 18]). There exists a compactly supported Legendrian regular homotopy
Λcu; t, t ∈ [0, 1] connecting Λcu to ΛU

cu with SI
(
{Λcu; t}t∈[0,1]

)
equal to the number of

critical points of φ(x) − h(x), and with I
(
{Λcu; t}t∈[0,1]

)
= (−1)k−1χ(U) if n = 2k and

I
(
{Λcu; t}t∈[0,1]

)
≡ χ(U) (mod 2) if n is odd.

Proof. It is straightforward to construct a family of functions φt(x), t ∈ [0, 1], with the
following properties:

(1) φ0(x) = 0 and φ1(x) = φ(x);
(2) the functions are monotonically increasing in t;

(3) for each critical point x of φ̃|U = (φ − 2h)|U , there is a unique t ∈ [0, 1] such
that x is a critical point of the function φt− 2h, of the same index and of critical
value 0.

We associate with φt the front Γcu;t obtained from Γcu = Γcu;0 by replacing the lower
branch of Γcu, which by definition is the graph z = −h(x), by the graph z = φt(x)−h(x).
The Legendrian regular homotopy Λcu;t determined by this family of fronts has transverse
self-intersections which correspond to critical points of φt − 2h of critical value 0. One
can show that when n = 2k the sign of each intersection point equals (−1)indx+k−1,
where indx is the Morse index of the critical point x of the function (φ − 2h)|U , see
[4]. �

To transport the stabilization construction to our standard local model, let ΛU
0 =

F−1(ΛU
cu) and Λ0; t = F−1(Λcu; t), where Λcu; t, t ∈ [0, 1], is the regular Legendrian

homotopy constructed in Lemma 2.1. Then Λ0; t, t ∈ [0, 1], is a compactly supported
Legendrian regular homotopy connecting Λ0 to ΛU

0 .

Consider a Legendrian (n − 1)-submanifold Λ of a contact (2n − 1)-manifold Y and a
point p ∈ Λ. Fix a neighborhood Ω ⊂ Y of p and a contactomorphism

Φ: (Ω,Λ ∩ Ω) → (R2n−1
st ,Λ0).

Replacing Ω∩Λ with Φ−1(ΛU
0 ) we get a Legendrian embedding ΛU which coincides with

Λ outside of Ω, and replacing it with Φ−1(Λ0; t) we get a Legendrian regular homotopy
Λt, t ∈ [0, 1] connecting Λ to ΛU with SI

(
{Λt}t∈[0,1]

)
equal to the minimal number of

critical points of a Morse function on U which attains its minimum value on ∂U , and
with I

(
{Λt}t∈[0,1]

)
= (−1)k−1χ(U) if n = 2k and I

(
{Λt}t∈[0,1]

)
≡ χ(U) mod 2 if n is

odd. We say that ΛU is obtained from U via U -stabilization in Ω. The most important
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case for us will be when U is the ball. We say in this case that ΛU is the stabilization of
Λ in Ω or simply the stabilization of Λ.

Let ξ denote the contact plane field on Y , and note that there is an induced field of (con-
formally) symplectic 2-forms on ξ. We say that two Legendrian embeddings f0, f1 : Λ →
Y are formally Legendrian isotopic if there exists a smooth isotopy ft : Λ → Y connect-
ing f0 to f1 and a 2-parametric family of injective homomorphisms Φs,t : TΛ → TY such
that Φ0,t = dft for all t ∈ [0, 1], Φs,0 = df0 and Φs,1 = df1 for all s ∈ [0, 1], and such that
Φ1,t is a Lagrangian homomorphism TΛ → ξ for all t ∈ [0, 1]. We will need the following
simple lemma, see [11, 4, 18].

Lemma 2.2. Let Λ ⊂ Y be a Legendrian submanifold and ΛU its U -stabilization. Then
if the Euler characteristic χ(U) of U satisfies χ(U) = 0, then Λ and ΛU are formally
Legendrian isotopic.

2.2. Loose Legendrian submanifolds. Let Y be a contact (2n− 1)-manifold, n > 2.
We continue using the notation from Section 2.1. A Legendrian embedding Λ → Y of
a connected manifold Λ (which we sometimes simply call a Legendrian knot) is called
loose if it is isotopic to the stabilization of another Legendrian knot. We point out that
looseness depends on the ambient manifold. A loose Legendrian embedding Λ into a
contact manifold Y need not be loose in a smaller neighborhood Y ′, Λ ⊂ Y ′ ⊂ Y .

Any Legendrian submanifold Λ ⊂ Y can be made loose by stabilizing it in arbitrarily
small neighborhood of a point. Moreover, it can be made loose even without changing
its formal Legendrian isotopy class. Indeed, one can first stabilize it and then U -stabilize
for some U with χ(U) = −1.

The following h-principle for loose Legendrian knots in contact manifolds of dimension
2n− 1 > 3 is proved in [18]:

Theorem 2.3 ([18]). Any two loose Legendrian embeddings which coincide outside a
compact set and which can be connected by a formal compactly supported Legendrian
isotopy can be connected by a genuine compactly supported Legendrian isotopy.

Remark 2.4. It is also shown in [18] that the U -stabilization of a Legendrian knot is
loose for any non-empty U .

These results imply the following:

Corollary 2.5. Any loose Legendrian knot Λ is a stabilization of some other loose
Legendrian knot Λ′.

Proof. Let U ⊂ int(Rn−1
+ ) be a ball and C ⊂ int(Rn−1

+ ) be a domain with Euler charac-
teristic −1 disjoint from U . If Λ is loose then according to Lemma 2.2 the stabilization
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ΛC∪U = (ΛC)U is formally Legendrian isotopic to Λ. Hence in view of Theorem 2.3
there is a genuine Legendrian isotopy connecting the stabilization (ΛC)U of the loose
Legendrian knot Λ′ = ΛC to Λ. �

3. Lagrangian immersions with a conical singular point

In this section we establish an h-principle for maps which are self-transverse Lagrangian
immersions with the minimal possible number of double points away from a single conical
singularity. This result is a generalization and a corollary of the corresponding result for
Lagrangian embeddings from [13] which we state as Theorem 3.6 below.

3.1. Legendrian isotopy and Lagrangian concordance. The following result about
realizing a Legendrian isotopy as a Lagrangian embedding of a cylinder is proved in [12,
Lemma 4.2.5]. Let Y be a contact manifold with contact structure ξ given by the contact
1-form α, ξ = ker(α). The symplectization of Y is the manifold R× Y with symplectic
form d(esα), where s is a coordinate along the R-factor.

Let ft : Λ → Y , t ∈ [−1, 1], be a Legendrian isotopy that is constant near its endpoints
and which connects Legendrian embeddings f− = f−1 and f+ = f1. We extend ft to all
t ∈ R by setting ft = f− for t ≤ −1 and ft = f+ for t ≥ 1.

