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Abstract

It is challenging to obtain online solutions of large-scale integer linear programming (ILP)
problems that occur frequently in slightly different forms during planning for autonomous systems.
We refer to such ILP problems as repeated ILP problems. The branch-and-bound (BAB) algorithm
is commonly used to solve ILP problems, and a significant amount of computation time is expended
in solving numerous relaxed linear programming (LP) problems at the nodes of the BAB trees.
We observe that the relaxed LP problems, both within a particular BAB tree and across multiple
trees for repeated ILP problems, are similar to each other in the sense that they contain almost the
same number of constraints, similar objective function and constraint coefficients, and an identical
number of decision variables. We present a boosting tree-based regression technique for learning
a set of functions that map the objective function and the constraints to the decision variables of
such a system of similar LP problems; this enables us to efficiently infer approximately optimal
solutions of the repeated ILP problems. We provide theoretical performance guarantees on the
predicted values and demonstrate the effectiveness of the algorithm in four representative domains
involving a library of benchmark ILP problems, aircraft carrier deck scheduling, vehicle routing,
and vehicle control.
Keywords: Combinatorial optimization, linear programming, regression, boosting trees, planning

1. Introduction

Combinatorial optimization plays a vital role in many planning problems for autonomous systems
ranging from flexible manufacturing cells to unmanned vehicles. The branch-and-bound (BAB) al-
gorithm is popularly used to solve integer linear programming (ILP) problems that occur frequently
in such optimization problems. Although commercial solvers such as CPLEX and open-source
software libraries like COIN-OR (Lougee-Heimer, 2003) provide efficient implementations, it takes
minutes to hours to compute the solutions of ILP problems involving tens of thousands of decision
variables and comparable number of constraints. Moreover, the solution needs to be recomputed
from scratch even when only a small fraction of the problem data (constraint and objective function
coefficients) change as more information becomes available in uncertain environments. We refer to
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such large-scale ILP problems that arise multiple times in slightly different forms as repeated ILP
problems.

A representative example domain is that of airport operations, where hundreds of flights of many
different types need to take off and land safely every day with as few delays as possible. Each type
of aircraft has a different fuel consumption rate, refueling time, aerial and ground speeds. Since the
airport has a limited number of resources (landing strips, launching zones, parking spots, refueling
stations, crew members to assist in loading and unloading of baggage etc.), a large number of con-
straints are imposed on the system. Planning such an operation can be conveniently posed as an ILP
problem, where the objective is to minimize the disruption in the nominal schedule of each aircraft
while satisfying all the system constraints. An optimum plan can be generated by solving this huge
ILP problem offline using hours of computation. However, the environmental conditions are subject
to frequent but rarely drastic changes. For example, worse weather conditions may render certain
launching zones or landing strips unusable, or increase the fuel burn rates of the aircraft. Mechan-
ical or hydraulic failures in an airborne aircraft may force it to make an emergency landing. In all
such cases, the pre-computed plans cannot be used, and new plans have to be generated on-the-fly.

Since it is not possible to compute exactly optimal plans for quick response to dynamic envi-
ronmental conditions corresponding to repeated ILP problems, we need approximate ILP solvers.
Even though many approximation algorithms and parametric techniques are available in the litera-
ture, they do not specifically leverage the similarity among the repeated ILP problems. Hence, they
cannot quickly estimate near-optimal solutions of problems that are often similar to many other
repeated ILP problems for which optimal solutions have been already computed. Moreover, they
are often designed for a specific class of ILP problems such as routing, packing, or covering. As a
result, they are unable to provide desirable performance for a wide variety of problem domains.

Solving any ILP problem using the BAB algorithm involves solving a large number of relaxed
linear programming (LP) problems at the BAB tree nodes, where both the objective function and
the constraints are linear functions of continuous-valued decision variables that do not have to be
integers. The relaxed LP problems often share multiple common constraints and always contain the
same decision variables. Especially in the case of repeated ILP problems, often the decision vari-
ables do not change, only some of the objective function and constraint coefficient values change,
and a few constraints are added or deleted. Henceforth, we refer to LP problems that contain the
same decision variables, and similar objective function and constraint coefficients with some varia-
tion in the number of equality constraints as a set of similar LP problems.

We observe that the solutions of similar LP problems are usually quite similar themselves in
the sense that most of the optimal decision variable values do not change much from one problem
to another. Since the optimal values lie at the intersection of the active constraints for any LP
problem, our observation indicates that the set of active constraints also do not vary much for similar
LP problems. Hence, there is an opportunity to use supervised learning for inferring the correct
set of active constraints, and consequently the optimal solution, for any new (test) LP problem
by leveraging its similarity with other LP problems present in the training phase. We show that
regression can, indeed, be effectively applied to rapidly estimate the optimal LP solutions instead
of computing them exactly using a standard optimization solver. Thus, this technique provides a
practically useful approach for solving repeated ILP problems online.

More specifically, in this paper, we define the concept of similarity for LP problems and present
a boosting tree-based approach, called the Boost-LP algorithm, to learn a set of regression functions
that map the objective function and constraints to the individual decision variables of similar LP
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problems. We provide absolute performance guarantees in terms of deviations from the optimal
for both the LP problem objective function and the individual decision variable values. We then
use the objective function performance bounds to prune BAB tree paths while solving the overall
ILP problem. We also empirically demonstrate the effectiveness of our algorithm in a collection of
benchmark ILP problems, aircraft carrier deck scheduling, vehicle routing, and some well-studied
vehicle control problems. The algorithm achieves marked computational speed-up (up to 100 times)
as compared to the popular optimization solvers, and obtains promising results with respect to the
quality of the overall ILP solutions as the mean deviations of the predicted objective function values
are not more than 5% from the true optimal.

2. Related Work

Computing approximately optimal solutions of combinatorial optimization problems in general,
and ILP problems in particular, has received a great deal of attention in the literature. The available
techniques can be broadly classified into four categories: machine learning, evolutionary optimiza-
tion, metaheuristics, and multiparametric programming. We now discuss some of the representative
work in each of these categories along with a brief summary of their limitations, and conclude by
outlining the goals of the current research in addressing some of the shortcomings.

Machine learning: Zhang and Dietterich (1996) applied temporal difference learning to job shop
scheduling using a time-delay neural network architecture to learn search heuristics for obtaining
close-to-optimal schedules in shorter periods of time than using the previous non-learned heuris-
tics. However, the factor of improvement in computation speed was relatively modest. Lee et al.
(1997) used decision trees for scheduling release of jobs into the shop floor and a genetic algorithm
(GA) for allocating jobs to the machines and obtained promising results as compared to the con-
ventional single release and allocation approach for 3-7 workstations. Telelis and Stamatopoulos
(2001) applied a kernel regression-supported heuristic methodology in knapsack and set partition-
ing problems and obtained solution qualities of about 60% (measured with respect to the optimal)
for constraint matrices involving up to 6000 rows and 25 columns. Vladušič et al. (2009) employed
locally weighted learning, naı̈ve Bayes, and decision trees for job shop scheduling over heteroge-
nous grid nodes in conjunction with baseline round-robin, random, and FIFO algorithms to obtain
improvements over using the baseline algorithms on their own for tasks involving 1000 jobs. We
can summarize that although machine learning approaches provide a promising research direction,
further work is needed to enhance the computational speed-up factor, and the ability to solve larger-
sized problems involving tens of thousands of decision variables (instead of thousands) for a wide
variety of problem domains.

Evolutionary optimization: Evolutionary techniques have been most popularly used for solving
the class of vehicle routing problems (VRP), where a number of cities must be traversed just once
by one or more vehicles, all of which must return to the originating cities. The optimum solution
is the set of routes that minimizes the total distance traveled. Representative examples include a
genetic algorithm to solve the multi-VRP (involving multiple vehicles) developed in Louis et al.
(1999), an ant colony optimization method to search for multiple routes of the VRP presented in
Bell and McMullen (2004), and a combination of k-means clustering and genetic algorithm to solve
the multi-VRP proposed in Nallusamy et al. (2009). These approaches have had mixed success as
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none of them work uniformly well for problems of varying sizes and types, and the benefit in terms
of computational savings is not that large.

Metaheuristics: Metaheuristic techniques have been widely used to solve a variety of combi-
natorial optimization problems, and the most common technique for ILP problems is known as LP
rounding. Rounding refers to the process of obtaining integral solutions from fractional values of the
decision variables. Rounding techniques can be broadly classified into two types: those that round
variables non-deterministically (known as randomized rounding) and those that perform rounding
deterministically. Within randomized rounding (RR), notable works include the basic approach
proposed in Raghavan and Thompson (1987), Raghavan (1988), and Srinivasan (1999) for packing,
routing, and multicommodity flow problems, the variant developed in Goemans and Williamson
(1994) for the maximum satisfiability problem, and the combination of RR with semidefinite pro-
gramming in Goemans and Williamson (1995) for the maximum cut problem. Other key works
include simultaneously rounding a set of variables in Bertsimas et al. (1999) for the maximum cut
problem, better handling of the equality constraints in Arora et al. (2002) for dense graph problems,
and randomized metarounding in Carr and Vempala (2002) for the multicast congestion problem.
Within deterministic rounding, representative works include iterated rounding in Jain (2001) for the
generalized Steiner network problem, conditional expectation in Chudak and Shmoys (2003) for the
uncapacitated facility location problem, and pipage rounding in Ageev and Sviridenko (2004) for
the maximum coverage problem. We refer the reader to Chapter 7 in Gonzalez (2007) and Chapters
4 and 5 in Williamson and Shmoys (2011) for a much more comprehensive survey of all the avail-
able rounding techniques. Although rounding approaches provide useful performance bounds on
several types of ILP problems, no single approach is found to work well on all types of problems.
Moreover, all of these approaches obtain exactly optimal solutions of LP problems, and, hence, even
though they have polynomial time complexities, they do not provide orders of magnitude reduction
in actual computation times.

Multiparametric programming: Another class of ILP solution techniques that is related to our
work is multiparametric programming. In multiparametric programming, the optimization problem
data are functions of multiple parameters. This technique provides a valuable tool to analyze the
effect of variations in optimization problems that arise due to model uncertainties, and has been
popularly used in the context of process scheduling and model predictive control. The effects of
parameterizing the objective function and the right-hand side of the constraint equations are most
commonly studied in the literature. One of the earliest solution methods was proposed in Gal and
Nedoma (1972), who partitioned the parameter space into critical regions such that there is one op-
timal solution for all the LP problems that are parameterized within each region. Later on, several
approaches have been developed that extend the previous method using, for example, a geometric
representation Adler and Monteiro (1992), a recursive construction of the critical regions Borrelli
et al. (2003), or a linear interpolation based approximate generation of the critical regions Filippi
(2004). With respect to multiparametric ILP problems, Dua and Pistikopoulos (2000) decomposed
the overall problem into a multiparametric LP problem with fixed values of the integer variables
and a mixed ILP with the parameters treated as variables. Li and Ierapetritou (2007) developed an-
other decomposition technique, wherein each sub-problem encodes the information around a given
parameter value and is then solved using a series of multiparametric LP and mixed integer linear or
non-linear programming problems. We refer the interested reader to Pistikopoulos et al. (2007) and
Alessio and Bemporad (2009) for a more thorough survey of other approaches. Even though these
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approaches have been successful where there are uncertainties in the objective function or right-
hand side constraint vector, little work has been done to handle the general case where uncertainties
exist in the left hand side constraint matrix as well. Moreover, the majority of approaches build an
exact representation of the parameter space, which makes solution estimation relatively hard both
in terms of computation time and memory requirements.

Warm starting interior-point solution: A final category of techniques that is quite similar to
our work is warm starting interior-point solutions of LP problems. In this category, the original
instance of an LP problem is solved using any interior-point method, and the perturbed instance of an
identical dimensional problem with slightly different data is then solved using a warm start strategy.
Interior-point iterates of the original problem are used to obtain warm start points for the perturbed
problem, so that the interior-point method is able to compute the solution in fewer iterations as
compared to the case when no prior knowledge is available. Representative works include the least
squares correction and Newton step correction methods presented in Yildirim and Wright (2002) and
Elizabeth and Yildrim (2008), using the l1 penalized forms of the given LP problems in Benson and
Shanno (2007), and creating additional slack variables to define equivalent LP problems in Engau
et al. (2009) and Engau et al. (2010). While all the warm start approaches provide an interesting
research direction to tackle the issue of efficiently solving similar LP problems that we are interested
in, state-of-the-art methods have not yet been found to provide computational gains over competing
methods in large-scale problems involving tens of thousands of decision variables and constraints.

In this paper, we present an alternative regression-based approach that leverages the underlying
structure of the LP problems (the correlation between active constraints and optimal solutions) to
develop performance guarantees that often do not exist for the current techniques. Our approach
is applicable to a wide variety of optimization domains, including routing, scheduling, and control,
unlike most of the existing techniques. It is also found to scale well to large problem domains, again
unlike almost all of the current methods. Furthermore, we obtain more than an order of magnitude
speed-up in computation time while solving new problems instances, which has not been reported
previously to the best of our knowledge. An additional application of our approach to a chance-
constrained optimal control problem with non-convex constraints can be found in Banerjee et al.
(2011).

3. Boost-LP Algorithm

We are interested in developing a regression model of a system of similar linear programming (LP)
problems to predict the solution of any new but similar LP problem. The predicted solutions are
then used directly within the search process (tree nodes) of the branch and bound (BAB) algorithm
to obtain approximate solutions of repeated integer linear programming (ILP) problems efficiently.
The methods for learning the boosting tree based regression model and performing inference over
the learned model are referred to as the Boost-LP Learning and Boost-LP Inference algorithms re-
spectively. While the actual boosting tree model is quite standard with a few modifications, there are
two key novel aspects of the Boost-LP algorithms: a) using a formal definition of similarity metric
to cluster the system of similar LP problems and identify a suitable set of training LP problems
to estimate the optimum solution of test LP problems, and b) exploiting the structure of LP prob-
lems to generate a predictor variable vector that transforms the LP problems to a lower-dimensional
space for the regression model to operate on so as to yield accurate predictions. We begin with the
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similarity clustering operation before formulating the regression problem and then presenting the
boosting tree model and the overall ILP solution procedure.

Throughout the paper, unless otherwise stated, vectors are represented as column matrices, rect-
angular matrices are denoted by capital symbols, indices over rows are written as superscripts,
indices over columns are written as subscripts and denoted by i or o, and indices over elements of
a set (e.g. training set problem instances) are also written as subscripts but denoted by j, k, or w.
If both column index and set element index are associated with a symbol, then the column index is
written before the element index and the two indices are separated by a comma. Thus, xi ∈ < is
the i-th component of the vector x, whereas xi,k denotes a specific value of xi corresponding to the
k-th element of a set.

