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ABSTRACT. It is well known that the validity of the so called Lenard-
Magri scheme of integrability of a bi-Hamiltonian PDE can be estab-
lished if one has some precise information on the corresponding 1st vari-
ational Poisson cohomology for one of the two Hamiltonian operators.
In the first part of the paper we explain how to introduce various coho-
mology complexes, including Lie superalgebra and Poisson cohomology
complexes, and basic and reduced Lie conformal algebra and Poisson
vertex algebra cohomology complexes, by making use of the correspond-
ing universal Lie superalgebra or Lie conformal superalgebra. The most
relevant are certain subcomplexes of the basic and reduced Poisson ver-
tex algebra cohomology complexes, which we identify (non-canonically)
with the generalized de Rham complex and the generalized variational
complex. In the second part of the paper we compute the cohomology of
the generalized de Rham complex, and, via a detailed study of the long
exact sequence, we compute the cohomology of the generalized varia-
tional complex for any quasiconstant coefficient Hamiltonian operator
with invertible leading coefficient. For the latter we use some differential
linear algebra developed in the Appendix.
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1. INTRODUCTION

The theory of Poisson vertex algebras is a very convenient framework for
the theory of Hamiltonian partial differential equations [BDSK].

First, let us introduce some key notions. Let V' be a unital commutative
associative algebra with a derivation 0. The space g_1 = V/9V is called the
space of Hamiltonian functions, the image of h € V in g_; being denoted
by [h. The Lie algebra go of all derivations of V, commuting with 9, is
called the Lie algebra of evolutionary vector fields. Its action on V' descends
to g_1.

A A-bracket on V is a linear map V@V — FA| @V, a ® b — {ayb},
satisfying the following three properties (a,b € V):

(sesquilinearity)  {Ddaxb} = —A{axb}, {ax0b} = (0 + N){axb},

(skewcommutativity)  {bra} = —{a_g_ab},
where 0 is moved to the left,

(Leibniz rule) {axbc} = {arb}c + b{axc}.

Denote by g1 the space of all A\-brackets on V.
One of the basic constructions of the present paper is the Z-graded Lie
superalgebra

(1.1) W (V) = (Lg_1) @ go @ (Lgy1) B

where g_1, go and g, are as above and llg; stands for the space g; with re-
versed parity. For [f, [¢g € IIg_1, X,Y € go and H € IIg; the commutators
are defined as follows:

(1.2) [[f.[g] = 0,

(1.3) (X, [f] = JX()

(1.4) X,Y] = XY -YX,

(15 {a-dm [f]9) = {hatul

(1.6) IHhatixm = XUAghe) —{X(agtm —{fx X(9)}n -

In Section 5 we construct explicitly the whole Lie superalgebra W9 AS(TIV),
but for applications to Hamiltonian PDE one needs only the condition
[H,K] =0 for H, K € Ilg;, which is as follows (f,g,h € V):

(1.7 {hatxriwhtm—{{gphtx b a+{gu{f\h} ke +(H < K) = 0.

A M-bracket {.n.} ={.x.}y is called a Poisson \-bracket if [H, H] = 0,
i.e., one has

(Jacobi identity)  {fx{guh}} —{gu{frh}} = {{/rg}rsuh}-
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The differential algebra V', endowed with a Poisson A-bracket , is called a
Poisson vertex algebra (PVA) [DSK1]. Two Poisson A-brackets {. ).}y and
{.a.}x on V are called compatible if (1.7) holds, which means that their
sum is a Poisson A-bracket as well.

One of the key properties of a PVA V is that the vector space V/oV
carries a well-defined Lie algebra structure, given by

(1.8) {[f. [} =[{Pa}]\y> Ffoc€V.

Moreover, V' is a left module over the Lie algebra V/0V with the well-defined
action

(1.9) {19y ={f}t,_y, Fr9€V,

by derivations, commuting with 0, of the associative product in V' and of
the A-bracket. In particular, all the derivations X/ = {[f,.} of V are
evolutionary; they are called Hamiltonian vector fields.

Two Hamiltonian functions [ f and [g¢ are said to be in involution if

(1.10) {[f.[g}=0.

Given a Hamiltonian function [h € V/V and a Poisson A-bracket on V, the
corresponding Hamiltonian equation is defined by the Hamiltonian vector
field X"

(1.11) %:{fh,u}, ueV.

The equation (1.11) is called integrable if [h is contained in an infinite-
dimensional abelian subalgebra of the Lie algebra V/0V with bracket (1.8).

Picking a basis f hg = f h, f h1 f ha, ... of this abelian subalgebra, we obtain
a hierarchy of integrable Hamiltonian equations

(1.12) d—“:{fhn,u}, neZy,

dty,
which are compatible since the corresponding Hamiltonian vector fields X/
commute.

The basic device for proving integrability of a Hamiltonian equation is the
so-called Lenard-Magri scheme, which is the following simple observation,
first mentioned in [GGKM] and [Lax]; a survey of related results up to the
early 90’s can be found in [Dor]. Suppose that the differential algebra V is
endowed with two A-brackets {.,.}x and {.).}x and assume that:

(1.13) {fhn,u}H:{fhnH,u}K, neZi,ueV,

for some Hamiltonian functions [h, € V/OV. Then all these Hamilton-
ian functions are in involution with respect to both brackets {. ).}y and
{.A-}x on V/OV.

Note that we do not need to assume that the A\-brackets are Poisson nor
that they are compatible. These assumptions enter when we try to prove
the existence of the sequence, [h,,, satisfying (1.13), as we explain below.
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Indeed, let H, K € Ilg; be two compatible Poisson A-brackets on V.
Since [K,K] = 0, it follows that (ad K)?> = 0, hence we may consider
the variational cohomology complex (W2S(IIV) = @;i_l W;,ad K), where
W_i1 =gy, Wy = go, Wy = Ilgy,.... By definition, X € Wy is closed
if, in view of (1.6), it is a derivation of the A-bracket {.,.}x, and it is
exact if, in view of (1.5), X = {hA'}K|>\:0 for some h € W_;. Now we
can find a solution to (1.13), by induction on n as follows. By Jacobi iden-
tity in WPS(ITV') we have [K, [H, h,]] = —[H, [K, hy,]], which, by inductive
assumption, equals —[H, [H, h,_1]] = 0, since [H,H] = 0 and H € W is
odd. Thus, the element [H, h,_1] € W is closed. If this closed element is
exact, i.e., it equals [K, h,] for some h,, € W_1, we complete the n'? step of
induction. In general we have

(1.14) [H, hp1] = [K, hn] + an

where a,, is a representative of the corresponding cohomology class. Looking
at (1.14) more carefully, one often can prove that one can take a, = 0, so
the Lenard-Magri scheme still works.

The cohomological approach to the Lenard-Magri scheme was proposed
long ago in [Kra] and [Ol1]. However, no machinery has been developed
in order to compute this cohomology. In the present paper we develop
such a machinery by introducing a “covering” complex (W25 ad K) of the
complex (W92 ad K), whose cohomology is much easier to compute, and
then study in detail the corresponding long exact sequence.

What does this have to do with the classical Hamiltonian PDE, like the
KdV equation? In order to explain this, consider the algebra of differential

polynomials Ry = F[u(n) ‘z =1,...,4; n € Zy] with the derivation 0, defined

(2
on generators by 8(u§n)) = uz(-"H). Here one should think of the u; as func-
tions, depending on a parameter ¢ (time), in one independent variable z,
which is a coordinate on a 1-dimensional manifold M, and of 0 as the deriv-
ative by x, so that ugn) is the n'? derivative of u;. Furthermore, one should
think of [h € Ry/ORy as [ yhdw since Ry/OR, provides the universal space
in which integration by parts holds.

It is straightforward to check that equation (1.11) can be written in the

following equivalent, but more familiar, form:

du oh
1.1 — =H(0)—
(1.15) = HO)S
where g—Z is the vector of variational derivatives
oh oh
1.1 - = _oH\n
(1.16) Fr = 20,
nel )

and H(0) = (H; (8))f j—1 1s the £x ¢ matrix differential operator with entries

H;j(0) = {ujpu;}—. Here the arrow means that d should be moved to the
right. It is not difficult to show that the skewcommutativity of the A\-bracket
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is equivalent to skewadjointness of the differential operator H(9), and, in
addition, the validity of the Jacobi identity of the A-bracket is, by definition,
equivalent to H(0) being a Hamiltonian operator. Furthermore, the bracket
(1.8) on Ry/ORy takes the familiar form

(117) Urfo= [ (n0).

and one can show that this is a Lie algebra bracket if and only if H(0) is a
Hamiltonian operator [BDSK].

Given A\-brackets {u;yu;} = —{u;_, ,u;i} € R¢[\] of any pair of generators
u;, uj, one can extend them uniquely to a A-bracket on R,, which is given
by the following explicit formula [DSK1]

(118) ()= 3 0+ A o) (0 - N

1<ij<e OU; augm)
m,n€l
This A-bracket defines a PVA structure on R, if and only if the Jacobi
identity holds for any triple of generators w;, u;, u, [BDSK].
The simplest example of a Hamiltonian operator is the Gardner-Faddeev-
Zakharov (GFZ) operator K (0) = 0. It is the observation in [Gar] that the
KdV equation

d
(1.19) d—? =3uu +cu", ceF,
can be written in a Hamiltonian form
du 5h1 1 3 1
(1.20) pri DW’ where h; = §(u + cuu”)

and it is the subsequent proof in [FZ] that KdV is a completely integrable
Hamiltonian equation, that triggered the theory of Hamiltonian PDE. The
corresponding A-bracket on R; is, of course, given by the formula {uyu} = A,
extended to R; ® R; — F[\| ® Ry by (1.18).

In a subsequent paper [Mag], Magri showed that the operator H(9) =
w4 2ud + c0? is Hamiltonian for all ¢ € F, that it is compatible with the
GFZ operator, and that the KdV equation can be written in a different
Hamiltonian form

(1.21) le—:: = (u +2ud + 083)%, where hy = %uz.

Moreover, he explained how to use this to prove the validity of the Lenard-
Magri scheme !, which gave a new proof of integrability of KdV and some
other equations.

ISince in the literature the names Lenard and Magri scheme are alternatively used,
we decided to call it the Lenard-Magri scheme. The history of Lenard’s contribution
is colorfully described in [PS], where one can also find an extensive list of subsequent
publications on the subject.
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Of course, the A\-bracket corresponding to the Magri operator is given by
(1.22) {uru} = (8 + 2\)u + c)?,

which defines (via (1.18)) a PVA structure on R; for all values of ¢ € F.

The reader can find a detailed exposition of the applications of PVA to
Hamiltonian PDE in the paper [BDSK], where, in particular, some sufficient
conditions for the validity of the Lenard-Magri scheme and its generaliza-
tions are found and applied to the proof of integrability of many important
equations. However many Hamiltonian equations remain out of reach of the
methods of [BDSK], but we think that the cohomological approach is more
powerful (though less elementary) and we are planning to demonstrate this
in a subsequent paper.

In order to make our ideas clearer (or, perhaps, more confusing) we begin
the paper with a long digression, which goes from Section 2 through Section
10, to a general approach to various cohomology theories (in fact, the reader,
interested only in applications to the theory of integrable Hamiltonian PDE,
can, without much difficulty, jump to Section 11).

In Section 2, given a vector superspace V', we consider the universal Z-
graded Lie superalgebra W (V) = @;>_1W;(V) with W_{(V) = V. Uni-
versality here is understood in the sense that, given any other Z-graded Lie
superalgebra g = @;>_1g; with g_; = V, there exists a unique, grading
preserving homomorphism g — W (V), identical on V. It is easy to show
that W;(V) = Hom(S7*1(V),V) for all j > —1, and one can write down
explicitly the Lie superalgebra bracket. In particular, Wy(V) = End V' and
W1 (V) = Hom(S?V, V), so that any even element of the vector superspace
W1(V) defines a commutative superalgebra structure on V' (and this corre-
spondence is bijective).

On the other hand, as observed in [CK], any odd element X of the vector
superspace W1 (IIV') defines an skewcommutative superalgebra structure on
V' by the formula

(1.23) [a,b] = (—1)PDX(a®b), abeV,

where p is the parity on V. Moreover, this is a Lie superalgebra structure if
and only if [X, X] = 0 in W(IIV). Thus, given a Lie superalgebra structure
on V, considering the corresponding element X € Wi (IIV), we obtain a
cohomology complex (C* = &;ezC?,ad X), where C7 = W, (IIV), and it
turns out that C* = C*(V,V) coincides with the cohomology complex of
the Lie superalgebra V with coefficients in the adjoint representation. More
generally, given a module M over the Lie superalgebra V', one considers,
instead of V, the Lie superalgebra V x M with M an abelian ideal, and by
a simple reduction procedure constructs the cohomology of the Lie superal-
gebra V' with coefficients in M. This construction for V' purely even goes
back to the paper [NR] on deformation theory.

In Section 3, assuming that V carries a structure of a commutative as-
sociative superalgebra, we let W2 (IIV) = IIV, W{*(IIV) = DerV, the
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subalgebra of all derivations of the superalgebra V in the superalgebra
EndIIV = EndV (the superscript “as” stands for “associative”). Let
W(IV) = &> 1W*(IIV) be the full prolongation in the Lie superal-
gebra W (ITV'), defined inductively for j > 1 by

W (V) = {a € W; (TV)|[a, Wy (TIV)] C WS, (HV)} .

Then odd elements X in W2(IIV'), such that [X, X| = 0, bijectively corre-
spond to Poisson algebra structures on V' (with the given commutative asso-
ciative superalgebra structure). In this case the complex (W?#5(IIV'), ad X) is
the Poisson cohomology complex of the Poisson superalgebra V' (introduced
in [Lic]).

Incidentally, one can introduce a commutative associative product on
Was(IIV'), making it (along with the Lie superalgebra bracket) an odd Pois-
son (= Gerstenhaber) superalgebra. Here we observe a remarkable duality
when passing from IIV to V: W?(V) is an (even) Poisson superalgebra,
whereas the odd elements of W*(V') correspond to odd Poisson superalge-
bra structures on V.

Next, in Section 4 we consider the case when V carries a structure of
an F[0] -module. Here and throughout the paper F[d], as usual, denotes
the algebra of polynomials in an (even) indeterminate 9. Motivated by the
construction of the universal Lie superalgebra W (IIV'), we construct a Z-
graded Lie superalgebra WO(IIV) = @22, W2(IIV), which, to some extent,
plays the same role in the theory of Lie conformal algebra as W (IIV') plays
in the theory of Lie algebras (explained above).

Recall that a Lie conformal algebra is an F[0]-module, endowed with the
A-bracket, satisfying sesquilinearity, skewcommutativity and Jacobi identity
(introduced above). In other words, a Lie conformal algebra is an analogue
of a Lie algebra in the same way as a Poisson vertex algebra is an analogue
of a Poisson algebra.

We let W9, (TIV) = (V/9V) and WJ(IIV) = Endgjg V, and construct
WO(IIV) as a prolongation in W (II(V/0V)) (not necessarily full), so that
odd elements X € W{(IIV') parameterize sesquilinear skewcommutative \-
brackets on V', and the A\-bracket satisfies the Jacobi identity (i.e., defines
on V a Lie conformal algebra structure) if and only if [X, X] = 0.

In the same way as in the Lie algebra case, we obtain a cohomology
complex (WI(IIV'), ad X), provided that [X, X] = 0 for an odd element X €
W2(TIV'), and this complex (after the shift by 1), is the Lie conformal algebra
cohomology complex with coefficients in the adjoint representation. In the
same way, by a reduction, we recover the Lie conformal algebra cohomology
complex with coefficients in any representation, studied in [BKV], [BDAK],
[DSK2].

Next, in Section 5 we consider the case when V' carries both, a structure
of an F[0]-module, and a compatible with it commutative algebra structure,
in other words, V is a differential algebra. Then in the same way as above,
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we construct the Lie superalgebra WP*(IIV) (cf. (1.1)) as a Z-graded
subalgebra of W2(IIV), for which WoSIIV) = W2 (V) = II(V/V),
W™S(IV) = Dergiy V. ¢ WQ(IIV) = Endgp V, and W™ (IIV) is such
that its odd elements X parameterize all A-brackets on the differential alge-
bra V', so that those satisfying [X, X] = 0 correspond to PVA structures on
V. This explains the strange notation (1.1) of this Lie superalgebra.

In Section 6 we construct the universal Lie conformal superalgebra Wa(V)
for a finitely generated F[0d]-supermodule V, and in Section 7 we construct
the universal odd Poisson vertex algebra Wa’as(HV) for a finitely generated
differential superalgebra V. These constructions are very similar in spirit to
the constructions of the universal Lie superalgebras W7(V') and W2 (V),
from Sections 4 and 5 respectively. The finitely generated assumption is
needed in order for the corresponding A-brackets to be polynomial in A.

Note that in the definition of the Lie algebra bracket on V/0V, and its
representation on V', as well in the discussion of the Lenard-Magri scheme,
we needed only that V is a Lie conformal algebra. However, for practical
applications one usually uses PVA’s, and, in fact some special kind of PVA’s,
which are differential algebra extensions of R, with the A-bracket given by
formula (1.18). For such a PVA V we construct, in Sections 9 a subalgebra
of the Lie algebra W2s(TIV)

WV&I’(HV) — @]Z_IW]VZH"

where WY = Wi?’las, but wie for j > 0 may be smaller. For example Wy**
consists of derivations of the form  i<;</ ijﬁ,

nez J
it is these derivations that are called ig variational calculus evolutionary
vector fields. Next, W} consists of all A-brackets of the form (1.18), etc.
We call elements of W' the variational k-vector fields.

There has been an extensive discussion of variational poly-vector fields
in the literature. The earliest reference we know of is [Kup]|, see also the
book [0O12]. One of the later references is [IVV]; the idea to use Cartan’s
prolongation comes from this paper.

In order to solve the Lenard-Magri scheme (1.13) over a differential func-
tion extension V of R, with the A-brackets {., .}y and {.,.}x of the
form as in (1.18), one has to compute the cohomology of the complex
(WYar(I1V),ad K), where K € W}® is such that [K, K] = 0, as we ex-
plained above.

In order to compute this variational Poisson cohomology, we construct,
in Section 10 a Z,-graded Lie conformal superalgebra (which is actually
a subalgebra of the odd PVA WPa(ITV)) WY (IIV) = ®j>—1 W™ with

Wfaf = V, for which the associated Lie superalgebra is WY (IIV'). Since
the Lie superalgebra WYa'(IIV) acts on the Lie conformal superalgebra

commuting with 9, and
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anr(HV), in particular, K acts, providing it with a differential dx, com-
muting with the action of 9. We thus have an exact sequence of complexes:

(1.24) 0 — (OWY™(V),dg) — (W™ (V),dk) — (W™ (V),ad K) = 0,

so that we can study the corresponding cohomology long exact sequence.

To actually perform calculations, we identify (non-canonically) the space
WYar(IIV) with the space Q°(V) of the de Rham complex, and the space
WYar(IIV') with the space of the reduced de Rham complex = variational
complex Q°*(V).

We thus get the “generalized” de Rham complex (Q°(V),dy) and the
“generalized” variational complex (2°(V),ad K). The ordinary de Rham
and variational complexes are not, strictly speaking, special cases, since
they correspond to K = I, which is not a skewadjoint operator. However, in
the case when the differential operator K is quasiconstant, i.e., ﬁ(K )=20

for all ¢, n, the construction of these complexes is still valid.

In Section 11 we completely solve the problem of computation of coho-
mology of the generalized de Rham complex (Q2°(V),dk) in the case when
V' is a normal algebra of differential functions and K is a quasiconstant ma-
trix differential operator with invertible leading coefficient. For that we use
“local” homotopy operators, similar to those introduced in [BDSK] for the
de Rham complex.

After that, as in [BDSK], we study the cohomology long exact sequence
corresponding to the short exact sequence (1.24). As a result we get a com-
plete description of the cohomology of the generalized variational complex
for an arbitrary quasiconstant ¢ x £ matrix differential operator K of order NV
with invertible leading coefficient. In fact, we find simple explicit formulas
for representatives of cohomology classes, and we prove that

dim H*(Q*(V),ad K) = < k]i €1> :
provided that quasiconstants form a linearly closed differential field. These
results lead to further progress in the application of the Lenard-Magri scheme
(work in progress).

In the special case when K is a constant coefficient order 1 skewadjoint
matrix differential operator, it is proved in [Get] that the variational Poisson
cohomology complex is formal.

Our explicit description of the long exact sequence in terms of polydif-
ferential operators leads to some problems on systems of linear differential
equations of arbitrary order in the same number of unknowns. In the Ap-
pendix we develop some differential linear algebra in order to solve these
problems.

All vector spaces are considered over a field F of characteristic zero. Ten-
sor products, direct sums, and Hom'’s are considered over [F, unless otherwise
specified.
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We wish to thank A. Kiselev for drawing our attention to the cohomo-
logical approach to the Lenard-Magri scheme, 1. Krasilshchik for correspon-
dence, and A. Maffei for useful discussions.

2. THE UNIVERSAL LIE SUPERALGEBRA W (V) FOR A VECTOR
SUPERSPACE V', AND LIE SUPERALGEBRA COHOMOLOGY

Recall that a vector superspace is a Z/2Z-graded vector space U = Uy ®
Uj. If a € U,, where a € Z/2Z = {0,1}, one says that a has parity
p(a) = a. In this case we say that the superspace U has parity p. By a
superalgebra structure on U we always mean a parity preserving product U®
U — U, a® b+ ab, which is called commutative (resp. skewcommutative)
if ba = (—1)P@P®) b (resp. ba = —(—1)P(@P®)gp).

An endomorphism of U is called even (resp. odd) if it preserves (resp.
reverses) the parity. The superspace End(U) of all endomorphisms of U
is endowed with a Lie superalgebra structure by the formula: [A, B] =
AoB — (—1)»ArBIB o A,

One denotes by IIU the superspace obtained from U by reversing the
parity, namely IIU = U as a vector space, with parity p(a) = p(a)+ 1. One
defines a structure of a vector superspace on the tensor algebra 7 (U) over
U by additivity. The symmetric, (respectively exterior) superalgebra S(U)
(resp. A(U)) is defined as the quotient of the tensor superalgebra 7 (U)
by the relations u ® v — (—=1)PPMy @y (resp. u @ v+ (—1)PWPO)y @ ).
Note that S(IIU) is the same as A U as a vector space, but not as a vector
superspace.

2.1. The universal Lie superalgebra W (V). Let V be a vector super-
space with parity p (the reason for this notation will be clear later). We recall
the construction of the universal Lie superalgebra W (V') associated to V.
Let Wy (V) = Hom(S*+1(V), V), the superspace of (k -+ 1)-linear supersym-
metric functions on V' with values in V', and let W (V) = @p__; Wi(V).
Again, we denote its parity by p. We endow this vector superspace with
a structure of a Z-graded Lie superalgebra as follows. If X € Wj(V),
Y € Wi_p(V), with h > =1,k > h — 1, we define XOY to be the fol-
lowing element in Wj(V):

XOY (vg, - .-, v)

@1 = D> @liog i) XY Wiy Vig )y Vi pprseee Vi) -

10<-<lg_ph

U1 <o <l
Here €,(ig,...,ix) = 0 if two indexes are equal, and, for iy, ..., i distinct,
€o(ig, ... ,ix) = (—1)", where N is the number of interchanges of indexes
of odd v;’s in the permutation. For example, if V' is purely even, then
€v(i0,...,ix) = 1 for every permutation, while, if V' is purely odd, then
€x(%0, ... ,0%) is the sign of the permutation o € Siiq given by o(¢) = iy.

The above formula, for h = —1 gives zero, while for k = h — 1 gives
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X(Y,vg,...,v;). Clearly, XOY is a supersymmetric map if both X and
Y are, hence XY is a well-defined element of W (V). We then define the
bracket [, -] : Wx(V) X Wi_p(V) — Wi(V) by the following formula:

(2.2) (X,Y] = X0y — (—1)PErMynx

Proposition 2.1. The bracket (2.2) defines a Lie superalgebra structure on
W(V).

Proof. The bracket (2.2) is skewcommutative by construction. Moreover,

it is easy to see that the operation OJ is right symmetric, i.e., (X,Y,Z) =

(-1)PYMP) (X, Z,Y), where (X,Y,Z) = (XOY)OZ — XO(YOZ). The

right symmetry of O implies the Jacobi identity for bracket (2.2). U
According to the above definitions, W_1(V) =V, Wy(V) = End(V), and

the bracket between Wy(V) and W_;(V) is given by the action of End(V)

on V. Moreover, for X € Wi(V) and Y € W_1(V) =V, we have

(2.3) [X,Y](Ul,...,?]k) = X(Y,vl,...,vk) , V..., €V,

while for X € Wy(V) and Y € Wy (V), k > —1, we have

[X, Y](UO, v ,Ukk) = X(Y(UQ, v ,Uk))

@4) —(=1)PPOPEIN )PS0y (v, X (v) v
i=0

Here and further we let, for ¢ < j,

(2.5) Sij = P(vi) + -+ B(v;) -

Finally, if X € W1(V) and Y € Wj_1(V), k > 0, we have [X,Y] = XOY —
(—1)PXPM)YOX | where

k
XDY(U07 s 7Uk) = Z(_l)ﬁ(vi)(ﬁ(Y)Jrgoyiil)X(Uia Y(U(]v o ) Uk)) )
i=0
(2.6) YOX(vo,...,vs)

= Z (—1)ﬁ(”i)§°vi*1+ﬁ(”f)(5071’*1+73(”i))Y(X(vi,vj),vo, e .T.,fuk) )

0<i<j<k
In particular, if both X and Y are in W1(V), we get
(2.7)
X0OY (vo, v1,v2) = X (Y (vg, v1),v2) + (—1)1’7(Y)’7(”0)X(Uo, Y (v1,v2))
+ (_1)(ﬁ(vo)+ﬁ(Y))ﬁ(v1)X(Ul’ Y (vo, Uz)) .

Remark 2.2. Tt follows from (2.3) that we have the following universality
property of the Lie superalgebra W (V): for any Z-graded Lie superalgebra
g =P~ gr with g_; = V there is a canonical homomorphism of Z-graded
Lie superalgebras ¢ : g — W (V), extending the identity map on V, given
by

QS(CL)(U(),. . 7Uk) = [ . [[a7U0]7U1]7 s 7’Uk] , itk >0.
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This map is an embedding if and only if g has no ideals in @~ gk-

Remark 2.3. If V' is a finite dimensional vector superspace, then W (V)
coincides with the Lie superalgebra of all polynomial vector fields on V
(this explains the letter W, for Witt).

Remark 2.4. If V is purely odd, then W (V) coincides with the so called
Nijenhuis-Richardson algebra, which plays an important role in deformation
theory [NR].

2.2. The space W(V,U) as a reduction of W(V @& U). Let V and U be
vector superspaces with parity p. We define the Z_-graded vector super-
space (with parity still denoted by p) W(V,U) = @kem Wi (V,U), where
Wi(V,U) = Hom(S*1(V),U).

It can be obtained as a reduction of the universal Lie superalgebra W (V &
U) as follows. We consider the subspace

(2.8) Hom (S (Ve U),U) c Wi(VaU),
defined by the canonical direct sum decomposition
Wi (V @ U) = Hom(S* 1 (V @ U),U) @ Hom(S* T (V @ U), V).

The kernel of the restriction map X — X | SRV is the subspace

(29 {X € Hom(S"™ (V& U),U)| X(S"(V)) =0} c Wi(V&U).
Hence we get an induced isomorphism of superspaces
(2.10)  Hom(S*™'(VaU),U)/{X|X(S*1(V)) =0} = Wi(V.U).

Proposition 2.5. Let X € W,(V @ U). Then the adjoint action of X on
W(V @ U) leaves the subspaces (2.8) and (2.9) invariant provided that

(i) X(wo,...,wy) € U if at least one of the arguments w; lies in U,
(ii) X (vo,...,vp) € V if all the arguments v; lie in V.

In this case ad X induces a well-defined map on the reduction W (V,U), via
the isomorphism (2.10).

Proof. The proof is immediate from the definition of the Lie bracket (2.2)
on W(Va@U,). O

Remark 2.6. An element X € W1(V @ U) defines a commutative (not nec-
essarily associatve) product - on the superspace V @ U. In this case, con-
ditions (i) and (ii) in Proposition 2.5 exactly mean that V -V C V and
that (V@ U)-U C U. Moreover, the induced action of ad X on W(V,U) is
independent of the product on U.



THE VARIATIONAL POISSON COHOMOLOGY 15

2.3. Prolongations. Let V be a vector superspace, and let gg be a sub-
algebra of the Lie superalgebra End(V). A prolongation of go is a Z-
graded subalgebra g = @)~ _, gi of the Z-graded Lie superalgebra W (V) =
D Wi(V), such that g_1 = W_1(V) = V and go coincides with the
given Lie superalgebra.

The full prolongation W (V) = @52 _, W2 (V) of g is defined by letting
W (V) =V, Wi (V) = go and, inductively, for k > 1,

W (V) = {X € Wa(V) | [X. Woa (V)] € Wi, (V)

It is immediate to check, by the Jacobi identity, that the above formula
defines a maximal prolongation of the Lie superalgebra W (V).

2.4. Lie superalgebra structures. By definition, the even elements X €
W1 (V) are exactly the commutative (not necessariy associative) superalge-
bra structures on V: for X € W1(V'); we get a commutative product on V' by
letting uv = X (u,v). Similarly, the skewcommutative superalgebra struc-
tures on a superspace L with parity p are in bijective correspondence with
the odd elements of W (IIL): for X € Wi (IIL)1, we get a skewcommutative
product on L by letting

(2.11) [a,b] = (1) DX (a,b) , a,be L,

and vice-versa [CK].

Furthermore, let X € Wi(IIL);, and consider the corresponding skew-
commutative product (2.11) on L. The Lie bracket of X with itself then
becomes, by (2.7),

[X, X](a,b,c) = 2X0OX(a,b,c)
= —(=1®2{[a, [b,¢]] = (~1P@PO, [a,c]] - [[a,b],¢] }.

Hence, the Lie superalgebra structures on L are in bijective correspondence,
via (2.11), with the set

(2.12) {X e W (IIL); | [X, X] =0} .

Therefore, for any Lie superalgebra L, we have a differential dx = ad X,
where X in (2.12) is associated to the Lie superalgebra structure on L, on
the superspace W (ILL). This coincides, up to a sign in the formula of the dif-
ferential, with the usual Lie superalgebra cohomology complex (C*(L, L), d)
for the Lie superalgebra L with coefficients in its adjoint representation (in
equation (2.15) below we give an explicit formula for the differential dx for
an arbitrary representation M ). Thus the complex C*(L, L) has a canoni-
cal Lie superalgebra structure for which the differential dx (but not d) is a
derivation.

In the next section we construct, by reduction, the Lie superalgebra coho-
mology complex (C®(L,M),d) for the Lie superalgebra L with coefficients
in an arbitrary L-module M.
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2.5. Lie superalgebra modules and cohomology complexes. Let L
and M be vector superspaces with parity p, and consider the reduced super-
space W (IIL,IIM) = @2, Hom(S*¥T1(IIL), TIM) introduced in Section
2.2, with parity denoted by p.

Suppose now that L is a Lie superalgebra and M is an L-module. This is
equivalent to say that we have a Lie superalgebra structure on the superspace
L & M extending the Lie bracket on L, such that M is an abelian ideal, the
bracket between a € L and m € M being a(m). According to the above
observations, such a structure corresponds, bijectively, to an element X of
the following set:

(2.13) {XGWMHL@HMM [X,X]=0,X(L,L)C L, }

X(L,M)C M, X(M,M) =0

Explicitly, to X in (2.13) we associate the corresponding Lie superalgebra
bracket on L given by (2.11), and the corresponding L-module structure on
M given by

(2.14) a(m) = (=P X(a,m), acL,meM.

Note that every element X in the set (2.13) satisfies conditions (i) and (ii)
in Proposition 2.5. Hence ad X induces a well-defined endomorphism dx of
W (IIL,TIM) such that d% = 0, thus making (W (IIL,IIM),dx) a complex.
The explicit formula for the differential dx follows from equations (2.6) and
from the identifications (2.11) and (2.14). For Y € Wj_(IIL,IIM ), we have

(2.15) i=0 D
+ > (D)"Y ([ai,a5), a0, ak)
0<i<j<k
where,
a; = 14 (pa;) + 1))+ s0i-1+i+1),
(2.16) aij = p(Y)+ (plai) +1)(s0,i-1 +i+1)

+(p(aj) + 1)(s0,j-1 +J +pla;) + 1),
and, recalling (2.5), we let, for i < j,
(2.17) sij = plai) + -+ pla;).

Note that, in the special case when M = L is the adjoint representation,
the complex (W (IIL,IIM),dx) coincides with the complex (W (IIL),dx)
discussed in Section 2.4. In the special case when L is a (purely even) Lie
algebra and M is a purely even L-module, we have p(Y) = k mod 2, and
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the above formula reduces to

k .
(dxY)(ao, . .., ax) = (—1)k<2(—1)iai(Y(a0, ap))
(2.18) I
+ Z ( 1)Z+JY([aZ,a]],a0, ...... ,ak)),

which, up to the overall sign factor (—1)*, is the usual formula for the Lie
algebra cohomology differential (see e.g. [Bou]).

In conclusion, the cohomology complex (C*(L, M) = Dz, C*(L,M),d)
of a Lie superalgebra L with coefficients in an L-module M can be defined
by letting C*(L, M) = Wj,_{(TIL,TIM) and d = dx.

Remark 2.7. We have a canonical representation of a Lie superalgebra L on
each Wy, (IIL, TIM) = Hom(S*TY(I1L), TIM), that we denote by a + Ly, a €
L (the Lie derivative). It is easy to check that L, = ad[a, X]. Hence,
defining the contraction operators ¢, = ad a, we have Cartan’s formula L, =
[ta,dx]. This, together with the observation that, when M = L is the adjoint
representation, dx is a derivation of the Lie bracket in W(ILL), leads us to
believe that our choice of signs for the differential, contractions and Lie
derivatives in the Lie superalgebra cohomology complex is the most natural
one. In fact, one checks that the most general choice of signs which keeps
Cartan’s formula valid up to a sign is the following:

dx(Y) = e(p(V))[X, Y], ta(Y) =0(p(a))e(p(Y) +1)[a, Y],

where € and 0 are arbitrary functions: Z/2Z — {£1}. In this case Cartan’s
formula has the form L, = 0(p(a))[te,dx]. Our choice of signs is e = § = +1.
The usual choice, see e.g. [Boul, in the case when L and M are purely even,
is § = +1 and €(k) = (—1)*, which corresponds to (tq,(Y))(a1,...,ax) =
Y (ag,ai,...,ar). But this choice cannot be extended to the super case, if
we require Cartan’s formula to hold (up to a sign).

3. THE UNIVERSAL (ODD) POISSON SUPERALGEBRA FOR A
COMMUTATIVE ASSOCIATIVE SUPERALGEBRA A AND POISSON
SUPERALGEBRA COHOMOLOGY

Recall that a Poisson (resp. odd Poisson (=Gerstenhaber)) superalgebra
P, with parity p, is a commutative associative superalgebra endowed with
a bracket [-, -] which makes P (resp. IIP) a Lie superalgebra, satisfying the
following Leibniz rule:

[a,bc] — [a,ble = (—1)P@PO)p[q, (] < resp. = (—1)P@+Dr)p[q, c]) .

Usually the commutative associative product on P is denoted by - in the
Poisson superalgebra case, and by A in the odd Poisson superalgebra case.
For example, if (A, g) is a Lie superalgebroid over a commutative associative
algebra A, then S4(g) has a natural structure of a Poisson superalgebra, and
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Sa(Ilg) has a natural structure of an odd Poisson superalgebra, with the
bracket on g extended by the Leibniz rule.

Remark 3.1. If P is a Poisson (resp. odd Poisson) algebra, we can consider
the opposite Poisson (resp. odd Poisson) algebra PP, with the reversed
product, and the opposite bracket, [a,b]°P = —[b, a].

3.1. The universal odd Poisson superalgebra ITIW#$(II4). Throughout
this section, we let A be a commutative associative superalgebra with parity
p, and let Der(A) be the Lie superalgebra of derivations of A, i.e., linear maps
X : A — A satisfying the Leibniz rule X (ab) = X (a)b+ (—1)?(@P®) X (b)a.

Consider the universal Lie superalgebra W(IIA) = @y | Wi (IIA) as-
sociated to the vector superspace ITA, with parity denoted by p. The Lie
superalgebra Der(A) is a subalgebra of Wy(IIA) = End(IIA), so we can
consider its full prolongation, as defined in Section 2.3, which we denote by

WAS(ITA) = é WES(ITA) C W (ITA) .
k=—1

Proposition 3.2. For k > —1, the superspace W2*(IIA) consists of lin-
ear maps X : SFTYIIA) — TIA satisfying the following Leibniz rule (for
ag,...,ax_1,b,c € A, k>0):

(3.1)

X(ag,...,ap_1,bc) = X(ag, ..., ap_1,b)c+ (=1)POPE) X (ag, ... aj_1,c)b.

Proof. Tt follows by an easy induction on k > 0. (]

Remark 3.3. Equation (3.1) and the symmetry relations imply the following
more general formula, for every i =0,...,k:

X(ao, oo bic ,ak) = (—1)p(ci)(8i+1vk+k_i)X(a0, vy by ,ak)ci

2
(3 ) + (_1)p(bi)(ﬁ(X)+s(),i71+i)bl~X(a07 .. 7ci7 . 7ak) ,

where s;; is defined in (2.17).

We next define a structure of commutative associative superalgebra on
the superspace IIW?5(ITA), making it an odd Poisson superalgebra. Let
X € OWps,(ITA) and Y € IIW2, | (ITIA), for h > 0,k — h > 0, and
denote by p(X) and p(Y) their parities in these spaces. We define their
concatenation product X NY € IIW2 | (IIA) as the following map:

(3.3)
(XAY)a1,-yan) = Y eqlin,... i) (—1)PO) @)t pla, )

< <ip,
1< <lp

><X(a,-1, - ,aih)Y(a,-hH, NN ,aik),

where €,(i1,...,7) is as in (2.1) for the elements a1, ..., a; € I1A.
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Proposition 3.4. The Z-graded superspace G(A) = @ry Gr(A), where
Gr(A) = TIW2 | (ITA), with parity denoted by p, together with the concate-
nation product A : Gp(A) X Gr_p(A) = Gr(A) given by (3.3), and with the
Lie superalgebra bracket on 11G(A) = W?(I1A), is a Zy-graded odd Poisson
superalgebra.

