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BALANCED FIBER BUNDLES AND GKM THEORY

VICTOR GUILLEMIN, SILVIA SABATINI, AND CATALIN ZARA

Abstract. Let T be a torus and B a compact T−manifold. Goresky, Kot-
twitz, and MacPherson show in [GKM] that if B is (what was subsequently
called) a GKM manifold, then there exists a simple combinatorial description
of the equivariant cohomology ring H

∗

T
(B) as a subring of H

∗

T
(BT ). In this

paper we prove an analogue of this result for T−equivariant fiber bundles: we
show that if M is a T−manifold and π : M → B a fiber bundle for which
π intertwines the two T−actions, there is a simple combinatorial description
of H

∗

T
(M) as a subring of H

∗

T
(π−1(BT )). Using this result we obtain fiber

bundle analogues of results of [GHZ] on GKM theory for homogeneous spaces.
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1. Introduction

Let T = (S1)n be an n−dimensional torus andM a compact, connected T−manifold.
We recall that the equivariant cohomology H∗

T (M) = H∗
T (M ;R) of M is defined as

the usual cohomology of the quotient (M ×E)/T , where E is the total space of the
classifying bundle of the group T . Let

π : M → B (1.1)

be a T−equivariant fiber bundle. We will assume that the base B is simply con-
nected and that the typical fiber is connected.

Then one gets a fiber bundle

(M × E)/T → (B × E)/T (1.2)

and a Serre-Leray spectral sequence relating the equivariant cohomology groups of
M and B; the E2−term of this spectral sequence is the product

H∗(F )⊗H∗((B × E)/T ) (1.3)
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2 V. GUILLEMIN, S. SABATINI, AND C. ZARA

where F is the fiber of the bundle (1.2) and hence of the bundle (1.1). Thus if
the spectral sequence collapses at this stage, one gets an isomorphism of additive
cohomology

H∗
T (M) ≃ H∗(F )⊗H∗

T (B) . (1.4)

However, this isomorphism doesn’t say much about how the ring structure ofH∗
T (B)

and H∗
T (M) are related. One of the main goals of this paper is to address that

question. We begin by recalling that one approach for computing the equivariant
cohomology ring of a T−manifold M is by Kirwan localization. Namely, if H∗

T (M)
is torsion-free, the restriction map

i∗ : H∗
T (M) → H∗

T (M
T )

is injective and hence computingH∗
T (M) reduces to computing the image ofH∗

T (M)
in H∗

T (M
T ). If MT is finite, then

H∗
T (M

T ) =
⊕

p∈MT

S(t∗) ,

with one copy of H∗
T (pt) ≃ S(t∗) for each p ∈ MT , where S(t∗) is the symmetric

algebra of t∗. Determining where H∗
T (M) sits inside this sum is a challenging

problem in combinatorics. However, one class of spaces for which this problem has a
simple and elegant solution is the one introduced by Goresky-Kottwitz-MacPherson
in their seminal paper [GKM]. These are now known as GKM spaces, a T−manifold
M being “GKM” if

(a) MT is finite
(b) M is equivariantly formal, i.e.

HT (M) ≃ H(M)⊗C S(t∗)

as S(t∗) modules.
(c) For every codimension one subtorus T ′ ⊂ T , the connected components of

MT ′

are either points or two-spheres.

If S is one of the edge two-spheres, then ST consists of exactly two T−fixed points,
p and q (the “North” and “South” poles of S). To each GKM space M we at-
tach a graph Γ = ΓM with set of vertices VΓ = MT , and edges corresponding to
these two-spheres. If M has an invariant almost complex or symplectic structure,
then the isotropy representations on tangent spaces at fixed points are complex
representations and their weights are well-defined.

These data determine a map

α : EΓ → Z
∗
T

of oriented edges of Γ into the weight lattice of T . This map assigns to the edge
(two-sphere) S, joining p to q and oriented from p to q, the weight of the isotropy
representation of T on the tangent space to S at p. The map α is called the
axial function of the graph Γ. We use it to define a subring H∗

α(Γ) of H∗
T (M

T )
as follows. Let c be an element of H∗

T (M
T ), i.e. a function which assigns to each

p ∈ MT an element c(p) of H∗
T (pt) = S(t∗). Then c is in H∗

α(Γ) if and only if for
each edge e of Γ with vertices p and q as endpoints, c(p) ∈ S(t∗) and c(q) ∈ S(t∗)
have the same image in S(t∗)/αeS(t

∗). (Without the invariant almost complex
or symplectic structure, the isotropy representations are only real representations
and the weights are defined only up to sign; however, that does not change the
construction of H∗

