ON SOME PARTITIONS OF A FLAG MANIFOLD

G. LUSZTIG

INTRODUCTION

Let G be a connected reductive group over an algebraically closed field **k** of characteristic $p > 0$. Let W be the Weyl group of G. Let W be the set of conjugacy classes in W. The main purpose of this paper is to give a (partly conjectural) definition of a surjective map from \mathbf{W} to the set of unipotent classes in G (see 1.2(b)). When $p = 0$, a map in the opposite direction was defined in [KL, 9.1] and we expect that it is a one sided inverse of the map in the present paper. The (conjectural) definition of our map is based on the study of certain subvarieties \mathcal{B}_{g}^{w} (see below) of the flag manifold β of G indexed by a unipotent element $g \in G$ and an element $w \in W$.

Note that W naturally indexes $(w \mapsto \mathcal{O}_w)$ the orbits of G acting on $\mathcal{B} \times \mathcal{B}$ by simultaneous conjugation on the two factors. For $g \in G$ we set $\mathcal{B}_q = \{B \in \mathcal{B}; g \in G\}$ B . The varieties \mathcal{B}_g play an important role in representation theory and their geometry has been studied extensively. More generally for $g \in G$ and $w \in W$ we set

$$
\mathcal{B}_g^w = \{ B \in \mathcal{B}; (B, gBg^{-1}) \in \mathcal{O}_w \}.
$$

Note that $\mathcal{B}_g^1 = \mathcal{B}_g$ and that for fixed g, $(\mathcal{B}_g^w)_{w \in \mathbf{W}}$ form a partition of the flag manifold B.

For fixed w, the varieties \mathcal{B}_{g}^{w} $(g \in G)$ appear as fibres of a map to G which was introduced in [L3] as part of the definition of character sheaves. Earlier, the varieties \mathcal{B}_{g}^{w} for g regular semisimple appeared in [L1] (a precursor of [L3]) where it was shown that from their topology (for $k = C$) one can extract nontrivial information about the character table of the corresponding group over a finite field.

I thank David Vogan for some useful discussions.

1. THE SETS S_q

1.1. We fix a prime number l invertible in **k**. Let $g \in G$ and $w \in W$. For $i, j \in \mathbb{Z}$ let $H_c^i(\mathcal{B}_g^w, \bar{\mathbf{Q}}_l)_j$ be the subquotient of pure weight j of the *l*-adic cohomology space

Supported in part by the National Science Foundation

2 G. LUSZTIG

 $H_c^i(\mathcal{B}_g^w, \bar{\mathbf{Q}}_l)$. The centralizer $Z(g)$ of g in G acts on \mathcal{B}_g^w by conjugation and this induces an action of the group of components $\bar{Z}(g)$ on $H_c^i(\mathcal{B}_g^w, \bar{\mathbf{Q}}_l)$ and on each $H_c^i(\mathcal{B}_g^w, \bar{\mathbf{Q}}_l)_j$. For $z \in \bar{Z}(g)$ we set

$$
\Xi_{g,z}^w = \sum_{i,j \in \mathbf{Z}} (-1)^i \text{tr}(z, H_c^i(\mathcal{B}_g^w, \bar{\mathbf{Q}}_l)_j) v^j \in \mathbf{Z}[v]
$$

where v is an indeterminate; the fact that this belongs to $\mathbf{Z}[v]$ and is independent of the choice of l is proved by an argument similar to that in the proof of $|DL$, 3.3].

Let $l : W \to N$ be the standard length function. The simple reflections $s \in W$ (that is the elements of length 1 of **W**) are numbered as s_1, s_2, \ldots . Let w_0 be the element of maximal length in W.

Let $\mathcal H$ be the Iwahori-Hecke algebra of **W** with parameter v^2 (see [GP, 4.4.1]; in the definition in loc.cit. we take $A = \mathbf{Z}[v, v^{-1}], a_s = b_s = v^2$. Let $(T_w)_{w \in \mathbf{W}}$ be the standard basis of H (see [GP, 4.4.3, 4.4.6]). For $w \in \mathbf{W}$ let $\hat{T}_w = v^{-2l(w)} T_w$. If $s_{i_1} s_{i_2} \dots s_{i_t}$ is a reduced expression for $w \in \mathbf{W}$ we write also $\hat{T}_w = \hat{T}_{i_1 i_2 \dots i_t}$.

For any $g \in G$, $z \in \overline{Z}(g)$ we set

$$
\Pi_{g,z} = \sum_{w \in \mathbf{W}} \Xi_{g,z}^w \hat{T}_w \in \mathcal{H}.
$$

The following result can be proved along the lines of the proof of [DL, Theorem 1.6] (we replace the Frobenius map in that proof by conjugation by g); alternatively, for g unipotent, we may use $1.5(a)$.