Proof. First, we prove that X AY in (3.3) is an element of IIW(ITA),
namely, it is a map S¥(ITA) — IIA and it satisfies the Leibniz rule (3.1).
For the first assertion, it is convenient to rewrite equation (3.3) as a sum
over all permutations:

(X AY)(a1,. .. ax) = m S ealo(1), ..., o(h))

oSy,

x(~1pPae@I Ao mD X (a0 (1), ., ()Y (gt - Qo))

Here we used the symmetry relations for X and Y. Using this, it is then
immediate to check that

(X/\Y)(CLT(U,... 7a7—(k)) = ea(T(l),... ,T(k))(X ANY)(aq,...,ax),

for all permutations 7 € Sk, namely, (X AY)(aq,...,ax) is supersymmetric
in the variables ay,...,ar € IIA, as we wanted. Next, we show that X AY
satisfies the Leibniz rule (3.1). We have
(3.4)
(X A Y)(al, ey Qf—1, bc) = Z Eal,...,ak,l,bc(ily ... ,ik)
i< <ip<k
Thy1<-<ip=Kk
X (_1)p(Y)(ﬁ(ai1)+m+ﬁ(aih))X(ai17 s 7aih)Y(aih+1v sy Gy gy bC)
+ Z 6a1,...,ak71,bc(i17 B 7ik)(_l)p(Y)(ﬁ(ail)+m+ﬁ(aih71)+ﬁ(b6))
i <--<ip=k

Ty < <ip<k
XX (i, .. a5, ,bc)Y (ay,, ... ai).

In the first term of the RHS of (3.4), we have, since iy, = k,
(3.5)

Eal,...,ak,l,bc(ila s ﬂk) = Eal,...,ak,l,b(ila s 7Zk) = eal,...,ak,l,c(ila s 7Zk) )
and we can use the Leibniz rule for Y to get:

Y(aihﬂ, ce @, be) = Y(aihﬂ, ce @i, . b)e

+(=1)POIPEy( Qi1 C)b.

aih+1, ..
On the other hand, in the second term of the RHS of (3.4), we have, since
ip = k)
(3.6)
ealw,flkﬂ,bc(ilv s 7ik) = ealy---vak—lyb(i:l’ s 7_Z‘k)(_1)p(0)(f)(aih+l)+m+p(aik))
= ar, et i) ()PP T
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and we can use the Leibniz rule for X and the commutativity of the product
on A, to get

X(aiy, .. ai,_,bc)Y (ay,, .- aq,)

= (— )P OO P 2@ X (g, D)Y (@i s G )

+(_1)p(b)(p(c)+p(Y)+;5(aih+1 )+m+ﬁ(aik))X(ai17 R 7T C)Y(aih+17 sy Gy )b

Furthermore, we have

(3.7) P(be) = p(b) + plc) = p(b) + plc) in Z/2Z.

Putting the above formulas in equation (3.4), we get the desired Leibniz rule
for X AY.

We now prove that formula (3.3) for X AY defines a product on the super-
space ITW?#(ITA) which is both commutative and associative. Recall that
we are denoting the parity on W2$(ITA) by p and on ITW#$(ITA) by p. Hence,
given ay,...,a, € IIA and X € W(ITA) C Hom(S"I1A,11A), the element
X(a1,...,ap) € I1A has parity p(X) + p(a1) + -+ + p(ap). It follows that
X(ai17 s 7aih)Y(aih+17 s 7aik) has parity 1+p(‘){)+p(y)+ﬁ(al)+ ’ +]§(ak)
as an element of ITA. Hence, X A'Y has parity 1+ p(X) + p(Y) as an ele-
ment of W2(ITA), or, equivalently, it has parity p(X)+p(Y) as an element of
ITW3a$(ITA). This shows that IIW?5(IIA), endowed with the wedge product
(3.3), is a superalgebra. Since A is a commutative superalgebra, we have
X(aj,... 203 )Y (i sy ai) = £Y (a6, -5 a4,) X (aiy, .., a4, ), where
+ = (_1)(p(X)+15(ai1)+~~~+ﬁ(aih))(p(Y)-i-ﬁ(athrl)+~~-+ﬁ(aik))‘ This immediately im-
plies the commutativity of the wedge product (3.3). Moreover, given X €
owis (IIA), Y e 1w, |(ITA), Z € IIWS, _(I1A), and ay,...,a; €
ITA, we have, using associativity of A, that both (X A (Y A Z))(a1,...,ar)
and (X AY)A Z)(aq,...,ay) are equal to

Z €alit, ... 7Z‘Z)(_1)P(Y)(ﬁ(ai1)+"'+ﬁ(aih))""p(z)(ﬁ(ail)+"'+ﬁ(aik))
1< <ip,

ih+1<'“<ik
g1 <o <y

xX(a;,...,a;)Y( i) Z(@igy s -5 Gy
proving associativity of the wedge product.
To complete the proof of the proposition, we are left to prove that the Lie
bracket on W?5(ILA) satisfies the odd Leibniz rule,
(3.8) (X, Y AZ] = [X,Y]AZ + (=1)PEPO)y A [X, 7],

thus making IITW?2(ITA) an odd Poisson superalgebra. This follows imme-
diately from the following lemma.

aih+1,..

Lemma 3.5. The left and right Leibniz formulas for the box product (2.1)
of W25(ILA) hold:

XOY AZ) = (XOY)AZ+ (—1)PXrMy A (ZOX),

GBI (xAv)DZ = XAFDZ)+(—1)pORI(XOZ) Y.
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Proof. The first formula in (3.9) is obtained, by a straightforward compu-
tation, using the definitions (2.1) and (3.3) of the box product and of the
wedge product, and the Leibniz rule (3.2) for X : S"*1(ITA) — IIA. The
second formula in (3.9) is also obtained by a straightforward computation,
using (2.1) and (3.3). O

O

Remark 3.6. Assuming that A is a purely even commutative associative al-
gebra, we may consider the Lie algebroid (A,Der(A)), the associated odd
Poisson superalgebra of polyvector fields S4(ITDer(A)), and also the op-
posite odd Poisson superalgebra S4(IIDer(A))°P, defined in Remark 3.1.
Then, we have a homomorphism of Z,-graded odd Poisson superalgebras
¢ Sa(IlDer(A))°P — G(A) = [TW?S(I1A), given by

O X1 A ANXp)(ag, ... a,) = det(Xi(aj))ﬁJ':l )

Indeed, it is easy to check that the map ¢ is a homomorphism of associative
superalgebras. Moreover, since it is the identity on A @ IIDer(A), it is
automatically a Lie superalgebra homomorphism, due to the Leibniz rule.
In fact, the map ¢ is an isomorphism provided that Der(A) is a free module
over A of finite rank, for example when A is the algebra of polynomials in
finitely many variables. In general, though, this map is neither injective nor
surjective.

3.2. Poisson superalgebra structures and Poisson superalgebra co-
homology complexes.

Proposition 3.7. The Poisson superalgebra structures on a commutative
associative superalgebra A are in bijective correspondence, via (2.11), with
the set

(3.10) {X e WS(IIA); | [X,X] =0} .

Proof. By the results in Section 2.4 the elements X € W7 (I1A); such that
[X, X] = 0 correspond, via (2.11), to the Lie superalgebra structures on A.
Moreover, to say that X lies in W{°(IIA) means that the corresponding Lie
bracket satisfies the Leibniz rule, hence A is a Poisson superalgebra. O

It follows from the above Proposition that, for any Poisson superalge-
bra structure on A, we have a differential dx = ad X on the superspace
Was(I1A), where X in (3.10) is associated to the Lie superalgebra struc-
ture on A. This differential is obviously an odd derivation of the Lie
bracket on W?#5(I1A), and an odd derivation of the concatenation product
on ITW?a5(ITA). We thus get a cohomology complex (G(A),dx).

Remark 3.8. If A is a purely even Poisson algebra, then the odd Poisson
superalgebra Sy (ITDer(A)) of polyvector fields on A is the usual Poisson
cohomology complex, with the differential d = ad X, where X is the bivec-
tor field defining the Poisson algebra structure on A [Lic]. In this case,
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the odd Poisson superalgebra homomorphism ¢ defined in Remark 3.6 is a
homomorphism of cohomology complexes.

3.3. The universal Poisson superalgebra W?(A) and odd Poisson
superalgebra structures on A. As in the previous section, let A be a
commutative associative superalgebra, with parity p and let Der(A) be the
Lie superalgebra of derivations of A. Instead of W (I1A), we may consider the
universal Lie superalgebra W(A) = @, _; Wi(A), with parity still denoted
by p. As we shall see below, we arrive at a “dual” picture: W?*(A) C W (A)
(defined below) has a natural structure of a Poisson superalgebra, while
elements X € Wi(A); such that [X, X] = 0 correspond to the odd Poisson
superalgebra structures on A.

The Lie superalgebra Der(A) is a subalgebra of Wy(A) = End(A), so we
can consider its full prolongation, which we denote by

WS (A) = @D Wis(A) c W(4A).
k=—1
Proposition 3.9. For k > —1, the superspace W(A) consists of lin-
ear maps X : SFTY(A) — A satisfying the following Leibniz rule (for
ag,...,ax_1,b,c € A):
(3.11)
X(ag,...,a5-1,bc) = X(ag,...,ax_1,b)c+ (—1)p(b)p(C)X(a0, ceyap—1,¢)b.

Proof. 1t follows by an easy induction on k& > 0. O

We next define a structure of commutative associative superalgebra on the
superspace W2 (A), making it a Poisson superalgebra. Given X € W, (A)
andY € W2, [(A), for h >0, k—h > 0, we let their concatenation product
XY € W2, (A) be the following map:

(3.12)
(X -Y)(ar,.. . an) = Y eqlin,... ig)(~ 1P @) tplan,)
<<y,
1< <lg
xX(ail, e ,aih)Y(aihH, NN ,aik) .
Note that €,(i1,...,i) in (3.12) is not the same as in (3.3), since here we
consider aq,...,ay as elements of A, not of ITA.

Proposition 3.10. The Z.-graded superspace P(A) = @y, Pr(A), where
Pr(A) = W2, (A), together with the concatenation product - : Pp(A) X
Pr—n — Pr(A) given by (3.12), and with the Lie superalgebra bracket on
P(A) = W?(A), is a Poisson superalgebra.

Proof. First, we prove, in the same way as in Proposition 3.4, that X -
Y in (3.12) is an element of W{$(A), namely, it is a map S¥(A) — A
and it satisfies the Leibniz rule (3.11). Moreover, it is immediate to check
that (3.12) makes W (A) a commutative associative superalgebra, using
commutativity and associativity of the product on A. To complete the
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proof of the proposition, we are left to prove that the Lie bracket on W2$(A)
satisfies the usual Leibniz rule,
(3.13) (XY - Z] = [X,Y]- Z + (—1)PXOrMy . [Xx 7],

thus making W?23(A) a Poisson superalgebra. This follows immediately from
the following lemma.

Lemma 3.11. The left and right Leibniz formulas for the box product (2.1)
of Wa(A) hold:

X0 -2Z) = (XOY)-Z+ (-1)pXrMy . (ZzOX),
(X-V)0Z = X-(YOZ)+ (-1)P0r@)(X02) Y.

Proof. The proof is the same as that of Lemma 3.5. O
O

(3.14)

Remark 3.12. Assuming that A is a purely even commutative associative
algebra, we may consider the associated Poisson algebra S4(Der(A)). Then,
we have a homomorphism of Z-graded Poisson algebras ¢ : S4(Der(A)) —
P(A) = W?(A), given by

¢(X1, . ,Xk)(al, . ,ak) = Z Xl(aa(l)) .. .Xk(aa(k)) .

oc€Sk

Indeed, it is easy to check that the map ¢ is a homomorphism of associative
algebras. Moreover, since it is the identity on A@Der(A), it is automatically
a Lie algebra homomorphism, due to the Leibniz rule.

Proposition 3.13. The odd Poisson superalgebra structures on A are in
bijective correspondence, via (2.11), with the set

(3.15) {X e WS(A)|[X, X] =0}.
Proof. The proof is similar to that of Proposition 3.7. O

It follows from the above Proposition that, for any odd Poisson superal-
gebra A, we have a differential dx = ad X on the superspace W?3(A), where
X in (3.15) is associated to the Lie superalgebra structure on ITA. This
differential is obviously an odd derivation of the Lie bracket on W25(A), and
an odd derivation of the concatenation product on W2$(A). We thus get a
cohomology complex (P(A),dx).

4. THE LIE SUPERALGEBRA W?(V) FOR AN F[J]-MODULE V, AND LIE
CONFORMAL SUPERALGEBRA COHOMOLOGY

In this section we repeat the discussion of Section 2 in the case of conformal
superalgebras. Recall that a conformal superalgebra is a vector superspace
R endowed with a structure of an F[0]-module compatible with parity, and
with a A-product, i.e., a linear map R® R — F[A]® R, a®b — a)b, satisfying
the sesquilinearity relations:

(4.1) (0a)\b = —Xaxb, ax(9b) = (A+ 9)(axd).
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A conformal superalgebra is called commutative (resp. skewcommutative)
if
(4.2) bra = (—1)P@P®g_y b ( resp. = —(—1)p(“)p(b)a_,\_ab> ,

where 0 is moved to the left. In the skewcommutative case the A-product
is usually called A-bracket and it is denoted by [ayb]. If in addition to
skewcommutativity the A-bracket satisfies the Jacobi identity,

(4.3) [ax[bucl] = (=1)P PO (b, [axc]] = [[arblaruc],
R is called a Lie conformal superalgebra [K].

For an F[d]-module R, one usually denotes by [ the canonical map R —
R/OR.

Recall that, if R is a Lie conformal superalgebra, then the vector super-
space R/OR has a well-defined structure of a Lie superalgebra, given by
[[a, [b] = [[axd] ‘A:O’ a,b € R. Moreover, R is a left module over the Lie
superalgebra R/OR, with the well-defined action ([a)(b) = [axb] | \—gr G E
R, by derivations of the Lie conformal superalgebra R.

4.1. The Lie superalgebra Wa(V). Let V' be a vector superspace with
parity p, endowed with a structure of an F[9]-module, compatible with
the parity. Motivated by the construction of W (V) introduced in Section
2.1, we construct in this section the Z-graded Lie superalgebra W?(V) =
Dre W,? (V'), which, to some extent, plays the same role in the theory of
Lie conformal algebras as W (V') plays in the theory of Lie algebras.

For k > —1, we let W?(V) be the superspace of (k + 1)-A-brackets on V,
as defined in [DSK2], namely,

(4.4) WE(V) = Hom 2y (VIR F_ Mo, o M) @ppg V),

with the parity p induced by the parity on V. Here and further F_[Aq, ..., Ag]
denotes the space of polynomials in the k& + 1 variables Ag, ..., A\x, endowed
with a structure of F[9]®*+1)-module, by letting Py(9) ® - - - ® P,(9) act as
Py(=X) ... Po(—Xg). Using the embedding F[9] C F[9]**+1) given by the
standard comultiplication, we get the corresponding F[J]-module structure
onF_[Xg, ..., \x], namely 9 acts by multiplication by —(\g+- -+ Ag). Thus,
W2(V) consists of all linear maps

X o velth o F o, ] ®pg Vs

V- DU XAO,---)\JC(UOv""Uk)v
satisfying the following conditions:
(sesquilinearity) Xy, . (vo,..., 00, ..., 0%) = =NiXx,.. 2, (Yo, -, k),
(symmetry) Xy, ... (vo,-..,05) = €, .. aik)Xx\io,...,Aik (Vigs - -+, 03, ), for

all permutations (g, ...,ix) of (0,...,k).

Here €,(io, . ..,ix) is the same as in (2.1).
For example, W% (V) = V/0V. Furthermore, WJ(V) = Endgg (V),
namely the map Xy : V' — F_[)\] ®p[g) V is identified with the F[0]-module
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endomorphism X : V' — V given by X (v) = X_p(v), with 0 moved to the
left.

For k > 0, we can identify, in a non-canonical way, F_[Xo, ..., \g]@p(g)V =
F_[Xoy..., Ae—1] ® V, by letting A\p = —X\g — -+ — A\y—1 — 0. For example,
WP(V) is identified with the space of A-brackets

{ A} : VeV =V, u@ve {uyw},
satisfying:
(sesquilinearity) {Ouyv} = —Mupv}, {urov} = (A + 9){uyv},
(commutativity) {vyu} = (—1)P@WPO) {4y 50}

Keeping in mind the construction in Section 2.1, we next endow W?(V)
with a structure of a Z-graded Lie superalgebra as follows. If X € W}? (V),
Y € W,?_h(V), with h > —1, k > h — 1, we define X[JY to be the following
element of W2 (V):

(4.5)
(XDY))\OV”’)%(U(),...,?}k) = E ev(io,...,ik)
i0<<ip_p
T g1 <o <lp
XX)‘i0+"'+>\ikfh’Aik—thl""’)\ik (YAiO""’)\ikfh (Uio7 e 7/U’ik,h)7 /U’l'k,h+17 e 7vik) .
The above formula, for h = —1 gives zero, while for k = h — 1 gives

Xoxo,.n, (Yo 00, ..., vg), which is well defined for Y € V/9V by the sesquilin-
earity condition on X. We observe that the box product (4.5) is well defined,
namely it preserves the defining relations of F_[Ao, ..., \i] ®pjg) V. Indeed,
if Xog,.oa, (00, -y 0n) = Mo+ -+ A +0)F (Ao, ..., Ap; Vo, - - ., vp), for some
polynomial F'in Ag, ..., A, with coefficients in V', then

(XOV )y, (V0o t) = Qo+ F A +0) D HF(.),

which is zero in F_ [, . . ., \i]®@pjg) V. Similarly, if Y3,z (vo, ..., vk—n) =
Mo+ +Xn+9)G(Noy .oy Ak—n; V0, - - -, Vk—p), for some polynomial G in
X0, - .., \p—p with coefficients in V, then (XDY))\O )\k(vo, ...yv) =0, by
the sesquilinearity condition for X. Moreover, it is étfaightforward to check
that XY satisfies both the sesquilinearity and the symmetry conditions, if
X and Y do. Hence, O is a well-defined map W2 (V) x W2_, (V) — W2(V).
We then define the bracket [-, -] : WP (V) x W2_, (V) — WZ(V) by the
same formula as before:
(4.6) [X,Y] = X0V — (—1)PXPNV)ynx .

Proposition 4.1. (a) The bracket (4.6) defines a Lie superalgebra structure
on WO(V).

(b) We have the following canonical homomorphism of Z-graded Lie super-
algebras:

(4.7) WO(V) = W(V/aV), X . [ Xo..0,

where, as usual, for v eV, [v denotes its image in V/OV .
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Proof. The bracket (4.6) is skewcommutative by construction. To prove Ja-
cobi identity, it suffices to check that the box-product (4.5) is right symmet-
ric, i.e., (X,Y,Z) = (=1)PYPE)(X, 7 Y), where (X,Y, Z) = (XOY)OZ —
XO(YOZ) is the associator of X, Y, Z. Let then X € W2(V), Y e W2_, (V)
and Z € W2 , (V). We have, by the definition (4.5) of the box-product,
(4.8)

(XO(YD2)),,.5, 00 v0) = S eulio,. .. ie)

ey
10<-<tg_k

U—+1 < <l—p
L1 <<ty

><‘X)‘io Tt i Aig i (Y)\i0+"'+)\if—k Aig_pproNig_p,

(Z)‘iof"’)‘iefk (Uiov cee 7Uiefk)7 Uig,k+17 cee 7Uig,h)7vig,h+17 o 7”1’() ;

and
(4.9)

(XOY)0Z2),, (0., v) = (XO(YDZ)), ) (v0,-..,v0)
= Z ev(io, ... ,ig)(—l)ﬁ(z)(ﬁ(vio)+"'+ﬁ(vikfh))

i0< - <ip_p
Ue—h 1< <U—h+1
L—h2< <l

XXM+ Aiy, A

il b N1 TN A g0 Ay (Y)\iO““’)‘ikfh (Uio’ t 7,Uik—h)7

Z

i1 Mg (/Uikfh+17 e 7'U7;£7h+1)7 Vig_pyor- -+ vviz> :

We then observe that the RHS above is supersymmetric under the exchange
of Y and Z. This concludes the proof of part (a). For part (b), one easily
checks that the map (4.7) is a well-defined linear map of Z-graded super-
spaces, and it is a homomorphism for the box-products in Wa(V) and in
W (V/OV). Hence it is a Z-graded Lie superalgebra homomorphism. (]

For X e W2(V) and Y € V/oV = W9,(V), we have
(4.10)
[X, Y])\17”'7)\k(’[)1, - ,Uk) = X07)\17m7)\k(Y, Vi, ,Uk) , Ul,...,V € V.

For X € W{(V) = Endgg(V) and Y € W2(V), k > —1, we have
(XY g0 (V05 - - -, o) = X (Y, n (Vo - - -, 0p))

k
(4'11) p(X Z p(X 50,i— 1Y>\0’ Ak (Uo,...X(’l)z')---7Uk)a
1=0
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where 5;; is as in (2.5). Finally, if X € W (V) and Y € W2 [(V), k > 0,
we have [X,Y] = XOV — (-1)PXPM)yOX | where

(4.12)
(XDY))\O,,.,,)\k (Uo, L. ,Uk)
- i
- Z(_l)ﬁ(vi)§i+1’kX i (Y i (vo,-Touk),v),
i=0 PYIE SR VHD VD VN VA
(YOX) g, 0 (V05 - -+, 08) = Z (_1)5(”71)50,7271+15(Uj)(,§07i71+§i+17j71)
0<i<j<k
i J
xY i (X, (i) 00,7 T o)

At A0, 7 AR
In particular, if both X and Y are in W?(V), we get
(XTY ) x0,00.02 (Y0, v1,2) = X400 (Yo, (v0,v1), v2)

(4.13) + (_1)17(1)1)(17(3/)4‘17(1)0)))()\17)\0_”\2 (111, Yo (V0, U2))
+(=1)PEPOI X 3 g (v0, Yoy xe (01, 02)) -

4.2. The space W?(V,U) as a reduction of Wo(V@U). Let V and U be
vector superspaces with parity p, endowed with a structure of F[0]-modules.
We define the Z-graded vector superspace (with parity still denoted by p)
Wo(V,U) = @y>_ W2(V,U), where

WE(V,U) = Hom 375 oy (VEEHD F_ Ao, ..., A @xig) U).

In the same way as in Section 2.2, W9(V,U) is obtained as a subquotient
of the universal Lie superalgebra Wa(V @ U), via the canonical isomorphism
of superspaces

(4.14) UK = wiv,u),
where U and K are the following subspaces of W2(V @ U):

U = Hom ;‘}Eg]l®(k+1) ((V D U)®(k+1)7 F_ [)\07 ce 7>\k] ®IF[8] U) ’
K = {Y|y(vertl)=o}.
The following analogue of Proposition 2.5 holds:

Proposition 4.2. Let X € W2(V @ U). Then the adjoint action of X on
WV @ U) leaves the subspaces U and K invariant provided that
(1) Xxo,...xn (W0, s wp) € F_[Xo, ..., An] @p(g) U if one of the arguments
w; lies in U,
(5) Xxng,..xn (V05 -+, 0n) €F_[Xo,..., \a] @pig) V if all the arguments v; lie
m V.
In this case, ad X induces a well-defined linear map on the reduced space
WO(V,U), via the isomorphism (4.14).
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4.3. Lie conformal superalgebra structures. By definition, the even
elements X € WY (V) are exactly the commutative conformal superalgebra
structures on V: for X € W?(V)g we get a commutative A-product on V
by letting uyv = X _x_g(u,v). Similarly, the skewcommutative conformal
superalgebra structures on an F[0]-module R with parity p are in bijective
correspondence with the odd elements of W?(IIR): for X € W(IIR)1, we
get a skewcommutative A\-bracket on R by letting

(4.15) [axb] = (—1)PW X, _y_s(a,b), a,be R,

and vice-versa.

Furthermore, let X € Wla (ITR)1, and consider the corresponding skew-
commutative A\-product (4.15) on R. The Lie bracket of X with itself then
becomes, by (4.13),

(X, X])\,u,—k—u—a(aa b,c) = 2(XDX))\,;¢,—>\—M—8(@, b, c)
= —(=1PO2{ [axbuc]] — (~1)P PO [, anc]] - [lanblasuc] }

Hence, the Lie conformal superalgebra structures on R are in bijective cor-
respondence, via (4.15), with the set

(4.16) {X e W(IR); | [X, X] =0} .

Therefore, for any Lie conformal superalgebra R, we have a differential dx =
ad X, where X in (4.16) is associated to the Lie conformal superalgebra
structure on R, on the superspace Wa(HR), which makes it a cohomology
complex so that the differential dx is a derivation of the Lie bracket.

4.4. Lie conformal superalgebra modules and cohomology com-
plexes. Let R and M be vector superspaces with parity p, endowed with
F[0]-module structures. Consider the reduced superspace W7 (IR, TIM) in-
troduced in Section 4.2, with parity denoted by p.

Suppose now that R is a Lie conformal superalgebra and M is an R-
module. This is equivalent to say that we have a Lie conformal superalgebra
structures on the F[0]-module R & M extending the A-bracket on R, and
such that M is an abelian ideal, the bracket between ¢ € R and m € M
being ay(m), the A-action of R in M. According to the above observations,
such a structure corresponds, bijectively, to an element X of the following
set:

(4.17)
{X e WYIIR® TIM)1 | [X,X] =0, X, (R, R) CF_[\ y] ®ppg) R,
X)\”u(R, M) C F_[\, u) QF[a] M, X)\,H(M, M) = 0} '

Explicitly, to X in (4.17) we associate the corresponding A\-bracket on R
given by (4.15), and the corresponding R-module structure on M given by

(4.18) ax(m) = (=1)P DX, _\_s(a,m), a€ R,me M.

Note that every element X in the set (4.17) satisfies conditions (i) and
(ii) in Proposition 4.2. Hence ad X induces a well-defined endomorphism
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dx of WI(IIR,IIM) such that d3 = 0, thus making (W(IIR,1IM),dx) a
cohomology complex. The explicit formula for the differential dx follows
from equations (4.12) and from the identifications (4.15) and (4.18). For
Y € W2 [ (IR,1IM), we have

(AxY )rgrone (@0, ag) = > (=1 ayy, (yA . (ao,-T.,ax))
(4.19) =0
+ Z (—1)*y iy (lainagl 0,77 ag)
0<i<j<k >\i+)\j7>\07 ...... Ak

where a; and «;; are defined in (2.16). Note that, in the special case when
M = R is the adjoint representation, the complex (W9(IIR,TIM),dx) co-

incides with the complex (W9(IIR),dx) discussed in Section 4.3.
In the special case when R is a (purely even) Lie conformal algebra and
M is a purely even R-module, we have p(Y) = k£ mod 2, and the above

formula reduces to
(4.20)

k
(AxY)agnn (@0 - - - ag) = (-1)’@(Z(—ni%(yA o (a7 ap))

+ 3 (i ) ([a,-)\iaj],ao,.f'..f.,ak)>,

0<i<j<k )\i+)\j7)\07 ...... Ak

which, up to the overall sign factor (—1), is the usual formula for the Lie
conformal algebra cohomology differential (see [BKV], [BDAK] and [DSK2]).
In conclusion, the cohomology complex (C*(R, M) = @ycz, C*(R, M), d)
of a Lie conformal superalgebra R with coefficients in an R-module M can
be defined by letting C¥(R, M) = W | (IIR,1IM) and d = dy.

Remark 4.3. One can replace F[J] by U(d), where 0 is a Lie algebra. Then,
following the same reasoning as above, for any 0-module R one constructs the
Z-graded Lie superalgebra W°(IIR), so that an odd element X € W} (IIR)
such that [X, X] = 0 defines a pseudoalgebra structure on R and its co-
homology complex, cf. [BDAK]. This, and its relation to the variational
bicomplex, will be discussed in a forthcoming publication.

5. THE LIE SUPERALGEBRA W%2()) FOR A COMMUTATIVE ASSOCIATIVE
DIFFERENTIAL SUPERALGEBRA ) AND PVA COHOMOLOGY

Recall that a Poisson vertex superalgebra (abbreviated PVA) V, with par-
ity p, is a unital commutative associative differential superalgebra endowed
with a A-bracket [- ) -] which makes V a Lie conformal superalgebra, satisfy-
ing the following Leibniz rule:

(5.1) [axbc] = [axble + (—1)P PO playc] .

For example, if R is a Lie conformal superalgebra, then the symmetric alge-
bra S(R) has a natural structure of a Poisson vertex superalgebra, with the
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A-bracket on R extended to S(R) by the Leibniz rule (5.1). In analogy with
the notion of an odd Poisson superalgebra from Section 3, we also introduce
the notion of an odd Poisson vertexr superalgebra. This is a unital commu-
tative associative differential superalgebra V', with parity p, endowed with
a A\-bracket [- ) -] which makes ITV a Lie conformal superalgebra, satisfying
the following odd Leibniz rule:

(5.2) [axbe] = [axble + (=1)P@+DPO)pla, (] .

For example, if R is a Lie conformal superalgebra, then the symmetric alge-
bra S(IIR) has a natural structure of an odd Poisson vertex superalgebra,
with the A-bracket on R extended to S(IIR) by the Leibniz rule (5.2).

5.1. Poisson vertex superalgebra structures. Throughout this section,
we let V be a unital commutative associative differential superalgebra, with
a given even derivation 0, and with parity denoted by p. We let Dera(V) be
the Lie superalgebra of derivations of V commuting with 0.

Consider the universal Lie superalgebra W9(I1V) = @, W2(IIV) as-

sociated to the F[0]-module ITV, defined in Section 4.1, with parity denoted
by p.
Proposition 5.1. Let, for k > —1, Wl?’as(HV) be the subspace of W]?(HV)
consisting of maps X : (IIV)2FETD 5 F_[Ao, ..., \] ®rjo) IV, denoted by
ag ® - @ ap = Xy (a0, ..., ar), satisfying the following Leibniz rule
(for ag,...,ak_1,b;,¢c; €V, i=0,...,k):

X)\o,...,)\k (CL(), . ,b,-ci, e ,ak)
(53) = (—1)p(ci)(si+1’k+k_i))X)\0’m’)\i+a7m7)\k (ao, cey by ,ak)_>ci

+ (=1)pldPletsiptb= Xy -\ o A (@0, Gy ak) i,

where s;; are defined in (2.17). Then W2(ITV) = @, W,?’aS(HV) is a
subalgebra of the Z-graded Lie superalgebra WO (IIV) such that W?’las(HV) =

Iy /o1y, and W(?’as(HV) = Der? (V) is the Lie superalgebra of derivations
of ¥V commuting with 0.

Proof. Clearly, by definition, W?’las(HV) = 11V /0IV. Recall that, for k = 0,
we identify F[Ao] ®p[g) [V = IV, and, via this identification, wo(my) =
Endg(g) (ITV) = Endgg)(V). One easily checks that an element X € wo(my)
satisfies (5.3) if and only if the corresponding element in Endgp (V) is a
derivation of V of parity p(X). Hence, W(? #S(IV) = Der?(V). We are left
to prove that for X € W (IIV) and Y € W™ (ITV), their bracket [X,Y] =
X0y — (—1)PXPMyOX lies in W,?’aS(HV), namely it satisfies the Leibniz
rule (5.3). Since (XOY)x,,..x.(@0,--.,ax), hence [X, Y]y, (ao,...,ax),
is symmetric with respect to simultaneous permutations of the elements
agp, . .., ar and the variables Ao, . .., A, it suffices to prove that [ X, Y] satisfies
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the Leibniz rule (5.3) for ¢ = 0. In this case we have, by a straightforward
computation using the definition (4.5) of the box product,

(XOY),,.. (bcar, ... )
= (—)POPET @) (XTY) o (Ban, s ag) e

+ (—=1)POp()+pO)(plar)++plar) (xOY) NI (c,ai,...,ap)—b

+ Z eali, . .. 7Z'k)(_1)p(b)p(C)-i-(p(C)-i-ﬁ(Y))(p(b)-i-ﬁ(ail)+~~~+}3(aih))

<<,
Uh41 <<l
X X i = Aiy =0y iy, (05 @iy -5 )
X Y—Az‘hH—"'—Mk—&)\ihﬂ7---7)\% (c, Qg aik)
+ E calit, . .. 7Z'k)(_1)P(Y)P(X)+P(b)17(0)+(p(c)'i‘p(X))(p(b)ﬂ?(ail)+“'+P(az‘k,h))
1< <ipn
U1 <o <ig
X Y—Ail—m—)\ik,h =0y e Nig_p, (0, aiy, . ai, )
X X—Aik,hﬂ—“'—)\ik—37>\ik,h+17---,>\ik (Cv Qi g1 aik) .

To complete the proof, we just observe that, if we exchange X and Y, the
two sums in the RHS get multiplied by (—1)?(X)P(Y) hence they do not
contribute to [X,Y]. O

Proposition 5.2. The Poisson vertex superalgebra structures on )V are in
bijective correspondence, via (4.15), with the set

(5.4) (X e wP™(mv); | [X, X] = 0}.

Proof. By the results in Section 4.3 the elements X € W;(IIV); such that
[X, X] = 0 correspond, via (4.15), to the Lie conformal superalgebra struc-
tures on V. Moreover, to say that X lies in Wla “3(I1V) means that the
corresponding A-bracket satisfies the Leibniz rule, hence V is a Poisson ver-
tex superalgebra. O

It follows from the above Proposition that, for any Poisson vertex super-
algebra V, we have a differential dx = ad X on the superspace Wa’aS(HV),
where X in (5.4) is associated to the Lie conformal superalgebra structure
on V. This differential is obviously an odd derivation of the Lie bracket on
W2(1TV). We thus get a cohomology complex (WP2S(TTV), dx).

5.2. Odd Poisson vertex superalgebra structures. As in the previous
Section, let V be a commutative associative differential superalgebra, with
derivation 0 and parity p, and let Dera(V) be the Lie superalgebra of deriva-
tions of V commuting with 0. As in Section 3.3, we consider here the picture
“dual” to that discussed in the previous section.
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Proposition 5.3. Let, for k > —1, W,f’aS(V) be the superspace of elements
X € WP(V) satisfying the Leibniz rule (for ag,...,ar_1,bi,c; € V,i =
0,...,k):

X)\o,...,)\k (CL(), . ,b,-ci, e ,ak)
(5.5) = (—1)PdEmr) X, s roa (@0, by ak)
+ (_1)P(bi)(P(Ci)""siJrl,k))X)\O"”7)\i+a7”")\k (agy .-y Ciyenvyag)—b;,
where s;; is defined in (2.17). Then WP3(V) = @2, W,?’aS(V) is a subal-
gebra of the Z-graded Lie superalgebra WO (V) such that W?’las(V) =V/0V,
and W™ (V) = Der?(V).

Proof. 1t is the same as for Proposition 5.1. O

Proposition 5.4. The odd Poisson vertex superalgebra structures on V are
in bijective correspondence, via (4.15), with the set

0,as
(5.6) {X e W™ (V)1 |[X,X]=0}.
Proof. Tt is the same as for Proposition 5.2. (]

It follows from the above Proposition that, for any odd Poisson vertex su-
peralgebra V, we have a differential dx = ad X on the superspace W25(V),
where X in (5.6) is associated to the Lie conformal superalgebra structure
on ITV. This differential is obviously an odd derivation of the Lie bracket
on W925(V). We thus get a cohomology complex (W225(V), dy).

6. THE UNIVERSAL LIE CONFORMAL SUPERALGEBRA W?(V) FOR AN
F[0]-MODULE V', AND THE BASIC LIE CONFORMAL SUPERALGEBRA
COHOMOLOGY COMPLEXES

In this section we study the universal Lie conformal superalgebra WB(V)
associated to a finitely generated F[0]-module V.

6.1. The universal Lie conformal superalgebra Wa(V). As in Section
4, let V be a vector superspace with parity p, endowed with a structure of
an F[0J]-module, compatible with the parity. Assume, moreover, that V is
finitely generated over F[J].

The Lie superalgebra W (V') does not have the universality property sim-
ilar to that of W (V'), described in Remark 2.2. In this section we construct
the universal Z-graded Lie conformal superalgebra WO (V) = @72, WP(V)
associated to the finitely generated F[0]-module V' as follows.

For k > —1, we let, cf. (4.4),

WE(V) = Hom o oy (VEFFDF_ o, M) @ V),
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with its natural superspace structure, denoted by p. For example, we have
W9, (V) =V, WJ(V) = RCend(V), the space of right conformal endomor-
phisms of V', namely the linear maps X : V — F[A\] ® V, such that

(6.1) XA (0v) = =AX\(v),

and, for k > 1, W,?(V) consists of linear maps X : VEFL S F_[Xg,..., \]®
V satisfying sesquilinearity in each argument and the skewsymmetry condi-
tion.

The superspace W (V) has a natural F[d]-module structure given by

(6.2)  (0X)xg,..n. (00, yvp) = Ao+ + X +9)Xng,n (V0, -+, Uk
Next we endow Wa(V) with a structure of a Z-graded Lie conformal super-
algebra as follows. If X € W2(V),Y € WP, (V), with h > —1, k> h — 1,
we define X[, Y to be the following element of F[\] ® W,? (V):

(XD)‘Y))\O,---)\)@(UO’""vk) = Z ev(io,...,ik)
10<-<ip_p
(63) ik—h+1<"'<ik
XX_A_Aik—}LJrl_'”_)‘ik_a’)‘ikfh+1"“7)‘ik (Y/\iov--’)\ik,h (Vigy -+ + s Vip_p )s
Vig g1+ 7Uik) )

where 0 is moved to the left. Since, by assumption, V' is finitely generated
over F[9], and since elements of W?(V) are determined by theirs values on
a set of generators of V', X[1,Y is indeed a polynomial in A with coefficients

in Wo(V).

Lem/\r{na 6.1. @) The \-product Qj\ given by (6.3) gives a well-defined map
W2(V)yx WP, (V) = FN@W(V), and it makes W(V) a conformal
superalgebra.

(b) The )\-pro@ct Oy is right symmetric, i.e., defining the associator of
XY, Z e WO(V) as

(X\Y,Z) = (XO\Y)OyyZ — XONYO2),
we have the following symmetry relation:

(6.4) (X2Y.2) = (_1);5()/);3(2) (XAZr—p-0Y)

where, as usual, O is moved to the left.