Lemma 3.1. There exists a Lagrangian embedding

G : R× Λ → R× Y,

given by the formula G(t, x) = (h(x, t), f̃t(x)) and with the following properties:

• there exists T > 0 such that G(t, x) = (t, f−(x)) for t < −T and G(t, x) =
(t, f+(x)) for t > T ;

• f̃t is a Legendrian embedding C∞-close to ft.

We will need the following modification of Lemma 3.1 for Lagrangian immersions. Let
ft : Λ → Y , t ∈ [−1, 1], be a self-transverse regular Legendrian homotopy constant near
its endpoints that connects Legendrian embeddings f− and f+. As in Lemma 3.1 we
extend ft to all t ∈ R as independent of t for |t| ≥ 1.

Lemma 3.2. There exists a self-transverse Lagrangian immersion

G : R× Λ → R× Y,

given by the formula G(t, x) = (h(x, t), f̃t(x)) and with the following properties:

• there exists T > 0 such that G(t, x) = (t, f−(x)) for t < −T and G(t, x) =
(t, f+(x)) for t > T ;

• f̃t is C
∞-close to ft;
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• the double points of G are in one-to-one index preserving correspondence with
the double points of the regular homotopy ft.

Proof. The construction from [12, Lemma 4.2.5] which proves Lemma 3.1 can be applied
with some additional care near the self-intersection instances of the Legendrian regular
homotopy to prove Lemma 3.2. Here, however, we will use a different argument.

Note that it is sufficient to consider the case when there is exactly one transverse self-
intersection point q ∈ Y of the regular homotopy ft at the moment t = 0. It is also
sufficient to construct the immersed Lagrangian cylinder that corresponds to the Leg-
endrian regular homotopy restricted to some interval [−ǫ, ǫ] for a small ǫ > 0, because
then one can apply Lemma 3.1 for the isotopy ft restricted to the rest of R.

There exist local coordinates (x, y, z) ∈ Rn−1 × Rn−1 × R = R2n−1
st in a neighborhood

Ω of q such that the two intersecting branches B0 and B1 of f0 at q are given by the
inclusion of

B0 = {(x, y, z) : y = 0, z = 0, |x| < 1}, (3.1)

B1 = {(x, y, z) : x = 0, z = 0, |y| < 1}. (3.2)

into R2n−1
st .

Modifying the regular homotopy ft slightly for t close to 0 we obtain a regular homotopy

f̃t without self-intersections for t ∈ [0, ǫ] and which, for t ∈ [−ǫ, 0], is supported in Ω and
has the following special properties:

• f̃t ≡ f̃0 on B1 and near ∂B0;

• f̃−ǫ|B0
is given by the formula

f̃−ǫ(ξ) = (x(ξ), y(ξ), z(ξ)) = (ξ, 0,−δ), ξ ∈ Rn−1, |ξ| ≤ 1

and, using the same notation, f̃0|B0
is given by the formula

ξ 7→

(
ξ,
∂φ

∂ξ
, φ(ξ)

)
,

where φ(ξ) = δθ(|ξ|) for a small positive constant δ ≪ ǫ and a C∞-function
θ : [0, 1] → [−1, 1], which is equal to −1 near 1, is equal to 1 near 0, and which
has non-positive derivative.

The isotopy {f̃t}t∈[0,ǫ] can be lifted to a Lagrangian cylinder in the symplectization using
Lemma 3.1. Consider a C∞-function σ : [−ǫ, 0] × B0 → R with the following properties
(using coordinates (τ, ξ) ∈ [−ǫ, 0] × Rn−1, |ξ| < 1 in analogy with the above):

• σ(τ, ξ) = −eτδ near ({−ǫ} ×B0×) ∪ ([−ǫ, 0] × ∂B0);
• σ(τ, ξ) = eτφ(ξ) near 0×B0;
• the function σ(τ, 0), τ ∈ [−ǫ, 0] has a unique zero in (−ǫ, 0), which is moreover a
regular value.
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Now the required Lagrangian immersion G|[−ǫ,0]×(B0∪B1) lifting {f̃t}t∈[−ǫ,0] to the sym-

plectization R× R2n−1
st can be defined by the formula

G(τ, η) = (t(τ, η), x(τ, η), y(τ, η), z(τ, η))

= (τ, 0, η, 0), if (0, η, 0) ∈ B1,

G(τ, ξ) = (t(τ, ξ), x(τ, ξ), y(τ, ξ), z(τ, ξ))

=

(
τ, ξ, e−τ ∂σ

∂ξ
(τ, ξ), e−τ ∂σ

∂τ
(τ, ξ)

)
, if (ξ, 0, 0) ∈ B0.

Note that G|B0
and G|B1

are Lagrangian embeddings with respect to the symplectic
form ω = d(et(dz − ydx)). This is obvious for G|B1

, for G|B0
we calculate

G∗(d(et(dz − ydx)) = d

(
eτd

(
e−τ ∂σ

∂τ

)
−
∂σ

∂ξ
dξ

)
= d

(
−
∂σ

∂τ
dτ −

∂σ

∂ξ
dξ

)
= 0.

We also have G(−ǫ, ξ) = (−ǫ, ξ, 0,−δ) = (−ǫ, f̃−ǫ) and G(0, ξ) =
(
0, ξ, ∂φ∂ξ , φ

)
= (0, f̃0).

On the other hand, the last property of the function σ guarantees that G(B0) and G(B1)
intersect transversely at a unique point and that the index of intersection is the same as
the self-intersection index of the regular homotopy ft. �

3.2. Lagrangian immersions with a conical point. Let S2n−1
st = (S2n−1, ξst) be the

sphere with the standard contact structure ξst defined by the restriction αst to the unit
sphere S2n−1 ⊂ R2n of the Liouville form λst :=

1
2

∑n
j=1(xjdyj − yjdxj) in R2n

st .

For any integer m we denote by (r, x) ∈ (0,∞) × Sm−1 polar coordinates in Rm − {0},
i.e. x is the radial projection of a point to the unit sphere, and r is its distance to the
origin. The symplectic form ωst in R2n has the form d(r2αst) in polar coordinates.

A map h : Rn → R2n
st is called a Lagrangian cone if h−1(0) = 0 and if it is given by

the formula h(r, x) = (cr2, φ(x)) in polar coordinates, where φ : Sn−1 → S2n−1
st is a

Legendrian embedding and c is a positive constant.

Note that there exists a symplectomorphism

C : (R× S2n−1, d(etαst)) → (R2n − {0}, ωst) (3.3)

given by the formula C(t, x) =
(
e

t
2 , x
)
in polar coordinates. Under this symplectomor-

phism Lagrangian cones in R2n
st correspond to cylindrical Lagrangian manifolds in the

symplectization (R × S2n−1, d(etαst)) of S
2n−1
st .