(a) $\Pi_{g,z}$ belongs to the centre of the algebra \mathcal{H} .

According to [GP, 8.2.6, 7.1.7], an element $c = \sum_{w \in \mathbf{W}} c_w \hat{T}_w \ (c_w \in \mathbf{Z}[v, v^{-1}])$ in the centre of H is uniquely determined by the coefficients $c_w(w \in \mathbf{W}_{min})$ and we have $c_w = c_{w'}$ if $w, w' \in \mathbf{W}_{min}$ are conjugate in \mathbf{W} ; here \mathbf{W}_{min} is the set of elements of W which have minimal length in their conjugacy class. This applies in particular to $c = \Pi_{g,z}$, see (a). For any $C \in \mathbf{W}$ we set $\Xi_{g,z}^C = \Xi_{g,z}^w$ where w is any element of $C \cap W_{min}$.

Note that if $g = 1$ then $\Pi_{g,1} = (\sum_w v^{2l(w)} 1$. If g is regular unipotent then $\Pi_{g,1} = \sum_{w \in \mathbf{W}} v^{2l(w)} \hat{T}_w$. If $G = PGL_3(\mathbf{k})$ and $g \in G$ is regular semisimple then $\Pi_{g,1} = 6 + 3(v^2 - 1)(\hat{T}_1 + \hat{T}_2) + (v^2 - 1)^2(\hat{T}_{12} + \hat{T}_{21}) + (v^6 - 1)\hat{T}_{121}$; if $g \in G$ is a transvection then $\Pi_{g,1} = (2v^2 + 1) + v^4(\hat{T}_1 + \hat{T}_2) + v^6 \hat{T}_{121}$.

For $g \in G$ let $cl(g)$ be the G-conjugacy class of g; let $\overline{cl(g)}$ be the closure of cl(g). Let S_g be the set of all $C \in \underline{\mathbf{W}}$ such that $\Xi_{g,1}^C \neq 0$ and $\Xi_{g',1}^C = 0$ for any $g' \in \overline{cl(g)} - cl(g)$. If C is a conjugacy class in G we shall also write $S_{\mathcal{C}}$ instead of \mathbf{S}_q where $g \in \mathcal{C}$.

We describe the set \mathbf{S}_g and the values $\Xi_{g,1}^C$ for $C \in \mathbf{S}_g$ for various G of low rank and various unipotent elements g in G. We denote by u_n a unipotent element of G such that dim $\mathcal{B}_{u_n} = n$. The conjugacy class of $w \in \mathbf{W}$ is denoted by (w) .

G of type A_1 .

$$
\mathbf{S}_{u_1} = (1), \mathbf{S}_{u_0} = (s_1); \Xi_{u_1,1}^1 = 1 + v^2, \Xi_{u_0,1}^{s_1} = v^2.
$$

G of type A_2 .

$$
\mathbf{S}_{u_3} = (1), \mathbf{S}_{u_1} = (s_1), \mathbf{S}_{u_0} = (s_1 s_2).
$$

\n
$$
\Xi_{u_3,1}^1 = 1 + 2v^2 + 2v^4 + v^6, \Xi_{u_1,1}^{(s_1)} = v^4, \Xi_{u_0,1}^{(s_1 s_2)} = v^4.
$$

G of type B_2 , $p \neq 2$. (The simple reflection corresponding to the long root is denoted by s_1 .)

$$
\mathbf{S}_{u_4} = (1), \mathbf{S}_{u_2} = (s_1), \mathbf{S}_{u_1} = \{(s_2), (s_1s_2s_1s_2)\}, \mathbf{S}_{u_0} = (s_1s_2).
$$

\n
$$
\Xi_{u_4,1}^1 = (1+v^2)^2(1+v^4), \Xi_{u_2,1}^{(s_1)} = v^4(1+v^2), \Xi_{u_1,1}^{(s_2)} = 2v^4,
$$

\n
$$
\Xi_{u_1,1}^{(s_1s_2s_1s_2)} = v^6(v^2 - 1), \Xi_{u_0,1}^{(s_1s_2)} = v^4.
$$

G of type B_2 , $p=2$. (u_2 denotes a transvection; u_2'' denotes a unipotent element with $\dim \mathcal{B}_{u_2^{\prime\prime}} = 2$ which is not conjugate to $u_2^{\prime\prime}$ $_{2}^{\prime}$.)

$$
\mathbf{S}_{u_4} = (1), \mathbf{S}_{u'_2} = (s_1), \mathbf{S}(u''_2) = (s_2), \mathbf{S}_{u_1} = (s_1 s_2 s_1 s_2), \mathbf{S}_{u_0} = (s_1 s_2).
$$