3.1 Clustering using Similar LP Problems

Any LP problem is represented in the standard form as:

min z = cTx (1)

s. t. Ax = b (2)

x ≥ 0 (3)

where c, x ∈ <n, A ∈ <m,n, b ∈ <m, and each individual equation of the system (2) given by
(ar)Tx = br, 1 ≤ r ≤ m, defines a hyperplane in<n. The constraint matrix,A, constraint vector, b,
and objective function vector, c, are together termed as the data of the LP problem, and x is referred
to as the solution or decision variable vector. The optimum solution is denoted by x∗ and the feasible
region is an affine subspace formed by the intersection of the hyperplanes in <n. An arbitrary
LP problem with less than (or greater than) type inequality constraints and unbounded decision
variables is converted to the standard form by adding (or subtracting) slack (or surplus) variables and
by replacing every unbounded decision variable xi by x+

i −x−i , such that x+
i , x

−
i ≥ 0, respectively.

This conversion implies that the number of constraints is always less than the number of decision
variables for an LP problem in the standard form. Any maximization problem is represented in
minimization form by simply multiplying the objective function vector by -1. An ILP problem has
additional integer restrictions on some or all of the decision variables.

To better understand the various concepts and steps of our approach, we first give an example
of two repeated ILP problems taken from Lee and Mitchell (2001):

ILPE1 : min −13x1 − 8x2 ILPE2 : min −14x1 − 8x2

s. t. x1 + 2x2 + x3 = 10 s. t. x1 + 2x2 + x3 = 10
5x1 + 2x2 + x4 = 20 and 5x1 + 2x2 + x4 = 21
x1, x2, x3, x4 ≥ 0 x1, x2, x3, x4 ≥ 0
x1, x2, x3, x4 are integers x1, x2, x3, x4 are integers.

Solving the LP-relaxations of ILPE1 and ILPE2 without integer restrictions on any of the
decision variables at the root nodes of the respective BAB trees, we obtain [2.5 3.75 0 0]T and
[2.75 3.625 0 0]T as the solution vectors. We then branch both the BAB trees using x1 = 3 and
x1 = 2 as additional constraints. We obtain [3 2.5 2 0]T and [2 4 0 2]T as the solution
vectors in the case of ILPE1 . Let us consider the relaxed LP problem in the right child node as
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our first example problem LPE1 . For ILPE2 , branching at the root node yields [3 3 1 0]T

and [2 4 0 3]T as the solution vectors. We again consider the relaxed LP problem in the right
child node as our other example problem LPE2 . The two example problems are mathematically
represented as:

LPE1 : min −13x1 − 8x2 LPE2 : min −14x1 − 8x2

s. t. x1 + 2x2 + x3 = 10 s. t. x1 + 2x2 + x3 = 10
5x1 + 2x2 + x4 = 20 and 5x1 + 2x2 + x4 = 21
x1 = 2 x1 = 2
x1, x2, x3, x4 ≥ 0 x1, x2, x3, x4 ≥ 0 .

We are now ready to define what we mean by two similar LP problems and show that our example
problems satisfy the criteria.

Definition 1 For a given ξc ∈ (0, 1] and ξA ∈ (0, 1]n+1, two feasible and bounded LP problems,
LP1, with data (A1, b1, c1), m1 constraints, and decision variable vector x ∈ <n, and LP2, with
data (A2, b2, c2), m2 constraints, and the same decision variable vector x, are said to be ξ-similar,
where ξ = [ξc ξTA]T , if

‖c1 − c2‖2
‖c1‖2 + ‖c2‖2 ≤ ξc and (4)

‖ai,1 − ai,2‖2
‖ai,1‖2 + ‖ai,2‖2 ≤ ξi,A, 1 ≤ i ≤ n+ 1 . (5)

Here, ai,q = [a1
i,q, . . . , a

mq

i,q ]T , 1 ≤ q ≤ 2, where ari,q is the element in the r-th row and i-th column
of the augmented constraint matrix [Aq bq]. If m1 6= m2, |m1 −m2| zeros are appended to either
ai,1 or ai,2 to make their dimensions equal.

As the above definition requires that any two ξ-similar LP problems must have the same decision
variables, both the slack/surplus variables and the originally unbounded decision variables must be
identical for the two problems under consideration. Hence, the two LP problems must have the
same number of inequality constraints when they are represented arbitrarily. The number of equality
constraints can, however, be different in the arbitrary representation, and, thus, the total number of
constraints may be different when the problems are written in the standard form.

We use the column vectors of the augmented constraint matrices comprising of the ith coeffi-
cients of all the constraints in the two LP problems that are denoted by ai,1 and ai,2, respectively,
to make the dimensionality of the similarity vector ξA constant and equal to n+ 1. The alternative
choice of the rows of the augmented matrices, i.e. the individual constraints of the two problems
denoted by ar1 and ar2, respectively, causes issues when m1 6= m2. Although we can still compute
ξA by discarding the extra |m1−m2| constraints, the extra constraints may significantly modify the
feasible region and consequently the optimal solution of the corresponding LP problem, resulting
in dissimilar problems being incorrectly labeled as ξ-similar.

Note that the constraints are always specified in the same order for the LP problems in the
BAB tree nodes of our repeated ILP problems. This allows us to compute the shortest L2 distance
between every pair of ai,1 and ai,2. For a more general training set of ξ-similar LP problems, we
would need to explicitly find the best matching of the constraints, possibly using some variant of
the well-known Hungarian algorithm with the L2 distance as the cost.
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Figure 1: Schematic illustration of ξ-similar LP problems that have a common feasible region and
identical optimal solutions

Let us select ξc = 0.1 and ξA = [0.1 0.1 0.1 0.1 0.1]T . Following the notation in
Definition 1, we can write c1 = [13 8]T , c2 = [14 8]T . The augmented constraint matri-

ces for LPE1 and LPE2 are equal to

1 2 1 0 10
5 2 0 1 20
1 0 0 0 2

 and

1 2 1 0 10
5 2 0 1 21
1 0 0 0 2

 respectively.

We then apply (4) and (5) to get ‖c1−c2‖2
‖c1‖2+‖c2‖2 = 0.0319, ‖ai,1−ai,2‖2

‖ai,1‖2+‖ai,2‖2 = 0, i = 1, . . . , 4, and
‖a5,1−a5,2‖2
‖a5,1‖2+‖a5,2‖2 = 0.0218. Thus, we conclude that LPE1 and LPE2 are ξ-similar. Figure 1 shows
the geometric representation of LPE1 and LPE2 , and illustrates our notion of similarity. The arrows
originating from the constant objective function value lines show the directions along which the
lines need to be translated so as to optimize the problems within the feasible regions. The feasible
regions and optimal solutions are identical (or nearly identical in other cases) for the ξ-similar LP
problems, as the constraint and objective function coefficients are very close in terms of Euclidean
distances. We now extend the concept of ξ-similar LP problems to first define a ξ-similar LP prob-
lem set and then a ξ-similar LP problem space, both of which are used in the Boost-LP Learning
algorithm to generate a suitable training set.
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Definition 2 For a given ξ and a finite collection of LP problems LP f , the ξ-similar LP problem set
LP s is defined as a subset of LP f such that every problem ∈ LP s has the same decision variable
vector, and LPj1 ∈ LP s is ξ-similar to at least one other LPj2 ∈ LP s, j1 6= j2.

This set is represented as a collection of clusters, which are themselves sets, such that all the LP
problems belonging to a cluster are pairwise ξ-similar to each other. We refer to each such cluster
as a ξ-similar LP problem cluster. With respect to the BAB trees of the repeated ILP problems that
we want to solve efficiently, every cluster consists of the relaxed LP problems along the branches
formed by imposing identical or nearly-identical constraints on parent LP problems that are them-
selves ξ-similar. For example, LPE1 and LPE2 are both constructed by branching the root nodes
of the respective trees by enforcing the additional x1 = 2 constraint, and are, thus, ξ-similar. The
ξ-similar LP problems can also comprise of neighboring sibling nodes, or even parent and child
nodes in the nearby levels in large trees, where the variations in the constraints involving a few of
the decision variables are small enough to satisfy the overall similarity criteria.

Definition 3 For a given ξ-similar LP problem set LP s of cardinality N , the ξ-similar LP problem
space (F s, Cs) is defined as a subset of <n × <n, where F s is the union of the feasible regions
of all the LP problems present in LP s, and Cs is given by [c1,min, c1,max] × . . . × [cn,min, cn,max].
Here, ci denotes the i-th component of the objective function vector c, and ci,min(max) is equal to
min(max){ci,1, . . . , ci,N}. LP s is then referred to as the member set of (F s, Cs).

The union operation defines a combined feasible region F s that contains the optimal solutions
of all the member set LP problems even though portions of it may be infeasible for particular LP
problems. Similarly, a combined objective function space is performed by taking the Cartesian
product of n 1-dimensional spaces defined by the lower and upper bounds of the elements of the c
vector.

The geometric representation of a ξ-similar LP problem space is shown in Figure 2. The member
space contains two ξ-similar LP problem clusters. The first cluster consists of LPE1 and LPE2 . The
second cluster contains two other problems, LPE3 and LPE4 , with a common objective function
and sets of constraints that are significantly different from the objective functions and the constraints
present in LPE1 and LPE2 . The optimal solutions and feasible regions vary significantly among the
problems in the different clusters. This shows the usefulness of our definition, which enables us to
simultaneously group LP problems that are ξ-similar to each other but not to the rest in separate
clusters, and yet define an overall mapping space for regression functions to operate on. We now
use this concept to characterize any LP problem that need not be an element of the member set but
belongs to this problem space. Such LP problems form our test cases, for which we infer solutions
using the Boost-LP Inference algorithm. We use the ξ-similar LP problem clusters to aid us in
obtaining near-optimal solutions for test problems by identifying only the ξ-similar member set
problems that should be used in prediction.

Definition 4 Any LP problem is said to belong to a ξ-similar LP problem space (F s, Cs), if it is
ξ-similar to all the problems in one of the clusters of the member set of (F s, Cs), its feasible region
has a non-empty intersection with F s, and the point defined by its objective function vector lies
inside Cs.

The condition of non-empty intersection of the feasible region of the LP problem under con-
sideration with F s is required to exclude pathological LP problems where the feasible regions lie
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Figure 2: Schematic illustration of the member set of ξ-similar LP problem space consisting of
four LP problems. LPE1 and LPE2 form one ξ-similar LP problem cluster, and LPE3

and LPE4 form the other cluster

completely outside of, but close enough to F s, so that we cannot estimate any feasible solution
based upon the existing training data even though ξ-similarity still holds for any small non-zero
value of the ξ vector components. The other requirement of the location of the objective function
vector inside Cs arises due to the fact that all the components of c are used in constructing the pre-
dictor variable vector of the regression model (as explained in Section 3.2.1), and, hence, we cannot
use outlier values to query the model to estimate a solution.

We can now begin explaining how to use a given training set of N feasible and bounded LP
problems and their optimal solutions to predict the unknown optimum solution of any arbitrary test
LP problem. The training set problems are first arranged into a ξ-similar LP problem set LP s using
a minimum linkage clustering algorithm. Every problem is first considered as an individual cluster
and the cluster pairs are then hierarchically merged using the minimum ξ-similarity based distance
(Definition 1) between any two elements in the two clusters. We discard all the problems that are
not member elements of one of the ξ-similar problem clusters. This clustered training set forms the
member set of a ξ-similar LP problem space (F s, Cs). (Ak, bk, ck) represents the data of the k-th
LP problem, LPk ∈ LP s, such that ck, x ∈ <n, Ak ∈ <mk,n, and bk ∈ <mk ∀k. LP s is then used
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to formulate the regression problem as described in Section 3.2, and learn the boosting tree-based
regression models as detailed in Section 3.3. For inference, we first verify that the test LP problem
belongs to (F s, Cs) but is not identical to any of the problems present in LP s before applying a
suitable form of the regression predictor vector and the learned boosting tree models to estimate the
optimum solution.

3.2 Regression Formulation

The Boost-LP Learning algorithm outputs a set of n regressor functions, each of which is a map-
ping of the form fi : (F s, Cs) → <, which is then used by the Boost-LP Inference algorithm to
estimate the optimum x for any test LP problem. Each regressor function requires a predictor vari-
able vector denoted by v, and a scalar response variable represented by y. Thus, we want to learn
fi : v 7→ yi, 1 ≤ i ≤ n, where v is identical for all fi, and yi = xi for every fi. A separate regressor
function is used for inferring each component of x to avoid the sample complexity associated with
learning multiple response variables simultaneously. The inter-dependence of the decision variables
is captured by incorporating the problem constraints in the predictor variable vector and by intro-
ducing the penalization loss function (discussed in section 3.3). The optimum decision variable
value, x∗i , acts as the training set response variable for the corresponding function fi.

Constructing the predictor variable vector is significantly more challenging for both training
and test problems. The challenges arise from the facts that a) we only want to retain those useful
problem data (constraint and objective function coefficients) that result in certain feasible solutions
becoming optimal, and b) the vector is reasonably compact and its size is independent of the number
of training and test LP problem constraints. We devote the rest of this sub-section to explain our
construction procedure that address these challenges.

3.2.1 PREDICTOR VARIABLE VECTOR CONSTRUCTION METHOD

A naı̈ve way to generate the predictor variable vector is to include all the elements in Ak, bk, and
ck following some sequence. For example, we can construct a predictor vector by concatenation
as [a1

1, . . . , a
1
n, b

1, . . . , amk
1 , . . . , amk

n , bmk , c1, . . . , cn]T . This construction not only results in a very
high-dimensional vector, it can also lead to variable dimensionality for different training set prob-
lems since the number of constraints, mk, may not be the same for all LPk. Adding elements to
make the dimensionality constant leads to two further issues. First, we need a systematic way of
populating these elements. And, second, we cannot handle the scenario where the test problem
results in a higher-dimensional vector than the one generated from the training set. Nevertheless,
some pilot trials were conducted to evaluate the effectiveness of this method without considering
the second issue, either by inserting zeros or random values that lie uniformly within the span of
the coefficients for the additional elements. In both the cases, the regression model performed sig-
nificantly worse than using the v construction procedure discussed below in a scheduling problem
domain (described in section 5.2) with respect to both computation time and solution prediction
accuracy.