Proof. First, we need to prove that, for X € W;?(V) and Y € Wl?_h(V), the

A-product X[,Y defined by (6.3) is a polynomial in A with coefficients in

W,? (V), i.e. it satisfies the sesquilinearity and symmetry conditions:
(XOXY ) g0 W0y oo 004, oy v) = = X(XONY ) g, n, (V0 -2 UR)
(XO\Y)ag,n (W0 -5 0k) = €(i0, -+ k) X, o, (Vigs oo Vi) s

for all permutations (ig, ..., i) of (0,...,k). Both these relations follow im-

mediately from the definition (6.3) of the A-product Oy and by the sesquilin-
earity and symmetry conditions on X and Y. To complete the proof of part

ig N
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(a) we need to check that the A-product [y is sesquilinear, making W7(V)
a conformal superalgebra. The first sesquilinearity condition is straightfor-
ward, using the definition (6.2) of the F[0]-module structure of W (V). For
the second sesquilinearity condition, we have

(XOAOY)) 5, (V0o 0) = S eulios .y

1< <lp_p
T—ht1<-<lf

XX—A—M,C,,LH—'"—A% =0 Xip 1Ny, ((8Y)>\i0,---7)\ik,h (Vigs -+ Vig )
Vi pgrr- - ) Vi)
= > w10,y Tk) XAohiy oy == A =0 Nip g hig
1< <lp_p

U1 <<l

(()‘io +o N, T a)Y)\iO7___7)\ik7h (Vigs -+ 3 Vig_p )y Vi1 -+ - ,Uik)
:()\+)\0+---+)\k+8) Z Ev(io,...,ik)

i0<-<ip_n

U hp1 <-<ig

XX oA = Xij, —OA Aij (Y,\io,...,,\ikfh (Vigs -+ > Vig_p )5

th—h+1 ik—h417

Vig_pg1r- -+ vvik)

= (A +0)(XTNY)),y, oy (V05 0k) -

For part (b), let X € W2(V), Y € WJ(V) and Z € WO(V). We
have, with a straightforward computation using the definition (6.3) of the
A-product [y,

(6.5)
((XD)\Y)D)\_HLZ) A0r- Aot By (Uo, . ,’Ua_;_g_i_ﬁ/)

= Z €0 (105 -+ -y latpiy)

i< <iy
1< <iggy
LBy +1< " <lat B4y

XX 2, L, O\ .
A )‘lﬂ+w+1 )"a+ﬂ+'y 6’)‘Zﬁ+w+1""’)‘la+ﬁ+w
Y N s —O .
( PNy g1 T Rig gm0y e dig
(ZA’LO7’A7”7 (UZO7 A 7/1)2'}/)7 Ui-y+]7 A 7U7’,6+'Y) 7 UZ/B+7+17 A 7/Ula+,6+’y)
5(Y))(D(Z2) (v )+--+p(v; . .
+ E _1)10( )(B(Z)+p(vig) P ”)Ev(loy eyt B
i< <lhy
Ly 1< <ig gyt
LBy +2 < <tat B4y
XX 2o pmn, s _ . Y , .
A= i 1 T T N iy TOHA A L R N e ey

(Z)\io,...,)\i,y (’Uio) R 7Ui«,)7 Y)‘iw+1""’)‘i6+~/+1 (’Ui—erp cee 7Uig+w+1)7

Vigyyyar - 7Uia+,8+w) :
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Similarly, we have
(6.6)
(XD)\(YD“Z))A07~~7>\Q+B+'~/ ('UO, e ,'Ua_;,_ﬁ_i_-y)

= Z 61)(2‘07 s 7ia+ﬁ+7)

i0<<iv

iy 1< <y
Uyt 1 < <latfty
XX -

i1 T ot gy 0N N gy
) S U W _
( PNy Aig gy "0y iy
(ZMm---v)\m (Vigs -+ -5y )3 Viegys - - ’,Uiﬁvw) 2 Vigpyp1re e ’Uia+6+w) :

We then observe that the RHS in (6.6) is equal to the first term in the LHS
of (6.5). Hence, combining the above equations, we get
(6.7)
(X)\YMZ) A0s- Aot By (’UQ, v ,’Ua_‘_g_i_ﬁ/)
— Z (— 1P @2 +p(wig)+-+D(in ) ¢ (
o< <y

1< <iggy g
UBty+2 < <la+tB+y

iOv s 7ia+6+’y)

XX e —s _ . A . .
A=p= i g )‘la+6+w Optdin gt +)‘26+“/+1 ’)‘w+w+27“'7>‘1a+6+w
<Z)‘i07---7)‘iq (Uioa MR U’i—y)a Y)\i,y+1 ""’AiﬂJr'erl (Ui—y+17 MR /l)ig+.y+1 )7
Vigypar- - ’Uia+6+w) :

To conclude, we observe that, if we exchange Y and Z (and 8 and «), and
we replace 1 by —A — 1 — Ao — -+ — Aaq 54y — O, the RHS of (6.7) gets
multiplied by the factor (—1)P()P(Z), O

Lemma 6.2. If R is a conformal superalgebra with right symmetric \-
product axb, a,b € R, and parity p, then the A-bracket

(6.8) [axb] = axb — (=1)PPOb_s_sa,
defines on R a structure of a Lie conformal superalgebra.

Proof. Recall that right symmetry means the following identity (axb,c) =
(=1)P®IP© (ayc_y_,,—pb), where (ayb,c) = (axb)xt c— ax(byc) is the associ-
ator. The statement follows by the following identity, which is easily derived
from (6.8):

[axbucl] = (=1)P PO b, [axc]] — [[arb]xy ]

= - <(axbuc) — (=1)POPO) (ayc_x_,—ob)

(=10 (Buaxe) = (~LPOPE (Bue s —ga)

—(—1)P) (@) +p(b) <(C_A_u_mb) — (—1)POPO) (s, abﬂ@) ,
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Corollary 6.3. The \-bracket
(6.9) [(X,Y] = X0,V — (—1)PXPMy0_, X
defines a structure of a Lie conformal superalgebra on Wa(V).

Proof. Tt follows immediately from Lemmas 6.1 and 6.2. (]

For X € W,?(V) and Y € V = WQI(V), we have, for vq,...,v, €V,

XY Iag,one (V1o 0k) = X xo—mn—ong,on (Yo U1, - 0k)
or, equivalently,

Xnorne(Yovr, oo vp) = [Xoxg—aY Iag o (V1o vg)

6.10 LIRS
( ) = (—1)1+p(X)p(Y)[Y)\OX])\l’...7)\k(1)1,...,Uk).

It follows that we have the following universality property of the Lie con-
formal superalgebra Wa(V): for any Z-graded Lie conformal superalgebra
R = @;._, Ry with R_; =V, there is a canonical homomorphism of Z-

graded Lie conformal superalgebras ¢ : R — /Wa(V), extending the identity
map on V by

¢(Q)Ao,...,Ak(U07 e ,Uk) = :]:[Uk)\k . [1)1)\1 [UOAOCLH .. ] s if k Z 0,

where + = (—1)k+1HP(@)E@o)++P(vk)) e (k k —1,...,0).
For a right conformal endomorphism X € ng (V) and for Y € W,? V),
where k > —1, we have
(6.11)
XY T, (V05 -5 08) = X a9 (Vg n, (V05 - -5 UR))
k

—(—1)POPY) Z(—1)’7(X)§°”"1YAO,...,A+Ai,...,Ak (v0, .-, X (i), k)
=0

where 5;; is as in (2.5). In particular, for £ = 0, the above formula gives the

following Lie conformal superalgebra structure on the F[0]-module W(? (V) =
RCend(V) of all right conformal endomorphisms of V':

(612)  [XaVu(v) = Xoaca (Vi) — (~1)PXPIY5 L (X))

Remark 6.4. This Lie conformal superalgebra, which is natural to denote
Rgce(V), is isomorphic to the Lie conformal superalgebra ge(V') of all (left)
conformal endomorphisms [K], via the map

(6.13) x: Rge(V) — ge(V),  where X3(v) =X_x_5(v).
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Furthermore, if X € Wf)(v) and Y € W]?_l(V), k > 0, we have
(6.14)
(XO\Y) g, (V05 - -5 0g)

k .
= Z(_1)ﬁ(vi)§i+1,kX_)\_)\i_a7>\i (YA : (Vo, -~ -, V%), Ui) ,
=0

05+ Ak
(YO-A-0X)r0, 0 (V05 -5 vp) = D (~1)PE0ima P01t 8ienim)
0<i<j<k
i g
XY i (X)\i’)\j(’l)i,’l)j),’l)o,.f..f.,’l)k).

A 4+A5,00,. 0000 A
In particular, if both X and Y are in WIB (V), we get

(XOAY) a0, 00 (00, 01, 02) = X a-ag—a.00 (Yoo, (Y0, v1), 02)
+ (_1);3(1)1)(;E(Y)-I—;E(Uo))XAh_)\_)\l_a (Ula Y)\O,)\2 (U()? UQ))

+(_1)ﬁ(v0)ﬁ(y)X)\(),—)\—)\o—8 (’U(]y Y)\17)\2 (Ula U2)) 5
and

(YO 5—0X) a0 0000 (0, v1,02) = Yagagtarne (Xngn (vo, v1), v2)
+ (= 1)PEEOFPON Y s (01, X xs (V0, 02))

H(=1)PCOPTIY 3 ane (0, Xy a (V15 v2)) -

There is a close relation between the universal Lie conformal superalgebra
Wa(V) and the Lie superalgebra W?(V) associated to the finitely generated
F[0]-module V. In order to describe this connection, we consider the quo-
tient map [ : F_[Ag,..., \]®@V = F_[Ao,..., \] g V. For k = —1, this
coincides with the usual map V' — V/9V, v — f .

Proposition 6.5. (a) We have a linear map | : Wo(V) — Wo(V), in-
duced by the quotient map [ : F_[Ao, ..., A\ @V — F_[Ag, ..., N (g
V', which induces an injective homomorphism of Lie superalgebras [ :
WO(V)/oWo (V) — WO (V).

(b) We have a representation of the Lie superalgebra WO (V') on WB(V),
with the action of X € W2(V) on Y € W]?_h(V) denoted by [X,Y] €
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WI?(V), given by the following formula:
X, Y Dgene @0 v) = D> iy ik)

19<-<lg_p
Up—ht1 <<l

6.15 X—Aik,hﬂ—'"—)\ik =0 Xig 1Ny, (Yki07---7>\ik,h (Uiov s 7,Uik7h)’
(6.15) :
5(X)B(Y . .
Vig_pgrr- vvik) - (_1);0( () Z 6v(107 e ﬂk)
i< <ip,
thp1 <<t
XY)\iO+"'+>\ihy)\ih+17---7)\ik (X)\i07---7)\ih (Vigs + -+ Viy, ) Vipyqs - Vi) -

This action of the Lie superalgebra Wa(V) is by derivations of the A-
bracket on Wa(V) and it commutes with the action of 0.

(¢) The canonical map | : Wo(V) — WO(V) from part (a) is a homo-
morphism of representations of the Lie superalgebra WO (V). Moreover,
the representation of Wo(V') on WB(V) is compatible, via the map [ in
(a), with the representation of the Lie superalgebra Wa(V)/ﬁwa(V) on
Wo (V).

Proof. For X € W2(V), let [X be the map VEEH) S F_[\g, ..., \t] ®F]
V, given by ([X)xg,..x (V0. 06) = [Xag,..x, (V0, ..., 0g), where, in the
RHS, | denotes the map F_[Xo,..., A\ @ V.= F_[Ag, ..., \t] @ppg V. Tt
is immediate to check that f X lies in I/Vka (V), i.e., it satisfies the sesquilin-
earity and symmetry conditions. Hence, we get a well-defined linear map
[+ W2(V) = WP(V). Next, we prove that Ker ([ |fw7]?(v)) = 9(W2(V)),

so that [ factors through an injective linear map [ : Wka (V) /8W,§ (V) —
W,? (V). For k = —1, [ coincides with the quotient map V — V/9 V,
so there is nothing to prove. Let then k& > 0. The inclusion 8(W£ (V) c
Ker ([ ‘W]?(V)) is immediate by the definition (6.2) of the F[0]-module struc-

ture on W9(V). Conversely, suppose X € W,? (V) lies in Ker([), namely,
for every wvg,...,v; € V, we have Xy, (vo,...,v5) = (O + Ao+ -+ +
Ae)Yo.. 2 (V0 - - ., vg), for some polynomial Yy, », (vo,...,vx)in Ao, ..., Ag
with coefficients in V. Since 0+ Ao+ - - -+ Ak is injective on F[Ag, ..., A\, @V
for every k > 0, the sesquilinearity and symmetry relations for X imply those
for Y. Hence, X = 0Y € 8Wka (V), proving the claim. The fact that the in-
duced map | : WB(V) / 8/1/178(1/) — W2(V) is a Lie algebra homomorphism
follows by comparing the explicit expressions (4.6) and (6.9) for the Lie
bracket on W?(V) and the A-bracket on /Wa(V) respectively. This proves

part (a).
It is immediate to check that formula (6.15) does not depend on the
choice of representative of Xigrhiy (Vigy -+ vi) € FlXig, -+ iy ] ®pjg) V

in FlAi,...,A\i,] ® V. Moreover, if X and Y satisfy the sesquilinearity
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and symmetry relations, so does [X, 17] Hence, we get a well-defined map
W2 (V) x W]?_h(V) — W]?(V) We next prove that (6.15) defines a repre-
sentation of the Lie superalgebra W7(V) on Wa(V). Introduce the left and
right box products OF : W(V) x Wa(V) — Wa(V) and OF : WB(V) X
wWoWv) — Wa(V), given, respectively, by the first and (without the sign in
front) the second term in the RHS of (6.15), i.e.

(6.16)

(XDL?))\O’M’)\AU(), . ,Uk) = Zev(io, . ,ik)X_)\

ik i A T Oy A
o< <ip_n
U1 <<t
(Y)‘i07"")‘ik—h (UZ‘O, N 7vik—h)7 Uik—h+17 N ,’L)ik)
VR _ . S
(YO"X)x,.. 0 (0, -y 0g) = E Ev(ZOw--7Zk)Y)\i0+---+>\ih,)\ih+1,...,)\ik
10<--<ip
g1 <<k
(X)\io,...,)\ih (Uioa v 7vih)7 Uih+17 v 7vik) .

We claim that they satisfy the following right symmetry identities:
(6.17)

(XOY)OEZ—XxOL(YDOEZ) = (—1)P0(2) ((XDLZ)DRY—XDL(ZDRY)>,

for X e W2(V), Y e W(V), Z € W2(V), and
(6.18)
(XORY)ORZ—XOR(YDZ) = (—1)P0)p(2) ((X'DRZ)DRY—)Z'DR(ZDY)) :

for X € W2(V), Y e W(V), Z € W2(V). For (6.17) we have
(6.19)

((XDY)DLZ))\07___7)\a+ﬁ+’y('007‘“ 7Ua+ﬁ+’7) = Z ev(i07"' 7ia+ﬁ+7)

G0 <<y
Iy 1< <igy
UBy+1 < <lat Bty

XX _», Ny _ONs . ) SV U S .
Alﬁ+’y+1 )‘Za+ﬁ+'y a’)‘15+7+1""’)‘2a+ﬁ+7 )‘Z'er Alﬂ+'y a’)‘lw+1"“’)‘ll3+'y
(Z)\io,...,)\i,y (Ui()a v 7Ui»y)7 Ui-y+17 v 7vi5+7)7vi/3+7+17 v 7Uia+/3+.y>
3 P2 (plvig)++(vig) (. :
+ (—1) ‘0 ‘8 GU(ZOV"?ZCH-ﬁ-i—’Y)
i0<--<ig
g1 <ig g1
Lty +2 < <lat Bty
XX 4ot A —— i — s el _o, .
)\10+ +)\257 )\ZO )\26 )\26+,Y+1 )\la+5+7 87)\1ﬁ+’7+27“-7)\10+5+"/<

YAioy---yAi£Ui07 N ,Uiﬁ), Z)\i5+17---v)\i5+7+gvi/3+17 N ,’L)i6+7+1),’ui6+7+2, N ’Uia+ﬁ+w) .
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Similarly, we have

(6.20)
> R o . .
((XDZ)I:I Y)A07~~~7>\a+6+'y(?)07 N a”a—l-ﬁ—i-v) = E GU(ZQ, . 7Za+5+’*/)
i0<-<ig
B+ <igiy
LBy+1 < <lat Bty
X . e _ONs . Zx; ot di s A .
Nigyyt1 Mg g TONig 1Moy i \Fhig it higdig g digy,
(Y)‘io"“’)‘iﬁ (Vigs w3 Vig)s Vigyys - ’Uib’w) 1 Vigyqas - ’Uia+5+'y>
(V)p(Z P(Z)(Pvig)+-+P(vig) . (. '
+(—=1)P)P(Z) y (-1) i0 i) ey (0, - it pin)
io<-<ig
g1 < <igyy41
UBy+2 < <lat Bty
XX N, oty N X — s e _on .
Aig T hig = Aig = Aig = hig oy T Moy a’)\16+7+2""’)‘2a+/3+w<
Y,\io,...,,\igvio, ey Vi), Z,\%H ,...,,\imwg’viml, e Vi) Vg s e 7Uia+5+7>~

It is easy to check that the first term in the RHS of (6.19) is equal to
(XDL(YDLZ)))\O T (v0, - -+ Vatp+4~), while the first term in the RHS
s N ¥

of (6.20) is equal to (XDL(ZDRY))AO Netss (V0, - - s Vatp4y)- Equation
ERRREEAYeY 02

(6.17) then follows from the observation that the second terms in the RHS of
(6.19) and (6.20) differ by a factor (—1)P()P(2)_ Next, let us prove equation
(6.18). We have
(6.21)
(XO)DEZ) o (W0 atpan) = D ulio, - iatpas)
i< <y
Gy1 < <lgpy
ity 1< <tat Bty
XX)\z‘O-i-"'-i-)\iﬁﬂ,)\iBHH s Nig 4 Byny (YMO-I—'“-I—M—WM“,H e Nigy
(ZMO,...,A%, (Vigy -+ 5 Vi )5 iy -+ ’,Uiﬁvw) 1 Viggngr e+ ’Uia+6+w)
+ Z (_1)13(2)(17(1%0)+m+ﬁ(vi’8)€v(i07 cee 7ia+5+7)
7;0<...<Z'B

g1 < <ipgqta
LBy +2 < <lat Bty

XXX +4A g1 Mg g N g <YAZ~O,...,AZ~B (Vig, -+ Vi),

Nig i FtA

igiNig g

Z)‘i,3+1’“~’)‘i5+~,+1 (Ui5+1’ T ’UiﬂJr'erl)’ Vigintor - ’Uia+5+'y> :

It is then easy to check that the first term in the RHS of (6.21) is equal

to ()N(DR(YDZ))AO Nasss (v0,--.,Vatp+4vy), while the second term, if we
s N ¥

exchange Y and Z, stays unchanged up to a factor (—1)15(}/)’7(2 ). This proves
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(6.18). We then have, by (6.17) and (6.18),
X, [Y, Z]] - (~1)PXOPMY[X, Z]] - [[X,Y], Z] = — <(XDY)DLZ+
—XOYDOLZ) — (—1)pOe(Z) <(XDLZ)DRY - XDL(ZDRY))> +
+(=1)PX >P(Y><(YDX)DLZ —yok(xolz) — ppX >ﬁ<5>((YDLZ)DRX+
—YDL(ZDRX))> — (—1)PDE)+P(Y) ((ZDRX)DRY — ZOR(XOY)+
—(—1)PX)P(Y) ((ZDRY)DRX - ZDR(YDX)>> = 0.

This proves that (6.15) defines a representation of the Lie superalgebra
Wo(V) on Wa(V). With similar computations one can show that the Lie
action of W?(V) is by derivations of the A-brackets in Wa(V). Moreover,
it is immediate to check that the Lie action of W?(V') commutes with the
action 0 on Wa(V), proving part (b).

Comparing equations (4.6) and (6.15), we immediately get that [[X, Y] =
[X, le/] for every X € WO(V) and Y € W?(V), proving that the map
IE W(V) — W9(V) is a homomorphism of representations of the Lie su-
peralgebra W(V). Moreover, comparing (6.9) and (6.15), we immediately
get that [f)?, Y] = [X,Y] |az0, for every X,V € W(V), i.e., the Lie super-
algebra action of W?(V) on W,?_ n(V) — W,? (V') is compatible, via the map
[: WB(V) — W2(V), with the Lie superalgebra action of Wa(V)/ﬁwa(V)
on W9(V), proving part (c). O

Remark 6.6. The Lie superalgebra homomorphism | defined in Proposition
6.5 in general is not surjective. For example, if V is a torsion module over
F[0], then WS) (V) = 0 due to sesquilinearity, while W(V) = Endgpg (V)
needs not be zero. However, if the F[0]-module V' decomposes as V =
T & (F[0] ® U), where T is the torsion submodule and F[0] ® U is a finitely
generated free submodule, then |[ : W,? (V)/ GW,? (V) — WP(V) is a bijec-
tion for each k # 0, and, if 7 = 0, then [ : W(?(V)/OW(?(V) — WP WV)

is bijective as well. Indeed, due to sesquilinearity, if X € W2(V), then
X Ao, (V05 - - -, vg) vanishes if one of the arguments v; lies in the torsion
7 C V, and X is uniquely determined by its values on U®*+1)_ Hence,
we can identify W,? (V) with the space of linear maps X : U®*+D
F_[Ao, ..., \x]V satisfying the symmetry condition

(622)  Xngoa (U0, uk) = €ulio, - ik) X ony, (Wigr - i)

O ER]
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for all permutations (ig, ..., ix) of (0,...,k). Similarly, if X € W?(V) with
k # 0, then Xy, ., (vo,...,v;) vanishes if one of the arguments v; lies in
the torsion 7 C V, and we can identify I/Vka (V') with the space of linear maps
X 2 USHD 5 FAo, ..., Ap1]®V (by identifying F_[Ao, . .., Ax]®pps V and

F_[Ao, ..., A\e—1] ® V, replacing A\x by )\L =—Xo— - — A\p_1 — 0) satisfying
the symmetry condition
(6.23)

Xnorode (o, - -y ug) = €,(io, - . . ’Z'k)XMov---Aik,l (Wigs -+ s Uiy, ) ‘Ak'—»\L ,

for all permutations (ig,...,i;) of (0,...,k). Given X € W,?(V), k#0, a
preimage X € W7(V) of X is obtained by letting

k
e~ 1
X)\(),,,,,)\k (uo, e ,uk) = k'—+1 Z X,\m___,,\k,l(uo, v ,’LLk) Ai»—»\;’ )
i=0
i
where )\;r = —Xo— ... —Ar — 0. Indeed, it is immediate to check that, if

X satisfies the symmetry condition (6.23), then X satisfies the symmetry
condition (6.22).

Let V and U be vector superspaces with parity p, endowed with a struc-
ture of finitely generated F[0]-modules. In analogy with the reduction in-
troduced in Section 4.2, we define the Z-graded vector superspace (with

parity still denoted by p) Wa(V, U) = @kem WI?(V, U), where

WY(V.U) = Hom P2 oy (VEUTDF_ o, M) @)

One checks that the analogue of Proposition 4.2 holds, if we replace tensor
products over F[J] by tensor products over the field F.
The reduced space W2(V, U) is obtained as a subquotient of the universal

Lie conformal superalgebra Wa(V @ U), via the canonical isomorphism of
superspaces

(6.24) U/K -~ wpv,u),
where U and K are the following subspaces of W,? (VaU):

U = Hom o (VO U)*HDF o, M] @ T),
K = {Y|yvek)=o}.
The following analogue of Proposition 4.2 holds (the proof is similar):

Proposition 6.7. Let X € W2(V@U). Then the action of X on Wo(VaU)

given by Proposition 6.5(b) leaves the subspaces U and K invariant provided
that

(1) Xxg,..x,(Wo,...,wp) € F_[Xg,...,A\s] ® U if one of the arguments w;
lies in U,
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(1) Xxg,..n (V05 -+, 0n) € F_[Xo, ..., A\n] ®@pjg) V if all the arguments v; lie
m V.
In this case, the action of X induces a well-defined linear map on the reduced
space WO(V,U), via the isomorphism (6.24).

Furthermore, as in Section 2.3, given a subalgebra Ry of the Lie con-
formal superalgebra Woa (V) = RCend(V), we define a prolongation of Ry
in Wa(V) as a Z-graded subalgebra R = ;- | Ry of the Z-graded Lie
conformal superalgebra /WV/E)(V) = bie Wl? (V), such that Ry = V
and Ry coincides with the given Lie conformal superalgebra. The full
prolongation WoRo(V) = Dre Wf’RO(V) of Ry is defined by letting
w2y = v, Wl (V) = Ry and, inductively, for k > 1,

(6.25) W2 W)y = {X e W2(V) | [X\V] c FN @ W2 e(v)} .

It is immediate to check, by the Jacobi identity, that the above formula
defines a maximal prolongation of the Lie conformal superalgebra W (V).

6.2. The basic Lie conformal superalgebra cohomology complex.
Suppose that R is a Lie conformal superalgebra and M is an R-module,
with parity p, assume that R and M are finitely generated as F[0]-modules,
and consider the corresponding element X in the subset (4.17) of WP (IIR @

IIM)i. Consider the reduced superspace Wa(HR,HM ) introduced in Sec-
tion 6.1, with parity denoted by p.

Note that the element X satisfies conditions (i) and (ii) in Proposition
6.7. Hence the action of X on Wa(HR @ IIM), induces a well-defined en-
domorphism dx of the reduced space Wa(HR, I1M) such that d% = 0, thus

making (W?(TIR,TIM),dx) a cohomology complex. The explicit formula
for the differential dx is the same as (4.19), except that we view both sides
as elements of F[\g, ..., \x] ® M. If R is a (purely even) Lie conformal al-
gebra and M is a purely even R-module, we recover, up to an overall sign,
the basic Lie conformal algebra cohomology complex as defined in [BKV],
[BDAK] and [DSK2].

Note that, in the special case when M = R is the adjoint representation,
the complex (W?(IIR,IIM), dx ) coincides with the complex (WP (IIR), dx ),
where dx here is the differential given by the Lie superalgebra action of
WO(IIR) on WP(IIR) given by Proposition 6.5(b). By Proposition 6.5(c),
the canonical map [ : W(IIR) — W?(IIR) defined in Proposition 6.5(a)
is a homomorphism of cohomology complexes. The same holds for the map
[ WOTIR,TIM) — W(IIR,TIM).

6.3. Extension to infinitely generated F[0]-modules. If V' is not nec-
essarily finitely generated as F[0]-module, we may still consider the F[J]-

module W9(V) endowed with the A-product X[1,Y defined by the same
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formula (6.3). The problem here is that in general X[J,Y will be a formal
power series in A (not anymore a polynomial) with coefficients in W7 (V):

(6.26) Oy : WO(V) x WO(V) = F[\] @ WO(V).

Note that when dealing with formal power series in A, the corresponding A-
bracket [X,\ Y] = X0, Y — YO_,_9X would seem ill-defined (since the coef-
ficient of a given power of A will be an infinite sum). However, for every fixed
collection of vectors vy, ..., v, € V, the element (XO)\Y)x,....a,(v0s- .., 0k)
defined by (6.3) is polynomial in A (and all the other variables Ao, ..., \).
Hence, (YO_x_5X)x,,.. 1, (v0,-..,v;) makes perfect sense, by replacing
by =A — Xy — -+ — A — 0 (0 acting from the left) in the polynomial
(YOLX) ... 0 (V0, - - -, vi). We can then define their A-bracket

[(X,Y] : VEMFL S RN Ao, .. ] @V,

which is well defined on a every given collection of vectors vg,...,vp € V:

(XY xoon (V0 -y vg) = (XONY ) ag.on (Y0, - -5 UK)

6.27
( ) _(_1)p(X)p(Y)(YD—A—Ao—“'—Ak—aX)AO,m,)\k (U()? s 7Uk) )

(where 0 in the second term is moved to the left), and, on any such collection
of vectors vy, ..., v, it is clearly polynomial in all the variables, including A.
Alternatively, [X,Y] can be described as the formal power series in A with
coefficients in Wa(V) such that (6.27) holds.

Note that all the identities in Lemma 6.1 and Corollary 6.3 are proved on
given collection of vectors | from V. Hence, the same computations show that
the A-bracket [X,Y] on W?(V), even for non finitely generated F[0]-module
V', satisfies all the Lie conformal algebra axioms, sesquilinearity, skewsym-
metry and Jacobi identity, in the sense that each axiom holds (polynomially
in the variables A, g, ..., A;) on every fixed collections of vectors from V.
We thus have the following

Lemma 6.8. For X € va,?(V), Y € XW,?_,L(V), their X-bracket [X,\Y] :

VOl S RN N, ..., \i] ® V satisfies all the Lie conformal algebra azioms
on every given set of vectors from V :
sesquilinearity

[OX2\Y xo, (V05 -5 0k) = =A[X0Y 5,0, (V0, -+, k),
[XAOY g, a0, s vk) =N+ Xo+ - + X + 0) [ XaY]ao,. 2 [(v0, - - -, Uk),

skewsymmetry

[X0Y g o005« - s vp) = —(DPEPOY oY Do A0, - -5 Vk),s
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/u\)fLere in the RLJS 0 is moved toihe left, and Jacobi identity (for X €
Wo(V), Y e xWP (V) and Z e W ,(V))

XAV Z]r, 0 (V0, - - ve) — (= 1)PEPOY, X0 Z]] 5, on (V0 -, 00)
= [[XaY 41 Zlx,..0 (V05 - - - v0) -

Remark 6.9. Tt follows from the above lemma that, for X, Y, Z € Wa(V), the
sesquilinearity conditions [0X,Y] = —A[X,\Y] and [X,,0Y] = (A + 0)[X,\Y]
hold in the ring of formal power series F[[A]] ® Wa(V), and similarly the
Jacobi identity [X)[Y,Z]] — (=1)PPO) [V, [X,Z]] = [[X\Y]x4+,Z] holds in
the ring F[[A, z)] ® W2(V). As for the skewsymmetry relation [X,Y] =
—(—1)PEPNY_\_5X], we can only say that it holds, for every N > 0,
in the quotient space F[[\]] ® (Wa(V)/aNWa(V)) (we need to do this to
avoid diverging series). One may talk, in this sense, of a “generalized” Lie
conformal superalgebra.

Corollary 6.10. If R C /WV/E)(V) is an F[0]-submodule with the property that
the A-bracket of every two elements X,Y € R is actually polynomial in A
and with coefficients in R, then R is a (honest) Lie conformal superalgebra.

Proof. Obvious. O

The above result will be applied in the next sections, when studying the
universal odd PVAs W2(ITV) and WY (ITV).

We can also extend, to the case of infinitely generated F[0]-modules V,
the notions of prolongation and full prolongation.

Definition 6.11. Let Ry C Wg’(V) = RCend(V) be an F[0]-submodule with
the property that, for every X,Y € Ry, the formal power series [X)\Y] has
coefficients in Ry.

(a) A prolongation of Ry in WO(V) is a Z-graded F[0)-submodule R =
@D R C WO(V), with Ry, C W,?(V), such that R_1 =V, Ry coin-
cides with the given F[0]-module, and, for every X € Ry,Y € Ry_p, the
formal power series [X,\Y] has coefficients in Ry.

(b) The full prolongation WB’RO(V) =@, W,?’RO(V) of Ry is defined by
letting W?iRO(V) =V, WO&RO(V) = Ry and, inductively, for k > 1,
(6.28) WPRW) = {X e W2(V) | [XoV] C F[N] @ W2 (v)}.
One easily chggks, by the Jacobi identity, that (6.28) defines indeed a
prolongation of W2(V).

7. THE UNIVERSAL (ODD) POISSON VERTEX SUPERALGEBRA FOR A
DIFFERENTIAL SUPERALGEBRA )V AND BASIC PVA COHOMOLOGY

7.1. The universal odd PVA WB’aS(HV). Throughout this section, we
let V be a commutative associative differential superalgebra, with a given
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even derivation 0, and with parity denoted by p. We assume moreover that
V is finitely generated as a differential algebra, i.e. there are finitely many
elements which, along with all their derivatives, generate V.

We let RCder(V) be the Lie conformal superalgebra of right conformal
derivations of V, namely the linear maps X : V — F[A]®@V, satisfying (6.1)
and

(7.1) Xy (uv) = Xyyo(u) v + (~1)POPO Xy o(0) Lu.

This is a subalgebra of the space RCend(V) of right conformal endomor-
phisms, X, : V — Flu| ® V, satisfying (6.1) with A-bracket given by
XY ]u(v) = Xor_a(Yil(0)) — (—1PCPOYVL (X, () (cf. (6.3)). Though
the A-bracket on RCend(V) has values in formal power series (see Section
6.3), when restricted to RCder()) it is polynomial in A, due to the assump-
tion that V is a finitely generated differential algebra. Indeed, due to the
sesquilinearity assumption (6.1) and the Leibniz rule (7.1), an element of
RCder(V) is determined by its values on a set of differential generators of

V.

Remark 7.1. Isomorphism (6.13) restricts to an isomorphism of RCder(})
to the Lie conformal superalgebra Cder(V) of all conformal derivations of V,
namely the conformal endomorphisms of V, satisfying X (uv) = X (u)v +
(_1)p(U)p(v)X/\(v)u_

Recall from Section 6.3 the definition of the F[d]-module W(IIV) =
Dre W[? (ITV) together with the A-bracket which makes it a “general-
ized” Lie conformal superalgebra (in the sense of Remark 6.9). We denote
its parity by p. Consider the full prolongation (cf. Definition 6.11), associ-
ated to the Lie conformal superalgebra RCder(V) € RCend(V) = W(? (I1v),
which we denote by

Wos(Y) = P W (my) ¢ WoImy).
k=-—1

Proposition 7.2. (a) For every k > —1, the superspace Wka’as(HV) is the
subspace of WP(IIV), consisting of linear maps X : (IV)2H*+)
FlXo, ..., \e] @ TIV satisfying the symmetry and sesquilinearity condi-
tions, and the Leibniz rule (5.3) (where both sides are interpreted as
elements of F[Ag, ..., \g] @ IIV).

(b) Wa’aS(HV) is a Lie conformal superalgebra.

Proof. Part (a) follows by an easy induction on k& > 0. Let us next prove
part (b). Due to the sesquilinearity and the Leibniz rule (5.3), an element
X e W,? P3(TIV) is determined by its values on a set of differential generators
of V. On the other hand, for X € W2™(ITV) and Y € W% (I1V), we have
that [X\Y]x,,.. A, (Vig, - - -, v;,) is polynomial in A (and all the other variables
A0, - - - s M) for every k-tuple (vy, ..., v;, ) consisting of differential generators
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of V. Since such k-tuples are finitely many, we deduce that the A-bracket
[X,\Y] is polynomial in A (and with coefficients in W,f P3(T1V), by definition
of prolongation). Hence, the statement follows from Corollary 6.10. (]

We next define a structure of a commutative associative superalgebra on
the superspace HW&“‘S(HV), making it an odd Poisson vertex superalgebra.
Let X € W™ (IV) and Y € TW% (1Y), for h > 0, k —h > 0, and
denote by p(X) and p(Y) their parities in these spaces. We define their
concatenation product X \Y € Hngals(HV) as the following map:

(7.2)
(X AY Do (ar,cvan) = D eain, .., ig) (—1)POPlan)+Fpler,)

©

<<y,
Tp41 < <lp
XX)\ilv--w)\ih (ailv s 7aih)Y)\ih+1y---v>\ik (aih+17 s 7aik) )
where €,(i1,...,7) is as in (2.1) for the elements ay,...,a; € IIV.

Proposition 7.3. (a) The Z.-graded superspace, with parity p, GV =
Dre o Gk(V), where Gp(V) = HW]?;als(HV), together with the concatena-
tion product A : Gy(V) x Gr_n(V) — Gr(V) given by (7.2), and with

the Lie conformal superalgebra A-bracket on TIG(V) = Wa’aS(HV), is a
Zy -graded odd Poisson vertex superalgebra.

(b) The representation of the Lie superalgebra WO(IIV) on Wa(HV) de-
fined by Proposition 6.5(b) restricts to a representation of its subalge-
bra W4S(I1V) on the odd Poisson vertex superalgebra Wo2(ITV) C

WB(HV), commuting with 0 and acting by derivations of both the con-
catenation product and the A-bracket.

(¢) The canonical map [ : Wa(HV) — WO(TIV) defined in Proposition
6.5(a) restricts to a map [ : Wavas(HV) — WP(IIV), which is a
homomorphism of representations of the Lie superalgebra W2 (IIV).
Moreover, this map induces an injective Lie algebra homomorphism f :

WP:as(ITV) /OW 9 (TTV) — Woas(IT)).

Proof. First, we prove that X AY in (7.2) is an element of HVVka 1Y),
namely, it is a map (ITV)®* — F_[\y,..., \y] ® [TV satisfying the symmetry
and sesquilinearity conditions, and the Leibniz rule (5.3). The symmetry
condition can be checked directly with the usual argument (see e.g. the
proof of Proposition 3.4), while the sesquilinearity condition is immediate
by the definition (7.2) of the concatenation product. As for the Leibniz rule,

by the symmetry condition it is enough to prove (5.3) for i = k, i.e.
(7.3)

(XAY )o@, ap—1,00) = (X AY)x e inet0(@ty - ooy ag—1,b) e
+ (_1)p(b)p(c) (X A Y))\17___7)\k71’)\k+8(a1, vy k1, C)_>b .
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We have, by the definition of the concatenation product,
(7.4)
(XAY) (a1, ag—1,bc) =

Z €a17___7ak717bc(i1, o 7Z'k)(_l)p(y)(ﬁ(ail)+'“+I7(az‘h))

11 < <ip<k
ipg1 <---<ip=k
X X ey (@ins -5 0) Yo e (@i @iy, 00)
. . p(Y)(p(ai, )+---+p(a; +p(be
+ E Eal,...,ak,l,bc(“y- .. Jk)(_l) ¥)(plai,) ( Zh*l) (b))
1< <ip=k
Ty <o <ip<k
XX)‘i17~~~7>\ih717>\k (@i » Qi1 bC)YAthrl s Nig, (aih+17 Tt aik) :

Equation (7.3) can be derived from (7.4) using the Leibniz rules (5.3) for
X and Y, together with the sign identities (3.5) (valid in the first term of
the RHS of (7.4)), (3.6) (valid in the second term of the RHS of (7.4)), and
(3.7).

We now prove that the concatenation product (7.2) makes HW&“‘S(HV)
into a commutative, associative, differential superalgebra. First, one easily
checks that X A'Y has parity p(X) + p(Y) as an element of H/WV/&&S(HV),
so that H/vaavas(HV), endowed with the concatenation product (7.2), is a
superalgebra. Recalling the definition (6.2) of the F[0]-module structure of
H/WV/&&S(HV), it is immediate to check that 0 is an even derivation of the con-
catenation product (7.2), making HW&“‘S(HV) a differential superalgebra.
Moreover, since V is a commutative superalgebra, we have

X)\il s iy (aiu s 7aih)Y>\ih+1 s i, (aih+17 s 7aik)

= iY)‘thrl’"")‘ik (aih+1, L. 7aik)X)\i17---7)\ih (ail, - ,aih) ,

This immedi-
ately implies commutativity of the concatenation product (7.2). Finally,
given X € IW2™(MV), Y e NW2% (1Y), Z € TW2% (1Y), and
ai,...,ap € IV, we have, using associativity of V, that both (X A (Y A
Z)ai,ox(at, ..o ap) and (X AY)AZ)y,. ., (a1,...,ap) are equal to

where 4 = (—1)POOP(E)+4p(as,) PO 4p(00, )+, )

Z €alin, . .. ig)(=1)PY)Plai )+ +play, )+p(2)(Plaiy )+-+plai,))
i <<,
tht1<<ig
Zk+1<“'<Z(

X>\i1 s i (aiu s 7aih)Y>\ih+1,m,>\ik (aih+17 s 7aik)Z>\ik+17---7)\iZ (aik+17 s 7aie)7

proving associativity of the concatenation product.
To complete the proof of part (a), we need to prove that the A-bracket on
W2s(11V) satisfies the odd Leibniz rule,

(7.5) [(X\Y A Z] = [X\Y] A Z + (—1)PXPD)y A [X, 7],
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thus making G V) = HWa’aS(HV) into an odd Poisson vertex superalgebra.
This follows by the following two identities, which can be checked directly:
(7.6)
XO\Y AZ) = (XOWY)AZ+ (—1)PEOPY A (Z0,X),
(XAY)ONZ = (9PX)A(YONZ) + (—1)PYPEN(XT19Z) AY .