\n
$$
\Xi_{u_4,1}^1 = (1 + v^2)^2 (1 + v^4), \Xi_{u'_2,1}^{(s_1)} = v^4 (1 + v^2), \Xi_{u''_2,1}^{(s_2)} = v^4 (1 + v^2),
$$

\n
$$
\Xi_{u_1,1}^{(s_1 s_2 s_1 s_2)} = v^8, \Xi_{u_0,1}^{(s_1 s_2)} = v^4.
$$

G of type G_2 , $p \neq 2, 3$. (The simple reflection corresponding to the long root is denoted by s_2 .)

$$
\mathbf{S}_{u_6} = (1), \mathbf{S}_{u_3} = (s_2), \mathbf{S}_{u_2} = \{(s_1), (s_1s_2s_1s_2s_1s_2)\}, \mathbf{S}_{u_1} = (s_1s_2s_1s_2), \mathbf{S}_{u_0} = (s_1s_2).
$$

$$
\begin{aligned} \Xi_{u_6,1}^1 &= (1+v^2)^2(1+v^4+v^8), \Xi_{u_3,1}^{(s_2)} = v^6(1+v^2), \Xi_{u_2,1}^{(s_1)} = v^4(1+v^2),\\ \Xi_{u_2,1}^{(s_1s_2s_1s_2s_1s_2)} &= v^8(v^4-1), \Xi_{u_1,1}^{(s_1s_2s_1s_2)} = 2v^8, \Xi_{u_0,1}^{(s_1s_2)} = v^4. \end{aligned}
$$

G is of type A_3 . (The simple reflections are s_1, s_2, s_3 with $s_1s_3 = s_3s_1$).

$$
\mathbf{S}_{u_6} = (1), \mathbf{S}_{u_3} = (s_1), \mathbf{S}_{u_2} = (s_1 s_3), \mathbf{S}_{u_1} = (s_1 s_2), \mathbf{S}_{u_0} = (s_1 s_2 s_3).
$$

$$
\Xi_{u_6,1}^1 = (1 + v^2)(1 + v^2 + v^4)(1 + v^2 + v^4 + v^6), \Xi_{u_3,1}^{(s_1)} = v^6 + v^8,
$$

$$
\Xi_{u_2,1}^{(s_1s_3)} = v^6 + v^8, \Xi_{u_1,1}^{(s_1s_2)} = v^6, \Xi_{u_0,1}^{(s_1s_2s_3)} = v^6.
$$

4 G. LUSZTIG

G of type B_3 , $p \neq 2$. (The simple reflection corresponding to the short root is denoted by s_3 and $(s_1 s_3)^2 = 1$.)

$$
\mathbf{S}_{u_9} = (1), \mathbf{S}_{u_5} = (s_1), \mathbf{S}_{u_4} = \{(s_3), (s_2s_3s_2s_3)\}, \mathbf{S}_{u_3} = \{(s_1s_3), (w_0)\}, \n\mathbf{S}_{u_2} = (s_1s_2), \mathbf{S}_{u_1} = \{(s_2s_3), (s_2s_3s_1s_2s_3)\}, \mathbf{S}_{u_0} = (s_1s_2s_3).
$$

$$
\begin{aligned}\n\Xi_{u_{9},1}^{1} &= (1+v^{2})^{3} (1+v^{4}) (1+v^{4}+v^{8}), \Xi_{u_{5},1}^{(s_{1})} = v^{8} (1+v^{2})^{2}, \\
\Xi_{u_{4},1}^{(s_{2}s_{3}s_{2}s_{3})} &= v^{8} (1+v^{2}) (v^{4}-1), \Xi_{u_{4},1}^{(s_{3})} = 2v^{6} (1+v^{2})^{2}, \\
\Xi_{u_{3},1}^{(s_{1}s_{3})} &= v^{8} (1+v^{2}), \Xi_{u_{3},1}^{(w_{0})} = v^{14} (v^{4}-1), \Xi_{u_{2},1}^{(s_{1}s_{2})} = 2v^{8}, \\
\Xi_{u_{1},1}^{(s_{2}s_{3})} &= 2v^{6}, \Xi_{u_{1},1}^{(s_{2}s_{3}s_{1}s_{2}s_{3})} = v^{8} (v^{2}-1), \Xi_{u_{0},1}^{(s_{1}s_{2}s_{3})} = v^{6}.\n\end{aligned}
$$

