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G. Lusztig

Introduction

Let G be a connected reductive group over an algebraically closed field k of
characteristic p ≥ 0. Let W be the Weyl group of G. Let W be the set of
conjugacy classes in W. The main purpose of this paper is to give a (partly
conjectural) definition of a surjective map from W to the set of unipotent classes
in G (see 1.2(b)). When p = 0, a map in the opposite direction was defined in
[KL, 9.1] and we expect that it is a one sided inverse of the map in the present
paper. The (conjectural) definition of our map is based on the study of certain
subvarieties Bw

g (see below) of the flag manifold B of G indexed by a unipotent
element g ∈ G and an element w ∈ W.

Note that W naturally indexes (w 7→ Ow) the orbits of G acting on B × B by
simultaneous conjugation on the two factors. For g ∈ G we set Bg = {B ∈ B; g ∈
B}. The varieties Bg play an important role in representation theory and their
geometry has been studied extensively. More generally for g ∈ G and w ∈ W we
set

Bw
g = {B ∈ B; (B, gBg−1) ∈ Ow}.

Note that B1
g = Bg and that for fixed g, (Bw

g )w∈W form a partition of the flag
manifold B.

For fixed w, the varieties Bw
g (g ∈ G) appear as fibres of a map to G which

was introduced in [L3] as part of the definition of character sheaves. Earlier, the
varieties Bw

g for g regular semisimple appeared in [L1] (a precursor of [L3]) where
it was shown that from their topology (for k = C) one can extract nontrivial
information about the character table of the corresponding group over a finite
field.

I thank David Vogan for some useful discussions.

1. The sets Sg

1.1. We fix a prime number l invertible in k. Let g ∈ G and w ∈ W. For i, j ∈ Z

let Hi
c(Bw

g , Q̄l)j be the subquotient of pure weight j of the l-adic cohomology space
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Hi
c(Bw

g , Q̄l). The centralizer Z(g) of g in G acts on Bw
g by conjugation and this

induces an action of the group of components Z̄(g) on Hi
c(Bw

g , Q̄l) and on each

Hi
c(Bw

g , Q̄l)j. For z ∈ Z̄(g) we set

Ξw
g,z =

∑

i,j∈Z

(−1)itr(z, Hi
c(Bw

g , Q̄l)j)v
j ∈ Z[v]

where v is an indeterminate; the fact that this belongs to Z[v] and is independent
of the choice of l is proved by an argument similar to that in the proof of [DL,
3.3].

Let l : W −→ N be the standard length function. The simple reflections s ∈ W

(that is the elements of length 1 of W) are numbered as s1, s2, . . . . Let w0 be the
element of maximal length in W.

Let H be the Iwahori-Hecke algebra of W with parameter v2 (see [GP, 4.4.1];
in the definition in loc.cit. we take A = Z[v, v−1], as = bs = v2). Let (Tw)w∈W be

the standard basis of H (see [GP, 4.4.3, 4.4.6]). For w ∈ W let T̂w = v−2l(w)Tw.

If si1si2 . . . sit
is a reduced expression for w ∈ W we write also T̂w = T̂i1i2...it

.
For any g ∈ G, z ∈ Z̄(g) we set

Πg,z =
∑

w∈W

Ξw
g,zT̂w ∈ H.

The following result can be proved along the lines of the proof of [DL, Theorem 1.6]
(we replace the Frobenius map in that proof by conjugation by g); alternatively,
for g unipotent, we may use 1.5(a).

(a) Πg,z belongs to the centre of the algebra H.

According to [GP, 8.2.6, 7.1.7], an element c =
∑

w∈W
cwT̂w (cw ∈ Z[v, v−1]) in

the centre of H is uniquely determined by the coefficients cw(w ∈ Wmin) and
we have cw = cw′ if w, w′ ∈ Wmin are conjugate in W; here Wmin is the set of
elements of W which have minimal length in their conjugacy class. This applies
in particular to c = Πg,z, see (a). For any C ∈ W we set ΞC

g,z = Ξw
g,z where w is

any element of C ∩ Wmin.
Note that if g = 1 then Πg,1 = (

∑
w v2l(w)1. If g is regular unipotent then

Πg,1 =
∑

w∈W
v2l(w)T̂w. If G = PGL3(k) and g ∈ G is regular semisimple then

Πg,1 = 6 + 3(v2 − 1)(T̂1 + T̂2) + (v2 − 1)2(T̂12 + T̂21) + (v6 − 1)T̂121; if g ∈ G is a

transvection then Πg,1 = (2v2 + 1) + v4(T̂1 + T̂2) + v6T̂121.