Let L be an n-dimensional manifold and X a 2n-dimensional symplectic manifold. A
map f : L→ X is called a Lagrangian immersion with a conical point at p ∈ L, if f |L−{p}
is a Lagrangian immersion, and if in a neighborhood of p and in a Darboux chart around
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f(p), the map is equivalent to a Lagrangian cone h : Rn → R2n
st near the origin. The

Legendrian embedding φ : Sn−1 → S2n−1
st corresponding to this cone is called the link of

the conical point.

We define a regular Lagrangian homotopy ft : L → X, t ∈ [0, 1], of immersions with a
conical point at p to be a homotopy which is fixed in some neighborhood of the singular
point p and that is an ordinary regular Lagrangian homotopy when restricted to L−{p}.
For a self-transverse immersion f with a conical point at p, we define the self-intersection
number I(f) as I(f |L\{p}). Then I(f) is invariant under regular homotopies fixed near
p.

Let g : Rn → R2n
st be a Lagrangian immersion with a conical singularity at the origin 0 ∈

Rn, and which also coincides with a Lagrangian cone over a Legendrian link φ : Sn−1 →
S2n−1
st outside a compact set. Note that given a path γ : [0, 1] → Rn connecting a point
γ(0) ∈ Rn near infinity (i.e. where the immersion is conical) and the origin γ(1) = 0 ∈ Rn,
the integral

∫
g◦γ λst is independent of the choice of γ. We will call it the action of the

singularity 0 with respect to infinity, and denote it by a(g, 0|∞). Let gt : R
n → R2n

st , with
g0 = g, denote a Lagrangian regular homotopy, compactly supported away from 0. Then
gt is Hamiltonian if and only if a(gt, 0|∞) = const.

Lemma 3.3. For any ǫ > 0, any smooth real-valued function c : [0, 1] → R, c(0) = 0,
and any Lagrangian cone h : Rn → R2n

st over a Legendrian link φ : Sn−1 → S2n−1
st , there

exists a Lagrangian isotopy ht : R
n → R2n

st beginning at h0 = h, fixed near the singularity
and outside the ball of radius ǫ, and such that a(ht, 0|∞) = c(t), t ∈ [0, 1].

Proof. Let Rs : S2n−1 → S2n−1, s ∈ R, denote the time s Reeb flow of the contact form
αst. Fix a non-positive C∞-function β : R → R with the following properties:

• β(s) = 0 for s /∈ (1e , e);

•
e∫

1/e

β(u)du = −1.

Given T,E ∈ R let

gT,E : R× Sn−1 → (R × S2n−1
st , d(etαst))

be the Lagrangian embedding given by the formula

gT,E(s, x) = (s− E,RTβ(es)(φ(x))).
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Then, for x0 ∈ Sn−1,

∫

R×x0

(gT,E)
∗ (etαst) = Te−E

∞∫

−∞

e2sβ′(es)ds = Te−E

1∫

−1

e2sβ′(es)ds

= Te−E

e∫

1

e

uβ′(u)du = −Te−E

e∫

1

e

β(u)du = Te−E.

Then the required Lagrangian isotopy ht : R
n → R2n

st with a conical singularity at the
origin can be defined as

ht(x) = C ◦ gc(t)/ǫ,E,

for E = −2 log ǫ, t ∈ [0, 1], and x ∈ Λ. �

We will need the following result.

Lemma 3.4. Let h : Rn → R2n
st be a Lagrangian cone over a Legendrian link φ : Sn−1 →

S2n−1
st . Then there exists a Hamiltonian regular homotopy ht : R

n → R2n
st , t ∈ [0, 1], with

h0 = h, which is fixed near the singularity and outside of a ball BR ⊂ Rn of some radius
R > 0 centered at 0, and such that the following hold:

• h1 coincides with the cone over a loose Legendrian knot φ̃ near ∂BR
2

;

• the immersion h−1 := h1|h−1

1
(BR/2)

has exactly one transverse self-intersection

point;
• if n = 2k then, for any φ, we can arrange that I(h−1 ) = (−1)k−1, and if in
addition φ is assumed to be a loose Legendrian knot, then we can arrange also
that I(h−1 ) = (−1)k.

Remark 3.5. Note that by scaling we can make the radius of the ball R arbitrarily
small.

Proof. Let φ : Sn−1 → S2n−1
st be the Legendrian link of the conical point. Let us denote

by φ1 its stabilization. Note that φ1 is a loose knot. If φ is itself loose then according
to Corollary 2.5 there exists another loose Legendrian knot φ−1 such that φ is the sta-
bilization of φ−1. We will call φ−1 the destabilization of φ. According to Lemma 2.1
the embeddings φ0 := φ and φ1 can be included into a regular Legendrian homotopy
φt : S

n−1 → S2n−1
st , t ∈ [0, 1], such that there is exactly one self-intersection point for

t ∈ (0, 1), and when n = 2k we have I({φt}t∈[0,1]) = (−1)k−1. Similarly, if φ is loose then

φ−1 and φ0 = φ can be included into a regular Legendrian homotopy φt : S
n−1 → S2n−1

st ,
t ∈ [−1, 0], with one transverse self-intersection point which for an even n = 2k has index
(−1)k−1.

Next, we use Lemma 3.2 to lift the Legendrian regular homotopy {φt}t∈[0,1] and its inverse
{φ1−t}t∈[0,1], and in the loose case {φt}t∈[−1,0] and its inverse {φ−t}t∈[0,1], respectively,
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to Lagrangian immersions

G1, G2, G3, G4 : R× Sn−1 → (R× S2n−1, d(etαst))

with the following properties

• for a sufficiently large positive t we have

G1(−t, x) = (−t, φ(x)), G1(t, x) = (t, φ1(x)),

G2(−t, x) = (−t, φ1(x)), G2(t, x) = (t, φ(x)),

G3(−t, x) = (−t, φ−1(x)), G3(t, x) = (t, φ(x)),

G4(−t, x) = (−t, φ(x)), G4(t, x) = (t, φ−1(x));

• each of these Lagrangian immersions has exactly 1 transverse self-intersection
point;

• if n = 2k then

I(G1) = I(G3) = (−1)k−1, I(G2) = I(G4) = (−1)k.