α(Γ).)
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For GKM spaces, a direct consequence of a theorem of Chang and Skjelbred
([CS]) is that H∗

α(Γ) is the image of i∗ (see [GKM]), and therefore there is an
isomorphism of rings

H∗
T (M) ≃ H∗

α(Γ) . (1.5)

One of our main results is a generalization of (1.5) for T−equivariant fiber bundles

π : M → B (1.6)

for which the total space M is equivariantly formal and the base B is a GKM space.
By the Kirwan Theorem the composite map

H∗
T (M) → H∗

T (π
−1(BT )) → H∗

T (M
T )

is injective. Hence one has an injective homomorphism of rings

H∗
T (M) →

⊕

p∈BT

H∗
T (π

−1(p)) , (1.7)

and so to determine the ring structure of H∗
T (M) it suffices to determine the image

of this mapping. This we will do by a GKM type recipe similar to (1.5).
Let (Γ = ΓB, α) be the GKM graph associated to B, and for p ∈ BT (i.e. a

vertex of Γ) let Fp = π−1(p). If e is an edge of Γ joining the vertices p and q, and
Te is the subtorus of T with Lie algebra kerαe, then Fp and Fq are isomorphic as
Te−spaces and hence

H∗
T (Fp)/〈αe〉 = H∗

T (Fq)/〈αe〉 , (1.8)

and denoting the ring (1.8) byRe, we will prove the following generalization of (1.5).

Theorem 1.1. A function

c : VΓ →
⊕

p∈BT

H∗
T (Fp), c(p) ∈ H∗

T (Fp)

is in the image of (1.7) if and only if for every edge e = (p, q) of Γ, the images of
c(p) and c(q) in Re coincide.

One of our main applications of this result will be a fiber bundle version of the
main result in [GHZ]. In more detail: In [GHZ] it is shown that if G is a compact
semisimple Lie group, T a Cartan subgroup, and K a closed subgroup of G, then
the following conditions are equivalent:

(1) The action of T on G/K is GKM;
(2) The Euler characteristic of G/K is non-zero;
(3) K is of maximal rank, i.e. T ⊂ K.

Moreover, for homogeneous spaces of the form G/K one has a description, due
to Borel, of the equivariant cohomology ring of G/K as a tensor product

H∗
T (G/K) = S(t∗)WK ⊕S(t∗)WG S(t∗) (1.9)

and it is shown in [GHZ] how to reconcile this description with the description
(1.5).

Our fiber bundle version of this result will be a a description of the cohomol-
ogy ring of G/K1, with K1 ⊂ K, in terms of the fiber bundle G/K1 → G/K,
a description that will be of Borel type on the fibers and of GKM type on the
base. This result will (as we’ve already shown in special cases in [GSZ]) enable
one to interpolate between two (in principle) very different descriptions of the ring
HT (G/K).
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The fibrations G/K1 → G/K are special cases of a class of fibrations which come
up in many other context as well (for instance in the theory of toric varieties) and
which for the lack of a better name we will call balanced fibrations.

To explain what we mean by this term let Fp and Fq be as in (1.8). Then there
is a diffeomorphism fe : Fp → Fq, canonical up to isotopy, which is Te−invariant
but in general not T−invariant. We will say that the fibration M → B is balanced
at e if one can twist the T action on Fq to make fe be T−invariant, i.e. if one can
find an automorphism τe : T → T , restricting to the identity on Te, such that

fe(gx) = τe(g)fe(x) (1.10)

for all g ∈ T and x ∈ Fp. (Since fe is unique up to isotopy, this τe, if it exists, is
unique.)

Suppose now that the T action on M is balanced in the sense that it is bal-
anced at all edges e. Then, denoting by Aut(Fp) the group of isotopy classes of
diffeomorphisms of Fp and by Aut(T ) the group of automorphisms of T , one gets
a homomorphism of the loop group π1(Γ, p) into Aut(Fp) × Aut(T ) mapping the
loop of edges, e1, . . . , ek, to (fek ◦ · · · ◦ fe1 , τek ◦ · · · ◦ τe1). The image of this map
we’ll denote by Wp and call the Weyl group of p. This group acts on HT (Fp) and,
modulo some hypotheses on M which we’ll spell out more carefully in section 5,
we’ll show that there is a canonical imbedding of HT (Fp)

Wp into HT (M) and that
its image generates HT (M) as a module over HT (B). More explicitily, we will show
that

HT (M) = HT (Fp)
Wp ⊗

S(t∗)Wp Hα(ΓB) (1.11)

where ΓB is the GKM graph of B.
A few words about the organization of this paper. In Section2 we will generalize

the Chang-Skjelbred theorem to equivariant fiber bundles, and in Section 3 use this
result to prove Theorem 1.1. In Section 4 we will describe in more detail the results
of [GHZ] alluded to above and show that the fibrations G/K1 → G/K are balanced.
Then in Section 5 we will verify (1.11) and in Section 6 describe some connections
between the results of this paper and results of [GSZ] (where we work out the
implications of this theory in much greater detail for the classical flag varieties of
type An, Bn, Cn, and Dn).