Let us next prove part (b). Given X € W}?’aS(HV) and Y € W,?f,?(HV),

we want to prove that [X,Y], defined by (6.15), belongs to W,f’as(HV), ie.
it satisfies
(7.7)

(X, ?]Ao,...,)\k (ag,...,ax—1,bc) = [X, ?]Ao,...,,\k,l,,\ﬁa(ao, s ap—1,b)c

+ (—1)POPOX Yy a0 (@05 s ap_1,6) b

Recall, from Section 6.1, that the left and right box products defined in
(6.16) are such that [X,Y] = XOMY — (—1)PXPY)YOEX . Since, by as-
sumption, X and Y satisfy the Leibniz rule (5.3), and using the sign iden-

tities (3.5) and (3.6), we get, after a straightforward computation, that
(7.8)

(XOEY)rg o (@0, - -y a1, 0¢) = (XOFY) 5, aro(ao, - ap_1,b) ¢
+(_1)p(b)p(c) (XDL?)AO’...7Ak+a(a0, e, 01, C)_>b
+ Z eao,...,ak,l,bc(im cee 7Zk)

10<-<igp_p=k
T g1 <<t <k

5(X)(p(Y p(a; -+p(a; b)) v
(- 1PEOCT o) el 4O

(igy- -+ Qig 15 b)_>X_)\ik7h+1_“‘_)\ik_a)\ik,h+17---7)\ik (c, Aigpgyr e - ’aik)

4 ( POPOFPOEE)+plaig)+-+Plas )t (@) g, N in 4o
QN 1N

(aiov s Qi g C)%X—Aik,hﬂ—"'—)\ik =0 Xip 1Ny, (bv Qig_pgrr -+ Qi )}

Similarly, for the right box product we have
(7.9)

(YORX ), (@0, -y ak-1,b0) = (YORX) 5 aerolao, - . ap—1,b)c

)

+(—1)PIp(e) (?DRX)AO,...,,\Ha(ao, e, QR_1,C)b
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+ § an,...,ak,l,bc(Zm cee 7“6)
io<<in=k
T <<t <k

(_1)(17(X)+ﬁ(az‘0)+~~~+ﬁ(az‘h,1 )+p(0))(p(c)+p(aiy, o )++P(aiy))

XY)\i0+---+)\ih F0,Xip, 10y, (C, Qijyygse - 7aik)—>

XX)\iO:--w)\ih71,—Aio—"'—)\ihil—a(ai07 cee Qg gy b)

+(— 1)p(b)p(0)+(ﬁ(X)+ﬁ(aio )+ +p(aiy, _; )+p(e)(p(0)+p(aiy, ) +-+p(aiy))

XY)\i0+"'+)\ih F0, iy, 1oy, (b7 Aijyygse - 7aik)—>

XX)\iO:--w)\ih71,—Aio—"'—)\ihil—a(ai07 cee Qi gy C)}

Note that, by the symmetry conditions on X and EN/, the sum in the RHS
of (7.8) and the sum in the RHS of (7.9) differ by the factor (—1)P(X)P(Y),
Hence, combining (7.8) and (7.9), we get (7.7). This shows that we have a
well-defined representation of the Lie superalgebra W25 (ITV) on Wa’aS(HV).

Thanks to Proposition 6.5(b), the action of W&3S(IIV) on W3(IIV)
commutes with 0 and it is given by derivations of the A-bracket. To complete
the proof of part (b) we only have to check that the Lie superalgebra action
of WPS(ITV) on Wa’aS(HV) is by derivations of the concatenation product,
ie.

(7.10) XY AZ) = [X,V]AZ+ (~1)PrOY A [X, 2]

This follows by the following two identities (similar to (7.6)) which can be
checked directly:

(7.11) XOMY ANZ) = (XOMY)AZ+ (~1)p00r0Y A (ZOPX),
' (XAY)ORZ = XA (ZORZ)+ (—1)POP@)(XORZ) A Y .
Finally, part (c) is immediate from Proposition 6.5. O

It follows from Propositions 5.2 and 7.3 that, for any Poisson vertex su-
peralgebra V, which is finitely generated as differential algebra, we have a
differential dx on the superspace W (IIV), given by the action of X on this
space, where X is the element in the set (5.4) associated to the Lie conformal
superalgebra structure on V. Moreover, by Proposition 7.3(b), the differen-
tial dy is an odd derivation of the odd PVA structure of W2$(ITV). We thus
get the basic PVA cohomology complex (WP2(I1V),dx). By Proposition
7.3(c), the canonical map [ is a homomorphism of cohomology complexes

(Woas(ITV), dx ) — (WO3S(I1V), ad X).
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7.2. The universal PVA /I/IV/avaS(V). As in Section 3.3, instead of WB(HV),
we may consider the universal “generalized” Lie conformal superalgebra
Wa(V), with parity p, and, inside it, the full prolongation of RCder(V) C
/VIV/(?(V) = RCend(V), which we denote by

W@,aso}) _ @ Wka,aso})
k=—1

As in Proposition 7.2, one proves that Wka (V) consists of linear maps
X - peEHD) L RN, ..., A\ ]®V satisfying the symmetry and sesquilinearity
conditions, and the Leibniz rule (5.5).

As in Proposition 7.3, assuming that )V is finitely generated as differential
algebra, one can define on Wa’aS(V) a structure of a Poisson vertex algebra,
where the A-bracket comes from the A-bracket (6.27) on Wa(V), and the
commutative associative product is given by a concatenation product as
n (7.2), with p replaced by p. Moreover, the representation (6.15) of Lie
superalgebra W2(V) on Wa(V) induces a representation of its subalgebra
W?25(V) on the Poisson vertex superalgebra Wa’as(V) C Wa(V), acting by
derivations of both the concatenation product and the A-bracket.

It follows from Proposition 5.4 that, for any odd Poisson vertex superal-
gebra V, which is finitely generated as differential algebra, we have a dif-
ferential dx on the superspace W%25(V), given by the action of X via the
representation of W2 (), where X in (5.6) is associated to the Lie con-
formal superalgebra structure on IIV. We thus get a cohomology complex
(WP(V), dx).

8. ALGEBRAS OF DIFFERENTIAL FUNCTIONS AND THE VARIATIONAL
COMPLEX

8.1. Algebras of differential functions. An algebra of differential func-
tions V in one independent variable x and ¢ dependent variables u;, indexed
by the set I = {1,...,¢} (£ may be infinite), is, by definition, a differential
algebra (i.e. a unital commutative associative algebra with a derivation 0),
endowed with commuting derivations ﬁ : YV — VY, for all i € I and

n € Z4, such that, given f € V, (n) f = 0 for all but finitely many ¢ € I
and n € Z4, and the following commutatlon rules with 0 hold:
0 0
(8:1) 5l =5
ou, Oou;

where the RHS is considered to be zero if n = 0. An equivalent way to write
the identities (8.1) is in terms of generating series:

(8.2) Z z" =(z+4+0)o Z 2" —w

nel4 nel4 7,
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Remark 8.1. It would be natural in this paper to consider a commutative
differential superalgebra V, with an even derivation 0. However, we re-
stricted ourselves to the purely even case for the sake of simplicity. The
generalization to the superalgebra case is straightforward.

We call C = Ker(d) C V the subalgebra of constant functions, and we
denote by F C V the subalgebra of quasiconstant functions, defined by

(8.3) fz{féﬂ%:OWeI,neZJr}.
ou,
It follows from (8.1) by downward induction that a constant function is
quasiconstant: C C F. Also, clearly, 0F C F. One says that f € V has
differential order n in the variable w; if % # 0 and % = 0 for all
Ou, Ou,

m > n.

Typical examples of algebras of differential functions are: the ring of
translation invariant differential polynomials, R, = F[uin) i€ I,n € Z4],

where 8(u§n)) = ugnﬂ), and the ring of differential polynomials, Ry[z] =

Flx, ugn) |i € I,n € Zy], where 0x = 1 and Gugn) = uE"H). Other examples
can be constructed starting from Ry or Ry[z] by taking a localization by
some multiplicative subset S, or an algebraic extension obtained by adding
solutions of some polynomial equations, or a differential extension obtained
by adding solutions of some differential equations. In all these examples,
and more generally in any algebra of differential functions extension of Ry,

the action of 0 : V — V is given by 0 = i + ul(-nﬂ)i, which
ox au(")

i€l neZ4 7
implies that

(8.4) FNov =0r.

Indeed, if f € V has, in some variable u;, differential order n > 0, then O f
has differential order n + 1, hence it does not lie in F.
The variational derivative % .V — V¥ s defined by

(8.5) o > (o2

5'1,%’ nely augn)

It follows immediately from (8.2) that

0
8.6 —(0f)=0
(5.6) (0f) =0,
for every i € I and f € V, namely, 0V C Ker %.
A wector field is, by definition, a derivation of V of the form

0
i€l neZq i

We denote by Vect(V) the space of all vector fields, which is clearly a sub-
algebra of the Lie algebra Der (V) of all derivations of V. A vector field X is
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called evolutionary if [0, X] = 0, and we denote by Vect?(V) the Lie subalge-
bra of all evolutionary vector fields. Namely, Vect?(V) = Vect(V)NDer?(V).
By (8.1), a vector field X is evolutionary if and only if it has the form

n 0
(8.8) Xp= | Z (0 Pi)m,
i€l,nel4 i

where P = (P,);er € VY, is called the characteristic of Xp. As in [BDSK],
we denote by V¢ the space of £ x 1 column vectors with entries in V, and by
V& the subspace of ¢ x 1 column vectors with only finitely many non-zero
entries.

8.2. de Rham complex Q°(V) and variational complex Q°(V). Here
we describe the explicit construction of the complex of variational calculus
following [DSK2].

Recall that the de Rham complex S~)’(V) is defined as the free commuta-

tive superalgebra over V with odd generators 5u2(~"), i € I,n € Zy and the
differential § defined further. The algebra Q°®(V) consists of finite sums of
the form
89 @= > PMmeu™ A Asul™ PRy,
Uyt €1
mi,...,mg €L

We have a natural Z,-grading Q°(V) = Drcz. QF(V) defined by letting
(n)

1w i
space Q%(V) is a free module over V with a basis consisting of the elements
sul™ A /\5ul(-:"k), with (mq,41) > -+ > (my, i) (with respect to the lex-

11
icographic order). In particular QO(V) =YV and §~21(V) = EBieI,nGZ+ V&ul(-n).
We let § be an odd derivation of degree 1 of ﬁ'(V), such that §f =

D iel,nez, %(Mg") for f € V, and 5(5ul(-n)) = 0. It is immediate to check

elements in V have degree 0, while the generators du; ' have degree 1. The

that 62 = 0 and that, for @ € OF as in (8.9), we have

P
(810) 6@) = > 3 %5u§”)msug”l)A---Aaugjk’.
JEINEZ L  i1,...ix€l au]

mi,....,mp €L

The superspace Q°(V) has a structure of an F[d]-module, where 8 acts as
an even derivation of the wedge product, which extends the action on V =
Q°(V), and commutes with 8. Since & commutes with 8, we may consider the
corresponding reduced complex Q°(V) = Q°(V)/0Q°(V) = Drez, Qk V),
known as the variational complex. By an abuse of notation, we denote by
the corresponding differential on Q°*(V).
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We identify the space QF (V) with the space of skewsymmetric arrays, i.e.
arrays of polynomials

(8.11) P= (PO )y e

where P, i (A1,..., k) € F[A1,..., ] ® V are zero for all but finitely
many choices of indexes, and are skewsymmetric with respect to simulta-
neous permutations of the variables Aq,...,A; and the indexes iq,..., 1.
The identification is obtained by associating P in (8.11) to w in (8.9), where

PZTIka" is the coefficient of A{™ ... X" in P, ;, (A1,..., Ax). The formula

for the differential § : QF(V) — QF1(V) gets translated as follows:

k 8P S ()‘ana)‘k)
(812)  (8P)ig.iyNoyees Ag) = 3 (~1) Y ol A

(n)
a=0 nely aul

o

In this language the F[0]-module structure of Q2*(V) is given by
(8.13) (Z?P)il,,,,,ik ()\1, c. ,)\k) = (8 + A+ + )‘k)})il7---7ik ()\1, ey )\k) ,

so that the reduced space QF(V) = QF(V)/0Q%(V) gets naturally identified
with the space of arrays (8.11), where P, ;, (A1,...,A;) are considered as
elements of F_[A1,..., A\g] ®p[g) V. The differential 6 on Q°(V) is given by
the same formula (8.12).

For example, Q°(V) = V/AV, and Q'(V) is naturally identified with V¢,
thanks to the canonical isomorphism F[A] ®g(5 V >~ V. Under these identifi-
cations, the map ¢ : V/9V — V& coincides with the variational derivative
(8.5):

of

where, as in the previous sections, we denote by f + [ f the canonical quo-
tient map ¥V — V/9V. Furthermore, Q?(V) is naturally identified with the
space of skewadjoint ¢ x (-matrix differential operators S(9) = (S; (8))2 el

This identification is obtained by mapping P = (meeZ+ Pi?’")\mu”)i’j o
to the operator S(9) given by S;;(9) = 3, ez, (—0)" o P;"0™. With
these identifications, formula (8.12) for the differential of F' € V& = Q1(V)
becomes

0F = —Dp(9) + Dp(9) ,
where

(8.14) Dp(9) = ( > gian)i,jel

nely

is the Frechet derivative of F', and D7}.(0) is the adjoint differential operator.
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8.3. Exactness of the variational complex. Recall from [BDSK] that an
algebra of differential functions V is called normal if we have ﬁ (le) =
u;

Vm,i for all ¢ € I,m € Z, where we let
(8.15)

Vi = {f € V‘ % =0 if (n,j) > (m,i) in lexicographic order }
g
We also denote V,,, 0 = V14, and Voo = F.

The algebras Ry and Ry[x| are obviously normal. Moreover, any their
extension V can be further extended to a normal algebra. Conversely, in
[DSK2] it is proved that any normal algebra of differential functions V is
automatically a differential algebra extension of R,.

In [BDSK] we proved the following result (see also (8.4)):

Theorem 8.2. IfV is a normal algebra of differential functions, then

(a) HE(Q*(V),8) =0 for k > 1, and H*(Q*(V),0) = F,

(b) HE(Q*(V),6) =0 for k> 1, and H°(Q*(V),0) = F/OF.
In particular, % =0 if and only if f € OV + F, and F € V¥ is in the
image of % if and only if its Frechet derivative Dp(0) is selfadjoint.

9. THE LIE SUPERALGEBRA OF VARIATIONAL POLYVECTOR FIELDS AND
PVA COHOMOLOGY

Let V be an algebra of differential functions extension of the algebra of
differential polynomials Ry, = F[ugn) |i € I,n € Zy]. Recall from Section 5.1
the Z-graded Lie superalgebra Wa’as(HV), obtained as a prolongation of the
Lie algebra Dera(V) of derivations of V, commuting with 9, in the universal
Lie superalgebra W9(ITV). In Section 9.1 we introduce a smaller Z-graded
subalgebra of W (ITV), which we call the Lie superalgebra of variational
polyvector fields, denoted by WY (IIV) = g _, WY, It is obtained as a
prolongation of the Lie subalgebra of evolutionary vector fields Vecta(V) C
Der?(V), introduced in Section 8.1. We then identify in Section 9.3 the space
WYar(I1V) with the space 2°(V) introduced in Section 8.2, and we relate the
corresponding cohomology complexes.

9.1. The Lie superalgebra of variational polyvector fields W' (IIV).
Recall that the superspace W[? (ITV), of parity k£ mod 2, consists of maps
X VoEED) ST [N, ..., M\ ®pjg) V, satisfying sesquilinearity:

(91) X)\o,...,Ak(foa"'afi--- 7fk) = _)\iX)\o,...,)\k(f()u"' 7fk) ) 1= 07 7k7

and skewsymmetry:
(9.2)
X)\U(O),...,Aa(k) (fa(0)7 cee 7fo‘(k)) = Sign(J)XAo,...,)\k (f(]a ey fk) , 0 € Sk-i-l .

In the special case when V = Ry = F[uz(n) |i € I,n € Z], the Leibniz rule
(5.3) implies the following master equation for an element X € W,? IIY),
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which expresses the action of X on V®*+1) in terms of its action on (k+ 1)-
tuples of generators:

X)\Oy---,)\k(f(]?"')fk‘) = Z <eaakoﬂ>

00,.ip € 8”2(2”0)
(93) a mo,...,mk€Z+
<eaa*k %) (=20)™0 o (=)™ Xng g (Wigs - vy wiy)
ou, "
i
Here we are using the following formula:
1 ., 0" P(A
(9.4) () PN = > —(@"f) m,(@ ) _ PA+0),f.

nely
In general, for an arbitrary algebra of differential functions V containing Ry,
we define the space W™ of variational k-vector fields as the subspace of
W,? (ITV) consisting of elements X satisfying the master equation (9.3). By
(9.4), another form of equation (9.3) is the following (for each s =0, ..., k):

X)xo,...,)xk(f())"'vfk) 8f
(95) = Z Xordat 0o (fos oo tin ooy fr) (= As — O)"—=

(m)
icl,meZ, du,

)

S
where 4; means that u; is put in place of fs.
Note that the master equation implies that X satisfies the Leibniz rule
(5.3). Thus, W) is a subspace of W]?’as(HV).

Proposition 9.1. The superspace WY (I1V) is a Z-graded subalgebra of the
Lie superalgebra Wo25(I1V).

Proof. The proof of this statement is similar to that of Proposition 5.1.
We need to prove that, if X € W* and Y € W™, then [X,)Y] =
X0y — (—1)ME=MYyOX lies in WA, namely, it satisfies the master equa-
tion (9.3), or, equivalently, equation (9.5) for s =0, ..., k. We observe that,
since [X,Y]x,,...a. (fo, .-, fi) is skewsymmetric with respect to simultane-
ous permutations of the variables \; and the elements f;, it suffices to prove
that [X, Y] satisfies equation (9.5) for s = 0. We have, by a straightforward
computation,

(XOV),, o Uosfisoo i)

n OF
= 2 (XOY) o 0 fr s fi) o (220 = 0)" =
jelnezy , auj
o°f

i JEL,MnELy 1< <ip_p U; "OU;

I pp1 < <ig

X ((V + a)nX_V_ay)\ik,h+1y---v>\ik (uj7 fik,h+17 B flk))
X ((lu’ + a)mY—u—ﬁ,)\il,...,)\ikih (ui7 fi17 cee 7fik,h)> ;
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where 4 is the sign of the permutation (i1,...,i) of the set {1,...,k},
p=Aiy ++ N, andv =X\, _,.  +--+A;. Tocomplete the proof we
just observe that the second sum in the RHS is supersymmetric in X and

Y: if we exchange them it gets multiplied by (—1)"*~"). Hence it does not
contribute to [X,Y]. O
We can describe explicitly the spaces W for k = —1,0,1. Clearly,

WY = V/0V. Identifying F_[\]®p(g V with V, the master equation (9.3) for
€ Wy reads X(f) = > icrnez, (O"X(ul)) (];) , i.e., X is an evolutionary

vector field, see (8.8). Hence Wy = Vecta(V) Next recall from Section 4.1
that W2(ITV) is identified w1th the space of sesquilinear skewcommutative
M-brackets {-\-}: V@V = FA\®V. For X € WP(ITV), the corresponding
A-bracket is {fag} = Xx—a—s(f,9). Under this identification, the master
equation (9.3) translates into the usual formula for A-brackets (cf. [DSK1]):

dg n m Of
96) {Hhgt= . oy A+ ) {uirpouit o (=2 = 9)" — .
i,5€l,mmneZ uj aul

Hence, W7 is identified with the space of skewcommutative A-brackets on
1% Satlsfymg equation (9.6).

We can also write some explicit formulas for the Lie brackets in WY#*(I1V).
Recall that W4 is an abelian subalgebra. If X € W k > 0, and [ fj €
V/0V = W4, recalling equation (4.10) and applying the master equation
(9.5), we have,

of
(97) X ff ALy A f17’”7fk):ZXO,)\l,...,)\k(uiufla"'7fk)—)%-
il !
In particular, for k = 0, recalling that Wy*" = Vecta(V) is identified with
Vi via P Xp (cf. (8.8)), we have

(9.8) Xp. ] = [Xp(5) = Y2 [PL

el

Moreover, for £k = 1, recalling that W} is identified with the space of
skewcommutative A-brackets, we have

(9.9) [{A},ff](g) = {/rg} |)\:o'

We next identify skewcommutative A-brackets with skewadjoint differential
operators by associating to a given A-bracket {- -} the differential operator
H(9) = (Hij(a))z o VO =V given by

Furthermore, identifying the space of evolutionary vector fields with V¢, we
can rewrite (9.9) as follows

(9.11) 9), [f] = gi ( - XH(a)%) .
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Next, let X € Vect?(V) = Wy and Y € Wy k> 0. We have, by (4.11),
[X7 Y])\o,...,)\k (f07 cee 7fk) - X(Y)\o,...,)\k (f07 ey fk))
k

(9.12) —ZYAO,...,Ak(va'"X(fi)”"fk)‘
i=0

For k = 0 this reduces to the usual commutator of evolutionary vector fields:
(9.13) [P, Qli = [Xp, Xq|(ui) = Xp(Q:i) — Xo(F)

while for £ = 1 it gives, identifying H € W} with the corresponding
skewcommutative \-bracket {- ) -},

(9.14) {Hgtxm = X{Hgte) —{AXrgtn —{HX(9)}n

or equivalently, restricting to generators and using the notation in (9.10),
(9.15)
[Xp, Hij(\) = Xp(Hi;(N))

- Y HEOA-or S S (o) ()

(n) (n)
kelnezZ, ug, kelnez, OUy,

=Xp (HZ]()\)) - Z Hi, (A +0) (D}k?()‘))kj - Z (DP()‘ + 8))ikH’fj()‘) :
kel kel
In the last identity we used the definition (8.14) of the Frechet derivative
Dp(0). Equivalently, in terms of differential operators, we have
(9.16) [(Xp, H|(9) = Xp(H)(0) — H(0) 0 Dp(d) — Dp(d) 0 H(D),

where Xp(H) means applying the derivation Xp to the coefficients of the
differential operator H(0). Finally, let H € W} be associated to the
skewcommutative A-bracket {--}g, and let Y € W, k > 1. We have, by
(4.12),

(9.17)
k

HY D oo ) = GO (D00, | o
Z:O 07...7]‘€
+ Y (-)HY »

0<i<j<k XA A0t
In particular, for k = 2,
[H, K5 (fs 9, 1)
018) = Uhadahdn = Udgubdih + {9 fabicka
—l-{{ng}H)\-HLh}K —{Adguhtat e g {Hh e}

Remark 9.2. As we pointed out above, WY& = W?2s if = R,. This is not
always the case for an extension of R,. For example, consider the algebra
of differential functions in one variable V = Rj[e¥], with de" = e"u/. In

this case, W™ = Vect?(V), while W(?’as(HV) = Vect?(V) + FZ, where Z is
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the derivation of V commuting with 9 given by: Z(Pe™") = mPe™" P €
Rl, m € Z+.

9.2. PVA structures on an algebra of differential functions and co-
homology complexes. Let K € W} be such that [K, K] = 0, and denote
by {- -}k the corresponding Poisson A-bracket on V', and by K (0) the corre-
sponding Hamiltonian operator given by (9.10). Then (ad K)? = 0, hence we
can consider the associated Poisson cohomology complex (WY (I1V), ad K).
Let Z5(V) = @52, 2%, where 28 = Ker (adK‘Wgar), and By (V) =

@i, By, where B = (ad K)(Wy™). Then Z3.(V) is a Z-graded subal-
gebra of the Lie superalgebra WY*(I1V), and B} (V) C Z} (V) is an ideal.
Hence, the corresponding Poisson cohomology

My (V)= € M, MHi = 25 /Bi,
k=-—1

is a Z-graded Lie superalgebra.
By equation (9.11), We have

Wt =z = {ff € V/aV|K(0)3 = 0}
- {ff eV/V| {fVik|,_,=0}.

Next, recalling that Wy = Vect?(V), we have
B = {Xx(m% | [fe V/OV} = {{fx}x oo | [T € V/av},

where Xp € Vect?(V) was defined in (8.8). Moreover, recalling equation
(9.14), we get

2 = {X € Vet ?(V) | X({fag}ie) = {X(Naghi + {HX(9)}x, F.9 € V]
or, identifying Vect?(V) = V! via (8.8), we have by (9.16)
2h = {P e V' | Xp(K(9)) = K(9) o Dp(d) + Dp(9) o K(9) } .

Finally, recalling (9.17) we get that, for k£ > 1, Zf( consists of elements
X € W satisfying the following equation:

k+1 ' i

DD o (o fee) b

i=0 055 k41 '

+ Z (_1)Z+]X iJ ({fl)\lf]}K7f07g‘z7fk+1) 207

Ait+A5,00,.7 00
0§Z<]§k‘+l i+ 7sN0 > yNk+1
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and B’f{ consists of elements X € W, of the form

k

Xogenlfor s 1) = SDHINY, o (oS

i=0 o
i

+ Z (_1)Z+jY i ({flAlfJ}va()v """ 7fk) .

0<i<j<k Ait A 20,50 Ak
for some Y € W)™,.

Remark 9.3. One can show that the identity map on V/9V = Q°(V) = WY&
extends to a homomorphism of cohomology complexes ®x : (2°(V),0) —
(WYar(1IV),ad K), P € Q¥1(V) » &% P € W™, defined by the following

formula:

OF Py ng (fos ooy fr) = (=1)FF
(9.19) (®% P)xo,..x (fo k) =(=1) io’%g

Piy..in(Xo 4+ 00, A + Ok ){ forg Uio Y -+ - { fren, Win J K 5

where 0, is 0 applied to {fay, ui,}x. For k = 0,1 the map ®¥ reduces to
P9 (F) = K(9)F, F € V® where K (0) is the differential operator associ-
ated to K via (9.10), and, identifying elements in Q?(V) and W}'* with the
corresponding skewadjoint differential operators, we have

(9.20) (®15)(0) = —K(d) 0 S(0) o K ().

One can also show that, for k > 1, the map q)]}{ D QLY - Wyt is
injective provided that the map K (9 + \) : V[N\]®¢ — V[A]¢ is injective.

9.3. Identification of W"*'(IIV) with Q°®(V). In this section we will con-
struct an explicit identification of the superspaces W and QFL(V) for
finite /. However, this identification is not covariant, i.e. it depends on
the choice of generators u;, i € I, of the algebra of differential functions V.
Indeed these two spaces play completely different roles. In a forthcoming
publication we will give a covariant description of the variational complex
Q°(V), and clarify the relation between these two complexes, as well as the
relation with the calculus structure discussed in [DSHK].

Note that if X : VOEHD 5 F_[Ao,..., A4 ®p[g) V satisfies the master
equation (9.3), then automatically it satisfies sesquilinearity. Moreover, it
satisfies skewsymmetry provided that it is skewsymmetric on the generators
ui, ¢ € I. Conversely, any map X : (@iel Fui)@)(k“) — F_[Xo, -+, Ak @
V satisfying skewsymmetry can be extended uniquely to an element of W
by the master equation. Hence, X € W is completely determined by
the collection of polynomials Xy, . x, (Wigs---,ui) € F_[Ao, ..., \e] @pig V,
with i1,...,9, € 1.

Thanks to the above observations, we construct an injective linear map

®: Q°(V) = WYY,
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sending P € QF1(V) to ®FP ¢ W2, defined on generators by
(9.21) (®FP) g n (Wigy s uiy) = Pig i (Nos -5 AR S

and extended to a map ®FP : VKD L F_[N\g, ... \] ®@ppg) V by the
master equation (9.3). Clearly, ® is surjective for finite ¢, and it is injective
in general. Note that ®* formally coincides, up to a sign, with @';( in (9.19)
if we let K = 1.

Let ¢ be finite. Let K € W} be such that [K, K] = 0, and consider
the Poisson cohomology complex (WY#'(IIV),ad K). Using the bijection
d : Q(V) — WY(IIV), we get a differential dx : QF(V) — QF1(V)
induced by the action of ad K on WY (IIV). Explicitly, recalling equation
(9.17), we have
(9.22)

(dKP)io,...,ik (A()v cee 7Ak)

1 k aP @ ()‘07V7)‘k)
_(_ + 1\« 205k n
-0 S (e ey et O K, (o)
jelneZy ~a=0 g
a B
+ Z (=D*P s AatAg+0, 00,77 M)
0<a<p<k J5105-7 i
0K, i, (Ao
8u(”)

9.4. The variational and Poisson cohomology complexes in terms
of local polydifferential operators. Let V be an algebra of differentiable

functions extension of Ry = F[ugn) |i € I,n € Zy]. Recall [DSK2] that a k-

local differential operator of rank r is an F-linear map S : (V¥")k — V /oY,
of the form

(923) S(P',...,PM) = [ > freme@™BL). (0™ PF),
mi,....mpEL4
il,...,ike{l,...ﬂ‘}

where the coefficients fi1m7 1kak lie in V, and, for each k-tuple (i1,...,ix)
they are zero for all but finitely many choices of (mq,...,my) € Z’i. When
r is infinite, S is called of finite type if all but finitely many of the coefficients
fiti ™ are zero. In this case, S extends to a map S : (V)E — V/oV. The
operator S is called skewsymmetric if

S(P',... ,Pk) — Sign(J)S(Pau)’ o ,P“(’f)) ’

for every P!,..., P* € V! and every permutation o € Si. In this section
we describe both the variational complex Q°(V) and the space of variational
polyvector fields W2 (ITV) in terms of local polydifferential operators.

Lemma 9.4. We have a canonical isomorphism of F_[\1,..., \x] ®ppg) V
to the space of local k-differential operators of rank 1, which associates to
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the polynomial f(A\1,..., \g) = Z S RN X the map f
mi,...mEpELL

VE V0V, given by
924)  flgrm) = > JFmME@™gr) . (0™ gr) -

mi,..mp€ELy

Proof. Note first that, if the polynomial f(A1,...,\x) lies in the image
of (04 A1 + -+ + A), then the corresponding local k-differential opera-
tor f: V¥ — V/OV is zero. Hence, we have a well-defined linear map
from F_[A1,..., \g] ®ppg) V to the space of local k-differential operators
of rank 1, given by (9.24). Clearly any local k-differential operator of
rank 1 is in the image of this map. We are left to prove injectivity. Let
[ eF_[A,..., ] ®pjg) V be such that f(g1,...,gr) = 0 for all g1,..., g

Recall that we have a (non-canonical) isomorphism F_[A1, ..., A\x] @5 V =~
F_[A1,..., \k—1] ® V, obtained by replacing Ay with —\; — -+ — A1 — 0.
Hence, we can write the polynomial f in the form

F, e Ae) = D AP VAP Vi

Mi,...,Mmg—1€2L4

Since, by assumption, the corresponding map f : V¥ — V/9V is zero, we
get
S [ (@™ L (0™ 1) gk =0,
M., Mi—1€2L4
for every g¢i1,...,gr € V. By the non-degeneracy of the pairing V x V —
V/oV, (f,g) = [ fg (cf. Lemma 10(c) from Section 5.2 of [DSK2]), it follows
that
> =L@ gy ) L (0™ gg—1) = 0,
mi,...,Mg_1€2%4

for all g1,...,9x—1 € V. This is equivalent to f(A1,...,A\g—1) = 0. O

Proposition 9.5. (a) We have a canonical isomorphism of Q¥(V) to the
space of skewsymmetric local k-differential operators of rank £ of finite
type, which associates to the element P € QF(V) the local k-differential
operator S : (V¥ — V/9V, given by

(9.25) S(P',....,P"Y= > [Py .i(01,....00)P} ... P},
01,..,0 €1
where 0o means 0 acting on P .
(b) We have a canonical isomorphism of the space of variational k-vector
fields W to the space of skewsymmetric local k-differential opera-
var

tors of rank {, which associates to the element X € W™ the local
k-differential operator X : (VEOF — V/0V, given by

(9.26) X(F',.. P = Y [Xo 0wy, u)FL L FE

i1, €1



THE VARIATIONAL POISSON COHOMOLOGY 63

Proof. Recalling the definition of QF(V) in Section 8.2, an element P €
QF(V) is an array of polynomials (Pih...,ik (A, ... ,/\k)) with finitely

01,0yt €17

many non-zero entries P, i, (A1,..., k) € F_[A1,..., \x] @9V, skewsym-
metric with respect to simultaneous permutations of the variables Ag, ..., Ag
and the indexes ig,...,%;. Using Lemma 9.4 this corresponds, bijectively,

to the local k-differential operator of rank ¢ (9.25). The skewsymmetry con-
dition on P € QF(V) translates to the skewsymmetry of the corresponding
local k-differential operator, and the finiteness condition on P translates into
saying that the corresponding local k-differential operator is of finite type.
This proves part (a). The proof of part (b) follows by arguments similar to
those in Section 9.3. (]

Remark 9.6. The following identity is immediate from (9.26) and the master
equation (9.5):

9Jo %)

ou’" du )

We can write down the expression of the differential 6 : QF(V) — QF1(V)

in terms of local polydifferential operators of rank /. Recalling (8.12), we
have, for a local finite type (k + 1)-differential operator S,

fXO,...,O(f07 s 7fk) - X(

k .
(8S)(P°,..., P*) = 3" ()R (XpiS) (PY,.5., P¥))
=0

where Xp denotes the evolutionary vector field of characteristic P € V¢,
defined in (8.8), and, if S is the local k-differential operator (9.23), XpS
denotes the local k-differential operator obtained from S by replacing the
coefficients f;11 2" by Xp(f1 ") [DSK2].

Next, in view of Proposition 9.5(b), we can write the Lie superalgebra
structure of WY (ITV) in terms of local polydifferential operators. Given
X e Wy and Y € W™, | we have [X,Y] = XOV — (-1 ~Py0OX and,
recalling (4.5), the local k-differential operator corresponding to XY €
Wit is given by:

(X0Y)(F°,...,F")

- ¥ iX(iY(F"@), .. Folk=h)y polh=hi) ,F"(k)) :
i0<-<ip_p ou
U h1 <-<ig
where =+ is the sign of the permutation (g, ...,d) of the set {0,...,k}.
Let K € W be such that [K, K] = 0, and consider the corresponding
Poisson vertex algebra structure on V), or, equivalently, the corresponding
Hamiltonian map K (0) defined by (9.10). We can write the formula of the
differential ad K for the Poisson cohomology complex WV identified with
the space of local polydifferential operators. Given X € W/, the local

k-differential operator corresponding to (ad K)(X) € W;*" is given by the
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following formula, equivalent to (9.17):

L .
(dE)X)(FS,.... 7 = 3 (1™ P K@)5-X(F,.,F¥)
n Z k+z+JX<5if(F’.K(8)FJ) FO, Zj,F’“)

0<i<j<k
Here - denotes the usual pairing V& x V¢ — V.

Remark 9.7. We can translate the homomorphism ®y defined in Remark
9.3 into the language of local polydifferential operators. Given a finite type
local (k + 1)-differential operator S, ®%-(S) is the following local (k + 1)-
differential operator:

(9.27) (DK S)(F°,..., F*) = (—1)*1S(K(9)F°,... K (9)FF).
Theorem 8.2, Remark 9.3 and Proposition 9.5 imply that, if V is a normal
algebra of differential functions, K € W' is such that [K, K] = 0, and the
map K(A +0) : VA% — V[A\)* is injective, then, HX.(V) = 0 for & > 0
provided that the following condition holds:

(9.28) Ker (ad K : W™ — W) € @5 (" (V).

Indeed, let X € M4 (V), and let X € Ker (ad K : W™ — W) be a
representative of it. By assumption (9.28), there exists P € QF1(V) such
that X = &k (P), and, by Remark 9.3, we have that ®¥*1(5P) = [K, X] = 0.
Since @ is injective, we have that d P = 0, hence, by Theorem 8.2, P = 6Q)
for some @ € QF(V). In conclusion, X = ®%.(5Q) = (adK)(@l%_l(Q)),
completing the proof.

Remark 9.8. It is useful to see what the analogue of the homomorphism
@ is in the finite dimensional setup. Let A = Flu;|¢ € I]. Recall from
Section 3.1 that W*(IIA) = @,2 _; WS(ITA), where W2S(ITA) consists of

linear maps X : /\kJrl A — A satisfying the Leibniz rule in all arguments,
or, equivalently, the following analogue of the master equation (9.3):

X(f(],...,fk): Z X(uiov"'auik) 8f0 E?fk

.
10,0k €L 0 Zk

To the map X we associate the map X : A\*(A%¢) — A, given by
X(F°,...,F Z X(uig, .- -, ui ) Fy . . EF

1 7
00,. i €1

and we have the following analogue of the identity in Remark 9.6:

X(f(]v"')fk) :)fz(vuf()vvvufk)v

where V,, f denotes the vector of partial derivatives of f. Next, let Q°(A) be
the algebra of differential forms over A, and let d be the de Rham differential
on Q°*(A). We can associate to w = > fi, i, dui, A du;, € QFtL(A) a map
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w: (AHREHYD 5 A given by w(PY,..., P*) = Efio,...,ikpz% . PZ]Z Then,

for K € WPS(IIA), such that [K, K] = 0, we have a homomorphism of

complexes P : (2°(A),d) — (W(IIA),ad K), given by (cf. (9.27)):
(Dhw) (FO, ..., F*) = 2w(KF°,... KF"),

where K is the ¢ x ¢ skewsymmetric matrix K;; = K(u;,u;). It follows, in
particular, that if K is surjective, then the Poisson cohomology is trivial.

9.5. Generalized variational complexes. Let ¢ be finite, and let K(0) =
(K, (8))Z el be an ¢ x ¢ matrix differential operator with quasiconstant co-
efficients. Then, we define 65 : QF(V) — QF1(V) by the following formula:

(OK P)ig....ir. (A0, -5 Ak)
«
k oP e ()‘07V7Ak)
L0yl
=Y (D)% ) B (Ao + 0)" Kjio (Aa) -
a=0 jelnely auj
Note that, when K = 1 this coincides with the differential ¢ of the variational
complex defined in equation (8.12), and when K (0) is a skewadjoint operator
it coincides with (—1)¥*'dg, where dg is given by equation (9.22).

(9.29)

Proposition 9.9. If K(0) is an ¢ x { matriz differential operator with qua-
siconstant coefficients, then 6r in (9.29) is a well-defined map QF(V) —
QFL(V), and it makes (Q°(V),dx) a cohomology complex.