G of type C_3 , $p \neq 2$. (The simple reflection corresponding to the long root is denoted by s_3 and $(s_1s_3)^2 = 1$; u''_2 denotes a unipotent element which is regular inside a Levi subgroup of type C_2 ; u'_2 denotes a unipotent element with dim $\mathcal{B}_{u''_2}$ = 2 which is not conjugate to u_2'' $2'$.)

$$
\mathbf{S}_{u_9} = (1), \mathbf{S}_{u_6} = (s_3), \mathbf{S}_{u_4} = \{(s_1), (s_2s_3s_2s_3)\}, \mathbf{S}_{u_3} = \{(s_1s_3), (w_0)\}, \mathbf{S}_{u'_2} = (s_1s_2), \mathbf{S}_{u''_2} = (s_2s_3), \mathbf{S}_{u_1} = (s_2s_3s_1s_2s_3), \mathbf{S}_{u_0} = (s_1s_2s_3).
$$

$$
\begin{aligned}\n\Xi_{u_9,1}^1 &= (1+v^2)^3 (1+v^4)(1+v^4+v^8), \Xi_{u_6,1}^{(s_3)} = v^6 (1+v^2)^2 (1+v^4), \\
\Xi_{u_4,1}^{(s_2s_3s_2s_3)} &= v^{10} (v^4-1), \Xi_{u_4,1}^{(s_1)} = 2v^8 (1+v^2), \\
\Xi_{u_3,1}^{(s_1s_3)} &= v^8 (1+v^2), \Xi_{u_3,1}^{(w_0)} = v^{14} (v^4-1), \Xi_{u_2,1}^{(s_1s_2)} = v^6 (1+v^2), \\
\Xi_{u_2,1}^{(s_2s_3)} &= v^6 (1+v^2), \Xi_{u_1,1}^{(s_2s_3s_1s_2s_3)} = v^{10}, \Xi_{u_0,1}^{(s_1s_2s_3)} = v^6.\n\end{aligned}
$$

1.2. We expect that the following property of G holds:

$$
\mathbf{W} = \sqcup_u \mathbf{S}_u
$$

 $(u$ runs over a set of representatives for the unipotent classes in G).

The equality $\mathbf{W} = \bigcup_u \mathbf{S}_u$ is clear since for a regular unipotent u and any w we have $\Xi_{u,1}^w = v^{2l(w)}$. Note that (a) holds for G of rank ≤ 3 if p is not a bad prime for G (see 1.1). We will show elsewhere that (a) holds for G of type A_n (any p) and of type B_n, C_n, D_n ($p \neq 2$). When G is simple of exceptional type, (a) should follow by computing the product of some known (large) matrices using 1.5(a).

Assuming that (a) holds we define a surjective map from W to the set of unipotent classes in G by

$$
(b) \tC \mapsto C
$$

where $C \in \mathbf{W}$ and C is the unique unipotent class in G such that $C \in \mathbf{S}_u$ for $u \in \mathcal{C}$.

We expect that when $p = 0$ we have

$$
(c) \t c_u \in S_u
$$

where for any unipotent element $u \in G$, c_u denotes the conjugacy class in W associated to u in [KL, 9.1]. Note that (c) holds for G of rank \leq 3 (see 1.1). (We have used the computations of the map in [KL, 9.1] given in [KL, $\S9$], [S1], [S2].)

1.3. Assume that $G = Sp_{2n}(\mathbf{k})$ and $p \neq 2$. The Weyl group **W** can be identified in the standard way with the subgroup of the symmetric group S_{2n} consisting of all permutations of [1, 2n] which commute with the involution $i \mapsto 2n + 1 - i$. We say that two elements of W are equivalent if they are contained in the same conjugacy class of S_{2n} . The set of equivalence classes in \underline{W} is in bijection with the set of partitions of $2n$ in which every odd part appears an even number of times (to $C \in \mathbf{W}$ we attach the partition which has a part j for every j-cycle of an element of C viewed as a permutation of $[1, 2n]$. The same set of partitions of 2n indexes the set of unipotent classes of G. Thus we obtain a bijection between the set of equivalence classes in W and the set of unipotent classes of G . In other words we obtain a surjective map ϕ from W to the set of unipotent classes of G whose fibres are the equivalence classes in W . We will show elsewhere that for any unipotent class $\mathcal C$ in G we have $\phi^{-1}(\mathcal C) = \mathbf{S}_u$ where $u \in \mathcal C$.