The results of this paper are also related to the results of [GZ2], the topic of
which is K-theoretic aspects of GKM theory. (In some work-in-progress we are
investigating the implications of these results for GKM fibrations. In particular we
are able to show that there is a K-theoretic analogue of the Chang-Skjelbred theo-
rem of Section 2 and that it gives one an effective way of computing the equivariant
K-groups of balanced fiber bundles.)

2. The Chang-Skjelbred Theorem for Fiber Bundles

Let π : M → B be a T−equivariant fiber bundle with M equivariantly formal
and B a GKM space. Let Ki, i = 1, . . . , N be the codimension one isotropy groups
of B and let ki be the Lie algebra of Ki. Since B is GKM one has the following
result.

Lemma 2.1. If K is an isotropy group of B, and k is the Lie algebra of K, then

k =

m
⋂

r=1

kir
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for some multi-index 1 6 i1 < . . . < im 6 N .

For K a subgroup of T let XK = π−1(BK), where BK ⊂ B denotes the set
of points in B fixed by K. We recall ([GS, Section 11.3]) that if A is a finitely
generated S(t∗)−module, then the annihilator ideal of A, IA is defined to be

IA = {f ∈ S(t∗), fA = 0} ,

and the support of A is the algebraic variety in t⊗C associated with this ideal, i.e.

suppA = {x ∈ t⊗ C, f(x) = 0 for all f ∈ IA} .

Then from the lemma and [GS, Theorem 11.4.1] one gets the following.

Theorem 2.2. The S(t∗)−module H∗
T (M \XT ) is supported on the set

N
⋃

i=1

ki ⊗ C (2.1)

By [GS, Section 11.3] there is an exact sequence

Hk
T (M \XT )c −→ Hk

T (M)
i∗

−→ Hk
T (X

T ) −→ Hk+1
T (M \XT )c (2.2)

where H∗
T ( · )c denotes the equivariant cohomology with compact supports. There-

fore sinceH∗
T (M) is a free S(t∗)−module Theorem 2.2 implies the following theorem.

Theorem 2.3. The map i∗ is injective and coker(i∗) is supported on

N
⋃

i=1

ki ⊗ C.

As a consequence we get the following corollary.

Corollary 2.4. If e is an element ofH∗
T (X

T ), there exist non-zero weights α1, . . . , αr

such that αi = 0 on some kj and

α1 · · ·αre ∈ i∗(H∗
T (M)) (2.3)

The next theorem is a fiber bundle version of the Chang-Skjelbred theorem.

Theorem 2.5. The image of i∗ is the ring

N
⋂

i=1

i∗Ki
H∗

T (X
Ki) (2.4)

where iKi
denotes the inclusion of XT into XKi .

Proof. Via the inclusion i∗ we can view H∗
T (M) as a submodule of H∗

T (X
T ). Let

e1, . . . , em be a basis of H∗
T (M) as a free module over S(t∗). Then by Corollary 2.4

for any e ∈ H∗
T (X

T ) we have

α1 · · ·αre =
∑

fiei, fi ∈ S(t∗) .

Then e =
∑ fi

p
ei, where p = α1 · · ·αr. If fi and p have a common factor we can

eliminate it and write e uniquely as

e =
∑ gi

pi
ei (2.5)

with gi ∈ S(t∗), pi a product of a subset of the weights α1, . . . , αr and pi and gi
relatively prime.
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Now suppose that K is an isotropy subgroup of B of codimension one and e
is in the image of H∗

T (X
K). By [GS, Theorem 11.4.2] the cokernel of the map

H∗
T (M) → H∗

T (X
K) is supported on the subset ∪ki ⊗C, ki 6= k of (2.1), and hence

there exists weights β1, . . . , βr, βi vanishing on some kj but not on k, such that

βi · · ·βse =
∑

fiei .