Composing these immersions with the symplectomorphism C−1 from (3.3) (and com-
pactifying with a conical point) we get Lagrangian immersions

H1,H2,H3,H4 : R
n → R2n

st

with a conical singularity at the origin. With appropriate rescaling we can glue together
the immersions H1 and H2 to get an immersion H12 : R

n → R2n
st , and in the loose case

glue H4 and H3 to get an immersion H43 : R
n → R2n

st , such that both are immersions
with a conical singularity with Legendrian link φ, and both coincide with the cone
over φ outside of the a ball BR of some radius R > 0. In addition, near ∂BR/2 the
immersion H12 coincides with the cone over φ1 and H43 coincides with the cone over
φ−1. Using Lemma 3.3 we can modify the immersions H12 and H43 to arrange that
a(H12, 0|∞) = a(H43, 0|∞) = 0. Again with the help of Lemma 3.3, we can therefore
construct a regular Hamiltonian homotopy ht connecting h with H12, which has the
required properties in the general case. In the case of loose φ and even n = 2k, we can
construct a Lagrangian immersion with the index of its unique self-intersection point
equal to (−1)k, by taking ht to be a regular Hamiltonian homotopy connecting h with
H43. �

3.3. The h-principle for self-transverse Lagrangian immersions with a conical

singularity and minimal self-intersection. Let X be a symplectic 2n-manifold of
dimension 2n > 4. The following h-principle for Lagrangian embeddings into X with a
conical point is proved in [13].

Theorem 3.6. Let f0 : L → X be a Lagrangian immersion with a conical point p ∈ L
into a simply connected symplectic manifold X of dimension 2n > 4. If n = 3 we further
assume that X \ f0(L) has infinite Gromov width, i.e. admits a symplectic embedding
of an arbitrarily large ball. If the Legendrian link of f0 at p is loose and if I(f0) = 0,
then there exists a Hamiltonian regular homotopy ft : L → X, t ∈ [0, 1], that is fixed in
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a neighborhood of p and that connects f0 to a Lagrangian embedding f1 with a conical
point at p.

As we shall see, Theorem 3.6 generalizes to self-transverse Lagrangian immersions with a
conical point of non-zero Whitney index and with the minimal number of self-intersection
points. In fact, Theorem 3.6 itself is the key ingredient in the proof of its generalization,
which we state next.

Theorem 3.7. Let f0 : L → X be a Lagrangian immersion with a conical point p ∈ L
into a simply connected symplectic manifold X of dimension 2n > 4. If n = 3 we
further assume that X \ f0(L) has infinite Gromov width. If the Legendrian link of f0
at p is loose, then there exists a Hamiltonian regular homotopy ft : L → X, t ∈ [0, 1],
that is fixed in a neighborhood of p and that connects f0 to a self-transverse Lagrangian
immersion f1 with a conical point at p and with SI(f1) = |I(f0)|.

Proof. We argue by induction on d = |I(f0)|, using Theorem 3.6 as the base of the
induction for d = 0. Suppose the theorem holds for |I(f0)| = d − 1. Let φ : Sn−1 →
S2n−1
st be the loose Legendrian link of the conical point and consider the immersion
f0 : L→ X. By definition, in some local Darboux neighborhood near the singular point
it is equivalent to a Lagrangian cone over φ in a ball Bǫ, ǫ > 0. We use Lemma 3.4 to
construct a Hamiltonian regular homotopy supported in Bǫ from f0 to a new immersion

f̂0 that coincides with the cone over a loose knot φ̃ near ∂Bǫ/2 and which has exactly
one transverse self-intersection point in Bǫ/2. If n = 2k, we arrange the index to be of
the same sign as I(f0).

Let f̃0 be a Lagrangian immersion obtained from f̂0 by modifying it to the cone over

φ̃ in Bǫ/2. We note that |I(f̃0)| = d − 1, and by the induction hypothesis we find a

Hamiltonian regular homotopy f̃t, t ∈ [0, 1], fixed near the singularity and such that

SI(f̃1) = |I(f̃0)| = d − 1. Note that the regular homotopy f̃t is fixed in Bσ for σ ≪ ǫ
2 ,

but not necessarily fixed in Bǫ/2.

The required regular homotopy ft is then obtained by deforming f0 into f̂0, then scaling
it inside Bǫ/2 to make it coincide with a cone in Bǫ/2 − Bσ, and finally deforming it

outside Bσ, keeping it fixed in Bσ, using the Hamiltonian regular homotopy f̃t. �

4. Proofs of the main results

4.1. Proof of Theorem 1.1. Any simple (i.e. not double) point p ∈ f0(L) can be
viewed as a conical point over a trivial Legendrian knot. Hence, we can apply Lemma
3.4 to find a Hamiltonian regular homotopy supported in a Darboux neighborhood of

p, symplectomorphic to Bǫ, such that the resulting Lagrangian immersion f̃0 coincides
with a Lagrangian cone over a loose knot near ∂Bǫ/2 and has exactly one transverse

self-intersection point in Bǫ/2, with index equal to (−1)k−1 if n = 2k. Note that in all
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cases one then has I(f̃0|L−f̃−1

0
(Bǫ/2)

) = I(f0) + (−1)k. Hence, arguing as in the proof

of Theorem 3.7, we replace f̃0(L) ∩ Bǫ/2 by a cone over a loose Legendrian knot φ̃,

and then using Theorem 3.7 we construct a Hamiltonian regular homotopy f̃t of the

resulting immersion f̂0, that is fixed in a neighborhood Bσ, σ ≪ ǫ
2 , of the conical point,

to an immersion with transverse self-intersections and with exactly |I(f0)+(−1)k| double

points. Finally the required regular homotopy ft consists of first deforming f̃0 into f̂0,
then scaling it inside Bǫ/2 in such a way that it becomes a cone in Bǫ/2 −Bσ, and then

deforming it outside Bσ using the Hamiltonian regular homotopy f̃t outside Bσ and
keeping it fixed in Bσ. The Lagrangian immersion f1 is self-transverse and has exactly

|I(f0) + (−1)
n
2 |+ 1 =

{
|I(f0)|, if (−1)

n
2 I(f0) < 0,

|I(f0) + 2|, if (−1)
n
2 I(f0) ≥ 0

double points. �

4.2. Proof of Corollary 1.3. Using Gromov’s h-principle for Lagrangian immersions,
see [16], we find an exact Lagrangian immersion f : L → R2n

st (in the given Lagrangian
homotopy class σ in cases (1) and (3)). Part (1) then follows from the corresponding

case of Theorem 1.1. If n is even then I(f0) = (−1)
n
2
χ(L)
2 , see e.g. [7], [Proposition 3.2]

and also part (3) follows from the corresponding case of Theorem 1.1. To complete the
proof of part (2), we observe that if n = 3 then both smooth regular homotopy classes
of immersions f : L → R2n

st , corresponding to I(f) = 0 and I(f) = 1, can be realized by
a Lagrangian immersion. �

4.3. Further results on s(σ,L). If n is even then the smooth regular homotopy class
of a Lagrangian immersion f : L → R2n

st is determined by χ(L), and thus Corollary
1.3 together with Gromov’s non-existence result for exact Lagrangian embeddings gives
complete information on s(L) if χ(L) ≤ 0. If χ(L) > 0, s(L) depends on more intricate,
differential topological, properties of L, see [9, 10] (Theorem 1.4 gives information on
the homotopy type of L in this case). For odd n, s(L) (and s(L, σ)) is determined by
which of the two smooth regular homotopy classes contain Lagrangian (or equivalently
totally real) immersions. The following result gives a partial answer. Recall that χ2(L) =∑n−1

2

j=0 rank(Hj(L)) mod 2.