Proof. 1t follows from Proposition 10.8 in Section 10.5. U

Remark 9.10. One can show that dx given by formula (9.22) is well defined
only if K(0) is a sum of a skewadjoint operator and a quasiconstant operator.

10. THE UNIVERSAL ODD PVA WY#(IIV) FOR AN ALGEBRA OF
DIFFERENTIAL FUNCTIONS, AND BASIC PVA COHOMOLOGY

10.1. The Lie conformal algebra CVect()) of conformal vector fields.
As in the previous section, let V be an algebra of differential functions,
extension of the algebra of differential polynomials Ry = F[ugn) |iel,n¢€
Z.]. We assume moreover, in this section, that ¢ is finite.

For i € I, introduce the linear map EY : V — F[\] ® V, given by

(10.1) B= Y (Ao

nely augn)

Note that Eﬁ\ = zn€Z+ )\"Efn), is the generating series of the higher Euler
operators (see [O12]),

(e e}

7 o m mam—n a

In particular, £ = % is the variational derivative (8.5).
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Lemma 10.1. Eg is a right conformal derivation of V (see Section 7.1).

Proof. We need to check that, for f, g € V, we have E{(0f) = —AE4(f) and
E{(fg9) = (E} vof)sg+ (B +99)— f. The first identity follows immediately
from (8.2), and the second one is straightforward. O

Given an (-tuple of polynomials P = (P;(\))ier € (F[A] ® V)¢, we define

the conformal vector field of characteristic P as the map X : V — FA\]®@V,
given by
(102) X{ () =Y PO+ B
el
We denote by CVect(V) the space of all conformal vector fields. It follows

immediately from Lemma 10.1 that CVect()) is a subspace of the space
RCder(V) of right conformal derivations of V.

Proposition 10.2. (a) The F[0]-module structure of RCder(V) restricts to
the following F[0]-module structure on CVect(V): for P € (F[\] @ V)¢,

OXYT is the conformal vector field with characteristics
((@+NE(N)

(b) the formal power series valued A-bracket on RCend(V) (cf. Section
6.3) restricts to the following polynomial valued A-bracket on CVect(V):

[(XP,XQ = XA for P,Q € (F]\| ® V)¢, where

el ”

PQ = Y (o) L)
(10 3) jelneZy 8”_7
' , n OPi (1)
- Z Q]()‘"i_:u"i_a)(_)‘_:u_a) (n)
jelneZ, auj
Here, for P;(\) = Z AP, we denote P;'(\) = Z (=A—=0)"P.
TLGZ+ TLEZ+

(¢) CVect(V) is a Lie conformal algebra RCder(V).

Proof. Part (a) follows from the definition (6.2) of the F[d]-module struc-
ture of the space RCend(V) = W (IIV) of right conformal endomorphisms
of V. Part (b) is obtained, by a straightforward computation, using the
definition (6.12) of the A-bracket in RCend(V) and identity (8.2). Finally,
the A-bracket (10.3) is clearly polynomial valued, and it satisfies all the Lie
conformal algebra axioms by Lemma 6.8. O

Remark 10.3. The image of CVect(V) via the isomorphism (6.13) is a subal-
gebra of Cder(V), the space of (left) conformal derivations of V. Its elements,
which is natural to call left conformal vector fields, are of the form

T Y (@R

i€l neZy 7
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n_ 0
neZy A m, we have

PXA(f) =D (Exvof) BN
il
In fact, we have (XP)* = "X where P* is defined in Proposition 10.2(b).
The induced Lie conformal algebra structure on the space of left confor-

mal vector fields is as follows: 9(F X )~is the left conformal vector field of
characteristics ( — )\Pi()\))z.e[, and [P X9 X] = [PQ X where

[PAQIF (1) = "XA(Qiln = N) = UXuma (B(N).
In fact, formula (10.3) for the A-bracket in CVect(V) can be written, using
this notation, in a similar form:

[PAQli(1) = T XA(Qi(w) — XL, (P(w).

10.2. The universal odd PVA W"ar(HV). Recall the definition of the
F[0]-module WO(ITV) = Dre W,?(HV), with parity denoted by p (see
Section 6.1), together with its formal power series values A-bracket, defined
in Section 6.3. Consider the full prolongation (cf. Definition 6.11) of the

Lie conformal superalgebra CVect(V) C RCend(V) = /VIV/(? (I1V), which we
denote

Equivalently, letting {Ey\ = >

WY (IIY) = @@ Wi ¢ wo(Imy).
k=-1
Its elements are called conformal polyvector fields. We will show that the
restriction of the A-bracket on ITWY#(IIV) is polynomial valued, and this
makes ITWV*(IIV) an odd PVA.

Proposition 10.4. For k > —1, the superspace /Wv/kvar is the subspace of
WP(IIV), consisting of linear maps X : VEFTD — F[Xg,..., \] ® V satis-
fying the sesquilinearity and skewsymmetry conditions (9.1) and (9.2), and

the master equation (9.3), where both sides are interpreted as elements of
F[Xo, .-+, A] @V (not, as in Section 9.1, of F[Xo, ..., \] ®pjg V).

Proof. First, we observe that the master equation (9.3) implies the sesquilin-
earity condition (9.1). Recall also that the master equation (9.3) is equiva-
lent to the equations (9.5), and if, moreover, X satisfies the skewsymmetry
condition (9.1), it is enough to have equation (9.5) for s = k. Hence, an

element X € WJ(IIV) satisfies all conditions (9.1), (9.2) and (9.3) if and
only if it satisfies condition (9.2) and the equation

X)xo,...,)xk(f())"'vfk) '
(10.4) = Xnorrneto(for oo oot ) S B, (fr)
el
Clearly, for £ = 0 the maps X : V — F[A\]®V satisfying (10.4) are exactly
the conformal vector fields of V, the characteristics being (X A(uz))z oy Let
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X e ka 2" and let us prove by induction on k that it satisfies equation (10.4).
By (6.10) we have

Xoorone (for oo o) = (1) [fong XIayone (1o - fr)
= (D" fore XIaneneo 4o (1 foot,wi) S B (fr)

iel
=3 Xngroeosnnro(for oo foot, ) S B, (fr)
iel
proving (10.4). O

Remark 10.5. For V = Ry, we have W"ar(HV) = Wa’as(HV), but for arbi-
trary V this is not always the case (see Remark 9.2).

Note that the master equation implies that X satisfies the Leibniz rule
(5.3). Consequently, W™ is a subspace of W *(ITV).

Proposition 10.6. (a) For X,Y € WY (IIV), [X,Y] is a polynomial in
A with coefficients in W"ar(HV). Moreover, the subspace W‘”‘“(HV) C
Wa’aS(HV) is closed under the concatenation product (7.2).

(b) HWV“(HV), together with the \-bracket and the concatenation product,
is a Z4-graded odd PVA.

(¢c) The representation of the Lie superalgebra WO(IIV) on Wa(HV) re-
stricts to a representation of its subalgebra WY* (IIV) on the odd PVA
W"ar(HV) C Wa(HV), commuting with 0 and acting by derivations of
both the concatenation product and the \-bracket.

(d) The canonical map [ : Wa(HV) — WOIIV), defined in Proposition
6.5(a), restricts to a map | : anr(HV) — WY (IIV), which is a homo-
morphism of representations of the Lie superalgebra WY (I1V). More-
over, this map induces a Lie algebra isomorphism

[ 2 WY (IIV) /oW ™ (TTV) =5 WY (ITV) .

Proof. First note that, by Proposition 10.4 and formula (9.3), an element
X € va,;’ar is determined by its values on the generators uy,...,us. Since,
by assumption, ¢ is finite, it follows that [X,Y] is a polynomial in \. Let
X € W}‘ﬁrl and Y € W,;’irh_l, with & > h > 0. For part (a) it remains to
prove that X AY, defined by (7.2), lies in W,;’irl, namely, it satisfies the
master equation (9.3):

XA e (froe o fe) = D <688A1;i>

(m1)
i1yt €1 uil

mi,...,mE€L4

0
: (eamk o fkk) > (=A)™ (S AR) ™ (XAY g (Wi -5 UG, -

ulk
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This is easily checked by a straightforward computation. Part (b) can be
proved in the same way as Proposition 7.3(a). Recall from Proposition
7.3(b) that we have a representation of the Lie superalgebra W2s(ITV)

on /Wavas(HV) commuting with 9, and acting by derivations of both the
concatenation product and the A-bracket. Recall also, from Proposition 9.1,

that WYa'(IIV) ¢ WP2(I1V) is a Lie subalgebra, and, from part (b), that
/anr(HV) C /Wv/avas(HV) is an odd Poisson vertex algebra. Hence, in order
to prove part (c), we only need to check that, if X € W, and Y € N];’irh,
then [X,Y], defined by (6.15), lies in W]zar' By the observations in the

proof of Proposition 10.4, it is therefore enough to prove that [X, 37] satisfies
condition (10.4):

[X7 ?]Ao,...,)\k (f07 s 7fk)

(10.5) = X Y Dgrrea a0 (fos - Frotui) - By (fi) = 0.
el

We consider separately the left and right box products X OLY and YORX ,
defined by (6.16). We get, after a long but straightforward computation,

(XDL?)AO,...,Ak(fO,---afk) = Z Sign(a)z

ap<-<ap_p=k 1€l
A pp1 <<

(10.6) YA%,...,A%,h,l,Ak+>\ak,h+1+---+>\ak +0(faos -5 fap—p1> Wi)—
X_)‘Oék,h+1_"'_)‘ak_a)\ak,;wrl ,---,)\ak (E;\k (fk)7 fOékchrp cety fak)

D (XOY ) a0 a0 (for - - Frmt i) B (fi) |
el

where the first sum in the RHS runs over all permutations « of {0,...,k}
satisfying the specified inequalities. Similarly, we have

(?DRX)AO,~..,)\k(fO7”’7fk) = Z sign(a)z

ap<--<ap=k 1€l
ah+1<~~~<ak

(10‘7) Y)\a0+"'+)\ah71+)\ak+8)\ah+1 s ey, (Eg\k (fk)a fah+1v SRR fak)—>
Xagsedap_1s=Aag——Aay,_; =0 Jags -+ fah,l,ui)

+ VO X) a0 a0 (for - Frmta i) S B, (f) -
el
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Combining (10.6) and (10.7), we get that the LHS of (10.5) is
Z Sign(a) Z YAaO7---7>\ak,h,17>\ak,h+~~~+)\ak+8(fao’ SRR fakfhfl ) ui)—>

ap<-<ap_p=k el
g p41 <<

X_Aakchrl —mAag =0 Aag gy Aay, (Eg‘k (fk)7 fakth’ Tt fak)

—(=)MFN " sign(@) D Vawg ot hay 10 han 1 e (B (o) oo

ap<--<ap=k el
oapp<--<og

s Jar) 5 Xxag e Aay = Aag——Aay,_ —0 (fao, o 7fah,1,ui> :

We can then use conditions (9.2) and (9.3) on X and Y to rewrite the above
expression as follows

Z sign(a) Z <Y)\a07---,)\akh17)\akh+"'+>\ak+8(fa07 s fapp )

a<-<ap_p=k ijel
A pt1 < <ag

. Vi Vi .
(ZEA%chrl"'”"")‘%"'a (E)\k (fk))—> - EAak7h+"'+>\ak+a(E§\k (fk‘))—>>
X_)‘akfhﬂ_“'_)‘ak_87)‘ak,h+17---)\ak <ui7 fak7h+1v s 7fak> )

where ‘Fy was introduced in Remark 10.3. To conclude, we observe that
the above expression is zero, thanks to the following identity,

"Eu(BA() = B, (BA() -
which can be easily checked: both sides above are equal to
m w  Of
> WA n= )
m,ne€l auz auj
The first statement in part (d) is obvious from Proposition 6.5. We thus
only need to prove that the map [ : WY (IIV) — WYa(IIV) is surjective, so
that the induced map [ : WY (IIV)/OW Y™ (IIV) — WY (IIV) is bijective.
Let X € Wy®. We can construct a representative X € W}y as follows.
Recall that we can identify F_[Ao,...,  \x] ®pjg) V = F[Ao,..., \e—1] @V,
by letting \p = —X\g — -+ — A\g_1 — 0. For ig,...,ir € I, we then have
X)\Ow',)\k71 (’LLZ'O, ... ,uik) € F[)\(], ... 7)\19—1] ® V. We let
k

~ 1 L a
X)\Ov---v)\k(ui()’“"uik) = k+1 E (_1) aX)\O o )\k(ui07“‘7uik7uia)7
= s

and we extend it to a map X : VO*+D 5 F[\g, ..., \,] ® V by the master

formula (9.3). By construction X lies in var and we clearly have [ X = X,
since they agree on generators. U
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Recall that W3 = V/9V, W™ = Vect?(V) and W} coincides with the
space of skewcommutative A-brackets on V satisfying the master equation
(9.6). We can then compute explicitly, using (6.15), the action of X €
Wpyat on Wi, for h = —1,0,1. The formulas for these actions coincide,
respectively, with formulas (9.7), (9.12) and (9.17), where all the terms are
considered as elements of F[A1,..., A\t ® V (not of F[Aq, ..., A\] @pjg V).

10.3. PVA structures on an algebra of differential functions and
basic cohomology complexes. Let K € W} be such that [K, K| =
0, and denote by {- -}k the corresponding Poisson A-bracket on V, and
by K(0) the corresponding Hamiltonian operator given by (9.10). Then
(ad K)? = 0, hence the action of K on W"ar(HV), given by Proposition
10.6(b), provides a differential on W"ar(HV), which we denote by dx. We call
(WYar(I1V), dg ) the basic Poisson cohomology complez of the PVA V with
the A\-bracket {-  -}x. Note that, by Proposition 10.6(b), the differential dx
is an odd derivation of both the concatenation product and the A\-bracket of
WYar(I1V). Moreover, by Proposition 10.6(c), the linear map [ is a homo-
morphism of cohomology complexes (WY (ITV), dg) — (WY (I1V), ad K).

Recalling (9.17) we get, by the observations at the end of Section 10.2,
the following explicit formula for the differential dx associated to K € W},
acting on Y € W,;’irlz

(10.8)
k

(dKY))\(),...)\k (f07 cee 7fk) = (_1)k+1 (Z(_l)l{fl)\ly)\o 3 A (f07 37 fk)}K

=0

+ Z (_1)i+jy L ({fmfj}K,fo,.%’..?.,fk)>.

0<i<j<k )\i+)\j7)\07 ...... Ak

Remark 10.7. The identity map on V = QO(V) = WY extends to a ho-
momorphism of cohomology complexes @ : (Q*(V),8) — (WY (IIV), d )
given by formula (9.19), where both sides are interpreted as elements in
F[Xo, .-+, Ak] ® V, ot in F[Ag, ..., A\x] ®ppg) V as for @k from Remark 9.3.
We thus have the following commutative diagram of homomorphisms of co-
homology complexes:

(Q*(v),0) L (WY (1Y), dic)
(Q°(V)/0Q*(V), ) (WYer (I1V) /W (T1V), di )

L

(Q. V), 5) (anr(HV)7 dK)
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10.4. Identification of W' (ITV) with Q°(V). In this section we will con-
struct a (non covariant) explicit identification of the superspaces W and
QFFL(V) for finite ¢, along the lines of the discussion in Section 9.3.

An element X € W/ is completely determined, via the master equation
(9.3), by the collection of polynomials Xy, ., (i, ---,u,) € FAo, ..., \]®
V, with 1, ...,4; € I. Hence, we construct a linear map

D Q°(V) — WY (IIV),
sending P € QF1(V) to ®FP € W such that
(10.9) (D5 P) gy (Wigs - - - Uiy) = Pigie Moy 5 Ak)

and it is extended to a map ®FP : VEEFD 5 R\, ... \;] ® V by the
master equation (9.3). Clearly, P is surjective for finite ¢, and it is injective
in general.

Let ¢ be finite. Let K € W} be such that [K, K] = 0, and consider
the Poisson cohomology complex (WY (I1V),dx). Using the bijection ® :
Q (V) — anr(HV), we get a differential dg : QF(V) — Q*1(V) induced
by the action of dx on anr(HV). Recalling equation (10.8), we get that
the explicit formula for the differential dx on QF(V) is given by (9.22),

where both sides are considered as elements of F[A1,...,\x] ® V (not of
F[A1, ..o, Ak] ®ppg) V)
(10.10)
(A P)ig,....ix (A0s - -+ Ak)
1 k aP 9‘.()‘07'?'7)‘/6)
o + 1\ 10,20k n
= (1) | > (Z( 1) .0 Mo+ 0)"Kji, (M)
jelneZy ~a=0 j
+ > (DR s (At As+0, Aos e )
0<a<B<k J805-e oot
OKZ- ia )\a
(=X — Ag — a)n¢> )
oul™

J

10.5. Generalized de Rham complexes. Let ¢ be finite, and let K (9) =
(K,(a))” ¢y be an £ x £ matrix differential operator with quasiconstant

coefficients. We define the map dx : QF(V) — Q¥F1(V) by the same for-
mula (9.29), interpreting both sides as elements of F[A1,..., A\x] ® V (not of
FA, ..y A () V):

(O P)ig,....ir. (X0 - -, Ak)
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Note that, when K = T this coincides with the differential § of the de
Rham complex defined in equation (8.12), and when K (0) is a skewadjoint
operator it coincides with (—1)¥T1dy, where d is given by equation (10.10).

Proposition 10.8. (a) If K(0) is an £ x £ matriz differential operator with
quasiconstant coefficients, then (ﬁ'(V),&K) is a cohomology compler,
i.e. 6% = 0.

(b) The differential 0 in (10.11) commutes with the action of & on Q°(V)
given by (8.13). Moreover, the canonical quotient map Q°(V) — Q°(V)
gives a homomorphism of complezes (Q°(V),0x) — (Q°(V), k).

Proof. Let P € QF(V) and let o € S = Perm(0, ..., k). We have

(5Kp)ig(0)7~~~7ia(k) ()\0'(0)7 M 7A0'(k)) Z(_]‘)a

a=0
«a

oP a ()\0(0), AN )\U(k))

o Z i0(0)7't'7i0(k)

(n)
jEI,nEZy auj

()\O'(Cll) + 8)nKj7io'(a) (Ag(a)) :

a o(a)
Note that the permutation (0(0),.7.,0(k)) of the set {0, .7.,k} has sign
sign(o)(—1)**+7(®) . Hence, by the skewsymmetry condition on P, we can
write the RHS above as

o(a)
k aP o.(va) ) (AO, v ,)\k)

1)« : _1\ato(w) 10, - ik
Z( 1) | Z sign(o)(—1) o)
a=0 jeI,neZy uj
X(Ag(a) + a)nKjJU(a) (Ao(a)) = sign(a)(0x P)ig,....i,,(Aoy -, Ak) -

This shows that dx P is a skewsymmetric array, i.e. df is a well defined map
from QF(V) to QFFL(V).
Since, by assumption, K has quasiconstant coefficients, we have

(0% P)igyin(A0s- -, Ak)

k
S Y L 6kP) L (ot M) O 0, (0)
5=0

@ 8
jel ez, OU; 105

D) S A AR W P

(n) 4, (m)
0<a<B<k ijelmmez, Ouj” Oug " G0y ik

X ((/\a + a)mea (/\a)) ((/\B + 8)"Kj,iﬁ ()\5))

B

W o ) le
0<B<a<k ijelmmez, 0wy~ Oug " o ik

X (Ao + )" Ki iy (X)) (Mg + 0)" Kjis(Ag)) =0,

which completes the proof of (a).
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Next, we prove part (b). We have, by the definition (8.13) of the F[9]-
module structure on Q¥(V),

k
((5K8P)207,zk ()\0, Cey )‘k) = Z(_l)a
9 a=0

Z —<(/\0+ oA+ 0P o (Ao, .T.,/\k))()\a 0" K (M)
j U(n) 1040k
JEI,NEZ+ ]

k

:()‘0+"'+)\k+8)2(_1)a Z

9 a=0 jeIneZy
— <P7,o L} ix ()\07 . .y )\k)) ()\a + 8)”Kj7’ia ()\a) = (8(5KP)Z'O7”,77;,€()\0, ceey )‘k)

8u§n)

In the second equality we used (8.2). The last assertion in (b) is obvious. [

11. COMPUTATION OF THE VARIATIONAL POISSON COHOMOLOGY

Throughout this section we assume that V is a normal algebra of differ-
ential functions in finitely many differential variables u;, i € I = {1,...,¢},

i.e. ﬁvm,i =V, for every @ € I and m € Zy, where V,,; is given by
u;

(8.15). We also assume that the space of quasiconstants F C V is a field
(hence, the subalgebra of constants C C F is a subfield).

We shall compute the cohomology of the complexes (Q°(V),dx) and
(Q°(V),dk), for any ¢ x ¢ matrix differential operator K (9) = (K; -(8))2.].61
of order N with quasiconstant coefficients and invertible leading coefficient.
We use here the same approach as in [BDSK], where the case K = 1 was
considered.

11.1. Formality of the generalized de Rham complex. Fix a non-
negative integer N. We extend the filtration (8.15) of the algebra of differ-
ential functions V = Q°(V), to a filtration, depending on N, of Q*(V). For
m € Zy and i € I, we let ﬁ;m(V) = Drez, QF (V), where ﬁfm(V) consists

of arrays P = (P“Zk (A, -, )\k)) € Qk(V) such that

01yl €1
mPil,...,ik(/\l, cee ,)\k) = 07 if (naj) > (m72) ;
J

(11.1) N
RTVPy iy M) =0, i (nyig) > (m,id),

for all 4q,...,i € I, where the inequalities are understood in the lexi-
cographic order. In other words, the coefficients of all the polynomials
Py (A, .0, Ag) lie in V5, and, moreover, P; ;, (A1,...,A;) has de-
gree at most m+ N (resp. m — 1+ N) in each variable A, with i, < (resp.
iq >1). We also let QZ’O(V) = ﬁﬁ_m(l}) for n > 1.

Finally, we let 62570 = Brez, ?2’570, where ﬁlg,o is a subspace of QF(V)

consisting of arrays P = (Pil,...,ik(/\l, o ,)\k)) skewsymmetric with

i1yt €1 (
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respect to simultaneous permutations of indexes and variables), whose en-

tries P, i (A1,...,Ax) are polynomials of degree at most N — 1 in each
variable A1, ..., A\x, with quasiconstant coefficients. In particular, 98’0 =F.
By the skewsymmetry condition,

(11.2) k=0 if k> NC.

Note that, if K(9) is an ¢ x ¢ matrix differential operator with quasi-
constant coefficients, then the differential 0x defined in (10.11) is zero on

5570, so that (~(')70, 0) is a subcomplex of the generalized de Rham complex
(Q°(V), ) Note also that Q°*(V) is naturally a vector space over F, and
the differential dx is F-linear. Also, all the Qfm(V) are J-linear subspaces.

Remark 11.1. Due to formula (9.3) (cf. Proposition 10.4) the restriction of
the A-bracket from W' (IIV) = Q*(V) to the subspace Qf , is zero. Hence,

5570 is a subalgebra of the Lie conformal superalgebra Q° V).
In this section we prove the following generalization of Theorem 8.2(a):

Theorem 11.2. Let V be a normal algebra of differential functions and as-

sume that the subalgebra of quasiconstants F C V is a field. Let K(0) =

(Ki'(a))i’jel be an £ x £ matriz differential operator of order N with qua-

siconstant coefficients, and invertible leading coefficient Kn € Matyyo(F).

Then:

(a) The inclusion (6570,0) C (Q°(V),dk), is a quasiisomorphism of com-
plexes, i.e. it induces a canonical Lie conformal superalgebra isomor-
phism of cohomology:

HRQ*(V), 0) ~ 515,0'
(b) For k>0, H*(Q*(V),6x) is a vector space over F of dimension (]\g).

The proof of Theorem 11.2 consists of several steps. First, we prove three
lemmas which will be used in its proof.

In analogy with (~9.19), for S = (Sij)i,jel € Matyy,(F), we define the
map &g : Q°(V) — Q*(V), P — Pg(P), given by the following equation
(11.3)

(®SP)iy iy Mo M) = D> Piy a4 01, A+ ) Sy - - S
J1ye-sJk €l

where, as usual, J, denotes 0 acting on S;

ala*

Lemma 11.3. (a) For every S € Maty,¢(F), we have ®5(QF(V)) c QF (V)
and @5(?2’570) C 62’0“370.

(b) If K(0) is an £ x £ matriz differential operator with quasiconstant coef-
ficients, then
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where (K 0 8)(9) = (X,¢; Kir(0) o Srj)ijel' In other words, ®g is a

homomorphism of complezes: (Q°(V),0x) — (Q°(V), dxos).
(¢c) For S, T € Matyx,(F), we have

g odp = Drg.
(d) If S € Matyx¢(F) is an invertible matriz, then
By (Q°(V),0k) = (Q°(V), 0k0s)
is an isomorphism of complexes, which restricts to an automorphism of

the subcomplex (227 4, 0).

Proof. Part (a) is clear. Part (b) is proved by a straightforward computation
using the definitions (10.11) and (11.3) of the differential dx and the map
dg. Part (c) is again straightforward, using the definition (11.3) of ®g.
Finally, part (d) immediately follows from (a), (b) and (c). O
Lemma 11.4. Let K(0) = (Ki-((‘)))z.jej
operator of order N with quasiconstant coefficients, and assume that its
leading coefficient K € Matyy(F) is diagonal. Then,
ok (2i(V) € &0,
for everyk € Zy, me Zy,i € 1.

Proof. Let P = (Pi1,...,ik()\la .. ")‘k))il irel € ﬁ’fm(V) By the definition
(10.11) of dx, we have, using the assumption that K(0) has quasiconstant
coefficients,

be an £ x £ matrixz differential

19}
P ) (5KP)i0,,.,,ik (Noy -5 Ak)
s )
Ek: Z PP o« (Noy-T M)
= (_1)a 10,740k . (/\a + a)me,a (/\a) ’
a=0 rel,peZy 8u£p)8u§- )

which is zero if (n,j) > (m, i) by the assumption on P. Next, we have
(11.4)
NN (5K Pig,...in Moy -, Ae)

9 (on
- Z(_l)ﬁ Z P <8/\:'NPZ'07?'

(02 h0) ) (0g o 9 K (Ao)

B#a rel,peZy Ur itk
m aP @ ()‘07V7)‘k) N
_ 1\« 205tk n—+ p .
HEDOY O o NN (Ao + 0P Kriy (Aa) -
rel p=0 T

The first sum in the RHS of (11.4) is zero for (n,j) > (m,) by the assump-
tion on P. Moreover, the second sum in the RHS of (11.4) is zero for n > m
since, by assumption, K (\) has degree N. Let then n = m in this sum. We
have

AN (N + P Ko (Aa) = (m A+ Ny (KN )i -



THE VARIATIONAL POISSON COHOMOLOGY 7

OP;y ... i (Mo Ak)
au’&m)

is zero for r > i, we conclude that the second sum in the RHS of (11.4) is
zero for i, > 1, as required. O

Since, by assumption, Ky is a diagonal matrix, and since

Now we are going to use the assumption that that V is normal and F C
V is a field. Given i € I,m € Z,, choose an JF-subspace Uy, ; C Vi,

complementary to the kernel of the map o ( : Vm,i = Vm,i- By normality

of V,

m)

; restricts to an F-linear 1somorphlsm o (m) t Ui =V, i, and

( m
U

we denote by f du ¢ Vi = Umi C Vi the inverse JF-linear map,
SO that (m) i du f = f for every f € V,,;. Clearly, if we change the

choice Of the complementary subspace Uy, ;, the integral [ dul(-m) f €V of
f € Vi changes by adding an element of Vy, ;1.

We extend the antiderivative f dugm)- to the space of polynomials in
AL, ..., A, with coefficients in V,,; by applying it to coefficients. Clearly,

the operators 0y, and fdugm)-, acting on F[A1,..., A\x] ® Vp, i, commute.
We define the local homotopy operators hyy, ; : Qﬁj’il V) — ﬁﬁm(V), k>0,

by the following formula 7

(11.5)

am+N
(hmzp)z1, i (/\1, .., fdu

713“ Ay )
m—I—N) 10052 (lu’ 1 k?)

Lemma 11.5. Let P = (P,(L i (Ao,...,Ak))

(a) hmiP € QF (V).

(b) If P QEFL (< QEFL(V)), then hn P = 0.

(c) If K(O) is an £ x £ matriz differential operator of order N with quasi-
constant coefficients and leading coefficient 1, the operator hy,; satisfies

the following homotopy condition:

€ ﬁfnJer (V). Then:

10,00 €1

Proof. Clearly, (hpmiP)i; .i(A,...,A) is skewsymmetric with respect to
simultaneous permutations of the variables Aq,..., . and of the indexes
i1,...,%,. Moreover, by assumption on P and by the definition of [ dul(-m)-,
the coefficients of all the polynomials (hp, ;i P)i,,.. i, (A1, .., Ag) lie in Vp, ;.
Furthermore, if (n,i,) > (m,7) with a € {1,...,k}, we have,

n+N

oy
eyt o P)in i (A1 -5 Ak)

8m+N 8§\L+N
= Jaw™ m+N) (an)!PZ“* sin(p Ao he) = 0

by the assumption on P. Hence, hy, ;P € ﬁfm, proving (a). Part (b) is

clear since, by definition, P € erj'll 1 are such that P, (@, A1,..., k)
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is a polynomial of degree at most m + N — 1 in the variable u. We are left
to prove part (¢). By (10.11) and (11.5), we have, for P € Qkfil(V),

(Orhm,iP)ig,...in(Aos -y A Z Z

(11.7) B=0j€l,neZ (9

( ) a;\n—i-N
dul™ ((Ag +0)"Kji. (\g)) —2——P Aoy s A
f (( B ) J /3( B)) (m 7\])[ io,,,,,?___Jk( 0 k)

(here we used the fact that [ dugm) is F-linear and K;;(\) has coefficients in
F), and

(hm,iOk P)ig,...ip (X0s - - -5 Ak Z Z fdu —(
U

B=0j€l,n€ly

(118) (s +0)"K w»ﬂfﬂ (Aos-- - k)
7ie (m+N)! zofzk T

m 8
—|—de§ )W Py, i (Aoy--s AR)-
U
By Lemma 11.4 and parts (a) and (b), we know that dx (A i P), hmi(0x P)
and P all lie in QkH Hence, in order to prove equation (11.6) we only need
to prove the followmg two identities:

(11.9)
0
") <(hm7i5KP)i07m,ik(/\0, ) 4 i Plig..ie (Vo ,/\k))
"o
= o (m )Pio,...,ik ()\07 s 7)\k‘) ;
;\n—i-ZN
(m—T—N)! ((hmJ(SKP)iO,...,ik()\Oy s k) F (O hm,i Pig,...i, (Mos - - - 7)\k)>
g\n—i-N
= WP7;07___7%()\0,...,)\]€) s lf oo = 1.
The first identity of (11 9) follows immediately from equations (11.7) and
(11.8), using that (m) of du = f for every f € V. The second iden-

tity in (11.9) follows by a stralghtforward computation using the following
two facts. Since, by assumption, the leading coefficient of K (9) is I, we
have, for (n,7) < (m,i),

m+N

)\a n S f— ..
m ((Aa + 8) KjZ(AQ)) = 5n,m59,z .

Moreover, by the skewsymmetry condition on P, we have, if i, =ig = ¢ for

B # a,
am+Nam+NPZO, in(N0s - A) = 0.
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Proof of Theorem 11.2. By Lemma 11.3(d), we have isomorphism of com-
plexes ® Ky (Q°,0x) — (%6 I Kv), which induces an automorphism of
the subcomplex (65’0, 0). Hence, replacing K (9) by (K o K5")(), it suffices
to prove (a) for K(0) with leading coefficient T.

Let P € Q%(V) be such that §x P = 0. For some i € I,m € Z, we have
P e SNII;H(V) and, by Lemma 11.5(c), we have P = 0 (hy, ;P)+ Py, for some
P e ﬁfmi_l(V) such that dx P, = 0. Repeating the same argument finitely
many times, we get that P = dxQ + R, for some () € ﬁfn_zl(V) and R € 62’570.
Hence,

Ker (35 : QF(V) = QP (V) = 6,(QF 1 (V) + Ok .
To prove part (a) it remains to show that
S (V) nQ, =0.

Let P =0xQ € 68,07 for some @ € Qﬁ;} By Lemma 11.5(c), we have Q =
O (hm,iQ)+hm i (0 Q)+Q1, for some Q1 € QF-1 and, by Lemma 11.5(b),

m,i—17

we have Ry, i(0xQ) = hyiP = 0. Hence, P = dgQ € SpeQEl (V). Re-

m,i—1 %
peating the same argument finitely many times, we then get P € § KQ]&_Ol =
0.

Next, we prove part (b). An element P € Q]&o is uniquely determined by
the collection of polynomials

Plv"717--~,£,.-,€(A1"" ’)\k) € F[Ah?)\k] ®]:7
——

——"
where ny,...,n, > 0 are such that ny + --- + ny = k, which have degree at
most N — 1 in each variable A\, « = 1,...,k, and, for every i = 1,... ¢, are
skewsymmetric in the variables Ay, +...4n; 1415+, Any4.gn,;- Hence, QIS,O is

a vector space over F of dimension Ry, given by

¢
(11.10) Re= > [Jcw.ny,
N1y €L4 =1
ni+--+ny=~k

where C'(N,n) is the dimension of the space of skewsymmetric polynomials

in n variables of degree at most N — 1 in each variable, i.e. C(N,n) = (]T\L])

Taking the generating series of both sides of equation (11.10), we then get
o0 [ee]
N ‘
k _ n\ __ NY
St = (X (1)) o,
k=0 n=0

which implies R = (JZZ), as required. U
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11.2. Cohomology of the generalized variational complex. Recall
from Proposition 10.8(b) that we have a short exact sequence of complexes

0= (AQ°(V),05) S (Q°(V), 6x) > (Q°(V), 65) — 0,

where o is the inclusion map, and /5 is the canonical quotient map Q* (V) —
Q*(V)/009°(V) = Q*(V). It induces a long exact sequence in cohomology:
(11.11)

0 — HOAQ®, 55) 2% HO(Q®, ) 2 HO(Q®, 65) 28 H(99°,55) 2 ...
LSV HROQ, 850) B HR(Q0, 050) 5 HR Q0 850) 5 HFFL(000, 550) S

Recall that, Ey Theorem 11.2, for every k € Z,, we have a canoni~cal identi-

fication H*(Q*(V),0x) = ng,o- Next, we want to describe H¥(9Q°*(V), 0 )

and the map ay : H¥(0Q*(V),6x) — H*(Q*(V), 0k ). This is given by the

following

Lemma 11.6. (a) The inclusion (865’0,0) C (0Q°(V),0k), is a quasiiso-
morphism of complexes, i.e. it induces canonical isomorphisms:

F/C fork=0

k(a0e ~ 90k v
HH Ot ). 6x) = 025 = { G T

(b) Under the identifications H°(Q*(V),0x) = F in Theorem 11.2 and
HO(0Q*(V),0k) = F/C in part (a), the map oy induces the map ag
F/C — F given by a+ C — Oa.

(¢) For k > 1, identifying H*(Q*(V),0x) = 62’570 = H*(0Q*(V),dk) as in
Theorem 11.2 and in part (a), the map oy induces the endomorphism
oy € End (62’870) defined as follows. For P € 621370, there exist Q € QF(V)

and (a unique) R € 62’570 such that OP = dxQ + R. Then,
(11.12) ar(P)=R.

(d) Assuming that the leading coefficient of K(0) is I, we can write ay,
explicitly using the local homotopy operators (11.5):

(11.13) Oék(P) == (1 — 5]( o h071)(1 — 5[( 9] ho’g) PN (1 — 5]( o hw)aP .

Proof. The map 0 : QF(V) — QF(V) is injective for k > 1, while, for k = 0,
we have Q°(V) =V and Ker(9|y) = C, the algebra of constants. Since 0 and
0x commute, it follows tEat Ker (5K‘6f~2k(\))2 = 0Ker (6Ii‘§k(v)) c Qk(Y)
for all k > 0, and 6k (9Q*1(V)) = 00k (Q*1(V)) C QF(V) for k > 1.
Hence, we get

H°(09°(V), 0k ) = Ker (51(‘8500/)) = 0 Ker (5K|S~20(V)) =0F ~F/C.
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In the second last equality we used the fact that Ker (5K|§0 (V)) = F, by

the definition (10.11) of dx and that, by assumption, K has invertible lead-
ing coefficient. Moreover, the last isomorphism above is induced by the
surjective map 0 : F — OF. Similarly, for k > 1, we have

HMN0Q* (V). 0x) = Ker (3r |y 1)) /05 (0271 (V)
= O Ker (5K|Qk(v )/85K(Qk %)
~ Ker (0| ) /0 (QF1(V)) = HF Q2 (V), 0k ) =~ Qf .

In the third identity we used the injectiveness of 9. This proves part (a).

The map ag : HY(0Q(V),dx) — HO(QV),dx) is induced by the in-
clusion map 9Q°(V) = 9V c V = Q°(V). Since HY(Q(V),dx) = F and
HO(0U(V), 65) = OF, the map ayq coincides with the inclusion map §F C F.
Part (b) follows from the identification F/C ~ 0F via the map a + C — 0Ja.

For part (c) we use a similar argument. The isomorphism H*(Q(V), 0) ~
Qoo given by Theorem 11.2(a) maps P + dx (Q*1(V)) € H¥(Q(V), k) to
the unique element R € 9070 such that P — R € 6x(Q¥1(V)), and the
inverse map sends P € ﬁ'&o to P+ 6x(QF-1(V)) € HEQ(V), 5K). Sim-
ilarly, we have the canonical isomorphism, H k(@ﬁ(V),éK) ~ QO 0+ which
maps OP + 6 (9QF1(V)) € HF(9Q(V), 0k ) to the unique element R € ﬁ'&o
such that P — R € 0x(Q"1(V)), and the inverse map sends P € ﬁl(io
to OP + 65 (0QF~1(V)) € HF(OQ(V),0k). Equation (11.12) follows from
the fact that the map oy, : H¥(OQ(V),6x) — H*(Q(V), k) is induced by
the inclusion map 9Q*(V) C QF(V), ie. it sends OP + 65 (0QF~1(V)) €
H*(0Q(V), 6x) to OP + 5 (Q1(V)) € H*(Q(V), 6k ).

We are left to prove part (d). Given P = (Ph,...,ik()\ly e ’)‘k))h el €

ﬁ'go, the entries of the array P € QF(V) are the polynomials (8 4+ A; +

A+ Xe)Piy i (A1, ..o, Ag), which have quasiconstant coefficients and have
degree at most N in each \;. Hence, OP € ?2’576(]: ) C 62’575(1}). It follows by
Lemma 11. 5( ) that (]I (5Koh01)(][ (5Koh02) (]I (5K0h05)8p lies
in QO o- Since, obviously, this element differs from 0P by an exact element,
we conclude, by part (c), that it coincides with ay(P). O

Using Theorem 11.2 and Lemma 11.6, the long exact sequence (11.11)
becomes
(11.14)

0— F/C% F B HQ V), 00) B 0Ly B 0b, D

0k, O Ok B R Qe (V). 6) B QU Qg
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Next, we study the maps S, k € Z,. First, it is clear that Sy : 628’0 =
F — HY(Q*(V),dk) C V/OV, is given by f +— [f. In particular, By = 0 if
and only if OF = F.