Thus the pi in (2.5), which is a product of a subset of the weights α1, . . . , αr, is a
product of a subset of weights none of which vanish on k. Repeating this argument
for all the codimension one isotropy groups of B we conclude that the weights in
this subset cannot vanish on any of these k’s, and hence is the empty set, i.e. pi = 1.
Then if e is in the intersection (2.4), e is in H∗

T (M). �

3. Fiber Bundles over GKM Spaces

Suppose now that B = CP 1. The action of T on B is effectively an action of a
quotient group, T/Te, where Te is a codimension one subgroup of T . Moreover BT

consists of two points, pi, i = 1, 2, and XT consists of the two fibers π−1(pi) = Fi.
Let T = Te × S1. Then S1 acts freely on CP 1 \ {p1, p2} and the quotient by S1 of
this action is the interval (0, 1), so one has an isomorphism of Te spaces

(M \XT )/S1 = F × (0, 1) , (3.1)

where, as Te−spaces, F = F1 = F2.
Consider now the long exact sequence (2.2). Since i∗ is injective this becomes a

short exact sequence

0 → Hk
T (M) → Hk

T (X
T ) → Hk+1

T (M \XT )c → 0 . (3.2)

Since S1 acts freely on M \XT we have

Hk+1
T (M \XT )c = Hk+1

T1
((M \XT )/S1)c

and by fiber integration one gets from (3.1)

Hk+1
Te

((M \XT )/S1)c = Hk
Te
(F ) .

Therefore, denoting by r the forgetful map HT (Fi) → HTe
(F ), the sequence (3.2)

becomes
0 → Hk

T (M) → Hk
T (F1)⊕Hk

T (F2) → Hk
Te
(F ) → 0 , (3.3)

where the second arrow is the map

HT (X
T ) = HT (F1)⊕HT (F2) → HTe

(F )

sending f1 ⊕ f2 to −r(f1) + r(f2). (The −r in the first term is due to the fact that
the fiber integral

Hk+1
c (F × (0, 1)) → Hk(F )

depends on the orientation of (0, 1): the standard orientation for F2 × (0, 1) → F2

and the reverse orientation for F1 × (0, 1) → F1.) To summarize, we’ve proved the
following theorem.

Theorem 3.1. For T−equivariant fiber bundles over CP 1, the image of the map

0 → H∗
T (M) → H∗

T (X
T )

is the set of pairs (f1, f2) ∈ H∗
T (F1)⊕H∗

T (F2) satisfying r(f1) = r(f2).

Theorem 1.1 follows from Theorem 2.5 by applying Theorem 3.1 to all edges of
the GKM graph of B.
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4. Homogeneous Fibrations

Let G be a compact connected semisimple Lie group, T its Cartan subgroup,
and K a closed subgroup of G containing T . Then, as asserted above, G/K is a
GKM space. The proof of this consists essentially of describing explicitly the GKM
structure of G/K in terms of the Weyl groups of G and K. We first note that
for K = T , i.e. for the generalized flag variety M = G/T , the fixed point set,
MT , is just the orbit of N(T ) through the identity coset, p0, and hence MT can
be identified with N(T )/T = WG. To show that M is GKM it suffices to check
the GKM condition p0. To do so we identify the tangent space Tp0

M with g/t and
identify g/t with the sum of the positive root spaces

g/t =
⊕

α∈∆+

G

gα, , (4.1)

the α′s being the weights of the isotropy representation of T on g/t. It then follows
from a standard theorem in Lie theory that the weights are pairwise independent
and this in turn implies “GKM-ness” at p0.

To see what the edges of the GKM graph are at p0 let χα : T → S1 be the
character homomorphism

χα(t) = exp iα(t) ,

let Hα be its kernel, and Gα the semisimple component of the centralizer C(Hα)
of Hα in G. Then Gα is either SU(2) or SO(3), and in either case Gαp0 ≃ CP 1.
However since Gα centralizes Hα, Gαp0 is Hα−fixed and hence is the connected
component of MHα containing p0. Thus the oriented edges of the GKM graph of M
with initial point p0 can be identified with the elements of ∆+

G and the axial function
becomes the function which labels by α the oriented edge Gαp0. Moreover, under
the identification MT = WG, the vertices that are joined to p0 by these edges are of
the form σαp0, where σα ∈ WG is the reflection which leaves fixed the hyperplane
kerα ⊆ t and maps α to −α.

Letting a ∈ N(T ) and letting p = ap0 one gets essentially the same description
of the GKM graph at p. Namely, denoting this graph by Γ, the following are true.

(1) The maps, a ∈ N(T ) → ap0 and a ∈ N(T ) → w ∈ N(T )/T , set up a
one-one correspondence between the vertices, MT , of Γ and the elements
of WG;

(2) Two vertices, w and w′, are on a common edge if and only if w′ = wσα for
some α ∈ ∆+

G;
(3) The edges of Γ containing p = ap0 are in one-one correspondence with

elements of ∆+
G;

(4) For α ∈ ∆+
G the stabilizer group of the edge corresponding to α is aHαa

−1.