Theorem 4.1. If L is an n-dimensional orientable closed manifold with TL⊗C trivial,
n odd and n ≥ 3, then the following hold:

(1) If n = 3 then both regular homotopy classes contain exact Lagrangian immer-
sions.

(2) If n 6= 2q − 1, q 6= 2, 3 then only one regular homotopy class contains Lagrangian
immersions.
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(3) If n = 4k + 1 and 4k is not a power of two, or if the Stiefel-Whitney number
w2(L)wn−2(L) vanishes, then only the regular homotopy class with Whitney index
If = χ2(L) contains Lagrangian immersions.

(4) If V is almost parallelizable then only the regular homotopy class with If = χ2(V )
contains Lagrangian immersions.

Proof. Cases (1), (2), and (4) are proved in [2] and case (3) is a consequence of [1]. �

4.4. Proof of Theorem 1.4. We control the homotopy type of exact immersions
f : L → R2n

st , n even, with exactly 1
2χ(V ) > 0 double points using a straightforward

generalization of [10, Lemma 2.2]. We refer to [10, Section 2] for background and nota-
tion for the parts of (lifted) Legendrian homology that will be used below.

Consider the Legendrian lift f̃ : L → R2n
st × R. The Reeb chords of f̃ correspond to the

double points of f , and the grading of all Reeb chords must be even since the sum of
grading signs over Reeb chords equals (−1)

n
2 χ(L)/2, see [7]. Since no chord has odd

grading it follows that the Legendrian algebra admits an augmentation, and since L is
spin we can use arbitrary coefficients in the Legendrian algebra.

Using the duality sequence for linearized Legendrian homology [6] over Q we find that all
odd dimensional homology of L vanishes. In particular, the Maslov class vanishes and
the linearized Legendrian homology admits an integer grading. The duality sequence
with coefficients Zp for arbitrary prime p then implies that L has only even dimensional
homology over Z.

We next claim that π1(L) = 1. To this end, consider a connected covering space π : L̃→

L of L. Then the “lifted linearized Legendrian homology complex” C̃ lin(L̃, π; k) with
coefficients in the field k, see [10, Section 2], has the form

S̃ ⊕ C̃Morse ⊕ L̃,

where the elements in S̃ have grading −1+ 2j, 0 ≤ j ≤ n
2 and the elements in L̃ grading

2j + 1, 0 ≤ j ≤ n
2 . Since f(L) is Hamiltonian displaceable, the total homology of the

complex vanishes. Since L̃ is connected, this in turn implies rank(S̃−1) = 1, where S̃r is

the degree r summand of S̃. Thus the covering π has degree 1, and since the covering
was arbitrary, that implies that π1(V ) = 1, as required.

Finally, if dimL > 4 then we can use theWhitney trick to cancel homologically inessential
handles. �

Appendix A. Explicit constructions

In this section we consider explicit constructions of Lagrangian immersions and La-
grangian regular homotopies. In Sections A.1 and A.2 we introduce notation and some
background material, which are necessary for the construction of a concrete Lagrangian
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immersion of P = (S1×Sn−1)#(S1×Sn−1) into R2n
st . That construction, which is broken

down into five stages, is given in the subsequent sections. The construction generalizes
to dimensions n ≥ 3 Sauvaget’s construction from [20] for n = 2.

A.1. Symplectization coordinates. ConsiderR2n
st with coordinates (x1, y1, . . . , xn, yn)

and standard exact symplectic form ω = −dβ with primitive β =
∑n

j=1 yjdxj . Let

Cn−1 ⊂ R2n
st denote the subspace given by the equation (xn, yn) = (0, 0) and let β0 =

β|Cn−1 . Consider the contact manifold R×Cn−1 with contact 1-form α = dz−β0, where
z is a coordinate in the additional R-factor, and with symplectization R×R×Cn−1 with
exact symplectic form d(etα), where t is the coordinate in the symplectization direction.
Write ξ = (x1, . . . , xn−1) and η = (y1, . . . , yn−1), then (ξ, η, xn, yn) are coordinates on
R2n
st . Consider the map Φ: R× R× Cn−1 → Cn,

Φ(t, z, ξ, η) = (ξ, etη, et, z).

Then

Φ∗(−
∑

j

yjdxj) = −et(η · dξ + zdt) = et(dz − η · dξ)− d(etz) = α− d(etz),

and hence Φ is an exact symplectomorphism from the symplectization R×R×Cn−1 to
Cn
+ = {(ξ, η, xn, yn) : xn > 0}.

If Λ ⊂ R × Cn−1 is a Legendrian submanifold then R × Λ is an exact Lagrangian sub-
manifold of the symplectization R× R× Cn−1. If

(t, z(λ), ξ(λ), η(λ)), λ ∈ Λ, t ∈ R

is a parameterization of R× Λ then its image under Φ is parameterized by

(ξ(λ), etη(λ), et, z(λ)) ∈ Cn
+.

Conversely, if L is a conical Lagrangian submanifold in Cn−1
+ parameterized by

(ξ(λ), sη(λ)), s, yn(λ)), λ ∈ Λ, s ∈ R+,

then the image of L under Φ−1 is the cylinder on a Legendrian submanifold Λ ⊂ R×Cn−1

parameterized by (z(λ), ξ(λ), η(λ)), λ ∈ Λ, where z(λ) = yn(λ).

A.2. Exact Lagrangian immersions by front slices. LetM be an n-manifold and let
f : M → Cn be an exact Lagrangian immersion. After small perturbation, the following
general position properties hold:

(1) All self-intersections of f : M → Cn are transverse double points.
(2) The coordinate function xn ◦ f : M → R is a Morse function.
(3) If p = f(p0) = f(p1) is a double point of f then xn(p) is a regular value of xn ◦f .