1.4. Recall that the set of unipotent elements in G can be partitioned into "special pieces" (see [L5]) where each special piece is a union of unipotent classes exactly one of which is "special". Thus the special pieces can be indexed by the set of isomorphism classes of special representations of W which depends only on W as a Coxeter group (not on the underlying root system). For each special piece σ of G we consider the subset $S_{\sigma} := \sqcup_{\mathcal{C}\subset\sigma} S_{\mathcal{C}}$ of \underline{W} (here C runs over the unipotent classes contained in σ). We expect that each such subset S_{σ} depends only on the Coxeter group structure of W (not on the underlying root system). As evidence for this we note that the subsets S_{σ} for G of type B_3 are the same as the subsets \mathbf{S}_{σ} for G of type C_3 . These subsets are as follows:

$$
{1}, {(s1), (s3), (s2s3s2s3)}, {(s1s3), (w0)}, {(s1s2)},{(s2s3), (s2s3s1s2s3)}, {(s1s2s3)}.
$$

1.5. Let $g \in G$ be a unipotent element and let $z \in \overline{Z}(g)$, $w \in W$. We show how the polynomial $\Xi_{g,z}^w$ can be computed using information from representation theory. We may assume that $p > 1$ and that **k** is the algebraic closure of the finite field \mathbf{F}_p . We choose an \mathbf{F}_p split rational structure on G with Frobenius map $F_0: G \to G$. We may assume that $g \in G^{F_0}$. Let $q = p^m$ where $m \geq 1$ is sufficiently divisible. In particular $F := F_0^m$ acts trivially on $\bar{Z}(g)$ hence $cl(g)^F$ is a

6 G. LUSZTIG

union of G^F -conjugacy classes naturally indexed by the conjugacy classes in $\bar{Z}(g)$; in particular the G^F-conjugacy class of g corresponds to $1 \in \overline{Z}(g)$. Let g_z be an element of the G^F -conjugacy class in $cl(g)^F$ corresponding to the $\overline{Z}(g)$ -conjugacy class of $z \in \bar{Z}(g)$. The set $\mathcal{B}_{g_z}^w$ is F-stable. We first compute the number of fixed points $|(\mathcal{B}_{g_z}^w)^F|$.

Let $\mathcal{H}_q = \bar{\mathbf{Q}}_l \otimes_{\mathbf{Z}[v, v^{-1}]} \mathcal{H}$ where $\bar{\mathbf{Q}}_l$ is regarded as a $\mathbf{Z}[v, v^{-1}]$ -algebra with v acting as multiplication by \sqrt{q} . We write T_w instead of $1 \otimes T_w$. Let IrrW be a set of representatives for the isomorphism classes of irreducible W-modules over $\bar{\mathbf{Q}}_l$. For any $E \in \text{IrrW}$ let E_q be the irreducible \mathcal{H}_q -module corresponding naturally to E. Let F be the vector space of functions $\mathcal{B}^F \to \bar{\mathbf{Q}}_l$. We regard F as a G^F -module by $\gamma : f \mapsto f'$, $f'(B) = f(\gamma^{-1}B\gamma)$ for all $B \in \mathcal{B}^F$. We identify \mathcal{H}_q with the algebra of all endomorphisms of $\mathcal F$ which commute with the G^F -action, by identifying T_w with the endomorphism $f \mapsto f'$ where $f'(B) =$ $\sum_{B' \in \mathcal{B}^F; (B, B') \in \mathcal{O}_w} f(B)$ for all $B \in \mathcal{B}^F$. As a module over $\bar{\mathbf{Q}}_l[G^F] \otimes \mathcal{H}_q$ we have canonically $\mathcal{F} = \bigoplus_{E \in \text{IrrW}} \rho_E \otimes E_q$ where ρ_E is an irreducible G^F -module. Hence if $\gamma \in G^F$ and $w \in \mathbf{W}$ we have $\text{tr}(\gamma T_w, \mathcal{F}) = \sum_{E \in \text{IrrW}} \text{tr}(\gamma, \rho_E) \text{tr}(T_w, E_q)$. From the definition we have $\text{tr}(\gamma T_w, \mathcal{F}) = |\{B \in \mathcal{B}^F; (B, \gamma B \gamma^{-1}) \in \mathcal{O}_w\}| = |(\mathcal{B}_\gamma^w)^F|.$ Taking $\gamma = g_z$ we obtain

(a)
$$
|(\mathcal{B}_{g_z}^w)^F| = \sum_{E \in \text{IrrW}} \text{tr}(g_z, \rho_E) \text{tr}(T_w, E_q).
$$

The quantity $tr(g_z, \rho_E)$ can be computed explicitly, by the method of [L4], in terms of generalized Green functions and of the entries of the non-abelian Fourier transform matrices [L2]; in particular it is a polynomial with rational coefficients in \sqrt{q} . The quantity $tr(T_w, E_q)$ can be also computed explicitly (see [GP], Ch.10,11); it is a polynomial with integer coefficients in \sqrt{q} . Thus $|(\mathcal{B}_{g_z}^w)^F|$ is an explicitly computable polynomial with rational coefficients in \sqrt{q} . Substituting here \sqrt{q} by v we obtain the polynomial $\Xi_{g,z}^w$. This argument shows also that $\Xi_{g,z}^w$ is independent of p (note that the pairs (g, z) up to conjugacy may be parametrized by a set independent of p).