Via the fibration G/T → G/K one gets essentially the same picture for G/K.
Namely let ∆+

G,K = ∆+
G \∆+

K . Then one has (see [GHZ], Theorem 2.4)

Theorem 4.1. G/K is a GKM space with GKM graph Γ, where

(1) The vertices of Γ are in one-one correspondence with the elements ofWG/WK ;
(2) Two vertices [w] and [w′] are on a common edge if and only if [w′] = [wσα]

for some α ∈ ∆+
G,K ;

(3) The edges of Γ containing the vertex [w] are in one-one correspondence
with the roots in ∆+

G,K ;
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(4) If α is such a root the the stabilizer group of the CP 1 corresponding to the
edge is aHαa

−1 where a is a preimage in N(T ) of w ∈ WG.

Remark 4.2. The GKM graph that we have just described is not simple in general,
i.e. will in general have more than one edge joining two adjacent vertices. There
is, however, a simple sufficient condition for simplicity.

Theorem 4.3. If K is a stabilizer group of an element of t∗, i.e. if G/K is a
coadjoint orbit, then the graph we’ve constructed above is simple.

Now let K1 be a closed subgroup of K and consider the fibration

G/K1 → G/K. (4.2)

To show that this is balanced it suffices to show that it is balanced at the edges
going out of the identity coset, p0. However, if e is the edge joining p0 to σαp0 and
a is the preimage of σα in N(T ) then conjugation by a maps the fiber, Fp0

= K/K0

of (4.2) at p0 onto the fiber Fp := aK/aK0 of (4.2) at p = σαp0, and conjugates the
action of Γ on Fp0

to the twisted action, aTa−1, of T on Fp. Moreover, since a is in
the centralizer of Hα, this twisted action, restricted to Hα, coincides with the given
action of Hα, i.e. if Te = Hα, conjugation by a is a Te−equivariant isomorphism of
Fp0

onto Fp. Hence the fibration (4.2) is balanced.

5. Holonomy for Balanced Bundles

Let M be a T−manifold and τ : T → T an automorphism of T . We will begin
our derivation of (1.11) by describing how the equivariant cohomology ring, HT (M)
of M is related to the “τ−twisted” equivariant cohomology ring HT (M)τ , i.e. the
cohomology ring associated with the action, (g,m) → τ(g)m.

The effect of this twisting is easiest to describe in terms of the Cartan model,
(ΩT (M), dT ). We recall that in this model cochains are T invariant polynomial
maps

p : t → Ω(M), (5.1)

and the coboundary operator is given by

dp(ξ) = d(p(ξ)) + ι(ξM )p(ξ). (5.2)

“Twisting by τ” is then given by the pull-back operation

τ∗ : ΩT → ΩT , τ∗p(ξ) = p(τ(ξ))

which converts dT to the coboundary operator

τ∗dT (τ
−1)∗ = d+ ι(τ−1(ξ)) = (dT )

τ−1

, (5.3)

the expression on the right being the coboundary operator associated with the
τ−1-twisted action of T on M .

Suppose now that M and N are T−manifolds and f : M → N a diffeomorphism
which intertwines the T−action on M with the τ−twisted action on N . Then the
pull-back map f∗ : Ω(N) → Ω(M) satisfies

ι(ξM )f∗ = f∗ι(τ(ξ)N ).

Hence if we extend f∗ to the ΩT ’s by setting (f∗p)(ξ) = f∗(p(ξ)) this extended
map satisfies

dT f
∗ = f∗(dT )

τ . (5.4)
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Thus by (5.3) and (5.4) τ∗f∗ intertwines the dT operators on ΩT (N) and ΩT (M)
and hence defines an isomorphism on cohomology

τ#f# : HT (N) → HT (M). (5.5)

Moreover, for any diffeomorphism f : M → N (not just the f above), the pull-back
operation (f∗p)(ξ) = f∗p(ξ) intertwines the τ∗ operations, i.e.