Construction of v during learning: To construct a useful representation of v during the training
phase (we describe how to do the same during testing afterwards), we begin from the system of
constraints for the kth training set problem LPk as given by

Akx = bk (6)

11
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where Ak ∈ <mk,n and bk ∈ <mk . From the underlying theory of LP problems, the optimum
solution is given by a basic feasible solution, which always exists for any feasible and bounded
LP problem that is expressed in the standard form. Geometrically, every basic feasible solution
represents a corner or extreme point (vertex) of the feasible region as shown in Figures 1 and 2.
This property of obtaining the basic feasible solution from the system of linear equations defined by
the set of active constraints1is henceforth referred as the simplex property. Accordingly, (6) can be
partitioned as

AB,kxB +ANB,kxNB = bk

where Ak = [AB,k ANB,k], x = [xTB xTNB]T , and xB and xNB refer to the basic and non-
basic solutions, respectively. Thus, the basic solution consists of mk decision variables, whereas
the non-basic solution contains the remaining (n−mk) decision variables. Since the basic solution
is obtained by setting xNB = 0 and then inverting AB,k, it implies that AB,k is of full rank and
consists of a set of linearly independent active constraints. We use this property to construct a
suitable representation of v.

To do so, we first introduce a matrix Ek to transform (6) to a form analogous to its left-inverse
solution2as represented by

dk = (ETk Ak)
−1ETk bk (7)

where Ek ∈ <mk,n should be non-negative to drive every component of dk toward non-negative
values and generate feasible solutions in accordance with (3).

We choose a particular form of Ek that is given by mk rows of n-dimensional unitary vec-
tors3. Mathematically, we represent Ek = {eq1 , . . . , eqmk

}T and Ak as {a1, . . . , amk
}T , where

each eqi ∈ <1,n is a unitary row vector and qi ∈ {1, . . . , n}, 1 ≤ i ≤ mk, denotes the position

of the unity element. Thus, Ek will be of the general form

0 0 1 0 · · · 0
...

...
...

...
. . .

...
0 1 0 0 · · · 0

. We now

enforce a sequence of additional rules to ensure the invertibility of ETk Ak and identify a unique
representation of Ek that uses the simplex property.

• Rule 1: Select qis such that eqia
T
i 6= 0 ∀i. In other words, for any given row of Ek, a unity

element is placed in a column only when the corresponding coefficient in the same row of Ak is
non-zero. This selection ensures that ETk Ak is strongly non-singular when Ak is of full rank and
mk = n as all the determinants of its principal submatrices are non-zero. However, this rule does
not lead to a unique selection of Ek or guarantee non-singularity for the general case of mk < n.

• Rule 2: Select qis such that no column of Ek has more than one unity element and the corre-
sponding coefficient in the same row of Ak is a basic variable at the optimum solution, x∗k that is
known during training. In conjunction with Rule 1, this rule implies that every basic variable at
x∗k is associated with a particular constraint of Ak, referred to as the relevant constraint.

1. Active or tight constraints are those which hold tightly, i. e. become or remain equalities for a given x.
2. We can opt for a form analogous to the right-inverse solution; this does not affect any of our subsequent design

choices or the results presented in this paper.
3. A unitary vector refers to a type of unit vector such that only one of the elements of the vector is unity and the rest

are all zeros. For example, [0 0 1 0] is a 4-dimensional unitary row vector.

12
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After enforcing Rules 1 and 2, if a column of Ek only contains zero elements, it corresponds to
a non-basic variable at x∗k.

• Rule 3: Eliminate all the columns from Ek that only contain zero elements. Also, eliminate
the same constraints from Ak. These elimination operations turn both Ek and Ak into square
matrices of dimensionality mk × mk, where exactly one unity element is present in every row
and column of truncated Ek.

This form of the truncatedEk matrix occurs in the Gauss elimination method of solving a system
of linear equations and is referred as the permutation matrix Pk. It has some useful properties,
notably orthogonality and the effect of permuting the rows and columns of another matrix as a result
of premultiplication and postmultiplication operations, respectively. The truncated form ofAk is the
same as AB,k, which means that the relevant constraints represent the linearly independent active
constraints at x∗k. Transformation (7) then becomes equivalent to

dk = [dTB,k dTNB,k]
T = [[(P Tk AB,k)

−1P Tk ]T 0T ]T bk (8)

where dB,k and dNB,k represent the basic and non-basic partitions of dk corresponding to xB and
xNB at x∗k. Also, dB,k = A−1

B,kbk = x∗B,k as formally proved below in Lemma 5. Observe that,
based on Lemma 5, we no longer need any of the rules to construct dk, and can simply enforce it to
be equal to x∗k. However, this procedure sets the background for constructing the predictor variable
vector for the test LP problems as discussed later in this sub-section.

Lemma 5 dk is equal to the optimum solution x∗k of any training set LP problem LPk if it is chosen
according to Rules 1-3.

Proof
Mathematically, dk = [dTB,k dTNB,k]

T , where all the components of dNB,k are equal to 0 by
construction, and the size of dNB,k is (n−mk). Thus, dNB,k is identical to the non-basic optimum
solution of LPk, x∗NB,k. Now, dB,k is given by (P Tk AB,k)

−1P Tk bk from (8) and, hence, the Lemma
is proved if we can show that dB,k is the same as the basic optimum solution x∗B,k. This follows as

dB,k = A−1
B,k(P

T
k )−1P Tk bk

= A−1
B,k(P

T
k )TP Tk bk from the orthogonality property of the permutation matrix Pk

= A−1
B,k(PkP

T
k )bk

= A−1
B,k(PkP

−1
k )bk again from the orthogonality property of Pk

= A−1
B,kbk = x∗B,k . (9)

Finally, the common predictor variable vector vk for all the regressor functions fi, 1 ≤ i ≤ n,
in a problem LPk is formed by augmenting dk with ck as given by

vk = [d1,k, . . . , dn,k, c1,k, . . . , cn,k]T . (10)

We insert ck in vk so that the regression model would not try to infer optimal solutions (response
variables) using the modeled response variables of training set LP problems with very different
objective functions as compared to the test problem. Note that the size of vk is always constant and
equal to p = 2n for any value of k as both dk and ck ∈ <n.
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Generating additional training data: If the range of di, 1 ≤ i ≤ n, is large in the training data
set, then more problems need to be generated so that additional values of those sparsely distributed
components are used in learning. We first sort all the di,k values in non-decreasing order and check
whether (di,k+1 − di,k), 1 ≤ k ≤ N − 1, is greater than a pre-defined threshold ζi; if yes, we add
a minimum number of problems with uniformly spaced values of di such that (di,k+1 − di,k) ≤
ζi∀k. Henceforth, N refers to the total number of training data samples that includes both the
original and the newly added samples. To generate complete LP problems corresponding to the
newly created di values, we select the average values of the two original points that violated the
threshold condition for all the components of v except di. Although this procedure directly generates
the c vector, it does not yield a solution for A and b. We handle this by selecting the A and P
matrices for the lower di valued point, and then solving for b using (7). Although the user-specified
vector ζ helps us in bounding the approximation errors (shown in section 4) and results in improved
performance (shown in section 5.2), it can potentially lead to a large number of samples. Even
otherwise, acquiring sufficient amount of training data to guarantee good quality of the estimated
solutions is time-consuming. We briefly discuss this as a part of future work in section 6 since
addressing it is beyond the scope of the current work.

Construction of v during inference: As discussed earlier during the training phase construction,
the main motivation is to come up with a compact form of constant sized predictor vector v that
leverages the simplex property of LP problems. This motivation led to a series of rules to identify
a suitable form of the square permutation matrix P with dimensionality equal to the number of
problem constraints, and consequently the number of basic solution variables. We now adopt a
similar procedure to compute v for the test LP problem LPte with constraint matrix Ate, constraint
vector bte, and objective function cte.

Since optimum x, x∗te, and the set of basic variables at x∗te are unknown for LPte, we can apply
Rules 1 and 3 but not Rule 2. Hence, we enforce the following sequence of rules in addition to
Rules 1 and 3 to compute Pte and the resultant dte for the test LP problem.

• Rule 2a: (Applied in place of Rule 2): Select the columns of Pte that correspond to non-zero
coefficients of the non-slack and non-surplus decision variables in the same rows of Ate as the
candidate locations of the unity elements qis. Furthermore, select qis such that no column of Pte
has more than one unity element.

Rules 1 and 2 imply that every row of Pte, and, as a result, every row of Ate is associated
with a unique non-slack or non-surplus decision variable. As before, the constraint associated with
any decision variable is termed as a relevant constraint. While training, the relevant constraints are
identical to the set of linearly independent active constraints at optimum x leading to Lemma 5, the
objective here is to select the relevant constraints to be as close as possible to the active constraints
at x∗te to obtain a useful form of dte , and correspondingly an accurate estimate of x∗te. The selection
is based on the observation that some of the non-slack and non-surplus variables must belong to the
basic solution set at x∗te.

Depending on the number of test problem constraints mte and the total number of non-slack
and surplus variables that satisfy Rule 1 (termed as candidate variables) nNS , two cases arise that
require different qi selection procedures:

• Case 1: mte = nNS : Selection is straightforward here as every candidate variable can be
associated with a particular row of Pte. We retain all possible Ptes for varying choices of qis.
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• Case 2: mte 6= nNS : Selection is more challenging here as we need to either exclude some
candidate variables when mte < nNS or include some slack or surplus variables that satisfy
Rule 1 when mte > nNS . If variables have to excluded, we select them randomly from the
list of variables that are not present in the union of the basic variables at the optimal solutions
of the training LP problems that are ξ-similar to LPte, LP ste. If additional variables have to be
included, we choose them randomly from the intersection of the basic variables at the optimal
solutions of the problems present in LP ste. Once the required number of candidate variables
have been excluded or included, as in the previous case, we retain all possible choices of Pte.

• Rule 4: (Applied after Rules 1-3): Partition dte into potential basic and non-basic sets as dte =
[dTB,te dTNB,te]

T , where dB,te ∈ <mte and dNB,te ∈ <n−mte . All the components of dNB,te are
set to 0, and the constraint dB,te ≥ 0 is imposed to ensure feasibility from (3). Compute the set
of all potential dB,te using the set of previously computed Pte analogous to (8) as

dB,te = (P TteAB,te)
−1P Ttebte .

• Rule 5: Choose a particular dte from the potential set obtained after applying Rules 1-4 to mini-
mize the following distance function

Dte =
∑

LPtr∈LP s
te

‖dte − x∗tr‖2 (11)

where x∗tr is the optimum solution of the training problem LPtr.

Rule 5 is based on the observation that the optimal solutions of ξ-similar problems lie close to
each other in F s (shown in Figures 1 and 2). Thus, dte that is closest to the optimal solutions of
problems belonging to LP str is going to be equal or almost-equal to x∗te. We minimize the L2 norm
instead of a ξ-similarity metric-based distance as we want to find an estimated solution that lies close
to x∗te in the Euclidean distance sense. ξ-similarity is, however, used within the distance function to
assist in identifying a suitable choice of dte among multiple feasible options. The overall predictor
vector for the test LP problem, vte, is then constructed analogous to (10) as vte = [dTte cTte]

T . All
the steps for constructing vte are stated formally in Algorithm 1.

Figure 3 depicts the geometric representation of a test LP problem that is ξ-similar to the second
cluster but not to the first cluster of the ξ-similar LP problem space shown in Figure 2. The linearly
independent active constraints that generate the optimum solution for the test problem are the per-
turbed forms of the active constraints of the ξ-similar training set problems. The above-mentioned
rules enable us to correctly identify the active constraints as the relevant constraints, which makes
d identical to the unknown optimum solution. Even though this is not necessarily true (otherwise
there would not be any need for learning at all), the constructed d mostly yields feasible solutions
that lie close to the optimal. The benefit of our construction procedure in obtaining low prediction
error bounds is formalized in section 4 by utilizing the properties of LP problems, definitions of
ξ-similarity, choice of the regression distance function, and well-known principles of linear algebra.

3.3 Boosting Tree Models

Given a procedure for transforming an LP problem into a form given by the predictor variable vector
v that permits mapping of the problem data directly to the predicted optimal values of the decision

15



BANERJEE AND ROY

Input: A member set LP s of ξ-similar LP problem space (F s, Cs) with known optimal solutions x∗ and
basic solutions set at x∗ of each of the LP problems, a test LP problem LPte with data (Ate, bte, cte)
that is not an element of any of the clusters of LP s but belongs to (F s, Cs), and similarity metric ξ.

Output: Predictor vector vte that can be fed to a regression model to infer an approximately optimum
solution of LPte.

1: Initialize Pte ← 0mte,n, where mte and n are the number of rows and columns in the constraint matrix
Ate respectively.

2: Initialize candidate set P c ← φ and the cardinality of P c, N c ← 0.
3: Identify the ξ-similar LP problem cluster, LP s

te ⊆ LP s, for LPte by checking whether LPte and any
element of each cluster of LP s are ξ-similar using Definition 1. Stop as soon as ξ-similarity is found
for the first time as all the ξ-similar problems are included in the same cluster.

4: Populate P c and using the procedures described in Case 1 and Case 2 in section 3.2.1.
5: hmin ←∞.
6: for k = 1 to N c do
7: dk ← [dT

B,k dT
N,k]T , where dB,k ← [(PT

k Ate)−1PT
k bte] and dN,k ← 0n−mte,1.

8: if dB,k ≥ 0 then
9: hk ←

∑
LPtr∈LP s

te
‖dk − x∗tr‖2, where x∗tr is the optimum solution of training LP Problem LPtr.

10: if hk < hmin then
11: hmin ← hk and dte ← dk.
12: end if
13: end if
14: end for
15: Construct vte ← [dT

te cTte]T .

Algorithm 1: Test LP Problem Predictor Variable Vector Construction

variables, we now learn regression models for a set of ξ-similar transformed LP problems. We mod-
ify the gradient boosting tree algorithm (Hastie et al., 2008) to learn a regressor function separately
for every decision variable. Boosting trees are chosen as they provide adequate representational
power due to the generalized additive form, have proved successful in several practical large-scale
applications, and give a compact model that permits efficient querying operations. The boosting
tree algorithm iteratively constructs a pre-defined number of regression trees, where each regres-
sion tree performs binary partitioning of the v-space to create mutually exclusive regions at the leaf
nodes. Each region models the response variable using a constant value. At every partitioning step,
a particular predictor variable is chosen as the splitting variable, such that creating two child regions
using a splitting variable value greedily minimizes the error in estimating the response variable y
based on the currently constructed model.