Assume that (1)−(3) hold. For any regular value a, the level setMa = (xn ◦f)
−1(a) is a

smooth (n−1)-manifold which is the boundary of the sublevel setM≤a = f−1((−∞, a]),
and if πn : C

n → Cn−1 is the projection that projects out (xn, yn) then f
a = πn◦f : M

a →
Cn−1 is an exact Lagrangian immersion.
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Double points of f are also double points of fa. In order to determine which double
points of fa correspond to actual double points of f , we must recover the yn-coordinate
from fa. Write (x, y) = (ξ, η, xn, yn), where ξ = (x1, . . . , xn−1), η = (y1, . . . , yn−1),
and (ξ, η) are standard coordinates on Cn−1 as above. If c is a double point of fa,
c = fa(c0) = fa(c1) for c0 6= c1 ∈Ma and if γ is a path connecting c0 to c1 in Ma then

yn(c1)− yn(c0) =
d

dxn

(∫

γ
η dξ

)
,

where η dξ =
∑n−1

j=1 yjdxj . In other words, the yn-coordinate at a double point is the
xn-derivative of the action of any path connecting its endpoints. Using the exactness of
f , this can be rephrased as follows, if z is a primitive of f∗(β) and za = z|Ma then

yn(c1)− yn(c0) =
d

da
(za(c1)− za(c0)) . (A.1)

In our constructions below we will depict the exact Lagrangian slices by drawing their
fronts in Rn−1×R. Before discussing slices, we give a brief general description of fronts.
Let N be a closed manifold and consider an exact Lagrangian immersion g : N → Cn.
Pick a primitive ζ : N → R of g∗(β). Then the map G = (g, ζ) : N → Cn × R is a
Legendrian immersion, everywhere tangent to the contact plane field ker(dζ − β) on
Cn×R. The front of g is the projection πF ◦G : N → Rn×R, where πF projects out the
y-coordinate. For generic g, the front has singularities; the front determines the original
Lagrangian immersion via the equations

yj =
∂z

∂xj
,

which admit solutions that can be extended continuously over the singular set (caustic)
of the front. For generic g, double points of g lie off of the caustic and correspond to
smooth points on the front with the same x-coordinate and with parallel tangent planes.
The Reeb vector field of the contact form dz − y dx on Cn × R is simply the coordinate
vector field ∂z and thus double points of g correspond to Reeb chords of G.

Below, we will study the fronts of exact Lagrangian immersions fa : Ma → Cn−1 that
are slices of a given Lagrangian immersion f : M → Cn, and as mentioned above it will
be of importance to recover the yn-coordinate at the double points of fa. We will call
the Reeb chords of the Legendrian lift of an exact slice fa slice Reeb chords. Thus a
slice Reeb chord is a vertical chord that connects two points on the front with parallel
tangent planes. In our pictures below, we indicate the difference of the yn-coordinate
at the endpoints by showing whether the vertical chord that connects them grows or
shrinks, cf. Equation (A.1).

A.3. Overview: a construction in five pieces. The rest of the Appendix is devoted
to the construction of a self-transverse exact Lagrangian immersion P = (S1×Sn−1#S1×
Sn−1) → Cn with exactly one double point. The construction of the immersion is broken
down into five stages, two of which are described in terms of fronts, and three of which
are described via Lagrangian slices.
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Figure 1. A standard sphere is born.

In what follows, we write ξ = (x1, . . . , xn−1) and t = xn. Let η = (y1, . . . , yn−1) be dual
to ξ and τ = yn dual to t. If f(·, t) is a function that depends on t, we write f ′(·, t) for
the partial derivative ∂f

∂t .

The construction will be decomposed into the following five pieces: a bottom piece (i)
which will be drawn in Section A.4 as a sequence of fronts and which contains five
critical slices (i.e. slices containing critical points of the Morse function xn : P → R),
three middle pieces (ii) − (iv), see Sections A.6, A.7, and A.8 all without critical slices
where we will draw the corresponding Lagrangian immersions into Cn, and finally a top
piece (v), also drawn by fronts, that contains the unique double point, see Section A.9.

A.4. The first piece of the immersion. The first piece is constructed in four steps.

A.4.1. We pass the minimum of the t-coordinate and a standard (n−1)-sphere appears
as shown in Figure 1. It has one slice Reeb chord c1 of length ℓ(c1) and ℓ

′(c1) > 0.

A.4.2. We introduce two Bott families c2 and c3 of slice Reeb chords of index 0 and 1,
respectively. Both families are topologically (n−2)-spheres, symmetric about the central
slice Reeb chord. The lengths of the slice Reeb chords of the families are ℓ(c2) < ℓ(c3),
ℓ′(c2) < 0, and ℓ′(c3) < 0; see Figure 2. It will be important later that ℓ(c3) is not
too small compared to ℓ(c1). We introduce the following quantities corresponding to
certain areas in the Lagrangian slice projections which appear later, but here related to
the lengths of the slice Reeb chords:

ℓ(c3) = C, ℓ(c2) = −B + C, ℓ(c1) = A−B + C,

where C > 0 and A > B > 0. Then C ′ < 0, −B′ + C ′ < 0, and A′ > B′ − C ′. To
be definite about ℓ(c3), we take B = µ0

5 C and A = µ1

2 C, where µj are parameters such
that µj ≈ 1. (Since the slice Reeb chords must change length with t, we cannot enforce
µj = 1 but we can take these parameters to be approximately equal to 1. )
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Figure 2. New born Bott families of shrinking chords.

1st Morse modification 2nd Morse modification

Figure 3. Morse modification along the Bott families of minima.

A.4.3. We Morse modify along the Bott family c2 of slice Reeb chords of minimal length
twice, first adding a family of 1-handles and then removing them, as shown in Figure 3.
It is straightforward to check that the manifold that results from these modifications is
a punctured connected sum (S1 × Sn−1)#(S1 × Sn−1), i.e., P − Dn. The slice sphere
that appears right after the second Morse modification is depicted in Figure 4.

A.4.4. In the final step of the first piece, we Morsify the Bott family c2 of slice Reeb
chords. In doing so, as we shall see below, it is natural to think about the quantities A,
B, and C as functions of (v, t) ∈ Sn−2 × R, where we think of Sn−2 as the unit sphere
{ξ ∈ Rn−1 : |ξ| = 1}, which naturally parameterizes the Bott manifold. We Morsify c2
leaving one very short chord c02 with ℓ(c02) = ǫ2 lying in direction −v0 ∈ Sn−2 and one
long chord cn−2

2 in direction v0 ∈ Sn−2, with

ℓ(cn−2
2 ) = −B(v0, t) + C = (1−

µ0
5
)C ≈

4

5
C, (A.2)

see Figure 4. Here, µ0 ≈ 1 is as above, and C is constant in v since we keep the Bott
symmetry of c3. The superscripts on c02 and cn−2

2 refer to the Morse indices of the slice
Reeb chords, considered as positive function differences of the functions defining the two
sheets of the front at their endpoints.
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CC−B+A C−B

Figure 4. Final stage of the first piece.

Bott

Level surfaces

Critical points

Morse

Figure 5. Level surfaces after Morsification.

Let φ = φ+−φ− be such a positive difference between local functions defining the sheets
of the front. For future reference, we assume that the Morsification has only a small
effect on the level surfaces of φ, which remain close to those of the Bott situation. In
particular, the level curves of φ for values close to φ(cn−2

2 ) are everywhere transverse to
the radial vectors along an Sn−2 slightly outside the former Bott-manifold, see Figure 5.

A.5. A guide to reading pictures of Lagrangian slices. For the next three pieces
of the immersion, we will not use the front representation as above, but will instead draw
a family of exact Lagrangian slices. Before reaching the details we describe how to read
the pictures.