For g ∈ G let cl(g) be the G-conjugacy class of g; let cl(g) be the closure of
cl(g). Let Sg be the set of all C ∈ W such that ΞC

g,1 6= 0 and ΞC
g′,1 = 0 for any

g′ ∈ cl(g) − cl(g). If C is a conjugacy class in G we shall also write SC instead of
Sg where g ∈ C.

We describe the set Sg and the values ΞC
g,1 for C ∈ Sg for various G of low rank

and various unipotent elements g in G. We denote by un a unipotent element of
G such that dimBun

= n. The conjugacy class of w ∈ W is denoted by (w).
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G of type A1.

Su1
= (1),Su0

= (s1); Ξ
1
u1,1 = 1 + v2, Ξs1

u0,1 = v2.

G of type A2.
Su3

= (1),Su1
= (s1),Su0

= (s1s2).

Ξ1
u3,1 = 1 + 2v2 + 2v4 + v6, Ξ

(s1)
u1,1 = v4, Ξ

(s1s2)
u0,1 = v4.

G of type B2, p 6= 2. (The simple reflection corresponding to the long root is
denoted by s1.)

Su4
= (1),Su2

= (s1),Su1
= {(s2), (s1s2s1s2)},Su0

= (s1s2).

Ξ1
u4,1 = (1 + v2)2(1 + v4), Ξ

(s1)
u2,1 = v4(1 + v2), Ξ

(s2)
u1,1 = 2v4,

Ξ
(s1s2s1s2)
u1,1 = v6(v2 − 1), Ξ

(s1s2)
u0,1 = v4.

G of type B2, p = 2. (u′
2 denotes a transvection; u′′

2 denotes a unipotent element
with dimBu′′

2
= 2 which is not conjugate to u′

2.)

Su4
= (1),Su′

2
= (s1),S(u′′

2) = (s2),Su1
= (s1s2s1s2),Su0

= (s1s2).

Ξ1
u4,1 = (1 + v2)2(1 + v4), Ξ

(s1)
u′

2
,1 = v4(1 + v2), Ξ

(s2)
u′′

2
,1 = v4(1 + v2),

Ξ
(s1s2s1s2)
u1,1 = v8, Ξ

(s1s2)
u0,1 = v4.

G of type G2, p 6= 2, 3. (The simple reflection corresponding to the long root is
denoted by s2.)

Su6
= (1),Su3

= (s2),Su2
= {(s1), (s1s2s1s2s1s2)},Su1

= (s1s2s1s2),

Su0
= (s1s2).

Ξ1
u6,1 = (1 + v2)2(1 + v4 + v8), Ξ

(s2)
u3,1 = v6(1 + v2), Ξ

(s1)
u2,1 = v4(1 + v2),

Ξ
(s1s2s1s2s1s2)
u2,1 = v8(v4 − 1), Ξ

(s1s2s1s2)
u1,1 = 2v8, Ξ

(s1s2)
u0,1 = v4.

G is of type A3. (The simple reflections are s1, s2, s3 with s1s3 = s3s1).

Su6
= (1),Su3

= (s1),Su2
= (s1s3),Su1

= (s1s2),Su0
= (s1s2s3).

Ξ1
u6,1 = (1 + v2)(1 + v2 + v4)(1 + v2 + v4 + v6), Ξ

(s1)
u3,1 = v6 + v8,

Ξ
(s1s3)
u2,1 = v6 + v8, Ξ

(s1s2)
u1,1 = v6, Ξ

(s1s2s3)
u0,1 = v6.
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G of type B3, p 6= 2. (The simple reflection corresponding to the short root is
denoted by s3 and (s1s3)

2 = 1.)