The regressor function is then represented as a sum of W binary trees T (v; Θw), each of which
is given by

T (v; Θw) =
J∑
j=1

γj,wI(v ∈ Rj,w)

where Θw = {Rj,w, γj,w} encodes the data of the w-th regression tree having terminal regionsRj,w
and modeling variables γj,w, j = 1, . . . , J . The indicator function I is defined as

I(v ∈ Rj,w) =

{
1 if v ∈ Rj,w,
0 otherwise.
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Figure 3: Schematic illustration of identifying relevant constraints to generate a suitable d vector
for predicting the optimum solution of a test LP problem that belongs to a ξ-similar LP
problem space whose member set comprises of the training set LP problems

The regressor function fi for estimating the optimum value of any decision variable xi is written in
an iterative form as

fi,w(v) = fi,w−1(v) + ν
J∑
j=1

γj,wI(v ∈ Rj,w), w = 1, . . . ,W (12)

where ν ∈ (0, 1) is the shrinkage parameter that controls the learning rate; the modeling variable is
given by

γj,w = arg min
γ

∑
vk∈Rj,w

L(yk, fi,w−1(vk) + γ); yk = x∗i,k .

Here, L(y, f(v)) denotes any of the standard loss functions, such as L2 or the squared-error loss,
L1 or the absolute-error loss, or the more robust Huber loss LH (Hastie et al., 2008)

LH =

{
[y − f(v)]2, if |y − f(v)| ≤ δ,
2δ(|y − f(v)| − δ2), otherwise.

(13)
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Further details on how to obtain the child nodes from the internal parent nodes are provided in
Appendix A. The Boost-LP Inference algorithm simply selects the γ value stored in the terminal
region corresponding to the location of the point defined by the predictor vector of the test LP
problem as the estimated optimum value of xi.

In the Boost-LP Learning algorithm, we restrict ourselves to modeling only the response vari-
ables of ξ-similar LP problems within any terminal region Rj,w. We also consider a modified form
of the standard loss functions that heavily penalizes selection of any γj,w value that lies outside the
common feasible region of all the ξ-similar LP problems for which the predictor vectors v lie in
Rj,w. We refer to this modified loss function as the penalization loss Lp and represent it as

Lp = L(y, f(v)) + τI(y 6∈ Pc). (14)

Here, τ is a very large positive number and Pc is the common (intersecting) feasible region of all the
ξ-similar LP problems whose v ∈ Rj,w. Although this modification cannot guarantee generation of
feasible solution for any test LP problem that has a bounded feasible region, it significantly increases
the possibility of doing so (shown in section 5.2).

Table 1: Cross-validation error (in %) using different regression approaches.

Approach
Loss function

L2 L1 LH Lp
Ridge4 10.4 11.1 10.9 11.5
Polynomial 7.9 8.2 8.0 8.3
SVM + ridge5 10.5 11.1 10.8 11.4
SVM + polynomial 8.0 8.2 8.1 8.3
Nearest neighbor 4.9 5.2 5.1 5.4
Boosting tree 1.9 2.2 2.1 2.3

Table 1 presents a comparison of the average (taken over all the response variables) cross-
validation error in predicting the solutions of all the relaxed LP problems in the BAB nodes of
the ILP problem instances corresponding to a repeated scheduling problem described later in sec-
tion 5.2. 16 ILP problem instances are used for training, and 4 new instances are used for testing
purposes. The objective function and constraint matrix remain the same in all the problem instances,
and only the constraint vector differs from one instance to the other.

The ridge, polynomial (quadratic), and support vector machine (SVM) regression methods did
not utilize the similarity based clustering of the training set LP problems but followed an identical
predictor vector generation procedure as the boosting tree model. On the other hand, the nearest
neighbor approach used a variant of the standard k-nn estimation model with equal weights given to
all the neighbors, wherein k was selected at inference time as the cardinality of the set of training LP
problems that were ξ-similar to the test problem under consideration. Thus, it did not require any
predictor vector construction and estimated the optimal solutions directly by averaging the optimal
solutions of all the ξ-similar training set problems. Since our boosting tree regression outperforms

4. Even though, strictly speaking, ridge regression uses an L2 loss function, we tested all the loss functions for the sake
of consistent comparisons. L2 regularization is used regardless of the loss function form.

5. The SVM + ridge approach uses a linear kernel.

18



LEARNING SOLUTIONS OF SIMILAR LP PROBLEMS

all the other regression approaches regardless of the form of the loss function, we conclude that
both similarity based clustering and generation of a compact predictor vector by leveraging the sim-
plex property of LP problems are important. While using just clustering without problem structure
exploitation yields better results than using problem structure without clustering, it often results in
infeasible solutions as demonstrated later in section 5.1.

3.4 ILP Solution Approach

There are three salient characteristics of the Boost-LP Inference approach that uses the inferred so-
lutions of the relaxed LP problems at the nodes of the BAB tree to solve the repeated ILP problem(s)
which we are interested in. These characteristics are listed as follows:

• The LP solution absolute error bound (derived later in section 4.2) is added to the incumbent
(current best) solution for pruning the BAB tree paths. Mathematically, it implies that we
fathom any node where the estimated objective function ze satisfies the condition ze ≥ zinc+
εLP , where zinc is the current best or the incumbent solution and εLP is the absolute error
bound. This a conservative pruning process that ensures that no potentially promising path,
which might yield a better solution, is discarded at the cost of exploring some paths which
may result in sub-optimal solutions.

• Fractional solutions are rounded off to the nearest greater or lower-valued integers if they lie
within certain user-defined threshold values. Thus, if dxei e − xei ≤ δu, we set xei = dxei e, and
if xei − bxei c ≤ δl, we set xei = bxei c, where xei is the estimated optimum value of the i-th
component of the decision variable vector. This rounding is done to account for some of the
estimation errors and prevent unnecessary branching from the BAB nodes.

• Many BAB tree nodes generate infeasible or unbounded solutions for the corresponding LP
problems. Since the Boost-LP algorithm cannot directly detect such cases as it has no explicit
notion of any feasible region, it treats a solution as infeasible or unbounded if the correspond-
ing LP problem does not belong to (F s, Cs) or if the estimated solution satisfies the condition
ze < zemin − εLP . Here, zemin represents the estimated solution of the LP problem at the root
node, which is theoretically the minimum possible value for all the LP problems in the BAB
tree. As the algorithm cannot ensure that the estimated values lie within the feasible region for
problems even where feasible and bounded solutions do exist, it checks whether the estimated
solution satisfies all the constraints for the problems that do not satisfy the above-mentioned
conditions. If constraint violations are detected, the predicted values are discarded and the LP
problem is solved using any standard optimizer.

3.5 Overall Algorithms

Algorithm tables 2 and 3 present the Boost-LP Learning and Boost-LP Inference algorithms by
summarizing the various steps described earlier in this section.

4. Theoretical Results

In this section, we present an absolute performance guarantee on the test LP problem objective func-
tion in the form of Theorem 12. This result is obtained by using the Cauchy-Schwarz inequality and

19



BANERJEE AND ROY

Input: A set of N feasible and bounded LP problems LP s, where all the problems are expressed in the
standard form and contain identical decision variables ∈ <n, the optimal solutions x∗ of all the
problems, similarity metric ξ, threshold vector ζ, Huber loss function parameter δ, number of regression
trees W , number of leaf nodes in each tree J , shrinkage parameter ν, and penalization loss parameter τ .

Output: A member set of ξ-similar LP problem space (F s, Cs), a set of n regression functions that map
from (F s, Cs) to <, and the LP objective function absolute error bound εLP , or an error message that a
ξ-similar LP problem set cannot be created.

1: Update LP s and N by discarding the LP problems that do not form a ξ-similar LP problem set
according to Definitions 1 and 2.

2: if LP s = φ then
3: Generate the error message and terminate.
4: else
5: Create the ξ-similar LP problem space (F s, Cs) by considering LP s as the member set using

Definition 3.
6: end if
7: for k = 1 to N do
8: Generate the predictor vector vk = [(x∗k)T cTk ]T , where any problem LPk ∈ LP s has data

(Ak, bk, ck) and optimum solution x∗k.
9: end for

10: for i = 1 to n do
11: Sort {x∗i,1, . . . , x∗i,N} in non-decreasing order.
12: for k = 1 to N − 1 do
13: if (x∗i,k+1 − x∗i,k) > ζi then
14: Construct additional training set LP problems following the steps described in section 3.2.1,

update LP s, (F s, Cs) and N accordingly, and construct vk for the newly-added problems.
15: end if
16: end for
17: end for
18: for i = 1 to n do
19: for k = 1 to N do
20: Obtain the response variable yk = x∗i,k.
21: end for
22: Use vk, yk∀k and the parameters W , J , ν, δ, and τ to generate the regression function fi that maps

from (F s, Cs) to < following the procedure described in section 3.3. Also compute the absolute
error bound for xi as given by (28).

23: end for
24: Compute the LP objective function error bound εLP using (30).

Algorithm 2: Boost-LP Learning

the formula for the outer radius of the hyperbox created by boosting trees in the predictor variable
vector (v) space. The hyperbox arrangement is formally stated in Lemma 8 and relies on a useful
form of v that is specified in Lemma 5. The dimensions of the box are bounded by the prediction
errors for the individual decision variables. This error is derived in Lemma 11 and depends on
whether the variable is labeled as basic or non-basic. The error terms have four components. The
first component is obtained in Lemma 10 based upon our choice of v that uses Rule 5. The second
component represents the error introduced in predicting the test LP problem solution by using ξ-
similar (not identical) training set LP problems, again using our particular form of v based on Rules
1-4; it is specified in Lemma 9. The third component depends on the complexity of the boosting tree
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Input: A member set of ξ-similar LP problem space (F s, Cs), a set of n regression functions that map
from (F s, Cs) to <, the LP objective function absolute error bound εLP , similarity metric ξ, threshold
parameters for rounding off fractional values δu and δl, and a repeated ILP problem with unknown
optimum solution that has not been used to generate the member set.

Output: An approximate solution of the given ILP problem.
1: Follow the BAB algorithm to construct a tree, where each node represents a relaxed LP version of the

given ILP problem, branch from existing nodes to create child nodes, and fathom nodes when the paths
are guaranteed to not yield any solution that is better than the incumbent.

2: Instead of solving any of the relaxed LP problems optimally using a standard solver, set the estimated
solution vector xe

te ← φ and estimated objective function ze
te ← −∞.

3: while ze
te = −∞ do

4: if LPte does not belong to (F s, Cs) from Definition 4 then
5: ze ←∞.
6: else
7: Construct the predictor variable vector vte for the corresponding LP problem LPte with data

(Ate, bte, cte) using Algorithm 1 and the similarity metric ξ.
8: for i = 1 to n do
9: Use the regression function fi and vte to infer an approximate solution xe

i,te.
10: end for
11: ze

te ← cTtex
e
te.

12: end if
13: end while
14: Use the characteristics described in section 3.4 and the input parameters εLP , δu, and δl to modify the

bounding step in the BAB algorithm, make certain fractional values integers, and handle infeasiblity of
estimated solutions for feasible and bounded LP problems.

Algorithm 3: Boost-LP Inference

model and the last component is the user-specified vector ζ that is discussed in section 3.2. Both of
these are used in Lemma 11. We begin by defining and presenting the formula for outer radius of a
hyperbox.

Definition 6 The outer j-radiusRj of a p-dimensional convex polytope P is defined as the radius of
the smallest j-dimensional ball containing the projection of P onto all the j-dimensional subspaces,
whereby the value of Rj is obtained by minimizing over all the subspaces. Note that Rp is the usual
outer radius or circumradius.

Remark 7 Let B be a p-dimensional box (or p-box) in Euclidean space Ep with dimensions 2r1 ×
2r2 × . . .× 2rp, such that {x ∈ Ep | −ri ≤ xi ≤ ri, i = 1, . . . , p}. It can be assumed without any
loss of generality that 0 < r1 ≤ r2 ≤ . . . ≤ rp. Then Rj is simply given by Brandenberg (2005) as

Rj =
√
r21 + . . .+ r2j . (15)

4.1 Relations between Predictor Variable Vectors and Optimal Solutions

We first present a lemma that formalizes the hyperbox arrangement generated by boosting trees.
This is used in deriving the performance guarantees for the test LP problem decision variables and
objective function in Lemma 11 and Theorem 12 respectively.
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Lemma 8 Boosting trees transform the LP problems present in the training data set to an arrange-
ment of p-dimensional, axis-aligned boxes.

Proof
We have

0 ≤ dk <∞, 1 ≤ k ≤ N (16)

where N is the training data set size. The LHS inequality in (16) follows from Lemma 5 and (3),
while the RHS inequality is obtained from Lemma 5 and the fact that the decision variables cannot
assume infinite values that result in unbounded LP solutions (from (1)). Thus, the irregularly-shaped
convex polytopes that represent the feasible regions of the LP problems are transformed into axis-
aligned boxes in the completely positive 2n-ant of the n-dimensional d-space.

The predictor variable vector v of the boosting tree also includes the components of the objec-
tive function vector c. As both the minimum and maximum values of ci must be finite ∀i (infinite
values again lead to unbounded LP solution as given by (1)), c forms another axis-aligned box of
dimensionality n. Thus, the overall v space is also a box B of higher dimensionality p = 2n. Since
each node in a regressor tree is formed by performing binary partitioning of the v space, every ter-
minal tree region corresponds to a p-dimensional box B′ ⊆ B, thereby creating an arrangement of
boxes.

We now present a lemma that provides an upper bound on the absolute difference between any
component of the d vector of the test LP problem and the optimum value of the corresponding
decision variable of a ξ-similar LP problem that belongs to the training data set. This result is used
Lemma 11 to derive the performance bounds for the test problem decision variables.

Lemma 9 A ξ-similar training LP problem (LPtr) exists for any test LP problem (LPte) such that
the maximum value of

∣∣∣di,te − x∗i,tr∣∣∣ , 1 ≤ i ≤ n, is bounded by a constant that depends on the
similarity vector ξA, the data of the training set LP problems, and whether xi,tr and xi,te are basic
or non-basic.