For k € Z, let us consider the map Sy : 6218761 — H*HQ*(V), 0k). Let
P e ng’—gl, ie. P= (Pio,...,ik(/\07- .. ’/\k))io,...,ikel
with respect to simultaneous permutations of the indices ig,...,7; and the
variables Ao, ..., \; and, for each k-tuple (ig,...,i%), Liy....ir (X0, .., Ak) €
FNo, ..., \k] ® F is a polynomial of degree at most N — 1 in each variable
\;. Then, by definition, By, (P) € H*(Q*(V), k) is

is a skewsymmetric array

(11.15) Bri1(P) = (Pig,oixNos - M), o + 0 (QF(V))

where P, i (Ao, ..., Ax) should now be viewed as an element of the space
F—P‘Ov s 7Ak] ®]F[8] F.
Note that the space of exact elements d (Qk(V)) contains all arrays

(11.16)
k (0% . e}
(MDY Kot S AN+ o Qo ToM))
a=0 jer 20500k 00yt €1

where Qfllk Ay s Ak) € F[A, ..., A,]®F are polynomials with quasicon-
stant coefficients, and they are skewsymmetric with respect to simultaneous
permutations of iq,...,7; and Aq,...,Ar. Indeed, recalling the definition
(9.29) of dx, we have that dx applied to the array

(11.17) (Y@ O ) e QF(V),

11,..,0, €1
jel 1ok

gives (11.16).

For example, for kK = 0, given P = (Pi(/\))iel € ?2%)70, we have (1(P) =
(pi)iel + 0K (QO(V)), where p; = PF(0) € F. On the other hand, for Q7 =
fj € F, the array (11.16) becomes (Zjel K;ij(@)fj) Hence, 81 = 0
provided that the map K*(9) : F* — F' is surjective.

In general, for k > 0, let P = (Rov"'vik()‘o""’)‘k))io,...,z’kel c ﬁ’ofiglj ie.
P is a skewsymmetric array with respect to simultaneous permutations of
the indices g, . .., and the variables Ao, ..., A; and such that, for each k-
tuple (io,...,ik), Pig,..ip(Nos- .- Ak) € FXo, ..., A\x] ® F is a polynomial of
degree at most N — 1 in each variable \;. By equation (11.15) and formulas

(11.16) and (11.17), we have that fj1(P) = 0 provided that there exists a
collection of ¢ skewsymmetric arrays in k variables

iel”

(Qflzk ()\1, SR Ak))

. . ?
i1, €1
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indexed by j = 1,...,¢, where le,...,ik()‘l""’)"f) are polynomials with
quasiconstant coefficients, such that

(11.18)
k (0% - (0%
D=1 K; ot M@ o (Aot M)
a=0 jel (0t

—PZ’O,Z’L___J]C()\Q,)\l, . ,)\k) € ()\() 4+ A+ 8)1}?[)\0, .. -7)\k] ® F.

Recall Definition A.3.1 from Appendix A.3 of a linearly closed differential
field.

Theorem 11.7. Let V be a normal algebra of differential functions, and as-
sume that the algebra of quasiconstants F C V is a linearly closed differential
field. Let K(0) be an ¢ x £ matriz differential operator with quasiconstant
coefficients and invertible leading coefficient. Then [ = 0 for every k > 0
and every £ > 1.

Proof. The facts that By = 0 and $; = 0 were pointed out above. Using
notation (A.5.7) and (A.5.8) in Appendix A.5, we have that the array (11.16)
is equal to (K*oQ)~. Hence, condition (11.18), after replacing Ag by —A; —
+++—Ag— 0, becomes P = (K*o(Q)~. Hence, the assertion that 1 (P) =0
follows from Theorem A.5.11 in the Appendix. O

Ezample 11.8. In the case k =1 and ¢ = 1, the problem of solving equation
(11.18) becomes: for P(A) € F[)\| skewadjoint, i.e. P*(\) := P(—A—0) =
—P()), we want to find Q(\) € F[A], such that P(\) = Q* (A + 9)K(\) —
K*(A 4+ 90)Q(\). Solutions for certain choices of K(\) are the following:

(1) K(A) = 1: take Q(\) = $P()),

(2) K(X\) = X: take Q()\) such that 0Q(\) = P()),

(3) K(X\) = A% take Q(\) = Q*()\) such that (9 + 2)\)0Q()\) = P(\),
(4) K(\) = A3: take Q(\) = (A — 9)a + R(N), with R(\) = R*()\), such

that (0 + 2X)(— O3+ 2(A\% + X0 + 0*)R(N)) = P(\).

By the exact sequence (11.14), 8;, = 0 implies that v, : H*(Q*(V),0k) —
ﬁ'giﬁl is an embedding, and its image coincides with the kernel of the en-
domorphism «y41 of the C-vector space ?2187461. Hence, in order to compute
the variational Poisson cohomology, we need to study the maps a1 and
- In particular, we will use the results of Appendix A.5 to compute the
dimension over C of Ker(ajy1), which by the above observations coincides
with the dimension of H*(Q®(V), dx), and, for each element C' € Ker(ay 1),
we will find a representative of y~1(C) € H*(Q*(V), 6x) in QF(V). To start
with, we need the following:

Lemma 11.9. Suppose that the algebra of differential functions V is an ex-
tension of the algebra of differential polynomials }'[ugn) |z el,ne Z+], for
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a differential field F. Then, there exists a direct sum (over F) decomposition
(11.19) v=ra( @ Fu)eu,

i€l nely
where U C 'V is an F-linear subspace of V such that

11200 —2 uc ( D fu§">) OU, foraljel, mel,.
j i€l,neZ

Proof. Consider the map: F [ugn) !z el,ne Z+] — F given by evaluating
at ugn) =0,Vie I,n € Z,;, and extend it to a linear over F mape: V — F.
Let then

dg .

Clearly, for every f €V we have
of \ )
f—5(f)—. Z €<m>ul ceu,
i€l nely P
so that V = F + <®i€],n€Z+ ]:ugn)) +U. Moreover, if
f:Oé—l- Z 5z,nugn)+9=07
iEI,n€Z+

with «, B;, € F and g € U, then o = e(f) =0, and f;,, = E(aa(fn)) =0, so

that V admits the direct sum decomposition (11.19).

Let then f € V and consider its decomposition given by (11.19): f =
o+ Zie],n€Z+ ﬁi,nugn) +g, where a, 3;, € F and g € U. We have ¢(f) = a,
proving that

(11.21) Ker(e) = ( D J—"ul(-")> DUCY.

iEI,n€Z+
To conclude, we note that, by the definition of U/, if g € U then % € Ker(e)
for every ¢ € I,n € Z,, which, together with (11.21), gives (11.&0). O

Recall from Appendix A.5.1 that a k-differential operator on F¢ is an
array P = (P,O“,k (A, .. ’)\k))io ioinel? whose entries are polynomials
in A1, ..., A; with coefficients in F, and it is said to be skewsymmetric if the
entries Py, .. i, (A1,..., ;) are skewsymmetric with respect to simultane-
ous permutations of the indices i1, ..., i, and the variables A1, ..., Ax. Given
an ¢ x ¢ matrix differential operator K (), we denote by ¥ (K) the space of
skewsymmetric k-differential operators on F¢ whose entries are polynomials
of degree at most N —1 in each variable A1, ..., A, solving equation (A.5.52).

For example Xo(K) consists of elements P € F* solving K(9)P = 0. By
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Theorem A.5.12, if F is a linearly closed differential field, then ¥ (K) is a

vector space over C of dimension (iji-él)'

Theorem 11.10. Let k € Z,. Let V be a normal algebra of differential

functions, and assume that the algebra of quasiconstants F C V is a linearly

closed differential field. Let K(0) be an € x ¢ matriz differential operator

of order N with quasiconstant coefficients and invertible leading coefficient

Ky € Matgxg(./.").

(a) There is a canonical isomorphism of C-vector spaces ¢y : Lp(K*) —
Ker(agy1), defined as follows: given P € Y (K™*), we let ¢p(P) = C €
Ker(agy1), where

k
(=1)* Z P

(11.22) —~ o,

X+ + -+ X+ 0)Chigin e (Aos Ay, AR)

for all indices iy, ... i, € I (equality in F[\g, ..., \p] @ F).

(b) There is a canonical isomorphism Xy : Sp(K*) ~ HF(Q*(V), 0x) defined
as follows: given P € X(K*), we let x,(P) € H*(Q*(V), k) be the
cohomology class with representative

(11.23) <ZPj,i1,...,ik(/\1,---,)\k)uj), e Qk(V).

7"'7' EI
jeI ootk

a ()\0, RN )\k)Kj,ia ()\a)

RO %

Q

In particular,

N¢
: ke _
(11.24) dime(H*(2*(V),0K)) = (k—i— 1).
(c) The maps v, : HF(Q*(V),0x) — Ker(api1) in the evact sequence
(11.14) and ¢y, : Xp(K*) — Ker(agy1) are compatible in the sense that

(11.25) Pk = Yk © Xk -
For C € Ker(agy1), let qﬁ,;l(C) = (Ho,il,m%()\l,...,)\k)) S

205015y €L

Si(K*). Then, the array (11.23) in QF(V) is a representative of the
cohomology class v, '(C) € H*(Q*(V), 0k).

Proof. First, we prove that the map ¢y given by (11.22) is well defined.
Let P € Y (K*), so that (K* o P)~ = 0. By equation (A.5.10) from the
Appendix, we can rewrite this condition by saying that

k
(11.26) > (-1 Z Poa (o s M) Ko (M)
a=0 Jel
becomes zero if we replace A\g by —A\1 — -+ — A — 0, with 9 acting from the

left. In other words, (11.26), as an element of F[\g, A1, ..., A\x] ® F, is equal
to

(11.27) Ao+M 4+ -+ X +9)Cipirin(Nos A1, M),
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where C' = (Cio,il,...,ik ()\07 Aly s ’Ak))io,il,...,ikel
whose entries are polynomials with quasiconstant coefficients of degree less
than or equal to N — 1, ie. C € QkH. Furthermore, we claim that C

lies in Ker(agyq). Indeed, taking Q € QF(V) be the array (11.23), we
have, by (10.11), that (6xQ)ig,...ix (Mo, - - -, Ak) is equal to (11.26). Hence,
the equality of (11.26) and (11.27) implies that dx@Q = OC. Therefore,
by Lemma 11.6(c), we conclude that ay11(C) = 0, proving that ¢ is well
defined.

We next prove that the map ¢y : X (K*) — Ker(ag41) is injective. Since,
by assumption, P, i, (A1,...,A;) has degree less than or equal to N —1 in
each variable, the coefficient of A in (11.26) is

(11.28) > Piinin M M) BN -
jel

is a skewsymmetric array

To say that ¢ (P) = 0 is equivalent to say that (11.26), viewed as an element
of F[\g,..., \g] ® F, is identically zero for all indices ig,...,i € I. In
particular (11.28) is zero. Since, by assumption, K is an invertible matrix,
it follows that P i, i, (A1,...,Ax) = 0, for all indices i, ..., 7. Hence, ¢,
is injective.

To complete the proof of part (a) we are left with showing that the map

¢, 1Is surjective. Let C' = (CiO,---,ik(AOV“7)\k))i0 irel be an element of

Ker(aj,1). By Lemma 11.6(c), there exists an element Q € QF(V) such
that

(11.29) C = 6k Q.

By Lemma 11.9, we can assume that the coefficients of ) are linear in the

variables u(-")

i i.e.

(11.30) Qiroin (A, e ZZ O Al

n=0 jel

with M € Zy and Py (A1,..., ) € FlAr,..., A ® F. Indeed, the
quasiconstant part of @) is kllled by the differential d5, while dx applied to
the U-part of @) has zero quasiconstant part. Note that, if @ is as in (11.30),
then equation (11.29) becomes

k
(11.31) ZO %;E%Pmav X0y, M) A + )" K i (o)
a= jeEIn
= ()\0 4+ A+ 8)Ci07___7,'k ()\0, ey )\k) € F[)\o, - ,)\k] ® F,
for all choices of indices ig,...,i, € I.
In order to prove surjectivity of ¢, we will show that we can choose Q
as in (11.30) with M = 0 and PJ i1oin (Moo Ag) of degree at most N — 1

in each variable A1,..., Ag, such that equation (11.31) holds with the given
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C € Ker(ag41). In this case, by the definition (11.22) of the map ¢,

0
P = (Pipirin Ot M) i, e

is an element of ¥j(K™) such that ¢ (P) = C.

We will achieve the desired form of () in three steps: first we reduce to
the case when all polynomials P; - -k()q, ..., Ax) have degree less than or
equal to M + N in each variable Ay; then we reduce to the case when M = 0;
finally we reduce to the case when the polynomials P ] i, ()\1, ..., Ag) have
degree at most N — 1 in each variable. Note that in the case k =0 we only
need to do the second step.

Let £ > 1 and let d be the maximal degree in one of the variables
ALy ..., A of all the polynomials P (A1,...,Ax) for n=0,..., M and
7501, ...,1% € I, and assume that d > M+N. By taking separately all terms
in which some of the variables A\, are raised to the power d, we can write
(11.32)

Pl O ) =R ST ORY () Y,
1<8<k

B
+ Y R e AN M e B ()

7yt
1<p<y<k
k

B1s--Bq
75 7"'7/3 d ~ d
= E E R‘?,il,l...,ikq(A617 ey )\Bq)Al ...... )\k 5

q=01<p1<--<Bq<k

where R] fl’ ’ﬁq()\gl,...,)\gq) are polynomials with quasiconstant coeffi-

cients of degree strictly less than d in each variable. Then equation (11.31)
becomes

k o M k d a7BlL"'7Bq d
YR 95 95 SIS DIEPTIE S
a=0 JEI n=0g=00<p1<-<Be<k
) . (Bh<a<Bhr+1)
RO B s 6 (e 0) K (M)

J5105- 750k

=X+ -+ XM+0)Ci. iAoy, k).

We can rewrite the above equation in the following equivalent form

ISP SD SETED B SRR AR
0 ...... k.
(11 33) q=00<po<--<Bq<k r=0 j€I n=0
’ n,Bo+1,....0r—1+1,8r41,...,
xRSt B e B A % (g, 0) K, (M)

J5805-7 5Tk

= ()\0 4+ A+ 8)Ci07___7,'k ()\0, ey )\k) .

Note that the RHS above has degree at most N in each variable A\q,..., Ag.
Hence, by looking at the coefficient of )\Cf...)\% in both sides of equation



88 ALBERTO DE SOLE! AND VICTOR G. KAC?

(11.33), we get

ZZ Joi1,ee i (Ao +0)" Jlo(/\O)—O

jeI n=0

Since, by assumption, the leading coefficient K of the differential operator
K(0) is an invertible matrix, one easily gets that R}, ., =0 for alln =

0,...,M and j,iy,...,i € I. Hence, in the LHS of (11.33) the term with

q = 0 vanishes. Next, for 0 < §y < 1 < k, by looking at the coefficient of

Bo,p
A S A4 in both sides of equation (11.33), we get

T30, (/\ﬁov /\61 = BO Z Z R 5o /\61 (/\Bo +0)"K J5ig, (Aﬁo)
j€I n=0 Js10s-7 5tk

61 Z Z R" 760+1 ()‘50)()‘51 +0)"K Jsipy ()‘ﬁl) =0.

7€l n=0 ]107 7k

On the other hand, the term with ¢ =1 in the LHS of (11.33) is exactly

d i
Z TBOyBl (Aﬁoa ABl))\o ...... Ak ,
0<Bo<p1<k

hence, it vanishes, and the sum over ¢ in the LHS of (11.33) starts with
q = 2. Repeating the same argument several times, we conclude that all
the terms with ¢ < k — 1 in the LHS of (11.33) vanish, hence the equation
becomes

(11.34) Z ZZR”’L’ (Mor- M) ha + 0)" K1, (Ma)

jel n=0 1,05+

()\0 o A+ 8)CZO7___7ik ()\0, ceey )\k) .
Comparing equations (11.31) and (11.34), we can replace the polynomials

Pl i (A1, Ak) by the polynomials R] ’Zl’ ok ()\1, ..., Ak), which have
degree strictly less than d. Hence, repeating this argument several times, we
may assume that the degree of all polynomials Pl k()\l’ ooy Ag) s less

than or equal to M + N, concluding the first step.

In the second step we want to reduce to the case when M = 0. For this,
assuming M > 1, we will reduce to the case when M is replaced by M — 1.
We find an expansion of P similar to the one discussed in equation (11.32).
Using the fact that K (0) has order N and its leading coefficient Ky is an
invertible matrix, we can write
(11.35)

k
n?/B 7"'7/3
’P]??ilv---vik ()\17 ceey )\k) - Z Z Z Qj,jll,...,jkq()\ﬁl7 ce ,)\Bq)
q=0j1,...jk €1 1<P1 << P <k

ﬁl--ﬂq
X8 i, -+ 0oy gy (A1 + MK (M) - (N + MK, 0 (W)
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where Q. ; fl Lsg ()\51, ..., Ag,) are polynomials with quasiconstant coeffi-
cients of degree strictly less than M + N in each variable Ag,, ..., Ag,. Then,

equation (11.31) becomes

Z Z Z Z Z Z n Bl+17 Brnt+1.Bnt 1, 76(1()\517 o 7)‘ﬁq)

a=0 jel n=04¢=0. < 0<B1<<f3 Sk ]307 Ik
Jos-mJk€l (6h<0¢<5hj1)
avBl---Bq
~ M
. 5j*31 iy 5jﬁq’iﬁq (()\0 + a) JOJO ()‘0)) “““ (O‘k + 6) Jkolk ()‘k))

X (()\O! + a)nKj7ja ()\Oc)) = ()\0 + -+ )\k + 8)Ci(),...,ik ()‘07 e 7)\k) )

or, rearranging terms appropriately, we can rewrite it in the following equiv-
alent form

(11.36)

M k q
I ID DD DINCD DI T

n=0q=0 r=00<Bo<-+<Bg<k  jo,jn€l oo

Bo---B
JB0 %80 ’V 535(172/3 (()‘0 + (9) Jo, 20()‘0)) e (()‘k + 8)MKjk7ik ()‘k))
X ((Ag, +O)"Kjs i, (Ng.)) = Ao+ -+ A+ 9)Cig i, Aoy - -5 M) -

X 05

Note that the RHS has degree at most /N in each variable Aq,..., Ag.
By looking at the coefficient of /\g/[ ™o )\,iw N in both sides of equation
(11.36), we get, since M > 1,

M
E : § : Q a KN)jo,io"'(KN)jk,ik =0.
a=0 ]07 Jkel .7& 7.]07 Jk
Since K is invertible, we deduce that

QM . =o0.

Las80, 0Tk

[
™=

T:

Zo,...,ik .

Il
o

[

On the other hand, the term with ¢ = 0 and n = M in the LHS of (11.36)
is equal to

Z JOs-Jk )‘0 + 3) Ko ig ()‘0)) (()‘k + (9) Tkt ()‘k)) )

Jose-sJk €L

hence it vanishes. N

Next, for k > 1 fix a € {1,..., k} and consider the coefficient of )\évHN o
)\IJQWJFN in both sides of equation (11.36). In the RHS we get 0 since M > 1,
while in the LHS there are only two contributions, one coming from ¢ = 0
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and n < M — 1, and the other coming from ¢ = 1 and n = M. We thus get
M-1

SEDT Y Qo (BN - BN oo (Ra 4+ 0)" K i (M)

n— 0 Goyeemin€l JesJ0y 5]k

+ Z QM M) (BN - (KN)jiin

jO:---yjkEI jﬁuj()v'f'mjk
(ﬁ<a)

M,a+1 @
+ Z (-0 M 5 (Aa)0jaia (KN)josio -+ (KN)jiip = 0.
B=0 30y €T 185705 Jk
(B>a)
Again, since K is invertible, we deduce that

k k

Tina) = 22 (C1PQM, Qo)+ 30 (1M ()
B=0 23,2055k 5=0 i,105- ik
(B<a) (B>a)

+ZZ m k((A +O)"Kji. (M) = 0.

n=0 jel

On the other hand, the sum of the term with ¢ = 1 and n = M together
with the terms with ¢ = 0 and n < M — 1 in the LHS of (11.36) is equal to

S ST L0

Jos--jr €l =0
(()‘0 + 3) Jo,lo ()‘0)) (()‘k + 3) ]kﬂk ()‘k)) ’

hence it vanishes. Repeating the same argument several times, at each step
we prove that the sum of the term with ¢ = go+ 1 and n = M together with
the terms with ¢ = gqg and n < M — 1 vanishes. As a result, in the LHS
of equation (11.36) only the terms with ¢ = k and n < M survive. Hence,
equation (11.36) becomes

M-1 k
> (1) ZQ”’I” (R0 A) R + )" K, (Ao

n=0 a=0 jer o805t

:()\0+“‘+/\k+8)010, i ()\0,...,)\k).

This is the same as (11.31) with the polynomials P ()\1, cey Ag) Te-

B
placed by 0 for n = M, and by the polynomials QJ’“’ ok (Al,...,Ak) for
n < M. This completes the second step.

So far, we showed that we can choose ) in (11.30) of the form

(1137) Qil,...,ik (>\17 s 7Ak2) = Z Pj,il,...,ik (>\17 s 7Ak2)uj )

Jjel
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where Pj;, i (A1,..., ;) are polynomials with quasiconstant coefficients
of degree at most N in each variable. In this case equation (11.31) reads
k (0%
P . 05 v oy M) i (A
(11.38) D (0D oy M) Ko (Ko
a=0 jEI

= ()\0 4+ A+ 8)Cig,...,ik ()\0, ey )\k) € F[)\o, - ,)\k] ® F.

To complete the proof of part (a), we are left with showing that we can
choose the polynomials Pj;, i (A1,..., ;) to be of degree at most N —1
in each variable A, such that equation (11.38) still holds. As before, we
expand the polynomials Pj;, _;, (A1,..., ) as in (11.35)

(11.39)

k
Pj7i17-..7ik ()‘17 s 7)‘16) - Z Z Z Qﬁ’lfl’ 75;]@ ()\51, c. ,Aﬁq)
q=0 j1,....Jk €1 1<B1 << Bg<k
Bl-;-ﬁq
X‘Sjm 8y "'5jﬁqvi6qu17i1()\1) ------ Kjpin(Ak)

where the polynomials Qf 1]1 B i (Agys- -5 Ag,) have degree strictly less than

N. Then, equation (11.38) reads

(11.40)
k k
Z Z Z Z (_1)(1@?1—’__17;7?h+175h+1wﬁq (}\617 o 7)‘5q)
q=0 jo,....ju€l =0 0<B1 <<y <k Tl Tk
(Br<a<Bh+i1)
B1...Bq
X 5j51 71'51 . 5j6qvi6qu07i0 (/\0) R ]lek ()\k)

:(/\0+---+>\k+8)020, i (/\0, ,/\k)

We then proceed as in step two. Note that, since by assumption the polyno-
mials Cj,,.. i, (Ao, ..., Ax) have degree at most N — 1 in each variable, in the
right hand side of (11.40) in each monomial at most one variable A, appears
in degree N. Therefore, for k£ > 1, comparing the coefficient of /\év e )\{CV in
both sides of (11.40), and using the fact that K is invertible, we get

zo = E :07
et zmlo, Sl

for every choice of indices ig,...,ir € I. But the term with ¢ = 0 in the
LHS of (11.40) is

Z Tio,....j, ]0710()‘0) Kjkvik()\k)7

Jose-sJk €L

hence it vanishes. Similarly, for £ > 2, given 5 € {0,...,k} and comparing

B
the coefficient of A} .7. AY in both sides of (11.40), we get, again using the
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fact that K is invertible,
+1
T e =Y (-1)Q7 g)+ D (-1 1)°Q’ (As) =0,

a<B Lay80,- 50 a>p ZouZOy Sl

for every choices of indices ig,...,7, € I. and the term with ¢ = 1 in the
LHS of (11.40) is exactly

B
Z Z Jo, Tk Jﬂ ZﬂKJOv’O()‘O) Kjkvik()\k)7

B=0jo,...jr€l

hence it vanishes. Repeating the same argument several times, we prove
that all the terms in the LHS of (11.40) with ¢ < k£ — 1 vanish. Note
that the same argument always works for ¢ < k — 1 since the monomial

N Blmﬁq N . . .
Ay ----.. Ay contains at least two variables raised to the power N. In

conclusion, equation (11.40) is equivalent to the same equation where in the
LHS we only keep the term with ¢ = k:

ZZ Lk 0 M) K (Aa)

jel a=0 ]107 Sl

=0+ FX+0)Ci,. iAoy, k)

In other words, we can replace the polynomials Pjii in(A1, ..., Ag) defined
n (11.37) by the polynomials QL ok (/\1, .., Ak), which have degree at

most N —1 in each variable, Wlth(j)lllt changlng the RHS of equation (11.38).
This completes the proof of part (a).

The dimension formula (11.24) follows from the first assertion in part (b)
and Theorem A.5.12.

Note that, if P € ¥;(K™), then §x applied to the array (11.23) is in the
image of J, hence the array (11.23) defines a cohomology class in QF(V).
Therefore, x; is a well-defined map: S (K*) — H¥(Q*(V), k).

In order to complete the proof of both parts (b) and (c), we only need
to check that the map xi : Sp(K*) — HF(Q*(V),dk) given by (11.23)
satisfies equation (11.25). Indeed, the map ¢y : 3 (K*) — Ker(ag41) is an
isomorphism by part (a), and the map v : H¥(Q*(V),6x) — Ker(agy1)
is an isomorphism by Theorem 11.7 and the long exact sequence (11.14).
Hence, equation (11.25) implies that the map y; must be an isomorphism
as well. Also, the last assertion in part (c) is clear since, by (11.25), we have

~-1 _ -1
Ve = Xk© Cbk .

Before proving equation (11.25), let us recall the usual homological alge-
bra definition of the boundary map 7 in the long exact sequence (11.11).
For [w] € H*(Q*(V), k), we have

(W) = [a 10k B™ (w)] € H* (92 (V), oK) -
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In other words, let [w] € H¥(Q*(V),dx) be the class of a closed element
w e QF(V). Since 8 : QF(V) — QF(V) is surjective, there exists € QF(V)
such that §(n) = w. Since, by assumption, dxw = 0, we have that dx(n) €
Ker(3) = Im(a). Hence, there exists ¢ € 9QF1(V) such that 6x () = ().
Since a is injective, 0 (¢) = 0, and we let v ([w]) = [¢] € HF1(0Q°(V), 6k ).
Using the identification of the exact sequence (11.11) with (11.14), the con-
struction of the map v, can be described as follows. Consider a skewsymmet-
ric array P = (P, (A1, ... ’)\k))’i17---,7;k61 € QF(V) such that, when viewed
as an element in QF(V) (i.e. when we view its entries in F_[Ay, ..., Ax] ®F[a]
V), it is closed: dxP = 0 in QF1(V). By Theorem 11.2(a) there exists
e Ok

10, sip €1 0,0 »
where Cjy i (Mo, ..., Ar) are polynomials with quasiconstant coefficients of
degree at most N — 1 in each variable \;, such that dx P = 9(C + 6k @) for
some Q € Q%(V). Then v4([P]) = C.

Given P € Y (K™), the array ¢r(P) = C € Ker(ayy1) is defined by
equation (11.22). On the other hand, a representative of the cohomology
class xx(P) € H*¥(Q*(V),dx) is the array Q € QF(V) given by (11.23),
and, by the above observations, the array i (xx(P)) = C1 € Ker(agi1) is
defined by the equation dx Q) = 0C4. Since this equation for C coincides

with equation (11.22) for C, we conclude that C; = C, proving formula
(11.25). O

a unique skewsymmetric array C' = (Cio,...,z‘k(/\o, . ,/\k))

11.3. Explicit description of H°(Q*(V),dx) and H'(Q*(V),0x). As-
sume that )V is a normal algebra of differential functions and F C V is
a linearly closed differential field, so that Theorem 11.10 holds. It is easy to
see from the definition (9.29) of the action of 65 on Q0 = V/9V that
o
0r0e _ * A
HO(Q*(V),0x) = {ffeV/@V‘K 03 0}.
The space Y(K™) described before Theorem 11.10 is
So(K*) = {P e F ‘ K*(@)P =0},

and the isomorphism yo : Zo(K*) — H°(Q*(V), k), defined in Theorem

11.10(b), is given by
Xo(P) = /ZPJ’U]‘ .
Jjel
It is immediate to check that the variational derivative of [ zj Pju; is P,
hence, if P lies in $o(K*), then xo(P) lies in H°(Q*(V), k).
Recall from Section 8.2 that 2!()) is naturally identified with V®¢. Under
this identification, the space of exact elements in Q(V) is

BYQ*(V),6) = {K*(@)g—z ( [fe V/av}.
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Moreover, it is not hard to check using the definition (9.29) of 05, that the
space of closed elements in Q!(V) is

2@ (V),0x) = { F € V* ( Dp(9) 0 K(9) = K*(9) 0 D3(9) }

where Dp(0) is the Frechet derivative (8.14) and D7 (0) its adjoint matrix
differential operator. On the other hand, it is easy to see that the space
1 (K*) consists of matrix differential operators P = (P;;(9)), jer With qua-
siconstant coefficients and of order at most N — 1, solving the equation

(11.41) K*(9) o P(8) = P*(9) 0 K ().

The isomorphism y; : $1(K*) — H*(Q*(V), §) defined in Theorem 11.10(b)
is given by x1(P) = F + 0k (2°(V)), where

(11.42) F= (> P;0mu;),, V.
Jel
It is not hard to check that, if F' is as in (11.42), then its Frechet derivative
is
Dp(9) = P*(9),
hence, if P satisfies equation (11.41), then F lies in Z*(Q'(V), 6k ).

Remark 11.11. Recall that, if H and K are compatible Hamiltonian opera-
tors, the Lenard scheme is the following recurrent relation:

Ohp, Ohp,
HO 5 = KO3

or, equivalently,
[Hv fhn] = [Ka fhn-i-l] s

in the Lie superalgebra W' (IIV) ~ Q*(V). The Hamiltonian functions [ h,,
are constructed by induction on n € Z4. In fact, as explained in the intro-
duction (see equation (1.14)), assuming that we have constructed [hj, j =
0,...,n — 1 satisfying the Lenard recurrence formula, then [H, f hp—1] is a
closed element of (2'(V),dk). Hence, by equation (11.42), there exist a
Hamiltonian function [h, € V/0V and a unique P € X;(K*), i.e. a matrix
differential operator P = (Pl(ﬁ))” ¢ of order at most N — 1 with quasi-
constant coefficients solving (11.41), such that the following equation holds
in V%

(11.43) [H, [hna] =K, [hn] + (D P5(0)uy), ;-

jel
In order to complete the n-th step of the Lenard scheme, we have to show
that P = 0. For this, the following observations may be used.

First note that, since [H, K| = 0, ad H induces a well defined linear
map HF(Q*(V), k) — H*1(Q*(V), 6x), hence, thanks to the isomorphism
Xkt Zr(K*) = H*(Q*(V), k) defined in Theorem 11.10, we get an induced
linear map aff : Xy (K*) — Sp41(K*). On the other hand, applying ad H

to both sides of equation (11.43), we get that (ad H)(Zjej Pi’;(a)uj)iel is
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an exact element of (Q2%(V),dx), or, equivalently, ad’(P) = 0. Thus, in
order to apply the Lenard scheme at the n-th step, it suffices to show that
Ker(adl) = 0.

Recalling formula (9.15) for the action of ad H on V¢ = Q(V), it is
not hard to show that the condition that af’ is injective translates to the
condition that, if

Xp+oyu(H)—H(9)oP(0) =~ P*(9)c H(9) = —K(9)o Dp(9) = Dr(9)o K(9),
for some P € ¥1(K*) and F € V*, then P = 0.

APPENDIX A. SYSTEMS OF LINEAR DIFFERENTIAL EQUATIONS AND
(POLY)DIFFERENTIAL OPERATORS

In this Appendix we prove some facts about matrix differential and poly-
differential operators needed in the computation of the variational Poisson
cohomology (cf. Section 11.2). In order to establish these facts, we use the
theory of systems of linear differential equations in several unknowns. This
theory has been developed by a number of authors, see [Ler], [Vol], [Huf],
[SK], [Miy]. Our exposition (which we developed before becoming aware of
the above references) is given in the spirit of differential algebra, as the rest
of the paper.

A.1l. Lemmas on differential operators. Let M be a unital associative
(not necessarily commutative) algebra, with a derivation 9. Consider the
algebra of differential operators M[J]. Its elements are expressions of the
form

N
(A.1.1) PO)=) a, 0" , aneM,
n=0

which are multiplied according to the rule doa = ad + a’. If ay # 0, then
we say that P(0) has order ord(P) = N and we call ay € M its leading
coefficient.

Lemma A.1.1. If the differential operator

M N
(A.1.2) > 0™ 0 a0+ Y 0" 0b,d" € MO
m=0 n=0

is zero, then all the elements a,, and b, are zero. Hence, in a differential
operator of the form (A.1.2), the elements a,, and b, are uniquely deter-
mined.

Proof. In the contrary case, two things can happen: either aj; # 0 and
2M +1> 2N, or by # 0 and 2N > 2M + 1. In the first case, the operator
(A.1.2) has order 2M + 1, and the leading coefficient is aps, a contradiction.
Similarly in the second case. O

Lemma A.1.2. Let p,q € Z4 and a € M. Then
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(a) forp>qeZy

((p+e—1)/2] 1
O 0 adl = Z <P —-—m— >8m+1 o qPTa—2m=1) gm
m=q m—q
[(p+4q)/2]
4 <p >am o qPta—2m)gm

m=q+1
(b) forp<qeZy
[(p+q—1)/2]
P 0ad? = Z APAGTTL o ¢(Pra—2m—1) gm
m=p
[(p+4)/2]
Z FPAgm o q(Pra=2m) gm
m=p
o

where yv? and are integers.

Proof. (a). By induction on p—q. For p—q = 1, the statement is immediate
to check. For p — ¢ = 2, we have: 092 0 409 = 997! 0 a/09 + 991! 0 @971,
which agrees with our claim. For p — ¢ > 3, we have, by induction,

P o0ad? =" 1odd? 4+ P! oad?t!

[(p+a—2)/2] 9
— Z P=m =23 am+1 o (p+g—2m—1) gm
m=q m—q

[(p+4—1)/2] 9
S <il —_”; - 1) gm o g+a-2m) gm
m=q+1
[(p+q-1)/2] 9
+ <P —m — 1>am+1 o g(Pta—2m=1) gm
—_— q —_—
m=q+1
[(p+q)/2] _9
+ Z ( - >8m o a(p+q—2m)8m
m=q+2
[(p+q-1)/2] 1
_ <p —-—m— >am+1 o gPta—2m-1) gm
m—q
m=q
[(p+q-1)/2]
+ <p __nql B 1> M o (p+q—2m)am
m=q+1

In the last identity we used the Tartaglia-Pascal triangle.
(b). Tt follows from (a), since, by the binomial formula,

q—p
Poad =Y <q ;p> (—1)ha1h o oM pp .
h=0
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Corollary A.1.3. Any differential operator P(9) € M[0] of order less than
or equal to N can be written, in a unique way, in any of these three forms:

N N
:Zanﬁn:ZO”Obn

n= n=0
[(N—-1)/2] [V/2]
— Z gmtl o cp, 0™ + Z " od,0".
m=0 n=0

Proof. Existence is clear. Uniqueness of the first two forms is clear, and the
third one is Lemma A.1.1. O

Suppose next that M has an anti-involution a — a*, commuting with 0.

Ezample A.1.4. If M = Matyx,(F), where F is a commutative differential
algebra, we let a* = o, the transpose matrix.

We extend # to an anti-involution of M|9] by letting

N
Zan8" = Z (=0)"oa, .
n=0
We say that P(0) is selfadjomt (respectively skewadjoint) if P*(9) = P(0)
(resp. P*(0) = —P(0)).

Lemma A.1.5. (a) If S(0) is a skewadjoint operator of order less than or
equal to N, then it can be written, in a unique way, in the form

[(N-1)/2] [N/2]
(A.1.3) Z ™ o (a o am + ama) N LR
m=0
where a,, = ay, cmd bm = —b,.

(b) If S(0) is a selfadjoint operator of order less than or equal to N, then it
can be written, in a unique way, in the form
[(N-1)/2] [N/2]
Z 0" 0 (D0 am +and)0" + > O™ 0 by 0"
m=0

where @y, = — ;kn and by, = b7, .
Proof. Use the third form of Corollary A.1.3 and compute S — S* (resp.
S+ 5%). 0

A.2. Linear algebra over a differential field. Let F be a differential
field, i.e. a field with a derivation 0, and let C = {¢ € F|dc = 0} C F be
the subfield of constants.

Notation: a,b,¢c,--- € F, a, 8,7, - € C, u,v,w variables, m,n,p,q €
ZJ'_.

A system of m linear differential equations in the variables u;, i = 1,..., ¥,
has the form

(A.2.1) M(@)u=b,
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where
uy by Lll(a) o ng(a)
u=| : , b= : , M(0)= ,
Uyp bZ Lml((‘)) e ng((‘))
with b; € F and Lw(a) € ]:[8]
In order to study this system of linear differential equations we will use
the following simple result:

Lemma A.2.1. Let (n;;) be an m x £ matriz with entries in Z, and let

(A22) Nj = mlax{n”} N hz = IIlJlIl{N] — nij} .
Then
(A23) nZ]SN]—hZ, Vz=1,,m,y=1,,€

Any other choice N}, hi satisfying (A.2.3) is such that N > N; for all j,
and, if Nj = N; for all j, then h} < h; for all i.

Proof. Clearly, (A.2.3) holds. Given j, there exists i such that N; = n;;.
But, by assumption, n;; < N} — hj. Hence N; < Nj. Suppose now that
N; = N]’- for all j. Given i there exists j such that h; = N; —n;; = N]'- — Njj.
But n;; < N]’- — h, hence h; > hl. O
Definition A.2.2. The collection of integers {N;, j =1,...,¢; hj,i=1,...
...,m} satisfying (A.2.3) is called a majorant of the matriz (n;;).
Consider the system of equations (A.2.1). A majorant {Nj;h;} of the
m x ¢ matrix differential operator M (0) is defined as a majorant of its

matrix of orders (n;j). Given an arbitrary majorant {N;;h;} of the matrix
differential operator M (), we can write the i, j entry of M(9) in the form

— g

N;—h
Lij(8) = Z aijman y  Qijin € F.
n=0

We define the corresponding leading matriz as the following m x ¢ matrix
whose entries are monomials in an indeterminant £ with coefficients in F:

B ar;N, —p, M arN,—m ENTM
(A.2.4) M) =
ANy —hp EV1 I ANy —h EV M
Clearly, if m = £, we have
(A.2.5) det(M(£)) = det(M (1)) &2,
where
(A.2.6) d=> (N;—hy).
j=1

Note that this matrix depends on the choice of the majorant {N;; h;},
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Permuting the equations in the system (A.2.1) if necessary, we can (and
will) assume that hy > -+ > hy.