Su9
= (1),Su5

= (s1),Su4
= {(s3), (s2s3s2s3)},Su3

= {(s1s3), (w0)},
Su2

= (s1s2),Su1
= {(s2s3), (s2s3s1s2s3)},Su0

= (s1s2s3).

Ξ1
u9,1 = (1 + v2)3(1 + v4)(1 + v4 + v8), Ξ

(s1)
u5,1 = v8(1 + v2)2,

Ξ
(s2s3s2s3)
u4,1 = v8(1 + v2)(v4 − 1), Ξ

(s3)
u4,1 = 2v6(1 + v2)2,

Ξ
(s1s3)
u3,1 = v8(1 + v2), Ξ

(w0)
u3,1 = v14(v4 − 1), Ξ

(s1s2)
u2,1 = 2v8,

Ξ
(s2s3)
u1,1 = 2v6, Ξ

(s2s3s1s2s3)
u1,1 = v8(v2 − 1), Ξ

(s1s2s3)
u0,1 = v6.

G of type C3, p 6= 2. (The simple reflection corresponding to the long root is
denoted by s3 and (s1s3)

2 = 1; u′′
2 denotes a unipotent element which is regular

inside a Levi subgroup of type C2; u′
2 denotes a unipotent element with dimBu′′

2
=

2 which is not conjugate to u′′
2 .)

Su9
= (1),Su6

= (s3),Su4
= {(s1), (s2s3s2s3)},Su3

= {(s1s3), (w0)},
Su′

2
= (s1s2),Su′′

2
= (s2s3),Su1

= (s2s3s1s2s3),Su0
= (s1s2s3).

Ξ1
u9,1 = (1 + v2)3(1 + v4)(1 + v4 + v8), Ξ

(s3)
u6,1 = v6(1 + v2)2(1 + v4),

Ξ
(s2s3s2s3)
u4,1 = v10(v4 − 1), Ξ

(s1)
u4,1 = 2v8(1 + v2),

Ξ
(s1s3)
u3,1 = v8(1 + v2), Ξ

(w0)
u3,1 = v14(v4 − 1), Ξ

(s1s2)
u′

2
,1 = v6(1 + v2),

Ξ
(s2s3)
u′′

2
,1 = v6(1 + v2), Ξ

(s2s3s1s2s3)
u1,1 = v10, Ξ

(s1s2s3)
u0,1 = v6.

1.2. We expect that the following property of G holds:

(a) W = tuSu

(u runs over a set of representatives for the unipotent classes in G).
The equality W = ∪uSu is clear since for a regular unipotent u and any w we

have Ξw
u,1 = v2l(w). Note that (a) holds for G of rank ≤ 3 if p is not a bad prime

for G (see 1.1). We will show elsewhere that (a) holds for G of type An (any p)
and of type Bn, Cn, Dn (p 6= 2). When G is simple of exceptional type, (a) should
follow by computing the product of some known (large) matrices using 1.5(a).

Assuming that (a) holds we define a surjective map from W to the set of
unipotent classes in G by

(b) C 7→ C
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where C ∈ W and C is the unique unipotent class in G such that C ∈ Su for
u ∈ C.

We expect that when p = 0 we have

(c) cu ∈ Su

where for any unipotent element u ∈ G, cu denotes the conjugacy class in W

associated to u in [KL, 9.1]. Note that (c) holds for G of rank ≤ 3 (see 1.1). (We
have used the computations of the map in [KL, 9.1] given in [KL, §9], [S1], [S2].)

1.3. Assume that G = Sp2n(k) and p 6= 2. The Weyl group W can be identified
in the standard way with the subgroup of the symmetric group S2n consisting of
all permutations of [1, 2n] which commute with the involution i 7→ 2n + 1 − i.
We say that two elements of W are equivalent if they are contained in the same
conjugacy class of S2n. The set of equivalence classes in W is in bijection with
the set of partitions of 2n in which every odd part appears an even number of
times (to C ∈ W we attach the partition which has a part j for every j-cycle of
an element of C viewed as a permutation of [1, 2n]). The same set of partitions of
2n indexes the set of unipotent classes of G. Thus we obtain a bijection between
the set of equivalence classes in W and the set of unipotent classes of G. In other
words we obtain a surjective map φ from W to the set of unipotent classes of G

whose fibres are the equivalence classes in W. We will show elsewhere that for
any unipotent class C in G we have φ−1(C) = Su where u ∈ C.