Proof
LPte must be ξ-similar to at least one of the training set LP problems, as otherwise it does

not belong to the ξ-similar LP problem space whose member set is given by the training set (from
Definition 4), and, hence, is not regarded as a test problem at all. Let us denote that ξ-similar
training problem by LPtr6. From (5), using the property ‖ai,te− ai,tr‖2 ≥ |‖ai,te‖2−‖ai,tr‖2|, we
have

|‖ai,te‖2 − ‖ai,tr‖2|
‖ai,te‖2 + ‖ai,tr‖2 ≤ ξi,A .

Therefore, if ‖ai,te‖2 ≥ ‖ai,tr‖2, we get

‖ai,te‖2 − ‖ai,tr‖2 ≤ ξi,A(‖ai,te‖2 + ‖ai,tr‖2)
⇒‖ai,te‖2(1− ξi,A) ≤ ‖ai,tr‖2(1 + ξi,A)

⇒‖ai,te‖2‖ai,tr‖2 ≤
1 + ξi,A
1− ξi,A = ξi,r . (17)
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Alternatively, if ‖ai,te‖2 < ‖ai,tr‖2, we have ‖ai,te‖2
‖ai,tr‖2 ≥ 1

ξi,r
. As ξi,r is always greater than 1 (since

ξi,A ∈ (0, 1] in Definition 1), (17) holds true regardless of whether ‖ai,te‖2 is greater than or less
than ‖ai,tr‖2.

We can then re-write (17) as ∑
j

(aji,te)
2 ≤ ξ2i,r

∑
j

(aji,tr)
2

=
∑
j

(aji,tr + εi,tr)2 (18)

where εi,tr is a small number that is given by one of the solutions of the quadratic equation
∑

j(a
j
i,tr+

εi,tr)2 − ξ2i,r
∑

j(a
j
i,tr)

2 = 0 (see Appendix B for greater details). Now, (18) is satisfied if aji,te ≤
aji,tr+εi,tr∀i, j. So, by selecting εtr = max{ε1,tr, . . . , εn,tr} and a non-negative matrix F ∈ <mte,n

suitably with no element greater than 1, we get

Ate = Atr + εtrF (19)

where only the matched set of constraints are considered in Atr when mtr > mte. By replacing
the i-th column of Ate and Atr with bte and btr, and denoting the resulting matrices by Aite and Aitr
respectively, we have an analogous expression given by

Aite = Aitr + εitrF
i (20)

where εitr = max{ε1,tr, . . . , εi−1,tr, εn+1,tr, εi+1,tr . . . , εn,tr}. Note that (19) and (20) are also valid
for truncated forms of the constraint matrices that only contain the columns corresponding to the
basic solutions.

The deviation between di,te and x∗i,tr can be decomposed into four different cases: first, when the
corresponding decision variable in both di,te and x∗i,tr is either selected by the Rules in section 3.2
or known to be a basic variable, second, when the decision variable is considered to be basic in LPte
but is actually non-basic in LPtr, third, when the decision variable is considered to be non-basic in
LPte but is actually basic in LPtr, and fourth, when the decision variable is non-basic in both LPte
and LPtr. The absolute deviation is exactly given by x∗i,tr in the third case as di,te is equal to 0, and
by 0 in the last case as both di,te and x∗i,tr are equal to 0. Let us now derive the expressions for the
first two cases.

For the first case, we have

∣∣di,te − x∗i,tr∣∣ =

∣∣∣∣∣det(AiH,te)
det(AH,te)

− x∗i,tr
∣∣∣∣∣ from Cramer’s rule (21)

where AH,te denotes the rule-determined truncated A matrix of LPte that gives the non-zero (ex-
pected to be basic at optimum x∗te) components of dte. Combining (21) with (19) and (20), we
get ∣∣di,te − x∗i,tr∣∣ =

∣∣∣∣∣det(AiH,tr + εitrF
i
H)

det(AH,tr + εtrFH)
− x∗i,tr

∣∣∣∣∣
6. If multiple ξ-similar training problems exist, then this lemma holds true for each one of them.
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where F iH and FH represent the truncated forms of F i and F respectively that only contain the
columns corresponding to the rule-determined basic variables. Expanding the determinants using
the property that εitr and εtr are small numbers, we get

∣∣di,te − x∗i,tr∣∣ =

∣∣∣∣∣det(AiH,tr) + det(AiH,tr)tr((AiH,tr)
−1F iH)εitr +O((εitr)

2)
det(AH,tr) + det(AH,tr)tr((AH,tr)−1FH)εtr +O((εtr)2)

− x∗i,tr
∣∣∣∣∣

≤
∣∣∣∣∣det(AiH,tr) + det(AiH,tr)tr((AiH,tr)

−1F iH)εitr
det(AH,tr) + det(AH,tr)tr((AH,tr)−1FH)εtr

− x∗i,tr
∣∣∣∣∣ 7

=

∣∣∣∣∣
(

det(AiH,tr)
det(AH,tr)

)(
1 + tr((AiH,tr)

−1F iH)εitr
1 + tr((AH,tr)−1FH)εtr

)
− x∗i,tr

∣∣∣∣∣ .

Expanding the trace of the product of two matrices as the sum of all the elements constituting
the Hadamard product, we have

∣∣di,te − x∗i,tr∣∣ ≤
∣∣∣∣∣
(

det(AiH,tr)
det(AH,tr)

)(
1 +

∑
k,l a

i,k
l,H,trf

i,l
k,Hε

i
tr

1 +
∑

k,l a
k
l,H,trf

l
k,Hεtr

)
− x∗i,tr

∣∣∣∣∣
where ai,kl,H,tr and akl,H,tr represent the elements in the kth row and lth column of matricesAiH,tr and

AH,tr respectively, and likewise, f i,lk,H and f lk,H denote the elements in the lth row and kth column
of matrices F iH and FH respectively. Therefore,

∣∣di,te − x∗i,tr∣∣ ≤ max

xmax
i,tr

1 +

∣∣∣∣∣∣
∑
k,l

ai,kl,H,trε
i
tr

∣∣∣∣∣∣
− x∗i,tr

 ,
x∗i,tr − xmin

i,tr

 1

1 +
∣∣∣∑k,l a

k
l,H,trεtr

∣∣∣


= Gi,tr(ξi,A, Atr, btr, ctr) (22)

as f i,lk,H , f
l
k,H ∈ [0, 1]∀l, k; xmax

i,tr and xmin
i,tr are the maximum and minimum basic feasible solutions

respectively.
Finally, for the second case, we have

∣∣di,te − x∗i,tr∣∣ ≤
xmax

i,tr

1 +

∣∣∣∣∣∣
∑
k,l

ai,kl,H,trε
i
tr

∣∣∣∣∣∣
 as x∗i,tr = 0 and x ≥ 0 is the feasible region

= Hi,tr(ξi,A, Atr, btr) . (23)

This concludes the proof of the lemma.

We now use the expressions derived in the previous lemma along with Rule 5 to estimate the
number of differently labeled basic and non-basic decision variables since that will govern the test
LP problem objective function estimation error in Theorem 12.

7. This inequality holds as both det(Ai
H,tr) + det(Ai

H,tr)tr((Ai
H,tr)

−1F i
H)εitr ≤ det(AH,tr) +

det(AH,tr)tr((AH,tr)
−1FH)εtr and O((εitr)

2) ≤ O((εtr)
2).
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Lemma 10 Application of Rule 5 yields a minimum number of decision variables nmin
d,B that are

labeled as basic in the test problem LPte and non-basic in a ξ-similar training problem LPtr with
a worst-case value of arg minnd,B

[
∑mte−nd,B

i1=1 (Gi1,max)2 +
∑nd,B

i2=1(Hi2,max)2 +
∑nd,B

i3=1(x∗i3,max)2].
Here mte is the number of constraints in the test problem LPte, LP ste is the set of training set
problems that are ξ-similar to LPte, Gi1,max = max{Gi1,tr|xi1 ∈ xB,te, xB,tr;LPtr ∈ LP ste},
Hi2,max = max{Hi2,tr|xi,2 ∈ xB,te, xNB,tr;LPtr ∈ LP ste}, Gi1,tr and Hi2,tr are obtained from
Lemma 9, and x∗i3,max = max{x∗i3,tr|xi,3 ∈ xNB,te, xB,tr;LPtr ∈ LP ste}. xB,te (xB,tr) and xNB,te
(xNB,tr) denote the set of labeled (known) basic and non-basic variables in LPte (LPtr) respec-
tively.

Proof
According to Rule 5, we select dte that minimizes the sum of L2 distances to the optimal solu-

tions of all the ξ-similar training set LP problems present in the set LP ste. This distance Dte is given
by (11) to be

Dte =
∑

LPtr∈LP s
te

‖dte − x∗tr‖2 =
∑

LPtr∈LP s
te

[
n∑
i=1

∣∣di,te − x∗i,tr∣∣2
] 1

2

≤
∑

LPtr∈LP s
te

[ns,B∑
i1=1

(Gi1,tr)
2 +

nd,B∑
i2=1

(Hi2,tr)
2 +

nd,NB∑
i3=1

(
x∗i3,tr

)2] 1
2

from Lemma 9 (24)

such that ns,B , and nd,NB denote the number of cases where the decision variables are basic in both
LPte and LPtr and non-basic in LPte but basic in LPtr respectively. Note here that nd,NB = nd,B
as the sum of basic and non-basic variables is fixed and equal to n for all the LP problems. Using
this observation and the fact that the total number of basic variables in LPte is equal to the number
of constraints mte, we re-write (24) as

D ≤ N s
te

mte−nd,B∑
i1=1

(Gi1,max)2 +
nd,B∑
i2=1

(Hi2,max)2 +
nd,B∑
i3=1

(
x∗i3,max

)2 1
2

(25)

where N s
te is the cardinality of LP ste. Thus, nd,B is the only variable parameter, and in the worst

case, Rule 5 minimizes the distance given by the RHS of (25) with respect to nd,B . This choice of
nd,B is referred to as nmin

d,B , which is then given by

nmin
d,B = arg min

nd,B

mte−nd,B∑
i1=1

(Gi1,max)2 +
nd,B∑
i2=1

(Hi2,max)2 +
nd,B∑
i3=1

(
x∗i3,max

)2 . (26)

4.2 Performance Bounds

We now combine the results derived in the previous lemmas with some properties of boosting trees
to derive performance bounds for the test LP problem decision variables.
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Lemma 11 If xei denotes the predicted value of x∗i for any test LP problem LPte, then |x∗i − xei | is
bounded by Gi,max + (N −WJ + 1)ζi if xi is labeled as basic when it is also basic in a ξ-similar
training set problem LPtr, Hi,max + (N −WJ + 1)ζi if labeled as basic when it is non-basic in
LPtr, 0 if labeled as non-basic when it is also non-basic in LPtr, and (N − 1)ζi + x∗i,min if labeled
as non-basic when it is basic in LPtr. Here, W and J denote the number of regression trees and
the number of leaf nodes in each regression tree respectively, they are chosen such that N ≥ WJ ,
Gi,max and Hi,max are obtained from Lemma 9 and Lemma 10, ζi is defined in section 3.2.1, and
x∗i,min = min{x∗i,1, . . . , x∗i,N}.

Proof
From (12), it is evident that the maximum error in predicting any x∗i arises when the correspond-

ing v vector lies in a region Rcritj,w such that the worst-case error in predicting the response variable
by a constant value γcritj,w is the highest among all the tree regions. Mathematically,

|x∗i − xei | = |y∗ − fi,W (v)| ≤ |y∗ − γcritj,w | .

Clearly, at least one training data point needs to be present in every tree region. Since the total
number of regions is equal to WJ , in the extreme case it may so happen that (WJ − 1) regions all
have one data point and one region has the remaining (N −WJ + 1) points. Now, the target value
for any training set problem LPk can be either equal to (yk − fi,w(vk)) when the negative gradient
of the L2 loss functional is taken, or it can be equal to ±1 and ±δ when the L1 and Huber loss
functional are used respectively.

Thus, child tree regions are iteratively created to cluster the response variable based on simi-
lar deviations from predictions (γj,w), or similarities in terms of positive and negative deviations
from the predicted values. Hence, it can be concluded that boosting tree always partitions the p-
dimensional v-space into boxes (see Lemma 8) such that the corresponding response variable values
are naturally sorted, although the exact arrangement as well as the constant predicted value inside
a box varies depending upon the nature of the target values. Without any loss of generality, let us
assume that this sorting is in non-decreasing order.

So, if we have a region containing Nj,w = (N −WJ + 1) data points, the algorithm models
yl, . . . , yl+N−WJ response variable values by a single γj,w, where 1 ≤ l ≤ WJ , such that yl ≤
. . . ≤ yl+N−WJ . From Lemma 5, as di,l = yl for any value of l, we have a lower bound on the
value of γcritj,w given by di,l, and an upper bound given by di,l+N−WJ .

On the other hand, the true (optimum) value of the response variable for the test problem LPte
is upper bounded by the maximum value of di,te as dte is obtained by solving the system of linear
equations given by AH,tex = bte, where AH,te contains the mte columns of Ate that correspond to
the basic variables as determined by Rules 1-5. From Lemma 9, there exists a ξ-similar training LP
problem LPtr with optimum solution x∗tr, which sets the maximum value of di,te, given by dmax

i,te

such that

y∗ ≤ dmax
i,te =


Gi,tr + x∗i,tr if xi is basic in both LPte and LPtr
Hi,tr + x∗i,tr if xi is basic in LPte but non-basic in LPtr
0 if xi is non-basic in both LPte and LPtr
0 if xi is non-basic in LPte but basic in LPtr .
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Therefore, for the first case,∣∣y∗ − γcritj,w

∣∣ ≤ Gi,tr + x∗i,tr − di,l
= Gi,tr + di,tr − di,l from Lemma 5

≤ Gi,max + di,l+N−WJ − di,l .

Since, |di,j+1 −di,j | ≤ ζi, 1 ≤ j ≤ N − 1, we have,∣∣y∗ − γcritj,w

∣∣ ≤ Gi,max + (N −WJ + 1)ζi . (27)

The result for the second case follows exactly as before. For the third case, di,j = 0, l ≤ j ≤
l+N −WJ , and the deviation between true and estimated optimum is always equal to 0. However,
for the final case, we have,∣∣y∗ − γcritj,w

∣∣ = γcritj,w as y∗ = 0 for non-basic xi in LPte
≤ di,l+N−WJ

≤ di,N substituting maximum value of l and using motononic arrangement of di
= (di,N − di,1) + di,1

≤ (N − 1)ζi + x∗i,min . (28)

Thus, the lemma follows.