This is how the various $\Xi_{g,z}^w$ in 1.1 were computed, except in type A_1, A_2, B_2 where they were computed directly from the definitions. (For type B_3, C_3 we have used the computation of Green functions in $[Sh]$; for type G_2 we have used directly [CR] for the character of ρ_E at unipotent elements.)

1.6. In this section we assume that G is simply connected. Let $\tilde{G} = G(\mathbf{k}((\epsilon)))$ where ϵ is an indeterminate. Let $\tilde{\mathcal{B}}$ be the set of Iwahori subgroups of \tilde{G} . Let W the affine Weyl group attached to \tilde{G} . Note that \tilde{W} naturally indexes $(w \mapsto \mathcal{O}_w)$ the orbits of G acting on $\mathcal{B} \times \mathcal{B}$ by simultaneous conjugation on the two factors. For $g \in \tilde{G}$ and $w \in \tilde{\mathbf{W}}$ we set

$$
\tilde{\mathcal{B}}_g^w = \{ B \in \tilde{\mathcal{B}}; (B, gBg^{-1}) \in \mathcal{O}_w \}.
$$

By analogy with [KL, §3] we expect that when g is regular semisimple, $\tilde{\mathcal{B}}_g^w$ has a natural structure of a locally finite union of algebraic varieties over k of bounded dimension and that, moreover, if g is also elliptic, then $\tilde{\mathcal{B}}_g^w$ has a natural structure of algebraic variety over k. It would follow that for g elliptic and $w \in \mathbf{W}$,

$$
\Xi^w_g = \sum_{i,j\in \mathbf{Z}} (-1)^i \dim H^i_c(\tilde{\mathcal{B}}^w_g, \bar{\mathbf{Q}}_l)_j v^j \in \mathbf{Z}[v]
$$

is well defined; one can then show that the formal sum $\sum_{w \in \tilde{\mathbf{W}}} \Xi_g^w \hat{T}_w$ is central in the completion of the affine Hecke algebra consisting of all formal sums $\sum_{w \in \tilde{\mathbf{W}}} a_w \hat{T}_w$ $(a_w \in \mathbf{Q}(v))$ that is, it commutes with any \hat{T}_w . (Here \hat{T}_w is defined as in 1.1 and the completion of the affine Hecke algebra is regarded as a bimodule over the actual affine Hecke algebra in the natural way.)

2. THE SETS s_q

2.1. In this section we assume that G is adjoint and p is not a bad prime for G . For $q \in G$, $z \in \overline{Z}(q)$, $w \in \mathbf{W}$ we set

$$
\xi_{g,z}^w = \Xi_{g,z}^w|_{v=1} = \sum_{i \in \mathbf{Z}} (-1)^i \text{tr}(z, H_c^i(\mathcal{B}_g^w, \bar{\mathbf{Q}}_l)) \in \mathbf{Z}.
$$

This integer is independent of l. For any $g \in G$, $z \in \bar{Z}(g)$ we set

$$
\pi_{g,z}=\sum_{w\in \mathbf{W}}\xi^w_{g,z}w\in \mathbf{Z}[W].
$$

This is the specialization of $\Pi_{g,z}$ for $v=1$. Hence from 2(a) we see that $\pi_{g,z}$ is in the centre of the ring $\mathbf{Z}[\mathbf{W}]$. Thus for any $C \in \mathbf{W}$ we can set $\xi_{g,z}^C = \xi_{g,z}^w$ where w is any element of C. For $g \in G$ let \mathbf{s}_g be the set of all $C \in \mathbf{\underline{W}}$ such that $\xi_{g,z}^C \neq 0$ for some $z \in \overline{Z}(g)$ and $\xi_{g',z'}^C = 0$ for any $g' \in \overline{cl(g)} - cl(g)$ and any $z' \in \overline{Z}(g')$. We describe the set \mathbf{s}_g and the values $\xi_{g,z}^C = 0$ for $C \in \mathbf{s}_g$, $z \in \overline{Z}(g)$, for various G of low rank and various unipotent elements g in G . We use the notation in 1.1. Moreover in the case where $Z(g) \neq \{1\}$ we denote by z_n an element of order n in $Z(g)$.