1.4. Recall that the set of unipotent elements in G can be partitioned into ”special
pieces” (see [L5]) where each special piece is a union of unipotent classes exactly
one of which is ”special”. Thus the special pieces can be indexed by the set of
isomorphism classes of special representations of W which depends only on W as
a Coxeter group (not on the underlying root system). For each special piece σ of
G we consider the subset Sσ := tC⊂σSC of W (here C runs over the unipotent
classes contained in σ). We expect that each such subset Sσ depends only on the
Coxeter group structure of W (not on the underlying root system). As evidence
for this we note that the subsets Sσ for G of type B3 are the same as the subsets
Sσ for G of type C3. These subsets are as follows:

{1}, {(s1), (s3), (s2s3s2s3)}, {(s1s3), (w0)}, {(s1s2)},
{(s2s3), (s2s3s1s2s3)}, {(s1s2s3)}.

1.5. Let g ∈ G be a unipotent element and let z ∈ Z̄(g), w ∈ W . We show
how the polynomial Ξw

g,z can be computed using information from representation
theory. We may assume that p > 1 and that k is the algebraic closure of the
finite field Fp. We choose an Fp split rational structure on G with Frobenius
map F0 : G −→ G. We may assume that g ∈ GF0 . Let q = pm where m ≥ 1 is
sufficiently divisible. In particular F := F m

0 acts trivially on Z̄(g) hence cl(g)F is a
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union of GF -conjugacy classes naturally indexed by the conjugacy classes in Z̄(g);
in particular the GF -conjugacy class of g corresponds to 1 ∈ Z̄(g). Let gz be an
element of the GF -conjugacy class in cl(g)F corresponding to the Z̄(g)-conjugacy
class of z ∈ Z̄(g). The set Bw

gz
is F -stable. We first compute the number of fixed

points |(Bw
gz

)F |.
Let Hq = Q̄l ⊗Z[v,v−1] H where Q̄l is regarded as a Z[v, v−1]-algebra with

v acting as multiplication by
√

q. We write Tw instead of 1 ⊗ Tw. Let IrrW
be a set of representatives for the isomorphism classes of irreducible W-modules
over Q̄l. For any E ∈ IrrW let Eq be the irreducible Hq-module corresponding
naturally to E. Let F be the vector space of functions BF −→ Q̄l. We regard
F as a GF -module by γ : f 7→ f ′, f ′(B) = f(γ−1Bγ) for all B ∈ BF . We
identify Hq with the algebra of all endomorphisms of F which commute with
the GF -action, by identifying Tw with the endomorphism f 7→ f ′ where f ′(B) =∑

B′∈BF ;(B,B′)∈Ow
f(B) for all B ∈ BF . As a module over Q̄l[G

F ] ⊗Hq we have

canonically F = ⊕E∈IrrWρE ⊗ Eq where ρE is an irreducible GF -module. Hence
if γ ∈ GF and w ∈ W we have tr(γTw,F) =

∑
E∈IrrW tr(γ, ρE)tr(Tw, Eq). From

the definition we have tr(γTw,F) = |{B ∈ BF ; (B, γBγ−1) ∈ Ow}| = |(Bw
γ )F |.

Taking γ = gz we obtain

(a) |(Bw
gz

)F | =
∑

E∈IrrW

tr(gz, ρE)tr(Tw, Eq).

The quantity tr(gz, ρE) can be computed explicitly, by the method of [L4], in
terms of generalized Green functions and of the entries of the non-abelian Fourier
transform matrices [L2]; in particular it is a polynomial with rational coefficients in√

q. The quantity tr(Tw, Eq) can be also computed explicitly (see [GP], Ch.10,11);

it is a polynomial with integer coefficients in
√

q. Thus |(Bw
gz

)F | is an explicitly
computable polynomial with rational coefficients in

√
q. Substituting here

√
q by v

we obtain the polynomial Ξw
g,z. This argument shows also that Ξw

g,z is independent
of p (note that the pairs (g, z) up to conjugacy may be parametrized by a set
independent of p).