τ∗f∗ = f∗τ∗. (5.6)

Another property of f∗ which we will need below if the following. If Te is a subgroup
of T one has restriction maps

ΩT → ΩTe
, p → p|te

and these induce maps in cohomology. If τ|Te
is the identity it is easily checked

that the diagram

HT (N)
τ#f#

−−−−→ HT (M)
↓ ↓

HTe
(N)

f#

−−→ HTe
(M)

commutes.
To apply these observations to the fibers of (1.1) we begin by recalling a few

elementary facts about holonomy. By equippingM with a T−invariant Riemannian
metric we get for each m ∈ M an orthonormal complement in TmM of the tangent
space at m to the fiber of π, i.e. an “Ehresman connection.” Thus, if p and q
are points of B and γ is a curve joining p to q we get, by parallel transport, a
diffeomorphism fγ : Fp → Fq, where fγ(m) is the terminal point of the horizontal
curve in M projecting onto γ and having m as its initial point. Moreover, if γ and
γ′ are homotopic curves joining p to q, then the diffeomorphisms fγ and fγ′ are
isotopic, i.e. the isotopy class of fγ depends only on the homotopy class of γ.

Suppose now that the base B is GKM, p and q are adjacent vertices of ΓB, e is the
edge joining them and S the two-sphere corresponding to this edge. We can then
choose γ to be a longitudinal line on S joining the South pole p to the North pole
q; since this line is unique up to homotopy, we get an intrinsically defined isotopy
class of diffeomorphisms of Fp onto Fq. Moreover since the Ehresman connection
on M is T−invariant and Te fixes γ, the maps in this istopy class are Te−invariant.
We will decree that the fibration (1.1) is balanced if there exists a diffeomorphism
fe in this isotopy class and an automorphism τe of T such that fe intertwines the
T−action on Fp with the τe−twisted action of T on Fq.

It is clear that this τe, if it exists, has to be unique and has to restrict to the
identity on Te. Moreover, given a path γ : e1, . . . , ek, in π1(Γ, p) we have for each i
a ring isomorphism

τ#ei f
#
ei
: HT (Fpi+1

) → HT (Fpi
), (5.7)

pi and pi+1 being the initial and terminal vertices of ei, and by composing these
maps we get a ring automorphism, τ#ekf

#
ek

◦ · · · ◦ τ#e1f
#
e1
, of HT (Fp). Moreover, by

(5.6) we can rewrite the factors in this product as τ#γ f#
γ where τγ = τe1 ◦ · · · ◦ τek

and fγ = fe1 ◦ · · · ◦ fek . Thus the map, γ → τ#γ f#
γ gives one a holonomy action of

π1(Γ, p) on HT (Fp). Alternatively letting Wp be the image in Aut(Fp)×Aut(T ) of
this map we can view this as a holonomy action of Wp on HT (Fp).

Now let cp be an element of HT (Fp) and γp,q : e1, . . . , el a path in Γ joining p to
q. Then one can parallel transport cp along γ by the series of maps τ#ei f

#
ei

to get
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an element cq in HT (Fq) and if cp is in HT (Fp)
Wp , this parallel transport operation

doesn’t depend on the choice of γ. Moreover if q1 and q2 are adjacent vertices and
e is the edge joining q1 to q2, cq1 = τ∗e f

∗
e cq2 and hence by the commutative diagram

above the images of cq1 and cq2 in the quotient space

HT (Fq1 )/〈αe〉 = HT (Fq2)/〈αe〉

are the same. In other words by (1.8) the assignment, q ∈ V ert(F ) → cq defines a
cohomology class in HT (M) and thus gives us a map

HT (Fp)
Wp → HT (M) . (5.8)

By tensoring this map with the map

Hα(Γ)
∼
−→ HT (B)

π#

−−→ HT (M)

we get a morphism of rings (1.11):

HT (Fp)
Wp ⊗

S(t∗)Wp Hα(Γ) → HT (M) .

To prove that this map is injective we will assume henceforth that not only is
M equivariantly formal as a T space but the Fp’s are as well. Apropos of this
assumption we note:

(i) Since the fibration, M → B, is balanced, it suffices to assume this just for
the “base” fiber, Fp0

, above a single p0 ∈ BT .
(ii) One consequence of this assumption is that the cohomology groups Hk

T (F )
and Hk(F ) are non-zero only in even dimensions. Hence, since we are also
assuming that this is the case for HT (B), the Serre-Leray spectral sequence
associated with the fibration (1.2) has to collapse at its E2 stage and hence
the right and left hand sides of (1.4) are isomorphic as S(t∗) modules.

(iii) For the homogeneous fibrations in Section 4 this assumption is equivalent
to the assumption that the Fp’s are GKM. To see this we note that if G/K
is equivariantly formal then (G/K)T has to be non-empty by [GS] theorem
11.4.5 and hence for some g ∈ G, g−1Tg ⊆ K. In other words K is of
maximal rank and hence by the theorem in [GHZ] that we cited above
G/K is GKM.