Since Gi,tr ≤ Hi,tr for any training problem LPtr that is ξ-similar to the test problem LPte,
as expected, the error in estimating decision variables is less when it is labeled as a basic variable
in both LPte and LPtr as compared to when it is labeled as basic in LPte and non-basic in LPtr.
Similarly, the estimation error is less when the variable is labeled as non-basic in both the problems
as compared to when it is labeled as non-basic in LPte and basic in LPtr. We finally use all the
previous results to derive the performance guarantee for the test problem objective function.

Theorem 12 If xe denotes the predicted x∗ for any test LP problem LPte such that the objective

function values are given by ze and z∗ respectively, then |z∗ − ze| ≤ ‖c′‖2[
∑mte−nmin

d,B

i1=1 (Gi1,max +

(N−WJ+1)ζi1)2+
∑nmin

d,B

i2=1(Hi2,max+(N−WJ+1)ζi2)2+
∑nmin

d,B

i3=1((N−1)ζi3 +x∗i3,min)2]
1
2 . Here,

W and J denote the number of regression trees and the number of leaf nodes in each regression
tree respectively, and they are chosen such that N ≥ WJ . mte is the number of constraints in
LPte, c′ is the objective function vector of LPte that only contains the coefficients corresponding
to the non-slack and non-surplus variables, and LP ste is the set of training set problems that are
ξ-similar to LPte, xi1 ∈ x′B,te, x

′
B,tr, xi2 ∈ x′B,te, x

′
NB,tr, xi3 ∈ x′NB,te, x

′
B,tr, LPtr ∈ LP ste,

x∗i3,min = min{x∗i3,1, . . . , x∗i3,N}, Gi1,max and Hi2,max are obtained from Lemma 9 and Lemma 10,
nmin
d,B is derived in Lemma 10, and ζ is defined in section 3.2.1. x′B,te (x′B,tr) and x′NB,te (x′NB,tr)

denote the set of non-slack and non-surplus variables that are labeled (known) as basic and non-
basic in LPte (LPtr) respectively.

Proof
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The overall error in predicting the optimum z∗ by ze is given by

|z∗ − ze| = |cTx∗ − cTxe| = |c.(x∗ − xe)| = |c′.(x′∗ − x′e)|

as the coefficients of c corresponding to the slack and surplus variables are equal to 0. x′∗ and x′e

denote the optimal and estimated set of non-slack and non-surplus variables of LPte respectively.
Using Cauchy-Schwarz inequality, the error is bounded by

|z∗ − ze| ≤ ‖c′‖2‖x′∗ − x′e‖2 . (29)

Based upon Lemma 11, if we consider the maximum prediction error for all the components of
x, then we find n number of p-boxes, each constrained only in terms of a particular di corresponding
to xi whose value is being predicted. Thus, the maximum error in predicting the entire vector x
occurs when the generated v lies in Rcritj,w of each individual boosting tree model. So, if we take
the intersection of all the critical regions in v space, we obtain a new p-box Bcrit where all the
components of d must lie within the ranges given by Lemma 11 and c is fixed.

From Definition 4, the outer n-diameter of Bcrit provides an upper bound on the Euclidean
distance between any two n-dimensional points (d in this case) in Bcrit. Using this observation, we
combine (15) with the results obtained in Lemma 10 and Lemma 11, and substitute the value for the
2nd L2 norm in the RHS of (29) to have

|z∗−ze| ≤ 2‖c′‖2[
mte−nmin

d,B∑
i1=1

(
Gi1,max + (N −WJ + 1)ζi1

2

)2

+
nmin

d,B∑
i2=1

(
Hi2,max + (N −WJ + 1)ζi2

2

)2

+
nmin

d,B∑
i3=1

((N − 1)ζi3 + x∗i3,min

2

)2

]
1
2 .

Simplifying the expression, we obtain the final form as

|z∗ − ze| ≤ ‖c′‖2[
mte−nmin

d,B∑
i1=1

(Gi1,max + (N −WJ + 1)ζi1)2

+
nmin

d,B∑
i2=1

(Hi2,max + (N −WJ + 1)ζi2)2 +
nmin

d,B∑
i3=1

(
(N − 1)ζi3 + x∗i3,min

)2]
1
2 . (30)

Clearly, this error bound given by (30) is a function of the training set problem data, extent of
similarity between the test and training set problems, our choice of the boosting tree model, and the
level of discretization adopted to generate the training points. It also depends on the relative number
of decision variables and constraints as a higher difference between the two means that there is
a greater possibility of labeling basic variables differently between the test problem and ξ-similar
training set problems. We use a conservative estimate of the error bound during pruning of BAB
tree nodes to solve the overall ILP problem as mentioned in section 3.4 and report the conservative
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values for the various problem domains in section 5. The estimate is based on the worst-case values
of ‖c‖2 andmte for a given problem domain, and the maximum error due to variation in the selection
of the cluster of training set problems that are ξ-similar to LPte.

We also infer that the performance guarantee can be improved in two ways for a given initial
training set. The guarantee can be improved by building a more complex boosting tree model with
more regression trees (W ), or terminal regions in a tree (J), or both. However, using a complex
model increases the inference time. The other alternative is to select a smaller value of ζi∀i, which
reduces the values of the terms (N −WJ + 1)ζi and (N − 1)ζi even though N increases, such that
the overall LP prediction error is always less than a certain pre-defined value up to a certain limit
defined by Gi,max, Hi,max, x∗i,min, and mte. Although this increases the learning time, inference
time remains unaffected.

5. Experimental Results

We evaluated the performance of the Boost-LP algorithm in four representative problem settings:
a benchmark library, a scheduling domain, a vehicle routing domain, and a vehicle control domain
consisting of multiple problems taken from the robotics literature. The results were obtained on
a Quad-Core Intel Xeon CPU, with a 2.93 GHz processor and 3.8 GB of RAM, in Ubuntu 9.0.4
OS, using C++ as the programming language, and COIN-OR Cbc version 2.0 and IBM ILOG
CPLEX Optimization Solver Academic Edition version 12.2 as the optimization solvers. The default
versions of COIN-OR Cbc and CPLEX were always used, and no problem-specific heuristics or
cutting planes were applied.

With respect to the algorithm parameters, the shrinkage factor, ν, was constantly taken as 0.1, δ
used in the Huber loss function given by (13) was 0.1 times the maximum value of all the response
variables, and the penalization loss function parameter τ was 1e6. We set the rounding parameters,
δu and δl, to be 0.95 and 0.05 respectively. The similarity parameter ξc and all the components
of the similarity vector ξA were chosen as 0.1. Unless otherwise stated, all the components of the
threshold vector ζ were selected to be 0.25 times the range of the corresponding response variable
in the training data set. All the parameter values were chosen by varying them uniformly within
pre-defined intervals that were either obtained from the literature or assumed to span very wide
ranges, and noting the best performance in predicting LP problem solutions using 10-fold cross-
validation. The reported data are the average values taken over all the test problems. Standard
errors are not presented as they are of the order of 0.1% of the average. We do not report the specfic
training times for any of the problems as our aim is solve new instances of repeated ILP problems as
efficiently as possible assuming that sufficient time is available for offline regression model learning.
Nevertheless, it is worth mentioning that the training times are never more than 46 hours, and other
than the hard MIPLIB and large multi-vehicle control problems, always between 2 to 15.5 hours.

In addition to COIN-OR Cbc and CPLEX solvers, we compared the performance of our algo-
rithm against several alternative ILP solution approaches listed below. First, the average optimum
solution of all the training set problems that are ξ-similar to the test problem was selected as a
baseline approach to help in concluding whether the performance benefits are solely due to the use
of similar training problems or depends on our regression method. Note that this baseline method
is identical to the nearest neighbor approach used for the results reported in Table 1. Second, we
adopted the slack method given in Engau et al. (2009) for warm starting an interior-point LP solver
at the BAB tree nodes using, (a) the training set problem that is most ξ-similar (closest) to the test
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problem, and (b) the parent node in the BAB tree (same strategy followed in Benson and Shanno
(2007)), as the warm start point respectively. Third, for randomized rounding, we used a simple ap-
proach of rounding any binary decision variable to 1 with a probability equal to its fractional value
x∗i , and 0 with a probability of 1 − x∗i . Fourth, the exact multiparametric ILP algorithm was taken
from Dua and Pistikopoulos (2000), which used an iterative two-stage decomposition process of
first solving a multiparametric LP problem exactly by fixing the binary variables, and then solving
an ILP sub-problem by treating the parametric vector (θ) components as free variables. The bounds
for the components of θ were chosen to match with the bounds of the constraint vector components
present in the training set LP problems. The average values of all the constraint vector components
were used to construct the constraint vector b for the multiparametric ILP problem. And last, for
the approximate multiparametric method, we used the same overall algorithm, but replaced the ex-
act multiparametric LP solution approach with an approximate one described as Algorithm 3.2 in
Filippi (2004). The CPLEX solver was used to construct the BAB trees and solve the LP problems
(if necessary) in all the alternative approaches. Comparisons with the nearest neighbor approach, as
described in Section 3.3, were also performed for the benchmark problems.

5.1 Benchmark ILP Library

The first evaluation domain comprised of an electronically available benchmark library of real-
world ILP problems, known as the MIPLIB. This library is popularly used for comparing any new
optimizer with current state-of-the-art performance and provides a diverse set of problems ranging
from flight scheduling to protein folding. In particular, we evaluated the performance of the Boost-
LP algorithm on all the problems in the MIPLIB 2003 library for which the optimum solution of
a problem instance could be computed in less than 5 hours by CPLEX. Specifications for each of
the problems, namely the number of constraints, number of decision variables, number of integer
and binary variables, objective function value, and the type of constraints (set packing, set cover,
knapsack etc.) can be found in http://miplib.zib.de/miplib2003/index.php. Ev-
ery problem is classified into one of the following three types: easy, hard, and unknown solution.
We refer to the types as MIPLIB-Easy, MIPLIB-Hard, and MIPLIB-Unknown respectively. Hard
problem refers to one that cannot be solved by any known method in less than an hour. Further
details on the original sources of the problems and the structures of the constraint matrices are
available in Achterberg et al. (2006).

For the sake of presentation brevity, we present sample results for three representative MIPLIB-
Easy and MIPLIB-Hard problems. We perturbed the constraint vector and the objective function
values without modifying the constraint matrix to generate 10 instances for each of the ILP prob-
lems. In each problem instance, 10% of the constraints and objective function coefficients were
randomly chosen for perturbation, and an entirely different set of constraints and objective function
coefficients were selected to generate the next problem instance. 8 of these instances were used for
training and the remaining 2 for testing.

Our approach successfully estimates the solutions of the MIPLIB-Easy problems with low ap-
proximation errors of less than 4.0% in reasonably short time durations even with a simple boosting
tree model consisting of 500 trees and 8 leaf nodes per tree; this is shown in Table 2. A more com-
plex model comprising of 1000 trees and 16 leaf nodes per tree is required to obtain less than 5.0%
approximation errors for the MIPLIB-Hard problems after consuming significantly more compu-
tation time. The solution estimation errors are much higher (greater than 12.5%), whereas the
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inference times are much lower if simpler models consisting of 500 trees and 8 leaf nodes per tree
are used instead. Both of these results are shown in Table 3. The theoretically predicted LP so-
lution bounds (Theoretical LP solution error) are always less than twice that of the experimentally
observed values (Observed LP solution error), showing that the bounds are reasonably tight.

The problems where the Boost-LP algorithm performs well share the common characteristic that
the number of decision variables is far greater than the number of constraints when the problems
are expressed in natural forms that do not contain any slack or surplus variables. This follows
from the form of the error bound given by (30) and is briefly rationalized in the ensuing discussion
in section 4.2. The coefficient matrices are also often irregular for the hard problems where our
algorithm does not perform equally well. This is again expected from the terms inside the upper
bounds presented in (22) and (23) that contribute to the overall estimation error.

Tables 2 and 3 show that, overall, our approach performs significantly better than all the other
solution techniques. The computation times are markedly less (much more than an order of magni-
tude for the MIPLIB-Hard problems) than those for off-the-shelf exact solvers, warm start methods,
and randomized rounding. The times for the warm start methods are, in fact, comparable to the
exact solvers, which is consistent with the results reported in the literature (Benson and Shanno,
2007). The gain over randomized rounding is also expected as this metaheuristic approach solves
the relaxed LP problems optimally and only derives some computational benefits over exact solvers
by fathoming certain nodes using rounding operations. Note here that warm starts and randomized
rounding have the advantage though of not requiring any computationally intensive pre-processing
step to either construct the training sets, generate the regression models, or build polyhedral repre-
sentations.

The computation times are also smaller than the baseline method and the two multiparametric
techniques, although the differences are less pronounced in these cases. This reduction in compu-
tation time occurs due to fast predictor vector computation and boosting tree query operations. In
contrast, a large number of LP problems need to be solved exactly for the baseline method as simply
averaging the optimal solutions of ξ-similar training problems frequently leads to infeasible values
even though the values lie in the vicinity of the true optimal. Loading memory-intensive data struc-
tures for the polyhedral decomposition of the parametric space in the multiparametric approaches is
also quite time-consuming.

With respect to solution errors, the Boost-LP algorithm always performs better for the overall
ILP problems, and marginally worse or somewhat better as compared to the other approaches for the
relaxed LP problems. Although the baseline and warm start using closest training problem methods
provide slightly better accuracy for the LP problems, their high computation times far outweight
this marginal advantage.

5.2 Aircraft Carrier Deck Operations

The second problem is that of scheduling, where the objective function is to minimize the overall
weighted time taken by a fleet of aircraft (both manned and unmanned) to complete a given se-
quence of tasks in naval carrier operations. The scheduling problem is an instance of a repeated
ILP problem, where the problem data is expected to change from minute to minute without dras-
tically altering the overall problem. Weights were assigned based upon the aircraft priorities, and

8. Newer version of CPLEX than the one available during the library creation solves this problem in less than an hour;
nevertheless, computation time is still quite large and an order of magnitude more than the MIPLIB-Easy problems.
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Table 2: Comparison of various ILP solution approaches on three MIPLIB-Easy problems where
the Boost-LP algorithm outperforms all the other methods and provides an order of mag-
nitude speed-up in computation time with less than 4.0% estimation error. The cross-
validation errors are averaged over all the decision variables. The solution errors are com-
puted for the objective functions. The metrics that always assume zero values, namely the
solution errors for the exact approaches, LP solution error for randomized rounding, and
the percentages of infeasible solutions for all the methods except the baseline, are omit-
ted. The bold entries denote best performance among all the approaches (solution errors
are only compared among the approximation methods) for the problem and metric under
consideration.