This is how the various Ξw
g,z in 1.1 were computed, except in type A1, A2, B2

where they were computed directly from the definitions. (For type B3, C3 we have
used the computation of Green functions in [Sh]; for type G2 we have used directly
[CR] for the character of ρE at unipotent elements.)

1.6. In this section we assume that G is simply connected. Let G̃ = G(k((ε)))

where ε is an indeterminate. Let B̃ be the set of Iwahori subgroups of G̃. Let W̃

the affine Weyl group attached to G̃. Note that W̃ naturally indexes (w 7→ Ow)

the orbits of G̃ acting on B̃ × B̃ by simultaneous conjugation on the two factors.
For g ∈ G̃ and w ∈ W̃ we set

B̃w
g = {B ∈ B̃; (B, gBg−1) ∈ Ow}.
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By analogy with [KL, §3] we expect that when g is regular semisimple, B̃w
g has a

natural structure of a locally finite union of algebraic varieties over k of bounded
dimension and that, moreover, if g is also elliptic, then B̃w

g has a natural structure

of algebraic variety over k. It would follow that for g elliptic and w ∈ W̃,

Ξw
g =

∑

i,j∈Z

(−1)i dim Hi
c(B̃w

g , Q̄l)jv
j ∈ Z[v]

is well defined; one can then show that the formal sum
∑

w∈W̃
Ξw

g T̂w is cen-
tral in the completion of the affine Hecke algebra consisting of all formal sums∑

w∈W̃
awT̂w (aw ∈ Q(v)) that is, it commutes with any T̂w. (Here T̂w is defined

as in 1.1 and the completion of the affine Hecke algebra is regarded as a bimodule
over the actual affine Hecke algebra in the natural way.)

2. The sets sg

2.1. In this section we assume that G is adjoint and p is not a bad prime for G.
For g ∈ G, z ∈ Z̄(g), w ∈ W we set

ξw
g,z = Ξw

g,z|v=1 =
∑

i∈Z

(−1)itr(z, Hi
c(Bw

g , Q̄l)) ∈ Z.

This integer is independent of l. For any g ∈ G, z ∈ Z̄(g) we set

πg,z =
∑

w∈W

ξw
g,zw ∈ Z[W ].

This is the specialization of Πg,z for v = 1. Hence from 2(a) we see that πg,z is in
the centre of the ring Z[W]. Thus for any C ∈ W we can set ξC

g,z = ξw
g,z where w

is any element of C. For g ∈ G let sg be the set of all C ∈ W such that ξC
g,z 6= 0

for some z ∈ Z̄(g) and ξC
g′,z′ = 0 for any g′ ∈ cl(g) − cl(g) and any z′ ∈ Z̄(g′).

We describe the set sg and the values ξC
g,z = 0 for C ∈ sg, z ∈ Z̄(g), for various

G of low rank and various unipotent elements g in G. We use the notation in 1.1.
Moreover in the case where Z̄(g) 6= {1} we denote by zn an element of order n in
Z̄(g).

G of type A1.

su1
= (1), su0

= (s1); ξ
1
u1,1 = 2, ξs1

u0,1 = 1.

G of type A2.
su3

= (1), su1
= (s1), su0

= (s1s2).

ξ1
u3,1 = 6, ξ

(s1)
u1,1 = 1, ξ

(s1s2)
u0,1 = 1.
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G of type B2.

su4
= (1), su2

= (s1), su1
= {(s2), (s1s2s1s2)}, su0

= (s1s2).

ξ1
u4,1 = 8, ξ

(s1)
u2,1 = 2, ξ

(s2)
u1,1 = 2, ξ

(s1s2s1s2)
u1,1 = 0,

ξ(s2)
u1,z2

= 0, ξ(s1s2s1s2)
u1,z2

= 2, ξ
(s1s2)
u0,1 = 1.