(iv) If M is a Hamiltonian T−space, then the fibers are Hamiltonian spaces as
well, hence are equivariantly formal. (Notice that in particular if M is a
Hamiltonian GKM space, then the fibers are Hamiltonian GKM spaces.)

(v) One consequence of the fact that HT (F ) is equivariantly formal as a module
over S(t∗) is that HT (Fp)

W is equivariantly formal as a module over S(t∗)W .
It is interesting to note that this property of F is a consequence of the
equivariant formality of M , i.e. doesn’t require the assumption that F
be equivariantly formal. Namely to prove that HT (F )W is equivariantly
formal one has to show that there are no torsion elements in HT (F )W : if
0 6= p ∈ S(t∗)W and c ∈ HT (Fp)

W , then pc = 0 implies c = 0. Suppose this
were not the case. Then the cohomology class c̃ ∈ HT (M) obtained from
c by parallel transport would satisfy pc̃ = 0, contradicting the assumption
that M is equivariantly formal.

We next note that, since B is simply connected, the diffeomorphisms fγ : Fp →
Fp are (non-equivariantly) isotopic to the identity, so they act trivially on H(Fp),
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and since Fp is by assumption equivariantly formal,

HT (Fp) ≃ H(Fp)⊗C S(t∗) (5.9)

as an S(t∗) module. Hence if one chooses elements c1(p), . . . , cN (p) ofHT (Fp) whose
projections, ci, in H(Fp) = HT (Fp)/S(t

∗) are a basis of H(Fp), these will be a free
set of generators of HT (Fp) as a module over S(t∗). Moreover, we can average these
generators by the action of Wp and by the remark above these averaged generators
will have the same projections onto H(Fp). Hence we can assume, without loss
of generality, that the ci(p)’s themselves are in HT (Fp)

Wp and by (5.9) generate
HT (Fp)

Wp as a module over S(t∗)Wp .
If we parallel transport these generators to the fiber over q, we will get a set of

generators, c1(q), . . . , cN(q) of HT (Fq), and the maps q → c(q) define, by Chang-
Skjelbred, cohomology classes c̃k in HT (M).

Consider the map
∑

(ci ⊗ fi, q) →
∑

fi(q)ci(q) (5.10)

of H(Fp) ⊗C Hα(Γ) into HT (M). Since the ci(q)’s are, for every q ∈ V ert(Γ), a
free set of generators of HT (Fq) as a module over S(t∗), this map is an injection
and hence so is the equivariant version of this map: (1.11). To see that injectivity
implies surjectivity we note that, if we keep track of bi-degrees, the map (5.10)
maps the space

⊕

j+k=i

Hj(Fp)⊗Hk
α(Γ) (5.11)

intoHi
T (M). However, by assumption, the Serre-Leray spectral sequence associated

with the fibration π collapses at its E2 stage. The E2 term of this sequence is

H(Fp)⊗C HT (B) (5.12)

and the E∞ term is HT (M), so by (5.11) and (5.12) the space (5.11) has the same
dimension as Hi

T (M) and hence (5.10) is a bijective map of (5.11) onto Hi
T (M).

6. Examples

The results of this paper are closely related to the combinatorial results of our
recent article [GSZ]. More explicitly in [GSZ] we develop a GKM theory for fibra-
tions in which the objects involved: the base, the fiber and the total space of the
fibration, are GKM graphs. We then formulate, in this context, a combinatorial
notion of “balanced,” show that one has an analogue of the isomorphism (1.11)
and use this fact to define some new combinatorial invariants for the classical flag
varieties of type An, Bn, Cn, and Dn. In this section we will give a brief account
of how these invariants can be defined geometrically by means of the techniques
developed above.

Example 1. Let G = SU(n+1), K = T , the Cartan subgroup of diagonal matrices
in SU(n+1), and K1 = S(S1×U(n)). Then G/K1 ≃ CPn, the complex projective
space. Let An = G/K be the generic coadjoint orbit of type An; then An ≃
F l(Cn+1), the variety of complete flags in Cn+1. The fibration

π : An ≃ G/K → G/K1 ≃ CPn

sends a flag V• to its one-dimensional subspace V1. The fiber over a line L in CPn is
F l(Cn+1/L) ≃ F l(Cn) ≃ SU(n)/T ′, where T ′ is the Cartan subgroup of diagonal
matrices in SU(n). The fibers inherit a T−action from F l(Cn+1), but are not
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T−equivariantly isomorphic. If p and q are fixed points for the T−action on CPn,
then the fibers Fp and Fq are Te-equivariantly isomorphic, where Te is the subtorus
fixing the CP 1 in CPn with poles p and q. The Weyl group Wp of the fiber at p is
isomorphic to Sn−1, the Weyl group of SU(n) and the holonomy action action of
Wp on the equivariant cohomology of the fiber is equivalent to the induced action
of Sn−1 on the equivariant cohomology of the flag variety F l(Cn).