Approach Performance metric
Problem set

air04 air05 nw04
COIN-OR Cbc Computation time (s) 126.58 40.36 11.75

CPLEX Computation time (s) 25.46 23.35 2.65
Average solution of Computation time (s) 12.91 12.11 2.04

ξ-similar training problems Infeasible solutions (%) 34.6 29.8 33.3
(nearest neighbor LP solution error (%) 2.3 1.9 2.0

estimation) ILP solution error (%) 4.1 3.9 4.0
Warm starting Computation time (s) 27.65 22.14 3.01

interior-point solver LP solution error (%) 2.3 2.0 1.7
using closest training problem ILP solution error (%) 3.9 3.7 3.8

Warm starting Computation time (s) 21.26 18.59 2.18
interior-point solver LP solution error (%) 3.4 3.3 3.3

using parent tree node ILP solution error (%) 6.1 5.7 5.8
Randomized Computation time (s) 16.78 15.45 1.51

rounding ILP solution error (%) 8.2 8.0 7.4
Exact multiparametric Computation time (s) 7.27 6.99 1.03

Computation time (s) 4.98 4.58 0.82
Approximate multiparametric LP solution error (%) 4.1 4.1 3.9

ILP solution error (%) 7.4 7.3 6.9
Computation time (s) 3.43 1.75 0.33

Cross-validation error (%) 1.8 1.7 1.6
Boost-LP Inference Theoretical LP solution error (%) 3.8 3.4 3.4

Observed LP solution error (%) 2.4 2.1 2.1
ILP solution error (%) 3.9 3.5 3.7

constraints were imposed in terms of the resources available to accomplish any particular task at
any point of time, safety requirements, and other physical restrictions. A screenshot of the carrier
simulation environment is shown in Figure 4 and further details of the system design that facilitates
interactions between the user and the scheduler are available in Ryan et al. (2011). To handle the
uncertainties corresponding to the various discrete failure modes modeled using Poisson distribu-

32



LEARNING SOLUTIONS OF SIMILAR LP PROBLEMS

Table 3: Performance comparison on three MIPLIB-Hard problems where the Boost-LP algorithm
does not perform as well as in Table 2 but still outperforms all the other ILP solution
methods significantly. Two models are used by the Boost-LP algorithm and the larger
model provides an estimation error ≤ 5.0% at the expense of increased computation time.

Approach Performance metric
Problem set

momentum1 protfold sp97ar
COIN-OR Cbc Computation time (s) 3701.32 3600.49 3601.52

CPLEX Computation time (s) 2902.418 3600.41 3609.36
Average solution of Computation time (s) 1488.52 1479.27 1514.83

ξ-similar training problems Infeasible solutions (%) 37.7 35.9 36.1
(nearest neighbor LP solution error (%) 3.2 3.1 3.2

estimation) ILP solution error (%) 5.4 5.2 5.2
Warm starting Computation time (s) 3146.75 3532.79 3724.68

interior-point solver LP solution error (%) 3.0 3.1 3.1
using closest training problem ILP solution error (%) 5.2 5.3 5.1

Warm starting Computation time (s) 2513.77 2769.15 2819.20
interior-point solver LP solution error (%) 4.8 4.7 4.6

using parent tree node ILP solution error (%) 8.2 7.9 7.7
Randomized Computation time (s) 2144.38 2210.70 2225.06

rounding ILP solution error (%) 19.2 16.1 16.5
Exact multiparametric Computation time (s) 725.39 711.28 716.42

Computation time (s) 426.55 398.25 401.59
Approximate multiparametric LP solution error (%) 6.4 6.0 6.1

ILP solution error (%) 9.7 8.8 8.9
Computation time (s) 74.43 65.75 69.08

Boost-LP Inference Cross-validation error (%) 6.2 5.9 5.8
smaller model Theoretical LP soln. error (%) 13.9 13.5 13.6

(W = 500, J = 8) Observed LP soln. error (%) 7.6 7.5 7.5
ILP soln. error (%) 13.1 13.0 12.8

Computation time (s) 185.33 165.03 172.35
Boost-LP Inference Cross-validation error (%) 2.7 2.5 2.5

larger model Theoretical LP soln. error (%) 6.2 6.2 6.0
(W = 1000, J = 16) Observed LP soln. error (%) 3.4 3.3 3.2

ILP soln. error (%) 5.0 5.0 4.9

tions, we cast the problem in a stochastic integer linear programming (SILP) form. A disjunctive
formulation of the generalized Benders’ decomposition approach was adopted from Sen and Sherali
(2006) as the BAB solution method. We present the actual problem formulation in Appendix C.

We considered an operation involving 20 aircraft (with identical priorities) of 4 different types,
28 possible tasks, a planning time horizon of 25, and 4 different failure modes using a number of
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Figure 4: Screenshot of aicraft carrier deck simulation environment

popular regression approaches and loss functions. The number of predictor variables p was equal to
35,628 and the cardinality of the training data set N was equal to 6,254. The number of regression
trees, W , and the number of terminal regions in any tree, J , were empirically chosen as 500 and
8 respectively. All the 16 training and 4 test problem instances had the same initial conditions, the
same number of emergency aircraft, the same geometric layout of the carrier deck, and the same
sequence of tasks. However, the means of the Poisson distributions for the occurrences of failures,
and the specific airborne aircraft that develop emergency fuel and hydraulic leak conditions were
generated randomly.

Table 4 evaluates the performance of the boosting tree algorithm without and with avoidance
of infeasibility (discussed in section 3.3) and addition of new training data points (described in
section 3.2.1). As expected, the cross-validation and solution errors as well as the percentage of
infeasible solutions are lower when additional training data points are used. There is no change in
the computation time though as inference is performed on identical complexity models. We also
observe that the penalization loss function, Lp, reduces the percentage of infeasible LP solutions as
compared to the standard Huber loss function, LH , considerably. Of course, eliminating the infea-
sible solutions, by checking for constraint violations and solving the LP problems with violations
exactly, increases the computation time; however, this increase is relatively small.

5.3 Vehicle Routing with Time Windows

Our third example domain was taken from Solomon (1987), where a set of vehicles, originating
from a central depot, have to serve a set of customers with known demands exactly once without
exceeding the vehicle capacities. Additional constraints in the form of allowable delivery times or
time windows are imposed for certain customers and the number of vehicles as well as the routes of
the individual vehicles have to be determined by the solver. We adopted the ILP-based set partition-
ing formulation of the problem given in Desrochers et al. (1992). The exact problem formulation
is provided in Appendix D. The routing problem is another instance of a repeated ILP problem.
Practical application is found in any package shipment company operations, where vehicles are
despatched to identical or nearby pick up and delivery sites every day within similar time frames.

9. Non-zero values do not imply that Boost-LP Inference returns infeasible solutions for LP problems that have feasible
and bounded solutions; rather infeasible solutions are detected and the corresponding LPs are solved using COIN-OR
Cbc - table entries show the cost and benefits of performing this additional step
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Table 4: Performance evaluation of the Boost-LP algorithm on aircraft carrier deck scheduling
problem with and without infeasibility avoidance and addition of new training data points.

Performance metric
Infeasibility Infeasibility
unavoided avoided
LH Lp LH Lp

Computation time (s) 14.76 15.83 17.46 18.36
Cross-validation error (%) 2.0 2.2 1.9 2.0

Training Infeasible solutions9(%) 7.1 1.2 0.0 0.0
data points Theoretical LP solution error (%) 5.0 5.5 4.8 5.2
not added Observed LP solution error (%) 2.8 3.0 2.8 2.9

SILP solution error (%) 4.2 4.0 4.1 3.9
Cross-validation error (%) 0.9 1.0 0.8 0.9

Training Infeasible solutions (%) 6.7 0.9 0.0 0.0
data points Theoretical LP solution error (%) 4.1 4.6 3.8 4.0

added Observed LP solution error (%) 2.2 2.5 2.0 2.1
SILP solution error (%) 3.3 3.2 3.2 3.1

Figure 5 plots the decrease in estimation error as a function of computation time (until the
Boost-LP algorithm terminates) for all the different ILP solution approaches using three benchmark
data sets, each consisting of problems that require servicing 100 customers. Identical data sets
were used in Solomon (1987) and Desrochers et al. (1992), and we obtained them online at http:
//www.idsia.ch/˜luca/macs-vrptw/problems/welcome.htm. The 2D coordinates
of the customers and the time windows are generated in a clustered way in the data set C2, randomly
following uniform distributions in the data set R2, and in a semi-clustered way in the third data set
RC2. The data sets have relatively long scheduling horizons, allowing more than 30 customers
per vehicle. Each dataset contains 8-12 separate problems with different proportions of customers
having time windows. We used the last problem in every data set for testing the models learned over
the LP problems occurring at the BAB nodes of all the other ILP problems present in that particular
dataset. The number of regression trees, W , and the number of terminal regions in any tree, J , were
chosen as 500 and 8 respectively.

The Boost-LP algorithm outperforms all the other methods significantly in every data set by
providing much faster decay of estimation error and the smallest error magnitude at any time instant
except occasionally toward the very beginning. Although best performance is obtained for the data
set C2 and worst for R2, the change in performance quality from one data set to another is quite
small. Thus, we show that our approach is capable of producing satisfactory results for problem
domains with varying characteristics.

5.4 Vehicle Control

The final problem domain was taken from the robotics literature. While robot planning problems
can be solved in many different ways, casting them in mixed integer linear programming (MILP)
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Figure 5: Decrease in solution prediction error as a function of computation time for different ILP
solution approaches on vehicle routing problem. RR, Exact MP, and Approximate MP
are acronyms for randomized rounding, exact multiparametric, and approximate multi-
parametric methods. Warm start (a) and (b) denote warm starting interior-point LP solver
using closest ξ-similar training LP problem and parent BAB tree node LP problem re-
spectively.

form is common in the controls community due to the ease of encoding system constraints such
as time-varying vehicle dynamics. We considered both single-vehicle and multi-vehicle control
problems, wherein 50 random instances of each problem were generated with the same parameter
ranges as given in the source articles, out of which 40 were used for training and the remaining 10 for
testing. The locations and dimensions of the obstacles, durations of assigned tasks to vehicles, and
control input (force) and disturbance bounds were varied independently from one problem instance
to the next. The number of vehicles, their initial locations and configurations, goal locations, the
number and geometry of the obstacles, the number and types of assigned tasks for each vehicle, and
the objective functions remained constant in all the problem instances. Thus, both the constraint
matrix and vector differed among the constituent LP problems of the MILP instances, while still
satisfying all the requirements to form the member set of a ξ-similar LP problem space. W and J
were selected as 1000 and 16 respectively.
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5.4.1 SINGLE-VEHICLE CONTROL

In this domain, a vehicle equipped with a three-motor omnidirectional drive needs to move to a
goal location in 2D without colliding with stationary, circular obstacles of known radii. We consid-
ered the minimum-control-effort trajectory-generation problem within the framework of the itera-
tive MILP time-step selection algorithm presented in Earl and Andrea (2005). The actual problem
formulation is shown in Appendix E. Table 5 shows that the cross-validation error and the solu-
tion errors increase non-linearly with the number of obstacles. Even though different values of the
threshold vector ζ components are chosen, with 0.4, 0.3, 0.2, and 0.1 times the range of the cor-
responding response variables being used for 5, 10, 15, and 20 obstacles respectively, ε increases
with additional obstacle constraints such that the overall prediction error cannot be maintained at the
same level. Importantly though, the computation time speed-up factor, as compared with CPLEX,
the most widely used optimization solver, improves with the number of obstacles. This happens
because the complexity of the boosting tree model remains unchanged in all the cases, thereby,
keeping the inference time constant, and reducing the rate of exponential growth in the computation
time.

Table 5: Performance evaluation of the Boost-LP algorithm on single-vehicle control problems with
varying number of obstacles.

Performance metric
Number of obstacles

5 10 15 20
CPLEX computation time (s) 16.75 39.55 157.58 844.33

Boost-LP Inference computation time (s) 0.49 0.82 2.49 11.01
Speed-up factor 34X 48X 63X 77X

Observed LP solution error (%) 0.3 0.8 1.5 2.9
MILP solution error (%) 0.5 1.3 2.7 5.0

5.4.2 MULTI-VEHICLE CONTROL

We obtained the multi-vehicle problem from Richards and How (2004) that involved decentralized,
cooperative control of UAVs with independent dynamics but coupled constraints. The exact prob-
lem formulation is presented in Appendix E. Figure 6 shows that the computation time speed-up
factor improves with the number of vehicles as the complexity of the boosting tree model remains
unchanged in all the cases. Figure 7 highlights the effect of model complexity on the computation
time as well as the solution prediction error for the same number of vehicles (7 UAVs). Clearly,
there is a trade-off between computational savings and prediction accuracy. Moreover, the predic-
tion accuracy does not improve significantly beyond a certain level of model complexity (for a given
training data set and ζ), indicating that learning a very complex regression model is of little use as
it is only going to increase the computation time without significantly reducing the prediction error.
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Figure 6: Computation time comparison of the Boost-LP Inference algorithm with alternative ILP
solvers for decentralized UAV control problems involving varying number of vehicles.
Note that the plot is in semi-log scale and error bars are not shown as they are negligibly
small.

Figure 7: Computation time versus solution error performance curve of the Boost-LP Inference
algorithm for decentralized UAV control problem.

6. Conclusions

We present a regression-based approach to obtain fast and provably-close-to-optimal solutions of
repeated ILP problems with practical applications in many planning, scheduling, routing, and con-
trol domains, such that the objective function and constraint coefficients do not vary too much from
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one problem to the other. We give a formal definition of ξ-similar LP problems that arise in the
branch and bound tree nodes of such ILP problems and modify the gradient boosting tree algorithm
to devise the Boost-LP algorithm for learning the solutions of the ξ-similar LP problems. We then
use the notion of similarity, properties of boosting trees, and our construction of predictor variable
vectors to provide absolute prediction error bounds for both the individual decision variables and
the overall LP problem objective function. We also show that the Boost-LP algorithm infers the
solutions of ILP problems in a fraction of the time required by both commercial and open-source
optimizers as well as other existing approaches, while preserving reasonably good solution accuracy
in all the four representative problem domains.