Let v ∈ Sn−2 = {ξ ∈ Rn−1 : |ξ| = 1} and let r ∈ R≥0. We construct our exact Lagrangian
slice-spheres by drawing their slices in the 2-dimensional half-planes determined by v and
its dual vector w, i.e. w is a vector in η-space Rn−1 dual to v which lies in ξ-space. These
slices are curves γv : [0, 1] → {rv + ρw : r ≥ 0, ρ ∈ R} that begin and end at a central
point (the location of the slice Reeb chord of maximal length of the corresponding front)
at (0, 0) = 0 ∈ Cn−1. In order for the curves γv to close up and form a sphere, the
integral

∫
γv
η dξ must be independent of v ∈ Sn−2.
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A
32

1 CB

Figure 6. Initial Lagrangian slice.

We will draw the immersed curves γv with over/under information recording the value
of the τ = yn-coordinate at double points. It is also important to keep track of the
values of z at crossings, where z is a primitive function of the exact Lagrangian slice. We
write (∆τ)j and (∆z)j for the differences in τ -coordinate and z-coordinate, respectively,
between the upper and the lower strands at the crossing labeled j in figures. Note that
with these conventions (∆z)j ≥ 0.

We next need a description of the actual double points of the slice immersions fa in
terms of the curves γv. Note first that any double point of fa corresponds to a double
point of some curve γv. Although we break the Sn−2 symmetry we stay fairly close
to a symmetric situation. In particular, the double points of the curves γv (with the
exception of the central double point) will come in Sn−2-families and the z-differences
(∆z)j then give functions

(∆z)j : S
n−2 → R≥0.

Since double points correspond to parallel tangent planes on the front we find that the
double points of fa are exactly the critical points of these functions.

A.6. The second piece of the immersion. We will represent the second piece of the
immersion in three steps.

A.6.1. In the initial step the curves correspond to the front in Figure 4, which is depicted
in the slice model in Figure 6. A, B, and C denote the (positively oriented) areas
indicated; each is a function of v and t. We then have

(∆z)1(t) = A−B +C, (∆τ)1 = (A−B + C)′ > 0,

(∆z)2(v, t) = −B + C, (∆τ)2 = (−B + C)′ > 0,

(∆z)3(v, t) = −C, (∆τ)3 = (−C)′ > 0.

In particular A(−v0, t) > B(−v0, t) = C(−v0, t) − ǫ2 and, for fixed t, the functions
A(v, t) and B(v, t) have maxima at −v0 and minima at v0, whereas the function C(v, t)
is constant in v.

A.6.2. We apply a finger move across the area B(v, t), splitting it into two pieces B0(v, t)
and D(v, t) as shown in Figure 7, where B0(v, t) is constant in v:

B0(v, t) = B0(v0, t) = D(v0, t).
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Figure 7. Applying a finger move.
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D

0
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Figure 8. Final step of lower middle piece. The newly introduced area
E(v, t) is everywhere small at this stage.

Consequently, D(v, t) equals B(v, t)− const.

The crossing conditions then read:

(∆z)1 = A−B0 + C −D, (∆τ)1 = (A−B0 + C −D)′ > 0,

(∆z)2 = −B0 + C −D, (∆τ)2 = (−B0 + C −D)′ > 0,

(∆z)3 = −C, (∆τ)3 = (−C)′ > 0,

(∆z)4 = −D, (∆τ)4 = (−D)′ > 0.

A.6.3. We continue the finger move and introduce a new small area E(v, t), as shown
in Figure 8. We have

(∆z)1 = A−B0 + C −D +E, (∆τ)1 = (A−B0 + C −D + E)′ > 0, (A.3)

(∆z)2 = −B0 + C −D + E, (∆τ)2 = (−B0 + C −D + E)′ > 0, (A.4)

(∆z)3 = −C, (∆τ)3 = (−C)′ > 0, (A.5)

(∆z)4 = −D + E, (∆τ)4 = (−D + E)′ > 0, (A.6)

(∆z)5 = −D, (∆τ)5 = (−D)′ > 0. (A.7)
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Figure 9. The cancelling moment.

A.7. The third piece of the immersion. The slices of the third piece will be drawn
in the same way as the slices in Section A.6. We will distinguish small and large defor-
mations, and use ≈t for quantities that are almost constant in time, and ≈(v,t) for those

that are almost constant in both v ∈ Sn−2 and in time. Recall that we wrote ǫ2 for the
height of the smallest Reeb chord, where 0 < ǫ ≪ 1; by a small deformation we mean
one smaller than ǫp for p ≫ 2. For example C(v, t) ≈(v,t) const means that the area
C(v, t) is independent of v and that it has t-derivative of order ǫp, p ≫ 2, with the sign
of the derivative dictated by the crossing conditions.

A.7.1. In the initial phase of the third piece we change the area functions in such a way
that the following conditions are met:

A(v, t)+E(v, t) ≈(v,t) const, B0(v, t) ≈(v,t) const, C(v, t) ≈(v,t) const, D(v, t) ≈t D(v, t′),

where t′ is the starting time. Consider v0 ∈ Sn−2 as above. At −v0, the values of all
area functions stay close to their initial values. At v0, A(v, t) shrinks toward 0 and
E(v, t) grows correspondingly. We choose these functions so that they have exactly two
critical points ±v0. Note that these deformations are compatible with (A.3)–(A.7). At
the point when A(v0, t) = 0 we find that the central slice Reeb chord which corresponds
to a maximum of the function difference determined by the two sheets of the front and
to the double point labeled 1 cancels with the chord cn−2

2 corresponding to the largest
value of (∆z)2. The curve γv0 at the cancelling moment is depicted in Figure 9. Note
that at this point the slice Reeb chord that corresponds to the double point labeled 4
satisfies the following:

(∆z)4(v, t) < E(v0, t)−D(v0, t) ≈t A(v0, t
′)−D(v0, t) < C(v, t), (A.8)

where we recall that C(v, t) ≈(v,t) const and that t′ denotes the initial instance, before we
start shrinking A(v, t), see (i) Step 4. In particular, the Reeb chord of maximal length
is the chord labeled 3 (denoted c3 earlier) of length C(v, t).

A.7.2. In the central region where the Reeb chords cancel, the front of the Lagrangian
slice consists of two function graphs. The level sets of the positive difference of these
function graphs are shown in Figure 10.
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0 0
n−2

n−1

Figure 10. Level sets in the central region near the moment of cancellation.

Figure 11. Placing the minimal length Reeb chord in central position
by an (almost) Hamiltonian deformation.