We can iterate this fibration and construct a tower of fiber bundles

pt−−−−→ A1 −−−−→ A2 −−−−→ . . .−−−−→ An−1 −−−−→ An




y





y





y





y

CP 1 CP 2 CPn−1 CPn

Using this tower we construct a basis of invariant classes on An by repeatedly
applying the isomorphism (1.11). A typical stage in the process is the following.
By (1.11) we have

HT (Ak) = HT (Ak−1)
Wk−1 ⊗

S(t∗)Wk−1 HT (CP
k)

Suppose we have constructed a basis of invariant classes on Ak−1; this is trivial
for A0 =pt. We use, as a basis for HT (CP

k), classes represented by powers of the
equivariant symplectic form ω−τ ∈ Ω2

T (CP
k). The pull-backs of these classes to Ak

are invariant under the holonomy action, and the classes given by the isomorphism
(1.11) form a basis of the equivariant cohomology of Ak. As shown in [GSZ],
this basis consists of classes that are invariant under the corresponding holonomy
action. By iterating this process we obtain an S(t∗)-basis of HT (An) consisting
of W−invariant classes. The combinatorial version of this construction is given in
[GSZ, Section 5.1].

Example 2. Let G = SO(2n + 1), K = T a maximal torus in G, and K1 =
SO(2) × SO(2n − 1). Then G/K1 ≃ Gr+2 (R

2n+1), the Grassmannian of oriented
two planes in R2n+1. Let Bn = G/K be the generic coadjoint orbit of type Bn and

π : Bn ≃ G/K → G/K1 ≃ Gr+2 (R
2n+1)

the natural projection. Since the fibers are isomorphic to Bn−1 (but not isomor-
phic as T−spaces since the T−action on the pre-image of the T−fixed points of
Gr+2 (R

2n+1) changes), we can produce a tower of fiber bundles

pt−−−−→ CP 1 −−−−→ B2 −−−−→ . . .−−−−→ Bn−1 −−−−→ Bn




y





y





y





y

CP 1 Gr+2 (R
5) Gr+2 (R

2n−1) Gr+2 (R
2n+1)

Since the classes represented by powers of the equivariant symplectic form ω− τ ∈
Ω2

T (Gr+2 (R
2k−1)) form aW−invariant basis forHT (Gr+2 (R

2k−1)), we can repeat the
same argument of the previous example and produce a basis for HT (Bn) consisting
of W−invariant classes.

Example 3. Let G = Sp(n) be the symplectic group, K = T a maximal torus in
G, and K1 = S1 ×Sp(n− 1); then G/K1 ≃ CP 2n−1. Let Cn = G/K be the generic
coadjoint orbit of type Cn and

π : Cn ≃ G/K → G/K1 ≃ CP 2n−1
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the natural projection. Then, since the fibers are isomorphic to Cn−1, we obtain
the following tower of fiber bundles

pt−−−−→ CP 1 −−−−→ C2 −−−−→ . . .−−−−→ Cn−1 −−−−→ Cn




y





y





y





y

CP 1 CP 3 CP 2n−3 CP 2n−1

By taking classes represented by powers of the equivariant symplectic form ω− τ ∈
Ω2

T (CP
2k−1) we obtain a W−invariant basis of HT (CP

2k−1), and iterating the
same procedure as before, a W−invariant basis of HT (Cn).

Example 4. Let G = SO(2n), K = T a maximal torus in G, and K1 = SO(2) ×
SO(2n− 2). Then G/K1 ≃ Gr+2 (R

2n), the Grassmannian of oriented two planes in
R2n. Let Dn = G/K be the generic coadjoint orbit of type Dn and

π : Dn ≃ G/K → G/K1 ≃ Gr+2 (R
2n)

the natural projection. Then, since the fibers are isomorphic to Dn−1, we obtain
the following tower of fiber bundles

pt−−−−→ CP 1 × CP 1 −−−−→ D3 −−−−→ . . .−−−−→ Dn−1 −−−−→ Dn




y





y





y





y

CP 1 × CP 1 Gr+2 (R
6) Gr+2 (R

2n−2) Gr+2 (R
2n)

In [GSZ] we also show how these iterated invariant classes relate to a better
known family of classes generating the equivariant cohomology of flag varieties,
namely the equivariant Schubert classes.
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