Future work includes investigating active learning from partially generated BAB trees and in-
ferring solutions of harder problems consisting of higher-dimensional solution vectors from lower-
dimensional ones. These directions will enable us to bypass the potentially time-consuming and
perhaps infeasible step of constructing a large training set whenever we encounter a fundamentally
different class of ILP problems that form the member sets of new ξ-similar LP problem spaces.
Such extensions will also allow us to relax the requirement of identical solution vector size for all
the LP problems and, thereby, permit comparisons with branch and cut, and branch, cut and price
methods that use various cutting planes to speed up computations. It may also be interesting to learn
the similarity metrics using kernelized sorting or other matching techniques, and then convert them
to parametric kernels such as Gaussian processes to estimate the LP solutions directly from a library
of pre-computed solutions of ξ-similar LP problems. Another useful research direction is to extend
our work to quadratic objective functions, which will expand its applicability to a broader class of
robust and optimal control problems arising in the model predictive and receding horizon control
settings.

Acknowledgments

We acknowledge support for this project from the Office of Naval Research Science of Autonomy
program (Contract No. N000140910625). Any opinions, findings, and conclusions or recommen-
dations expressed in this paper are those of the authors and do not necessarily reflect the views of
the sponsoring agency. We are also grateful to Andrew Barnes, Geoffrey Gordon, Jonathan How,
Sertac Karaman, Masahiro Ono, and Brian Williams for many helpful discussions and suggestions.

Appendix A.

Two child regions R1 and R2 are created at every internal parent node of a regression tree by
selecting a splitting variable o, 1 ≤ o ≤ p and a split value s that define a pair of half-planes

R1 = {v | vo ≤ s}, R2 = {v | vo > s}

where vo represents the the oth component of the vector v. We select o and s using a greedy stategy
to minimize the residual sum of squares error that solves

min
o,s

min
γ1

∑
vk∈R1

(rk − γ1)2 + min
γ2

∑
vk∈R2

(rk − γ2)2

 (31)
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where vk is the predictor variable vector corresponding toLPk. rk is the target value for the problem
LPk and is chosen as the negative gradient of the loss functional that is given by−∂L(yk, f(vk))/∂f(vk).
For any choice of o and s, the inner minimization in (31) is solved by

γ̂1 =

∑
vk∈R1

rk

N1
, γ̂2 =

∑
vk∈R2

rk

N2

where N1 and N2 denote the number of training data points in R1 and R2 respectively. Each
regression tree is grown by binary partitioning till the number of leaf nodes equals or exceeds the
fixed size J that is chosen a priori. If required, the tree is then pruned using the technique of
cost-complexity pruning described in Hastie et al. (2008) to reduce the number of leaf nodes to J .

Appendix B.

Expanding the quadratic equation involving εi,tr in section 4.1, we have

ε2i,tr + 2εi,tr
∑
j

aji,tr +
∑
j

(aji,tr)
2(1− ξ2i,r) = 0 .

The solution is then given by

εi,tr =
−2
∑

j a
j
i,tr ±

√
4
∑

j(a
j
i,tr)2 − 4

∑
j(a

j
i,tr)2(1− ξ2i,r)

2
=
∑
j

aji,tr(−1± ξi,r) .

Considering only the positive ξi,r solution, we find that εi,tr is a small number close to 0 (either
positive or negative depending upon the values of aji,tr) as ξi,tr is close to 1.

Appendix C.

We use a two-stage stochastic integer linear programming (SILP) framework, where the expected
impact of decisions under uncertainty are minimized in the first stage and integral recourse actions
are taken in the second stage to compensate for the errors in the decision-making process in the first
stage. The first stage problem is formally represented as

minE[h(ω̃)]

where E[.] denotes the expectation operator and ω̃ is a random variable vector. Then, for any
realization ω of ω̃, the second stage problem is expressed as

h(ω) : min gT y
s. t. Wy ≥ r(ω)

y ≥ 0, y ∈ Zn .

All the second stage decision variables are binary. We use the iterative D2 − BAC algorithm de-
scribed in Section 3 of Sen and Sherali (2006) to solve this SILP problem and follow the formulation
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II given in Möhring et al. (2001) to deal with temporal dependencies of tasks and irregular task start-
ing time costs. The binary decision variables yijk are equal to 1 if aircraft i ∈ {1, . . . , I} begins
task j at time step k ∈ {1, . . . ,K}, and 0 otherwise. Each aircraft has a user-specified priority pi
and a set of tasks Ti that it needs to accomplish, and the goal is to minimize the overall weighted
time taken to complete all the sets of tasks.

The tasks consist of parking on deck, refueling in one of the five deck stations, loading weapons
by docking at one of the two weapons elevators, going for maintenance by using one of the three
hangar elevators, taxiing to various deck zones, launching or taking-off from one of the four cata-
pults, going to mission, stacking up in a queue called the Marshal Stack after finishing mission, ap-
proaching the deck from the lowermost level of the Marshal Stack, landing, boltering due to failed
landing if arresting wires are missed, and aerial refueling using tankers. Parking spots, refueling
stations, launching catapults, landing strip (only one), hangar, and weapons elevators are together
termed as the deck resources. Due to electro-mechanical failures, the deck resources (except the
parking spots and the landing strip) may not be available at certain times during the operation. The
failure rate of each type of deck resource is modeled by an independent Poisson distribution.

Moreover, an airborne aircraft may develop fuel leak and/or hydraulic failure, both of which are
assumed to occur deterministically. Operation safety requirements mean that such an aircraft needs
to land as soon as possible by moving down in the Marshal Stack and rearranging the levels of all the
other aircraft accordingly. The geometric layout of the deck and its current configuration impose
additional constraints, namely that certain parking spots may be occupied, two of the catapults
(numbered 3 and 4) cannot be used when an aircraft is landing, and the two closely-located catapults
(both 1 and 2 as well as 3 and 4) cannot be used simultaneously. There are four types of aircraft,
two manned and two unmanned, each of which has a different fuel consumption rate, maximum
speed, cruise speed, and approach speed. Thus, they take different times to complete the same
task. The user can also specify own preferences to complete certain tasks for specific aircraft within
desired time values. These preferences are handled as soft constraints that are satisfied by including
violation margins.

The temporal dependency of tasks for each aircraft is represented by a weighted digraph Gi =
(Vi, Ai) with Ai = {(mi, ni) : dmini > −∞}, where dmini is the time lag such that the starting
time for task ni, Sni , is correlated to the starting time for task mi, Smi , by an inequality of the form
Sni ≥ Smi + dmini . The second stage problem is then written as

min
∑
i

∑
j

∑
k

pi(tij + k∆t)yijk
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subject to the constraints

∑
k

yijik = 1, ∀i and ji ∈ Ti

K∑
s=k

yimis +
k+dmini−1∑

s=1

yinis ≤ 1, ∀i, k and (mi, ni) ∈ Ai∑
i

yijk ≤ Njk(ω) ∀j, k∑
i

(yijt1k + yijt2k) ≤ 1,
∑
i

(yijt3k + yijt4k) ≤ 1,
∑
i

(yijlk + yijt3k) ≤ 1,
∑
i

(yijlk + yijt4k) ≤ 1 ∀k

Sci′∑
k=1

yi′jlk = 1, ∀i′ ∈ Ic
Spi′′j′′+Tm∑

k=1

yi′′j′′k = 1, ∀i′′ ∈ Ip, j′′ ∈ Ti′′ .

Here, tij is the estimated time to complete task j by aircraft i, Njk(ω) denotes the number of
available deck resources to perform task j at time k, and jl, jt1, jt2, jt3, and jt4 represent landing,
and take-off from catapult 1, catapult 2, catapult 3, and catapult 4 respectively. Ic and Ip denote
the set of critical aircraft and the set of aircraft with user-specified preferences respectively. Sci′
is the permissible time limit within which a critical aircraft i′ should start landing, Spi′′j′′ is the
user-stipulated time limits to complete task j′′ for the aircraft i′′ ∈ Ip, and Tm is the allowable time
margin for violating the preference constraints. Note that all the actual time values are conserva-
tively converted to integral values by taking the interval between two successive time instants (∆t)
as a constant. Also note that if our initial value of Tm results in an infeasible solution, we increase
it until the problem has optimal solutions.

Appendix D.

We follow the notation in Desrochers et al. (1992) and represent the vehicle routing problem as a
graph G = (N,A), where N is the set of nodes or customers and A is the set of route segments.
Each edge (i, j) ∈ A is associated with a cost cij given by the 2D Euclidean distance between the
nodes i and j, and a duration tij that includes the servicing time at node i. Each customer has a
known demand qi and all the vehicles, with identical capacities equal to Q, originate and terminate
at the same depot d. Servicing of a customer can begin at time Ti within the allowable time window
defined by the earliest time ai and the latest time bi.

Let the set of feasible routes be denoted by R ⊆ A. Also, let δir be a constant that assumes a
value of 1 if route r ∈ R covers customer i ∈ N\{d}, and 0 otherwise. Let cr be the cost associated
with route r, which is equal to the sum of the costs of the edges of r. The binary decision variables
are represented as xr, that take values of 1 if route r is used, and 0 otherwise. The set partitioning
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problem is then formulated as

min
∑
r∈R

crxr

s. t. δirxir = 1, i ∈ N\{d}
xr ∈ {0, 1}, r ∈ R .

The key pre-processing step in solving this binary ILP problem is to identify the set R. Since
identifying just the feasible set is computationally very challenging, we follow the second dynamic
programming method presented in Desrochers et al. (1992) to obtain a superset of the exact feasible
set with pseudopolynomial worst case time complexity. This method is a generalization of the
multiple knapsack problem, and we refer the reader to sections 3 and 4.2 in Desrochers et al. (1992)
for further details.

Appendix E.

Single-vehicle Control Problem

To cast the problem in mixed integer linear programming (MILP) form, the governing coupled and
non-linear differential equations of the vehicle are simplified by restricting the admissible control
set, defined by the time-dependent control input (ux(t), uy(t), uθ(t)), to lie within a cylinder whose
radius is less than or equal to unity. The equations of motion for vehicle translation are given by

ẍ(t) + ẋ(t) = ux(t)
ẍ(t) + ẋ(t) = uy(t) .

After discretizing the control input in time and assuming that the input remains constant between
time steps, the equations of motion can be written in discrete time-variant state-space form as

xu[k + 1] = A[k]xu[k] +B[k]u[k] (32)

where tu[k] is the time at step k, and xu[k] = x(tu[k]) = (xu[k], yu[k], ẋu[k], ẏu[k]), u[k] =
u(tu[k]) = (ux[k], uy[k]). Now, to incorporate the constraint that the admissible control set lies in a
circle of fixed radius, the circle is approximated by a set ofMu linear inequalities that conservatively
define an inscribed polygon. These linear constraints are given by

ux[k] sin
2πm
Mu

+ uy[k] cos
2πm
Mu

≤ cos
π

Mu
, ∀m ∈ {1, . . . ,Mu} . (33)

Obstacle avoidance at discrete times is enforced in a similar manner by conservatively approxi-
mating each circular obstacle of radius Robst and center coordinates (xobst[k], yobst[k]) with a poly-
gon O[k], defined using Mo linear inequalities of the form

O[k] =
{

(x, y) : (x− xobst[k]) sin
2πm
Mo

+ (y − yobst[k]) cos
2πm
Mo

≤ Robst, ∀m ∈ {1, . . . ,Mo}
}

.

Since at least one constraint defining O[k] needs to be violated in order to avoid the obstacle, an
auxiliary binary variable bm[k] ∈ {0, 1} is introduced to reformulate the Mo inequality constraints
as

(x− xobst[k]) sin
2πm
Mo

+ (y − yobst[k]) cos
2πm
Mo

> Robst −Hbm[k], ∀m ∈ {1, . . . ,Mo} (34)
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where H is a large positive number that is greater than the sum of the maximum dimension of the
workspace and the obstacle radius. If bm[k] = 1, the above inequality is trivially statisfied. On the
other hand, if bm[k] = 0, then the inequality becomes significant. To enforce that at least one of the
constraints is significant, we have

Mo∑
m=1

bm[k] ≤Mo − 1 . (35)

We also have some boundary conditions that are given by the starting vehicle location x0 = xs,
and we want to find the set of control inputs {u[k]}, k ∈ {0, . . . , Nu−1} that will move the vehicle
to the final location xtf = xf while minimizing the cost function

J =
Nu−1∑
k=0

(|ux[k]|+ |uy[k]|) .

We introduce auxiliary continuous variables zx[k] and zy[k] to convert the absolute values in the
cost function to linear form and add the following inequality constraints

−zx[k] ≤ ux[k] ≤ zx[k]
−zy[k] ≤ uy[k] ≤ zy[k] . (36)

The cost function can then be written as

J =
Nu−1∑
k=0

(zx[k] + zy[k]) . (37)

The objective function (37), subject to the set of constraints given by (32), (33), (34), (35), and (36)
form the overall MILP problem. We refer the reader to section III B in Earl and Andrea (2005) for
details on the iterative time-selection algorithm that is used to solve the MILP problem with as few
obstacle avoidance times as possible.

UAV Decentralized Control Problem

We use the Decentralized MPC algorithm presented in Richards and How (2004) for co-operative
guidance of UAVs, where each vehicle only solves a sub-problem to generate its own plan, and then
each of the sub-problems are solved only once per time-step without any iteration. Each vehicle p is
modeled as a point mass subject to maximum force and speed limits given by Fp and Vp respectively.
A bounded disturbance force with maximum value of F̃p is also included in the model to account
for uncertainties. Thus, the linear, discrete-time dynamics model for each vehicle, with position
rp ∈ <2, velocity vp ∈ <2, acted by a control force fp ∈ <2 in the presence of disturbance force
f̃p ∈ <2, is expressed in discrete time-invariant state-space form as

xp(k + 1) = Axp(k) +Bup(k) + Ewp(k)

with state xp(k) = [rp(k∆t)T ṙp(k∆t)T ]T = [rp(k∆t)T vp(k∆t)T ]T , control input up(k) =
fp(k∆t), and disturbance wp(k) = f̃p(k∆t), ∆t being the constant interval between any two time
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instants. The speed, force, and disturbance limits are then represented by the following system of
linear constraints

[0 G]xp(k) ≤ 1Vp
Gup ≤ 1Fp
Gwp ≤ 1F̃p

whereG consists of rows of unit vectors. Collision avoidance is performed by constructing a square
exclusion region of fixed length around every UAV, where no other vehicle is allowed to enter.
The standard procedure of introducing binary variables and a large positive number is followed
to enforce the collision avoidance constraints in the MILP framework. Some additional margin
parameters are added to provide greater robustness; we refer the reader to section III in Richards
and How (2004) for further details.
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