G of type A_1 .

$$
\mathbf{s}_{u_1} = (1), \mathbf{s}_{u_0} = (s_1); \xi_{u_1,1}^1 = 2, \xi_{u_0,1}^{s_1} = 1.
$$

G of type A_2 .

$$
\mathbf{s}_{u_3} = (1), \mathbf{s}_{u_1} = (s_1), \mathbf{s}_{u_0} = (s_1 s_2).
$$

$$
\xi_{u_3,1}^1 = 6, \xi_{u_1,1}^{(s_1)} = 1, \xi_{u_0,1}^{(s_1 s_2)} = 1.
$$

 G of type $\mathcal{B}_2.$

$$
\mathbf{s}_{u_4} = (1), \mathbf{s}_{u_2} = (s_1), \mathbf{s}_{u_1} = \{(s_2), (s_1s_2s_1s_2)\}, \mathbf{s}_{u_0} = (s_1s_2).
$$

$$
\xi_{u_4,1}^1 = 8, \xi_{u_2,1}^{(s_1)} = 2, \xi_{u_1,1}^{(s_2)} = 2, \xi_{u_1,1}^{(s_1 s_2 s_1 s_2)} = 0, \xi_{u_1,2}^{(s_2)} = 0, \xi_{u_1,2}^{(s_1 s_2 s_1 s_2)} = 2, \xi_{u_0,1}^{(s_1 s_2)} = 1.
$$

 G of type G_2 .

$$
\mathbf{s}_{u_6} = (1), \mathbf{s}_{u_3} = (s_2), \mathbf{s}_{u_2} = (s_1), \mathbf{s}_{u_1} = \{(s_1s_2s_1s_2s_1s_2), (s_1s_2s_1s_2)\}, \mathbf{s}_{u_0} = (s_1s_2).
$$

$$
\xi_{u_6,1}^1 = 12, \xi_{u_3,1}^{(s_2)} = 2, \xi_{u_2,1}^{(s_1)} = 2, \xi_{u_1,1}^{(s_1 s_2 s_1 s_2 s_1 s_2)} = -3, \xi_{u_1,2}^{(s_1 s_2 s_1 s_2 s_1 s_2)} = 3, \xi_{u_1,2}^{(s_1 s_2 s_1 s_2 s_1 s_2)} = 0, \xi_{u_1,1}^{(s_1 s_2 s_1 s_2)} = 2, \xi_{u_1,2}^{(s_1 s_2 s_1 s_2)} = 0, \xi_{u_1,2}^{(s_1 s_2 s_1 s_2)} = 2, \xi_{u_0,1}^{(s_1 s_2)} = 1.
$$

 \bar{G} of type $B_3.$

$$
\mathbf{s}_{u_9} = (1), \mathbf{s}_{u_5} = (s_1), \mathbf{s}_{u_4} = \{(s_3), (s_2s_3s_2s_3)\}, \mathbf{s}_{u_3} = (s_1s_3), \n\mathbf{s}_{u_2} = \{(s_1s_2), (w_0)\}, \mathbf{s}_{u_1} = \{(s_2s_3), (s_2s_3s_1s_2s_3)\}, \mathbf{s}_{u_0} = (s_1s_2s_3).
$$

$$
\xi_{u_9,1}^1 = 48, \xi_{u_5,1}^{(s_1)} = 4, \xi_{u_4,1}^{(s_2 s_3 s_2 s_3)} = 0, \xi_{u_4,2}^{(s_2 s_3 s_2 s_3)} = 4, \xi_{u_4,1}^{(s_3)} = 8,
$$

\n
$$
\xi_{u_4,1}^{(s_3)} = 0, \xi_{u_3,1}^{(s_1 s_3)} = 2, \xi_{u_2,1}^{(w_0)} = 0, \xi_{u_2,2}^{(w_0)} = 6
$$

\n
$$
\xi_{u_2,1}^{(s_1 s_2)} = 2, \xi_{u_2,2}^{(s_1 s_2)} = 0, \xi_{u_1,1}^{(s_2 s_3)} = 2, \xi_{u_1,2}^{(s_2 s_3)} = 0,
$$

\n
$$
\xi_{u_1,1}^{(s_2 s_3 s_1 s_2 s_3)} = 0, \xi_{u_1,2}^{(s_2 s_3 s_1 s_2 s_3)} = 2, \xi_{u_0,1}^{(s_1 s_2 s_3)} = 1.
$$