As in linear algebra, the set of solutions of the system (A.2.1) does not
change if we exchange two equations or if we add to the i-th equation the
j-th equation, with j # 4, to which we apply a differential operator P(9).
Since we want to preserve the fact that ord(L;;) < N; — h;, we give the
following:

Definition A.2.3. An elementary row operation of the matriz differential
operator M(0) is either a permutation of two rows of it, or the operation
T(i,7; P), where 1 < i # j <m and P(0) is a differential operator, which
replaces the j-th row by itself minus i-th row multiplied on the left by P(0).
Assuming that hq > --- > hy, we say that the elementary row operation
T (i,7; P) is majorant preserving if i < j and P(0) has order less than or
equal to h; — h;.

Remark A.2.4. After a majorant preserving row operation 7 (i,7; P), the
leading matrix M (¢) in (A.2.4) is unchanged unless P(9d) has order equal
to h; — hj;, and in this case it changes by an elementary row operation over
F, namely we add to the j-th row of M (§) the i-th row multiplied by the
leading coefficient of P(0).

Using the usual Gauss elimination, we can get the (well known) analogues
of standard linear algebra theorems for matrix differential operators. In
particular, we have the following

Lemma A.2.5. Anym x{ matriz differential operator M(9) can be brought
by elementary row operations to a row echelon form.

Proof. Let j; be the first non zero column of M(9). Among all matrices
obtained from M (0) by elementary row operations, chose one for which
the first entry of column ji, Ly, (0), is non zero of minimal possible order
(minimal among the orders of the (1, j1) entry in all these matrices). Clearly,
all the other entries in column j; must be divisible (on the left) by Li;, (9),
and using elementary row operations we can make them zero. Then, we
proceed by induction on the submatrix with first row deleted. O

We next discuss majorant preserving Gauss elimination for a matrix dif-
ferential operator.

Lemma A.2.6. Consider the m x ¢ matriz differential operator M(9) =
(Lij(ﬁ)) with m < ¢, and let {Ny,...,Ng; hy > -+ > hy, } be a majorant of
M(0). Suppose, moreover, that ord(Lj;) = N; —h; for 1 < j<m—1, and
ord(L;j) < Nj —hj for 1 <j <i<m—1. Then, we can perform majorant
preserving elementary row operations on the m-th row of M(0) so that its
new m-th row Emj(a), j=1,...,¢, satisfies:

ord(Ly,;) < Nj —h; for j <m , ord(Ly;) < N; —hy forj>m.
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Proof. By assumption, the m-th row of the starting matrix M (0) satisfies
ord(Ly,;) < Nj — hy, for 1 <j < /.

Applying to M(9) the elementary row operation 7 (1,m;cd™ ~), where
c= aml;Nl_hm/all;Nl_hl, we get a new matrix satisfying

ord(f/ml) <Ni—hp—1, ord(ij) < Nj —hy, for2<j <2,
Next, applying the elementary row operation 7 (2,m;cd"2~"m), for suitable
c € F, we get a new matrix satisfying

ord(Lml) < Nl — hm —1 N OI‘d(LmQ) < N2 — hm — 1,
OI‘d(Lmj) S Nj — hm for 3 § j § l.
Proceeding in the same way, we get after m—1 steps, a new matrix satisfying

ord(imj) <Nj—hp—1for1<j<m-—1,
ord(Ly,j) < Nj — hy, form <j < /2.
If h = hg = --- = h,,,, we are done. Otherwise, h; > h,, and we apply

to the last matrix the elementary row operation 7 (1,m;cd™ ~P»~=1) where
C = Qm1;Ny—hm—1/011;N,—h, - We thus get a new matrix satisfying

ord(Lym1) < Ni— hyy — 2, ord(Lpmj) < Nj —hy—1 for2<j<m-—1,
ord(Lp;) < Nj — hy, form < j < 2.

Next, if hy > hy,, we apply the row operation T (2, m; co"?~"==1) for suit-
able ¢ € F, and we get a new matrix satisfying

ord(iml) < N1 — hm -2 s Ord(img) < N2 — hm — 2,
ord(zmj) <Nj—hp—1for3<j<m-—1,
ord(imj) <Nj—hy, form <5< 0.
Let » <m — 1 be such that h, > h,41 = hy,. We proceed in the same way
and we get, after r steps, a new matrix satisfying
ord(imj) <Nj—hyp—2for1<j<r,
ord(Lpy;) < Nj—hj—1 forr+1<j<m-—1,
ord(imj) <Nj—hy, form <j< 0.
If A, — hy, > 2, we again apply consecutively elementary row operations
T(1,m; c @M =Pm=2) T (2,m;ce0"2="m=2) ... T(r,m;c,0"~"m=2) for ap-
propriate ¢y, ...,c. € F. As a result we get a new matrix satisfying
ord(Lynj) < Nj — by — 3 for 1 < j <r,
ord(Lpy;) < Nj—hj—1 forr+1<j<m-—1,
ord(imj) <Nj—hy, form <j <4,
and proceeding as before h, — h,, times, we get a matrix satisfying

ord(imj)SNj—hr—l for1<j<r,

ord(Ly;) < Nj—h;j—1forr+1<j<m-—1,
ord(Ly;) < Nj — hy, form < j < 0.
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If h = --- = h,, we are done. Otherwise, let s < r — 1 be such that
hs > hgsyr1 = +-- = h,. We proceed in the same way as before to get, after a
finite number of steps, a new matrix satisfying

ord(zmj)gNj—hs—l for1 <j<s,
ord(Ly,;) < Nj—h;j—1fors+1<j<m-—1,

ord(Ly,;) < Nj — hy, form < j < 0.
Continuing along these lines, one gets the desired result. O

Proposition A.2.7. Let M(9) = (L;;(0)) be an {x{ matriz differential op-
erator with magjorant {Ny,...,Ng; hy > --- > hy}. Assume that the leading
matriz M (€) associated to this majorant, defined in (A.2.4), is non degener-
ate. Then, after possibly permuting the columns of M(9), and after applying
majorant preserving elementary row operations, we get a matriz of the form
M(0) = (Eij(a)), where

ord(zjj) = Nj - hj fOT’ 1< j < 67

ord(Lij) < Nj —h; for1<i<j<¢,

ord(zij) < Nj—hj for1<j<i</{.
Proof. Since the first row of the leading matrix M (£) is non zero, after
possibly exchanging the first column of M (0) with its j-th column, j > 1,
we can assume that Lq1(9) has order N3 —hy. Applying Lemma A.2.6 to the
first two rows of the matrix M (0), we get, after elementary row operations
on the second row, a new matrix M (8) with Lo () of order strictly less than

N1 — hq, and Egj((‘)) of order less than or equal to N; — hy for j > 2. By

Remark A.2.4, the leading matrix M (&) of the new matrix M (9) is again non
degenerate, and it has zero in position (2,1). In particular, the first two rows

of M (&) are linearly independent, and, after possibly exchanging the second
column with the j-th column with j > 2, we can assume that ago,n,—p, 7 0,
ie. ord(igg) = Ny — ho. Applying Lemma A.2.6 to the first three rows of
the matrix M (0), we get, after elementary row operations on the third row,
a new matrix with ord(Ls;) < Ni — hy, ord(Lss) < Ny — ha, ord(igj) <
N; — h3, j > 3. Repeating the same procedure for each subsequent row, we
get the desired result. O

Proposition A.2.8. Let M(0) = (L;;(9)) be an £ x { matriz differential
operator as in the conclusion of Proposition A.2.7, i.e. ord(L;;) = N; — h;
for1 <j<{ ord(L;j) < Nj—h; for1 <i<j</{ andord(L;j) < N; —h;j

for1 < j < i < /¥, where Ni,...,Ny and h; > --- > hy are non negative
integers. Then it has the following majorant {N}; hi}:
N{=N;—hy,....,NJ=Ny—hy; hi=---=h,=0.

The leading matriz M (§) associated to this majorant of M (0) is upper tri-
angular with non zero diagonal entries, and the (ij) entry with i < j is zero
unless h; = h;.
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Proof. Obvious. O

The ring F[0] of scalar differential operators over F is naturally embedded
in the ring of pseudodifferential operators F[9][[0~!]], which is a skewfield.

All the above definitions and statements have an obvious generalization
to pseudodifferential operators. In particular, we define a majorant {N;;h;}
of an m x ¢ matrix pseudodifferential operator M (9) in the same way as
before, and the corresponding leading matrix M (£) by the same equation
(A.2.4) (except that here we allow negative powers of the variable £). We
also define elementary row operations and majorant preserving elementary
row operations as in Definition A.2.3, except that we allow P(0J) to be a
pseudodifferential operator. Finally, in the case of pseudodifferential opera-
tors Propositions A.2.7 and A.2.8 still hold, and have the following stronger
analogue:

Proposition A.2.9. Let M(9) = (Li;(9)) be an € x { matriz pseudodiffer-
ential operator with majorant {Ny,...,Np; hy > --- > hy}. Assume that the
leading matriz M () associated to this majorant is non degenerate. Then,
after possibly permuting the columns of M(0), and after applying majorant
&eservin&elementary row operations, we get an upper triangular matriz

M(9) = (Lij(9)), with ord(Lj;) = N; — hj for all j =1,...,L. The result-

ing matriz M(0) has the following majorant {Nj,ﬁl}

j\vflle—hl,...,j\vfg:Ng—hg; }Nll::hg:()

Proof. First, following the proof of Proposition A.2.7, we can apply majo-
rant preserving elementary row operations, and possibly permutations of
columns, to reduce M (0) to a matrix pseudodifferential operator satisfying
the following conditions:

ord(L;j) <ord(Lj;) = Nj —hj forall 1 <j<i</.

Let then 7 > j, and recall that, by assumption, h; > h;, and, by the above
condition, P(9) = L;;(9)L;;(0)~! has negative order. Hence, the elementary
row operation 7 (j,4; P) is majorant preserving. Applying such elementary
row operations a finite number of times, we get the desired upper triangular
matrix. The last statement is obvious. O

Recall that any ¢ x ¢ matrix pseudodifferential operator M (J) has the
Dieudonné determinant of the form det(M(9)) = c£¢, where ¢ € F, € is
an indeterminate, and d € Z. In fact, the Dieudonné determinant is de-
fined for square matrices over an arbitrary skewfield K, and it takes val-
ues in K*/(K*,K*) U {0}, [Die], [Art]. By definition, det(M(9)) changes
sign if we permute two rows or two columns of M (9), and it is unchanged
under any elementary row operation 7 (¢, 7; P) in Definition A.2.3, for ar-
bitrary ¢ # j and a pseudodifferential operator P(d). Also, if M(9) is
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upper triangular, with diagonal entries L;;(9) of order n; and leading coef-
ficient a;, then det(M(9)) = (TI; ai)ézi ™ It is proved in the above refer-
ences that the Dieudonné determinant is well defined and det(A(9)B(9)) =
det(A(9)) det(B(0)) for every ¢ x £ matrix pseudodifferential operators A(9)
and B(0). Moreover, we have the following proposition (cf. [Huf], [SK],

[Miy)):

Proposition A.2.10. If M(0) is an £ x £ matriz pseudodifferential operator
with non degenerate leading matriz M (&) (for a certain majorant {Nj; h;}
of M(0)), then B
det(M(0)) = det(M(€)) .

In particular, dege det(M(0)) = 2521(Nj — hj).

Proof. It follows Proposition A.2.9 since, by Remark A.2.4, the determinant
of the leading matrix M (§) is unchanged by majorant preserving elementary
row operations. O

Example A.2.11. If M(€) is degenerate, we can still have det(M(9)) # 0.
For example, the matrix differential operator

wo-(3 ).

has the majorant Ny = Ny = 1, hy = 1,hy = 0, and the corresponding

leading matrix

is degenerate. However, M (0) can be brought, by elementary row opera-

tions, to the matrix
1 a
O _a/ )

which shows that det(M(9)) = —d’.
A.3. Linearly closed differential fields.

Definition A.3.1. A differential field F is called linearly closed if any
linear differential equation,

anu'™ + -+ agu Fagu =",
with n > 0, ag,...,an, € F, ay # 0, has a solution in F for every b € F,
and it has a non zero solution for b =0, provided that n > 1.
Remark A.3.2. For a linearly closed differential field F and a non zero dif-
ferential operator L(0) € F[0], the map L(9) : F — F given by a — L(0)a
is surjective. Indeed, by definition, the differential equation L(9)u = b has
a solution in F for every b € F.

Remark A.3.3. Any differential field F can be embedded in a linearly closed
one. Note also that a differentially closed field is automatically linearly
closed.
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Remark A.3.4. Let F be a linearly closed differential field. Letting x € F
be a solution of dx = 1 we get that F contains the field of rational functions
over C in z. In particular, F is infinite dimensional over C.

Theorem A.3.5. Let F be a differential field. Consider a linear differential
equation of order N over F in the variable u: L(0)u = 0, where

L(O) = anON +an_10" " -+ @10 +ag € F9], an #£0.

(a) The space of solutions of this equation is a vector space over C of di-
mension at most N.

(b) If F is linearly closed, then the space of solution has dimension equal to
N.

Proof. We prove (a) by induction on N. For N = 0, it is clear. For N > 1, if
there are no non zero solutions, we are done (note that this does not happen
if F is linearly closed). If a € F is a non zero solution of L(Q)u = 0, we
divide L(9) by 0 — a’/a with remainder, to get L(9) = L1(9)(0 —d'/a) + R,
where L; has order N — 1 in 0 and R € F. Since L(9)a = 0, it follows
that R = 0. By inductive assumption, the space of solutions of L;(0)u =0
has dimension at most N — 1 over C. Consider the linear map over C,
b— (0 —ad'/a)b, b e F. It is immediate to check that it maps surjectively
the space of solutions for L(0) onto the space of solutions of L;(9), and
its kernel is Ca. The statement (a) follows. For part (b) we use the same
argument. U

Theorem A.3.6. (a) Let M(0) be an £ x{ matrix differential operator over
a differential field F.
i) If det(M(0)) # 0, then dime(Ker M (0)) < deg, det(M(0)).
i) If Im M(0) C F* has finite codimension over C, then det(M(9)) #
0, provided that C # F.
(b) Assuming that the differential field F is linearly closed, the following
statements are equivalent for an € x € matriz differential operator M (0):
i) det(M(9)) £ 0,
ii) dime(Ker M(9)) < oo,
i) det(M (D)) # 0 and dime(Ker M (0)) = degg det(M (0)),
iv) codime Im M (0) < oo,
v) M(0): F¢ — F is surjective.
(c) Let M(0) be an m x £ matrixz differential operator over a linearly closed
differential field F, such that Ker(M(9)) has finite dimension over C
and Im(M(0)) has finite codimension over C. Then necessarily m =

and det(M(0)) # 0.

Proof. Since the dimension (over C) of Ker(M(9)) and the codimension
of Im(M(9)) are unchanged by elementary row operations on M (), we
may assume, by Lemma A.2.5, that M (0) is in row echelon form. Assume
first that M(9) is an £ x ¢ matrix. If det(M(9)) # 0, it means that its
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diagonal entries L;;(0) are all non zero, say of order n;. Hence the cor-
responding homogeneous system M (9)u = 0 is upper triangular and, by
Theorem A.3.5, its space of solutions has dimension less than or equal to
> i = degg det(M(9)) (and equal to it, provided that F is linearly closed).
This proves part (a)(i) and, in (b), (i) implies (iii) (and hence it is equivalent
to it). Similarly, if det(M (9)) = 0, then the last row of M (0) is zero, so that
Im M (0) is of infinite codimension over C. Here we are using the fact that
F is infinite dimensional over C, since any f € F, such that f’ # 0, is not
algebraic over C. (Indeed, if f € F is algebraic and P(f) = 0 is its monic
minimal polynomial over C, then 0 = OP(f) = P'(f)f’, so that P'(f) =0
if f* # 0, a contradiction.) This proves part (a)(ii) and, in (b), that (iv)
implies (i).

Since, in statement (b), condition (iii) obviously implies (ii), and (v) ob-
viously implies (iv), in order to prove part (b) we only need to prove that
(ii) implies (v). Assume that F is linearly closed (hence infinite dimensional
over C, by Remark A.3.4), and that, by condition (ii), M(0) has finite di-
mensional kernel over C. Then its last diagonal entry is non zero, otherwise,
by Theorem A.3.5, there is a solution of the homogeneous system M (0)u = 0
for every choice of uy. Therefore M(0) is upper triangular with non zero
diagonal entries, and then, again by Theorem A.3.5, the inhomogeneous sys-
tem M (0)u = b has a solution for every b € F*, i.e. M(0) is surjective. This
completes the proof of part (b).

Finally, we prove part (c). Assume, as before, that M (0) is in row echelon
form. The homogeneous system M (0)u = 0 admits a solution for every
choice of a coordinate u; which does not correspond to a pivot of M (0).
Hence, since Ker(M (9)) is finite dimensional over C, we must have m > /.
If m > ¢, then the last m — ¢ rows of M (0) are zero, and then the image of
M (0) has infinite codimension. O

Corollary A.3.7. (cf. [Huf, Miy]) Let M(0) be an ¢ x ¢ matriz differential
operator with coefficients in a differential field F. Suppose that the leading
matriz M (€), associated to a majorant {N;; h;} of M(9), is non degenerate.
Then the space of solutions for the homogeneous system M(9)u = 0 has
dimension over C less than or equal to

V4
d="S (N; - hy) ( = degg det(M(a))) .
j=1

Moreover, if F is a linearly closed differential field then the inhomogeneous
system M (9)u = b has a solution for every b € F*, and the space of solutions
for the homogeneous system M (0)u = 0 has dimension equal to d.

Proof. By Proposition A.2.10, if M () is non degenerate, then det(M(9)) =
det(M (€)), and degg det(M(9)) = >_;j(Nj = h;) = d. Hence, by Theorem
A.3.6, dime(Ker M (9)) < d and, if F is linearly closed, M () is surjective
and dime(Ker M(0)) = d.

U
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In Section A.5 we will need the following slight generalization of Corollary
A.3.7.

Corollary A.3.8. Let F be a linearly closed differential field with subfield
of constants C. Let A(Q) be an € x £ matriz differential operator such that
det(A(0)) # 0. Let M(0) = (L;;(0)) be an € x £ matriz pseudodifferential
operator with non degenerate leading matriz M(€) associated to a majorant
{N;,j=1,...06hy,i =1,...0}. Assume, moreover, that A(O)M(0) is a
matriz differential operator. Then the inhomogeneous system of differential
equations A(O)M(O)u = b has a solution for every b € F¢, and the space
of solutions of the corresponding homogeneous system A(O)M(0)u = 0 has
dimension over C equal to

4
d = dim¢(Ker A(9)) + Z
7j=1

Proof. We have det(A(0)M(0)) = det(A(9))det(M(9)) # 0. Moreover, by
Proposition A.2.10, we have deg, det(M(0)) = >_,(N; — h;), while, by The-
orem A.3.6 (b)(iii), we have deg, det(A(9)) = lelc(Kel" A(@)). Therefore

deg, det(A(9)M(9)) = dime (Ker A(0)) + Z

The statement follows from Theorem A.3.6(b) applied to the matrix differ-
ential operator A(9)M (D). O

A.4. Main results.

A.4.1. The scalar case.

Theorem A.4.1. Let F be a linearly closed differential field, and let K(9) €
F[0] be a non zero scalar differential operator. For every skewadjoint dif-
ferential operator S(0), there exists a differential operator P(0) such that

(A41) K(8) o P(3) — P*(3) o K*(8) = S(9).

Proof. Let K(0) be of order N with leading coefficient ky # 0. Note that,
replacing P(0) by kxP(0), we can reduce to the case when ky = 1.

If S(0) has order n > N (clearly n must be odd) with leading coefficient
a € F, letting P(9) = 20"~ ", we have that S(9) — K(9) o P(9) + P*(9) o
K*(0) is a skewadjoint differential operator of order strictly less than n.
Hence, repeating the same argument a finite number of times, we reduce to
the case when S(0) has order n < N — 1. In particular, for N = 1 there is
nothing to prove since S is skewadjoint, hence zero.

In fact, we will consider the case when ord(S) = n < 2N — 3, which,
for N > 2, covers all possibilities. We will prove that in this case we can
find P(9) solving (A.4.1) of order less than or equal to NV — 2. By Corollary
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A.1.3 and Lemma A.1.5, the operators K (0), P(9) and S(0) can be written,
uniquely, in the forms

N N-2
K(@)=) 0"0ky, P0)=)_ u,d",
(A.4.2) n=0 =,
S(0) = 54(0) = S_(9) , S1(0) =D 9™ os,d™ =5"(9).
m=0

Clearly, equation (A.4.1) is equivalent to say that K(9) o P(9) and S4(9)
differ by a selfadjoint operator. By Lemma A.1.2 K(9) o P(9) is, up to
adding a selfadjoint operator, equal to

N N2 [P

Z Z Z ,ygiqam—i-l ° (k,puq)(p—l—q—2m—1)am,

p=0 ¢=0 m=min(p,q)

p—m—1
m—q

of summation, the above expression can be written in the form

where 75;7 are integers and 7 = ( ) for p > q. Exchanging the order

N—2

(A.4.3) Z Z AP o (k;puq)(P+q—2m—1)am ’
m=0p,g€DN,m

where

(A.4.4)

DN,mz{p,qGZJr‘péN,qSN—?, min(p,Q)Sm,p+q22m+1}-

Comparing (A.4.3) with the expression (A.4.2) for S;(9), we conclude that
equation (A.4.1) is equivalent to the following system of N — 1 linear differ-

ential equations in the N — 1 variables u;, ¢ =0,..., N — 2:
(A.4.5) Z AP (Fpug) PH=2mY) =
p,qGDN,m

form=0,...,N —2.
The system (A.4.5) is of the form M(0)u = s, where u = (uq)é\fz_&, 5 =

(sm)NZ2 and M = (L,ny(9)) is the matrix differential operator with entries
Linmg(0) = Z yRagrta2m=lof,  0<m,q< N —2.
p:(P,9)EDPN,m

Note that L,,(0) has order less than or equal to N, — hy,, where N, =
N 4+ q—1 and h,, = 2m. The leading matrix associated to this majorant,

defined by (A.2.4), has M(¢) = (Mmq£N+q_2m_l)an;2:o, where
A A if0<m<qg<N-2
e (N;Tq_l) ifo<g<m<N-—2

In particular M (1) is upper triangular with 1’s on the diagonal. Hence, by
Corollary A.3.7 we conclude that the system (A.4.5) has solutions. O
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Theorem A.4.2. Let K(0) € F[0] be a scalar differential operator of order
N over a differential field F. Then the set of differential operators P(0) of
order at most N — 1 such that K(9) o P(0) is selfadjoint is a vector space
over C of dimension less than or equal to (g) and, if F is linearly closed, it
has dimension equal to (];[)

Proof. First we note that, since K (9) o P(0) is selfadjoint of order less than
or equal to 2N — 1, it must have order at most 2N — 2, i.e. P(0) has order
at most NV — 2. The condition on P(J) means that P(0) is a solution of
(A.4.1) with S(09) = 0. Hence, if we expand K(0) and P(0) as in (A.4.2),
the condition on P(0) reduces to the system of differential equations (A.4.5)
with s, = 0. As observed in the proof of Theorem A.4.1, the matrix M (0)
of coefficients has majorant {N; = N +j—1; h; = 2i} and the corresponding
leading matrix M () is non degenerate. Hence, by Corollary A.3.7, the space
of solutions has dimension at most

d:NZ_f(Ni—hi):NZ_f(N_l_i): <]2V>

i=0 i=0
and equal to d if F is linearly closed. (]

A.4.2. The matriz case.

Theorem A.4.3. Let K(0) € Matyy,(F[0]) be an £ x £ matriz differential
operator of order N with invertible leading coefficient, over a differential
field F.

(a) If F is linearly closed, then for every skewadjoint £ x £ matriz differential
operator S(0), there exists an € x{ matriz differential operator P(9) such
that

(A.4.6) K(9)o P(0) — P*(9) o K*(0) = S(0).
(b) The set of differential operators P(0) of order at most N — 1 such that

K (0)oP(0) is selfadjoint is a vector space over C of dimension less than
or equal to d = (]\215)’ and equal to d provided that F is linearly closed.

Proof. We follow the same steps as in the proof of Theorems A.4.1 and A.4.2.
Let Kn € Maty.¢(F) be the leading coefficient of K (). Replacing K (9) by
K(9) o Ky' and P(9) by KyP(9), we can reduce to the case when K (9)
has leading coefficient K = 1.

Let S(0) be of order n, with leading coefficient S,, € Maty.¢(F). Since,
by assumption, S(9) is skewadjoint, we have S = (—=1)"*1S,. If n > N,
letting P(9) = £5,0" Y + P(9), the equation for P(9) becomes

K(9) 0 P1(9) — P{(9) o K*(9)
1 1
= 5(9) — 5K(a) 0 SN + (—1)N§a"—N 0 S, K*(0).
Note that the RHS of the above equation is a skewadjoint ¢ x ¢ matrix
differential operator of order strictly less than n. Hence, repeating the same
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argument a finite number of times, we reduce to the case when S(9) has
order n < N — 1.

In fact, we will consider the more general case when ord(S) =n < 2N —1.
We will prove that, in this case, we can find P(0) solving (A.4.6) of order
less than or equal to N — 1. By Corollary A.1.3 and Lemma A.1.5, the
operators K (0), P(9) and S(9) can be written, uniquely, in the forms

N N-1
= 0"oK,, P0)=)Y_ U,d",
(A.4.7) =y n=0
S(@) =Y 0"0 (00 A + Apd + By,) 0™

where K, U,, A,, B, € Matyy,(F) and AL = A,,, BL = —B,,. By
Lemma A.1.2 we have

N N-1
S5l
: q:O
N N-1N-1
(Ad8) -y (Pagm o (. )P ra-2me1) g
p=0 ¢g=0 m=0
N N-1N-1
ST Y oo (e
p=0 ¢g=0 m=0
where vh? and 0h;? are integers and
it = unless 0 <p< N,0<g< N -1
. 1g—1
and min(p,q) <m < {p : } ,
b9 =0 unless 0 < p< N,0<¢g< N -1

and min(p, ¢+ 1) <m < [2H4]
’Y?ﬁq _ (p—m—l) if0<qg<p<N,g<m< [P+g_1] )
5%‘1:(77—7“_1) 1f0<q<p<N Q+1<m§[7q]

We thus get from (A.4.8)

N N—-1N-1

K(9) o P(0) ~ P*@) o K*(0) = >3 3"

p=0 ¢g=0 m=0
gm ( P9 o (K,U,)+-2m=) 4 apa(yT K T)pra=2m=1)g

O, U) PH72) — g (U K P2 ) gm

(A.4.9)
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Comparing (A.4.9) and (A.4.7) we get, from the uniqueness of the decom-
position (A.1.3), the following system of equations (m =0,..., N —1):

| NN

VS ARy + VPRSP~ 4
(A.4.10) ) p

This can be viewed as a system of linear differential equations in the ¢2N
entries ug;; of the ¢ x ¢ matrices Uy, ¢ = 0,...,N — 1. The number of
independent equations is also 2N, since both sides of the first equation are
manifestly symmetric and both sides of the second equation are manifestly
skewsymmetric.

We make a change of variables X, = (U, + Ul = (xqij)szl and Y, =
¢

HU, — Uf) = (yqij)ijzl‘ In these variables, the system (A.4.10) has the

form

> " Lumijait+ () Tgirr + > Liniggiry'—(0)Yqijs = Gmi

g5’ g,
> Lonij—sqirjt+ (0)qijr + > Limijsqitir—(O)qij = bmij
q,7.j’ q,i' '
¢ ¢
where A,, = (amij)i,jzl and B,, = (bmij)i,jzl’ and, for m,q=0,...,N —1

and i,7,7,5' = 1,...¢,

s +q—2m—1
Vo O (55 kpiv + iitknis)

N —
M=

i~
Il
o

Linijtqirjr+(0) =

s +q—2m—1
Vo O (055 — diitknis)

N —
M) =

3
Il
=)

Lmij—l—,qi’j’— (8) =

(VT + 205,1) 0PI (8 o yir — G ki)

N —
M=

3
Il
=)

Linij—qirjr+(0) =

(9hs? + 2001 T2 (8 jokpiar + Oiirkpgiyr)

N —
M=

3
Il
=)

Lmij—,qi’j’— (8) =

where k,;; denotes the (i,j) entry of the matrix K,. Hence, the system
(A.4.10) is associated to the 2N x £2N matrix differential operator M (9) =
(Lmija;qi’j’a’(a)) with rows and columns indexed by quadruples (m,i,7,¢),
where m=0,...,N —1,e=4,4,57=1,...,¢ with ¢ < j if e = + and with
i < jif e = —. In particular, ord(Lymije.qijrer (0)) < N +q —2m — # =
Nqi’j’a’ - hmij€7 where

1+4¢€l

(A411) Nqije =N+gq, hmije =2m + 5
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In order to apply Corollary A.3.7, we need to check that the leading
matrix M (&) (defined by (A.2.4)) associated to the majorant (A.4.11) is
non degenerate (or equivalently, by equation (A.2.5), we need to check that
M(1) is non degenerate). Recalling that Ky = 1, we have the following
formulas for the entries ly;jc girj7er of the matrix M (1):

/ym 522’5]] fOI'€:€,:—|—7
lmije,qi’j’e’ = ’7m —I— 25N ‘152 Zl5j J fore=¢ = — ,
0 for e £ ¢ .

In particular, M (1) is a block diagonal matrix, with upper triangular blocks,
having 1’s on the diagonal, hence it is non degenerate. By Corollary A.3.7
we conclude that the system (A.4.10) always has solutions if F is linearly
closed, proving part (a). Moreover, by Corollary A.3.7, the space of solutions
of the corresponding homogeneous system has dimension over C less than or
equal to (and equal if F is linearly closed)

N-—1 V4
d= Z Z Nonije = bmig) £ D > (Nmij— — i)
m=01<i<5</ m=01<i<5<¥l
0 +1) = 00 —1) = N¢
— TN N -m -1 N—m)=
5 mzzzo( m=1)+—— m:O( m) 5 )
proving part (b). O

A.5. Generalization to polydifferential operators.

A.5.1. Preliminaries on polydifferential operators on F¢. The goal of this
technical section is to provide lemmas which will be used in the proof of
Corollary A.5.10 and Theorem A.5.11 in the next section.

For k € Z, a k-differential operator on F' is, by definition, an array

(A.5.1) (Piovilwwik(/\lv e ’/\k))io,il,...,ike{l,...,é} )

consisting of k-differential operators on F, i.e.

(A52) Pio,i17~~~7ik ()\1, ey )\k) = Z pnl’ Tk A )\Zk .

10,501,050k 1
ni,...,n=0

The reason for this name is that to an array as in (A.5.1) we can associate
a k-linear (over C) map P: (FO)®* = F @ ¢+ ®@c F* — F* given by

P(F'@--@F, = Y ppli™ (0" (FY)i) .. (0™ (F*)s,).

i1yt €1
N1y g €Ly
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The symmetric group Sx = Perm(1,2,...,k) acts on such arrays by si-
multaneous permutations of the indices 41, ...,4; and variables A1, ..., \x:
Pi%ﬂ'h---,ik()\l’ o Ak) = Pioviaflu)v'"via*l(k)(Affl(l)’ T ’/\Ufl(k))
N
(A53) Ne—1(1)rNe—1(k) ni ny
= Z pioﬂlo-fl(l)’“wio-fl(k) Al e Ak) » O S Sk :

n1,...,nE=0

We extend this to an action of the group Siy1 = Perm(0,1,... k), denoted
P — P% o € Sgi1, as follows. If 7, is the transposition of 0 and a €
{1,...,k} and if P is as in (A.5.2), we let

(A.5.4)
N (e}
Pizo,til,...,ik ()\17 . 7)\k) — Z (_)\1_. . ._)\k_a)na)\?l e )\kaéh:“’nkf} |
n1,...,n=0 Loyl +5205-- 42k

The reason for this definition is that we have the identity
(A.5.5) [FO.P(F',... FF) = [F7O . pr(pe) o)y,

for every o € Sy, and every FO ... F* ¢ F! where as usual [ denotes
the canonical map F — F/OF. The pairing [F -G, F,G € Ft, may be
degenerate, but if we replace F by the algebra of differential polynomials
Flu,u/,...], this pairing is always non degenerate. Extending the map P :
(FH2F - Flto amap (Flu,u,...]9)%" = Flu,4/,...]" in the obvious way,
we get that formula (A.5.5) uniquely determines the action of Sy on the
space of k-differential operators on F*.

A k-differential operator P on F' is called skewsymmetric (respectively
totally skewsymmetric) if P? = sign(o)P for every o € Sy (resp. 0 € Sgi1).
Given an array P as in (A.5.1), we define its total skewsymmetrization,
denoted (P)~, by the following formula:

1

(A.5.6) (P)~ = I > sign(o) P

O'ESk+1

Clearly, (P)~ = P if and only if P is totally skewsymmetric. Note that if P
is already skewsymmetric, then it total skewsymmetrization is

(A5.7) (P)~ = ﬁ(P - f:PT‘*> .

We define a structure of a Matyy¢(F[J])-module on the space of k-differential
operators on F* as follows. For an £ x £ matrix differential operator K (9) =
(K, ‘(8))”6{1 0 and an array P as in (A.5.1), we let

(A.5.8)
l

(KoP)ig oMy Ak) = D Kig M+ M+ 0) Py i (A, - k) -
j=1
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Clearly, if P is skewsymmetric so is K o P, but in general it is not totally
skewsymmetric, even if P is totally skewsymmetric.

Note that O-differential operators on F* are elements of F*, and in this
case we have (P)™ = P and K o P = K(0)P for every P € F'. The
space of 1-differential operators on F* is identified with Matyy,(F[0]) by
letting A = 0. In this case the action of 7 = (0,1) € So, defined in (A.5.4),
coincides with taking the adjoint matrix differential operator: P™ = P*, and
the Matyy¢(F[0])-module structure defined in (A.5.8) coincides with the left
multiplication in Maty. ¢ (F[0]).

In order to simplify notation, we let

(A.5.9) No=-A ——\p— 0.

With this notation, the action of the symmetric group Sky1 given by (A.5.3)
and (A.5.4) reads

'Pi%—,il,...,ik ()\17 ttt 7)\k) = Ho.fl(o)77;071(1)7”'72'0.71(16) ()\0'71(1)7 ttty )\O'fl(k:)) ’

where \g, when it appears, acts from the left on the coefficients of P. More-
over, the Maty,¢(F[0])-module structure (A.5.8) becomes

14
(K 0 Pigirrnin Mo M) = > Py A M) K (M)
j=1

where again \g is assumed to be moved to the left. If P is a skewsymmetric
k-differential operator on F*, we then have, by (A.5.7),

<K o P>7:)721777/k(>\17 M 7Ak))
14
(A.5.10) 1 N o .
=—=> (-1 Pooa Qo MK (M)
k+1az::o( ! ; i iy 0 AR K5 (a)

In this section we will generalize the results of Sections A.1 and A.4
to the case of k-differential operators on F¢ for arbitrary k > 0. First,
we introduce some more notation. Given a (k + 1)-tuple in Z’f’l, written
with Latin letters, we use the corresponding Greek letters to denote its non

decreasing reordering; for example, pg > puy > --- > pg will denote the
reordering of (mg,my,...,my) € Zl_frl, while vy > v > -+ > v will denote
the reordering of (ng,n1,...,nk) € Z’fl.

Lemma A.5.1. Let V' be a vector space over a field C and let O be an
endomorphism of V. Let vy....m, be elements of V', labeled by the indices
mo,...,mi € {0,...,N} satisfying po — p1 = 1. Then they satisfy the
following equation in C[A1,..., \g] @ V', where Ay is as in (A.5.9),

N
(A5 S AN A g = 0.
mo,...,mp=0
(ro—p1=1)

if and only if the following two conditions hold:
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(i) Ving,.omy = Vmy,m, if the (k+1)-tuple (mg, ..., mj) is obtained from

(mo,...,my) by a transposition of entries m; = po and mj = py;

(i3) given a (k + 1)-tuple (mo,...,m) € {0,..., N}**L satisfying jo —

w1 = 1, subtracting 1 from the maximal entry m; = ug, we get a
(k + 1)-tuple (no,...,nx) € {0,..., N — 1}** satisfying vy = v1, and
we denote Wny ., = Umg,...m, (note that, by condition (i), Wy, . n,
is well defined); these elements should satisfy the following system of
equations:

k
(A512) awn07___7nk + ano,...,nh—:l,...,nk = 07

h=0

where the summand Wy, n, —1,...n, 0 the LHS is considered to be zero
unless nyp, > 1 and the maximal two of the indices ng,...,np—1,..., 0k
are equal.

In particular, if O is injective, then equation (A.5.11) has only the zero
solution.

Proof. First, we prove that if elements v, .. m, € V,labeled by myg, ..., my €

{0,.

.., N} such that pg—p1 = 1, satisfy conditions (i) and (ii) of the lemma,

then equation (A.5.11) holds. By condition (i), the LHS of (A.5.11) is equal

to

N-1

(A.5.13) S A AR X g, -

n07"'7nk:0 A ‘ n;=ro
(vo=11)

Since Ao+ -+ + A\ + 9 = 0, (A.5.13) can be rewritten as

N-1

z : z no nj"’_1 ng

ng,...,nk=0 j | n;<vg
(vo=r1)
N-1

n
— > AN A O, -

ng,...,nE=0
(vo=11)

Renaming n; + 1 by n;, the above expression becomes

N-1 k

A514) = 3 N (S et 00, )
oo =0 =0
(vo=r1)

which is zero by equation (A.5.12).
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Next, assuming that equation (A.5.11) holds, we prove, by induction on
N, that conditions (i) and (ii) necessarily hold. Recalling (A.5.9), the coef-
ficient of A2¥ ™! in the LHS of (A.5.11) is

N-1
(_1)N Z Agna te Aznk (/UN,N—].,TI'LQ,...,mk - vN_lvNmeV"vmk) ?
m2,...,m=0
so that, necessarily, VN N—1,ma,....m), = UN—1,N,ma,...m; for all ma,... ,my €
i
{0,..., N—1}. More generally, if we replace A; by —Ag— .7. =\ — 0 and we

(3
consider the LHS of (A.5.11) as a polynomial in the variables Ao, .., A\x, we
conclude, by looking at the coefficient of /\?N ~! in equation (A.5.11), that

v i J =v i J )
Mo, N, ,N=1,..omy, mo,...,N=1,..,N,...my,
i.e. condition (i) holds for all the elements vy, . m, With o = N, and we
can introduce the notation wy,. ., for indices ng,...,n; € Z, satisfying
vyg = 1 = N — 1. Using this fact, by the same computation that we did in
the first part of the proof to derive formula (A.5.14), we get that equation
(A.5.11) is equivalent to

(A.5.15)
N-1
2 : no Nk § mo ymi m _

- AO e )\k Z’n07___7nk + )\0 Al e k Um(),---,mk -_ 07

nQ .. NE €Ly mo,...,m=0

(vo=r1=N-1) (ho—p1=1)
where

k
Tng,...,n, — g Wny,...nj—1,...,n + 8wno,...,nk .
Jj=0

The coefficient of /\%N_zx\gz. . A¢Fin the LHS of (A.5.15) 18 ZN—1,N—1,na,...,np»
and, in general, if we replace \; by —Ag— 3 -\, — 0, the coefficient of
A?N_2)\g° e Apk in LHS of (A.5.15) is i ; . Hence, equa-
ng,....N—=1,..,N—=1,....ng

tion (A.5.15) implies that x, ., = 0 for all indices ng,...,n;. In other
words, the elements vy, . m, satisfy condition (ii) when py = N. Finally,
equation (A.5.15) allows us to replace N by N — 1 in equation (A.5.11), so
that the claim follows by the inductive assumption.