Recall the consequence of the earlier Bott set up, see (i) Step 4, that the level sets are
transverse to the radial vectors along an Sn−2 surrounding the central region. Thus
isotoping level sets keeping them fixed along the boundary, we see that there exists a
Hamiltonian isotopy which is fixed outside the central region that deforms the Lagrangian
so that the central region appears as shown in Figure 11. Here the slice Reeb chord c02 is
the new central Reeb chord and level sets are everywhere transverse to the radial vector
field. Noting that double points in the central region of the radial slices γv correspond to
tangencies of the level sets and the radial vector field, we find that after this Hamiltonian
deformation, the curves γv are as shown in Figure 12. We take the slices of our exact
Lagrangian to be approximately equal to the instances of this Hamiltonian deformation,
deviating from it slightly in order to ensure that the crossing conditions hold.
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Figure 12. Appearance of the curves γv after c
0
2 became the new central

Reeb chord.

We have the following crossing conditions:

ǫ2 ≈ −β + C −D + E, (∆τ)0 = (−β + C −D + E)′ > 0, (A.9)

(∆z)3 = −C, (∆τ)3 = (−C)′ > 0, (A.10)

(∆z)4 = −D + E, (∆τ)4 = (−D + E)′ > 0, (A.11)

(∆z)5 = −D, (∆τ)5 = (−D)′ > 0. (A.12)

For the deformation described above, the function β(v, t) in Figure 12 has only two
critical points, with maximum value at v0:

β(v0, t) ≈ A(−v0, t) +B0(v0, t) > C(v, t), (A.13)

and minimum value at −v0:

β(−v0, t) ≈ B0(−v0, t) < C(v, t). (A.14)

A.8. The fourth piece of the immersion. We describe the fourth piece in four steps.

A.8.1. We rotate the ends of the curves γv as shown in Figure 13. More precisely, recall
that (r, ρ) 7→ rv + ρw are coordinates on the half plane in which γv lies. Consider an
interval [0, R] and r0 ∈ [0, R] small, such that (i) all curves γv are of standard form
in {(r, ρ) : 0 ≤ r ≤ 2r0}, and (ii) all curves γv are contained in {(r, ρ) : 0 ≤ r ≤ 1

2R}.
Consider a Hamiltonian deformation ψt that is constant in {(r, ρ) : 0 ≤ r ≤ r0}, that
is a π

2 rotation in the region {(r, ρ) : 2r0 ≤ r ≤ 1
2R}, and that is again constant in

{(r, ρ) : 3
4R ≤ r}. The curves γv are then given by small deformations of the curves

ψt ◦γv ; the small deformations shrink the areas C(v, t) and D(v, t), and increase the area
β(v, t), in each case with very small derivative, in order to have the crossing conditions
satisfied.

A.8.2. We shrink the area C(v, t) for v in a certain subset of Sn−2. Recall from Equa-
tions (A.13),(A.14) that the minimum of the function β(v, t) is β(−v0, t) ≈ B0(−v0, t) =
B(v0, t) < C(v, t) whereas its maximum β(v0, t) ≈ B(v0, t) + A(−v0, t) > C(v, t). Con-
sider the subset Q ⊂ Sn−2 where

β(v, t) ≥ C(v, t)−
1

2
ǫ.
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Figure 13. A rotation has been applied.
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Figure 14. Sliding a small area C(v, t).

Over Q we shrink C(v, t) and β(v, t) in such a way that C(v, t) − β(v, t) ≈ const until
C(v, t) = ǫ. Outside a neighborhood of Q we keep C(v, t) at its original size. Note that
outside Q we have

E(v, t) = D(v, t) + β(v, t) − C(v, t) + ǫ2 ≤ D(v, t) − 1
2ǫ+ ǫ2 < D(v, t). (A.15)

A.8.3. We slide C(v, t) out across E(v, t) without creating double points. To see that
this is possible we subdivide into three cases. First, around Q, C(v, t) is small (size
ǫ) compared to E(v, t), which is of (order 1) finite size. In this case there are two
double points created when C(v, t) enters and leaves E(v, t), see Figure 14. The crossing
conditions at the entering crossings read

(∆τ)en = (C̃(v, t) −D(v, t) + E(v, t))′ > 0,

and those at the exiting crossings

(∆τ)ex = (C̃(v, t)−D(v, t))′ > 0,

where 0 < C̃(v, t) < C(v, t) = ǫ. Here we let E(v, t) ≈ const and we let D(v, t) shrink

to keep the above derivative positive. As the total variation of C̃(v, t) (i.e. the total
amount of area transported in and out of E(v, t)) is 2ǫ and since D(v, t) > 2ǫ, D(v, t) is
sufficiently large to keep the derivative positive at all times.
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Figure 15. Sliding a large area C(v, t).
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Figure 16. Final shape of the curves γv.

Second, well outside a neighborhood of Q, C(v, t) is large and there are two double points
throughout the deformation, see Figure 15, where the crossing conditions read

(∆τ)6 = (C̃(v, t)−D(v, t) + Ẽ(v, t))′ > 0,

(∆τ)7 = (−D(v, t) + Ẽ(v, t))′ > 0,

where C̃(v, t) ≈ C(v, t)−const and where 0 ≤ Ẽ(v, t) ≤ E(v, t). Here Ẽ′(v, t) < 0 and we
ensure that the crossing conditions hold by shrinking D(v, t). Since the total variation

of Ẽ(v, t) is at most the area E(v, t) and D(v, t) > E(v, t) in this region, we find that
the crossing condition is met at all times.

Third, in the region where we interpolate between small and large C(v, t), E(v, t) is
already smaller than D(v, t), and the amount of area transported through E(v, t) is
smaller than the corresponding amount described above; hence the necessary crossing
conditions can be arranged by shrinking D(v, t). In conclusion we can thus slide C(v, t)
out for all v.

A.8.4. The final stage of the fourth piece is shown as a Lagrangian slice in Figure 16
and as the corresponding front in Figure 17. The latter serves as the starting point of
the last piece.

A.9. The fifth piece of the immersion. For the fifth, final piece of the immersion,
we return to the front representation. The initial front of the fifth piece is a sphere with
seven Reeb chords, see Figure 17, three that shrink and four that grow. It is the double of
a function graph with critical points as follows: (i) the largest maximum is positive and
shrinking; (ii) there is another positive local maximum that increases; (iii) one positive
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Figure 17. Initial position for the fifth piece.
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Figure 18. Slices passing through the double point.

index n − 2 point increases; (iv) there are two positive index 1 chords, one increasing
and one decreasing; (v) and there are two index 0 chords, one positive increasing and
one negative decreasing.

We pass the decreasing index 1 chord through a double point, making it increasing,
see Figure 18. Then we cancel the two index (0, 1) pairs and the index (n − 1, n − 2)
pair of increasing chords. This leaves us with a standard sphere, with a decreasing slice
Reeb chord corresponding to a maximum, that we cap off with a Lagrangian disk via
a standard Morse modification; see Figure 19. This completes the construction of the
desired exact Lagrangian immersion P → Cn with one double point.
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