 \bar{G} of type $C_3.$

$$
\mathbf{s}_{u_9} = (1), \mathbf{s}_{u_6} = (s_3), \mathbf{s}_{u_4} = \{(s_1), (s_2s_3s_2s_3)\}, \mathbf{s}_{u_3} = (s_1s_3), \n\mathbf{s}_{u'_2} = (s_1s_2), \mathbf{s}_{u''_2} = (s_2s_3), \mathbf{s}_{u_1} = \{(s_2s_3s_1s_2s_3), w_0\} \mathbf{s}_{u_0} = (s_1s_2s_3).
$$

$$
\xi_{u_9,1}^1 = 48, \xi_{u_6,1}^{(s_3)} = 8, \xi_{u_4,1}^{(s_2s_3s_2s_3)} = 0, \xi_{u_4,2}^{(s_2s_3s_2s_3)} = 4,
$$
\n
$$
\xi_{u_4,1}^{(s_1)} = 4, \xi_{u_4,1}^{(s_1)} = 0, \xi_{u_3,1}^{(s_1s_3)} = 2, \xi_{u_2,1}^{(s_1s_2)} = 2, \xi_{u_2,1}^{(s_2s_3)} = 2,
$$
\n
$$
\xi_{u_1,1}^{(s_2s_3s_1s_2s_3)} = 1, \xi_{u_1,2}^{(s_2s_3s_1s_2s_3)} = 1, \xi_{u_1,1}^{(w_0)} = -3, \xi_{u_1,2}^{(w_0)} = 3, \xi_{u_0,1}^{(s_1s_2s_3)} = 1.
$$

2.2. For any unipotent element $u \in G$ let n_u be the number of isomorphism classes of irreducible representations of $\bar{Z}(u)$ which appear in the Springer correspondence for G . Consider the following properties of G :

(a)
$$
\mathbf{W} = \sqcup_u \mathbf{s}_u
$$

 $(u \text{ runs over a set of representatives for the unipotent classes in } G);$ for any unipotent element $u \in G$,

$$
|\mathbf{s}_u| = n_u.
$$

The equality $\mathbf{W} = \bigcup_u \mathbf{s}_u$ is clear since for a regular unipotent u and any w we have $\xi_{u,1}^w = 1$. Note that (a),(b) hold in the examples in 2.1. We will show elsewhere that $(a),(b)$ hold if G is of type A. We expect that $(a),(b)$ hold in general.

Consider also the following property of G: for any $q \in G$, $w \in W$,

 $\xi_{g,1}^w$ is equal to the trace of w on the Springer representation (c) of **W** on $\bigoplus_i H^{2i}(\mathcal{B}_g, \bar{\mathbf{Q}}_l)$.

Again (c) holds if G is of type A and in the examples in 2.1; we expect that it holds in general. Note that in (c) one can ask whether for any z, $\xi_{g,z}^w$ is equal to the trace of wz on the Springer representation of $\mathbf{W} \times \bar{Z}(g)$ on $\oplus_i H^{2i}(\mathcal{B}_g, \bar{\mathbf{Q}}_l)$; but such an equality is not true in general for $z \neq 1$ (for example for G of type B_2).

REFERENCES

- [CR] B.Chang and R.Ree, The characters of $G_2(q)$, Istituto Naz.di Alta Mat. Symposia Math. XIII (1974), 395-413.
- [DL] P.Deligne and G.Lusztig, Representations of reductive groups over finite fields, Ann.Math. 103 (1976), 103-161.
- [GP] M.Geck and G.Pfeiffer, Characters of finite Coxeter groups and Iwahori-Hecke algebras, Clarendon Press Oxford, 2000.
- [KL] D.Kazhdan and G.Lusztig, Fixed point varieties on affine flag manifolds, Isr.J.Math. 62 (1988), 129-168.
- [L1] G.Lusztig, On the reflection representation of a finite Chevalley group, Representation theory of Lie groups, LMS Lect.Notes Ser.34, Cambridge U.Press, 1979, pp. 325-337.
- [L2] G.Lusztig, Unipotent representations of a finite Chevalley group of type E_8 , Quart.J.Math. 30 (1979), 315-338.
- [L3] G.Lusztig, *Character sheaves*, *I*, Adv.in Math. **56** (1985), 193-237.
- [L4] G.Lusztig, On the character values of finite Chevalley groups at unipotent elements, J.Alg. 104 (1986), 146-194.
- [L5] G.Lusztig, Notes on unipotent classes, Asian J.Math. 1 (1997), 194-207.
- [Sh] T.Shoji, On the Green polynomials of Chevalley groups of type F4, Comm.in Alg. 10 (1982), 505-543.
- [S1] N.Spaltenstein, Polynomials over local fields, nilpotent orbits and conjugacy classes in Weyl groups, Astérisque 168 (1988), 191-217.
- [S2] N.Spaltenstein, On the Kazhdan-Lusztig map for exceptional Lie algebras, Adv.Math 83 (1990), 48-74.

Department of Mathematics, M.I.T., Cambridge, MA 02139