For the last statement of the lemma, if O is injective equation (A.5.12)
implies that wy,, . ,, = 0, by induction on ), n;. O

Remark A.5.2. The system of equations (A.5.12) has the form
(A.5.16) oY =AY

where Y € V4 9 € End(V) and A € Matgxq(C) is a nilpotent matrix. In
this case, the dimension of the space of solutions of (A.5.16) is equal to
>, dim(Ker 9%F1), where d; are the sizes of the Jordan blocks of A. Indeed,



116 ALBERTO DE SOLE! AND VICTOR G. KAC?

if A is a Jordan block of size d, it is immediate to check that the space of
solutions of (A.5.16) has dimension equal to dim(Ker 9%*1), and the general
case reduces to this one.
Lemma A.5.3. Forng,...,ng € Z4, and my,...,my € Z4 such that pg —
u1 = 0 or 1, we define the integers bpw k. recurswely by the following
formulas:

(i) if vo —v1 =0 or 1, we let byt = Omgng - - - Ompng s

(ii) if n = vo > 11 + 2, we let

IR +17"'7 0_17"'7 3 N —1,..
(ABAT) b0 = = by iy T e Lk
B
Then the following identity holds in F[Ay,..., A\, d], for every ng,...,ny €
Z+.’
(A.5.18)
D DI YO )

mo,....,mp €L
(ro—p1=0 or 1)

Furthermore, if n, = v, then the coefficient by "' is zero unless my, =

po < vo, mg > ng for every B # o, and ), (n; — ml) >0. In partzcular if

po = 1o, then b2k is zero unless m; = n; for every i =0,... k.
Proof. If vy — 1 = 0 or 1, then obviously (A.5.18) holds for b?r?d;::z%k =
Omo,noOmamy - - - Omgmy- I N = vg > v1 + 2, substituting A\, = —Xg— q
-\ — 0, we get,
(A.5.19)
D Y IR VAP0 VAR Vs SO0 VLD VNP Vs SO VLTS
B#a

By induction on vy — vq, the RHS of (A.5.19) is

o bno7'"7”B+17"'7n&_17"'7nk _ bno,...,na—l,...,nk
mo,...,Mg mo;..., Mg

mo,...,mE €L+ BF#a
(po—p1=0 or 1)
O APROEI) S g A RO,

mo,...,mg €L

(no—p1=0 or 1)
proving (A.5.18). The last statement of the lemma is obvious for vy —v; = 0
or 1, while, for n, = vy > 11 +2, it follows by the recursive formula (A.5.17)
and an easy induction on vy — v1. O

Lemma A.5.4. (a) There exist unique numbers ¢y ., for ng, ... ,ny €

Zy, and my, ..., my € Zy satisfying po—p1 = 1, such that the following
identity holds in F[Ay, ..., A\, 0F1):

(A520) NPAT X = 3D e oA vk i),
mo,...,mk€Z+
(po—p1=1)
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for every ng,...,ng € Zy, where \g is as in (A.5.9).
(b) The coefficients cyy . in part (a) are integers satisfying the following
properties:
(i) if vo =v1+ 1, then cog s = Omo.noOmimg - - - Omy g s
(i1) cn{’;?g;, s ”f’k()k) = Cmy e for all o € Perm(0,1,...k);
(iii) for every mo,...,ng,mo,...,my € Zy such that o — 1 = 1, we

have the following recurrent formulas

no,..Ng E no,...,Na+1,..,n
(A521) Cmo,...,mk - Cmo, LM ’
and, for every a=0,...,k,
(A 5 22) 0 cnO7---7n6+17---7"a—17---7nk N cno,...,na—l,...,nk
i mQo,...,mMg mo,...,Mg MO,y M .
BFa

() Coyg by is zero unless po (= p1 +1) < v+ 1;
(v) if vo > v, then cpy ik is zero unless poy < vp;
(vi) if no = vy, then cpy k. is zero unless my, > max(uy, v1);

(vit) if ng < vy, then cmy i, is zero unless mg > ng.

Proof. The uniqueness of the decomposition (A.5.20) follows from Lemma
A.5.1 in the case V = F[0T!], with 0 acting by left multiplication, and we
want to prove the existence. By Lemma A.5.3 the monomial A{°... A% is a
linear combination over F[d] of monomials \(" ... A" with pig — 11 = 0 or
1. Hence, we are left to consider the monomials with vy = v;. In this case,
multiplying the monomial A\[°A7* ... A[* by

1=-X0 ' = N0t = =Nt
we get
k
(A.5.23) AGONTE AR = = Y TGOz AT
a=0

All the monomials which appear in the RHS have the difference between
maximal and second maximal upper indices equal to 0 or 1. Hence, (A.5.20)
holds by induction on (v — n;).

We next prove part (b). Property (i) is clear. Given a permutation

o € Sky1 and ng,...,n, € Z4, we have by part (a) (after changing the
indices of summation),
N (0) No(k) Mo (0)sNo (k) Mg (0) Mo (k) i(ng—m;
AT AT = T e AT W g

mo,...,mp €L
(no—pa1=1)

On the other hand, by permuting the variables Ay, ..., Az, since the condition
Ao+ -+ A+ 0 = 0 is invariant, part (a) says that we have a unique
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decomposition

no ng _ n0,..., N )\ M0 my
)‘0*1(0) N g c A A

(k) — mo,...,mk " g=1(0) *
mo,...,mEEL4
(mo—p1=1)

> (ni—m;)
(k)a .

Comparing the above two identities we conclude, by the uniqueness of the
decomposition (A.5.20), that cz{’;?g)ri,iff&) = Cpygk., proving property
(i).

The two identities (A.5.21) and (A.5.22) follow immediately by part (a)
and the equations (A.5.23) and (A.5.19) respectively.

Next, we prove properties (iv)—(vii). Let ng,...,ng € Z4. If vy = v1 + 1,
then by (i) we have chyg. i, = Gmg.ng - - - Omy,ny» Dence this coefficient is zero
unless my = ng,...my = ng. Properties (iv)—(vii), in this case, trivially
hold.

Suppose next that ng,...,n; € Z are such that vy = v;. We prove, by
induction on Y_,(ry — n;), that properties (iv)—(vii) hold, i.e. cpig bk, is
zero unless, respectively:

(IV) po < vo+ 1,
(vi) mqy > p1 and vy, for a such that n, = vy,
(vii) mg > ng for all 3 =0,...,k.

By equation (A.5.21) we have
(A.5.24)

0,--Mk _ N0,y +1,ng
Cmag,...ymy, = E : Omo,no - - - 5m/3,n13+1 oo Oy, E : Cmo,...,my, .

Blng=vo v |ny<vo—1

Given 3 such that ng = vy, the corresponding term in the first sum of the
RHS is zero unless mg = ng,...,mg = ng +1,...,my = ng. In particular
one easily checks that it is zero unless all conditions (iv), (vi) and (vii) above
hold. Next, let v be such that n, < vy — 1, and consider the corresponding
term in the second summand of the RHS of (A.5.24). It has maximal and
second maximal upper indices both equal to 1. Hence, we can apply the
inductive assumption to deduce that it is zero unless all conditions (iv), (vi),
and (vii) hold.

Finally, suppose that n, = vy > v; + 2. We prove by induction on vy — 14
that properties (iv)—(vii) hold, i.e. cpy ik, is zero unless

(V) po < vo,
(vi) mq > p1 and vy,
(vil) mg > ng for all § # a,

Consider equation (A.5.22). In all terms in the RHS the maximal upper
index is n, — 1 = vy — 1, while the second maximal upper index is either
v1 or v + 1. Hence, we can use the results in the previous case and the
inductive assumption to deduce that all terms in the RHS of (A.5.22) are
zero unless all conditions (v), (vi) and (vii) above are met. O
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Remark A.5.5. In the special case k = 1, Lemma A.5.4 follows from Lemma
A.1.2. In fact, in this case we can use Lemma A.1.2 to compute explic-

itly the coefficients %, | and ¢)? ., defined in Lemma A.5.4. For p =
q we have ¢\, = b = =0, For p > ¢ we have ¢, =
(—1)mtptl (’r’n__”;) when ¢ < m < [(p + ¢)/2] and zero otherwise, and

nfm—i-l = (_1)m+p+1(£1__n;j) when ¢ +1 < m < [(p + q)/2] and zero
otherwise. For p < ¢ they are obtained using the symmetry condition (ii) in

Lemma A.5.4.

Remark A.5.6. The polynomials (1 + zy + -+ + )02 ... 2"*, with
mo,mi,...,my, € Z such that py — p; = 1, form a basis (over Z) of the
ring Z[z1, ..., z]. Indeed, the linear independence of these elements follows
from Lemma A.5.1 in the special case when V' = Q and d = 1, while the
fact that they span the whole polynomial ring follows from Lemma A.5.4.

The following is a simple combinatorial result that will be used in the
proof of the subsequent Lemma A.5.8.

Lemma A.5.7. Let my,...,mg,ni,...,ng €7Z4 be such that (p1, ..., u;) <

(v1,...,vg) in the lexicographic order. Then:

(a) mqy < ng for some a € {1,...,k};

(b) suppose, moreover, that mq < n, for exactly one indexr o € {1,...,k},
and mg > ng for every other 8 # «, and let n, = v;, then p =
Ulyeoos im1 = Vi1, [ < V4.

Proof. Let {ay,...,ar} and {5,..., Bk} be permutations of {1,...,k} such

that ma, > mq, > -+ > Mgy, and ng, > ng, > --- > ng,. In particular,

Hi = Mg, and v; = ng, for every .

For part (a), suppose, by contradiction, that m, > n, for every a =
1,...,k. Then, clearly, u1 > mg, > ng, = v1. Since, by assumption,
w1 < vq, we conclude that pu; = v1. Suppose, by induction, that pu; =
Viyooospbiogl = vi—q for i > 2. If {aq,...,a;—1} = {B1,...,Bi—1}, we have
Bi & {ou,...,i—1}, and therefore p; > mpg, > ng, = v;. Similarly, if
{foa,...,0i-1} # {B1,...,Bi—1}, we have B; & {a1,...,a;—1} for some j <
i—1, and therefore u; > mg; > ng; = Vj > Vj. In both cases we have pu; > v;
and, since, by assumption, u; < v;, we conclude that u; = v;. It follows that
(1, -y pux) = (v1,...,), a contradiction.

For part (b) we use a similar argument. In our notation, o = f3; for some
i > 1. If i = 1, there is nothing to prove. If i > 2, we have pu; > mg, > ng, =
vy, and therefore uy = v1. Hence, the claim is proved for ¢ = 2. Suppose

next that ¢ > 3 and assume, by induction, that p; = v1,..., u; = v, where
j<i—2 If{ai,...,a;} = {p1,...,0;}, we have fj11 & {ai,...,q;},
and therefore 1 > mpg, , > ng,., = vjy1. Similarly, if {aq,...,0;} #

{B1,...,B;}, we have B, & {a1,...,;} for some h < j, and therefore
Mj+1 = Mg, > ng, =V, > Vj41. In both cases we have pjy1 > v;11 and,
therefore, j1;11 = vj41. In conclusion, 1 = v1,..., u;—1 = v;_1, proving the
claim. 0
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Lemma A.5.8. Let my,...,mg,ny,...,ng € {0,...,N — 1} be such that
(B, pig) < (V1,...,vk) in the lexicographic order. Then:

N b 7 J— .
(a) Cﬂlill m17 My = 0;

(b) cZ?ffmlek =0 for every a = 1,...,k;
Non,..., — N—vi—1.
(C) Cyl—rifll nlnk ng (_1) e )
a
(d) ¢ Zfﬁlhl’ ot =0 for every a =1,... k.

Proof. By Lemma A.5.7(a), m, < n, for some v # 0. Then, by property
(vii) of Lemma A.5.4(b), we have ¢"""™ — () proving part (a).

ui+1lma .. my

For part (b), we first observe that, by property (vi) of Lemma A.5.4(b),

3 T, M1, 7N7 T
if a # 0 then Coy it ,mk = 0 unless my = p1. Moreover, if m., < n, for
«

Na N1y, Ve ng —
p1t+lma,..my

0. Hence, by Lemma A.5.7(a), we only have to prove (b) in the case when
H1 = Mq < Mg, and mg > ng for every B # . Suppose, in this case, that
Ne = Vi, for @ > 2. Then, by Lemma A.5.7(b), we have pu; < mqy < no =
v; < 11 = 1, which is impossible. Hence, we are left to consider the case
when my = p1 < no = v and mg > ng for every  # . By property (vii)

~v # «, again by property (vii) of Lemma A.5.4(b), we have ¢

of Lemma A.5.4(b), we have that CZTfllh{fV’,mk = 0 unless u1 +1 > n,.

Hence, we only need to consider the case when 1y +1 = v1. But in this case

Me = 11 < p1 +1 = vy, and hence CZ?fll;n{fV’,mk = 0 by property (vi) of

Lemma A.5.4(b). This completes the proof of part (b).

For N = n; + 1, we have czﬁinlnknk = 1 by property (i) of Lemma

A.5.4(b). For N > ny + 2, we have, by the recursive formula (A.5.22),

N.ni,...,ng — N_lvnlv"'nﬁ"’_lv"'vnk _ N—-1,n1,....,nk
vit+lni,..ng =
B0

vi+1,n1,..,n vi+1ng,..,ng
Since N — 1 is the maximal upper index in all terms of the RHS, the first
term in the RHS is zero by property (vii) of Lemma A.5.4(b). Hence, we

Nyny,ong _ N—1,n1,...,nk
get Sty =  Cvidlng,.ng

We are left to prove part (d). If N = vy + 1, by property (i) of Lemma

which, by induction, implies part (c).

A.5.4(b), we have that (e Nons ) for every a # 0, since ny, # N.

vi+1l,n1,...,ng

For N > nj + 2, we have, by the recursive formula (A.5.22),

a Q
Mo, N1y IV. _ Z 2TV L5 PP 7”B+17 7N 1,...n
vi+1l,ni,..,n - Coi41ni,.n
B#0,a
<& <&
_ natlny,. N=1..ng  nani,...N=1,..ng
vi+l,n,...,nk vi+1,n1,...,nk :

Note that IV —1 is the maximal upper index in all terms of the RHS. Hence,
the first term in the RHS is zero by property (vii) of Lemma A.5.4(b),
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since ng < mg + 1. Moreover, the second term in the RHS is zero by
property (vi) of Lemma A54(b) since no, < ng +1 < v;. Hence, we

@
Moy N1y NV g
vi+1,n1,... k
Q
TLa,’I’Ll,...,N,...,TL
vi+1,n1,...,nk

a5 7N 1,...nk
vi+1,n1,..,nk

¥ =0, proving (d). O

get ¢ = —c , which, by induction, implies that

C

Corollary A.5.9. If 0 : F — F is surjective, then any polynomial S €
F[A1, ..., ] ® F admits a decomposition of the following form:

N
S()\l, ce ,)\k) - Z )\gbo L )\ansmo,...,mk )

mo,...,m=0

(Ho—p1=1)

where X is as in (A.5.9) (and it acts on the coefficients spmq . m,)-

Proof. Expanding S and substituting each monomial A" ... A\* with the
RHS of (A.5.20) (for nyg = 0), we get the desired expansion, using the
assumption that 0 is surjective. O

A.5.2. The main results for polydifferential operators.
Corollary A.5.10. (a) Let S = (Si07,,,,ik()\1, . ’)‘k))io,...,ikel
skewsymmetric k-differential operator on Ft. Assuming that 0 : F — F
1s surjective, S admits a decomposition

be a totally

M

(A.5.25) Siprin Ay ARy = > AFO AR sO
mo,...,m=0
(Ho—p1=1)

with Ao is as in (A.5.9), where the coefficients smf).f. oMk e F are skewsym-
metric with respect to simultaneous permutatwns of upper and lower
indices:

(A.5.26) s, 7O B Gion (0) 7O o e Sy

25(0)s-sto (k) 7'0 VK

(b) Assuming that F is linearly closed, the space of vectors {s;*" ;™" € F},
labeled by ig, ..., i, € {1,..., 4} and mg,...,my € {0,..., N} such that
po — pu1 = 1, which are skewsymmetric with respect to simultaneous
permutations of upper and lower indices, and which solve

N
(A.5.27) > AT A s = ),

Si0 i
mo,...,mp=0

(no—p1=1)

has dimension over C equal to

. v Z << i ) ) <k7—l’-€1> ! <7Z>>
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Proof. By Corollary (A.5.9), each polynomial S;; ., (A1,..., ;) admits a
decomposition as in (A.5.25), for some M € Z; and some coefficients
mo,.- "

S mk € F. Applying total skewsymmetrization to both sides of (A.5.25),

i0,-
we can replace the coefficients smo’ 2

ing part (a).

All the solutions of equation (A.5.27) are given by elements Smo’ ’m’“ eF
satisfying conditions (i) and (ii) of Lemma A.5.1. Therefore, the space of
arrays {smo’ oMk ¢ F} as in part (b) is in bijective correspondence with the
space of arrays T = {t;>"™ € F}, labeled by do,...,ix € {1,...,¢} and
ng,...,ng € {0,...,N — 1} such that vy = vy, which are skewsymmetric
with respect to simultaneous permutations of upper and lower indices, and
which solve the system of equations

mk by totally skewsymmetric ones, prov-

atnm m;g_‘_z £105-T " — ().

105 Jk

This is a system of linear differential equations of the form 9T + AT = 0,
hence, since by assumption F is linearly closed, the space of solutions has
dimension equal to the number of unknowns.

The functions ¢;_ 0k are labeled by the index set

ik

5:{1,...,e}k+1x{(no,...,nk)e{o,...,N—1}k+1(y0:y1},

and since they are skewsymmetric with respect to simultaneous permuta-
tions of indices no,...,ny and o, ..., ik, we can say that the entries of the
array 1" are labeled by the Sjy1-orbits in C with trivial stabilizer. Therefore
D = #(C), where

C= {w € C/Spir ( Stab(w) = {1}} .

We can decompose the index set C as disjoint union of the subsets C~5,n, § =
Lk+1,n=0,...,N —1, defined by

Com= {1, 1 (o, ) € {0, N=1P4 [ = vy = vy 1 > )

and the action of the permutation group Sk 1 preserves each of these subsets.
Hence, D = SN, zkH #(Cs,n), where

Com = {w € Cyn/Sis1 | Stab(w) = {1}} .

It is easy to see, by putting all maximal elements in the first positions,
that the set C; ), is in bijection with the cartesian product of the set of Ss-
orbits with trivial stabilizer in {1,...,£}**!1 x {0,..., N — 1}**1 of the form
((0y.-.,1s),(n,...,n)), and the set of Si41_s-orbits with trivial stabilizer
in {1,..., 00" x {0,..., N — 1}**1 of the form ((is,...,ix), (ns,...,n%))
with ng,...,ni < n. Clearly, the cardinality of the first set is (ﬁ), and the
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cardinality of the second set is (k +"1€_S). Hence,

p- 22 ()

This formula implies equation (A.5.28), since ((72—:_11)6) = ZI;IOI (ﬁ) (), _:le_s).

Theorem A.5.11. Letk € Z, and let K(0) € Matyx¢(F[0]) be an £x{ ma-
triz differential operator of order N with invertible leading coefficient, over
a linearly closed differential field F. Then for every totally skewsymmetric
k-differential operator S on F¢ there exists a skewsymmetric k-differential
operator P on F¢ such that

(A.5.29) (KoP)" =§.

Proof. For k =0 we have P € F' and (K o P)~ = K(J)P. Hence, the claim
follows from Corollary A.3.7 by taking the majorant N; = N Vj, h; = 0Vi
of the matrix differential operator K (9).

Next let & > 1. Let K(0) = Zfl\;o(—(‘))” o K, where (—1)N Ky # 0 is
the leading coefficient. If we let K;(9) = K(9) o K" and Pi(A1,...,\) =
KnPi(A1,..., ), we have, by (A.5.8), K o P = K; o P;. Hence, we may
assume that Ky = 1.

Let S be a totally skewsymmetric k-differential operator on F¢. By Corol-
lary A.5.10, S admits a decomposition as in (A.5.25). The first part of the
proof will consist in reducing to the case when M = N.

Let My > M; > --- > Mj be the maximal, in the lexicographic order,
among all non increasing (k + 1)-tuples pog > g1 > -+ > pyp such that

sﬁf) OZ‘I: k = 0 for some ig,...,i; € I. Clearly, by the skewsymmetry con-
dition (A.5.26), for myg,...,my € Z4 we have that Smo’ i "' is zero unless

(Loy -+ pig) < (MO,...,Mk). Hence, the decomposmon (A.5.25) of S can
be rewritten as follows

j : My JTN0;-+
(A530) Sio,---,ik()‘h ‘o ,)\k) = )\70710 .. )‘k kszo? ik "Mk .
mo,....mpEL4
po—p1=0or 1

(1055t ) S (Mo, My,)

Notice that in (A.5.30), for reasons that will become clear later, we allow
terms with 19 — g1 equal 0 or 1 (even though, by Corollary A.5.10, we could
restrict to the terms with pg — pp = 1). If My > N, let P° be the following
k-differential operator on F:

Pl = XN s
where C' denotes the cardinality of the orbit of (Mj,..., M) under the
action of the symmetric group Sii1. By (A.5.8) and the assumption that
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Ky = 1, we have

(A.5.31)
(K 0 P)ig....in, = ONGONT L ATk 0
¢ N—1My—N
Mo—N\ | Mo=N+n—h M M, Mo, Mi,...,M
O3 3 (M P sl
7=1In=0 h=0

Let P be the skewsymmetrization (over Si) of P?. Clearly, the skewsym-
metrization (over Sy) of K o P? is equal to K o P, and therefore (K o P)~ =
(K o P%~. Hence, taking the total skewsymmetrization of both sides of
(A.5.31), we get
(A.5.32)

<K o P>i_0,.~,ik (Ayees M)

= Z sign(a))\%l(o))\é\{ll(l) M Mo M

o7 (k) Tl —1(0) s le—1 ()

LR -V ,
23 X (M) X e

UGSk+1

M h Mo, M,..., My,
o—1(0) o—1(1) U*l(lc)(a ")1071(0)7] =1 (1)t —1 (1)

By the skewsymmetry condition (A.5.26) on the coefficients S%?fﬁlikmk

since @ is the cardinality of the stabilizer of (Mo, ..., M) under the
action of Si41, the first term in the RHS of (A.5.32) is equal to

, and

> N0 L\ R0

ko Sig,eik
mo,...,m €L
(uov"uu'k):(MOr"’Mk)

Moreover, each monomial )\J‘/@l—]\””_h Mjl ...)\Mfl which enters in the
’ o=1(0) o~1(1) o=t (k)

second term of the RHS of (A.5.32) can be expanded, using Lemma A.5.3,
as
Mo—N+n—hy M M
)‘091(0) " 631(1)...)\0_f1(k)
o~ o)

Mo' 7"'7M0_N+n—h,...,Mo. ) N _
= > bmem () xmo ym1 Ak 9 (Mi=mi)=N-n—h

mo,....mpELy
(no—p1=0 or 1)

a1

M 7"'7M _N _h7"'7MO' .
and, by the last statement of Lemma A.5.3, bmg,(,(,),),mk oA ) g

zero unless g < Ny and, for pg = Ny, it is zero unless m, = Mo(a) —
Sa,o-1(0) (N —n+ h), for every a = 0,..., k. In particular, since n < N — 1,
this coefficient is zero unless (po, ..., ux) < (Mo, ..., My). Putting together
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the above observations, we can write (K o P)~

(KoP) (M)

— Ao )\mk Mo, Mk
Si0yeemin
mo,...mpE€L4
(A.5.33) (105 stk )=(Mo,.... M)
mo M 10,5k
T Z Ag” - )\ 207 Sk )

mo,...mpE€L4
mo—p1=0or 1
(K0 -5tk ) < (Mo, M)

for some coefficients tZ)LOkak € F. It follows that S— (K oP)~ has a decom-
position as in (A.5.30) where only terms with (uo,...,ux) < (Mo, ..., M)
appear. Hence, by induction, we can reduce to the case when S has a de-
composition as in (A.5.30) with My < N — 1.

To conclude, we further reduce the monomials Ag™ ... A" in the expan-
sion (A.5.30) of S with ug = p; using Lemma A.5.4. By property (iv)
of Lemma A.5.4(b), the only monomials which enter in the obtained de-
composition are such that pg < Mg+ 1 < N. Therefore, this S admits a
decomposition as in (A.5.25) with M = N, completing the first step of the
proof.

Let then S have the following decomposition:

N
(A534) Sio,n-,ik (/\1, - ,)\k) = Z /\Bno ce )\Zlkszgoy ,kmk ’
mo,...,mp=0
(ro—p1=1)

my m . . .
with coefficients s; 0 i k skewsymmetric with respect to simultaneous per-

mutations of upper ‘and lower indices. We want to prove that there exists
a skewsymmetric k-differential operator P of degree at most N — 1 in each
variable,

N-1
(A.5.35) Py . i ()\1, OIS Z )\?1 )\Tbk N1,.,M

Zo,ll, Sk
ni,...,nEp=0

L Z’mk € F skewsymmetric with respect to the action of

Sk = Perm(1,..., k‘) on upper and lower indices simultaneously, satisfying
equation (A.5.29). By (A.5.8) we have

with coefficients p; *

N N—-1 YA
(KoP)ig,.in(Mae s ) =Y D AN A (Ko )i P

no=0n1,...,np=0 j=1
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and, by Lemma A.5.4, we get
(A.5.36)

N N N-1 J4
(KoPigiyOas X)) = > >0 3 S epoms

mo,...,mp=0n0=0mn1,...,ny=0 j=1

(mo—p1=1)
% )\mo )\ml )\mk 821(711—7711) (K ) pnh STk
0 M Nk 10 /20,985,410
In the RHS above we can take the sum over my, ..., mg < N for the following

reason. If ng = N (> nq,...,ng), by property (v) of Lemma A.5.4(b),
Cme ok is zero unless pg < vy = N, while, if np < N — 1 we have, by
property (iv) of Lemma A.5.4(b), that cpey 2%, is zero unless pp < vg+1 <
N — 141 = N. Taking the skewsymmetrization of both sides of equation
(A.5.36), we have, by (A.5.7) and by the symmetry property (ii) of Lemma

A5.4(b),
N-—1 V4

1 N N
(Ko Py, in A M) = =7 DS .

mo,...,mE=0n0=0n1,...,n =0 j=1

A5.37 (Ho—p1=1)
(A.5:37) A Am’“azl'("i_m”(Cﬁfd;I:i%k(Kno)m,yp?Z, i

— ncu”l, 7"07 SN PSS L% BERERLLY S
§ Cmg,...omi, (Kng )i gP a

Gyt yeeesi0seeesi
Comparing equations (A.5.34) and (A.5.37), we get the following equation
in F[)\l,. .. 7)\k] ® F:
(A5. 38)

Z . )\m’“<k+1 > Z Zaz e (ng;::i%k(Kno)io,j

mo,...,mp=0 no=0mn1,...,np=0 j=1
(ro—p1=1)

N1, N, ,n(), SN n,.. 7nk _ M0
X p] 81 yenslf Z mo, LM (Kno)la,]p 320, Wk =0.
Ji1see 7107 Sl

The above equation should be read as an equation in the unknown variables

(A.5.39) X = <m’ e EJ:) 1<igyenig<t

p'l()v'llv ik > >
0<ni,....np<N-—1

No(1)No(k) .+ 1,
such that p; ’; o oyreriolsy = sign(o )pZO o for every o € Si, and the element
(A.5.40) B = (SZ;LO’ e f) 1<ioyin<t >
0<mo,m1,...m<N
(no—pa1=1)

skewsymmetric with respect to the action of Sy, is given. To complete
the proof of the theorem, we only need to show that this equation admits a
solution.
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Note that the coefficient of A{™ ... A" in the LHS of (A.5.38) can be

rewritten, up to the summand —s;g"o.f‘.‘%’kmk, as
(A.5.41)
1 N L k .
k+1 Z Z gl Z(_l)ac%;ﬁﬁﬁy’%k(Kna)ia,jp@’";"j""’“ ,
ng,...,nE=0 j=1 a=0 752052k

and, in this form, it is manifestly skewsymmetric with respect to simultane-
ous permutations of g, ..., and mg,...,my.
The variables p" "> are labeled by the index set

0501520k
A={1,..., 00"+ % {0,...,N — 1}F.

On the other hand, since, by assumption, they are skewsymmetric with
respect to simultaneous permutations of indices nq,...,n, and ji,...,Jjk,
we can say that the entries of the variable X are labeled by the Si-orbits
in A with trivial stabilizer, where Sy = Perm(1,...,k) acts on the element
((JosJ1s---+Jk)s (n1,...,ng)) by fixing jo and permuting, simultaneously, the

other entries. We therefore write X = (pa)a c 4> Where
(A.5.42) A= {w e A/S), ( Stab(w) = {1}} :
and, for

(A.5.43) a= Sk ((JosJis---sdk), (M1, ..,ng)) €A,

we let p, = ip?oljlnkjk The sign of p, is fixed by taking + for the unique
representative of a with n; > no > -+ > ng and js > jey1 if ng = ngqq.

Similarly, the functions szgolkmk are labeled by the index set

B= {1t x {(mo, ) € {0, NP g — i =1,

and since, by assumption, they are skewsymmetric with respect to simulta-
neous permutations of indices my, ..., m; and ig, ..., i, we can say that the
entries of the given array B are labeled by the Siii-orbits in B with triv-
ial stabilizer, where Sk11 = Perm(0,... k) acts diagonally on the element

((i0y .-, ik), (Mo, ..., my)). We therefore write B = (sb)beB’ where

(A.5.44) B = {w € B/Sps1 | Stab(w) = {1}} ,
and, for
(A545) b= Sk+1 : ((io, .. ,ik), (mo, . ,mk)) eB,

we let s, = j:s;gbolkmk As before, the sign of sy is fixed by taking + for the

unique representative of b with mg =m;+1>mqy > -+ > my and 75 > i541
if mg =mgy1.
For a as in (A.5.43), we let

(A546) (10(&) = Sk-i—l : ((j07j17 v 7jk)7 (max(nl, v ,’I’Lk) + 17 ny,... 7nk)) .
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It is not hard to check that ¢ is a well-defined bijective map A = B. In
particular, the vectors X and B have the same number of entries. In fact,

N¢
(A.5.47) #(A) =#(B) = €< . )
Equation (A.5.38) is equivalent to the following equation
(A.5.48) A(Q)(M(0)X —B) =0,

where X and B are as in (A.5.39) and (A.5.40) respectively, and M ()
and A(0) are defined as follows. First, M(9) = (vaa(a))beg weq> 8iven by

(A.5.41), is the square matrix pseudodifferential operator with entries
(A.5.49)

Ly (0 k+ Z ZGZ ilnizm ( it (Ko )io,505.50 0511 - - - O

no=0 j=1
TL n TL ¢
_ Tl 0 ngk . .. . . .. v PR
E Cmg,mp (Kn0)ia,i95,50 jerio O in "'5]k71k>7

for a and b as in (A.5.43) and (A.5.45) respectively. Note that in order to
say that the entries of the matrix M (J) can be labeled by the set B x A
(and not by the set B x A) we are using the fact that M(9)X, given by
(A.5.41), is manifestly skewsymmetric with respect to the action of Siy;.
To define A(0), consider first the map A from FB to the space D of k-
differential operators on .7-"3 of degree at most 2N — 1 in each variable, given
by B = {smo’ mk} — A(B), where

ABiy i Mo M) = S (AL = = A — B)TOXI L AT g0

B

Note that A is a C-linear, not an F-linear map, but the space D is in fact a fi-
nite dimensional vector space over F, say of dimension d, and, for any choice
of basis of it, A becomes a d x #(3) matrix differential operator. We next
mo,...,Mkg
205-- 7Zk
skewsymmetric with respect to the action of S;yi. The restriction of A to

consider F7 as the subspace of F B consisting of the elements B= {s;

the subspace FZ C FB is then a d x #(B) matrix differential operator from
FB to D, for any choice of basis of D over F (once we fix representatives, we
can consider B as a subset of B, and the matrix of A| F5 consists of the rows
of the matrix of A corresponding to the indices in B). By Lemma A.2.5,
we can choose a basis of D such that the matrix for ﬁ‘ 78 FB = Dis
in row echelon form, say with k pivots and d — k zero rows. We then let
A(0) : FB — F* the k x #(B) matrix differential operator given by the
first k£ rows of this matrix. It is then clear from the above construction that
equation (A.5.38) is equivalent to equation (A.5.48). Therefore, to prove
the theorem, we need to show that, for every B € FB there exists X € F4
solving equation (A.5.48).
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Notice that, even though in the expression of the LHS of (A.5.38) there
appear negative powers of 0, we know that all such negative powers can-
cel out when we compute all the sums in (A.5.38), since this equation is
the same as (A.5.29), which does not involve any negative power of 9. In
terms of equation (A.5.48) this means that, even though M (0) is a matrix
pseudodifferential operator, the product A(0)M(0) is a matrix differential
operator.

By construction, A(9) is surjective, and its kernel consists of elements

= {Smo’ i "1 solving equation (A.5.27). Hence, by Corollary A.5.10(b),
it is of ﬁnite dimension over C. Therefore, by Theorem A.3.6(c), it is a
square matrix differential operator with non zero determinant.

Next, note that Lj ,(0) has order less than or equal to N, — hp, where,
for a and b as in (A.5.43) and (A.5.45) respectively,

k k
(A.5.50) No=N+>ni, hy=>) mi.
i=1 i

The leading matrix associated to this majorant (see equation (A.2.4)) is
M) = (mbvagNa_hb)bEB,aeA’ where

1
Nni,.ongs. . S, . o
i1 (Cmi), S 8ig,500j1,i1 + - - Ojpin

[e%
_ Na,N1ye o Ny 8 Y > .
§ : 777,()7 LMy 5]0774015]047@05]17@1 e 5]1@7@1@) :

mb,a =

We want to prove that the leading matrix M (€) or, equivalently, M (1) (see
(A.2.5)), is non degenerate.

In order to prove this, we fix a total ordering of the sets A ~ B (identified
via ), and we prove that, with respect to this ordering, the matrix M (1) is
lower triangular with non zero diagonal entries.

Given elements b = Sii1 - ((ig,...,ik), (Mo,...,my)) € B and bV =
Sk+1 - (g, -+, 1), (mg, ..., m})) € B, we say that b > 0" if (po,...,pux) >
(K, - - - 11,) in the lexicographic order, or (uo,...,ux) = (Ko, -- -, Hy,) and
b > b in some total ordering of the remaining indices (which will play
no role). Therefore, for a € A and b € B as in (A.5.43) and (A.5.45)
respectively, using the map ¢ we have that b > a if (uo,p1,...,px) >
(1 + 1,11, ...,vk) in the lexicographic order, or (g, p1,-..,uk) = (11 +
1,v1,...,v,) and b > p(a) in some total ordering of the remaining indices.

We want to prove that, with respect to this ordering, for a € A and b € B,
we have

(A.5.51) mpe=0ifb<a, andmy,#0ifb=¢p(a).

This follows from Lemma A.5.8. Indeed, for b < a, we have in particular
that (po, g1y -, k) < (11 + 1,14, ...,). Hence, by Lemma A.5.8(a) and

(b) we have mp = 0 unless (uo, pt1,-..,p%) = (11 + L, v1,...,1), and, in
_( l)N vy—1

this case, by Lemma A.5.8(c) and (d), mpa = 757 0i9,jo0ju1 i1 - - - Ojsig -
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Summarizing the above results, M () is a square matrix pseudodiffer-
ential operator of size #(A) = #(B), with non degenerate leading matrix
associated to the majorant (A.5.50), A(9) is a square matrix differential
operator of the same size, with non zero determinant, and A(9)M(9) is
a matrix differential operator. By Corollary A.3.8, it follows that equation
(A.5.48) has a solution for every B, completing the proof of the theorem. [

Theorem A.5.12. Let F be a linearly closed differential field with subfield
of constants C C F. Let k € Zy, and let K(0) € Matyy(F[0]) be an £ x £
matriz differential operator of order N with invertible leading coefficient,
over F. Then, the set of skewsymmetric k-differential operators P on F¢ of
degree at most N — 1 in each variable such that

(A.5.52) (KoP)” =0,

is a vector space over C of dimension

N/
d= )
()

Proof. As in the proof of Theorem A.5.11, for k = 0 we have P € F¢ and
(K o Py~ = K(0)P. Hence, the statement follows from Corollary A.3.7 by
taking the majorant N; = N Vj, h; = 0Vi of the matrix differential operator
K(0).

Let then & > 1. By the discussion in the proof of Theorem A.5.11, equa-
tion (A.5.52) is the same as equation (A.5.48) with B = 0, and, moreover,
by Corollary A.3.8, the space of solutions has dimension over C equal to

(A.5.53) d = dime (Ker A(0 Z
acA

heo(ay)

By the construction of the matrix differential operator A(J), the equation
A(0)B =0, for B = {s;";"} € FB, is equivalent to equation (A.5.27).
Hence, by Corollary A.5.10(b), Ker(A(9d)) has dimension over C equal to
(A.5.28). Moreover, we have, recalling (A.5.42), (A.5.46) and (A.5.50) (let-
ting a € A as in (A.5.43)),

(A.5.54)
Z(Na - hcp(a))
acA N1
= Z (N —1—max(ny,...,ng)) = Z(N—n— 1)#{(16.,4‘1/1 :n}
aE.A n=0

_ZO(N—n—l( {oca|m<n}-#{aca|nzn-1})
—rxe- (") - ()
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In the last identity we used equation (A.5.47), with N — 1 replaced by n or
n — 1. Putting together (A.5.28) and (A.5.54), we get

=B () o3 ()

n=0
which is a telescopic sum equal to (k]\ﬁ)v proving the theorem. O
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