G of type G2.

su6
= (1), su3

= (s2), su2
= (s1), su1

= {(s1s2s1s2s1s2), (s1s2s1s2)}, su0
= (s1s2).

ξ1
u6,1 = 12, ξ

(s2)
u3,1 = 2, ξ

(s1)
u2,1 = 2, ξ

(s1s2s1s2s1s2)
u1,1 = −3, ξ(s1s2s1s2s1s2)

u1,z2
= 3,

ξ(s1s2s1s2s1s2)
u1,z3

= 0, ξ
(s1s2s1s2)
u1,1 = 2, ξ(s1s2s1s2)

u1,z2
= 0, ξ(s1s2s1s2)

u1,z3
= 2, ξ

(s1s2)
u0,1 = 1.

G of type B3.

su9
= (1), su5

= (s1), su4
= {(s3), (s2s3s2s3)}, su3

= (s1s3),

su2
= {(s1s2), (w0)}, su1

= {(s2s3), (s2s3s1s2s3)}, su0
= (s1s2s3).

ξ1
u9,1 = 48, ξ

(s1)
u5,1 = 4, ξ

(s2s3s2s3)
u4,1 = 0, ξ(s2s3s2s3)

u4,z2
= 4, ξ

(s3)
u4,1 = 8,

ξ
(s3)
u4,1 = 0, ξ

(s1s3)
u3,1 = 2, ξ

(w0)
u2,1 = 0, ξ(w0)

u2,z2
= 6

ξ
(s1s2)
u2,1 = 2, ξ(s1s2)

u2,z2
= 0, ξ

(s2s3)
u1,1 = 2, ξ(s2s3)

u1,z2
= 0,

ξ
(s2s3s1s2s3)
u1,1 = 0, ξ(s2s3s1s2s3)

u1,z2
= 2, ξ

(s1s2s3)
u0,1 = 1.

G of type C3.

su9
= (1), su6

= (s3), su4
= {(s1), (s2s3s2s3)}, su3

= (s1s3),

su′

2
= (s1s2), su′′

2
= (s2s3), su1

= {(s2s3s1s2s3), w0}su0
) = (s1s2s3).

ξ1
u9,1 = 48, ξ

(s3)
u6,1 = 8, ξ

(s2s3s2s3)
u4,1 = 0, ξ(s2s3s2s3)

u4,z2
= 4,

ξ
(s1)
u4,1 = 4, ξ

(s1)
u4,1 = 0, ξ

(s1s3)
u3,1 = 2, ξ

(s1s2)
u′

2
,1 = 2, ξ

(s2s3)
u′′

2
,1 = 2,

ξ
(s2s3s1s2s3)
u1,1 = 1, ξ(s2s3s1s2s3)

u1,z2
= 1, ξ

(w0)
u1,1 = −3, ξ(w0)

u1,z2
= 3, ξ

(s1s2s3)
u0,1 = 1.
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2.2. For any unipotent element u ∈ G let nu be the number of isomorphism classes
of irreducible representations of Z̄(u) which appear in the Springer correspondence
for G. Consider the following properties of G:

(a) W = tusu

(u runs over a set of representatives for the unipotent classes in G); for any unipo-
tent element u ∈ G,

(b) |su| = nu.

The equality W = ∪usu is clear since for a regular unipotent u and any w we have
ξw
u,1 = 1. Note that (a),(b) hold in the examples in 2.1. We will show elsewhere

that (a),(b) hold if G is of type A. We expect that (a),(b) hold in general.
Consider also the following property of G: for any g ∈ G, w ∈ W,

ξw
g,1 is equal to the trace of w on the Springer representation

of W on ⊕iH
2i(Bg, Q̄l).(c)

Again (c) holds if G is of type A and in the examples in 2.1; we expect that it
holds in general. Note that in (c) one can ask whether for any z, ξw

g,z is equal to

the trace of wz on the Springer representation of W× Z̄(g) on ⊕iH
2i(Bg, Q̄l); but

such an equality is not true in general for z 6= 1 (for example for G of type B2).
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